Science.gov

Sample records for genotoxic effects induced

  1. Evaluation of protective effect of amifostine on dacarbazine induced genotoxicity.

    PubMed

    Etebari, M; Jafarian-Dehkordi, A; Lame, V

    2015-01-01

    Anticancer therapy with alkylating agents has been used for many years. Dacarbazine (DTIC) as an alkylating agent is used alone or in combination with other chemotherapy drugs. In order to inhibit the formation of secondary cancers resulting from chemotherapy with DTIC, preventional strategies is necessary. The present study was undertaken to evaluate the genoprotective effect of amifostine on the genotoxic effects of DTIC in cell culture condition. To determine the optimum genotoxic concentration of DTIC, HepG2 cells were incubated with various DTIC concentrations including 5, 10 and 20 μg/ml for 2 h and the genotoxic effects were evaluated by the comet assay. The result of this part of the study showed that incubation of HepG2 cells with DTIC at 5 μg/ml was sufficient to produce genotoxic effect. In order to determine the protective effects of amifostine on genotoxicity induced by DTIC, HepG2 cells were incubated with different concentrations of amifostine (2, 3 and 5 mg/ml) for 1 h which was followed by incubation with DTIC at 5 μg/ml for 2 h. One hour incubation of cells with different concentrations of amifostine before incubation with DITC indicated that at least 5 mg/ml concentration of amifostine can prevent genotoxic effects induced by DTIC on HepG2 cells under described condition. In conclusion amifostine could prevent DNA damage induced by DTIC on HepG2 cells. PMID:26430459

  2. Antigenotoxic effect of allicin against methyl methanesulphonate induced genotoxic damage.

    PubMed

    Siddique, Yasir Hasan; Afzal, Mohammad

    2005-07-01

    Allicin, one of the sulfur compounds especially thiosulphonates of garlic (Allium sativum), possesses antioxidant and thioldisulphide exchange activity and is also shown to cause a variety of actions potentially useful for human health. In this investigation we determined its antigenotoxic potential using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) induced by methyl methanesulphonate (MMS) as genotoxic end points both in the presence as well as absence of rat liver microsomal activation system (S9 mix) in cultured human lymphocytes. We tested the effect of 5, 10 and 20 microM of allicin on the damage exerted by 60 microM of MMS. The levels of CAs and SCEs were lowered suggesting an antigenotoxic role of allicin against genotoxic damage both in the presence as well as absence of metabolic activation. PMID:16334295

  3. Antigenotoxic effect of allicin against estradiol-17beta-induced genotoxic damage in cultured mammalian cells.

    PubMed

    Siddique, Yasir Hasan; Beg, Tanveer; Ara, Gulshan; Gupta, Jyoti; Afzal, Mohammad

    2010-07-01

    Antigenotoxic activity of allicin, one of the sulphur compounds of garlic (Allium sativum) which possesses antioxidant and thiol disulphide exchange activity, was studied against estradiol-17beta-induced genotoxic damage using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) as parameters. Approximately 10, 20 and 40 microM of estradiol-17beta was tested for its genotoxic effect in the presence of metabolic activation and was found to be genotoxic at 20 and 40 microM. Approximately 20 microM of estradiol-17beta was treated along with 5, 10 and 15 microM of allicin, separately, in the presence of metabolic activation. Similar treatments were given with 40 microM of estradiol-17beta. Treatments along with allicin result in the reduction of CAs and SCEs, suggesting its anti-genotoxic activity in human lymphocytes in vitro against estradiol-17beta-induced genotoxic damage. PMID:20582805

  4. Ameliorative effect of certain antioxidants against mercury induced genotoxicity in peripheral blood lymphocytes.

    PubMed

    Patel, Tapan A; Rao, Mandava V

    2015-10-01

    Various antioxidants play an important role in reducing the reactive oxygen species (ROS) by scavenging them directly or indirectly. Mercury (Hg) is one of the known hazardous genotoxicant, induces the genotoxicity by enhancing the ROS. In the present study, three structurally different bioactive compounds such as melatonin (0.2 mM), curcumin (3.87 µM) and andrographolide (0.4 µM) were evaluated against the genotoxic effect of mercury. All the experiments were conducted using the peripheral blood lymphocytes In Vitro. The cultures were exposed to different doses (2.63 µM; 6.57 µM; 10.52 µM) of mercury salt (HgCl2) for studying various genotoxic indices. All three antioxidant compounds, alone and in combination with high dose of mercury, were added to the cultures with controls. For ascertaining genotoxicity, sister chromatid exchanges (SCEs), cell cycle proliferative index/replicative index (CCPI/RI), average generation time (AGT), population doubling time (PDT), %M1, %M2 and %M3 were assessed and analyzed using suitable statistical analysis. The results revealed a dose dependent increase in SCEs, AGT and PDT, with a concomitant reduction in CCPI values after treatment of mercury. Supplementation of these three antioxidant compounds effectively negated these genotoxic endpoints in treated cultures with improvement in the cell cycle kinetics i.e. CCPI. The antimutagenic activity of these compounds on mercury induced genotoxicity was in the following order: melatonin > curcumin > andrographolide. In conclusion, these compounds have ameliorated mercury induced increase in genotoxic indices due to their excellent antioxidant properties and the combination seems to be effective. PMID:25645230

  5. Modulatory Effect of Betulinic Acid on the Genotoxicity Induced by Different Mutagens in V79 Cells

    PubMed Central

    Acésio, Nathália Oliveira; de Oliveira, Pollyanna Francielli; Mastrocola, Daiane Fernanda Pereira; Lima, Ildercílio Mota de Souza; Munari, Carla Carolina; Sato, Vânia Luiza Ferreira Lucatti; Souza, Andressa Aparecida Silva; Flauzino, Lúzio Gabriel Bocalon; Cunha, Wilson Roberto; Tavares, Denise Crispim

    2016-01-01

    Betulinic acid (BA) is a pentacyclic triterpene that can be isolated from many medicinal plants around the world. The aim of this study was to evaluate the genotoxic potential of BA and its effect on the genotoxicity induced by different mutagens in V79 cells using the cytokinesis-block micronucleus assay. Different BA concentrations were combined with methyl methanesulfonate (MMS), doxorubicin (DXR), camptothecin (CPT), and etoposide (VP-16). The frequencies of micronuclei in cultures treated with different BA concentrations did not differ from those of the negative control. Treatment with BA and MMS resulted in lower micronucleus frequencies than those observed for cultures treated with MMS alone. On the other hand, a significant increase in micronucleus frequencies was observed in cultures treated with BA combined with DXR or VP-16 when compared to these mutagens alone. The results showed no effect of BA on CPT-induced genotoxicity. Therefore, BA was not genotoxic under the present experimental conditions and exerted a different influence on the genotoxicity induced by different mutagens. The modulatory effect of BA depends on the type of mutagen and concentrations used. PMID:27195016

  6. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  7. THE EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) AND EXPOSURE PROTOCOL ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    The Effects of Heat Shock Protein 70 (Hsp70) and Exposure Protocol on Arsenite Induced Genotoxicity

    Barnes, J.A.1,2, Collins, B.W.2, Dix, D.J.3 and Allen J.W2.
    1National Research Council, 2Environmental Carcinogenesis Division, 3Reproductive Toxicology Division, Office...

  8. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  9. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    PubMed

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed. PMID:24710572

  10. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis.

    PubMed

    Li, Diqiu; Huang, Qingchun; Lu, Miaoqing; Zhang, Lei; Yang, Zhichuan; Zong, Mimi; Tao, Liming

    2015-09-01

    The organophosphate insecticide chlorpyrifos (CPF) is known to induce neurological effects, malformation and micronucleus formation, persistent developmental disorders, and maternal toxicity in rats and mice. The binding of chlorpyrifos with DNA to produce DNA adducts leads to an increasing social concern about the genotoxic risk of CPF in human, but CPF-induced cytotoxicity through DNA damage and cell apoptosis is not well understood. Here, we quantified the cytotoxicity and potential genotoxicity of CPF using the alkaline comet assay, γH2AX foci formation, and the DNA laddering assay in order to detect DNA damage and apoptosis in human HeLa and HEK293 cells in vitro. Drosophila S2 cells were used as a positive control. The alkaline comet assay showed that sublethal concentrations of CPF induced significant concentration-dependent increases in single-strand DNA breaks in the treated cells compared with the control. The percentage of γH2AX-positive HeLa cells revealed that CPF also causes DNA double-strand breaks in a time-dependent manner. Moreover, DNA fragmentation analysis demonstrated that exposure to CPF induced a significant concentration- and time-dependent increase in cell apoptosis. We conclude that CPF is a strongly genotoxic agent that induces DNA damage and cell apoptosis. PMID:26002045

  11. Genotoxicity Induced by Foetal and Infant Exposure to Magnetic Fields and Modulation of Ionising Radiation Effects

    PubMed Central

    Udroiu, Ion; Antoccia, Antonio; Tanzarella, Caterina; Giuliani, Livio; Pacchierotti, Francesca; Cordelli, Eugenia; Eleuteri, Patrizia; Villani, Paola; Sgura, Antonella

    2015-01-01

    Background Few studies have investigated the toxicity and genotoxicity of extremely low frequency magnetic fields (ELF-MF) during prenatal and neonatal development. These phases of life are characterized by cell proliferation and differentiation, which might make them sensitive to environmental stressors. Although in vitro evidences suggest that ELF-MF may modify the effects of ionizing radiation, no research has been conducted so far in vivo on the genotoxic effects of ELF-MF combined with X-rays. Aim and methods Aim of this study was to investigate in somatic and germ cells the effects of chronic ELF-MF exposure from mid gestation until weaning, and any possible modulation produced by ELF-MF exposure on ionizing radiation-induced damage. Mice were exposed to 50 Hz, 65 μT magnetic field, 24 hours/day, for a total of 30 days, starting from 12 days post-conception. Another group was irradiated with 1 Gy X-rays immediately before ELF-MF exposure, other groups were only X-irradiated or sham-exposed. Micronucleus test on blood erythrocytes was performed at multiple times from 1 to 140 days after birth. Additionally, 42 days after birth, genotoxic and cytotoxic effects on male germ cells were assessed by comet assay and flow cytometric analysis. Results ELF-MF exposure had no teratogenic effect and did not affect survival, growth and development. The micronucleus test indicated that ELF-MF induced a slight genotoxic damage only after the maximum exposure time and that this effect faded away in the months following the end of exposure. ELF-MF had no effects on ionizing radiation (IR)-induced genotoxicity in erythrocytes. Differently, ELF–MF appeared to modulate the response of male germ cells to X-rays with an impact on proliferation/differentiation processes. These results point to the importance of tissue specificity and development on the impact of ELF-MF on the early stages of life and indicate the need of further research on the molecular mechanisms underlying

  12. Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae).

    PubMed

    Nikoloff, Noelia; Natale, Guillermo S; Marino, Damián; Soloneski, Sonia; Larramendy, Marcelo L

    2014-02-01

    Acute toxicity and genotoxicity of the flurochloridone (FLC)-containing commercial formulation herbicides Twin Pack Gold(®) (25 percent a.i.) and Rainbow(®) (25 percent a.i.) were evaluated on Rhinella arenarum (Anura: Bufonidae) tadpoles exposed under laboratory conditions. Lethal effect was evaluated as end point for lethality, whereas frequency of micronuclei (MN) and single cell gel electrophoresis (SCGE) were employed as end points for genotoxicity. Lethality studies revealed equivalent LC-5096 h values of 2.96 and 2.85 mg/L for Twin Pack Gold(®) and Rainbow(®), respectively. Twin Pack Gold(®) did not induce DNA damage at the chromosomal level, whereas Rainbow(®) increased the frequency of MN only when the lowest concentration (0.71 mg/L) was used. However, all concentrations of Twin Pack Gold(®) and Rainbow(®) increased the frequencies of primary DNA lesions estimated by alkaline SCGE. This study represents the first evidence of the acute toxic and genotoxic effects exerted by two FLC-based commercial formulations, Twin Pack Gold(®) and Rainbow(®), on tadpoles of an amphibian species native to Argentina under laboratory conditions. Finally, our findings highlight the importance of minimizing the impacts on nontarget living species exposed to agrochemicals. PMID:24239267

  13. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes

    PubMed Central

    Cho, Yoon Hee; Lee, Joong Won; Woo, Hae Dong; Lee, Sunyeong; Kim, Yang Jee; Lee, Younghyun; Shin, Sangah; Joung, Hyojee; Chung, Hai Won

    2016-01-01

    Following one of the world’s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM), a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN) and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL), the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes. PMID:26907305

  14. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes.

    PubMed

    Cho, Yoon Hee; Lee, Joong Won; Woo, Hae Dong; Lee, Sunyeong; Kim, Yang Jee; Lee, Younghyun; Shin, Sangah; Joung, Hyojee; Chung, Hai Won

    2016-02-01

    Following one of the world's largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM), a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN) and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL), the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes. PMID:26907305

  15. Protective effect of S-allylcysteine and lycopene in combination against N-methyl-N'-nitro-N-nitrosoguanidine-induced genotoxicity.

    PubMed

    Velmurugan, Balaiya; Santhiya, Santhiyavedu T; Nagini, Siddavaram

    2004-01-01

    Chemoprotection by diet-derived antioxidants has emerged as a cost-effective approach in preventing genotoxicity and carcinogenicity. In this study, we investigated the protective effects of S-allylcysteine (SAC) and lycopene against N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced genotoxicity. Quantification of bone marrow micronuclei and chromosomal aberrations in male Wistar rats was used to monitor the protective effects of SAC and lycopene. Intragastric administration of MNNG (40 mg/kg) induced a significant increase in the frequency of micronuclei and chromosomal aberrations. Although pretreatment with SAC and lycopene significantly reduced the frequency of MNNG-induced bone marrow micronuclei and chromosomal aberrations, the combination of SAC and lycopene exerted a greater protective effect. These findings indicate that antioxidants such as SAC and lycopene, are effective chemoprotective agents against genotoxicity and carcinogenicity especially when used in combination. PMID:15156075

  16. Radioprotective Effect of Achillea millefolium L Against Genotoxicity Induced by Ionizing Radiation in Human Normal Lymphocytes

    PubMed Central

    Shahani, Somayeh; Rostamnezhad, Mostafa; Ghaffari-rad, Vahid; Ghasemi, Arash; Allahverdi Pourfallah, Tayyeb

    2015-01-01

    The radioprotective effect of Achillea millefolium L (ACM) extract was investigated against genotoxicity induced by ionizing radiation (IR) in human lymphocytes. Peripheral blood samples were collected from human volunteers and incubated with the methanolic extract of ACM at different concentrations (10, 50, 100, and 200 μg/mL) for 2 hours. At each dose point, the whole blood was exposed in vitro to 2.5 Gy of X-ray and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cell. Antioxidant capacity of the extract was determined using free radical-scavenging method. The treatment of lymphocytes with the extract showed a significant decrease in the incidence of micronuclei binucleated cells, as compared with similarly irradiated lymphocytes without any extract treatment. The maximum protection and decrease in frequency of micronuclei were observed at 200 μg/mL of ACM extract which completely protected genotoxicity induced by IR in human lymphocytes. Achillea millefolium extract exhibited concentration-dependent radical-scavenging activity on 1,1-diphenyl-2-picryl hydrazyl free radicals. These data suggest that the methanolic extract of ACM may play an important role in the protection of normal tissues against genetic damage induced by IR. PMID:26675116

  17. Long-term exposure of rabbits to imidaclorpid as quantified in blood induces genotoxic effect.

    PubMed

    Stivaktakis, Polychronis D; Kavvalakis, Matthaios P; Tzatzarakis, Manolis N; Alegakis, Athanasios K; Panagiotakis, Michael N; Fragkiadaki, Persefoni; Vakonaki, Elena; Ozcagli, Eren; Hayes, Wallace A; Rakitskii, Valerii N; Tsatsakis, Aristidis M

    2016-04-01

    The present in-vivo study focuses on the genotoxic effect of the neonicotinoid pesticide imidacloprid (IMI) in rabbits. The purpose of the study was to establish a possible relationship between exposure to the pesticide (dose and duration) and genotoxicity. Furthermore, an analytical method for the simultaneous determination of IMI and its major metabolite 6-chloronicotinic acid (6-ClNA) in blood was developed and validated. The isolation of the two analytes from blood was performed by liquid-liquid extraction with dichloromethane. Analysis was performed by Liquid Chromatography - Atmospheric Pressure Chemical Ionization - Mass Spectrometry (LC-APCI-MS). The method was applied on the determination of IMI and 6-ClNA in serum samples obtained from rabbits fed with the insecticide at two low doses. Furthermore, parameters of genotoxicity and cytotoxicity were evaluated by measuring binucleated cells with micronuclei (BNMN), micronuclei (MN) and the Cytokinesis Block Proliferation Index (CBPI), in lymphocytes of exposed rabbits. The results revealed a genotoxic effect of IMI for both exposed groups. There were statistically significant differences in the frequencies of BNMN and MN between control and exposed groups but there was no dose-dependence, neither time-dependence of the genotoxic effect for the administered doses. This is the first time that long term exposure to IMI in rabbits was studied for the determination of its genotoxic effect. The genotoxic effect of IMI as it is depicted by the current study is in accordance with previous studies. PMID:26855213

  18. Radioprotective effect of chicory seeds against genotoxicity induced by ionizing radiation in human normal lymphocytes.

    PubMed

    Hosseinimehr, S J; Ghaffari-Rad, V; Rostamnezhad, M; Ghasemi, A; Allahverdi Pourfallah, T; Shahani, S

    2015-01-01

    The search for less-toxic radioprotective agents has led to a growing trend towards natural products. Protective effect of the methanolic extract of chicory seeds (MCS) was investigated against genotoxicity induced by ionizing radiation in human lymphocytes. Human peripheral blood samples were collected and incubated with MCS at different concentrations (10, 50, 100, and 200 μg/mL) for two hours. The whole blood samples were exposed in vitro to X-ray at dose 2.5 Gy. Then, the lymphocytes were cultured with mitogenic stimulation to determine the micronucleus in cytokinesis blocked binucleated cell. The methanolic extract at all doses significantly reduced the frequency of micronuclei in binucleated lymphocytes, as compared with similarly irradiated lymphocytes without any extract treatment. The maximum protection was observed at 200 μg/mL of MCS, it completely protected genotoxicity induced by ionizing radiation in human lymphocytes. The extract exhibited a concentration-dependent radical scavenging activity on 1,1-diphenyl-2-picryl hydrazyl free radicals. HPLC analysis of MCS showed this extract is containing chlorogenic acid as a phenolic compound. These data suggest that the radioprotective effect of methanolic extract of chicory seeds can be attributed to the presence of phenolic compounds such as chlorogenic acid which act as antioxidant agents. PMID:26278267

  19. Protective effects of acerola juice on genotoxicity induced by iron in vivo.

    PubMed

    Horta, Roberta Nunes; Kahl, Vivian Francilia Silva; Sarmento, Merielen da Silva; Nunes, Marisa Fernanda Silva; Porto, Carem Rejane Maglione; Andrade, Vanessa Moraes de; Ferraz, Alexandre de Barros Falcão; Silva, Juliana Da

    2016-03-01

    Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron. PMID:27007905

  20. Protective effects of acerola juice on genotoxicity induced by iron in vivo

    PubMed Central

    Horta, Roberta Nunes; Kahl, Vivian Francilia Silva; Sarmento, Merielen da Silva; Nunes, Marisa Fernanda Silva; Porto, Carem Rejane Maglione; de Andrade, Vanessa Moraes; Ferraz, Alexandre de Barros Falcão; Silva, Juliana Da

    2016-01-01

    Abstract Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron. PMID:27007905

  1. Protective effects of Vernonia amygdalina against sodium arsenite-induced genotoxicity in rat

    PubMed Central

    Adetutu, Adewale; Oyewo, Emmanuel Bukoye; Adesokan, Ayoade A.

    2013-01-01

    Objectives: Contamination of the environment with arsenic (As) from both human and natural sources is known as a global problem. This study investigated the chemoprotective potential of Vernonia amygdalina leave extract against sodium arsenite-induced genotoxicity and hepatotoxicity. Materials and Methods: Genotoxic effects were evaluated in the rat bone marrow using micronuclei. The gamma glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) activities were assayed in rat serum. Results: Pre-treatment with extract of V. amygdalina at doses 5 mg/kg and 10 mg/kg significantly decreased the frequency of micronucleated polychromatic erythrocytes (PCEs). The GGT and ALP activities were elevated more than fourfold, in the liver of rats treated with sodium arsenite, while it was reduced almost to half when the sodium arsenit-treated rats were fed fresh V. amgdalina leave extracts The phytochemical constituents of V. amygdalina assayed in this study may be responsible for high radical scavenging of the DPPH free radical observed. Conclusion: The present results indicate that V. amygdalina extract is capable of suppressing the chromosomal aberration induced by sodium arsenite in rat. Thus, V. amygdalina may be a potent chemoprotective agent against the toxicity of sodium arsenite in rats. PMID:23900237

  2. Antimutagenic Effect of Dioscorea Pentaphylla on Genotoxic Effect Induced By Methyl Methanesulfonate in the Drosophila Wing Spot Test

    PubMed Central

    Prakash, G.; Hosetti, B. B.; Dhananjaya, B. L.

    2014-01-01

    Objectives: Plants as dietary sources are known to have several chemoprotective agents. Dioscorea pentaphylla is an important medicinal plant, which is often used as edible food. This study was undertaken to evaluate the antigenotoxic potential of D. pentaphylla extracts on the genotoxic effect induced by methyl methanesulfonate (MMS) in the Drosophila wing spot test. Materials and Methods: The somatic mutation and recombination test (SMART) was carried out in Drosophila melanogaster. In transheterogyous larvae, multiple wing hair (mwh 3-0.3) and flare (flr3-38.8) genes were used as markers of the extent of mutagenicity. Results: It was observed thatall the three extracts (petroleum ether, choloroform, and ethyl alcohol) in the combined treatment had significantly inhibited the effect of MMS-induced genotoxic effects. When compared to others, the ethanol extract showed a very significant antimutagenic activity. Conclusion: The compounds that are present in the extracts may directly interact with the methyl radical groups of MMS and inactivate them by chemical reaction. It is also possible that the compounds in the extract compete to interact with the nucleophilic sites in deoxyribonucleic acid (DNA), thus altering the binding of the mutagen to these sites. Although our results indicate that the compounds present in the extracts may directly interact with the methyl radical groups of MMS and inactivate them by chemical reaction, it may also be quite interesting to investigate through the other different mechanisms by which D. pentaphylla could interfere in vivo on the effect of genotoxic agents. PMID:25948963

  3. EFFECTS OF HEAT SHOCK PROTEIN 70 (HSP70) ON ARSENITE INDUCED GENOTOXICITY

    EPA Science Inventory

    Arsenic (As), a human carcinogen, is known to be genotoxic although its mechanism(s) of action for tumorigenesis is not well understood. Among the toxicity-related properties of this chemical are its clastogenic and aneugenic activities, as well as its capacity for inducing stres...

  4. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells.

    PubMed

    Capasso, Laura; Camatini, Marina; Gualtieri, Maurizio

    2014-04-01

    Nickel oxide nanoparticles (NiONPs) toxicity has been evaluated in the human pulmonary epithelial cell lines: BEAS-2B and A549. The nanoparticles, used at the doses of 20, 40, 60, 80, 100 μg/ml, induced a significant reduction of cell viability and an increase of apoptotic and necrotic cells at 24h. A significant release of interleukin-6 and -8 was assessed after 24h of treatment, even intracellular ROS increased already at 45 min after exposure. The results obtained evidenced that the cytokines release was dependent on mitogen activated protein kinases (MAPK) cascade through the induction of NF-kB pathway. NiONPs induced cell cycle alteration in both the cell lines even in different phases and these modifications may be induced by the NPs genotoxic effect, suggested by the nuclear translocation of phospho-ATM and phospho-ATR. Our results confirm the cytotoxic and pro-inflammatory potential of NiONPs. Moreover their ability in inducing DNA damage responses has been demonstrated. Such effects were present in A549 cells which internalize the NPs and BEAS-2B cells in which endocytosis has not been observed. PMID:24503009

  5. Textile effluent induced genotoxic effects and oxidative stress in Clarias gariepinus.

    PubMed

    Ayoola, S O; Bassey, B O; Alimba, C G; Ajani, E K

    2012-09-01

    Human and ecological disorder experienced in industrial settlements as a result of improper disposal of chemicals such as textile effluent calls for careful surveillance on the state of the environment. This study investigated the toxicity of textile effluent discharge using biochemical and cytogenetic responses to ascertain the acute and sub lethal effects on Clarias gariepinus. The 96 h LC50 of C. gariepinus exposed to the textile effluent was 8.203 ml L(-1). Fourteen day exposures to 1, 2, 4 and 6 ml L(-1) doses were conducted and several toxicological endpoints were evaluated. Sub lethal genotoxicity and biochemical study was also carried out for fourteen days. The genotoxicity studies utilized micronucleus test while the biochemical studies quantified serum anti-oxidant status Total Protein (TP), Catalase (CAT), Superoxide Dismutase (SOD) and Malondialdehyde (MDA) of the exposed fish. Toxicity factor indicates that the 96 h LC50 was significantly more toxic than the 24 h LC50 (p < 0.05). The textile effluent at the tested concentrations induced micronucleus and nuclear abnormalities in the peripheral blood of exposed fish. Micronucleus, notch and binucleated cell formation were significant (p < 0.05) compared to control while lobed and blebbed cells were insignificant (p < 0.05). SOD, TP and CAT significantly (p < 0.05) decreased compared to control group while MDA increased compared to control but was insignificant (p > 0.05). The results obtained from this study showed that textile effluent increase cytogenetic damage and altered anti-oxidant status in C. gariepinus. Chemicals in the effluent can be bioaccumulated and biomagnified in the aquatic organism hence affecting man. PMID:24163963

  6. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats.

    PubMed

    Patlolla, Anita K; Todorov, Todor I; Tchounwou, Paul B; van der Voet, Gijsbert; Centeno, Jose A

    2012-11-01

    Arsenic (As) is a well documented human carcinogen. However, its mechanisms of toxic action and carcinogenic potential in animals have not been conclusive. In this research, we investigated the biochemical and genotoxic effects of As and studied its distribution in selected tissues of Sprague-Dawley rats. Four groups of six male rats, each weighing approximately 60 ± 2 g, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15, 20 mg/kg bw of arsenic trioxide. A control group was also made of 6 animals injected with distilled water. Following anaesthetization, blood was collected and enzyme analysis was performed by spectrophotometry following standard protocols. At the end of experimentation, the animals were sacrificed, and the lung, liver, brain and kidney were collected 24 h after the fifth day treatment. Chromosome and micronuclei preparation was obtained from bone marrow cells. Arsenic exposure significantly increased (p<0.05) the activities of plasma alanine aminotransferase-glutamate pyruvate transaminase (ALT/GPT), and aspartate aminotransferase-glutamate oxaloacetate transaminase (AST/GOT), as well as the number of structural chromosomal aberrations (SCA) and frequency of micronuclei (MN) in the bone marrow cells. In contrast, the mitotic index in these cells was significantly reduced (p<0.05). These findings indicate that aminotransferases are candidate biomarkers for arsenic-induced hepatotoxicity. Our results also demonstrate that As has a strong genotoxic potential, as measured by the bone marrow SCA and MN tests in Sprague-Dawley rats. Total arsenic concentrations in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). A dynamic reaction cell (DRC) with hydrogen gas was used to eliminate the ArCl interference at mass 75, in the measurement of total As. Total As doses in tissues tended to correlate with specific exposure levels. PMID:23175155

  7. Protective effects of ethanolic neem leaf extract on DMBA-induced genotoxicity and oxidative stress in mice.

    PubMed

    Subapriya, Rajamanickam; Kumaraguruparan, Ramasamy; Abraham, Suresh K; Nagini, Siddavaram

    2005-01-01

    We evaluated the effects of pretreatment with ethanolic neem leaf extract on 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity and oxidative stress in male Swiss albino mice. The frequency of bone marrow micronuclei, the extent of hepatic lipid peroxidation and the status of antioxidants-reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were used as intermediate biomarkers of chemoprotection. In DMBA-treated mice, the increases in micronuclei and lipid peroxides were accompanied by compromised antioxidant defenses. Pretreatment with ethanolic neem leaf extract (200 mg/kg body weight) significantly reduced DMBA-induced micronuclei and lipid peroxides and enhanced GSH-dependent antioxidant activities. The results of the present study suggest that ethanolic neem leaf extract exerts protective effects against DMBA-induced genotoxicity and oxidative stress by enhancing the antioxidant status. PMID:16635967

  8. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes

    PubMed Central

    Nobakht, Reyhaneh; Ghasemi, Arash; Pourfallah, Tayyeb Allahverdi

    2015-01-01

    Purpose Mefenamic acid (MEF) as a non-steroidal anti-inflammatory drug is used as a medication for relieving of pain and inflammation. Radiation-induced inflammation process is involved in DNA damage and cell death. In this study, the radioprotective effect of MEF was investigated against genotoxicity induced by ionizing radiation in human blood lymphocytes. Materials and Methods Peripheral blood samples were collected from human volunteers and incubated with MEF at different concentrations (5, 10, 50, or 100 µM) for two hours. The whole blood was exposed to ionizing radiation at a dose 1.5 Gy. Lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis blocked binucleated lymphocyte. Results A significant decreasing in the frequency of micronuclei was observed in human lymphocytes irradiated with MEF as compared to irradiated lymphocytes without MEF. The maximum decreasing in frequency of micronuclei was observed at 100 µM of MEF (38% decrease), providing maximal protection against ionizing radiation. Conclusion The radioprotective effect of MEF is probably related to anti-inflammatory property of MEF on human lymphocytes. PMID:26484310

  9. Genotoxic Effects Induced by Cd(+2), Cr(+6), Cu(+2) in the Gill and Liver of Odontesthes bonariensis (Piscies, Atherinopsidae).

    PubMed

    Gasulla, J; Picco, S J; Carriquiriborde, P; Dulout, F N; Ronco, A E; de Luca, J C

    2016-05-01

    Genotoxic effects of Cd(+2), Cr(+6), and Cu(+2) on the gill and liver of the Argentinean Silverside (Odontesthes bonariensis) were studied using the comet assay and in relation with the metal tissue accumulation. Fish were exposed to three waterborne concentrations of each metal for 2 and 16 days. Genotoxicity was assessed by the single cell gel electrophoresis (comet assay). After 2 days, significant increase of the genetic damage index (GDI) was only observed in the gill of fish exposed to Cr(+6) and Cu(+2), and the LOECs were 2160 nM and 921.1 nM, respectively. The gill LOEC for Cd(+2) by 16 days was 9.4 nM. In the liver, LOECs were obtained only for Cd(+2) and Cr(+6) and were 9.4 and 2160 nM, respectively. The three metals were able to induce genotoxic effects at environmentally relevant concentrations and the gill was the most sensitive organ. PMID:27003804

  10. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells.

    PubMed

    Chen, P S; Li, J H; Liu, T Y; Lin, T C

    2000-05-01

    Terminalia catappa L. is a popular folk medicine for preventing hepatoma and treating hepatitis in Taiwan. In this paper, we examined the protective effects of T. catappa leaf water extract (TCE) and its major tannin component, punicalagin, on bleomycin-induced genotoxicity in cultured Chinese hamster ovary cells. Pre-treatment with TCE or punicalagin prevented bleomycin-induced hgprt gene mutations and DNA strand breaks. TCE and punicalagin suppressed the generation of bleomycin-induced intracellular free radicals, identified as superoxides and hydrogen peroxides. The effectiveness of TCE and punicalagin against bleomycin-induced genotoxicity could be, at least in part, due to their antioxidative potentials. PMID:10773401

  11. Effect of recombinant human erythropoietin on mitomycin C-induced oxidative stress and genotoxicity in rat kidney and heart tissues.

    PubMed

    Rjiba-Touati, K; Ayed-Boussema, I; Guedri, Y; Achour, A; Bacha, H; Abid-Essefi, S

    2016-01-01

    Mitomycin C (MMC) is an antineoplastic agent used for the treatment of several human malignancies. Nevertheless, the prolonged use of the drug may result in a serious heart and kidney injuries. Recombinant human erythropoietin (rhEPO) has recently been shown to exert an important cytoprotective effect in experimental brain injury and ischemic acute renal failure. The aim of the present work is to investigate the cardioprotective and renoprotective effects of rhEPO against MMC-induced oxidative damage and genotoxicity. Our results showed that MMC induced oxidative stress and DNA damage. rhEPO administration in any treatment conditions decreased oxidative damage induced by MMC. It reduced malondialdehyde and protein carbonyl levels. rhEPO ameliorated reduced glutathione plus oxidized glutathione modulation and the increased catalase activity after MMC treatment. Furthermore, rhEPO restored DNA damage caused by MMC. We concluded that rhEPO administration especially in pretreatment condition protected rats against MMC-induced heart and renal oxidative stress and genotoxicity. PMID:25733728

  12. Chromium induced biochemical, genotoxic and histopathologic effects in liver and kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2010-01-01

    Fish constitute an excellent model to understand the mechanistic aspects of metal toxicity vis-à-vis oxidative stress in aquatic ecosystems. Hexavalent chromium (Cr (VI)), due to its redox potential can induce oxidative stress (OS) in fish and impair their health. In the present investigation, we hypothesize that OS plays a key role in chromium induced toxicity in goldfish; leading to the production of reactive oxygen species (ROS) such as O· 2, H2O2, OH·, and subsequent modulation of the activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), metallothioneins (MT), glutathione proxidase (GPx), genotoxicity and histopathology. To test this hypothesis, antioxidant enzymes, DNA damage and histopathology assays were performed in liver and kidney tissues of goldfish exposed to different concentrations of Cr (VI) (LC12.5, LC25 and LC50) following 96h static renewal bioassay. The results of this study clearly show that the fish experienced OS as characterized by significant modulation of enzyme activities, induction of DNA damage and microscopic morphological changes in the liver and kidney. In both tissues, CAT activity was decreased whereas SOD activity and hydroperoxide levels were increased. In addition, GPx activity also increased significantly in higher test concentrations, especially in the kidney. MT induction and DNA damage were observed in both tissues in a concentration dependent manner. Microscopic examination of organ morphology indicated degeneration of liver tissue and necrosis of central vein. Necrosis of kidney tubular epithelial cells and tubules was observed at higher Cr (VI) concentrations. Taking together the findings of this study are helpful in organ-specific risk assessment of Cr (VI)-induced oxidative stress, genotoxicity and histopathology in fish. PMID:20348018

  13. Cyto-genotoxic effects induced by three brominated diphenyl ether congeners on the freshwater mussel Dreissena polymorpha.

    PubMed

    Parolini, Marco; Binelli, Andrea

    2012-05-01

    Polybrominated diphenyl ethers (PBDEs) are a group of highly hydrophobic and persistent chemicals that has been used as flame retardants in several industrial applications. They have been detected in various environmental matrices worldwide and an increasing number of studies have recently been carried out to investigate their potential toxicity on ecosystem communities. Although a variety of biological damage has been documented in vertebrates, the effects on invertebrates are largely unknown. The objective of the present study was to determine the cyto-genotoxic effects induced by single exposure to three concentrations of 2,4,2',4'-tetra BDE (BDE 47), 2,2',4,4',6-penta BDE (BDE-100) and 2,2',4,4',5,6'-hexa BDE (BDE-154) on the freshwater mussel Dreissena polymorpha by a multi-biomarker approach. We performed on bivalve hemocytes the Single Cell Gel Electrophoresis (SCGE) assay, the DNA Diffusion assay and the Micronucleus test (MN test) to assess genotoxicity, while the Neutral Red Retention Assay (NRRA) was used to evaluate cytotoxic effects. Results showed that BDE-47 did not produce any genetic damage at the tested concentrations (0.1 μg/L, 0.5 μg/L and 1 μg/L), while BDE-100 and BDE-154 can be considered moderately genotoxic, since both primary and fixed DNA injuries were induced. The NRRA indicated a moderate increase in cellular stress in BDEs-treated bivalves. Thus, our data seems to suggest that investigated BDEs may pose a low risk to freshwater mussels at environmental concentrations. PMID:22280972

  14. Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells.

    PubMed

    Fernandes, Fábio Henrique; Bustos-Obregon, Eduardo; Salvadori, Daisy Maria Fávero

    2015-06-01

    Disperse Red 1 (DR1), which is widely used in the textile industry, is an azo dye that contributes to the toxicity and pollution of wastewater. To assess the toxic effects of DR1 on reproduction, sexually mature male mice (Mus musculus, strain CF-1) were orally (gavage) treated with single doses of the compound at 20, 100 and 500 mg/kg body weight. Testicular features and sperm parameters were evaluated 8.3, 16.6 and 24.9 days after treatments. In addition to testicular toxicity caused by the dye, the data clearly showed an increased frequency of sperm with abnormal morphology and decreased fertility. An increased amount of DNA damage was also detected in testis cells 16.6 and 24.9 days after treatments with 100 and 500 mg/kg. This study demonstrated the toxic and genotoxic effects of DR1, indicating the harmful activity of this dye on reproductive health. PMID:25883024

  15. Anti-genotoxic effect of naringin against bleomycin-induced genomic damage in human lymphocytes in vitro.

    PubMed

    Yilmaz, Dilek; Teksoy, Ozgun; Bilaloglu, Rahmi; Çinkilic, Nilufer

    2016-01-01

    Naringin is a flavonoid found in grapefruit and other citrus fruits that shows antioxidant activity. The aim of the present study was to determine the anti-genotoxic and protective effects of naringin on the chemotherapeutic/radiomimetic agent bleomycin (BLM) in human blood lymphocyte cultures in vitro using micronucleus test and chromosomal aberrations (CA) assay. We tested the three doses of naringin (1, 2, 3 µg/mL) and a single dose of BLM (20 µg/mL). BLM significantly increased the total CAs and micronucleus frequency at a concentration of 20 µg/mL. Naringin did not show any toxicity in doses of 1, 2, and 3 µg/mL. Combined treatments of BLM and naringin (2 and 3 µg/mL) significantly reduced micronucleus formation. Naringin dose-dependently decreased the total chromosome aberrations frequency induced by BLM. These results indicate that naringin could prevent BLM (20 µg/mL)-induced genotoxicity. PMID:25941869

  16. Genotoxic effects induced by the exposure to an environmental mixture of illicit drugs to the zebra mussel.

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-10-01

    Despite the growing interest on the presence of illicit drugs in freshwater ecosystems, just recently the attention has been focused on their potential toxicity towards non-target aquatic species. However, these studies largely neglected the effects induced by exposure to complex mixtures of illicit drugs, which could be different compared to those caused by single psychoactive molecules. This study was aimed at investigating the genetic damage induced by a 14-day exposure to a realistic mixture of the most common illicit drugs found in surface waters worldwide (cocaine, benzoylecgonine, amphetamine, morphine and 3,4-methylenedioxymethamphetamine) on the zebra mussel (Dreissena polymorpha). The mixture caused a significant increase of DNA fragmentation and triggered the apoptotic process and micronuclei formation in zebra mussel hemocytes, pointing out its potential genotoxicity towards this bivalve species. PMID:27261879

  17. Effects of cytochrome P450 inducers on tamoxifen genotoxicity in female mice in vivo.

    PubMed

    Moorthy, B; Sriram, P; Randerath, E; Randerath, K

    1997-03-01

    We recently reported that administration of the antiestrogen tamoxifen (TAM) gives rise to two groups of DNA adducts in female mouse liver in vivo, as measured by 32P-postlabeling, and provided evidence that 4-hydroxytamoxifen and alpha-hydroxytamoxifen are proximate carcinogenic metabolites leading to group I and group II adducts, respectively (Randerath et al., Carcinogenesis 15: 2087-2094, 1994). Because cytochrome P450 (CYP) enzymes play an important role in TAM metabolism, in this investigation we tested the hypothesis that induction of liver CYP enzymes may affect TAM metabolism profoundly, resulting in increased or decreased TAM-DNA adduct formation in vivo. To this end, we treated female ICR mice with TAM either alone or in combination with one of several classic CYP inducers, i.e. phenobarbital (PB), beta-naphthoflavone (BNF), and pregnenolone-16 alpha-carbonitrile (PCN), and determined the levels of 32P-postlabeled TAM-DNA adducts and the activities of several CYP-dependent enzymes. Each of the inducers greatly diminished levels of group II, but did not affect group I adducts. TAM elicited induction of benzphetamine N-demethylase activity in liver, while activities of other enzymes were not affected. TAM, when given in combination with BNF, elicited a synergistic induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities. Likewise, PCN given along with TAM caused synergistic induction of EROD and ethylmorphine N-demethylase activities. There was no synergism between PB and TAM, however. Overall, the results further support the existence of two pathways of TAM metabolism to DNA-reactive electrophiles and strongly suggest that the classic CYP inducers tested enhance detoxication of TAM to non-genotoxic metabolites. PMID:9113085

  18. Protective effects of pomegranate peel against hematotoxicity, chromosomal aberrations, and genotoxicity induced by barium chloride in adult rats.

    PubMed

    Elwej, Awatef; Ben Salah, Ghada; Kallel, Choumous; Fakhfakh, Faiza; Zeghal, Najiba; Ben Amara, Ibtissem

    2016-06-01

    Context Pomegranate peel (PP) has health benefits including antibacterial, antioxidant, anti-inflammatory, and antimutagenic properties. Objective This study investigated the biochemical composition and protective effects of PP against hematotoxicity and genotoxicity induced by barium chloride (BaCl2) in adult rats. Materials and methods Adult Wistar rats were divided into four groups of six each: control, barium (67 ppm via drinking water), PP (5% via diet), and their combination during 21 d. Oxidative stress was determined by MDA, AOPP, and antioxidant status: CAT, GPx, GSH, Vit C. Osmotic fragility (OF), chromosomal aberrations (CAs), and micronucleus (MN) assays were also studied. Results PP showed a rich composition of antioxidant compounds. DPPH test found IC50 value= 5.3 μg/mL and a high polysaccharides content (315 ± 5 mg/g of extract). In vivo study showed a decrease in red blood cells (70%) and platelet counts (46%), hemoglobin content (8%), hematocrit percent (7%), and an 80% increase of white blood cells in Ba-treated rats. A reduction in antioxidant status: catalase, glutathione peroxidase activities, glutathione, and vitamin C levels by 31, 21, 28, and 29%, respectively, and an increase in MDA (46%) and AOPP levels (72%) were also observed compared with controls. BaCl2-treatment showed a significant increase in the frequencies of total chromosomal aberrations with abnormal metaphases and micronucleus in bone-marrow cells. Oxidative stress induced by BaCl2 might be the major cause for chromosomal abnormalities leading to DNA damage. Discussion and conclusion A decrease in hematotoxic and genotoxic effects induced by PP is due to its powerful antioxidant capacity. PMID:26971618

  19. In vivo protective effect of Uridine, a pyrimidine nucleoside, on genotoxicity induced by Levodopa/Carbidopa in mice.

    PubMed

    Orenlili Yaylagul, Esra; Cansev, Mehmet; Celikler Kasimogullari, Serap

    2015-08-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that affects millions of people all over the world. Motor symptoms of PD are most commonly controlled by L-3,4-dihydroxyphenylalanine (Levodopa, L-DOPA), a precursor of dopamine, plus a peripherally-acting aromatic-L-amino-acid decarboxylase (dopa decarboxylase) inhibitor, such as carbidopa. However, chronic treatment with a combination of Levodopa plus carbidopa has been demonstrated to cause a major complication, namely abnormal involuntary movements. On the other hand, the effect of this treatment on bone marrow cells is unknown. Therefore, in this study, we aimed to investigate possible genotoxic effects of Levodopa and Carbidopa using male Balb/C mice. Our results showed that Levodopa alone or in combination with carbidopa caused genotoxicity in in vivo micronucleus test (mouse bone marrow) and Comet assay (blood cells). Furthermore, we showed that simultaneous administration of uridine, a pyrimidine nucleoside, reversed the genotoxic effect of Levodopa and Carbidopa in both assays. Our data show for the first time that Levodopa plus carbidopa combination causes genotoxicity which is reversed by uridine treatment. These findings might enhance our understanding for the complications of a common Parkinson's treatment and confer benefit in terms of reducing a possible genotoxic effect of this treatment. PMID:25976300

  20. Safrole-2',3'-oxide induces cytotoxic and genotoxic effects in HepG2 cells and in mice.

    PubMed

    Chiang, Su-yin; Lee, Pei-yi; Lai, Ming-tsung; Shen, Li-ching; Chung, Wen-sheng; Huang, Hui-fen; Wu, Kuen-yuh; Wu, Hsiu-ching

    2011-12-24

    Safrole-2',3'-oxide (SAFO) is a reactive electrophilic metabolite of the hepatocarcinogen safrole, the main component of sassafras oil. Safrole occurs naturally in a variety of spices and herbs, including the commonly used Chinese medicine Xi xin (Asari Radix et Rhizoma) and Dong quai (Angelica sinensis). SAFO is the most mutagenic metabolite of safrole tested in the Ames test. However, little or no data are available on the genotoxicity of SAFO in mammalian systems. In this study, we investigated the cytotoxicity and genotoxicity of SAFO in human HepG2 cells and male FVB mice. Using MTT assay, SAFO exhibited a dose- and time-dependent cytotoxic effect in HepG2 cells with TC(50) values of 361.9μM and 193.2μM after 24 and 48h exposure, respectively. In addition, treatment with SAFO at doses of 125μM and higher for 24h in HepG2 cells resulted in a 5.1-79.6-fold increase in mean Comet tail moment by the alkaline Comet assay and a 2.6-7.8-fold increase in the frequency of micronucleated binucleated cells by the cytokinesis-block micronucleus assay. Furthermore, repeated intraperitoneal administration of SAFO (15, 30, 45, and 60mg/kg) to mice every other day for a total of twelve doses caused a significant dose-dependent increase in mean Comet tail moment in peripheral blood leukocytes (13.3-43.4-fold) and in the frequency of micronucleated reticulocytes (1.5-5.8-fold). Repeated administration of SAFO (60mg/kg) to mice caused liver lesions manifested as a rim of ballooning degeneration of hepatocytes immediately surrounding the central vein. Our data clearly demonstrate that SAFO significantly induced cytotoxicity, DNA strand breaks, micronuclei formation both in human cells in vitro and in mice. More studies are needed to explore the role SAFO plays in safrole-induced genotoxicity. PMID:21986196

  1. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation

    PubMed Central

    Hong, M; Xu, A; Zhou, H; Wu, L; Randers-Pehrson, G; Santella, R M; Yu, Z; Hei, T K

    2010-01-01

    Background: Direct damage to DNA is generally accepted as the main initiator of mutation and cancer induced by environmental carcinogens or ionising radiation. However, there is accumulating evidence suggesting that extracellular/extranuclear targets may also have a key role in mediating the genotoxic effects of ionising radiation. As the possibility of a particle traversal through the cytoplasm is much higher than through the nuclei in environmental radiation exposure, the contribution to genotoxic damage from cytoplasmic irradiation should not be ignored in radiation risk estimation. Although targeted cytoplasmic irradiation has been shown to induce mutations in mammalian cells, the precise mechanism(s) underlying the mutagenic process is largely unknown. Methods: A microbeam that can target the cytoplasm of cells with high precision was used to study mechanisms involved in mediating the genotoxic effects in irradiated human–hamster hybrid (AL) cells. Results: Targeted cytoplasmic irradiation induces oxidative DNA damages and reactive nitrogen species (RNS) in AL cells. Lipid peroxidation, as determined by the induction of 4-hydroxynonenal was enhanced in irradiated cells, which could be suppressed by butylated hydroxyl toluene treatment. Moreover, cytoplasmic irradiation of AL cells increased expression of cyclooxygenase-2 (COX-2) and activation of extracellular signal-related kinase (ERK) pathway. Conclusion: We herein proposed a possible signalling pathway involving reactive oxygen/nitrogen species and COX-2 in the cytoplasmic irradiation-induced genotoxicity effect. PMID:20842121

  2. Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo(a)pyrene in mice.

    PubMed

    Shahid, Ayaz; Ali, Rashid; Ali, Nemat; Hasan, Syed Kazim; Bernwal, Preeti; Afzal, Shekh Mohammad; Vafa, Abul; Sultana, Sarwat

    2016-06-01

    Benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon (PAH) is a strong mutagen and potent carcinogen. The aim of the present study was to investigate the efficacy of catechin hydrate against B(a)P induced genotoxicity, oxidative stress, inflammation, apoptosis and to explore its underlying molecular mechanisms in the lungs of Swiss albino mice. Administration of B(a)P (125 mg/kg b. wt., p. o.) increased the activities of toxicity markers such as LPO, LDH and B(a)P metabolizing enzymes [NADPH-cytochrome P450 reductase (CYPOR) and microsomal epoxide hydrolase (mEH)] with subsequent decrease in the activities of tissue anti-oxidant armory (SOD, CAT, GPx, GR, GST, QR and GSH). It also caused DNA damage and activation of apoptotic and inflammatory pathway by upregulation of TNF-α, IL-6, NF-kB, COX-2, p53, bax, caspase-3 and down regulating Bcl-2. However, pre-treatment with catechin at a dose of 20 and 40 mg/kg significantly decreased LDH, LPO, B(a)P metabolizing enzymes and increased anti-oxidant armory as well as regulated apoptosis and inflammation in lungs. Histological results also supported the protective effects of catechin. The findings of the present studies suggested that catechin as an effective natural product attenuates B(a)P induced lung toxicity. PMID:27020533

  3. Correlations between embryotoxic and genotoxic effects of phenytoin in mice.

    PubMed

    Barcellona, P S; Barale, R; Campana, A; Zucconi, D; Rossi, V; Caranti, S

    1987-01-01

    The anticonvulsant drug phenytoin (DPH) has been suspected to produce embryotoxicity through an arene oxide intermediate. This drug was also found to be a genotoxic agent. These hypotheses were tested in pregnant mice modulating the phases I and II metabolizing enzymes. DPH was studied by assessing embryotoxicity, teratogenicity, and genotoxicity, the latter by the micronucleus test on the polychromatic erythrocytes of dams and fetuses. DPH embryotoxicity was potentiated by inhibiting both cytochrome P-450 and epoxide hydrase and decreased by inducing cytochrome P-450. Equivocal results were obtained by modulating cytochrome P-448. The main DPH metabolite, p-hydroxyphenytoin (HPPH), was ineffective both per se and after cytochrome induction or epoxide hydrase inhibition. DPH did not exert genotoxicity on the maternal organism, no matter which modulating agent was used. In the fetus, however, weak genotoxic effects were observed. These effects significantly increased with inhibition of epoxide hydrase; they disappeared with induction of both cytochromes P-448 and P-450 or with inhibition of the latter. No genotoxicity was exerted by HPPH, even when the enzymatic pattern was modulated. It is concluded that the major role in DPH embryotoxicity is played by the unchanged drug, while the presence of the arene oxide is determinant for genotoxic effects. PMID:2885938

  4. Effect of cotreatment of aspirin metabolites on mitomycin C-induced genotoxicity using the somatic mutation and recombination test in Drosophila melanogaster.

    PubMed

    Niikawa, Miki; Nakamura, Takeshi; Nagase, Hisamitsu

    2006-01-01

    In our previous reports, aspirin, an antipyretic analgesic, suppressed the genotoxicity of mitomycin C (MMC) in a somatic mutation and recombination test (SMART) in Drosophila melanogaster. In order to reveal the mechanism of the anti-genotoxicity of aspirin, we evaluated the suppressing ability of each aspirin metabolite, such as salicylic acid (SA), salicyluric acid (SUA), gentisic acid (GA), gentisuric acid (GUA), and 2,3-dihydroxybenzoic acid (DHBA), in SMART in Drosophila melanogaster using the cotreatment protocol in this report. SUA, GA, GUA, and DHBA reduced the number of the three types of spot induced by MMC without decrease of survival. These aspirin metabolites decreased the genotoxicity frequency of MMC for total spots in a dose-dependent manner. Furthermore, each metabolite decreased the genotoxicity frequency of MMC by approximately 80% at a dose of 40 mg/bottle, respectively. It is suggested that these metabolites are the main substances of anti-genotoxicity in the aspirin metabolic pathway. PMID:16931440

  5. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity.

    PubMed

    Benameur, Laila; Auffan, Mélanie; Cassien, Mathieu; Liu, Wei; Culcasi, Marcel; Rahmouni, Hidayat; Stocker, Pierre; Tassistro, Virginie; Bottero, Jean-Yves; Rose, Jérôme; Botta, Alain; Pietri, Sylvia

    2015-01-01

    The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 × 10(-5)-6 × 10(-3) g/l corresponding to a concentration range of 0.22-22 µM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro-CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release. PMID:25325158

  6. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats.

    PubMed

    Abdel-Wahhab, Mosaad A; El-Kady, Ahmed A; Hassan, Aziza M; Abd El-Moneim, Omaima M; Abdel-Aziem, Sekena H

    2015-09-01

    This study was conducted to prepare and characterize activated carbon (AC) and to evaluate its protective effect against deoxynivalenol (DON) toxicity in rats compared to Egyptian montmorillonite (EM). AC was prepared using a single-step chemical activation with phosphoric acid (H3PO4). The resulted AC has a high surface area and a high total pore volume. Male Sprague-Dawley rats were divided into 6 groups (n = 10) and treated for 3 weeks as follow: the control group, the groups fed AC or EM-supplemented diet (0.5% w/w), the group treated orally with DON (5 mg/kg b.w.) and the groups fed AC or EM-supplemented diet and treated with DON. Blood and liver samples were collected for different analyses. Treatment with DON increased liver function enzymes, lipid peroxidation, tumor necrosis factor α, DNA fragmentation, decreased hepatic glutathione content, up regulating mRNA Fas and TNF-α genes expression and increased micronucleated polychromatic erythrocytes and normochromatic erythrocytes in bone marrow. Co-treatment of DON plus AC or EM succeeded to normalize the levels of the biochemical parameters, reduced the cytotoxicity of bone marrow and ameliorated the hepatic genotoxicity. Moreover, AC was more effective than EM and has a high affinity to adsorb DON and to reduce its cytotoxicity and genotoxicity. PMID:26115597

  7. Lagos lagoon sediment organic extracts and polycyclic aromatic hydrocarbons induce embryotoxic, teratogenic and genotoxic effects in Danio rerio (zebrafish) embryos.

    PubMed

    Sogbanmu, Temitope O; Nagy, Eszter; Phillips, David H; Arlt, Volker M; Otitoloju, Adebayo A; Bury, Nic R

    2016-07-01

    An expansion of anthropogenic activity around Lagos lagoon, Nigeria, has raised concerns over increasing contaminants entering the lagoon's ecosystem. The embryotoxicity, teratogenicity and genotoxicity of sediment organic extracts from four sampling zones around Lagos lagoon, Ilaje, Iddo, Atlas Cove and Apapa, as well as the dominant polycyclic aromatic hydrocarbons (PAHs) identified in water measured during the wet season (naphthalene, phenanthrene, pyrene, benzo[a]pyrene and a mixture of these), were assessed with Danio rerio embryos. Embryos were exposed to varying concentrations of toxicants from 0-72 h post-fertilization (hpf). Embryotoxicity at 72 hpf showed a dose-dependent increase in mortality upon exposure to extracts from all zones, except Atlas Cove. Similarly, higher levels of teratogenic effects, such as increased oedema, and haemorrhage and developmental abnormalities resulted from exposure to extracts from Ilaje, Iddo and Apapa zones. Treatment with single PAHs revealed that significant levels of detrimental effects were obtained only for phenanthrene. The modified comet assay revealed that the oxidative damage to DNA was generally low (<12 %) overall for all sediment extracts, but was significantly elevated with Ilaje and Iddo sediment extracts when compared with solvent controls. Oxidative damage was observed with the single PAHs, phenanthrene and benzo[a]pyrene, as well as with the PAH mixture. This study highlights that Lagos lagoon sediment extracts have teratogenic, embryotoxic and genotoxic properties, which are likely due to the high molecular weight PAHs present in the extracts, some of which are known or are suspected human carcinogens. PMID:27068906

  8. Protective effects of ethanolic neem leaf extract on N-methyl-N'-nitro-N-nitrosoguanidine-induced genotoxicity and oxidative stress in mice.

    PubMed

    Subapriya, R; Kumaraguruparan, R; Abraham, S K; Nagini, S

    2004-02-01

    We evaluated the effects of pretreatment with ethanolic neem leaf extract on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced genotoxicity and oxidative stress in male Swiss albino mice. The frequency of micronuclei (MN), concentrations of lipid peroxides and the status of the antioxidants, reduced glutathione (GSH), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were used as intermediate biomarkers of chemoprotection. Animals were divided into four groups of five animals each. Animals in group 1 were given MNNG (40 mg/kg body weight) by intragastric intubation. Animals in group 2 received intragastric administration of ethanolic neem leaf extract at a concentration of 200 mg/kg body weight for 5 days followed by MNNG 1.5 h after the final feeding. Group 3 animals received ethanolic neem leaf extract alone for five days. Group 4 received the same volume of normal saline and served as control. The animals were sacrificed by cervical dislocation 27 h after the carcinogen exposure. In MNNG-treated mice, enhanced lipid peroxidation with compromised antioxidant defences in the stomach, liver and erythrocytes was accompanied by increase in bone marrow micronuclei. Pretreatment with ethanolic neem leaf extract significantly reduced MNNG-induced micronuclei and lipid peroxides and enhanced GSH-dependent antioxidant activities. The results of the present study demonstrate that ethanolic neem leaf extract exerts protective effects against MNNG-induced genotoxicity and oxidative stress by augmenting host antioxidant defence mechanisms. PMID:15038245

  9. Lack of an EMF-induced genotoxic effect in the Ames assay.

    PubMed

    Morandi, M A; Pak, C M; Caren, R P; Caren, L D

    1996-01-01

    A few epidemiological studies have linked exposure to electromagnetic fields (EMF) and the incidence of cancer. Since many carcinogens are mutagens in the Ames assay, the purpose of this study was to determine if exposure of four tester strains of Salmonella typhimurium (TA97a, TA98, TA100, and TA102) to EMF would increase their rate of mutation. Parallel plate electrodes and Helmholtz coils were used to create uniform field properties (300 V/in., 0.3 mT). Separate and combined alternating electric and magnetic fields effects were studied at a combined field frequency of 60, 600, and 6000 Hz at room temperature. These fields did not elevate the temperature of the culture plates above room temperature, Petri dishes containing each tester strain in top agar were exposed to an electric field (E), magnetic field (M), combined electric and magnetic field (EM), or no additional field above ambient conditions in the lab (control). Four plates containing each strain were exposed in each condition: two plates had the appropriate positive-control mutagen for each strain included in the top agar and two plates did not. Plates were exposed to either E, M, EM, or control conditions at room temperature for 48 hr. and then incubated an additional 24 hr. at 37 deg. C. The plates containing mutagen in the top agar showed an increased number of colonies consistent with mutagenesis. However, the rate of mutation in the S. typhimurium strains TA97a, TA98, TA100, and TA102 in either the presence or absence of mutagen was not affected by 48 hr. exposure at room temperature to E, M, or EM fields at 60, 600, or 6000 Hz. PMID:8699937

  10. Reduced effect of bromide on the genotoxicity in secondary effluent of a municipal wastewater treatment plant during chlorination.

    PubMed

    Wu, Qian-Yuan; Li, Yi; Hu, Hong-Ying; Sun, Ying-Xue; Zhao, Feng-Yun

    2010-07-01

    Chlorination of wastewater can form genotoxic, mutagenic, and/or carcinogenic disinfection byproduct (DBPs). In this study, the effect of bromide on genotoxicity in secondary effluent of a municipal wastewater treatment plant during chlorination was evaluated by the SOS/umu test. The presence of bromide notably decreased the genotoxicity in secondary effluent during chlorination, especially under conditions of high ammonia concentration. Bromide significantly decreased the concentration of ofloxacin, a genotoxic chemical in secondary effluent, during chlorination with high concentration of ammonia, while genotoxic DBPs formation of humic acid and aromatic amino acids associated with bromide limitedly contributed to the changes of genotoxicity in secondary effluent under the conditions of this study. By fractionating dissolved organic matter (DOM) in the secondary effluent into different fractions, the fractions containing hydrophilic substances (HIS) and hydrophobic acids (HOA) contributed to the decrease in genotoxicity induced by bromide. Chlorination of HOA without bromide increased genotoxicity, while the addition of bromide decreased genotoxicity. PMID:20521844

  11. [In vitro study of genotoxic and oxidative effects induced on human pulmonary cells by exposure to PAHs extracted from airborne particulate matter collected in a coke plant].

    PubMed

    Cavallo, D; Ursini, C L; Pira, E; Romano, C; Ciervo, A; Maiello, R; Caglieri, A; Iavicoli, S

    2007-01-01

    Genotoxic and oxidative effect of airborne particulate matter collected in a coke plant were evaluated on lung epithelial cells (A549). We aimed to clarify the mechanism of action of complex mixtures of PAHs and to identify biomarkers of effect of lung cancer. Particulate matter was analysed by GC/MS. Genotoxic and oxidative effects induced by the exposure to the extract were evaluated by Fpg comet assay. The cells were exposed for 30 min, 2h and 4h to 0.01%, 0.02% and 0.05% of the extract. We evaluated comet percentage and analysed tail moment values of exposed and unexposed cells treated with Fpg enzyme (TMenz) and untreated (TM) that indicate respectively oxidative and direct DNA damage. We found 0.328 ng/m3 of pyrene, 0.33 ng/m3 of benzo(a)anthracene, 1.073 ng/m3 of benzo(b)fluoranthene, 0.22 ng/m3 of benzo(k)fluoranthene, 0.35 ng/m3 of benzo(a)pyrene, 0.079 ng/m3 of dibenzo(a,h)anthracene and 0.40 ng/m3 of benzo(g,h,i)perylene. A dose-dependent increase, although not significant, of TM and TMenz in the exposed cells in respect to controls was found that indicates a slight increase of both direct and oxidative damage in exposed cells. A slight increase of comet percentage was found at the highest dose. We show the high sensibility of comet assay to measure early DNA damage also at low doses suggesting the use of such test on A549 to evaluate on target organ the effects of complex mixtures of genotoxic substances. PMID:18409689

  12. Chemopreventive effects of Furan-2-yl-3-pyridin-2-yl-propenone against 7,12-dimethylbenz[a]anthracene-inducible genotoxicity

    SciTech Connect

    Hwang, Yong Pil; Han, Eun Hee; Choi, Jae Ho; Kim, Hyung Gyun; Lee, Kyung Jin; Jeong, Tae Cheon; Lee, Eung Seok; Jeong, Hye Gwang

    2008-05-01

    1-Furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) is an anti-inflammatory agent with a propenone moiety and chemically synthesized recently. In this study, we examined the chemopreventive effect of FPP-3 on 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity in MCF-7 cells. FPP-3 reduced the formation of the DMBA-DNA adduct. DMBA-induced CYP1A1 and CYP1B1 gene expression and enzyme activity were inhibited by FPP-3. It inhibited DMBA-induced aryl hydrocarbon receptor (AhR) transactivation and DMBA-inducible nuclear localization of the AhR. Induction of detoxifying phase II genes by chemopreventive agents represents a coordinated protective response against oxidative stress and neoplastic effects of carcinogens. Transcription factor NF-E2 related factor 2 (Nrf2) regulates antioxidant response element (ARE) of phase II detoxifying and antioxidant enzymes, such as glutathione S-transferase (GST) and NAD(P)H:quinone oxidoreductase (QR). FPP-3 increased the expression and enzymatic activity of GST and QR. Moreover, FPP-3 increased transcriptional activity of GST and QR. GST and QR induction and Nrf2 translocation by FPP-3 were blocked by the PKC inhibitor Goe6983, and the p38 inhibitor SB203580. These results reflected a partial role of PKC{delta} and p38 signaling in FPP-3-mediated GSTA and QR induction through nuclear translocation of Nrf2. Classically, chemopreventive agents either inhibit CYP metabolizing enzyme or induce phase II detoxifying enzymes. These results suggest that FPP-3 has a potent protective effect against DMBA-induced genotoxicity through modulating phase I and II enzymes and that it has potential as a chemopreventive agent.

  13. Tempol protects human lymphocytes from genotoxicity induced by cisplatin.

    PubMed

    Khabour, Omar F; Alzoubi, Karem H; Mfady, Doa'a S; Alasseiri, Mohammed; Hasheesh, Taghrid F

    2014-01-01

    The use of cisplatin in treatments of human malignancies is limited by its side effects that include DNA damage and the subsequent risk of developing secondary cancer. In this study, we examined the possible protective effect of Tempol against DNA damage induced by cisplatin in human lymphocytes using chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs) assays. Cisplatin induced significant elevation in the frequencies of CAs and SCEs in cultured human lymphocytes (P < 0.01). Treatment of lymphocytes with Tempol significantly lowered CAs and SCEs induced by cisplatin. Tempol alone did not affect spontaneous levels of SCEs and CAs observed in the control group (P > 0.05). In conclusion, Tempol protects human lymphocytes against genotoxicity induced by the anticancer drug cisplatin. PMID:24955171

  14. Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide.

    PubMed

    Bouhlel, Ines; Limem, Ilef; Skandrani, Ines; Nefatti, Aicha; Ghedira, Kamel; Dijoux-Franca, Marie-Genevieve; Leila, Chekir-Ghedira

    2010-08-01

    Antioxidant activity of isorhamnetin 3-O-neohesperidoside, isolated from the leaves of Acacia salicina, was determined by the ability of this compound to inhibit xanthine oxidase activity and to scavenge the free radical 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(.-)) diammonium salt. Antigenotoxic activity was assessed using the SOS chromotest assay. This compound has the ability to scavenge the ABTS(.+) radical by a hydrogen donating mechanism. We also envisaged the study of the antioxidant effect of this compound by the enzymatic xanthine/xanthine oxidase (X/XOD) assay. Results indicated that isorhamnetin 3-O-neohesperidoside was a potent inhibitor of xanthine oxidase and superoxide anion scavengers. Moreover, this compound induced an inhibitory activity against nifuroxazide and aflatoxine B1 (AFB1) induced genotoxicity. Taken together, these observations provide evidence that isorhamnetin 3-O-neohesperidoside isolated from the leaves of A. salicina is able to protect cells against the consequences of oxidative stress. PMID:20809543

  15. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow

    PubMed Central

    2014-01-01

    Background This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Methods Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control – NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. Results For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. Conclusions This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects. PMID:24694203

  16. Protective effect of black tea polyphenols against 7,12-dimethylbenz[a]anthracene-induced genotoxicity and oxidative stress during hamster buccal pouch carcinogenesis.

    PubMed

    Letchoumy, P Vidjaya; Subapriya, R; Nagini, S; Abraham, S K

    2007-01-01

    ABSTRACT This study was designed to evaluate the protective effect of black tea polyphenols (Polyphenon B) against genotoxicity and oxidative stress during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Since the bone marrow reflects hematopoietic stress caused by tumor cells, we used the frequency of micronuclei, the extent of lipid peroxidation, and the status of antioxidants in the bone marrow plasma as intermediate biomarkers of oxidative stress. All the hamsters painted with DMBA alone for 14 weeks developed buccal pouch carcinomas with a 75.4% increase in the incidence of bone marrow micronuclei as compared to untreated control (group 4). This was accompanied by an increase in lipid peroxidation as evidenced by the formation of thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH) (61.3% and 17.8%, respectively) and a decrease in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) and the activities of GSH-dependent enzymes glutathione peroxidase (GPx) and glutathione S-transferase (GST) by 32.6%, 35.9%, and 62.8%, respectively, as compared to untreated control. Dietary administration of Polyphenon B significantly suppressed DMBA-induced HBP carcinomas by 20% and reduced the frequency of bone marrow micronuclei by 57.3% and TBARS and LOOH by 38.8% and 25.8%, respectively, compared to group 1 animals with significant elevations in the GSH:GSSG ratio (16.0%) and activities of GPx (29.8%) and GST (53.8%). Our results reveal that dietary supplementation of Polyphenon B exerts protection against DMBA-induced genotoxicity and oxidative stress by augmenting bone marrow antioxidant defense mechanisms. PMID:20020977

  17. Mutagenic and Genotoxic Effect of Hydroxyurea

    PubMed Central

    Santos, Jean L.; Bosquesi, Priscila L.; Almeida, Adélia E.; Chin, Chung Man; Varanda, Eliana A.

    2011-01-01

    The hydroxyurea, a cytotoxic drug, is the mainly available therapeutical strategy for the treatment of sickle cell disease. This study aimed to evaluate the mutagenic and genotoxic potential of the hydroxyurea through the Salmonella/Microsome assay and micronucleus test in peripheral blood of mice. The doses were evaluated at 29.25-468 μmol/plate in Salmonella/Microsome assay in presence and absence of metabolic activation the drug. In the micronucleus test the doses were evaluated at 12.5; 25; 50; 75 and 100 mg/kg. The results show that hydroxyurea present mutagenic activity in TA98 and TA100 in doses above 117 μmol/plate and 234 μmol/plate respectively. The drug induced a significant increase in the frequency of micronuclei in reticulocytes of mice at concentrations of 50, 75 and 100 mg/kg, compared to negative control (water). These results demonstrated the mutagenic and genotoxic potential of hydroxyurea. PMID:23675245

  18. Protective effect of cactus cladode extract against cisplatin induced oxidative stress, genotoxicity and apoptosis in balb/c mice: combination with phytochemical composition

    PubMed Central

    2012-01-01

    Background Cis-Platinum (II) (cis-diammine dichloroplatinum; CDDP) is a potent antitumor compound widely used for the treatment of many malignancies. An important side-effect of CDDP is nephrotoxicity. The cytotoxic action of this drug is often thought to induce oxidative stress and be associated with its ability to bind DNA to form CDDP–DNA adducts and apoptosis in kidney cells. In this study, the protective effect of cactus cladode extract (CCE) against CDDP-induced oxidative stress and genotoxicity were investigated in mice. We also looked for levels of malondialdehyde (MDA), catalase activity, superoxide dismutase (SOD) activity, chromosome aberrations (CA) test, SOS Chromotest, expressions of p53, bax and bcl2 in kidney and we also analyzed several parameters of renal function markers toxicity such as serum biochemical analysis. Methods Adult, healthy balb/c (20–25 g) male mice aged of 4–5 weeks were pre-treated by intraperitonial administration of CCE (50 mg/Kg.b.w) for 2 weeks. Control animals were treated 3 days a week for 4 weeks by intraperitonial administration of 100 μg/Kg.b.w CDDP. Animals which treated by CDDP and CCE were divided into two groups: the first group was administrated CCE 2 hours before each treatment with CDDP 3 days a week for 4 weeks. The second group was administrated without pre-treatment with CCE but this extract was administrated 24 hours after each treatment with CDDP 3 days a week for 4 weeks. Results Our results showed that CDDP induced significant alterations in all tested oxidative stress markers. In addition it induced CA in bone morrow cells, increased the expression of pro-apoptotic proteins p53 and bax and decreased the expression of anti-apoptotic protein bcl2 in kidney. On the other hand, CDDP significantly increased the levels of urea and creatinine and decreased the levels of albumin and total protein.The treatment of CCE before or after treatment with CDDP showed, (i) a total reduction

  19. Effects of Viscum album L. extract and quercetin on methotrexate-induced cyto-genotoxicity in mouse bone-marrow cells.

    PubMed

    Sekeroğlu, Zülal Atlı; Sekeroğlu, Vedat

    2012-07-01

    Viscum album, a semi-parasitic plant, has been used both in traditional and supplementary medicine in the treatment of many diseases. Quercetin (QE), one of the major flavonoids in some fruits and vegetables, has anti-oxidative and anti-carcinogenic activities. Methotrexate (MTX), an anti-folate anti-metabolite, is a widely used anti-neoplastic drug with significant clastogenic effects. The aim of this study was to investigate the anti-cytogenotoxic effects of pre-treatment with V. album extract (VAE) and QE on MTX-induced chromosomal aberrations (CAs) in mouse bone-marrow cells. Pre-treatment of mice by gavage with VAE (250mg/kgbw/day for 10 days) and QE (50mg/kgbw/day for 10 days) caused a significant decrease in CAs and in the number of aberrant cells with CAs induced by intramuscular treatment of the mice with MTX (10mg/kgbw/day for 3 days), when compared with the group treated with MTX alone. These compounds also significantly increased the mitotic index (MI) in bone-marrow cells that had been suppressed by MTX. In conclusion, from the findings we suggest that VAE and QE may play a role in reducing cyto-genotoxicity induced by anti-neoplastic drugs during cancer chemotherapy. PMID:22464986

  20. Modulation of monocrotaline-induced hepatic genotoxicity in rats.

    PubMed

    Petry, T W; Sipes, I G

    1987-03-01

    Monocrotaline (MCT), a hepatotoxic/hepatocarcinogenic pyrrolizidine alkaloid (PA) induced DNA-DNA interstrand crosslinks in a dose-dependent manner through 30 mg/kg. Hepatic cytochrome P-450 has been shown to bioactivate MCT to pyrrole derivatives which are thought to be responsible for these genotoxic lesions. We have hypothesized these lesions to be related to the adverse hepatic actions of MCT and other PAs. Studies reported here investigated the effect of phenobarbital, a P-450 inducer, 2-dimethylaminoethyl-2,2-diphenylvalerate, a P-450 inhibitor and butylated hydroxyanisole, a dietary antioxidant, on hepatic DNA-DNA interstrand cross-links induced by a single dose of MCT (15 mg/kg i.p.) administered to male Sprague-Dawley rats. DNA damage was assessed by alkaline elution. The effects of these pretreatment regimens on MCT-induced DNA-DNA interstrand cross-linking was qualitatively similar to their reported effects on the hepatotoxicity of MCT. The effects of these pretreatments on hepatic cytochrome P-450 content, hepatic non-protein sulfhydryl levels and hepatic glutathione S-transferase activities were similarly investigated in attempts to explain the observed effects on DNA cross-link induction. These data provide further support for the association between DNA damage and the adverse hepatic effects of MCT. PMID:3102099

  1. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice.

    PubMed

    Pati, Rashmirekha; Das, Ishani; Mehta, Ranjit Kumar; Sahu, Rojalin; Sonawane, Avinash

    2016-04-01

    Zinc oxide nanoparticles (ZnO-NPs) have wide biological applications, which have raised serious concerns about their impact on the health and environment. Although, various studies have shown ZnO-NP toxicity on different cells underin vitroconditions, sufficient information is lacking regarding toxicity and underlying mechanisms underin vivoconditions. In this work, we investigated genotoxic, clastogenic, and cytotoxic effects of ZnO-NPs on macrophages and in adult mice. ZnO-NP-treated mice showed signs of toxicity such as loss in body weight, passive behavior and reduced survival. Further mechanistic studies revealed that administration of higher dose caused severe DNA damage in peripheral blood and bone marrow cells as evident by the formation of COMET tail, micronuclei, chromosomal fragmentation, and phosphorylation of H2A histone family member X. Moreover, ZnO-NPs inhibited DNA repair mechanism by downregulating the expression offen-1andpolBproteins. Histopathological examinations showed severe inflammation and damage to liver, lungs, and kidneys. Cell viability and wound healing assays revealed that ZnO-NPs killed macrophages in a dose-dependent manner, caused severe wounds and inhibited cellular migration by irreversible actin depolymerization and degradation. Reduction in the viability of macrophages was due to the arrest of the cell cycle at the G0/G1 phase, inhibition of superoxide dismutase and catalase and eventually reactive oxygen species. Furthermore, treatment with an antioxidant drug N-acetyl cysteine significantly reduced the ZnO-NP induced genotoxicity bothin vitroandin vivo Altogether, this study gives detailed pathological insights of ZnO-NP that impair cellular functions, thus will enable to arbitrate their biological applications. PMID:26794139

  2. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils. PMID:26643763

  3. Genotoxic effects of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  4. Genotoxic effects of zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  5. Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium(III)-l-cysteine.

    PubMed

    Basu, Abhishek; Ghosh, Prosenjit; Bhattacharjee, Arin; Patra, Arup Ranjan; Bhattacharya, Sudin

    2015-07-01

    Cisplatin (CDDP) is one of the first-line anticancer drugs indicated for use against various form of human malignancies; but, the therapeutic outcome of CDDP chemotherapy is limited due to the development of myelosuppression and genotoxicity which may lead to secondary cancer. Induction of oxidative stress in normal host cells is thought to be responsible for these adverse effects. Therefore, in search of a potential chemoprotectant, an oraganovanadium compound, viz., vanadium(III)-l-cysteine (VC-III) was evaluated against CDDP-induced clastogenicity and cytotoxicity in bone marrow cells of Swiss albino mice. CDDP was administered intraperitoneally (5mg/kg body weight [b.w.]) and VC-III was given by oral gavage (1mg/kg b.w.) in concomitant and pretreatment schedule. The results showed that VC-III administration significantly (P < 0.001) enhanced cell proliferation and inhibited apoptosis in the bone marrow niche indicating recovery of CDDP-induced myelosuppression. VC-III also significantly (P < 0.001) decreased the percentage of chromosomal aberrations, the frequency of micronuclei formation and the extent of DNA damage. The observed antigenotoxic and cytoprotective effect of VC-III was attributed to its attenuation of free radicals status and restoration of oxidised and reduced glutathione levels. These results suggest that VC-III is a potential candidate for future development as a chemoprotective agent against chemotherapy-associated primary and secondary complications. PMID:25778689

  6. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  7. Protective effects of melatonin-loaded lipid-core nanocapsules on paraquat-induced cytotoxicity and genotoxicity in a pulmonary cell line.

    PubMed

    Charão, Mariele F; Baierle, Marília; Gauer, Bruna; Goethel, Gabriela; Fracasso, Rafael; Paese, Karina; Brucker, Natália; Moro, Angela M; Bubols, Guilherme B; Dias, Bruna B; Matte, Ursula S; Guterres, Silvia S; Pohlmann, Adriana R; Garcia, Solange C

    2015-06-01

    Many acute poisonings lack effective and specific antidotes. Due to both intentional and accidental exposures, paraquat (PQ) causes thousands of deaths annually, especially by pulmonary fibrosis. Melatonin (Mel), when incorporated into lipid-core nanocapsules (Mel-LNC), has enhanced antioxidant properties. The effects of such a formulation have not yet been studied with respect to mitigation of PQ- induced cytotoxicity and DNA damage. Here, we have tested whether Mel-LNC can ameliorate PQ-induced toxicity in the A549 alveolar epithelial cell line. Physicochemical characterization of the formulations was performed. Cellular uptake was measured using nanocapsules marked with rhodamine B. Cell viability was determined by the MTT assay and DNA damage was assessed by the comet assay. The enzyme-modified comet assay with endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) were used to investigate oxidative DNA damage. Incubation with culture medium for 24h did not alter the granulometric profile of Mel-LNC formulations. Following treatment (3 and 24h), red fluorescence was detected around the cell nucleus, indicating internalization of the formulation. Melatonin solution (Mel), Mel-LNC, and LNC did not have significant effects on cell viability or DNA damage. Pre-treatment with Mel-LNC enhanced cell viability and showed a remarkable reduction in % DNA in tail compared to the PQ group; this was not observed in cells pre-treated with Mel. PQ induces oxidative DNA damage detected with the enzyme-modified comet assay. Mel-LNC reduced this damage more effectively than did Mel. In summary, Mel-LNC is better than Mel at protecting A549 cells from the cytotoxic and genotoxic effects of PQ. PMID:26046970

  8. DNA melting and genotoxicity induced by silver nanoparticles and graphene.

    PubMed

    Ivask, Angela; Voelcker, Nicolas H; Seabrook, Shane A; Hor, Maryam; Kirby, Jason K; Fenech, Michael; Davis, Thomas P; Ke, Pu Chun

    2015-05-18

    We have revealed a connection between DNA-nanoparticle (NP) binding and in vitro DNA damage induced by citrate- and branched polyethylenimine-coated silver nanoparticles (c-AgNPs and b-AgNPs) as well as graphene oxide (GO) nanosheets. All three types of nanostructures triggered an early onset of DNA melting, where the extent of the melting point shift depends upon both the type and concentration of the NPs. Specifically, at a DNA/NP weight ratio of 1.1/1, the melting temperature of lambda DNA dropped from 94 °C down to 76 °C, 60 °C, and room temperature for GO, c-AgNPs and b-AgNPs, respectively. Consistently, dynamic light scattering revealed that the largest changes in DNA hydrodynamic size were also associated with the binding of b-AgNPs. Upon introduction to cells, b-AgNPs also exhibited the highest cytotoxicity, at the half-maximal inhibitory (IC50) concentrations of 3.2, 2.9, and 5.2 mg/L for B and T-lymphocyte cell lines and primary lymphocytes, compared to the values of 13.4, 12.2, and 12.5 mg/L for c-AgNPs and 331, 251, and 120 mg/L for GO nanosheets, respectively. At cytotoxic concentrations, all NPs elicited elevated genotoxicities via the increased number of micronuclei in the lymphocyte cells. However, b-AgNPs also induced micronuclei at subtoxic concentrations starting from 0.1 mg/L, likely due to their stronger cellular adhesion and internalization, as well as their subsequent interference with normal DNA synthesis or chromosome segregation during the cell cycle. This study facilitates our understanding of the effects of NP chemical composition, surface charge, and morphology on DNA stability and genotoxicity, with implications ranging from nanotoxicology to nanobiotechnology and nanomedicine. PMID:25781053

  9. DNA damage as an indicator of pollutant-induced genotoxicity

    SciTech Connect

    Shugart, L.R.

    1989-01-01

    Biological monitoring is an approach of considerable interest to scientists in the field of environmental genotoxicity who are investigating the effects of hazardous substances on the biota. In essence the technique involves an evaluation of various types of responses in living organisms for their potential to identify exposure to dangerous substances and to define or to predict subsequent deleterious effects. The rationale for the selection of DNA damage as an indicator of exposure to genotoxic agents is based mainly on the mechanisms of action of chemicals that are known mutagens and carcinogens. An alkaline unwinding assay that detects excess strand breakage within the DNA polymer was applied to sunfish in a local stream as a biological monitor for environmental genotoxicity due to industrial pollution. The study was conducted over a period of 15 months and the temporal and spatial aspects of the data were evaluated for the effect of remedial action. 16 refs., 4 figs., 4 tabs.

  10. INDUCIBLE HEAT SHOCK PROTEIN (HSP70-1) PROTECTS MCF-7 CELLS FROM THE CYTOTOXIC AND GENOTOXIC EFFECTS OF ARSENITE

    EPA Science Inventory

    Heat shock proteins (HSPs) belong to the highly conserved family of stress proteins and are induced following exposure to arsenic. Elevated HSPs protect against cellular damage from heat but it is unclear wether HSP induction alters the damaging effects of environmental chemical ...

  11. The Mitigating Effect of Citrullus colocynthis (L.) Fruit Extract against Genotoxicity Induced by Cyclophosphamide in Mice Bone Marrow Cells

    PubMed Central

    Chabra, Aroona; Naghshvar, Farshad; Ahmadi, Amirhossein

    2013-01-01

    Possible genoprotective effect of Citrullus colocynthis (L.) (CCT) fruits extract against cyclophosphamide- (CP-)induced DNA damage in mice bone marrow cells was evaluated using micronucleus assay, as an index of induced chromosomal damage. Mice were preadministered with different doses of CCT via intraperitoneal injection for 7 consecutive days followed by injection with CP (70 mg/kg b.w.) 1 hr after the last injection of CCT. After 24 hr, mice were scarified to evaluate the frequency of micronucleated polychromatic erythrocytes (MnPCEs). In addition, the number of polychromatic erythrocytes (PCEs) among 1000 normochromatic erythrocytes (NCEs) per animal was recorded to evaluate bone marrow. Pretreatment with CCT significantly reduced the number of MnPCEs induced by CP in bone marrow cells (P < 0.0001). At 200 mg/kg, CCT had a maximum chemoprotective effect and reduced the number of MnPCEs by 6.37-fold and completely normalized the mitotic activity. CCT also led to marked proliferation and hypercellularity of immature myeloid elements after mice were treated with CP and mitigated the bone marrow suppression. Our study revealed that CCT has an antigenotoxic effect against CP-induced oxidative DNA damage in mice. Therefore, it could be used concomitantly as a supplement to protect people undergoing chemotherapy. PMID:24324391

  12. Anti-genotoxic ability of α-tocopherol and Anthocyanin to counteract fish DNA damage induced by musk xylene.

    PubMed

    Rocco, Lucia; Mottola, Filomena; Santonastaso, Marianna; Saputo, Valentina; Cusano, Elena; Costagliola, Domenico; Suero, Teresa; Pacifico, Severina; Stingo, Vincenzo

    2015-11-01

    Many compounds released into the environment are able to interact with genetic material. The main purpose of genetic toxicology is to investigate the adverse effects of genotoxic molecules such as reduced fitness, changes in gene frequencies and their impact on genetic diversity in populations following genotoxic exposure. However, the ecological effects of many genotoxic compounds remain poorly understood. The aim of this research was to evaluate the genotoxic activity of an artificial musk (musk xylene, MX) and the potential anti-genotoxicity against this chemical compound of two antioxidant substances (α-tocopherol and an anthocyanins enriched extract). The studies were performed both in vivo and in vitro, using the teleost Danio rerio and the DLEC (Dicentrarchus labrax embryonic cells) cell line. We carried out the exposure to these substances at different times. DNA and cell damage and their possible repair were detected by various experimental approaches: DNA strand breaks (Comet Assay), degree of apoptosis (Diffusion Assay) and molecular alterations at the genomic level (RAPD-PCR technique). Data were collected and analyzed for statistical significance using the Student's t test. The results of this study showed that MX exhibited a genotoxic activity even after short exposure times. The anti-genotoxicity experiments evidenced that both α-tocopherol and Anthocyanin were able to contrast the genotoxic effects induced by MX, both in vivo and in vitro. PMID:26407710

  13. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture.

    PubMed

    Singh, Shweta; Banerjee, Subham; Chattopadhyay, Pronobesh; Borthakur, Sashin Kumar; Veer, Vijay

    2015-03-01

    Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is widely found as a contaminant of food. DON is responsible for a wide range of toxic activities, including gastro-intestinal, lymphoid, bone-marrow and cardiotoxicity. But, the complete explorations of toxicity in terms of hepatotoxicity, nephrotoxicity, cytotoxicity and genotoxicity as well have not been documented well. Again, the mechanisms through which DON damages the DNA and promotes cellular toxicity are not well established. Considering the above fact, this research article is focused on the effects of DON-induced toxicities on experimental animal model as well as its effects on cellular level via various toxicological investigations. DON treatment showed cytotoxicity and DNA damage. Further, flow cytometric analysis of hepatocytes showed cellular apoptosis, suggesting that DON-induced hepatotoxicity is, may be partly, mediated by apoptosis. Moreover, significant differences were found in each haematology and clinical chemistry value, either (p > 0.05). No abnormality of any organ was found during histopathological examination. Hence, it can be concluded that DON induces oxidative DNA damage and increases the formation of centromere positive micronuclei due to aneugenic activity. PMID:25578892

  14. Application of an in vivo mutagenesis system to assess aminothiol effects on neutron-induced genotoxic damage in mouse spleenocytes

    SciTech Connect

    Basic, I. . Dept. of Animal Physiology); Grdina, D.J.; Lyons, T. )

    1989-01-01

    A cloning technique has been developed to quantitate and study {ital in vivo} somatic mutations at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in human lymphocytes. In this paper we describe a modification of this assay to quantify HGPRT mutations in mouse spleenocytes. In particular, we have investigated the effects of the aminothiol on mutagenesis induced by single doses of whole body exposures to fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory. 7 refs., 3 tabs.

  15. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  16. Protective effects of the flavonoid chrysin against methylmercury-induced genotoxicity and alterations of antioxidant status, in vivo.

    PubMed

    Manzolli, Eduardo Scandinari; Serpeloni, Juliana Mara; Grotto, Denise; Bastos, Jairo Kennup; Antunes, Lusânia Maria Greggi; Barbosa Junior, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2015-01-01

    The use of phytochemicals has been widely used as inexpensive approach for prevention of diseases related to oxidative damage due to its antioxidant properties. One of dietary flavonoids is chrysin (CR), found mainly in passion fruit, honey, and propolis. Methylmercury (MeHg) is a toxic metal whose main toxic mechanism is oxidative damage. Thus, the study aimed to evaluate the antioxidant effects of CR against oxidative damage induced by MeHg in Wistar rats. Animals were treated with MeHg (30 µg/kg/bw) in presence and absence of CR (0.10, 1.0, and 10 mg/kg/bw) by gavage for 45 days. Glutathione (GSH) in blood was quantified spectrophotometrically and for monitoring of DNA damage, comet assay was used in leukocytes and hepatocytes. MeHg led to a significant increase in the formation of comets; when the animals were exposed to the metal in the presence of CR, higher concentrations of CR showed protective effects. Moreover, exposure to MeHg decreased the levels of GSH and GSH levels were restored in the animals that received CR plus MeHg. Taken together the findings of the present work indicate that consumption of flavonoids such as CR may protect humans against the adverse health effects caused by MeHg. PMID:25810809

  17. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation.

    PubMed

    Periasamy, Ramyaa; Kalal, Iravathy Goud; Krishnaswamy, Rajashree; Viswanadha, VijayaPadma

    2016-07-01

    Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 855-865, 2016. PMID:25532488

  18. Genetic Evidence for Genotoxic Effect of Entecavir, an Anti-Hepatitis B Virus Nucleotide Analog

    PubMed Central

    Liu, Ying; Hu, Xiaoqing; Takeda, Shunichi; Qing, Yong

    2016-01-01

    Nucleoside analogues (NAs) have been the most frequently used treatment option for chronic hepatitis B patients. However, they may have genotoxic potentials due to their interference with nucleic acid metabolism. Entecavir, a deoxyguanosine analog, is one of the most widely used oral antiviral NAs against hepatitis B virus. It has reported that entecavir gave positive responses in both genotoxicity and carcinogenicity assays. However the genotoxic mechanism of entecavir remains elusive. To evaluate the genotoxic mechanisms, we analyzed the effect of entecavir on a panel of chicken DT40 B-lymphocyte isogenic mutant cell line deficient in DNA repair and damage tolerance pathways. Our results showed that Parp1-/- mutant cells defective in single-strand break (SSB) repair were the most sensitive to entecavir. Brca1-/-, Ubc13-/- and translesion-DNA-synthesis deficient cells including Rad18-/- and Rev3-/- were hypersensitive to entecavir. XPA-/- mutant deficient in nucleotide excision repair was also slightly sensitive to entecavir. γ-H2AX foci forming assay confirmed the existence of DNA damage by entecavir in Parp1-/-, Rad18-/- and Brca1-/- mutants. Karyotype assay further showed entecavir-induced chromosomal aberrations, especially the chromosome gaps in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- cells when compared with wild-type cells. These genetic comprehensive studies clearly identified the genotoxic potentials of entecavir and suggested that SSB and postreplication repair pathways may suppress entecavir-induced genotoxicity. PMID:26800464

  19. Genetic Evidence for Genotoxic Effect of Entecavir, an Anti-Hepatitis B Virus Nucleotide Analog.

    PubMed

    Jiang, Lei; Wu, Xiaohua; He, Fang; Liu, Ying; Hu, Xiaoqing; Takeda, Shunichi; Qing, Yong

    2016-01-01

    Nucleoside analogues (NAs) have been the most frequently used treatment option for chronic hepatitis B patients. However, they may have genotoxic potentials due to their interference with nucleic acid metabolism. Entecavir, a deoxyguanosine analog, is one of the most widely used oral antiviral NAs against hepatitis B virus. It has reported that entecavir gave positive responses in both genotoxicity and carcinogenicity assays. However the genotoxic mechanism of entecavir remains elusive. To evaluate the genotoxic mechanisms, we analyzed the effect of entecavir on a panel of chicken DT40 B-lymphocyte isogenic mutant cell line deficient in DNA repair and damage tolerance pathways. Our results showed that Parp1-/- mutant cells defective in single-strand break (SSB) repair were the most sensitive to entecavir. Brca1-/-, Ubc13-/- and translesion-DNA-synthesis deficient cells including Rad18-/- and Rev3-/- were hypersensitive to entecavir. XPA-/- mutant deficient in nucleotide excision repair was also slightly sensitive to entecavir. γ-H2AX foci forming assay confirmed the existence of DNA damage by entecavir in Parp1-/-, Rad18-/- and Brca1-/- mutants. Karyotype assay further showed entecavir-induced chromosomal aberrations, especially the chromosome gaps in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- cells when compared with wild-type cells. These genetic comprehensive studies clearly identified the genotoxic potentials of entecavir and suggested that SSB and postreplication repair pathways may suppress entecavir-induced genotoxicity. PMID:26800464

  20. Argentine folk medicine: genotoxic effects of Chenopodiaceae family.

    PubMed

    Gadano, A B; Gurni, A A; Carballo, M A

    2006-01-16

    Chenopodium ambrosioides L. and Chenopodium multifidum L. (Chenopodiaceae), common name: Paico, are medicinal plants. They are aromatic shrubs growing in South America. For centuries, they have been used due to its medicinal properties. However, there are few reports in literature about the genotoxic effects of these plants. There for, the aim of these work is the evaluation of genetic damage induced by decoction and infusion of this plants which were assayed in different concentrations (1, 10, 100, 1,000 microL extract/mL culture), by addition of the extract to human lymphocyte cell cultures, negative controls were included. The endpoints evaluated were chromosomal aberrations (CA), sister chromatid exchanges (SCE), cell proliferation kinetics (CPK) and mitotic index (MI). The repeated measure analysis of variance was used for statistic evaluation of the results. The results showed: (a) statistical increase in the percentage of cells with CA and in the frequency of SCE when cultures were exposed to both aromatic plants, (b) a decrease in MI of both Paicos assayed, although no modification in the CPK values was observed, (c) no effect was noticed in the analysis of Chenopodium album L., which was used as negative control of the essential oil. These results suggest a cyto and genotoxic effect of Chenopodium ambrosioides and Chenopodium multifidum aqueous extracts related to the essential oil of the plant (as Chenopodium album did not perform). PMID:16219440

  1. Histopathological and genotoxic effects of chlorpyrifos in rats.

    PubMed

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo. PMID:26545888

  2. Effect of exposure route, regimen, and duration on benzene-induced genotoxic and cytotoxic bone marrow damage in mice

    SciTech Connect

    Rice, R.R.; Luke, C.A.; Drew, R.T. )

    1989-07-01

    Mice were exposed to benzene for 13 to 14 weeks by inhalation for either 3 or 5 consecutive days per week or by gavage for 5 consecutive days per week. A weekly evaluation of peripheral blood smears for micronucleated (MN) erythrocyte frequencies and for the percentage of polychromatic erythrocytes (PCE) indicated that the induction of MN-PCE by benzene depended on the sex and strain of mice and on the route of exposure, but not on the inhalation regimen or on the exposure duration. The frequency of MN normochromatic erythrocytes (NCE) not only depended on the sex and strain of mice and on the route of exposure, but directly depended on the inhalation regimen and on the exposure duration. Similarly, the extent of erythropoietic depression in benzene-exposed mice was dependent on sex, mouse strain, exposure duration, and route. However, in contrast to the MN-NCE data, the 3 day/week exposure regimen induced a more persistent depression in erythropoiesis than the 5 day/week exposure regimen. Exposure to benzene also induced in mice a significant depression in packed cell volume (PCV) and bone marrow cellularity, the magnitude of which depended on the sex and strain of mice and on the regimen and route of exposure.

  3. Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio.

    PubMed

    Galar-Martínez, M; García-Medina, S; Gómez-Olivan, L M; Pérez-Coyotl, I; Mendoza-Monroy, D J; Arrazola-Morgain, R E

    2016-09-01

    The nonsteroidal anti-inflammatory drug ketorolac is extensively used in the treatment of acute postoperative pain. This pharmaceutical has been found at concentrations of 0.2-60 µg/L in diverse water bodies around the world; however, its effects on aquatic organisms remain unknown. The present study, evaluated the oxidative stress and genotoxicity induced by sublethal concentrations of ketorolac (1 and 60 µg/L) on liver, brain, and blood of the common carp Cyprinus carpio. This toxicant induced oxidative damage (increased lipid peroxidation, hydroperoxide content, and protein carbonyl content) as well as changes in antioxidant status (superoxide dismutase, catalase, and glutathione peroxidase activity) in liver and brain of carp. In blood, ketorolac increased the frequency of micronuclei and is therefore genotoxic for the test species. The effects observed were time and concentration dependent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1035-1043, 2016. PMID:25899151

  4. Glutathione level regulates HNE-induced genotoxicity in human erythroleukemia cells

    SciTech Connect

    Yadav, Umesh C.S.; Ramana, Kota V.; Awasthi, Yogesh C.; Srivastava, Satish K.

    2008-03-01

    4-Hydroxy-trans-2-nonenal (HNE) is one of the most abundant and toxic lipid aldehydes formed during lipid peroxidation by reactive oxygen species. We have investigated the genotoxic effects of HNE and its regulation by cellular glutathione (GSH) levels in human erythroleukemia (K562) cells. Incubation of K562 cells with HNE (5-10 {mu}M) significantly elicited a 3- to 5-fold increased DNA damage in a time- and dose-dependent manner as measured by comet assay. Depletion of GSH in cells by L-buthionine-[S,R]-sulfoximine (BSO) significantly increased HNE-induced DNA damage, whereas supplementation of GSH by incubating the cells with GSH-ethyl ester significantly decreased HNE-induced genotoxicity. Further, overexpression of mGSTA4-4, a HNE-detoxifying GST isozyme, significantly prevented HNE-induced DNA damage in cells, and ablation of GSTA4-4 and aldose reductase with respective siRNAs further augmented HNE-induced DNA damage. These results suggest that the genotoxicity of HNE is highly dependent on cellular GSH/GST/AR levels and favorable modulation of the aldehyde detoxification system may help in controlling the oxidative stress-induced complications.

  5. The genotoxic and teratogenic effects of maltitol in rats.

    PubMed

    Canimoglu, Semir; Rencuzogullari, Eyyup

    2013-11-01

    In the present study, the genotoxic and cytotoxic effects of the low-caloric artificial sweetener maltitol, which is a sugar alcohol (polyol), were investigated in the bone marrow cells of rats using the chromosome aberration (CA) test. In addition, the teratogenicity and embryotoxicity of maltitol was also investigated in rats. To reveal the genotoxicity and cytotoxicity of maltitol, rats were intraperitoneally administered 2.5, 5 and 10 g/kg body weight (bw) concentrations of maltitol for 6, 12 and 24 h treatment period. The pregnant females were intraperitoneally treated with 1, 2 and 4 g/kg bw/day concentrations of maltitol during the first 7 days of gestation (first trimester) to investigate the teratogenicity of maltitol. The embryos were collected after killing the dams by cervical dislocation under ether anaesthesia on gestation day 19. Maltitol did not induce the CA and did not decrease the mitotic index in bone marrow cells of rats at all concentrations and treatment periods. In addition, maltitol was not teratogenic; however, it decreased the foetuses weight and at the highest dose (4 g/kg bw) caused growth retardation. PMID:22585934

  6. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells.

    PubMed

    Choi, Angela O; Brown, Shelley E; Szyf, Moshe; Maysinger, Dusica

    2008-03-01

    The staggering array of nanotechnological products, found in our environment and those applicable in medicine, has stimulated a growing interest in examining their long-term impact on genetic and epigenetic processes. We examined here the epigenomic and genotoxic response to cadmium telluride quantum dots (QDs) in human breast carcinoma cells. QD treatment induced global hypoacetylation implying a global epigenomic response. The ubiquitous responder to genotoxic stress, p53, was activated by QD challenge resulting in translocation of p53, with subsequent upregulation of downstream targets Puma and Noxa. Consequential decrease in cell viability was in part prevented by the p53 inhibitor pifithrin-alpha, suggesting that p53 translocation contributes to QD-induced cytotoxicity. These findings suggest three levels of nanoparticle-induced cellular changes: non-genomic, genomic and epigenetic. Epigenetic changes may have long-term effects on gene expression programming long after the initial signal has been removed, and if these changes remain undetected, it could lead to long-term untoward effects in biological systems. These studies suggest that aside from genotoxic effects, nanoparticles could cause more subtle epigenetic changes which merit thorough examination of environmental nanoparticles and novel candidate nanomaterials for medical applications. PMID:17965848

  7. Viscum album L. extract and quercetin reduce cyclophosphamide-induced cardiotoxicity, urotoxicity and genotoxicity in mice.

    PubMed

    Sekeroğlu, Vedat; Aydin, Birsen; Sekeroğlu, Zülal Atli

    2011-01-01

    Possible protective effects of a methanolic extract of Viscum album (VA) and quercetin (QE) against cyclophosphamide (CP) induced cardiotoxicity, urotoxicity and genotoxicity in mice were evaluated. Mice were administered orally VA (250 mg/kg/day) and QE (50 mg/kg/day) for 10 days alone or in combination with CP. After the same doses of VA and QE given for 7 days, rats were intraperitoneally administered CP (40 mg/kg) on days 8 and 9 of the experiment. Cardiotoxic, urotoxic and genotoxic effects were examined in serum, heart, bladder and bone marrow. Significant decreases in the levels of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), glutathione-S-transferases, reduced glutathione and mitotic index were observed. QE completely and VA partly ameliorated almost of all the examined parameters when given together with CP. Higher total nitrate/nitrite levels were observed in the myocardial tissue treated with QE and VA in combination with CP. In addition, the pre-treatment with VA and QE together with CP significantly decreased chromosome aberrations and aberrant cells compared to CP alone. Results from the current study suggest that QE and VA supplementation attenuates CP induced cardiotoxicity, urotoxicity and genotoxicity through a mechanism related to their ability to decrease oxidative stress and inflammation, and at least in part to its protective effects on the cardiovascular system. In addition, VA and QE may play a role in reducing cytogenotoxicity induced by anti-neoplastic drugs during cancer chemotherapy. PMID:22393965

  8. Protective role of Lactobacillus plantarum A7 against irinotecan-induced genotoxicity

    PubMed Central

    Sepahi, Soheila; Jafarian-Dehkordi, Abbas; Mirlohi, Maryam; Shirani, Kobra; Etebari, Mahmoud

    2016-01-01

    Objective: Irinotecan is a botanical derivative and an anti-cancer drug with cytotoxic and genotoxic effects. The present study evaluated the effect of Lactobacillus plantarum A7 on the genotoxic activity of irinotecan in a hepatocellular carcinoma cell line (HepG2) by comet assay. Materials and Methods: HepG2 were incubated with irinotecan (100 µM), heat-killed cells (0.025 µg/ml) + irinotecan (100 µM), and cell-free supernatants (0.5 and 1 µg/ml) of L. plantarum A7 + irinotecan (100 µM). Phosphate buffered saline (PBS) was used as negative control. Results: Irinotecan was shown to induce DNA damage in HepG2 cells. The results showed that heat-killed cells (0.025 µg/ml) and cell-free supernatants (0.5 and 1 µg/ml) of L. plantarum significantly reduce irinotecan- induced DNA damage. Conclusion: Our results indicate that L. plantarum A7 can decrease the genotoxic effects of irinotecan in HepG2 cells, in vitro. This finding may be supportive for the optimization of therapeutic efficacy in irinotecan treatment. PMID:27462556

  9. 2,4,5-trichlorophenoxyacetic acid influence on 2,6-dinitrotoluene-induced urine genotoxicity in Fischer 344 rats: effect on gastrointestinal microflora and enzyme activity.

    PubMed

    George, S E; Chadwick, R W; Chang, J J; Kohan, M J; Allison, J C; Dekker, J P; Hayes, Y

    1992-02-01

    2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) and 2,6-dinitrotoluene (2,6-DNT) are hazardous chemicals that have potential harmful effects. 2,6-DNT is recognized as a hepatotoxicant while 2,4,5-T, a component of Agent Orange, is also suspect. 2,6-DNT requires both oxidative and reductive metabolism to elicit genotoxic effects. To determine what effect 2,4,5-T had on 2,6-DNT metabolism, intestinal enzymes, microbial populations, and urine mutagenicity were examined during 2,4,5-T treatment. Weanling Fischer 344 male rats were treated daily with 54.4 mg/kg 2,4,5-T by gavage for 4 weeks. One, two, and four weeks after the initial 2,4,5-T dose, rats were administered (po) 2,6-DNT (75 mg/kg) and urine was collected for 24 hr in metabolism cages. Azo reductase, nitroreductase, beta-glucuronidase, dechlorinase, and dehydrochlorinase activities were examined concurrently. Treatment of rats for 1 week reduced the transformation of 2,6-DNT to mutagenic urinary metabolites. This was accompanied by a decrease in the fecal anaerobic microorganisms. The elimination of Lactobacillus fermentum from the small intestine and cecum of treated animals accompanied a significant increase in oxygen-tolerant lactobacilli and other unidentified aerobic microorganisms. However, there were no significant alterations in the intestinal enzyme activities examined. By 2 weeks of 2,4,5-T treatment, microbiota and urine genotoxicity returned to the levels observed in control animals. This trend continued for the duration of the experiment. After 2 weeks, while cecal nitroreductase and azo reductase activities increased, small intestinal beta-glucuronidase activity decreased. By 4 weeks, treated and untreated animal intestinal enzyme activities were indistinguishable.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1601224

  10. Assessment of phenolic content, free-radical-scavenging capacity genotoxic and anti-genotoxic effect of aqueous extract prepared from Moricandia arvensis leaves.

    PubMed

    Skandrani, I; Limem, I; Neffati, A; Boubaker, J; Ben Sghaier, M; Bhouri, W; Bouhlel, I; Kilani, S; Ghedira, K; Chekir-Ghedira, L

    2010-02-01

    The present study was undertaken to provide a set of data on the safety of an aqueous extract (AQE) from Moricandia arvensis. For this reason, Escherichia coli tested strains PQ35 and PQ37 were used to detect induction of DNA lesions by AQE. The SOS Chromotest showed that AQE induced a marginally genotoxic effect, as expressed by the induction factor (IF) value only with E. coli PQ37 tested strain (IF=1.77 at a dose of 250 microg/assay). The measurement of the anti-genotoxic activity of the AQE was also studied by inhibition of beta-galactosidase induction. A significant anti-genotoxic effect was observed with different tested doses of AQE, which suggests that M. arvensis extract has the potential to protect DNA from the action of nitrofurantoïn (NF) and free radicals generated by hydrogen peroxide (H2O2). In addition to anti-genotoxic activity, AQE showed a free-radical-scavenging capacity towards ABTS+* and DPPH*. Total phenolic content was also evaluated following Folin-Ciocalteu method and results indicated high correlation between total phenol content and anti-genotoxic and antioxidant activities for AQE, but the highest correlation was showed with its capacity to stabilize ABTS+* (R2=0.9944). PMID:19951736

  11. In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes.

    PubMed

    Catalán, Julia; Siivola, Kirsi M; Nymark, Penny; Lindberg, Hanna; Suhonen, Satu; Järventaus, Hilkka; Koivisto, Antti J; Moreno, Carlos; Vanhala, Esa; Wolff, Henrik; Kling, Kirsten I; Jensen, Keld Alstrup; Savolainen, Kai; Norppa, Hannu

    2016-08-01

    Some multi-walled carbon nanotubes (MWCNTs) induce mesothelioma in rodents, straight MWCNTs showing a more pronounced effect than tangled MWCNTs. As primary and secondary genotoxicity may play a role in MWCNT carcinogenesis, we used a battery of assays for DNA damage and micronuclei to compare the genotoxicity of straight (MWCNT-S) and tangled MWCNTs (MWCNT-T) in vitro (primary genotoxicity) and in vivo (primary or secondary genotoxicity). C57Bl/6 mice showed a dose-dependent increase in DNA strand breaks, as measured by the comet assay, in lung cells 24 h after a single pharyngeal aspiration of MWCNT-S (1-200 μg/mouse). An increase was also observed for DNA strand breaks in lung and bronchoalveolar lavage (BAL) cells and for micronucleated alveolar type II cells in mice exposed to aerosolized MWCNT-S (8.2-10.8 mg/m(3)) for 4 d, 4 h/d. No systemic genotoxic effects, assessed by the γ-H2AX assay in blood mononuclear leukocytes or by micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow or blood, were observed for MWCNT-S by either exposure technique. MWCNT-T showed a dose-related decrease in DNA damage in BAL and lung cells of mice after a single pharyngeal aspiration (1-200 μg/mouse) and in MNPCEs after inhalation exposure (17.5 mg/m(3)). In vitro in human bronchial epithelial BEAS-2B cells, MWCNT-S induced DNA strand breaks at low doses (5 and 10 μg/cm(2)), while MWCNT-T increased strand breakage only at 200 μg/cm(2). Neither of the MWCNTs was able to induce micronuclei in vitro. Our findings suggest that both primary and secondary mechanisms may be involved in the genotoxicity of straight MWCNTs. PMID:26674712

  12. Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay.

    PubMed

    Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal

    2015-01-01

    The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish. PMID:26862320

  13. Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay

    PubMed Central

    Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal

    2015-01-01

    The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P < 0,05) on both concentrations and exposure times were observed in experimental groups. DNA damage was highest at 96 h and 24 h for all BX and BA concentrations, respectively in peripheral blood of D. rerio. For the first time, our study demonstrates the effect of waterborne BA and BX exposure on genotoxicity at the molecular level, which may contribute to understanding the mechanism of boric acid and borax-induced genotoxicity in fish. PMID:26862320

  14. Chemopreventive effect and lack of genotoxicity and mutagenicity of the exopolysaccharide botryosphaeran on human lymphocytes.

    PubMed

    Malini, M; Camargo, M S; Hernandes, L C; Vargas-Rechia, C G; Varanda, E A; Barbosa, A M; Dekker, R F H; Matsumoto, S T; Antunes, L M G; Cólus, I M S

    2016-10-01

    Carbohydrate biopolymers of fungal-origin are an important natural resource in the search for new bioagents with therapeutic and nutraceutical potential. In this study the mutagenic, genotoxic, antigenotoxic and antioxidant properties of the fungal exopolysaccharide botryosphaeran, a (1→3)(1→6)-β-D-glucan, from Botryosphaeria rhodina MAMB-05, was evaluated. The mutagenicity was assessed at five concentrations in Salmonella typhimurium by the Ames test. Normal and tumor (Jurkat cells) human T lymphocyte cultures were used to evaluate the genotoxicity and antigenotoxicity (Comet assay) of botryosphaeran alone and in combination with the mutagen methyl methanesulfonate (MMS). The ability of botryosphaeran to reduce the production of reactive oxygen and nitrogen species (RONS) generated by hydrogen peroxide was assessed using the CM-H2DCFDA probe in lymphocyte cultures under different treatment times. None of the evaluated botryosphaeran concentrations were mutagenic in bacteria, nor induced genotoxicity in normal and tumor lymphocytes. Botryosphaeran protected lymphocyte DNA against damage caused by MMS under simultaneous treatment and post-treatment conditions. However, botryosphaeran was not able to reduce the RONS generated by H2O2. Besides the absence of genotoxicity, botryosphaeran exerted a protective effect on human lymphocytes against genotoxic damage caused by MMS. These results are important in the validation of botryosphaeran as a therapeutic agent targeting health promotion. PMID:27387458

  15. Current Studies into the Genotoxic Effects of Nanomaterials

    PubMed Central

    Ng, Cheng-Teng; Li, Jasmine J.; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2010-01-01

    Nanotechnology has created opportunities for engineers to manufacture superior and more efficient devices and products. Nanomaterials (NMs) are now widely used in consumer products as well as for research applications. However, while the lists of known toxic effects of nanomaterials and nanoparticles (NPs) continue to grow, there is still a vast gap in our knowledge about the genotoxicity of NMs. In this paper, we highlight some NMs of interest and discuss the current in vivo and in vitro studies into genotoxic effects of NMs. PMID:20936181

  16. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.

    PubMed

    Chappell, Grace; Pogribny, Igor P; Guyton, Kathryn Z; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  17. Cytotoxic, mutagenicity, and genotoxicity effects of guanylhydrazone derivatives.

    PubMed

    Pinhatti, Valéria Rodrigues; da Silva, Juliana; Martins, Tales Leandro Costa; Moura, Dinara Jaqueline; Rosa, Renato Moreira; Villela, Izabel; Stopiglia, Cheila Denise Ottonelli; da Silva Santos, Selma; Scroferneker, Maria Lúcia; Machado, Carlos Renato; Saffi, Jenifer; Henriques, João Antonio Pêgas

    2016-08-01

    Several studies have reported that guanylhydrazones display a variety of desirable biological properties, such as antihypertensive, antibacterial, and antimalarial behaviour. They furthermore promote anti-pneumocystosis and anti-trypanosomiasis, exhibit antitumor activity, and show significant cytotoxicity against cancer cell lines. In this work, we have evaluated the cytotoxicity, mutagenicity, and genotoxicity of two guanylhydrazones derivatives, (E)-2-[(2,3-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (2,3-DMeB) and (E)-2-[(3,4-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (3,4-DMeB), in different biological models. Both 2,3-DMeB and 3,4-DMeB induce weak cytotoxic and mutagenic effects in bacteria and yeast. The genotoxicity of these compounds was determined in a fibroblast cell line (V79) using alkaline comet assay, as well as a modified comet assay with bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). Both guanylhydrazone derivatives induced DNA damage. Treatment of V79 cells with EndoIII and FPG proteins demonstrated a significant effect of 2,3-DMeB and 3,4-DMeB with respect to oxidized bases. In addition, the derivatives induced a significant increase in the frequency of micronucleated cells at high doses. The antifungal and anti-trypanosomal properties of these guanylhydrazone derivatives were also evaluated, and the obtained results suggest that 2,3-DMeB is more effective than 3,4-DMeB. The biological activity of 2,3-DMeB and 3,4-DMeB may thus be related, at least in part, to their oxidative potential, as well as to their ability to interact with DNA. Considering the previously reported in vitro antitumor activity of guanylhydrazone derivatives in combination with the lack of acute toxicity and the fact that DNA damage is only observed at high doses should render both compounds good candidates for in vivo studies on antitumor activity. PMID:27476330

  18. Acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of a cellulosic exopolysaccharide obtained from sugarcane molasses.

    PubMed

    Pinto, Flávia Cristina Morone; De-Oliveira, Ana Cecília A X; De-Carvalho, Rosangela R; Gomes-Carneiro, Maria Regina; Coelho, Deise R; Lima, Salvador Vilar C; Paumgartten, Francisco José R; Aguiar, José Lamartine A

    2016-02-10

    The acute toxicity, cytotoxicity, genotoxicity and antigenotoxic effects of BC were studied. Cytotoxicity of BC was evaluated in cultured C3A hepatoma cells (HepG2/C3A) using a lactate dehydrogenase (LDH) activity assay. Acute toxicity was tested in adults Wistar rats treated with a single dose of BC. The genotoxicity of BC was evaluated in vivo by the micronucleus assay. BC (0.33-170 μg/mL) added to C3A cell culture medium caused no elevation in LDH release over the background level recorded in untreated cell wells. The treatment with the BC in a single oral dose (2000 mg/kg body weight) caused no deaths or signs of toxicity. BC attenuated CP-induced and inhibition the incidence of MNPCE (female: 46.94%; male: 22.7%) and increased the ratio of PCE/NCE (female: 46.10%; male: 35.25%). There was no alteration in the LDH release in the wells where C3A cells were treated with increasing concentrations of BC compared to the wells where the cells received the cell culture medium only (background of approximately 20% cell death), indicated that in the dose range tested BC was not cytotoxic. BC was not cytotoxic, genotoxic or acutely toxic. BC attenuated CP-induced genotoxic and myelotoxic effects. PMID:26686163

  19. Genotoxic and developmental effects in sea urchins are sensitive indicators of effects of genotoxic chemicals

    SciTech Connect

    Anderson, S.L. . Energy and Environment Division); Hose, J.E. . Dept. of Biology); Knezovich, J.P. . Health and Ecological Assessment Division)

    1994-07-01

    Purple sea urchin (Strongylocentrotus purpuratus) gametes and embryos were exposed to three known mutagenic chemicals (phenol, benzidine,and pentachlorophenol) over concentration ranges bracketing the effect levels for fertilization success. Normal development and cytogenetic effects (anaphase aberrations) were assessed after the cultures were allowed to develop for 48 h. Using radiolabeled chemicals, the authors also characterized concentrations in the test water as well as doses in the embryos following 2- and 48-h exposures. The authors observed dose responses for all chemicals and all responses, except for phenol, which showed no significant effect on development. Fertilization success was never the most sensitive end point. anaphase aberrations were the most sensitive response for phenol, with an LOEC of 2.5 mg/L exposure concentration. Anaphase aberrations and development were equivalent in sensitivity for benzidine within the tested dose range, and an LOEC of <0.1 mg/L was observed. Development was the most sensitive reasons for pentachlorophenol (LOEC 1 mg/L). the LOEC values for this study were generally lower than comparable data for aquatic life or human health protection. The authors conclude that genotoxicity and development evaluations should be included in environmental management applications and that tests developed primarily for human health protection do not reliably predict the effects of toxic substances on aquatic life.

  20. Cytotoxic and genotoxic effects of two hair dyes used in the formulation of black color.

    PubMed

    Tafurt-Cardona, Yaliana; Suares-Rocha, Paula; Fernandes, Thaís Cristina Casimiro; Marin-Morales, Maria Aparecida

    2015-12-01

    According to the International Agency for Research on Cancer (IARC), some hair dyes are considered mutagenic and carcinogenic in in vitro assays and exposed human populations. Epidemiological studies indicate that hairdressers occupationally exposed to hair dyes have a higher risk of developing bladder cancer. In Brazil, 26% of the adults use hair dye. In this study, we investigated the toxic effects of two hair dyes, Basic Red 51 (BR51) and Basic Brown 17 (BB17), which are temporary dyes of the azo group (R-N=N-R'), used in the composition of the black hair dye. To this end, MTT and trypan blue assays (cytotoxicity), comet and micronucleus assay (genotoxicity) were applied, with HepG2 cells. For cytotoxic assessment, dyes were tested in serial dilutions, being the highest concentrations those used in the commercial formula for hair dyes. For genotoxic assessment concentrations were selected according to cell viability. Results showed that both dyes induced significant cytotoxic and genotoxic effects in the cells, in concentrations much lower than those used in the commercial formula. Genotoxic effects could be related to the azo structure present in the composition of the dyes, which is known as mutagenic and carcinogenic. These results point to the hazard of the hair dye exposure to human health. PMID:26404083

  1. Potential genotoxic, mutagenic and antimutagenic effects of coffee: a review.

    PubMed

    Nehlig, A; Debry, G

    1994-04-01

    Coffee and caffeine are mutagenic to bacteria and fungi, and in high concentrations they are also mutagenic to mammalian cells in culture. However, the mutagenic effects of coffee disappear when bacteria or mammalian cells are cultured in the presence of liver extracts which contain detoxifying enzymes. In vivo, coffee and caffeine are devoid of mutagenic effects. Coffee and caffeine are able to interact with many other mutagens and their effects are synergistic with X-rays, ultraviolet light and some chemical agents. Caffeine seems to potentiate rather than to induce chromosomal aberrations and also to transform sublethal damage of mutagenic agents into lethal damage. Conversely, coffee and caffeine are also able to inhibit the mutagenic effects of numerous chemicals. These antimutagenic effects depend on the time of administration of coffee as compared to the acting time of the mutagenic agent. In that case, caffeine seems to be able to restore the normal cycle of mitosis and phosphorylation in irradiated cells. Finally, the potential genotoxic and mutagenic effects of the most important constituents of coffee are reviewed. Mutagenicity of caffeine is mainly attributed to chemically reactive components such as aliphatic dicarbonyls. The latter compounds, formed during the roasting process, are mutagenic to bacteria but less to mammalian cells. Hydrogen peroxide is not very active but seems to considerably enhance mutagenic properties of methylglyoxal. Phenolic compounds are not mutagenic but rather anticarcinogenic. Benzopyrene and mutagens formed during pyrolysis are not mutagenic whereas roasting of coffee beans at high temperature generates mutagenic heterocyclic amines. In conclusion, the mutagenic potential of coffee and caffeine has been demonstrated in lower organisms, but usually at doses several orders of magnitude greater than the estimated lethal dose for caffeine in humans. Therefore, the chances of coffee and caffeine consumption in moderate to

  2. Role of Ocimum sanctum as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity

    PubMed Central

    Khanna, Asha; Shukla, Poonam; Tabassum, Shajiya

    2011-01-01

    Protective effect of Ocimum sanctum was evaluated on chlorpyrifos-induced genotoxicity in in vivo and in vitro models. Two different concentrations of pesticide were taken, i.e., 1/5 and 1/15 of LD50 of chlorpyrifos for the in vivo study. Rats were pre-treated orally with O. sanctum extract (OE) at 50 mg/kg b.wt. For the in vitro studies, human lymphocyte cultures were exposed to 75 μg/ml chlorpyrifos with and without OE. Structural and numerical (both aneuploidy and euploidy types) chromosomal aberrations (CAs) were scored for the assessment of induced genotoxic effects, while the variation in mitotic index (MI) was considered as a monitor for induced cellular toxicity. The same concentration of the pesticide (75 μg/ml) was taken to study the DNA damage by comet assay. Results showed that lymphocytes treated with the pesticide exhibited increased DNA damage but the increase was statistically insignificant (P>0.05). In rats pretreated with OE, a significant (P<0.01) increase in MI was observed and there was a significant decrease in the frequency of aberrant cells as compared to the rats treated with chlorpyrifos alone. A significant (P<0.05) increase in CA was observed in cultures treated with 75 μg/ml chlorpyrifos as compared to controls, which decreased significantly (P<0.05) with OE pretreatment. PMID:21430913

  3. Role of Ocimum sanctum as a Genoprotective Agent on Chlorpyrifos-Induced Genotoxicity.

    PubMed

    Khanna, Asha; Shukla, Poonam; Tabassum, Shajiya

    2011-01-01

    Protective effect of Ocimum sanctum was evaluated on chlorpyrifos-induced genotoxicity in in vivo and in vitro models. Two different concentrations of pesticide were taken, i.e., 1/5 and 1/15 of LD(50) of chlorpyrifos for the in vivo study. Rats were pre-treated orally with O. sanctum extract (OE) at 50 mg/kg b.wt. For the in vitro studies, human lymphocyte cultures were exposed to 75 μg/ml chlorpyrifos with and without OE. Structural and numerical (both aneuploidy and euploidy types) chromosomal aberrations (CAs) were scored for the assessment of induced genotoxic effects, while the variation in mitotic index (MI) was considered as a monitor for induced cellular toxicity. The same concentration of the pesticide (75 μg/ml) was taken to study the DNA damage by comet assay. Results showed that lymphocytes treated with the pesticide exhibited increased DNA damage but the increase was statistically insignificant (P>0.05). In rats pretreated with OE, a significant (P<0.01) increase in MI was observed and there was a significant decrease in the frequency of aberrant cells as compared to the rats treated with chlorpyrifos alone. A significant (P<0.05) increase in CA was observed in cultures treated with 75 μg/ml chlorpyrifos as compared to controls, which decreased significantly (P<0.05) with OE pretreatment. PMID:21430913

  4. Role of DNA repair inhibition in lead- and cadmium-induced genotoxicity: a review.

    PubMed Central

    Hartwig, A

    1994-01-01

    Compounds of lead and cadmium have been shown to be carcinogenic to humans and experimental animals. However, the underlying mechanisms are still not understood. In mammalian cells in culture, lead(II) is weakly mutagenic after long incubation times and generates DNA strand breaks only after treatment with high, toxic doses. Cadmium(II) induces DNA strand breaks and chromosomal aberrations, but its mutagenic potential is rather weak. However, both metals exert pronounced indirect genotoxic effects. Lead(II) is comutagenic towards UV and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and enhances the number of UV-induced sister chromatid exchanges in V79 Chinese hamster cells. With regard to DNA repair, lead(II) causes an accumulation of DNA strand breaks after UV-irradiation in HeLa cells, indicating an interference with the polymerization or ligation step in excision repair. Cadmium(II) enhances the mutagenicity of UV light in V79 Chinese hamster cells and an increased sensitivity toward UV light is observed in various rodent and human cell lines. Furthermore, an inhibition of unscheduled DNA synthesis after UV-irradiation and a partial inhibition of the removal of UV-induced DNA lesions has been shown. For both metals, the indirect genotoxic effects are observed at low, nontoxic concentrations, suggesting that an interference with DNA repair processes may be predominant at biologically relevant concentrations. This might also explain the conflicting results of epidemiological studies obtained for both metals. Possible mechanisms of repair inhibition are discussed. PMID:7843136

  5. Early genotoxic response and accumulation induced by waterborne copper, lead, and arsenic in European seabass, Dicentrarchus labrax.

    PubMed

    Canalejo, Antonio; Diaz-de-Alba, Margarita; Granado-Castro, M Dolores; Cordoba, Francisco; Espada-Bellido, Estrella; Galindo-Riaño, M Dolores; Torronteras, Rafael

    2016-02-01

    Cu, Pb, and As, which are among the most abundant metals in the aquatic environment, are also among the most health-threatened by causing diverse cellular injuries. The aim of this study was to assess and compare the potential early induction of genotoxic effects after waterborne Cu, Pb, and As exposure in European seabass, Dicentrarchus labrax, a commercial widely cultured fish, using the micronucleus (MN) assay in peripheral blood erythrocytes. Fish were exposed under laboratory conditions to nominal solutions ranging 0-10 mg/L for 24 and 96 h. Furthermore, actual metal ion concentrations were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES) or differential pulse anodic stripping voltammetry (DPASV) in water and four fish tissues differentially related to environmental exposition and metal accumulation, i.e. the gills, liver, muscle, and brain. Dose-dependent increases of micronuclei (MNi) frequency were observed after these very short exposures; based on measured metal concentrations in water, the genotoxic effect ordered as Cu > As > Pb. Significant genotoxic effect at 0.009 mg/L Cu, 0.57 mg/L Pb, and 0.01 mg/L As was seen. For Cu and Pb these are only slightly higher, but for As it is notably lower than the USEPA criteria of maximum concentration to prevent acute toxicity in aquatic organisms. Furthermore, genotoxicity was differentially related to metal accumulation. MNi frequency correlated positively with the content of Pb in all the organs, with the content of As in liver and gills and only with the content of Cu in the brain. In conclusion, our findings raised environmental concerns because these depicted a genotoxic potential of Cu, Pb, and As after a very short exposure to low but environmentally relevant concentrations, too close to regulatory thresholds. In addition, the MN test in D. labrax could be considered an early biomarker of genotoxicity induced by these metals in fish. PMID:26490895

  6. Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene.

    PubMed

    Shiraishi, N; Hochadel, J F; Coogan, T P; Koropatnick, J; Waalkes, M P

    1995-02-01

    Cadmium is a carcinogenic metal. Although the mechanism of tumor induction is unknown, DNA/metal interactions may be involved. Metallothionein can protect against cadmium toxicity in our previous work it was shown to reduce cadmium genotoxicity in cultured cells. To extend these results, the genotoxicity of cadmium was studied in R2C cells, a rat testicular Leydig cell line. The R2C cells were very sensitive to cadmium-induced single-strand DNA damage (SSD), as measured by alkaline elution. SSD occurred in R2C cells after treatment with 25 and 50 microM CdCl2 for 2 hr. Prior work showed other cells required much higher levels of cadmium (approximately 500 microM) to induce genotoxicity. The genotoxic levels of cadmium (25-50 microM) were not cytotoxic in R2C cells as assessed by a metabolic activity (MTT) assay. Pretreatment of R2C cells with a low cadmium dose (2 microM, 24 hr) had no effect on cadmium-induced SSD, in contrast to prior work in other cells where such pretreatments reduced SSD through metallothionein gene activation. In fact, cadmium or zinc treatments resulted in little or no increase in metallothionein gene expression in R2C cells as determined by Northern blot analysis for metallothionein mRNA using cDNA or oligonucleotide probes and radioimmunoassay for metallothionein protein production. Basal metallothionein mRNA was essentially nondetectable. Induction of a cadmium-binding protein in R2C cells did occur, as determined by Cd-heme assay, but did not induce tolerance to SSD. In vivo, the Leydig cell is a target for cadmium carcinogenicity and its cadmium-binding protein is thought not to be a true metallothionein. These results indicate that R2C cells are sensitive to cadmium-induced genotoxicity and that this sensitivity is associated with minimal expression of the metallothionein gene. PMID:7871536

  7. Sewage sludge does not induce genotoxicity and carcinogenesis

    PubMed Central

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  8. Sewage sludge does not induce genotoxicity and carcinogenesis.

    PubMed

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-07-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3(rd) week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P(+) AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  9. Honey bee is a potential antioxidant against cyclophosphamide-induced genotoxicity in albino male mice.

    PubMed

    Zoheir, Khairy Mohamed Abdallah; Harisa, Gamaleldin Ibrahim; Abo-Salem, Osama Mohamed; Ahmad, Sheikh Fayaz

    2015-05-01

    The protective effects of honey bee (HB) and pollen grains against cyclophosphamide (CPM) -induced cytotoxic and genotoxic effects in mice were investigated. This was achieved through study the effects of CPM and HB on oxidative status, chromosomal aberrations and gene expression of the tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL1β), interleukin 17A (IL-17A) and interferon-gamma (IFN-γ) in mice. In addition, the levels of reduced glutathione (GSH) and malondialdehyde were determined. The results of this study revealed that CPM decrease in GSH level and increase in malondialdehyde (MDA) level in the liver and kidney tissues. Moreover, CPM induced sperm abnormality, chromosomal aberrations and down regulated the expression of the studied cytokine genes. HB treatment in association with CPM ameliorates GSH, MDA, chromosomal aberrations and regulated the expression of IL-1-β, IL-17A, IL-6, TNF-α and IFN-γ. Thus, HB inhibits the cytotoxic and genotoxic risks associated with CPM treatment in mice. PMID:26004732

  10. Genotoxicity induced by a shale oil byproduct in Chinese hamster cells following metabolic activation

    SciTech Connect

    Okinaka, R.T.; Nickols, J.W.; Chen, D.J.; Strniste, G.F.

    1982-01-01

    A process water obtained from a holding tank during the surface retorting of oil shale has been shown to induce a linear dose response of 100 histidine revertants/sub ..mu../1 in the Ames/Salmonella test. The complex mixture has also previously been shown to induce genotoxicity in mammalian cells following activation by near ultraviolet light and natural sunlight. This report focuses on the effects of a particular oil shale retort process water on cultured Chinese hamster cells following metabolic activation by either rat liver homogenate or lethally irradiated but metabolically competent Syrian hamster embryonic cells. Cytotoxic and mutagenic responses induced by the process water and a fractionated sample from it containing the majority of the mutagenic activity (as assessed by the Salmonella test) were measured under conditions designed to optimally measure the mutagenic potency of the promutagen, benzo(a)pyrene. These results suggest a possible discrepancy in the genotoxic potential of this complex mixture when various methods are utilized to measure its potential.

  11. Acrolein genotoxicity in Drosophila melanogaster. III. Effects of metabolism modification.

    PubMed

    Barros, A R; Sierra, L M; Comendador, M A

    1994-05-01

    In order to investigate the role of metabolism in acrolein genotoxicity in D. melanogaster, the action of several metabolism modifiers, namely phenobarbital, an inducer of xenobiotic metabolism, phenylimidazole and iproniazid, inhibitors of oxidative activities of cytochrome P450, and diethyl maleate, a glutathione-depleting agent, have been assayed using the sex-linked recessive lethal (SLRL) test, with two different administration routes (feeding and injection). The results support the hypothesis that acrolein is not only a direct mutagen but is also transformed, by oxidative activities of cytochrome P450 after glutathione conjugation, into an active metabolite, possibly glycidaldehyde. Moreover, acrolein is deactivated by an enzymatic activity induced by phenobarbital. PMID:7513061

  12. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Jaber, Aya G; Al-Azzam, Sayer I; Mhaidat, Nizar M; Masadeh, Majed M

    2014-05-01

    Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human. PMID:23761013

  13. Genotoxic effects in wild rodents (Rattus rattus and Mus musculus) in an open coal mining area.

    PubMed

    León, Grethel; Pérez, Lyda Espitia; Linares, Juan Carlos; Hartmann, Andreas; Quintana, Milton

    2007-06-15

    Coal is a mixture of a variety of compounds containing mutagenic and carcinogenic polycyclic aromatic hydrocarbons. Exposure to coal is considered as an important non-cellular and cellular source of reactive oxygen species that can induce DNA damage. In addition, spontaneous combustion can occur in coal mining areas, further releasing compounds with detrimental effects on the environment. In this study the comet assay was used to investigate potential genotoxic effects of coal mining activities in peripheral blood cells of the wild rodents Rattus rattus and Mus musculus. The study was conducted in a coal mining area of the Municipio de Puerto Libertador, South West of the Departamento de Cordoba, Colombia. Animals from two areas in the coal mining zone and a control area located in the Municipio de Lorica were investigated. The results showed evidence that exposure to coal results in elevated primary DNA lesions in blood cells of rodents. Three different parameters for DNA damage were assessed, namely, DNA damage index, migration length and percentage damaged cells. All parameters showed statistically significantly higher values in mice and rats from the coal mining area in comparison to the animals from the control area. The parameter "DNA Damage Index" was found to be most sensitive and to best indicate a genotoxic hazard. Both species investigated were shown to be sensitive indicators of environmental genotoxicity caused by coal mining activities. In summary, our study constitutes the first investigation of potential genotoxic effects of open coal mining carried out in Puerto Libertador. The investigations provide a guide for measures to evaluate genotoxic hazards, thereby contributing to the development of appropriate measures and regulations for more careful operations during coal mining. PMID:17419090

  14. The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity.

    PubMed

    Radić, Sandra; Vujčić, Valerija; Cvetković, Želimira; Cvjetko, Petra; Oreščanin, Višnja

    2014-01-01

    Acid mine drainage (AMD) is a by-product of the mining industry that has a detrimental effect on aquatic plant and animal life due to high load of heavy metals and sulfates. In the present study, the toxic and genotoxic potential of AMD prior to and following combination of neutralization/electrocoagulation processes was evaluated using several bioassays and selected parameters. Regardless of pH correction of AMD prior to Daphnia bioassay, high acute toxicity was observed in Daphnia magna. The mine leachate also induced strong phyto-, cyto- and genotoxicity to Allium cepa roots. Short term exposure to AMD inhibited duckweed growth and chlorophyll a content and simultaneously promoted lipid peroxidation and DNA damage despite duckweed capability to upregulate antioxidative defense mechanisms. The results show that observed (geno)toxicity could be related to oxidative stress most probably induced by toxic metal action. However, influence of low pH as a contributing factor in the phytotoxicity of AMD cannot be excluded. The application of combined treatment eliminated genotoxicity and was highly efficient in reducing toxicity of AMD. Thus, the method seems to be suitable for treatment of AMD waters enabling their safe discharge to an aquatic environment. PMID:23895778

  15. Evaluation of genotoxic effects of the herbicide dicamba using in vivo and in vitro test systems

    SciTech Connect

    Perocco, P.; Ancora, G.; Rani, P.; Valenti, A.M.; Mazzullo, M.; Colacci, A.; Grilli, S. )

    1990-01-01

    The genotoxic effects of the herbicide dicamba have been studied by measuring (1) the unwinding rate of liver DNA from intraperitoneally treated rats (fluorimetric assay); (2) DNA repair as unscheduled DNA synthesis (UDS) induced in cultured human peripheral blood lymphocytes (HPBL); and (3) sister chromatid exchanges (SCE) in HPBL. Results show that dicamba is capable of inducing DNA damage since it significantly increases the unwinding rate of rat liver DNA in vivo and also induces UDS in HPBL in vitro in the presence of exogenous metabolic activation (S-9 mix). Furthermore, dicamba causes a very slight increase in SCE frequency in HPBL in vitro.

  16. Genotoxic effect of ethacrynic acid and impact of antioxidants.

    PubMed

    Ward, William M; Hoffman, Jared D; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. PMID:25817893

  17. Dry Olive Leaf Extract Counteracts L-Thyroxine-Induced Genotoxicity in Human Peripheral Blood Leukocytes In Vitro

    PubMed Central

    Žukovec Topalović, Dijana; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081

  18. Dry olive leaf extract counteracts L-thyroxine-induced genotoxicity in human peripheral blood leukocytes in vitro.

    PubMed

    Topalović, Dijana Žukovec; Živković, Lada; Čabarkapa, Andrea; Djelić, Ninoslav; Bajić, Vladan; Dekanski, Dragana; Spremo-Potparević, Biljana

    2015-01-01

    The thyroid hormones change the rate of basal metabolism, modulating the consumption of oxygen and causing production of reactive oxygen species, which leads to the development of oxidative stress and DNA strand breaks. Olive (Olea europaea L.) leaf contains many potentially bioactive compounds, making it one of the most potent natural antioxidants. The objective of this study was to evaluate the genotoxicity of L-thyroxine and to investigate antioxidative and antigenotoxic potential of the standardized oleuropein-rich dry olive leaf extract (DOLE) against hydrogen peroxide and L-thyroxine-induced DNA damage in human peripheral blood leukocytes by using the comet assay. Various concentrations of the extract were tested with both DNA damage inducers, under two different experimental conditions, pretreatment and posttreatment. Results indicate that L-thyroxine exhibited genotoxic effect and that DOLE displayed protective effect against thyroxine-induced genotoxicity. The number of cells with DNA damage, was significantly reduced, in both pretreated and posttreated samples (P < 0.05). Comparing the beneficial effect of all tested concentrations of DOLE, in both experimental protocols, it appears that extract was more effective in reducing DNA damage in the pretreatment, exhibiting protective role against L-thyroxine effect. This feature of DOLE can be explained by its capacity to act as potent free radical scavenger. PMID:25789081

  19. Toxicity and genotoxicity in Astyanax bimaculatus (Characidae) induced by microcystins from a bloom of Microcystis spp

    PubMed Central

    2010-01-01

    Studies of genotoxicity in fish caused by cyanobacterial microcystins can be useful both in determining the sensitivity of native species, as well as comparing exposure routes. The genotoxicity caused by the microcystins LR and LA from a bloom collected in a eutrophic lake, was revealed in the fish Astyanaxbimaculatus, a native species from South America. LC50 (72 h) was determined as 242.81 μg L -1 and LD50 (72 h) as 49.19 μg kg -1 bw. There was a significant increase of DNA damage in peripheral erythrocytes, following intraperitoneal injection (ip) with tested concentrations of 24.58 μg kg -1 bw and 36.88 μg kg -1 bw, as well as through body exposure to a concentration of 103.72 μg L -1 . Micronucleus (MN) induction was observed after ip injections of 24.58 μg kg -1 bw and 36.88 μg kg -1 bw for 72 h, as well as following body exposure for 72 at 103.72 μg L -1 . Thus, both exposure routes resulted in MN induction and DNA damage. Apoptosis-necrosis testing was carried out only by ip injection with concentrations of 24.58 μg kg -1 bw and 36.88 μg kg- 1 bw. Exposure to microcystins at lower concentrations induced more apoptosis than necrosis in peripheral erythrocytes, whereas exposure at higher concentrations gave rise to both conditions. Thus, Astyanax bimaculatus can be considered as a species sensitive to the genotoxic effects caused by microcystins. PMID:21637586

  20. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    PubMed

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer. PMID:25813723

  1. N-Nitrosodiethylamine genotoxicity in primary rat hepatocytes: effects of cytochrome P450 induction by phenobarbital.

    PubMed

    Aiub, Claudia A F; Gadermaier, Gabriele; Oliveira, Izaura; Felzenszwalb, Israel; Ferreira, Fátima; Ribeiro Pinto, Luis Felipe; Eckl, Peter

    2011-10-10

    Primary hepatocytes are widely used in investigating drug metabolism and its toxicological effects. N-Nitrosodiethylamine (NDEA)-induced genotoxicity and cytotoxicity was used in primary cultures of female rat hepatocytes in the presence of phenobarbital (PB). PB pre-treatment (1mM) increased the number of necrotic (2-fold) and apoptotic cells (4-fold) after NDEA treatment (0.21-105 μg/mL). The mitotic indices and the number of micronucleated cells decreased, thus suggesting cytotoxicity. An increased number of chromosomal aberrations were observed after pre-treatment with PB. NDEA-treatment (0.21-21 μg/mL) induced expression of the CYP2B1 and CYP2B2 mRNA and PB treatment alone induced ~6-fold and ~2-fold increases of CYP2B1 and CYP2B2 mRNA, respectively. NDEA treatment following PB exposure increased CYP2B1 mRNA expression under all tested concentrations and also increased CYP2B2 expression at 21 and 105 μg/mL. Our data suggest that the alteration of CYP2B1/2 expression by PB increased the cytotoxicity and genotoxicity of NDEA leading to the final genotoxic metabolite. PMID:21763762

  2. Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav.

    PubMed

    Zampini, Iris Catiana; Villarini, Milena; Moretti, Massimo; Dominici, Luca; Isla, María Inés

    2008-01-17

    Zuccagnia punctata Cav. (Fabaceae), a widely used plant species in Argentine folk medicine, has been shown to have a broad spectrum of antibacterial, antifungal, antioxidant and cytoprotective activities. In this study, the hydroalcoholic extract of Zuccagnia punctata and 2',4'-dihydroxychalcone isolated from it were investigated for genotoxicity/antigenotoxicity in the in vitro comet assay test on human hepatoma HepG2 cells. No acute toxicity of the extract could be determined. HepG2 cells were treated with three different concentrations (2.5, 5.0 and 10.0 microg/mL) or 2',4'-dihydroxychalcone (0.01, 0.10 and 1.00 microg/mL). To explore the potential mechanisms of action, two approaches were followed: co-treatment with 4-nitroquinoline-N-oxyde (4-NQO), a direct genotoxic compound, and a pre-treatment protocol with benzo[a]pyrene (B[a]P), an indirect genotoxic compound. The natural products neither affected cell viability nor induced DNA damage in the concentration range tested. Zuccagnia punctata tinctures were able to diminish the DNA damage induced in HepG2 cells by 4-NQO and B[a]P in 31% and 10%, respectively at 10 microg/mL. Pre-treatment of HepG2 cells with 2',4'-dihydroxychalcone was highly effective in decreasing B[a]P-induced DNA damage at a statistically significant level, with an almost clear dose-response relationship. The inhibition values were 28.2-43.9% for the tested concentrations of 0.01-1 microg/mL, respectively. The results clearly indicate that the phytoextract from Zuccagnia punctata, under the experimental conditions tested, is not genotoxic and that 2',4'-dihydroxychalcone contributes to a high degree to the antigenotoxic effects of Zuccagnia punctata tincture. PMID:18023546

  3. Distribution and genotoxic effects after successive exposure to different uranium oxide particles inhaled by rats.

    PubMed

    Monleau, Marjorie; De Méo, Michel; Frelon, Sandrine; Paquet, François; Donnadieu-Claraz, Marie; Duménil, Gérard; Chazel, Valérie

    2006-10-01

    In nuclear fuel cycle facilities, workers may inhale airborne uranium compounds that lead to internal contamination, with various exposure scenarios depending on the workplace. These exposures can be chronic, repeated, or acute, and can involve many different compounds. The effect of uranium after multiple scenarios of exposure is unknown. The aim of this study, therefore, was to investigate the genotoxic and biokinetics consequences of exposure to depleted insoluble uranium dioxide (UO2) by repeated or acute inhalation on subsequent acute inhalation of moderately soluble uranium peroxide (UO4) in rats. The results show that UO2 repeated preexposure by inhalation increases the genotoxic effects of UO4 inhalation, assessed by comet assay, in different cell types, when UO4 exposure alone has no effect. At the same time, the study of UO4 bioaccumulation showed that the UO4 biokinetics in the kidneys, gastrointestinal tract, and excreta, but not in the lungs, were slightly modified by previous UO2 exposures. All these results show that both genotoxic and biokinetics effects of uranium may depend on preexposure and that repeated exposure induces a potentiation effect compared with acute exposure. PMID:16864406

  4. Testing systems for biologic markers of genotoxic exposure and effect

    SciTech Connect

    Mendelsohn, M.L.

    1986-11-19

    Societal interest in genotoxicity stems from two concerns: the fear of carcinogenesis secondary to somatic mutation; and the fear of birth defects and decreasing genetic fitness secondary to heritable mutation. There is a pressing need to identify agents that can cause these effects, to understand the underlying dose-response relationships, to identify exposed populations, and to estimate both the magnitude of exposure and the risk of adverse health effects in such populations. Biologic markers refer either to evidence in surrogate organisms, or to the expressions of exposure and effect in human populations. 21 refs.

  5. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.

  6. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints.

    PubMed

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen

    2015-08-01

    Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis

  7. Genotoxic and mutagenic effects of vigabatrin, a γ-aminobutyric acid transaminase inhibitor, in Wistar rats submitted to rotarod task.

    PubMed

    Coelho, V R; Sousa, K; Pires, T R; Papke, Dkm; Vieira, C G; de Souza, L P; Leal, M B; Schunck, Rva; Picada, J N; Pereira, P

    2016-09-01

    Vigabatrin (VGB) is an antiepileptic drug thatincreases brain γ-aminobutyric acid (GABA) levels through irreversible inhibition of GABA transaminase. The aim of this study was to evaluate neurotoxicological effects of VGB measuring motor activity and genotoxic and mutagenic effects after a single and repeated administration. Male Wistar rats received saline, VGB 50, 100, or 250 mg/kg by gavage for acute and subchronic (14 days) treatments and evaluated in the rotarod task. Genotoxicity was evaluated using the alkaline version of the comet assay in samples of blood, liver, hippocampus, and brain cortex after both treatments. Mutagenicity was evaluated using the micronucleus test in bone marrow of the same animals that received subchronic treatment. The groups treated with VGB showed similar performance in rotarod compared with the saline group. Regarding the acute treatment, it was observed that only higher VGB doses induced DNA damage in blood and hippocampus. After the subchronic treatment, VGB did not show genotoxic or mutagenic effects. In brief, VGB did not impair motor activities in rats after acute and subchronic treatments. It showed a repairable genotoxic potential in the central nervous system since genotoxicity was observed in the acute treatment group. PMID:26500220

  8. Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis

    PubMed Central

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Mendez, Josefina; Eirin-Lopez, Jose M.

    2016-01-01

    Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates. PMID:27231936

  9. Early Genotoxic and Cytotoxic Effects of the Toxic Dinoflagellate Prorocentrum lima in the Mussel Mytilus galloprovincialis.

    PubMed

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Mendez, Josefina; Eirin-Lopez, Jose M

    2016-01-01

    Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates. PMID:27231936

  10. Protective effects of a mixture of dietary agents against 7,12-dimethylbenz[a]anthracene-induced genotoxicity and oxidative stress in mice.

    PubMed

    Chandra Mohan, K V P; Abraham, S K; Nagini, S

    2004-01-01

    We investigated the effects of pretreatment with tomato, garlic, and turmeric, alone and in combination, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced genetic damage and oxidative stress in male Swiss mice. Measurement of the incidence of bone marrow micronuclei as well as the extent of lipid peroxidation and the status of the antioxidants reduced glutathione, glutathione peroxidase, and glutathione-S-transferase in the liver and erythrocytes were used as biomarkers of chemoprotection. In DMBA-treated animals, increased frequency of bone marrow micronuclei was accompanied by enhanced lipid peroxidation and antioxidant depletion. Pretreatment with tomato, garlic, and turmeric alone and a combination of these agents significantly reduced the frequencies of DMBA-induced bone marrow micronuclei as well as the extent of lipid peroxidation. These changes may be mediated by the antioxidant-enhancing effects of the dietary agents. The results of the present study suggest that a diet containing even low levels of different naturally occurring compounds is effective in exerting antigenotoxic effects by inhibiting DMBA-induced oxidative stress. PMID:15117554

  11. Genotoxic effects in bacteria of the light emitted by halogen tungsten lamps having treated quartz bulbs.

    PubMed

    Camoirano, A; Bennicelli, C; Bagnasco, M; De Flora, S

    1999-04-26

    Traditional halogen tungsten lamps, which are extensively used worldwide for the illumination of indoor environments, have a quartz bulb which transmits not only visible light but also ultraviolet (UV) light. Due to the output of far-UV wavelengths, halogen lamps were found in previous studies to be potently genotoxic in bacteria, clastogenic in cultured human cells, and carcinogenic in hairless mice. This discovery prompted the launching of new halogen lamps, known as UV-Stop, UV-Block, or similar trade names, which have the quartz glass treated in such a way to reduce its permeability to UV radiation. Surprisingly, these lamps are advertised for attenuating discolouration of UV-sensitive materials, such as fabrics, paintings, works of art and furniture, whereas protection of the human skin from potential carcinogenic risks is overlooked. We tested forty-seven 12 V-powered lamps with treated quartz bulb, which were made available by five producers as blind-coded samples. After exposure to either 1000 lx for 30 min or 2500 lx for 60 min, the 50 W lamps from two producers were borderline mutagenic in strains TA100 and TA104 of S. typhimurium, and induced an evident and dose-related DNA damage in the E. coli strain CM871 (uvrA- recA- lexA-), as compared to its isogenic, DNA repair-proficient counterpart WP2. The 50 W lamps supplied by the other three producers also induced a significant genotoxic damage, but only after exposure for 60 min at illuminance levels of 2500 lx or higher. In calibration experiments, one of these three lamp brands was found to induce in 60 min a genotoxic damage which was equivalent to the one induced in just 55 s by a traditional halogen lamp. Therefore, the new types of lamps with treated quartz bulbs provide an appreciable step forward in the safety of halogen lamps, but some output of genotoxic UV radiations does still occur. Moreover, the lamps manufactured by different producers are not equally effective to this respect. By comparison

  12. Genotoxic effect of ethacrynic acid and impact of antioxidants

    SciTech Connect

    Ward, William M.; Hoffman, Jared D.; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  13. Identification of specific mRNA signatures as fingerprints for carcinogenesis in mice induced by genotoxic and nongenotoxic hepatocarcinogens.

    PubMed

    Kossler, Nadine; Matheis, Katja A; Ostenfeldt, Nina; Bach Toft, Dorthe; Dhalluin, Stéphane; Deschl, Ulrich; Kalkuhl, Arno

    2015-02-01

    Long-term rodent carcinogenicity studies for evaluation of chemicals and pharmaceuticals concerning their carcinogenic potential to humans are currently receiving critical revision. Additional data from mechanistic studies can support cancer risk assessment by clarifying the underlying mode of action. In the course of the IMI MARCAR project, a European consortium of EFPIA partners and academics, which aims to identify biomarkers for nongenotoxic carcinogenesis, a toxicogenomic mouse liver database was generated. CD-1 mice were orally treated for 3 and 14 days with 3 known genotoxic hepatocarcinogens: C.I. Direct Black 38, Dimethylnitrosamine and 4,4'-Methylenedianiline; 3 nongenotoxic hepatocarcinogens: 1,4-Dichlorobenzene, Phenobarbital sodium and Piperonyl butoxide; 4 nonhepatocarcinogens: Cefuroxime sodium, Nifedipine, Prazosin hydrochloride and Propranolol hydrochloride; and 3 compounds that show ambiguous results in genotoxicity testing: Cyproterone acetate, Thioacetamide and Wy-14643. By liver mRNA expression analysis using individual animal data, we identified 64 specific biomarker candidates for genotoxic carcinogens and 69 for nongenotoxic carcinogens for male mice at day 15. The majority of genotoxic carcinogen biomarker candidates possess functions in DNA damage response (eg, apoptosis, cell cycle progression, DNA repair). Most of the identified nongenotoxic carcinogen biomarker candidates are involved in regulation of cell cycle progression and apoptosis. The derived biomarker lists were characterized with respect to their dependency on study duration and gender and were successfully used to characterize carcinogens with ambiguous genotoxicity test results, such as Wy-14643. The identified biomarker candidates improve the mechanistic understanding of drug-induced effects on the mouse liver that result in hepatocellular adenomas and/or carcinomas in 2-year mouse carcinogenicity studies. PMID:25410580

  14. Genotoxicity to human cells induced by air particulates isolated during the Kuwait oil fires

    SciTech Connect

    Kelsey, K.T.; Xia, F.; Christiani, D.C.; Liber, H.L.; Spengler, J.D.; Dockery, D.W. ); Bodell, W.J. )

    1994-01-01

    In an effort to examine the potential of exposure to soot from the 1991 oil fires in the Kuwait desert for inducing genetic effects we studied the in vitro genotoxicity of this materials. Air particulates isolated near the Kuwait oil fires were studied using three assays. Dose-dependent increases were observed for both sister chromatid exchanges in human peripheral blood lymphocytes and mutation at the hprt locus in the metabolically competent human lymphoblast cell line AHH-1. Similar magnitudes of response were seen using these two assays when testing a standard air particulate sample which had been isolated from the Washington, DC, area. Using the [sup 32]P-postlabeling assay, no increase in DNA adduct formation was observed in AHH-1 cells treated with particulates isolated from sampling in Kuwait. 18 refs., 4 figs.

  15. High dietborne Cu and Cd induced genotoxicity of Nile tilapia (Oreochromis niloticus).

    PubMed

    El-Serafy, Sabry S; Zowail, Mohammed E; Abdel-Hameid, Nassr-Allah H; Awwad, Mohammed H; Nafie, Ebtessam H O

    2015-05-01

    In this study, the effects of fish diet contaminated with Cu, Cd and Cu+Cd on Nile tilapia, was demonstrated by evaluating its bioaccumulation in the muscle and by testing the cytogenetic profile. Fish exposed to diet contaminated with Cu, Cd or their mixture had a significant increase in the number of chromosomal abnormalities and an inhibition of the mitotic index. Our study revealed high muscle Cu or Cd content in fish fed with diet contaminated with high dietborne Cu, Cd, Cu and Cd. It also revealed that the chromosomal abnormalities were higher for fish fed diet Cd contaminated and Cu+Cd contaminated diets than those fed diet Cu contaminated diet. Thus, maybe fish diets contaminated with Cu, Cd, Cu+Cd induced genotoxicity and mutation. Also, maybe high concentrations of Cu and Cd in fish tissue resulted from feeding on Cu and Cd contaminated diets, are dangerous for human consumption. PMID:25917432

  16. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies.

    PubMed

    Fleenor, Courtney J; Higa, Kelly; Weil, Michael M; DeGregori, James

    2015-10-01

    Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis. PMID:26414506

  17. Genotoxic Effect in Autoimmune Diseases Evaluated by the Micronucleus Test Assay: Our Experience and Literature Review

    PubMed Central

    Torres-Bugarín, Olivia; Macriz Romero, Nicole; Ramos Ibarra, María Luisa; Flores-García, Aurelio; Valdez Aburto, Penélope; Zavala-Cerna, María Guadalupe

    2015-01-01

    Autoimmune diseases (AD) are classified into organ-specific, systemic, and mixed; all forms of AD share a high risk for cancer development. In AD a destructive immune response induced by autoreactive lymphocytes is started and continues with the production of autoantibodies against different targets; furthermore apoptosis failure and loss of balance in oxidative stress as a consequence of local or systemic inflammation are common features seen in AD as well. Micronucleus (MN) assay can be performed in order to evaluate loss of genetic material in a clear, accurate, fast, simple, and minimally invasive test. The MN formation in the cytoplasm of cells that have undergone proliferation is a consequence of DNA fragmentation during mitosis and the appearance of small additional nuclei during interphase. The MN test, widely accepted for in vitro and in vivo genotoxicity research, provides a sensitive marker of genomic damage associated to diverse conditions. In here, we present a review of our work and other published papers concerning genotoxic effect in AD, identified by means of the MN assay, with the aim of proposing this tool as a possible early biomarker for genotoxic damage, which is a consequence of disease progression. Additionally this biomarker could be used for follow-up, to asses genome damage associated to therapies. PMID:26339592

  18. Genotoxic effects of two-generational selenium deficiency in mouse somatic and testicular cells

    PubMed Central

    Graupner, Anne; Instanes, Christine; Andersen, Jill M.; Brandt-Kjelsen, Anicke; Dertinger, Stephen D.; Salbu, Brit; Brunborg, Gunnar; Olsen, Ann-Karin

    2015-01-01

    Many studies have investigated genotoxic effects of high Se diets but very few have addressed the genotoxicity of Se deprivation and its consequences in germ cells and none in somatic cells. To address these data gaps, C57BL/6 male mice were subjected to Se deprivation starting in the parental generation, i.e. before conception. Mice were given a diet of either low (0.01mg Se/kg diet) or normal (0.23mg Se/kg diet) Se content. Ogg1-deficient (Ogg1 −/−) mice were used as a sensitive model towards oxidative stress due to their reduced capacity to repair oxidised purines. Ogg1 −/− mice also mimic the repair characteristics of human post-meiotic male germ cells which have a reduced ability to repair such lesions. The genotoxicity of Se deficiency was addressed by measuring DNA lesions with the alkaline single cell gel electrophoresis (+ Fpg to detect oxidised DNA lesions) in somatic cells (nucleated blood cells and lung cells) and male germ cells (testicular cells). Total Se concentration in liver and GPx activity in plasma and testicular cells were measured. Gene mutation was evaluated by an erythrocyte-based Pig-a assay. We found that Se deprivation of F1 from their conception and until early adulthood led to the induction of DNA lesions in testicular and lung cells expressed as significantly increased levels of DNA lesions, irrespective of the mouse genotype. In blood cells, Se levels did not appear to affect DNA lesions or mutant cell frequencies. The results suggest that the testis was the most sensitive tissue. Thus, genotoxicity induced by the low Se diet in the spermatozoal genome has potential implications for the offspring. PMID:25358475

  19. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays.

    PubMed

    Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing

    2015-10-15

    Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. PMID:25910456

  20. Antiproliferative and genotoxic effects of Mikania glomerata (Asteraceae).

    PubMed

    Dalla Nora, Gracieli; Pastori, Tamara; Laughinghouse, Haywood Dail; Do Canto-Dorow, Thais Scotti; Tedesco, Solange Bosio

    2010-12-01

    Mikania glomerata is a plant used in Brazilian traditional medicine, known as 'guaco'. It possesses anti-inflammatory properties and the aqueous extracts of its leaves are indicated for the treatment of diseases of the respiratory tract. This study aimed at evaluating the antiproliferative and genotoxic effect of Mikania glomerata leaf infusions on the cell cycle of onion. The material used was collected in the native environment from Rio Grande do Sul State, Brazil. Aqueous extracts through infusions were prepared in two concentrations: 4g/L (usual concentration) and 16g/L (4x more concentrated) of each of the populations. Two groups of four onion bulbs for each plant population were used plus a control group. The rootlets were fixed in ethanol-acetic acid (3:1), conserved in ethanol 70% and slides were prepared using the squashing technique colored with orcein 2%. The cells were observed and analyzed during cell cycle. Per group of bulbs, 2000 cells were analyzed, and the mean values of the cell number of each of the phases of the cell cycle were calculated, determining the mitotic index (MI). Statistic analyses of the data were carried out by the x2 ( p= 0.05) test. We conclude that M. glomerata presents both antiproliferative and genotoxic activity. PMID:21443139

  1. Nanoceria have no genotoxic effect on human lens epithelial cells

    NASA Astrophysics Data System (ADS)

    Pierscionek, Barbara K.; Li, Yuebin; Yasseen, Akeel A.; Colhoun, Liza M.; Schachar, Ronald A.; Chen, Wei

    2010-01-01

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO2) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 µg ml-1 of CeO2 nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  2. Specific Uptake and Genotoxicity Induced by Polystyrene Nanobeads with Distinct Surface Chemistry on Human Lung Epithelial Cells and Macrophages

    PubMed Central

    Kortulewski, Thierry; Grall, Romain; Gamez, Christelle; Blazy, Kelly; Aguerre-Chariol, Olivier; Chevillard, Sylvie; Braun, Anne; Rat, Patrice; Lacroix, Ghislaine

    2015-01-01

    Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects

  3. DNA methyltransferase I is a mediator of doxorubicin-induced genotoxicity in human cancer cells

    SciTech Connect

    Tan, Hwee Hong; Porter, Alan George

    2009-05-01

    Doxorubicin can induce the formation of extra-nuclear bodies during mitosis termed micronuclei but the underlying causes remain unknown. Here, we show that sub-lethal exposure to doxorubicin-induced micronuclei formation in human cancer cells but not in non-tumorigenic cells. Occurrence of micronuclei coincided with stability of DNMT1 upon doxorubicin assault, and DNMT1 was localized to the micronuclei structures. Furthermore, 5-aza-2'-deoxycytidine-mediated DNMT1 depletion or siDNMT1 knock-down attenuated the frequency of doxorubicin-induced micronucleated cells. Human DNMT1{sup -/-} cells displayed significantly fewer micronuclei compared to DNMT1{sup +/+} cells when challenged with doxorubicin, providing additional evidence for the involvement of DNMT1 in mediating such chromosomal aberrations. Collectively, our results demonstrate a role for DNMT1 in promoting DNA damage-induced genotoxicity in human cancer cells. DNMT1, recently identified as a candidate for doxorubicin-mediated cytotoxicity, is over-expressed in various cancer cell types. We propose that DNMT1 levels in tumor cells may determine the effectiveness of doxorubicin in chemotherapy.

  4. Molecular and structural changes induced by essential oils treatments in Vicia faba roots detected by genotoxicity testing.

    PubMed

    Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro

    2016-01-01

    Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management. PMID:26914511

  5. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line.

    PubMed

    Lewinska, Anna; Siwak, Justyna; Rzeszutek, Iwona; Wnuk, Maciej

    2015-04-01

    Plant-derived dietary polyphenolic compounds, such as flavonoids, with cancer cell-specific pro-apoptotic activity and chemopreventive potential are thought to be promising anticancer agents. In the present study, we were interested in determining if flavonoid-induced genotoxicity may also provoke cancer cell death. Cyto- and genotoxicity of three selected flavonoid glycosides (naringin, diosmin and hesperidin) in DU145 prostate cancer cell line were investigated. Flavonoid glycosides decreased cancer cell number and proliferative activity in a different manner. Flavonoid glycosides induced oxidative stress: intracellular total ROS and superoxide production were augmented after flavonoid treatment. Flavonoid glycosides stimulated DNA double strand breaks (DSBs) and micronuclei production. Diosmin was found the most potent genotoxic agent in DU145 cells, which, in turn, resulted in its pro-apoptotic activity. The more robust recruitment of 53BP1 was correlated with lower DNA and chromosomal damage after naringin and hesperidin treatment compared with diosmin treatment. Flavonoid glycosides were also found to be DNA hypomethylating agents with an ability to modulate cancer cell epigenome leading to changes in the gene expression patterns. Taken together, diosmin, a dietary flavonoid glycoside, was found active against DU145 cells by promoting genotoxic events and a concomitant apoptotic cell death. Thus, a comprehensive analysis of biological activity of diosmin against cancer cells both in vitro and in vivo deserves further investigation. PMID:25499067

  6. Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response.

    PubMed

    Pieper, Imke; Wehe, Christoph A; Bornhorst, Julia; Ebert, Franziska; Leffers, Larissa; Holtkamp, Michael; Höseler, Pia; Weber, Till; Mangerich, Aswin; Bürkle, Alexander; Karst, Uwe; Schwerdtle, Tanja

    2014-03-01

    The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. PMID:24549367

  7. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots. PMID:25943507

  8. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  9. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: A mechanistic approach.

    PubMed

    Senapati, Violet Aileen; Kumar, Ashutosh; Gupta, Govind Sharan; Pandey, Alok Kumar; Dhawan, Alok

    2015-11-01

    The wide application of zinc oxide nanoparticles (ZnO NPs) in cosmetics, paints, biosensors, drug delivery, food packaging and as anticancerous agents has increased the risk of human exposure to these NPs. Earlier in vitro and in vivo studies have demonstrated a cytotoxic and genotoxic potential of ZnO NPs. However, there is paucity of data regarding their immunomodulatory effects. Therefore, the present study was aimed to investigate the immunotoxic potential of ZnO NPs using human monocytic cell line (THP-1) as model to understand the underlying molecular mechanism. A significant (p < 0.01) increase in pro-inflammatory cytokines (TNF-α and IL-1β) and reactive oxygen species (ROS) was observed with a concomitant concentration dependent (0.5, 1, 5, 10, 15 and 20 μg/mL) decrease in the glutathione (GSH) levels as compared to control. The expression levels of mitogen activated protein kinase (MAPK) cascade proteins such as p-ERK1/2, p-p38 and p-JNK were also significantly (p < 0.05, p < 0.01) induced. Also, at the concentration tested, NPs induced DNA damage as assessed by the Comet and micronucleus assays. Our data demonstrated that ZnO NPs induce oxidative and nitrosative stress in human monocytes, leading to increased inflammatory response via activation of redox sensitive NF-κB and MAPK signalling pathways. PMID:26146191

  10. Prevention of benzene-induced genotoxicity in bone marrow and lung cells: superiority of polyphenolic acetates to polyphenols.

    PubMed

    Kumar, Ajit; Sushama, Anupam; Rohil, Vishwajeet; Manral, Sushma; Gangopadhyay, Sukanya; Prasad, Ashok K; Raj, Hanumantharao G; Parmar, Virender S

    2011-09-01

    Previous investigations carried out in our laboratory have highlighted that 7,8-diacetoxy-4-methylcoumarin demonstrates a mechanism-based inhibition of cytochrome P450 (Cyt-P450) activities such as microsome-mediated aflatoxin B1 (AFB1) epoxidation, dealkylation of alkylated resorufin, and toxicokinetics of benzene. 7,8-Diacetoxy-4-methylcoumarin, quercetin pentaacetate, and ellagic acid peracetate were also found to be effective in giving the protection of AFB1-induced genotoxicity in rat's bone marrow and lung cells possibly due to acetylation of Cyt-P450 apoprotein mediated by acetoxy drug: protein transacetylase. Later, this transacetylase was identified as calreticulin, and the acetyltransferase function of calreticulin was appropriately termed calreticulin transacetylase. In this communication, we have focused on the superiority of several classes of polyphenolic acetates to polyphenols in the modification of Cyt-P450-linked mixed function oxidases (MFOs) such as 7-ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD). Special attention has also been focused on benzene-induced genotoxicity in bone marrow and lung cells. Results clearly indicated that polyphenolic acetates demonstrated time-dependent inhibition of Cyt-P450-linked MFOs, while parent polyphenols failed to demonstrate the same. Polyphenolic acetates were found to be more superior to polyphenols in preventing benzene-induced micronuclei formation. The pattern of inhibition of Cyt-P450-dependent MFOs and benzene-induced micronuclei formation by polyphenolic acetates was found in tune with their specificities to calreticulin transacetylase. These results further substantiated that inhibition of Cyt-P450-linked MFOs and benzene-induced genotoxicity in bone marrow and lung cells by polyphenolic acetates are mediated by the action of calreticulin transacetylase that catalyzes the acetylation of concerned proteins. PMID:21267547

  11. Promising anticancer activity of a lichen, Parmelia sulcata Taylor, against breast cancer cell lines and genotoxic effect on human lymphocytes.

    PubMed

    Ari, Ferda; Ulukaya, Engin; Oran, Seyhan; Celikler, Serap; Ozturk, Sule; Ozel, Mustafa Zafer

    2015-05-01

    Plants are still to be explored for new anti-cancer compounds because overall success in cancer treatment is still not satisfactory. As a new possible source for such compounds, the lichens are recently taking a great attention. We, therefore, explored both the genotoxic and anti-growth properties of lichen species Parmelia sulcata Taylor. The chemical composition of P. sulcata was analyzed with comprehensive gas chromatography-time of flight mass spectrometry. Anti-growth effect was tested in human breast cancer cell lines (MCF-7 and MDA-MB-231) by the MTT and ATP viability assays, while the genotoxic activity was studied by assays for micronucleus, chromosomal aberration and DNA fragmentation in human lymphocytes culture. Cell death modes (apoptosis/necrosis) were morphologically assessed. P. sulcata inhibited the growth in a dose-dependent manner up to a dose of 100 μg/ml and induced caspase-independent apoptosis. It also showed genotoxic activity at doses (>125 μg/ml) higher than that required for apoptosis. These results suggest that P. sulcata may induce caspase-independent apoptotic cell death at lower doses, while it may be genotoxic at relatively higher doses. PMID:24676908

  12. Antimicrobial and Genotoxicity Effects of Zero-valent Iron Nanoparticles

    PubMed Central

    Barzan, Elham; Mehrabian, Sedigheh; Irian, Saeed

    2014-01-01

    Background: In a world of nanotechnology, the first concern is the potential environmental impact of nanoparticles. An efficient way to estimate nanotoxicity is to monitor the responses of bacteria exposed to these particles. Objectives: The current study explored the antimicrobial properties of nZVI (zero-valent Iron nanoparticles) on the Gram-negative bacterial systems Erwinia amylovora, Xanthomonas oryzae and the Gram-positive bacterial systems Bacillus cereus and Streptomyces spp. The genotoxicity potential of nZVI was also assayed. Materials and Methods: The toxicity of nZVI was tested by two different methods: Growing bacteria in liquid (broth dilution) and agar media (challenge test) containing different nZVI concentrations for 24-72 hours. The genotoxicity of nZVI was assessed using the preincubation version of the Ames test. Results: The lowest concentrations of nZVI that inhibited the visible growth (MIC) of E. amylovora, X. oryzae, B. cereus and Streptomyces spp. were 625, 550, 1250 and 1280 ppm, respectively. The minimum bactericidal concentration (MBC) for E. amylovora and X. oryzae were 10,000 and 5,000 ppm of nZVI, respectively. MBC was not observed for the Gram positive bacteria. No bacteriostatic and bactericidal effects were observed for oxidized nZVI. Mutant frequency did not increase according to the vehicle control at the concentrations assayed, indicating a lack of mutagenicity associated with nZVI. Conclusions: nZVI nanoparticles are not mutagenic at low concentrations, therefore they can be used without detrimental effects on soil bacteria. PMID:25147712

  13. 4-Aminoantipyrine reduces toxic and genotoxic effects of doxorubicin, cisplatin, and cyclophosphamide in male mice.

    PubMed

    Berno, Claudia Rodrigues; Rós, Barbara de Toledo; da Silveira, Ingridhy Ostaciana Maia Freitas; Coelho, Henrique Rodrigues; Antoniolli, Andréia Conceição Milan Brochado; Beatriz, Adilson; de Lima, Dênis Pires; Monreal, Antônio Carlos Duenhas; Sousa, Fabricio Garmus; da Silva Gomes, Roberto; Oliveira, Rodrigo Juliano

    2016-07-01

    The analgesic drug dipyrone is used to treat side effects (including pain and fever) of cancer chemotherapeutic agents. Dipyrone is metabolized to 4-aminoantipyrine (4-AA), a PGE2-dependent blocker and inhibitor of cyclooxygenase (COX). We evaluated the genotoxic, mutagenic, apoptotic, and immunomodulatory activities of 4-AA in vivo and the effects of its combination with the antineoplastic drugs doxorubicin, cisplatin, and cyclophosphamide. 4-AA did not cause genotoxic/mutagenic damage, splenic phagocytosis, or leukocyte alterations. However, when combined with the antineoplastic agents, 4-AA decreased their genotoxic, mutagenic, apoptotic, and phagocytic effects. These results suggest that 4-AA might interfere with DNA damage-mediated chemotherapy. PMID:27402479

  14. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    PubMed Central

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451

  15. Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children.

    PubMed

    Bandyopadhyay, Apurba K; Paul, Somnath; Adak, Shanta; Giri, Ashok K

    2016-08-01

    Early life exposure to arsenic has profound effect towards development of arsenic induced toxic outcomes. Some districts in the state of West Bengal, India are highly affected by arsenic, mainly through ground water. In children, not much of the toxic outcomes like dermatological lesions are observed but it is thought that the exposure leads to transient alteration in their biological processes that leads to various deleterious health effects later on. We evaluated the global methylation status by analyzing the LINE-1 methylation profile in children from arsenic exposed region between the age group 5-15 years along with the cytogenetic stress induced by arsenic as measured by lymphocyte micronucleus (MN) frequency. A total of 52 arsenic exposed and 32 unexposed children were analyzed. Whole blood DNA was used to measure the LINE-1 methylation by qRT-MSP. We found a significant association of MN-frequency in exposed individuals with highly depleted LINE-1 methylation compared to the exposed individuals with near baseline (which was comparable to unexposed control) methylation index as well as with those with the hypermethylated LINE-1 promoters. From our results, we interpret that LINE-1 methylation index may serve as a potent global epigenetic mark to detect the degree of arsenic genotoxicity at a very early age. We propose that this may be utilized to determine the extent of toxic influence exerted by arsenic, from a very early age. PMID:27465741

  16. Substituent effects on the genotoxicity of 4-nitrostilbene derivatives.

    PubMed

    Hooberman, B H; Brezzell, M D; Das, S K; You, Z; Sinsheimer, J E

    1994-11-01

    4-Nitrostilbene and twelve of its derivatives (eleven E-stilbenes and two Z-stilbenes) were examined for possible quantitative structure-activity relationships of their in vitro and in vivo genotoxicity. Relative mutagenicity was studied with and without S9 activation in Salmonella strains TA98 and TA100, as well as in the nitroreductase deficient strains TA98/NR and TA100/NR. Chromosomal aberrations in the bone-marrow cells of mice following intraperitoneal administration of the nitrostilbenes were observed as an indicator of in vivo genotoxicity. All of the compounds were active in TA98 and TA100 without S9 activation, with the exception of 4-amino-4'-nitrostilbene in TA100. Mutagenic activity was greatly reduced or eliminated in the NR strains, which is consistent with metabolic activation of the compounds by bacterial reductase. The presence of S9 lowered the activity of most of the nitrostilbenes presumedly by enzymatic detoxication. Hammet values of substituents, partition coefficients and frontier orbital energies (ELUMO and EHOMO) were studied for correlations with mutagenicity of the eleven E-stilbenes. Correlations could be established between mutagenicity in TA98 without S9 activation and the Hammet values. The same mutagenicity could also be correlated to ELUMO. Rationales for these correlations include the concept that electron-withdrawing groups which lower ELUMO should facilitate the reduction of the nitro group, leading to the proximate mutagen hydroxylamine. The correlations are also explained by the concept that electron-withdrawing groups should help stabilize the hydroxylamine intermediate and make the ultimate mutagenic species, the nitrenium ions, more reactive toward DNA. The relationship between mutagenicity and electronic effects of substituent groups found in vitro could not be extended to the in vivo results. However, except for the dinitrostilbenes, where insolubility prevented their testing, all the nitrostilbenes produced a

  17. Genotoxicity and cytotoxicity induced by municipal effluent in multiple organs of Wistar rats.

    PubMed

    da Silva, Victor Hugo Pereira; de Moura, Carolina Foot Gomes; Ribeiro, Flavia Andressa Pidone; Cesar, Augusto; Pereira, Camilo Dias Seabra; Silva, Marcelo Jose Dias; Vilegas, Wagner; Ribeiro, Daniel Araki

    2014-11-01

    The aim of this study was to evaluate cytotoxicity and genotoxicity in multiple organs of rats induced by municipal effluent released by submarine outfall in city of Santos. A total of 20 male Wistar rats were exposed to effluents by drinking water ad libitum at concentrations of 0, 10, 50, and 100 % for 30 days. Microscopic analysis revealed severe lesions such as necrosis and hemorrhagic areas in liver and kidney from animals exposed to effluent at 50 and 100 % concentration. DNA damage in peripheral blood, liver, and kidney cells were detected by comet assay at higher concentrations of effluent. Moreover, a decrease DNA repair capacity was detected in liver cells. Significant statistical differences (p<0.05) for micronucleated cells from liver were noticed at 50 % concentration of effluent. Taken together, our results demonstrate that municipal effluent is able to induce cytotoxicity and genotoxicity in multiple organs of Wistar rats. PMID:24996946

  18. Chemical structure-related mechanisms underlying in vivo genotoxicity induced by nitrofurantoin and its constituent moieties in gpt delta rats.

    PubMed

    Kijima, Aki; Ishii, Yuji; Takasu, Shinji; Matsushita, Kohei; Kuroda, Ken; Hibi, Daisuke; Suzuki, Yuta; Nohmi, Takehiko; Umemura, Takashi

    2015-05-01

    Nitrofurans are antimicrobial compounds containing a nitro group at the 5-position of the furan ring and an amine or hydrazide side chain derivative. One member of the nitrofurans, nitrofurantoin (NFT), is a renal carcinogen in male rats despite its still controversial genotoxicity. We investigated chemical structure-related modes of action of NFT, and reporter gene mutation assays for NFT and its constituent moieties were performed. NFT, 5-nitro-2-furaldehyde (NFA), or 1-aminohydantoin (AHD) was administered to male F344 gpt delta rats by gavage for 4 or 13 weeks at a carcinogenic or the maximum tolerated dose. NFT caused a significant increase in gpt mutant frequency (MF) at 13 weeks with G-base substitution mutations. An increase in gpt MF was also observed in the NFA-treated group at 13 weeks, but not in the AHD-treated group. 8-Hydroxydeoxyguanosine (8-OHdG) levels in the kidney DNA of NFT-treated rats were significantly increased after 4 weeks. NFT caused accumulation of hyaline droplets indicated by positive immunostaining and western blot analysis for α2u-globulin in the proximal tubules. An additional study, in which female gpt delta rats were given NFT at the same dose used for males, was performed to mitigate the effect of α2u-globulin. NFT exerted the same effects on female rat kidneys to the same extent as males in terms of gpt MF and 8-OHdG level. Thus, it is highly probable that the structure of the nitro furan plays a key role in NFT-induced genotoxicity and genotoxic mechanisms including oxidative DNA damage are involved in NFT-induced renal carcinogenesis. α2u-globulin-mediated nephropathy may be a prerequisite for NFT-induced renal carcinogenesis in male rats, and additionally NFT could be a latent carcinogen in female rats and other animal species. PMID:25772432

  19. Genotoxic damage induced by isopropanol in germinal and somatic cells of Drosophila melanogaster.

    PubMed

    Palermo, Ana María; Mudry, Marta Dolores

    2011-12-24

    Isopropanol (isopropyl alcohol, 2-propanol, IPA) is a volatile solvent widely used in domestic or industrial environments and reported as innocuous in various test systems. The aim of this work was to search for in vivo genotoxic effects of IPA in Drosophila melanogaster, studying its ability to induce nondisjunction (ND) in females, sex linked recessive lethals (SLRL) in males, and somatic mutation and/or recombination (SMART) in larvae. Treatments were acute (60min) and were administered via inhalation. IPA had low toxicity in adult flies (75% IPA mortality index, MI=12.7% (females) and 2.6% (males)) and larvae (MI=14.3%, 75% IPA). Female fertility was severely affected during the first 24h (brood I, BI) after treatment, but, afterwards, control values were recovered. IPA induced a 50-fold increase of ND (%) in 24h old females, and a six-fold rise in 4-5 d old BI offspring. Nondisjunction frequencies (%) in the offspring of broods II to V (24h in each case) were similar to control values. IPA doses of 25% and 50% (v/v), tested in 24h old females, showed a significant dose-dependent increase of ND(%)in BI only, with control values in subsequent broods. Flies gave normal offspring when kept in regular media for 24h before mating. The eye spot test (SMART) showed a significant increase at 50% IPA (p<0.05, m=2), but the response was not dose-dependent. IPA failed to induce SLRL in any of the spermatogenesis stages tested. These findings suggest that the main effect of IPA is to induce chromosomal malsegregation; IPA must be present at the resumption of M-phase I after fertilization, to exert these effects. The alcohol does not affect DNA directly, but perturbations of the nuclear membrane may be responsible for induction of ND. PMID:22001194

  20. Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of Genotoxic Tolerance

    PubMed Central

    Seager, Anna L.

    2012-01-01

    Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H2O2), potassium bromate (KBrO3), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H2O2 and KBrO3, but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair–focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H2O2-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H2O2 dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in “genotoxic tolerance.” PMID:22539617

  1. Alternatives to Aroclor 1254-induced S9 in in vitro genotoxicity assays.

    PubMed

    Elliott, B M; Combes, R D; Elcombe, C R; Gatehouse, D G; Gibson, G G; Mackay, J M; Wolf, R C

    1992-05-01

    A working party was set up by the UK Environmental Mutagen Society to consider alternatives to Aroclor 1254 (Aroclor)-induced S9 in in vitro genotoxicity assays, with the aims of considering whether a replacement for Aroclor in its role in general screening assays could be readily identified. The working party concluded that there was sufficient support in the literature to justify the use of an appropriate phenobarbital/beta-naphthoflavone regime as an acceptable alternative to Aroclor. PMID:1602970

  2. Effect of the nano-bio interface on the genotoxicity of titanium dioxide nanoparticles and associated cellular responses

    NASA Astrophysics Data System (ADS)

    Prasad, Raju Yashaswi

    Several toxicological studies have shown that titanium dioxide nanoparticles (nano-TiO2), one of the most widely produced engineered nanoparticles, can induce genotoxicity; however, potential adverse health effects associated with their physicochemical properties are not fully understood. Proteins in a biological medium can adsorb to the surface of the nanoparticle resulting in the formation of a protein corona that can alter the physicochemical properties of the particle. Furthermore, the protein corona may impact the interaction between nanoparticles and cells, referred to as the nano-bio interface, effecting the uptake, distribution, and toxicity of the particles. Despite the potential influence of the composition of the biological medium on the physicochemical properties and genotoxicity of titanium dioxide nanoparticles, the majority of studies have not examined systematically the influence of medium composition on protein corona, genotoxicity, and cellular responses. In this dissertation we tested the overall hypothesis that titanium dioxide nanoparticles in medium that produces the smallest agglomerates would be taken up into cells and induce genotoxicity, and that exposure would initiate the signaling of key mediators of a DNA damage and inflammation response. Three major findings were shown in this study: 1) Protein corona formation on the surface of nano-TiO2 can impact the nano-bio interface and change cellular interaction. 2) Smaller agglomerates of nano-TiO2 are taken up more by cells without inducing cell cycle arrest, thereby allowing induced DNA damage to be processed into micronuclei in BEAS-2B cells. 3) Nano-TiO 2 in medium that facilitates increased cellular interaction induces the upregulation of the ATM-Chk2 DNA damage response (similar to ionizing radiation) and NF-kappaB inflammation pathways. Taken together, our research provides a systematic examination of the physicochemical properties, genotoxicity, and cellular responses induced by

  3. Deltamethrin-induced genotoxicity and testicular injury in rats: comparison with biopesticide.

    PubMed

    Ismail, Manal F; Mohamed, Hanaa M

    2012-10-01

    Deltamethrin is a synthetic pyrethroid insecticide used extensively in pest control. Aim of the current study was to investigate the ability of deltamethrin-based commercial formulation to induce genotoxicity and testicular injury in rats in comparison to the use of the biopesticide; Bacillus thuringiensis. Rats were divided into three groups: Group I (DEL) received deltamethrin, 5 mg/kgb.w./day orally, in corn oil. Group II (Biopesticide, B. thuringiensis) received oral suspension of the biopesticide at daily dose of 8400 mg/kgb.w./day. Group III (Control) received appropriate volume of corn oil. After 4 weeks, deltamethrin-treated rats showed decreased serum testosterone, luteinizing and follicle-stimulating hormone levels. Testicular total oxidant capacity (TOC), poly (ADP-ribose) polymerase (PARP), lactate dehydrogenase (LDH) and DNA damage were significantly increased. Significant increase in bone marrow chromosomal aberrations, induced by deltamethrin, including chromatid breaks, deletions, fragments and gaps was also observed. RT-PCR demonstrated significant up-regulation in testicular mRNA for glutathione-s-transferase and heat-shock protein-70 (HSP-70) whereas steroidogenic acute regulatory (StAR) mRNA was down-regulated after deltamethrin exposure. Oral administration of the biopesticide, under the condition of our study, was found to be safe when compared to the deleterious effect of deltamethrin in rats. PMID:22889898

  4. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    PubMed

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L

    2006-03-01

    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity. PMID:16447159

  5. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract.

    PubMed

    Sayed, Alaa El-Din H; Elbaghdady, Heba Allah M; Zahran, Eman

    2015-12-01

    Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5% + As at the same level of exposure), and SP2 (SP at 10% + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10% had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication. PMID:26573688

  6. Comparative efficacy of two microdoses of a potentized homoeopathic drug, Cadmium Sulphoricum, in reducing genotoxic effects produced by cadmium chloride in mice: a time course study

    PubMed Central

    Datta, Swapna S; Mallick, Palash P; Rahman Khuda-Bukhsh, Anisur AR

    2001-01-01

    Background Cadmium poisoning in the environment has assumed an alarming problem in recent years. Effective antimutagenic agents which can reverse or combat cadmium induced genotoxicity in mice have not yet been reported. Therefore, in the present study, following the homeopathic principle of "like cures like", we tested the efficacy of two potencies of a homeopathic drug, Cadmium Sulphoricum (Cad Sulph), in reducing the genotoxic effects of Cadmium chloride in mice. Another objective was to determine the relative efficacy of three administrative modes, i.e. pre-, post- and combined pre and post-feeding of the homeopathic drugs. For this, healthy mice, Mus musculus, were intraperitoneally injected with 0.008% solution of CdCl2 @ 1 ml/100 gm of body wt (i.e. 0.8 mcg/gm of bw), and assessed for the genotoxic effects through such studies as chromosome aberrations (CA), micronucleated erythrocytes (MNE), mitotic index (MI) and sperm head anomaly (SHA), keeping suitable succussed alcohol fed (positive) and CdCl2 untreated normal (negative) controls. The CdCl2 treated mice were divided into 3 subgroups, which were orally administered with the drug prior to, after and both prior to and after injection of CdCl2 at specific fixation intervals and their genotoxic effects were analyzed. Results While the CA, MNE and SHA were reduced in the drug fed series as compared to their respective controls, the MI showed an apparent increase. The combined pre- and post-feeding of Cad Sulph showed maximum reduction of the genotoxic effects. Conclusions Both Cad Sulph-30 and 200 were able to combat cadmium induced genotoxic effects in mice and that combined pre- and post-feeding mode of administration was found to be most effective in reducing the genotoxic effect of CdCl2 followed by the post-feeding mode. PMID:11737881

  7. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  8. Cyto/Genotoxic Effects of Pistacia atlantica Resin, a Traditional Gum.

    PubMed

    Rahbar Saadat, Yalda; Barzegari, Abolfazl; Zununi Vahed, Sepideh; Saeedi, Nazli; Eskandani, Morteza; Omidi, Yadollah; Barar, Jaleh

    2016-06-01

    In recent years, many researchers have focused on native plants to search for a new source of natural components with medical approach, especially by means of anticancer potential. One of these natural components is Saqez, the resin of Pistacia atlantica sub-kurdica with the local name of Baneh. It has been reported as an anticancer and apoptosis inducer component; therefore, in this research, we aimed to evaluate the solvated resin's possible cyto/genotoxic effects. The cell viability was assessed using MTT assay. Flow cytometry analysis was performed to distinguish the role of apoptosis and necrosis in cell toxicity, which was further confirmed by Comet and DNA ladder assay, and 4,6-diamidino2-phenylindole (DAPI) staining. Pistacia atlantica's resin decreased the growth of the treated cells in a dose- and time-dependent manner, and single-strand DNA breaks have been observed through comet assay. Moreover, morphological changes of DAPI-stained cells showed fragmentation in the nucleus of resin-treated cells. In addition, early and late apoptosis in the treated cells was determined by flow cytometry analysis, also DNA ladder assay showed fragmentation in DNA of the treated cells. This study has revealed that the resin has significant cyto/genotoxic effects on cancerous and noncancerous cell lines. Our results show that apoptosis and necrosis are the dominant mechanisms by which the resin affects cell lines. Although the resin of P. atlantica is the main source of mastic gum and has been used for a long time as a natural remedy for different diseases, it is necessary to perform thorough analysis due to its cyto/genotoxicity in vivo. PMID:27196631

  9. Beryllium Metal I. Experimental Results on Acute Oral Toxicity, Local Skin and Eye Effects, and Genotoxicity

    PubMed Central

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  10. New ventures in the genotoxic and cytotoxic effects of macrocyclic lactones, abamectin and ivermectin.

    PubMed

    Molinari, G; Soloneski, S; Larramendy, M L

    2010-01-01

    Abamectin and Ivermectin are 2 closely related members of the Avermectin family of 16-membered macrocyclic lactones derived from the actinomycete Streptomyces avermectinius which exhibit extraordinary anthelmintic activity. They are used worldwide in veterinary and human medicine as well as in agriculture. In the present review we summarized the results published so far for estimating the genotoxicity and cytotoxicity exerted by both compounds in several cellular systems. Although both compounds do not induce in vitro and in vivo gene mutations in either bacterial or mammalian cells, there is no concrete evidence of a clear clastogenic effect exerted both in vitro and in vivo in mammalian cells. However, reports indicating that both anthelmintic agents are able to induce single DNA-strand breaks in vitro and inhibit cell growth either in vitro or in in vivo bioassays, are scarce. Taking into account the similarity of the genotoxicity and cytotoxicity exerted by both antibiotics, and that only Abamectin has been classified so far as a class II toxicity pesticide by the EPA, the necessity of reconsideration for a further hazard evaluation of Ivermectin by an international regulatory agency(ies) is strongly recommended. PMID:20389039

  11. Effect of dietary meat and fish on endogenous nitrosation, inflammation and genotoxicity of faecal water.

    PubMed

    Joosen, Annemiek M C P; Lecommandeur, Emmanuelle; Kuhnle, Gunter G C; Aspinall, Sue M; Kap, Lisanne; Rodwell, Sheila A

    2010-05-01

    N-3 polyunsaturated fatty acids have been associated with reduced colon tumorigenesis. However, their association with colorectal cancer incidence is not conclusive. We investigated the influence of isocaloric replacement of red meat with fatty fish on endogenous nitrosation, inflammation and genotoxicity of faecal water in apparently healthy human volunteers on controlled diets. Fourteen volunteers consumed a high red meat, a combined red meat/fish and a high fish diet for 8 days each. Faecal homogenates were analysed for haem, nitroso compounds (NOC) and calprotectin and associated supernatants for genotoxicity. Both faecal NOC and haem excretion decreased with more fish and less meat in the diet. Nitrosyl iron (FeNO) was the main contributor to total NOC on all diets. The proportion of other NOC increased with more fish and less meat in the diet (P = 0.01), resulting in a non-statistically significant decrease in the proportion of FeNO on the fish diet. There was no statistically significant difference in faecal calprotectin (P = 0.54) and faecal water-induced DNA strand breaks and oxidized purines and pyrimidines between the diets (P > 0.36). Increasing fish intake and reducing the intake of red meat does not seem to have an effect on inflammation and faecal water-induced (oxidative) DNA damage; however, it does reduce the formation of mutagenic and potentially carcinogenic NOC and may as such beneficially affect colorectal risk. PMID:20106932

  12. Cytotoxic, Genotoxic, and Neurotoxic Effects of Mg, Pb, and Fe on Pheochromocytoma (PC-12) Cells

    PubMed Central

    Sanders, Talia; Liu, Yi-Ming; Tchounwou, Paul B.

    2014-01-01

    Metals such as lead (Pb), magnesium (Mg), and iron (Fe) are ubiquitous in the environment as a result of natural occurrence and anthropogenic activities. Although Mg, Fe and others are considered essential elements, high level of exposure has been associated with severe adverse health effects including cardiovascular, hematological, nephrotoxic, hepatotoxic, and neurologic abnormalities in humans. In the present study we hypothesized that Mg, Pb, and Fe are cytotoxic, genotoxic and neurotoxic, and their toxicity is mediated through oxidative stress and alteration in protein expression. To test the hypothesis, we used the pheochromocytoma (PC-12) cell line as a neuro cell model and performed the LDH assay for cell viability, Comet assay for DNA damage, Western blot for oxidative stress, and HPLC-MS to assess the concentration levels of neurological biomarkers such as glutamate, dopamine (DA), and 3-methoxytyramine (3-MT). The results of this study clearly show that Mg, Pb, and Fe, respectively in the form of MgSO4, Pb(NO3)2, FeCl2, and FeCl3 induce cytotoxicity, oxidative stress, and genotoxicity in PC-12 cells. In addition, exposure to these metallic compounds caused significant changes in the concentration levels of glutamate, dopamine, and 3-MT in PC-12 cells. Taken together the findings suggest that MgSO4, Pb(NO3)2, FeCl2, and FeCl3 have the potential to induce substantial toxicity to PC-12 cells. PMID:24942330

  13. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    PubMed

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p<0.05). However, no statistical differences were found in the frequencies of MN and NAs in any group exposed to RU compared to the NC. No statistically significant differences were found in the size of the lizards at birth or after six months post-exposure (p>0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application

  14. Chemopreventive effect of cactus Opuntia ficus indica on oxidative stress and genotoxicity of aflatoxin B1

    PubMed Central

    2011-01-01

    Background Aflatoxin B1 (AFB1) is potent hepatotoxic and hepatocarcinogenic agent. In aflatoxicosis, oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage. The aim of this work was to evaluate the hepatoprotective effect of cactus cladode extract (CCE) on aflatoxin B1-induced liver damage in mice by measuring malondialdehyde (MDA) level, the protein carbonyls generation and the heat shock proteins Hsp 70 and Hsp 27 expressions in liver. We also looked for an eventual protective effect against AFB1-induced genotoxicity as determined by chromosome aberrations test, SOS Chromotest and DNA fragmentation assay. We further evaluated the modulation of p53, bax and bcl2 protein expressions in liver. Methods Adult, healthy balbC (20-25 g) male mice were pre-treated by intraperitonial administration of CCE (50 mg/Kg.b.w) for 2 weeks. Control animals were treated 3 days a week for 4 weeks by intraperitonial administration of 250 μg/Kg.b.w AFB1. Animals treated by AFB1 and CCE were divided into two groups: the first group was administrated CCE 2 hours before each treatment with AFB1 3 days a week for 4 weeks. The second group was administrated without pre-treatment with CCE but this extract was administrated 24 hours after each treatment with AFB1 3 days a week for 4 weeks. Results Our results clearly showed that AFB1 induced significant alterations in oxidative stress markers. In addition, it has a genotoxic potential and it increased the expression of pro apoptotic proteins p53 and bax and decreased the expression of bcl2. The treatment of CCE before or after treatment with AFB1, showed (i) a total reduction of AFB1 induced oxidative damage markers, (ii) an anti-genotoxic effect resulting in an efficient prevention of chromosomal aberrations and DNA fragmentation compared to the group treated with AFB1 alone (iii) restriction of the effect of AFB1 by differential modulation of the expression of p53 which decreased as well as its

  15. Chromium oxide nanoparticle-induced genotoxicity and p53-dependent apoptosis in human lung alveolar cells.

    PubMed

    Senapati, Violet Aileen; Jain, Abhishek Kumar; Gupta, Govind Sharan; Pandey, Alok Kumar; Dhawan, Alok

    2015-10-01

    Chromium oxide (Cr2 O3 ) nanoparticles (NPs) are being increasingly used as a catalyst for aromatic compound manufacture, abrading agents and as pigments (e.g., Viridian). Owing to increased applications, it is important to study the biological effects of Cr2 O3 NPs on human health. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and apoptotic effect of Cr2 O3 NPs in human lung epithelial cells (A549). The study also elucidated the molecular mechanism of its toxicity. Cr2 O3 NPs led to DNA damage, which was deduced by comet assay and cytokinesis block micronucleus assay. The damage could be mediated by the increased levels of reactive oxygen species. Further, the oxygen species led to a decrease in mitochondrial membrane potential and an increase in the ratio of BAX/Bcl-2 leading to mitochondria-mediated apoptosis induced by Cr2 O3 NPs, which ultimately leads to cell death. Hence, there is a need of regulations to be imposed in NP usage. The study provided insight into the caspase-dependent mechanistic pathway of apoptosis. PMID:26086747

  16. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    PubMed

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p < 0.01). Allium sativum extract normalized significantly (p < 0.01) the mentioned parameters in deltamethrin-treated rats. For genotoxic evaluation, deltamethrin treatment showed a significant increase in frequencies of micronucleus in bone-marrow cells. Micronucleus formation is an indicator of chromosomal damage which has been increasingly used to detect the genotoxic potential of environmental pests. The present study showed that Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide. PMID:26974685

  17. Genotoxic effects of acrylamide and glycidamide in mouse lymphoma cells.

    PubMed

    Mei, Nan; Hu, Jiaxiang; Churchwell, Mona I; Guo, Lei; Moore, Martha M; Doerge, Daniel R; Chen, Tao

    2008-02-01

    In addition to occupational exposures to acrylamide (AA), concerns about AA health risks for the general population have been recently raised due to the finding of AA in food. In this study, we evaluated the genotoxicity of AA and its metabolite glycidamide (GA) in L5178Y/Tk(+/-) mouse lymphoma cells. The cells were treated with 2-18 mM of AA or 0.125-4 mM of GA for 4 h without metabolic activation. The DNA adducts, mutant frequencies and the types of mutations for the treated cells were examined. Within the dose range tested, GA induced DNA adducts of adenine and guanine [N3-(2-carbamoyl-2-hydroxyethyl)-adenine and N7-(2-carbamoyl-2-hydroxyethyl)-guanine] in a linear dose-dependent manner. The levels of guanine adducts were consistently about 60-fold higher across the dose range than those of adenine. In contrast, no GA-derived DNA adducts were found in the cells treated with any concentrations of AA, consistent with a lack of metabolic conversion of AA to GA. However, the mutant frequency was significantly increased by AA at concentrations of 12 mM and higher. GA was mutagenic starting with the 2mM dose, suggesting that GA is much more mutagenic than AA. The mutant frequencies were increased with increasing concentrations of AA and GA, mainly due to an increase of proportion of small colony mutants. To elucidate the underlying mutagenic mechanism, we examined the loss of heterozygosity (LOH) at four microsatellite loci spanning the entire chromosome 11 for mutants induced by AA or GA. Compared to GA induced mutations, AA induced more mutants whose LOH extended to D11Mit22 and D11Mit74, an alteration of DNA larger than half of the chromosome. Statistical analysis of the mutational spectra revealed a significant difference between the types of mutations induced by AA and GA treatments (P=0.018). These results suggest that although both AA and GA generate mutations through a clastogenic mode of action in mouse lymphoma cells, GA induces mutations via a DNA adduct

  18. Reduction of chrysotile asbestos-induced genotoxicity in human peripheral blood lymphocytes by garlic extract.

    PubMed

    Bhattacharya, Kunal; Yadava, Santosh; Papp, Thilo; Schiffmann, Dietmar; Rahman, Qamar

    2004-11-28

    Asbestos fibers are well known environmental carcinogen, however, the underlying mechanisms of their action have still not clearly been identified. Asbestos is capable of depleting glutathione and generating reactive oxygen species (ROS), which are important mediators of damage in biological system. Asbestos-induced mutagenecity, may be mediated by the generation. It is known that a number of scavengers and antioxidants attenuate asbestos-induced ROS release. Furthermore, it is known that garlic, contains numerous sulfur compounds and glutathione precursors which act as antioxidants and also demonstrate anticarcinogenic properties. The aim of this study was to investigate whether garlic extract has any influence on asbestos-mediated genotoxicity. As an assay system, we applied the micronucleus assay, sister chromatid exchanges, and chromosomal aberrations with human peripheral blood lymphocytes, which has already been used to analyze the genotoxicity of asbestos fibers. Our results indicate that garlic extract, when administered to the lymphocytes cell culture simultaneously with chrysotile reduced the rates of micronucleus formation, sister chromatid exchanges, and chromosomal aberrations significantly. We conclude that garlic extract may be an efficient, physiologically tolerable quencher of asbestos-mediated genotoxicity. PMID:15454308

  19. Antigenotoxic effect of green-synthesised silver nanoparticles from Ocimum sanctum leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes—in vitro

    NASA Astrophysics Data System (ADS)

    Vijaya, P. P.; Rekha, B.; Mathew, Anu Thersa; Syed Ali, M.; Yogananth, N.; Anuradha, V.; Kalitha Parveen, P.

    2014-04-01

    The present study was aimed to identify the antigenotoxic effect of bio-synthesised silver nanoparticles (SNP) of Ocimum sanctum leaf extract against cyclophosphamide (CP). We tested the antigenotoxic effect of bio-synthesized silver nanoparticles of O. sanctum leaf extract on human lymphocytes against CP by using chromosomal aberration assay (CAA). Silver nanoparticles was first synthesized from fresh leaf extract of O. sanctum and characterised. Their quality was checked by XRD technique and morphology by SEM. Three different doses of the bio-synthesised SNPs namely, 50, 100 and 200 μl/ml were selected and CP (100 μg/ml) was used as a positive control for CAA. CP administration to human lymphocytes culture caused reduction in mitotic index (MI) and increase in chromosomal damages. The three doses (50, 100 and 200 μl/ml) significantly ( P < 0.005) reduced the chromosomal damages by CP and there was increase in MI. The biological way of synthesising SNPs has advantages like cost effectiveness and eco-friendly. Also the bio-synthesised SNPs of O. sanctum leaf extract was found to be an powerful genoprotectant. Furthermore works are to be carried out in future to find the extract mechanism of its genoprotective nature.

  20. Suppressive effect of post- or pre-treatment of aspirin metabolite on mitomycin C-induced genotoxicity using the somatic mutation and recombination test in Drosophila melanogaster.

    PubMed

    Niikawa, Miki; Shin, Seizai; Nagase, Hisamitsu

    2007-01-01

    In our previous paper, we found that aspirin suppressed in a somatic mutation and recombination test (SMART) of mitomycin C (MMC) in Drosophila melanogaster. In order to reveal the mechanism of bio-antimutagenicity and/or preventive effect of aspirin, we evaluated the suppressive ability of each aspirin metabolite, such as salicylic acid (SA), salicyluric acid (SUA), gentisic acid (GA), gentisuric acid (GUA) and 2,3-dihydroxybenzoic acid (DHBA), in SMART in D. melanogaster using post- and pre-treatments. As for the post-treatment, SA reduced the numbers of large single and twin spots. GA reduced the small single and large single spots, and GUA reduced the single spots, large single and twin spots. The inhibition of GUA is slightly stronger than that of any other metabolites; the inhibition percentage is 49 at the dose of 5 mg/bottle. On the other hand, as for the pre-treatment, aspirin, SUA, GA and DHBA reduced the numbers of small single spots. SUA, GE and DHBA reduced the number of large single spots. Aspirin and its metabolites did not reduce the number of twin spots. The results of the present study suggest that SA, GA and GUA repair or replicate DNA-damage by MMC and SUA, GA, GUA and DHBA prevent DNA-damage by MMC. It is suggested that secondary cancer is prevented by aspirin post-treatment without losing the medicinal effectiveness (anti-tumor activity). Therefore, we consider there are effective doses and/or administration timing of aspirin and MMC to prevent secondary cancer. PMID:17275250

  1. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News

    PubMed Central

    Calderón-Segura, María Elena; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Martínez-Valenzuela, Carmen; Carbajal-López, Yolanda; Calderón-Ezquerro, María del Carmen; Cortés-Eslava, Josefina; García-Martínez, Rocío; Flores-Ramírez, Diana; Rodríguez-Romero, María Isabel; Méndez-Pérez, Patricia; Bañuelos-Ruíz, Enrique

    2012-01-01

    Calypso (thiacloprid), Poncho (clothianidin), Gaucho (imidacloprid), and Jade (imidacloprid) are commercial neonicotinoid insecticides, a new class of agrochemicals in México. However, genotoxic and cytotoxic studies have not been performed. In the present study, human peripheral blood lymphocytes (PBL) were exposed in vitro to different concentrations of the four insecticides. The genotoxic and cytotoxic effects were evaluated using the alkaline comet and trypan blue dye exclusion assays. DNA damage was evaluated using two genotoxicity parameters: tail length and comet frequency. Exposure to 9.5 × 10−6 to 5.7 × 10−5 M Jade; 2.8 × 10−4 to 1.7 × 10−3 M Gaucho; 0.6 × 10−1 to 1.4 × 10−1 M Calypso; 1.2 × 10−1 to 9.5 × 10−1 M Poncho for 2 h induced a significant increase DNA damage with a concentration-dependent relationship. Jade was the most genotoxic of the four insecticides studied. Cytotoxicity was observed in cells exposed to 18 × 10−3 M Jade, 2.0 × 10−3 M Gaucho, 2.0 × 10−1 M Calypso, 1.07 M Poncho, and cell death occurred at 30 × 10−3 M Jade, 3.3 × 10−3 M Gaucho, 2.8 × 10−1 M Calypso, and 1.42 M Poncho. This study provides the first report of genotoxic and cytotoxic effects in PBL following in vitro exposure to commercial neonicotinoid insecticides. PMID:22545045

  2. Genotoxicity of neutrons in Drosophila melanogaster. Somatic mutation and recombination induced by reactor neutrons.

    PubMed

    Guzmán-Rincón, J; Delfín-Loya, A; Ureña-Núñez, F; Paredes, L C; Zambrano-Achirica, F; Graf, U

    2005-08-01

    This paper describes the observation of a direct relationship between the absorbed doses of neutrons and the frequencies of somatic mutation and recombination using the wing somatic mutation and recombination test (SMART) of Drosophila melanogaster. This test was used for evaluating the biological effects induced by neutrons from the Triga Mark III reactor of Mexico. Two different reactor power levels were used, 300 and 1000 kW, and two absorbed doses were tested for each power level: 1.6 and 3.2 Gy for 300 kW and 0.84 and 1.7 Gy for 1000 kW. A linear relationship was observed between the absorbed dose and the somatic mutation and recombination frequencies. Furthermore, these frequencies were dependent on larval age: In 96-h-old larvae, the frequencies were increased considerably but the sizes of the spots were smaller than in 72-h-old larvae. The analysis of the balancer-heterozygous progeny showed a linear absorbed dose- response relationship, although the responses were clearly lower than found in the marker-trans-heterozygous flies. Approximately 65% of the genotoxicity observed is due to recombinational events. The results of the study indicate that thermal and fast neutrons are both mutagenic and recombinagenic in the D. melanogaster wing SMART, and that the frequencies are dependent on neutron dose, reactor power, and the age of the treated larvae. PMID:16038586

  3. Multi-Walled Carbon Nanotubes Induce Cytotoxicity, Genotoxicity And Apoptosis In Normal Human Dermal Fibroblast Cells

    PubMed Central

    Knighten, Brionna; Tchounwou, Paul

    2010-01-01

    Multi walled carbon nanotubes [MWCNT's] have won enormous popularity in nanotechnology. Due to their unusual one dimensional, hollow nanostructure and unique physicochemical properties they are highly desirable for use within the commercial, environmental and medical sectors. Despite their wide application, there is a lack of information concerning their impact on human health and the environment. While nanotechnology looms large with commercial promise and potential benefit, an equally large issue is the evaluation of potential effects on humans and other biological systems. Our research is focused on cellular response to purified MWCNT in normal human dermal fibroblast cells (NHDF). Three doses (40, 200, 400 μg/ml) of MWCNT and control (tween-80 + 0.9% saline) were used in this study. Following exposure to MWCNT, cytotoxicity, genotoxicity and apoptosis assays were performed using standard protocols. Our results demonstrated a dose-dependent toxicity with MWCNT. It was found to be toxic and induced massive loss of cell viability through DNA damage and programmed cell-death of all doses compared to control. Our results demonstrate that carbon nanotubes indeed can be very toxic at sufficiently high concentrations and that careful monitoring of toxicity studies is essential for risk assessment. PMID:20521388

  4. Genotoxicity Effects in Freshwater Fish from a Brazilian Impacted River.

    PubMed

    de Jesus, Isac Silva; Cestari, Marta Margarete; Bezerra, Marcos de Almeida; Affonso, Paulo Roberto Antunes de Mello

    2016-04-01

    This study evaluated the incidence of nuclear abnormalities (NA) in four fish species from an impacted river in Northeastern Brazil, characterized by accumulation of heavy metals and organic sewage. Two carnivores (Serrasalmus brandtii and Hoplias malabaricus) and two omnivore species (Oreochromis niloticus and Geophagus brasiliensis), used as food sources by local populations, were collected during the dry and the rainy season along Contas River basin. Nuclear abnormalities (bulbs, binuclei, lobes, micronuclei, notches, and vacuoles) were reported in all fish samples, with high occurrence in S. brandtii and H. malabaricus, species commonly found in local fish markets. This result agrees with previous analyses of accumulation of trace metals in both species, suggesting an association of genotoxic effects and biomagnification. Moreover, native specimens collected near urban areas presented higher frequencies of NA while O. niloticus seems to be more tolerant to environmental contamination. Therefore, effective policies are required to reduce the contamination of Contas River, since pollution by xenobiotics are potential threats to both local biodiversity and human population. PMID:26894492

  5. Studies of the potential genotoxic effects of furoxans: the case of CAS 1609 and of the water-soluble analogue of CHF 2363.

    PubMed

    Balbo, S; Lazzarato, L; Di Stilo, A; Fruttero, R; Lombaert, N; Kirsch-Volders, M

    2008-04-21

    CAS 1609 (compound 1) and CHF 2363 (compound 2) are two furoxan derivatives able to release nitric oxide (NO) under physiological conditions, and display typical NO-dependent vasodilator activity. The potential genotoxic effects of compound 1 and of the water-soluble analogue of CHF 2363 (compound 2a) were investigated. The results show that the two compounds induce genotoxic effects only at concentrations that significantly reduce cell viability. However, in the case of compound 1 this range of concentrations is one order of magnitude higher than the one leading to the beneficial effects, while in the case of compound 2a these ranges partially overlap. In both cases the release of NO plays a key role in the induction of the cytotoxic and genotoxic effects, since the non-NO-donating furazan analogues display a different toxicological profile, and since the effects were reduced in the presence of oxyhaemoglobin, a well-known NO-scavenger. PMID:18378101

  6. Cytotoxic and genotoxic effects of beta-carotene breakdown products on primary rat hepatocytes.

    PubMed

    Alija, A J; Bresgen, N; Sommerburg, O; Siems, W; Eckl, P M

    2004-05-01

    According to Siems and colleagues, free radical attack on beta-carotene results in the formation of high amounts of cleavage products with prooxidant activities towards subcellular organelles such as mitochondria. This finding may be an explanation for the contradictory results obtained with beta-carotene in clinical efficacy and cancer prevention trials. Since primary hepatocytes proved to be very sensitive indicators of the genotoxic action of suspect mutagens/carcinogens we therefore investigated a beta-carotene cleavage products mixture (CP), apo8'- carotenal (apo8') and beta-carotene utilizing primary cultures of rat hepatocytes. The end-points tested were: the mitotic index, the percentage of necrotic and apoptotic cells, micronucleated cells, chromosomal aberrations and sister chromatid exchanges (SCE). Our results indicate a genotoxic potential of both CP and apo8' already at the concentrations 100 nM and 1 microM, i.e. at pathophysiologically relevant levels of beta-carotene and beta-carotene breakdown products. A 3 h treatment with CP induced statistically significant levels of micronuclei at concentrations of 0.1, 1 and 10 microM and chromosomal aberrations at concentrations of 1, 5 and 10 microM. Apo8' induced statistically significant levels of micronuclei at concentrations of 0.1, 1 and 5 microM and chromosomal aberrations at concentrations of 0.1, 1 and 10 microM. Statistically significant increases in SCE induction were only observed at a concentration of 10 microM CP and apo8'. In contrast, no significant cytotoxic effects of these substances were observed. Since beta-carotene induced neither significant cytotoxic nor genotoxic effects at concentrations ranging from 0.01 up to 10 microM, these observations indicate that most likely beta-carotene breakdown products are responsible for the occurrence of carcinogenic effects found in the Alpha-Tocopherol Beta-Carotene Cancer Prevention (ATBC) Study and the Beta-CArotene and RETinol Efficacy Trial

  7. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.

    PubMed

    Ghosh, Manosij; Bhadra, Sreetama; Adegoke, Aremu; Bandyopadhyay, Maumita; Mukherjee, Anita

    2015-04-01

    Advances in nanotechnology have led to the large-scale production of nanoparticles, which, in turn, increases the chances of environmental exposure. While humans (consumers/workers) are primarily at risk of being exposed to the adverse effect of nanoparticles, the effect on plants and other components of the environment cannot be ignored. The present work investigates the cytotoxic, genotoxic, and epigenetic (DNA methylation) effect of MWCNT on the plant system- Allium cepa. MWCNT uptake in root cells significantly altered cellular morphology. Membrane integrity and mitochondrial function were also compromised. The nanotubes induced significant DNA damage, micronucleus formation and chromosome aberration. DNA laddering assay revealed the formation of internucleosomal fragments, which is indicative of apoptotic cell death. This finding was confirmed by an accumulation of cells in the sub-G0 phase of the cell cycle. An increase in CpG methylation was observed using the isoschizomers MspI/HpaII. HPLC analysis of DNA samples revealed a significant increase in the levels of 5-methyl-deoxy-cytidine (5mdC). These results confirm the cyto-genotoxic effect of MWCNT in the plant system and simultaneously highlight the importance of this epigenetic study in nanoparticle toxicity. PMID:25829105

  8. Role of quercetin on mitomycin C induced genotoxicity: analysis of micronucleus and chromosome aberrations in vivo.

    PubMed

    Mazumdar, Mehnaz; Giri, Sarbani; Giri, Anirudha

    2011-04-01

    Quercetin, a flavonol group of plant flavonoid, has generated immense interest because of its potential antioxidant, anti-proliferative, chemoprotective, anti-inflammatory and gene expression modulating properties. However, the pro-oxidant chemistry of quercetin is important as it is related to the generation of mutagenic quinone-type metabolites. In the present study, 25mg/kg, 50mg/kg and 100mg/kg of quercetin given through the intra peritoneal (i.p.) route induced 2.31 ± 0.27%, 4.72 ± 0.58% and 6.38 ± 0.68% (control value=0.67 ± 0.30%) respectively, of cells with micronucleus (MN) in polychromatic erythrocytes in bone marrow cells and 10.93 ± 0.98%, 10.00 ± 0.89% and 14.27 ± 3.94% (control 2.61 ± 0.48) of cells with chromosome aberrations (CA) following 24h of the treatments. Higher frequencies of MN and CA were also observed after 48h of the treatments. To verify the effect of route of treatment on the quercetin induced damage, 100mg/kg b.w. was given through oral route which declined frequency of MN (P<0.001) as well as CA (P<0.05) as compared to the i.p. route for the same dose. Quercetin also induced higher frequency of metaphases with sticky chromosomes and C-mitosis. Pre-treatment with quercetin significantly reduced the frequency of mitomycin C (MMC) induced MN as well as CA, but no clear correlation between the dose and effect could be observed. Further studies are required to elucidate the possible interaction of quercetin with DNA as well as with other DNA damaging agents like MMC in vivo. The protective action of quercetin was not enhanced when given orally. Our findings suggest that quercetin may result in genomic instability in the tested dose range and significant reduction in MMC induced genotoxicity in the highest dose tested. These effects of quercetin are to be taken into consideration while evaluating the possible use of quercetin as a therapeutic agent. PMID:21256974

  9. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells).

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Soo Yeun; Chung, Kyu Hyuck

    2011-08-16

    Traffic is a major source of particulate matter (PM), and ultrafine particulates and traffic intensity probably contribute significantly to PM-related health effects. As a strong relationship between air pollution and motor vehicle-originated pollutants has been shown to exist, air pollution genotoxicity studies of urban cities are steadily increasing. In Korea, the death rate caused by lung cancer is the most rapidly increased cancer death rate in the past 10 years. In this study, genotoxicity of PM2.5 (<2.5μm in aerodynamic diameter particles) collected from the traffic area in Suwon City, Korea, was studied using cultured human lung bronchial epithelial cells (BEAS-2B) as a model system for the potential inhalation health effects. Organic extract of PM2.5 (CE) generated significant DNA breakage and micronucleus formation in a dose-dependent manner (1μg/cm(3)-50μg/cm(3)). In the acid-base-neutral fractionation of PM2.5, neutral samples including the aliphatic (F3), aromatic (F4) and slightly polar (F5) fractions generated significant DNA breakage and micronucleus formation. These genotoxic effects were significantly blocked by scavenging agents [superoxide dismutase (SOD), sodium selenite (SS), mannitol (M), catalase (CAT)]. In addition, in the modified Comet assay using endonucleases (FPG and ENDOIII), CE and its fractions (F3, F4, and F5) increased DNA breakage compared with control groups, indicating that CE and fractions of PM2.5 induced oxidative DNA damage. These results clearly suggest that PM2.5 collected in the Suwon traffic area has genotoxic effects and that reactive oxygen species may play a distinct role in these effects. In addition, aliphatic/chlorinated hydrocarbons, PAH/alkylderivatives, and nitro-PAH/ketones/quinones may be important causative agents of the genotoxic effects. PMID:21524716

  10. Nitroxide TEMPO: a genotoxic and oxidative stress inducer in cultured cells.

    PubMed

    Guo, Xiaoqing; Mittelstaedt, Roberta A; Guo, Lei; Shaddock, Joseph G; Heflich, Robert H; Bigger, Anita H; Moore, Martha M; Mei, Nan

    2013-08-01

    2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) is a low molecular weight nitroxide and stable free radical. In this study, we investigated the cytotoxicity and genotoxicity of TEMPO in mammalian cells using the mouse lymphoma assay (MLA) and in vitro micronucleus assay. In the absence of metabolic activation (S9), 3mM TEMPO produced significant cytotoxicity and marginal mutagenicity in the MLA; in the presence of S9, treatment of mouse lymphoma cells with 1-2mM TEMPO resulted in dose-dependent decreases of the relative total growth and increases in mutant frequency. Treatment of TK6 human lymphoblastoid cells with 0.9-2.3mM TEMPO increased the frequency of both micronuclei (a marker for clastogenicity) and hypodiploid nuclei (a marker of aneugenicity) in a dose-dependent manner; greater responses were produced in the presence of S9. Within the dose range tested, TEMPO induced reactive oxygen species and decreased glutathione levels in mouse lymphoma cells. In addition, the majority of TEMPO-induced mutants had loss of heterozygosity at the Tk locus, with allele loss of ⩽34Mbp. These results indicate that TEMPO is mutagenic in the MLA and induces micronuclei and hypodiploid nuclei in TK6 cells. Oxidative stress may account for part of the genotoxicity induced by TEMPO in both cell lines. PMID:23517621

  11. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss.

    PubMed

    Rodrigues, S; Antunes, S C; Correia, A T; Nunes, B

    2016-03-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  12. Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster.

    PubMed

    Carmona, Erico R; Creus, Amadeu; Marcos, R

    2011-01-10

    In view of the scarcely available information on the in vivo mutagenic and co-mutagenic activity of nickel, the genotoxic potential of two nickel-compounds, nickel chloride (NiCl(2)) and nickel sulphate (NiSO(4)), was assessed in Drosophila melanogaster by measuring two different genetic endpoints. On the one hand, we used the wing-spot assay, which is based on the principle that the loss of heterozygosity of two suitable recessive markers, multiple wing hairs (mwh) and flare-3 (flr(3)), can lead to the formation of mutant clones in the imaginal disks of larval cells. On the other hand, the in vivo comet assay, which detects single- and double-strand DNA breaks, was also used with larval haemocytes. These cells offer several advantages: they are highly sensitive to genotoxic agents, the sampling and processing methodologies are quite simple and the level of basal DNA damage is relatively low. No significant increases in the frequencies of the three categories of mutant spots (i.e. small single spots, large single spots, and twin spots) were observed in the wing-spot assay; however, NiSO(4) induced significant dose-dependent increases in DNA damage in the comet assay. In addition, the combined treatments with gamma-radiation and NiCl(2) and NiSO(4) showed a slight but significant increase in the frequency of the three categories of mutant spots compared with the frequency induced by gamma-radiation alone, indicating that both nickel compounds have a synergistic interaction. These results support the assumption that both nickel compounds could act as co-mutagens interfering with DNA-repair processes and that the in vivo comet assay is a sensitive and effective method for detecting the DNA damage induced by NiSO(4) in haemocytes of D. melanogaster. PMID:21073980

  13. In vitro genotoxic effects of different combinations of cobalt and metallic carbide particles.

    PubMed

    De Boeck, Marlies; Lombaert, Noömi; De Backer, Sofie; Finsy, Robert; Lison, Dominique; Kirsch-Volders, Micheline

    2003-03-01

    Occupational exposure to hard metal dust, consisting of tungsten carbide (WC) and metallic cobalt particles (Co), is associated with an increased risk of lung cancer, while no increased risk was observed in workers exposed to Co alone. In vitro, in human peripheral blood mononucleated cells (PBMC), we previously demonstrated that WC-Co is more genotoxic than Co and WC alone. A possible mechanism underlying this higher genotoxicity is a specific physicochemical interaction between Co and WC particles leading to the enhanced short-term formation of active oxygen species. The aim of this study was to evaluate the in vitro genotoxicity of other combinations of Co with metal carbide particles in comparison with WC-Co. The ability of Cr(3)C(2), Mo(2)C and NbC and of their powder mixtures with Co to induce DNA strand breaks and alkali-labile sites was assessed by the alkaline Comet assay and their potential to induce chromosome(/genome) mutations by the cytokinesis-block micronucleus test on human PBMC from two donors. PBMC were treated in vitro for 15 min, 24 h after the onset of PHA stimulation. In the micronucleus test, while the metal carbides alone did not increase the micronucleus frequency, Co alone and the four tested carbide-Co mixtures induced a statistically significant concentration-dependent increase in micronucleated binucleates. In addition to WC, NbC and Cr(3)C(2) particles were able to interact with Co, producing a higher mutagenic effect than the individual metal particles. Mo(2)C particles did not display interactive mutagenicity with Co in the micronucleus test, possibly related to their small specific surface area, compactness and/or spherical shape. With the Comet assay, applied directly at the end of the treatment, less clear results, due to inter-experimental and inter-donor variation, were obtained. These data indicate that particular interaction of a metal carbide with Co leading to enhanced mutagenicity is not specific for WC. PMID:12621074

  14. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation.

    PubMed

    Shahid, M; Pinelli, E; Pourrut, B; Silvestre, J; Dumat, C

    2011-01-01

    Formation of organometallic complexes in soil solution strongly influence metals phytoavailability. However, only few studies deal with the influence of metal speciation both on plant uptake and genotoxicity. In the present study, Vicia faba seedlings were exposed for 6h in controlled hydroponic conditions to 5 μM of lead nitrate alone and chelated to varying degrees by different organic ligands. Ethylenediaminetetraacetic acid and citric acid were, respectively, chosen as models of humic substances and low weight organic acids present in natural soil solutions. Visual Minteq software was used to estimate free lead cations concentration and ultimately to design the experimental layout. For all experimental conditions, both micronucleus test and measure of lead uptake by plants were finally performed. Chelation of Pb by EDTA, a strong chelator, dose-dependently increased the uptake in V. faba roots while its genotoxicity was significantly reduced, suggesting a protective role of EDTA. A weak correlation was observed between total lead concentration absorbed by roots and genotoxicity (r(2)=0.65). In contrast, a strong relationship (r(2)=0.93) exists between Pb(2+) concentration in exposure media and genotoxicity in the experiment performed with EDTA. Citric acid induced labile organometallic complexes did not demonstrate any significant changes in lead genotoxicity or uptake. These results demonstrate that metal speciation knowledge could improve the interpretation of V. faba genotoxicity test performed to test soil quality. PMID:20851467

  15. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    SciTech Connect

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  16. Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests.

    PubMed

    Lin, Dasong; Xie, Xiujie; Zhou, Qixing; Liu, Yao

    2012-07-01

    Triclosan (TCS) is a broad-spectrum bactericide that is used for a variety of antimicrobial functions. TCS is frequently detected in the terrestrial environment due to application of sewage sludge to agricultural land. In the present study, 48-h paper contact and 28-day spiked soil tests were conducted to examine the toxic effects of TCS on the antioxidative and genetic indices of earthworms (Eisenia fetida). The activity of antioxidative enzymes (superoxide dismutase, SOD; catalase, CAT) and the content of the lipid peroxidation product (malondialdehyde, MDA) were determined as biomarkers of oxidative stress in E. fetida. Moreover, single cell gel electrophoresis (SCGE) was used as a biomarker of genotoxicity. The results showed that triclosan induced a significant increase (P < 0.05) in antioxidative enzyme activities and MDA content. Of all of the biomarkers examined, CAT activity was most sensitive to TCS, and the CAT activity increased significantly (P < 0.05) at bactericidal concentrations of 7.86 ng cm⁻² in the contact test and 10 mg kg⁻¹ in the spiked soil test. The comet assay showed that TCS treatments significantly induced (P < 0.05) DNA damage in E. fetida, and that 78.6 ng cm⁻² caused significant genotoxic effects in the acute test (48 h). Clear dose-dependent DNA damage to E. fetida was observed both in contact and spiked soil tests. These results imply that TCS may have potential biochemical and genetic toxicity toward earthworms (E. fetida). A battery of biomarkers covering multiple molecular targets of acute toxicity can be combined to better understand the impacts of TCS on E. fetida. PMID:22707219

  17. Systematic Protein Level Regulation via Degradation Machinery Induced by Genotoxic Drugs.

    PubMed

    Kume, Kohei; Ishida, Kazushige; Ikeda, Miyuki; Takemoto, Kazuhiro; Shimura, Tsutomu; Young, Lynn; Nishizuka, Satoshi S

    2016-01-01

    In this study we monitored protein dynamics in response to cisplatin, 5-fluorouracil, and irinotecan with different concentrations and administration modes using "reverse-phase" protein arrays (RPPAs) in order to gain comprehensive insight into the protein dynamics induced by genotoxic drugs. Among 666 protein time-courses, 38% exhibited an increasing trend, 32% exhibited a steady decrease, and 30% fluctuated within 24 h after drug exposure. We analyzed almost 12,000 time-course pairs of protein levels based on the geometrical similarity by correlation distance (dCor). Twenty-two percent of the pairs showed dCor > 0.8, which indicates that each protein of the pair had similar dynamics. These trends were disrupted by a proteasome inhibitor, MG132, suggesting that the protein degradation system was activated in response to the drugs. Among the pairs with high dCor, the average dCor of pairs with apoptosis-related protein was significantly higher than those without, indicating that regulation of protein levels was induced by the drugs. These results suggest that the levels of numerous functionally distinct proteins may be regulated by common degradation machinery induced by genotoxic drugs. PMID:26625007

  18. Alkaline comet assay for genotoxic effect detection in neotropical fish Prochilodus lineatus (Pisces, Curimatidae).

    PubMed

    Simoniello, M F; Gigena, F; Poletta, G; Loteste, A; Kleinsorge, E; Campana, M; Scagnetti, J; Parma, M J

    2009-08-01

    Toxicants on fish may induce genetic alterations that can be used as genotoxic markers. We evaluated DNA damage using alkaline comet assay applied on erythrocytes after in vivo exposure of Prochilodus lineatus to different concentrations of Cypermethrin (0.300, 0.150, 0.075 and 0.000 microg/L) as a probable chemical mutagen. The results revealed a significantly higher level of DNA damage at all concentrations of Cypermethrin tested compared to control and background level (p < 0.05). We have standardized the technique for one of the most common native fish species that will be useful for biomonitoring genotoxicity in polluted waters of the region. PMID:19466374

  19. The Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes

    PubMed Central

    Aghajanpour-Mir, Seyed Mohsen; Zabihi, Ebrahim; Akhavan-Niaki, Haleh; Keyhani, Elahe; Bagherizadeh, Iman; Biglari, Sajjad; Behjati, Farkhondeh

    2016-01-01

    Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification. In this study, we investigated the BPA-induced chromosomal damages in MCF-7 cell line, ER-positive and negative amniocyte cells. Cytotoxicity and genotoxicity effects of BPA were also compared between these three cell groups. Expression of estrogen receptors was determined using immunocytochemistry technique. The cell cytotoxicity of BPA was measured by MTT assay. Classic cytogenetic technique was carried out for the investigation of chromosome damage. BPA, in addition to cytotoxicity, had remarkable genotoxicity at concentrations close to the traceable levels in tissues or biological fluids. Although some differences were observed in the amount of damages between ER-positive and negative fetal cells, interestingly, these differences were not significant. The present study showed that BPA could lead to chromosomal aberrations in both ER-dependent and independent pathways at some concentrations or in cell types yet not reported. Also, BPA could probably be considered as a facilitator for some predisposed cells to be cancerous by raising the chromosome instability levels. Finally, estrogen receptor seems to have a different role in cytotoxicity and genotoxicity effects. PMID:27386435

  20. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    PubMed

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity. PMID:24595819

  1. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  2. Effect of organic tomato (Lycopersicon esculentum) extract on the genotoxicity of doxorubicin in the Drosophila wing spot test

    PubMed Central

    2009-01-01

    The consumption of organic tomatoes (ORTs) reduces the risk of harmful effects to humans and the environment caused by exposure to toxic agrochemicals. In this study, we used the somatic mutation and recombination test (SMART) of wing spots in Drosophila melanogaster to evaluate the genotoxicity of ORT and the effect of cotreatment with ORT on the genotoxicity of Doxorubicin® (DXR, a cancer chemotherapeutic agent) that is mediated by free radical formation. Standard (ST) cross larvae were treated chronically with solutions containing 25%, 50% or 100% of an aqueous extract of ORT, in the absence and presence of DXR (0.125 mg/mL), and the number of mutant spots on the wings of emergent flies was counted. ORT alone was not genotoxic but enhanced the toxicity of DXR when administered concomitantly with DXR. The ORT-enhanced frequency of spots induced by DXR may have resulted from the interaction of ORT with the enzymatic systems that catalyze the metabolic detoxification of this drug. PMID:21637658

  3. Genotoxic effects of starvation and dimethoate in haemocytes and midgut gland cells of wolf spider Xerolycosa nemoralis (Lycosidae).

    PubMed

    Wilczek, Grażyna; Mędrzak, Monika; Augustyniak, Maria; Wilczek, Piotr; Stalmach, Monika

    2016-06-01

    The aim of this study was to assess the genotoxic effects of starvation and dimethoate (organophosphate insecticide) in female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to the stressors under laboratory conditions. DNA damage was measured in haemocytes and midgut gland cells using the comet assay. In response to the two stressing factors, both cell types showed %TDNA, tail length (TL) and OTM values higher in males than in females. Level of DNA damage in haemocytes was greater than in midgut gland cells. In both sexes, the strongest genotoxicity was recorded at single application of dimethoate. After five-time exposure to the pesticide, genotoxic effects of a single dose were sustained in males and reduced to the control level in females. Starvation stress was well tolerated by the females, in which neither cell type was affected by DNA damage. However, in male haemocytes food deprivation induced severe DNA damage, what suggests suppression of the defence potential at prolonged starvation periods. PMID:26942684

  4. In Vivo Evaluation of the Genotoxic Effects of Gonadotropins on Rat Reticulocytes

    PubMed Central

    Duran, Bulent; Koc, Onder; Ozdemirci, Safak; Topcuoglu, Ata; Ozdemir, Ozturk

    2011-01-01

    Background Gonadotropins, as ovulation-inducing drugs, have been used widely to treat infertility. An epidemiologic correlation between infertility therapy and ovarian cancer development has been reported. However, the effect of gonadotropins in the formation of reproductive tract cancers is controversial. Objective The aim of the study was to determine the in vivo genotoxic effects of gonadotropins on rat reticulocytes. Methods In this prospective, randomized, controlled study, rats were randomly assigned to 1 of 5 groups. The calculated rat doses of 0.65 human menopausal gonadotropin (hMG), 0.95 hMG, 0.65 follitropin beta (FB), 0.95 FB, or normal saline (control group) were injected, respectively. These calculated rat doses (U/g) are based on average human gonadotropin doses of 150 and 225 IU/d for a 70-kg woman given in 2-mL saline (the control group received 2 mL of saline). Injections were administered once per day for 5 days, followed by 5 days of rest. Each treatment was repeated for 6 estrus cycles in the rats for a total of 12 estrus cycles. Six months after the last day of the 12th cycle, the rats were euthanized. Bone marrow tissues were removed, and pluripotent reticulocyte cells with micronuclei, nuclear buds, and binuclear abnormalities were analyzed using an in situ micronuclei assay under light microscopy. The proportion of micronucleated cells, cells with anaphase bridge, nuclear buds, and other nuclear abnormalities were measured. Results The number of cells with nuclear buds and binuclear abnormalities in the hMG 225 and FB 225 groups was significantly higher (P < 0.05) than that from the hMG 150, FB 150, and control groups in the cytogenetic analysis of bone marrow stem cells. An increased rate of genotoxicity in all gonadotropin groups versus that of placebo was found. Conclusion In rats, the micronucleus genotoxicity assay suggests a dose-dependent gonadotropin effect on genomic instability in bone marrow stem cells in vivo. PMID:24648576

  5. Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei.

    PubMed

    Girardello, Francine; Custódio Leite, Camila; Vianna Villela, Izabel; da Silva Machado, Miriana; Luiz Mendes Juchem, André; Roesch-Ely, Mariana; Neves Fernandes, Andreia; Salvador, Mirian; Antonio Pêgas Henriques, João

    2016-01-01

    The widespread use of titanium dioxide nanoparticles (TiO2-NP) in consumer products is the cause of its appearance in wastewater and effluents, reaching the aquatic environment. The evaluation of the biological impact of TiO2-NP and the need to understand its ecotoxicological impact to the aquatic ecosystem are of major concern. Bivalve mollusks may represent a target group for nanoparticle toxicity. Limnoperna fortunei (golden mussel), a freshwater bivalve organism that has been employed in biomonitoring environmental conditions. Comet assay, micronucleus test and oxidative damage to lipids and proteins were performed after the golden mussel was exposed to TiO2-NP (1, 5, 10 and 50μgmL(-1)). The results demonstrate that TiO2-NP can damage the DNA of haemocytes after 2h of exposure and the genotoxic activity significantly increased after 4h exposure to TiO2-NP, at all the TiO2-NP concentrations. TiO2-NP was ineffective in causing mutagenicity in the haemolymph cells of golden mussel. The increase in the lipid peroxidation levels and carbonyl proteins after the exposure to TiO2-NP indicates the induction of oxidative stress at 2h exposure with similar results to all TiO2-NP concentrations, but these effects did not occur at 4h exposure. These results demonstrated that, although TiO2-NP is not mutagenic to golden mussel, it does induce DNA damage and oxidative stress in these organisms. PMID:26675368

  6. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    PubMed

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species. PMID:25323404

  7. Effects of phenytoin and carbamazepine on human natural killer cell activity and genotoxicity in vitro.

    PubMed

    Margaretten, N C; Hincks, J R; Warren, R P; Coulombe, R A

    1987-01-01

    Human peripheral blood mononuclear cells (PBMC) were isolated from healthy volunteers and exposed in vitro to phenytoin or carbamazepine, two widely used antiepileptic drugs (AED). This study investigated the effects of these drugs on natural killer (NK) cell activity and antibody-dependent cell-mediated cytotoxicity (ADCC), which are both thought to protect against developing neoplasms. Also, the genotoxicity of phenytoin on human PBMC was investigated by gravity-flow alkaline elution. Concentrations of phenytoin considered therapeutic (10 and 20 micrograms/ml) and a dose considered acutely toxic (40 micrograms/ml) were used while carbamazepine levels of 8 micrograms/ml (therapeutic) and 10 and 16 micrograms/ml (acutely toxic) were tested. Phenytoin at all three concentrations significantly suppressed NK cell activity in a dose-dependent manner. Carbamazepine had no significant effect on NK cell activity at the dose levels studied. Incubation in propylene glycol, the diluent for carbamazepine, significantly decreased NK cell activity compared to saline. Phenytoin also significantly depressed interferon augmentation of NK cell cytotoxicity in a dose dependent manner. ADCC activity was significantly depressed with 20 and 40 micrograms/ml phenytoin. Alkaline elution showed a slight but significant increase in DNA single-strand breaks of PBMC exposed to 40 micrograms/ml phenytoin for 18 or 72 hr. These results show phenytoin may induce pronounced immunosuppression of NK cell and ADCC activity in patients receiving antiepileptic therapy and that this agent has a potential for genotoxic side effects. Phenytoin may also increase the potential for neoplasm development by a direct interaction with cellular DNA and/or an indirect mechanism by immunosuppression. PMID:3798446

  8. Influence of Mikania laevigata Extract over the Genotoxicity Induced by Alkylating Agents

    PubMed Central

    Nicolau, Vanessa; de Aguiar Amaral, Patrícia; de Andrade, Vanessa Moraes

    2013-01-01

    Medicinal plants are still widely used worldwide; yet for some species, little or no information is available concerning their biological activity, specially their genotoxic and antimutagenic potential. Mikania laevigata (Asteraceae) is a native plant from South America, and its extracts are largely used to treat respiratory complaints. The aim of the present work was then to evaluate, in vivo, the potential biological activity of M. laevigata on the genotoxicity induced by methyl methanesulfonate (MMS) and cyclophosphamide (CP), using the comet assay. Male CF1 mice were divided into groups of 5-6 animals, received by gavage 0.1 mL/10 g body wt of water, Mikania laevigata extract (MLE), MMS, and CP. Results showed that treatment with 200 mg/kg of the MLE previously to MMS and CP administration, respectively, reduced the damage index (DI) in 52% and 60%, when compared to DI at 24 h. Pretreatment also reduced the damage frequency (DF) in 56% (MMS) and 58% (CP), compared to DF at 24 h. MLE administration has been shown to protect mouse DNA from damage induced by alkylating agents; this corroborates to the biological activities of M. laevigata and points towards the need of plant compounds isolation to proceed with further studies. PMID:23724299

  9. Effects of paving asphalt fume exposure on genotoxic and mutagenic activities in the rat lung.

    PubMed

    Zhao, H W; Yin, X J; Frazer, D; Barger, M W; Siegel, P D; Millecchia, L; Zhong, B Z; Tomblyn, S; Stone, S; Ma, J K H; Castranova, V; Ma, J Y C

    2004-02-14

    Asphalt fumes are complex mixtures of aerosols and vapors containing various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). Previously, we have demonstrated that inhalation exposure of rats to asphalt fumes resulted in dose-dependent induction of CYP1A1 with concomitant down-regulation of CYP2B1 and increased phase II enzyme quinone reductase activity in the rat lung. In the present study, the potential genotoxic effects of asphalt fume exposure due to altered lung microsomal enzymes were studied. Rats were exposed to air or asphalt fume generated under road paving conditions at various concentrations and sacrificed the next day. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage and examined for DNA damage using the comet assay. To evaluate the systemic genotoxic effect of asphalt fume, micronuclei formation in bone marrow polychromatic erythrocytes (PCEs) was monitored. Lung S9 from various exposure groups was isolated from tissue homogenates and characterized for metabolic activity in activating 2-aminoanthracene (2-AA) and benzo[a]pyrene (BaP) mutagenicity using the Ames test with Salmonella typhimurium YG1024 and YG1029. This study showed that the paving asphalt fumes significantly induced DNA damage in AM, as revealed by DNA migration in the comet assay, in a dose-dependent manner, whereas the micronuclei formation in bone marrow PCEs was not detected even at a very high exposure level (1733 mg h/m3). The conversion of 2-AA to mutagens in the Ames test required lung S9-mediated metabolic activation in a dose-dependent manner. In comparison to the controls, lung S9 from rats exposed to asphalt fume at a total exposure level of 479+/-33 mg h/m3 did not significantly enhance 2-AA mutagenicity with either S. typhimurium YG1024 or YG1029. At a higher total asphalt fume exposure level (1150+/-63 mg h/m3), S9 significantly increased the mutagenicity of 2-AA as compared to the control. However, S9 from asphalt fume-exposed rats

  10. Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells.

    PubMed

    Roszak, Joanna; Catalán, Julia; Järventaus, Hilkka; Lindberg, Hanna K; Suhonen, Satu; Vippola, Minnamari; Stępnik, Maciej; Norppa, Hannu

    2016-07-01

    Data available on the genotoxicity of zinc oxide (ZnO) nanoparticles (NPs) are controversial. Here, we examined the effects of particle size and dispersion status on the cytotoxicity and genotoxicity of nanosized and fine ZnO, in the presence and absence of bovine serum albumin (BSA; 0.06%) in human bronchial epithelial BEAS-2B cells. Dynamic light scattering analysis showed the most homogenous dispersions in water alone for nanosized ZnO and in water with BSA for fine ZnO. After a 48-h treatment, both types of ZnO were cytotoxic within a similar, narrow dose range (1.5-3.0μg/cm(2)) and induced micronuclei at a near toxic dose range (1.25-1.75μg/cm(2)), both with and without BSA. In the comet assay, nanosized ZnO (1.25-1.5μg/cm(2)), in the absence of BSA, caused a statistically significant increase in DNA damage after 3-h and 6-h treatments, while fine ZnO did not. Our findings may be explained by better uptake or faster intracellular dissolution of nanosized ZnO without BSA during short treatments (3-6h; the comet assay), with less differences between the two ZnO forms after longer treatments (>48h; the in vitro micronucleus test). As ZnO is genotoxic within a narrow dose range partly overlapping with cytotoxic doses, small experimental differences e.g. in the dispersion of ZnO particles may have a substantial effect on the genotoxicity of the nominal doses added to the cell culture. PMID:27402478

  11. Genotoxic effect of Lythrum salicaria extract determined by the mussel micronucleus test.

    PubMed

    Eck-Varanka, Bettina; Kováts, Nóra; Hubai, Katalin; Paulovits, Gábor; Ferincz, Árpád; Horváth, Eszter

    2015-12-01

    A wide range of aquatic plants have been proven to release allelochemicals, of them phenolics and tannin are considered rather widely distributed. Tannins, however, have been demonstrated to have genotoxic capacity. In our study genotoxic potential of Lythrum salicaria L. (Purple Loosestrife, family Lythraceae) was assessed by the mussel micronucleus test, using Unio pictorum. In parallel, total and hydrolysable tannin contents were determined. Results clearly show that the extract had a high hydrolysable tannin content and significant mutagenic effect. As L. salicaria has been long used in traditional medicine for chronic diarrhoea, dysentery, leucorrhoea and blood-spitting, genotoxic potential of the plant should be evaluated not only with regard to potential effects in the aquatic ecosystem, but also assessing its safe use as a medicinal herb. PMID:26616377

  12. [Exposure to benzene and genotoxic effects among filling station attendants].

    PubMed

    Carere, A; Antoccia, A; Crebelli, R; Di Chiara, D; Fuselli, S; Iavarone, I; Isacchi, G; Lagorio, S; Leopardi, P; Marcon, F

    1995-03-01

    Exposure to gasoline vapors is classified by the International Agency for Research on Cancer as possibly carcinogenic to humans, mainly on the basis of the established carcinogenicity of some component chemicals such as benzene. The mechanism of benzene toxicity, particularly its leukemogenic effects, is far from being fully understood. Different studies, aimed at evaluating the risk associated with exposure to benzene through fuels and coordinated by the Istituto Superiore di Sanità, are in progress in Italy. In an environmental monitoring survey on a sample of 111 service stations, conducted in Rome (Italy) in 1992, average yearly personal exposure to benzene, toluene and xylenes were estimated. Chemical determination of benzene and methylbenzene was carried out by GL-gas chromatography. From a sample of 27 service stations 34 fuel samples were collected, and their benzene content was measured by hr-gas chromatography. Subgroups of the filling station attendants undergoing the exposure assessment study, were included in biological monitoring surveys of early indicators of genotoxicity. In particular, 65 subjects were enrolled in a study aimed at evaluating the urinary concentrations of 8-hydroxydeoxyguanosine (8-OHdG), a biological marker of oxidative DNA damage, and 23 filling station attendants were selected for a survey of the frequencies of sister chromatid exchanges (SCE) and micronuclei (MN) in peripheral T lymphocytes. In the exposure assessment survey levels of 0.53, 0.71 e 0.32 mg/m3 in the average yearly personal exposure to benzene, toluene and xylenes, respectively, were estimated (individual means based on 6.5 repeated samples per employee). The daily quantities of super premium gasoline sold proved to be associated with the average yearly personal exposure to benzene, and current smokers showed a significantly lower exposure intensity compared with non-smokers. Among the latter, an increase of 0.11 ln mg/m3 in benzene exposure per unit increase

  13. Sall2 is required for proapoptotic Noxa expression and genotoxic stress-induced apoptosis by doxorubicin

    PubMed Central

    Escobar, D; Hepp, M I; Farkas, C; Campos, T; Sodir, N M; Morales, M; Álvarez, C I; Swigart, L; Evan, G I; Gutiérrez, J L; Nishinakamura, R; Castro, A F; Pincheira, R

    2015-01-01

    The Sall2 transcription factor is deregulated in several cancers; however, little is known about its cellular functions, including its target genes. Recently, we demonstrated that p53 directly regulates Sall2 expression under genotoxic stress. Here, we investigated the role of Sall2 in the context of cellular response to genotoxic stress. In addition, we further examined the Sall2-p53 relationship during genotoxic stress in primary mouse embryo fibroblasts (MEFs), which are derived from Sall2 knockout mice separately, or in combination with the p53ERTAM knock-in mice. We found that the levels of Sall2 mRNA and protein are dynamically modulated in response to doxorubicin. At early times of stress, Sall2 is downregulated, but increases under extension of the stress in a p53-independent manner. Based on caspase-3/7 activities, expression of cleaved poly (ADP-ribose) polymerase, expression of cleaved caspase-3 and induction of proapoptotic proteins, Sall2 expression was correlated with cellular apoptosis. Consequently, Sall2−/− MEFs have decreased apoptosis, which relates with increased cell viability in response to doxorubicin. Importantly, Sall2 was required for apoptosis even in the presence of fully activated p53. Searching for putative Sall2 targets that could mediate its role in apoptosis, we identified proapoptotic NOXA/PMAIP1 (phorbol-12-myristate-13-acetate-induced protein 1). We demonstrated that Sall2 positively regulates Noxa promoter activity. Conserved putative Sall2-binding sites at the NOXA promoter were validated in vitro by electrophoretic mobility shift assay and in vivo by ChIP experiments, identifying NOXA as a novel Sall2 target. In agreement, induction of Noxa protein and mRNA in response to doxorubicin was significantly decreased in Sall2−/− MEFs. In addition, studies in leukemia Jurkat T cells support the existence of the Sall2/Noxa axis, and the significance of this axis on the apoptotic response to doxorubicin in cancer cells. Our

  14. Methyl-thiophanate increases reactive oxygen species production and induces genotoxicity in rat peripheral blood.

    PubMed

    Ben Amara, Ibtissem; Ben Saad, Hajer; Cherif, Boutheina; Elwej, Awatef; Lassoued, Saloua; Kallel, Choumous; Zeghal, Najiba

    2014-12-01

    Methylthiophanate is one of the widely used fungicides to control important fungal diseases of crops. The aim of this study was to elucidate the short-term hematoxicity and genotoxicity effects of methylthiophanate administered by intraperitoneal way at three doses (300, 500 and 700 mg/kg of body weight) after 24, 48 and 72 h. Our results showed, 24 h after methylthiophanate injection, a hematological perturbation such as red blood cells (p < 0.05, p < 0.05 and p < 0.01) and hemoglobin content (p < 0.05), respectively, and a noticeable genotoxic effect in WBC evidenced by a significant increase in the frequency of the micronuclei and a decrease in cell viability. An increase in erythrocyte osmotic fragility was also noted after 24 and 48 h of methylthiophanate treatment at graded doses. A significant increase in hydrogen peroxide, advanced oxidation of protein products and malondialdehyde levels, in erythrocytes of methylthiophanate-treated rats with 300, 500 and 700 mg/kg of body weight, was also observed after 24 h of treatment (p < 0.05, p < 0.01 and p < 0.001, respectively), suggesting the implication of oxidative stress in its toxicity. Antioxidants activities of superoxide dismutase and glutathione peroxidase in erythrocytes significantly increased (p < 0.001) 24 h after the highest dose injected. While all these parameters were improved after 72 h of methylthiophanate injection (300, 500 and 700 mg/kg body weight). In conclusion, these data showed that the exposure of adult rats to methylthiophanate resulted in oxidative stress leading to hematotoxicity and the impairment of defence system, confirming the pro-oxidant and genotoxic effects of this fungicide. PMID:25179310

  15. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model.

    PubMed

    Alaraby, Mohamed; Hernández, Alba; Marcos, Ricard

    2016-08-01

    Metal oxide nanoparticles are highly reactive from the biological point of view and, for this reason, it exists important reservations in regard human health impact. We used Drosophila as a promising in vivo model to diagnose the biological effects of copper oxide nanoparticles (CuO-NPs). Due to the potential role of ions release the effects of CuO-NPs were compared with those induced by copper sulfate, CuSO4. A wide battery of approaches has been used including toxicity, cell and body internalization, induction of reactive oxygen species (ROS) as well as changes in gene expression, related to both general stress and alterations in the intestinal barrier, and genotoxicity. The obtained results show that CuO-NPs have the ability to be distributed inside midgut cells and translocate to the general body compartment (internal hemolymph) interacting with hemocytes. Its exposure leads to reduced larval growth, decreased flies viability, delaying their emergency periods, especially at higher doses (2 and 10 mM). Moreover, deregulation of stress genes including antioxidant genes, and genes involved in wound healing were also observed. In this point it should be emphasized the novelty of using genes such as Duox, Upd3, PPO2, and Hml to determine injury on the intestinal barrier. On the other hand, CuO-NPs had non-genotoxic potential, in agreement with their inability to increase ROS production. In general dissolved copper produced higher toxic/genotoxic effects than those induced by CuO-NPs which would indicate that copper ions alone are more important in inducing harmful effects than copper nanoparticles itself. PMID:26634780

  16. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    PubMed

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter <3 μm (97%) and length >5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549. PMID:25620604

  17. Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes.

    PubMed

    Yang, Wei; Yu, Miao; Fu, Juan; Bao, Wei; Wang, Di; Hao, Liping; Yao, Ping; Nüssler, Andreas K; Yan, Hong; Liu, Liegang

    2014-02-01

    Deoxynivalenol (DON) is one of the most common mycotoxins. The aim of this study consists in using diverse cellular and molecular assays to evaluate cytotoxicity, genotoxicity as well as oxidative damage and to investigate their mechanisms in human peripheral blood lymphocytes. The human lymphocytes were cultured in eight different doses of DON (0, 6.25, 12.5, 25, 50, 100, 250 and 500 ng/mL) during 6, 12 and 24 h. DON was able to decrease cell viability and cause damage to the membrane, the chromosomes or the DNA at all times of culture. It was also able to induce lipid peroxidation and raise the levels of 8-OHdG and ROS in 6, 12 and 24 h. The results of the RT-PCR and the Western Blot indicated that DON is able to enhance mRNA or protein expressions of DNA repair genes and HO-1 in 6 h and to inhibit these expressions in 24 h. DON potentially triggers genotoxicity in human lymphocytes. This mechanism is probably related to depletion of antioxidase and oxidative damage to the DNA that reduced expression of HO-1, thereby inhibiting the ability of DNA repair. PMID:24355168

  18. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation

    PubMed Central

    Fu, Kai; Sun, Xin; Wier, Eric M; Hodgson, Andrea; Liu, Yue; Sears, Cynthia L; Wan, Fengyi

    2016-01-01

    Nuclear factor kappa B (NF-κB)-mediated transcription is an important mediator for cellular responses to DNA damage. Genotoxic agents trigger a 'nuclear-to-cytoplasmic' NF-κB activation signaling pathway; however, the early nuclear signaling cascade linking DNA damage and NF-κB activation is poorly understood. Here we report that Src-associated-substrate-during-mitosis-of-68kDa/KH domain containing, RNA binding, signal transduction associated 1 (Sam68/KHDRBS1) is a key NF-κB regulator in genotoxic stress-initiated signaling pathway. Sam68 deficiency abolishes DNA damage-stimulated polymers of ADP-ribose (PAR) production and the PAR-dependent NF-κB transactivation of anti-apoptotic genes. Sam68 deleted cells are hypersensitive to genotoxicity caused by DNA damaging agents. Upregulated Sam68 coincides with elevated PAR production and NF-κB-mediated anti-apoptotic transcription in human and mouse colon cancer. Knockdown of Sam68 sensitizes human colon cancer cells to genotoxic stress-induced apoptosis and genetic deletion of Sam68 dampens colon tumor burden in mice. Together our data reveal a novel function of Sam68 in the genotoxic stress-initiated nuclear signaling, which is crucial for colon tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.15018.001 PMID:27458801

  19. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation.

    PubMed

    Fu, Kai; Sun, Xin; Wier, Eric M; Hodgson, Andrea; Liu, Yue; Sears, Cynthia L; Wan, Fengyi

    2016-01-01

    Nuclear factor kappa B (NF-κB)-mediated transcription is an important mediator for cellular responses to DNA damage. Genotoxic agents trigger a 'nuclear-to-cytoplasmic' NF-κB activation signaling pathway; however, the early nuclear signaling cascade linking DNA damage and NF-κB activation is poorly understood. Here we report that Src-associated-substrate-during-mitosis-of-68kDa/KH domain containing, RNA binding, signal transduction associated 1 (Sam68/KHDRBS1) is a key NF-κB regulator in genotoxic stress-initiated signaling pathway. Sam68 deficiency abolishes DNA damage-stimulated polymers of ADP-ribose (PAR) production and the PAR-dependent NF-κB transactivation of anti-apoptotic genes. Sam68 deleted cells are hypersensitive to genotoxicity caused by DNA damaging agents. Upregulated Sam68 coincides with elevated PAR production and NF-κB-mediated anti-apoptotic transcription in human and mouse colon cancer. Knockdown of Sam68 sensitizes human colon cancer cells to genotoxic stress-induced apoptosis and genetic deletion of Sam68 dampens colon tumor burden in mice. Together our data reveal a novel function of Sam68 in the genotoxic stress-initiated nuclear signaling, which is crucial for colon tumorigenesis. PMID:27458801

  20. Genotoxic effects of tanshinones from Hyptis martiusii in V79 cell line.

    PubMed

    Cavalcanti, B C; Moura, D J; Rosa, R M; Moraes, M O; Araujo, E C C; Lima, M A S; Silveira, E R; Saffi, J; Henriques, J A P; Pessoa, C; Costa-Lotufo, L V

    2008-01-01

    The genotoxic effect of two tanshinones isolated from roots of Hyptis martiussi Benth (Labiatae) was studied using V79 (Chinese hamster lung) cells by the alkaline comet assay and micronucleus test. Tanshinones were incubated with the cells at concentrations of 1, 3, 6 and 12 microg/mL for 3 h. Tanshinones were shown to be quite strongly genotoxic against V79 cells at all tested concentrations. The data obtained provide support to the view that tanshinones has DNA damaging activity in cultured V79 cells under the conditions of the assays. PMID:17897764

  1. Genotoxic effects of sodium arsenite and sodium arsenate after chronic exposure of Drosophila melanogaster larvae

    SciTech Connect

    Ramos-Morales, P.; Ordaz, M.G.; Munoz, A.

    1995-11-01

    Two arsenic compounds, namely: NaAsO{sub 2} (Sodium Arsenite) and Na{sub 2}HAsO{sub 4} (Sodium Arsenate) were tested for its chronic effect in somatic cells of Drosophila melanogaster. In a previous study in Drosophila we found that both compounds induced SLRL mutations, but failed to induce sex chromosome loss. In the SMART, after acute exposure, only sodium arsenite was positive when cells of the wings were used; however, both were positives in cells of the eyes of Drosophila. The genotoxicity of both compounds localized mainly on somatic cells, in agreement with reports on the carcinogenicity potential of arsenical compounds. The Somatic mutation and recombination test (SMART) was run employing cells of the wing imaginal discs from flr{sup 3}/mwh larvae. First instar larvae (24 {plus_minus} 4 h) were treated during 96 hours with sodium arsenite [0.015-4.0 ppm], and sodium arsenate [0.2-10 ppm], negative control was treated with distilled water. The frequency of spots by wing induced by the two arsenic salts were compared with control according with Frei and Wuergler procedure. Data show that sodium arsenite tested negative at all concentrations, but sodium arsenate tested positive at 0.8, 2 and 10 ppm (P<0.05). This results were consistent with the co-mutagenic role of sodium arsenite, but show that sodium arsenate was mutagenic in Drosophila test system under chronic exposure.

  2. Emerging Disinfection Byproducts, Halobenzoquinones: Effects of Isomeric Structure and Halogen Substitution on Cytotoxicity, Formation of Reactive Oxygen Species, and Genotoxicity.

    PubMed

    Li, Jinhua; Moe, Birget; Vemula, Sai; Wang, Wei; Li, Xing-Fang

    2016-07-01

    Halobenzoquinones (HBQs) are a structurally diverse class of water disinfection byproducts. Here, we report a systematic study on the effects of isomeric structure and the type and number of halogen substitutions of HBQs on their cytotoxicity, formation of reactive oxygen species (ROS), and genotoxicity. Dynamic responses and IC50 histograms were obtained using real-time cell analysis, clearly ranking the cytotoxicity of the HBQs in Chinese hamster ovary (CHO-K1) cells. Strong isomeric structure effects were shown with 2,5-HBQ isomers inducing greater cytotoxicity than their corresponding 2,6-HBQ isomers (P < 0.05). HBQ-halogen substitution groups also influence cytotoxicity, as cytotoxicity increases across the dihalogenated HBQs: iodo- > bromo- > chloro-HBQs (P < 0.05). Determination of HBQ-induced ROS further supports isomeric structure and halogen substitution effects. HBQ-induced genotoxicity was shown as increased levels of 8-hydroxy-2'-deoxyguanosine and p53 protein. Pearson correlation analysis of the HBQ toxicity measurements with their physicochemical parameters demonstrates that dipole moment and the lowest unoccupied molecular orbital energy are two major structural influences on toxicity (r = -0.721 or -0.766, P < 0.05). Dipole moment also correlates with isomer toxicity. This study suggests that formation and occurrence of highly toxic iodo-HBQs and 2,5-HBQs warrant further investigation to fully assess the impact of HBQs in drinking water. PMID:26812484

  3. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver.

    PubMed

    Abdel-Wahhab, Mosaad A; Salman, Asmaa S; Ibrahim, Mohamed I M; El-Kady, Ahmed A; Abdel-Aziem, Sekena H; Hassan, Nabila S; Waly, Ahmed I

    2016-08-01

    The current study aimed to evaluate the protective role of curcumin nanoparticles loaded hydrogels (Cur-NPs-Hgs) against AFB1-induced genotoxicity in rat liver. Animals were divided into 7 treatment groups and treated orally for 3 weeks as follow: the control group, the group treated with Hgs alone (0.5 ml/rat), the groups treated with low or high dose of Cur-NPs-Hgs (100 or 200 mg/kg b.w), the group treated with AFB1 (0.125 mg/kg b.w) and the groups treated with AFB1 plus the low or high dose of Cur-NPs-Hgs. Blood ant liver samples were collected for different biochemical, genetical, histological and histochemical analysis. The results revealed that the prepared Cur-NPs have nearly spherical shape with average size of 140 ± 20 nm and negative zeta potential value of 30.7 ± 2.57 mV. The in vivo results showed that treatment with AFB1 decreased the body weight accompanied biochemical, genotoxicity and histological disturbances. The combined treatment with AFB1 and Cur-Nps-Hgs at the two tested doses succeeded to induce a significant protection against AFB1. It could be concluded that Cur-NPs-Hgs is a promise candidate to protect against AFB1-induce liver damage in the high incidence area. Moreover, Hgs are excellent candidates as drug delivery system. PMID:27288928

  4. Assessing genotoxic effects in fish from a marine protected area influenced by former mining activities and other stressors.

    PubMed

    Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; Santos, Gustavo Souza; de Araújo, Giuliana Seraphim; Cruz, Ana Carolina Feitosa; Stremel, Tatiana; de Campos, Sandro Xavier; Cestari, Marta Margarete; Ribeiro, Ciro Alberto Oliveira; de Sousa Abessa, Denis Moledo

    2016-03-15

    The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA. PMID:26822909

  5. Anti-genotoxic effect of the Sargassum dentifolium extracts: prevention of chromosomal aberrations, micronuclei, and DNA fragmentation.

    PubMed

    Gamal-Eldeen, Amira M; Abo-Zeid, Mona A M; Ahmed, Eman F

    2013-01-01

    The alga Sargassum dentifolium (Turner) C. Agardh, belongs to Sargassaceae, is a brown seaweed in red sea shores in Egypt. This work aimed to extract different water-soluble polysaccharide extracts (E1, E2, and E3) from S. dentifolium and to investigate their protective effect against cyclophosphamide (CP)-induced genotoxicity. Mice bone marrow cells (BMCs) were collected and analyzed for the chromosomal aberration, micronucleated BMCs (MN-BMCs), the mitotic index, DNA fragmentation by comet assay, and histone deacetylases (HDACs), and radical scavenging capacity of extracts was evaluated by the oxygen radical absorbance capacity assay. The results indicated that E2 and E3 significantly inhibited CP-induced multiple chromosomal aberrations, where E1 and E3 significantly suppressed the number of CP-induced formation of tetraploidy. The extracts prohibited the cytotoxic effect of CP and recovered the mitotic activity, whereas E1 possessed the highest recovery and mitosis. In absence of MN, CP induced formation of bi- and poly-nucleated BMCs. E1 prohibited CP-induced formation of bi-nucleated BMCs, while E2 and E3 prohibited CP-induced formation of poly-nucleated BMCs. CP-induced MN-BMCs were accompanied with mono-, bi- and poly-nucleated cells. E1 and E3 remarkably suppressed mono-nucleated MN-BMCs, while E2 inhibited bi-nucleated MN-BMCs. All the extracts significantly inhibited the CP-induced formation of poly-nucleated MN-BMCs. CP-induced DNA fragmentation was inhibited by all extracts, where E1 was the strongest inhibitor as concluded from the comet tail moment. All the extracts were strong OH scavengers, while only E3 was ROO scavenger. The results revealed a drastic decline in HDACs activity by E1 and E3. In conclusion, S. dentifolium polysaccharide extracts E1 and E3 possessed a potential anti-genotoxic and a promising anti-mutagenic activity. PMID:21652192

  6. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    PubMed

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect. PMID:25746384

  7. SYNERGISTIC AND ANTAGONISTIC EFFECTS ON GENOTOXICITY OF CHEMICALS COMMONLY FOUND IN HAZARDOUS WASTE SITES

    EPA Science Inventory

    Synergistic and antagonistic effects on genotoxicity of mixtures of four chemicals; i.e., lead tetraacetate (LTA), arsenic trioxide (ATO), dieldrin (DED), and tetrachloroethylene (TCE), were evaluated by the Tradescantia-Micronucleus (Trad-MCN) assay. he concentration of stock so...

  8. IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?

    EPA Science Inventory

    IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
    Preston, RJ. Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    For considerations of cancer risk assessment from exposure to environmenta...

  9. Soil genotoxicity induced by successive applications of chlorothalonil under greenhouse conditions.

    PubMed

    Jin, Xiangxiang; Cui, Ning; Zhou, Wei; Khorram, Mahdi Safaei; Wang, Donghong; Yu, Yunlong

    2014-05-01

    Greenhouse production of vegetables has been developed rapidly in China. High temperature and humidity inside the greenhouse make this environment more suitable for fast reproduction of fungal diseases. Fungicides are among the chemicals used extensively in the greenhouse to prevent crops from invasive infections by phytopathogens; however, little is known about the accumulation of fungicides in soil and their effect on soil quality under greenhouse conditions. In the present study, the accumulation of the fungicide chlorothalonil (CT) and its toxic metabolite hydroxy-chlorothalonil (HCT) in soil as well as their related soil genotoxicity under greenhouse conditions was investigated. The results indicated that both CT and HCT accumulated in soil with repeated applications of CT, and the accumulation level was strongly correlated to application dosage and its frequency. In addition, soil genotoxicity, which was measured by Vicia faba, also increased with the accumulation of CT and HCT, and the main contributor to this phenomenon was CT rather than HCT. The data demonstrated that successive applications of fungicides may result in their accumulation in soil and thus a decline in soil quality. PMID:24478244

  10. Zinc inhibits aflatoxin B1-induced cytotoxicity and genotoxicity in human hepatocytes (HepG2 cells).

    PubMed

    Yang, Xuan; Lv, Yangjun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-06-01

    Aflatoxin B1 (AFB1) has strong carcinogenicity. Consumption of AFB1-contaminated agricultural products and the occurrence of hepatocellular carcinoma have received widespread attention. The aim of this paper was to investigate whether zinc supplementation could inhibit AFB1-induced cytotoxicity and genotoxicity in HepG2 cells and the mechanism of this inhibition. Our data suggest that zinc sources can relieve a certain degree of AFB1-induced cytotoxicity and genotoxicity by protecting against apoptotic body formation and DNA strand breaks, affecting S phase cell cycle arrest, reducing 8-OHdG formation, inhibiting global DNA hypomethylation and regulating gene expression in antioxidation, zinc-association and apoptosis processes. Consequently, zinc stabilizes the integrity of DNA and improves cell survival. These data provides new insights into the protective role of zinc in alleviating AFB1-induced cytotoxicity and mediating epigenetic changes in hepatocytes, demonstrating that zinc sources have detoxification properties in mycotoxin-induced toxicity. PMID:27017951

  11. Attenuation of N-methyl-N'-nitro-N-nitrosoguanidine induced genotoxicity and oxidative stress by tomato and garlic combination.

    PubMed

    Kumaraguruparan, R; Chandra Mohan, K V P; Abraham, S K; Nagini, S

    2005-03-25

    The protective effect of pretreatment with tomato and garlic against N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced genotoxicity and oxidative stress was investigated in male Swiss mice. In vivo bone marrow micronucleus test was performed to assess the antigenotoxic effect of tomato and garlic. Oxidative stress was monitored by estimating the extent of lipid peroxidation and the status of the glutathione redox cycle antioxidants. Increased frequency of bone marrow micronuclei with enhanced lipid peroxidation was associated with compromised antioxidant defenses in MNNG treated animals. Although pretreatment with tomato and garlic significantly reduced the frequencies of MNNG-induced bone marrow micronuclei, the combination of tomato and garlic exerted a greater protective effect. This was associated with modulation of lipid peroxidation as well as reduced glutathione (GSH) and the GSH-dependent enzymes glutathione peroxidase (GPx) and glutathione-S-transferase (GST). These findings suggest that a diet containing even low levels of different naturally occurring compounds is effective in exerting antigenotoxic effects by modulating oxidative stress. PMID:15733939

  12. Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells.

    PubMed

    Al-Sarar, Ali S; Abobakr, Yasser; Bayoumi, Alaa E; Hussein, Hamdy I

    2015-11-01

    The cytotoxicity and genotoxicity of abamectin, chlorfenapyr, and imidacloprid have been evaluated on the Chinese hamster ovary (CHOK1) cells. Neutral red incorporation (NRI), total cellular protein content (TCP), and methyl tetrazolium (MTT) assays were followed to estimate the mid-point cytotoxicity values, NRI50, TCP50, and MTT50, respectively. The effects of the sublethal concentration (NRI25) on glutathione S-transferase (GST), glutathione reductase (GRD), glutathione peroxidase (GPX), and total glutathione content have been evaluated in the presence and absence of reduced glutathione (GSH), vitamin C, and vitamin E. The genotoxicity was evaluated using chromosomal aberrations (CA), micronucleus (MN) formation, and DNA fragmentation techniques in the presence and absence of the metabolic activation system, S9 mix. Abamectin was the most cytotoxic pesticide followed by chlorfenapyr, while imidacloprid was the least cytotoxic one. The glutathione redox cycle components were altered by the tested pesticides in the absence and presence of the tested antioxidants. The results of genotoxicity indicate that abamectin, chlorfenapyr, and imidacloprid have potential genotoxic effects on CHOK1 cells under the experimental conditions. PMID:26122579

  13. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    PubMed

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples. PMID:19589556

  14. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro

    SciTech Connect

    Yang, Fangxing; Zhuang, Shulin; Zhang, Chao; Dai, Heping; Liu, Weiping

    2013-06-15

    Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cells and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health. - Highlights: • Sulforaphane inhibited TCDD-induced CYP1A1 activity in H4IIE cells. • Sulforaphane may bind to aryl hydrocarbon receptor and/or CYP1A1. • Sulforaphane promoted TCDD-induced DNA damage in yeast cells. • Sulforaphane may promote DNA damage by DNA strand breaks or DNA alkylation.

  15. Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells.

    PubMed

    Tayama, Sumiko; Nakagawa, Yoshio; Tayama, Kuniaki

    2008-01-01

    Some environmental estrogen-like compounds, such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP), propyl p-hydroxybenzoate (P-PHBA), and butyl p-hydroxybenzoate (B-PHBA), synthetic estrogen, diethylstilbestrol (DES), and natural estrogen, 17beta-estradiol (E2), were studied for their genotoxicity in CHO-K1 cells using sister-chromatid exchange (SCE), chromosome aberration (CA), and DNA strand break (comet) assays. Six of the chemicals, excluding E2, caused DNA migration in the comet assay and induced SCEs at one or more of the highest doses. Among the chemicals, OP produced an especially high incidence of SCEs. Structural CA was induced by five of the chemicals, excluding OP and NP, and BPA, E2, and DES also induced aneuploid cells. E2 and DES particularly increased the rate of polyploidy at high doses. The incidence of colchicine-mitosis-like (c-mitotic) figures suggesting spindle disrupting effects was also detected with five of the chemicals, excluding OP and NP, and six of the chemicals, excluding E2, caused endoreduplication (ERD), a form of nuclear polyploidization induced by block of cell cycle at G2 phase, at one or more high doses. Our present results suggest that OP and NP cause repairable DNA damage, including SCEs, and do not result in CA, while the damage caused by DES, BPA, P-PHBA, and B-PHBA results in the induction of CAs together with SCEs probably because of imperfect repair. We are unable to explain the observation that the DNA damage caused by E2 resulted in CA induction but not DNA migration or SCE induction, except for speculating that the DNA damage is different from that caused by DES and the estrogen-like chemicals. Our findings also suggest that E2, DES and BPA have aneuploidogenic properties, and that the former two of chemicals also are polyploidy-inducing agents. PMID:17913570

  16. Evaluation of cytotoxic and genotoxic effects of Benodanil by using Allium and Micronucleus assays.

    PubMed

    Akyıl, Dilek; Özkara, Arzu; Erdoğmuş, S Feyza; Eren, Yasin; Konuk, Muhsin; Sağlam, Esra

    2016-01-01

    The aim of this study was to evaluate the potential cytotoxic effects of Benodanil fungicide by employing both mitotic index (MI) and mitotic phases on the root meristem cells of Allium cepa and genotoxic effects by using in vitro micronucleus assay (MN) in human peripheral blood lymphocyte. In the Allium root growth inhibition test, the EC50 value was first determined as 25 ppm. Then, 2 × EC50 value (50 ppm), EC50 value (25 ppm), and 1/2 × EC50 value (12.5 ppm) were tested with different treatment periods (24, 48, and 72 h). Both negative and positive controls were also used in parallel experiments. We obtained that mitotic index and prophase index decreased when compared with the control in all concentrations. In the micronucleus assay, lymphocytes were treated with various concentrations (250, 500, 750, and 1000 µg/ml) of Benodanil for 24 and 48 h. The results showed that Benodanil did not induce MN frequency in all concentrations of both treatment periods. Additionally, it was determined that this pesticide decreased nuclear division index (NDI) significantly. It was concluded that Benodanil has a cytotoxic effects depending on decreasing of MI and NDI. PMID:26333298

  17. Calcium channel blockers protect against aluminium-induced DNA damage and block adaptive response to genotoxic stress in plant cells.

    PubMed

    Achary, V Mohan M; Parinandi, Narasimham L; Panda, Brahma B

    2013-03-18

    Calcium is an important second messenger in signal transduction pathways. The role of Ca(2+) signalling in Al-induced DNA damage, cell death, and adaptive response to genotoxic stress caused by ethyl methanesulfonate (EMS) or methylmercuric chloride (MMCl) in the root cells of Allium cepa was investigated in the current study. Root cells in planta were treated with Al(3+) (800μM of AlCl(3)) for 3h without or with 2h pre-treatment with the Ca(2+) chelator (EGTA) or Ca(2+) channel blockers (lanthanum chloride, verapamil) or CaM/CDPK antagonist (W7). In addition, root cells in planta were conditioned by treatment with Al(3+) (5 or 10μM of AlCl(3)) for 2h followed by the genotoxic challenge with MMCl (1.25μM) or EMS (2.5 or 5mM) for 3h without or with the pre-treatment of the chosen Ca(2+) chelator/channel blockers/antagonist. Following the treatments, cell death and DNA damage were investigated in the root cells by comet assay. Furthermore, genotoxicity in the root meristems was determined after 18-30h of recovery. These results revealed that Al(3+) (800μM) significantly induced DNA damage and cell death in the root cells of A. cepa. On the other hand, conditioning of the root cells with Al(3+) at low concentrations (5 or 10μM) offered adaptive response leading to the protection against genotoxic stress induced by MMCl and EMS. Pre-treatment of root cells with the Ca(2+) chelator/channel blockers/antagonist not only alleviated Al(3+)-induced DNA damage and cell death induced but also blocked the Al(3+)-mediated adaptive response to genotoxic stress induced by MMCl and EMS. For the first time, the results of the present study highlighted the role of Ca(2+) signalling underlying the biphasic mode of action of Al(3+) that induced DNA damage and cell death at high doses and offered adaptation to genotoxic response in plants at low doses. PMID:23313746

  18. Lilium compounds kaempferol and jatropham can modulate cytotoxic and genotoxic effects of radiomimetic zeocin in plants and human lymphocytes In vitro.

    PubMed

    Jovtchev, Gabriele; Gateva, Svetla; Stankov, Alexander

    2016-06-01

    Organisms are constantly exposed to the detrimental effect of environmental DNA-damaging agents. The harmful effects of environmental genotoxins could be decreased in a viable way by antimutagenesis. One of the modern approaches to reduce the mutagenic burden is based on exogenous natural and synthetic compounds that possess protective and antimutagenic potential against genotoxins. The natural compounds kaempferol and jatropham isolated from Lilium candidum were tested with respect to their potential to protect cells against the radiomimetic zeocin, as well as to their cytotoxic and genotoxic activities in two types of experimental eukaryotic test systems: Hordeum vulgare and human lymphocytes in vitro. Mitotic index (MI) was used as an endpoint for cytotoxicity; the frequency of chromosome aberrations (MwA) and the number of induced micronuclei (MN), as endpoints for genotoxicity/clastogenicity. Formation of aberration "hot spots" was also used as an indicator for genotoxicity in H. vulgare. Both kaempferol and jatropham were shown to possess a potential to modulate and decrease the cytotoxic and genotoxic/clastogenic effect of zeocin depending on the experimental design and the test system. Our data could be useful for health research programs, particularly in clarifying the pharmacological potential and activity of natural plant compounds. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 751-764, 2016. PMID:25504804

  19. Protective effect of lactofermented beetroot juice against aberrant crypt foci formation and genotoxicity of fecal water in rats.

    PubMed

    Klewicka, Elżbieta; Nowak, Adriana; Zduńczyk, Zenon; Cukrowska, Bożena; Błasiak, Janusz

    2012-09-01

    The aim of the study was to investigate the effects of beetroot juice fermented by Lactobacillus brevis 0944 and Lactobacillus paracasei 0920 (FBJ) on carcinogen induction of aberrant crypt foci (ACF) in rat colon. N-Nitroso-N-methylurea (MNU) was used as carcinogen, which was administrated intragastrically at a dose of 50 mg/kg on the 23rd and 26th day of the experiment. Additionally, we investigated the cytotoxicity and genotoxicity of fecal water from experimental animals in the Caco 2 cell line, evaluated by MTT/NRU tests and the comet assay, respectively, as well as by the count of bacteria adhered to colon epithelium assessed by fluorescence in situ hybridization and DAPI staining. The experimental rats were divided into four groups based on diet type: basal diet, basal diet supplemented with FBJ, basal diet and MNU treatment, and basal diet supplemented with FBJ and MNU treatment. FBJ significantly reduced the number of ACF in MNU-treated rats (from 55±18 to 21±6). Moreover, the number of extensive aberrations (more than 4 crypts in a focus) decreased from 45±21 to 7±4. Fecal water obtained from rats fed with an MNU-containing diet induced pronounced cytotoxic and genotoxic effects in Caco 2 cells, but FBJ supplementation of the diet abolished these effects. The presence of FBJ in the diet significantly increased the count of bacteria, including Lactobacillus/Enterococcus, adhered to colonic epithelium. In conclusion, supplementation of the diet with lactofermented beetroot juice may provide protection against precancerous aberrant crypt formation and reduce the cytotoxic and genotoxic effects of fecal water. PMID:21185162

  20. Genotoxic and cytostatic effects of 6-pentadecyl salicylic anacardic acid in transformed cell lines and peripheral blood mononuclear cells.

    PubMed

    Alam-Escamilla, David; Estrada-Muñiz, Elizabet; Solís-Villegas, Erik; Elizondo, Guillermo; Vega, Libia

    2015-01-01

    In Mexico, as in many other countries, traditional medicine is used for the treatment of several diseases. In particular, Amphipterygium adstringens infusion is used for gastritis, gastric ulcers, and gastric cancer. Extracts from this tree have microbicidal effects against Helicobacter pylori, an important risk factor for gastric cancer development. Anacardic acids are constituents of A. adstringens, and 6-pentadecyl salicylic acid (6-PSA) is the most abundant. However, there is a lack of information regarding the effects of 6-PSA on cancer cells. Therefore, we investigated whether 6-PSA has differential effects on the induction of genotoxicity, cytostaticity, and apoptosis in normal human peripheral blood mononucleated cells (PBMCs), bone marrow polychromatic erythrocytes of Balb/c mice, and human transformed cell lines derived from both gastric cancer (AGS cells) and leukaemia (K562 cells). Treatment with 6-PSA (30-150 μM) reduced the viability of AGS and K562 cells together with a moderate, but significant, increase in the frequency of micronucleated cells and the induction of DNA breakage (Comet Assay). Moreover, 6-PSA increased the apoptosis rate in both the AGS and K562 cell lines in a caspase 8-dependent manner. In contrast, neither cytotoxicity nor genotoxicity were observed in PBMCs or bone marrow polychromatic erythrocytes of Balb/c mice after treatment with low doses of 6-PSA (0.2-2.0 mg/Kg). Instead, 6-PSA treatment resulted in the inhibition of PBMC proliferation, which was reversible after the compound was removed. Additionally, 6-PSA treatments (2-20 mg/Kg) increased the frequency of mature polychromatic erythrocytes in the bone marrow, suggesting a possible effect on the differentiation process of immune cells. The present results indicate that 6-PSA induces cytotoxicity and moderate genotoxicity, together with an increase in the apoptosis rate, in a caspase 8-dependent manner in gastric cancer cells. In contrast, a low toxicity was observed when

  1. BisGMA-induced cytotoxicity and genotoxicity in macrophages are attenuated by wogonin via reduction of intrinsic caspase pathway activation.

    PubMed

    Huang, Fu-Mei; Chang, Yu-Chao; Lee, Shiuan-Shinn; Yeh, Chung-Hsin; Lee, Kevin Gee; Huang, Yi-Chun; Chen, Chun-Jung; Chen, Wen-Ying; Pan, Pin-Ho; Kuan, Yu-Hsiang

    2016-02-01

    Bisphenol-A-glycidyldimethacrylate (BisGMA) is a frequently used monomer in dental restorative resins. However, BisGMA could leach from dental restorative resins after polymerization leading to inflammation in the peripheral environment. Wogonin, a natural flavone derivative, has several benefits, such as antioxidative, anti-inflammatory and neuroprotective properties. Pretreatment of macrophage RAW264.7 cells with wogonin inhibited cytotoxicity which is induced by BisGMA in a concentration-dependent manner. BisGMA induced apoptotic responses, such as redistribution of phosphatidylserine from the internal to the external membrane and DNA fragmentation, were decreased by wogonin in a concentration-dependent manner. In addition, BisGMA-induced genotoxicity, which detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by wogonin in a concentration-dependent manner. Furthermore, wogonin suppressed BisGMA-induced activation of intrinsic caspase pathways, such as caspases-3 and -8. Parallel trends were observed in inhibition of caspase-3 and -8 activities, apoptosis, and genotoxicity. These results indicate wogonin suppressed the BisGMA-induced apoptosis and genotoxicity mainly via intrinsic caspase pathway in macrophages. PMID:26756871

  2. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test.

    PubMed

    Reis, Érica de Melo; Rezende, Alexandre Azenha Alves de; Oliveira, Pollyanna Francielli de; Nicolella, Heloiza Diniz; Tavares, Denise Crispim; Silva, Anielle Christine Almeida; Dantas, Noelio Oliveira; Spanó, Mário Antônio

    2016-10-01

    Titanium dioxide nanocrystals (TiO2 NCs) crystalline structures include anatase, rutile and brookite. This study evaluated the genotoxic effects of 3.4 and 6.2 nm anatase TiO2 NCs and 78.0 nm predominantly rutile TiO2 NCs through an in vitro micronucleus (MN) assay using V79 cells and an in vivo somatic mutation and recombination test in Drosophila wings. The MN assay was performed with nontoxic concentrations of TiO2 NCs. Only anatase (3.4 nm) at the highest concentration (120 μM) induced genotoxicity in V79 cells. In the in vivo test, Drosophila melanogaster larvae obtained from standard (ST) or high bioactivation (HB) crosses were treated with TiO2 NCs. In the ST cross, no mutagenic effects were observed. However, in the HB cross, TiO2 NCs (3.4 nm) were mutagenic at 1.5625 and 3.125 mM, while 78.0 nm NCs increased mutant spots at all concentrations tested except 3.125 mM. Only the smallest anatase TiO2 NCs induced mutagenic effects in vitro and in vivo. For rutile TiO2 NCs, no clastogenic/aneugenic effects were observed in the MN assay. However, they were mutagenic in Drosophila. Therefore, both anatase and rutile TiO2 NCs induced mutagenicity. Further research is necessary to clarify the TiO2 NCs genotoxic/mutagenic action mechanisms. PMID:27562929

  3. Environmental effects of dredging: Methods for the assessment of the genotoxic effects of environmental contaminants. Glossary and references. Technical notes

    SciTech Connect

    Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.

    1995-07-01

    This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information in these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.

  4. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles.

    PubMed

    Grissa, Intissar; Elghoul, Jaber; Ezzi, Lobna; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; El Mir, Lassaad; Mehdi, Meriem; Ben Cheikh, Hassen; Haouas, Zohra

    2015-12-01

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for their whiteness and opacity. We investigated the hematological effects and genotoxicity of anatase TiO2 NPs following sub-chronic oral gavage treatment. TiO2-NPs were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Wistar rats were treated with anatase TiO2 NPs by intragastric administration for 60 days. Hematological analysis showed a significant decrease in RBC and HCT and a significant increase in MCV, PLT, MPV and WBC at higher doses. Furthermore, abnormally shaped red cells, sometimes containing micronuclei, and hyper-segmented neutrophil nuclei were observed with TiO2 NPs treatment. The micronucleus test revealed damage to chromosomes in rat bone marrow at 100 and 200mg/kg bw; the comet assay showed significant DNA damage at the same doses. PMID:26653980

  5. Assessment of in vitro genotoxic and cytotoxic effects of flurbiprofen on human cultured lymphocytes.

    PubMed

    Timocin, Taygun; Ila, Hasan Basri; Dordu, Tuba; Husunet, Mehmet Tahir; Tazehkand, Mostafa Norizadeh; Valipour, Ebrahim; Topaktas, Mehmet

    2016-07-01

    Flurbiprofen is non-steroidal anti-inflammatory drug which is commonly used for its analgesic, antipyretic, and anti-inflammatory effects. The purpose of the study was to explore the genotoxic and cytotoxic effects of flurbiprofen in human cultured lymphocytes by sister chromatid exchange, chromosome aberration, and cytokinesis-blocked micronucleus tests. 10, 20, 30, and 40 μg/mL concentrations of flurbiprofen (solvent is DMSO) were used to treatment of human cultured lymphocytes at two different treatment periods (24 and 48 h). Flurbiprofen had no significant genotoxic effect in any of these tests. But exposing to flurbiprofen for 24 and 48 h led to significant decrease on proliferation index, mitotic index, and nuclear division index (NDI). Also, all decreases were concentration-dependent (except NDI at 24 h treatment period). Consequently, the findings of this research showed that flurbiprofen had cytotoxic effects in human blood lymphocytes. PMID:26738809

  6. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates.

    PubMed

    Murali Achary, V Mohan; Panda, Brahma B

    2010-03-01

    Experiments employing growing root cells of Allium cepa were conducted with a view to elucidate the role of reactive oxygen intermediates (ROI) in aluminium (Al)-induced DNA damage, cell death and adaptive response to genotoxic challenge imposed by ethyl methanesulphonate (EMS) or methyl mercuric chloride (MMCl). In a first set of experiments, root cells in planta were treated with Al at high concentrations (200-800 microM) for 3 h without or with pre-treatments of dihydroxybenzene disulphonic acid (Tiron) and dimethylthiourea (DMTU) for 2 h that trap O(2)(.-)and hydrogen peroxide (H(2)O(2)), respectively. At the end of treatments, generation of O(2)(.-) and H(2)O(2), cell death and DNA damage were determined. In a second set of experiments, root cells in planta were conditioned by Al at low concentrations (5 or 10 microM) for 2 h and after a 2 h intertreatment interval challenged by MMCl or EMS for 3 h without or with a pre-treatment of Tiron or DMTU. Conditioning treatments, in addition, included two oxidative agents viz rose bengal and H(2)O(2) for comparison. Following treatments, root cells in planta were allowed to recover in tap water. Genotoxicity and DNA damage were evaluated by micronucleus (MN), chromosome aberration (CA) or spindle aberration (SA) and comet assays at different hours (0-30 h) of recovery. The results demonstrated that whereas Al at high concentrations induced DNA damage and cell death, in low concentrations induced adaptive response conferring genomic protection from genotoxic challenge imposed by MMCl, EMS and Al. Pre-treatments of Tiron and DMTU prevented Al-induced DNA damage, cell death, as well as genotoxic adaptation to MMCl and EMS, significantly. The findings underscored the biphasic (hormetic) mode of action of Al that at high doses induced DNA damage and at low non-toxic doses conferred genomic protection, both of which were mediated through ROI but perhaps involving different networks. PMID:19955331

  7. Assessment of genotoxic, cytotoxic, and protective effects of Salacia crassifolia (Mart. Ex. Schult.) G. Don. stem bark fractions in mice.

    PubMed

    Carneiro, C C; Silva, C R; Menezes, A C S; Pérez, C N; Chen-Chen, L

    2013-01-01

    Salacia crassifolia (Mart. Ex. Schult.) G. Don., popularly known in Brazil as "bacupari", "cascudo", and "saputá", is a shrub of the Celastraceae family that is unique to the Brazilian Cerrado region. In folk medicine, this plant has been mainly used to treat skin cancer and gastric ulcers. In the present study, the genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of S. crassifolia stem bark fractions (hexane, ethyl acetate, and hydroalcoholic extracts) were evaluated using the mouse bone marrow micronucleus test. Our results showed that none of the S. crassifolia fractions led to a significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCE) (P > 0.05), suggesting the absence of genotoxicity. In the antigenotoxicity assessment, a significant decrease in the MNPCE frequency was observed in all fractions of this plant (P < 0.05), demonstrating its protective action against genotoxicity induced by mitomycin C (MMC), which was used as the positive control. Only the hexane fraction of S. crassifolia significantly decreased the poly- and normochromatic erythrocyte ratio (PCE/NCE) in all doses tested (P < 0.05), demonstrating its cytotoxic activity. In association with MMC, both ethyl acetate and hydroalcoholic fractions significantly increased the PCE/NCE ratio in almost all doses tested (P < 0.05), demonstrating the protective action of S. crassifolia against the cytotoxic effect of the positive control. In contrast, the hexane fraction presented a significant decrease in the PCE/NCE ratio in all treatments (P < 0.05), demonstrating an increase in this plant's cytotoxicity in mouse bone marrow cells. PMID:23884760

  8. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    PubMed

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells. PMID:25752428

  9. In-Vitro Carbofuran Induced Genotoxicity in Human Lymphocytes and Its Mitigation by Vitamins C and E

    PubMed Central

    Sharma, Ratnesh Kumar; Sharma, Bechan

    2012-01-01

    Various efforts have been made in past in order to predict the underlying mechanism of pesticide-induced toxicity using in vitro and animal models, however, these predictions may or may not be directly correlated with humans. The present study was designed to investigate the carbofuran induced genotoxicity and its amelioration by vitamins C and E by treating human peripheral blood lymphocytes (PBLs) with different concentrations (0, 0.5, 1.25, 2.5, 3.75 and 5.0 μM) of this compound. The treatment of PBLs with carbofuran displayed significant DNA damage in concentration dependent manner. The carbofuran induced genotoxicity could be ameliorated to considerable extent by pretreatment of PBLs with equimolar (10 μM) concentration of each of the vitamins C and E; the magnitude of protection by vitamin E being higher than by vitamin C. Also, it was found that the level of protection by these vitamins was higher when PBLs were treated with lower concentrations of pesticide. The significant DNA damage as observed by H2O2, a positive control in the present study, and its amelioration by natural antioxidants (vitamins C and E) lend an evidence to suggest that carbofuran would have caused genotoxicity via pesticide induced oxidative stress. PMID:22377731

  10. Single and combined genotoxicity effects of six pollutants on THP-1 cells.

    PubMed

    Xiao, Dan; Wang, Haiyan; Han, Daxiong

    2016-09-01

    The objective of this study was to evaluate the single and combined genotoxic effects of six food pollutants (Chrysoidine G, Sudan I, acid orange II, malachite green, acrylamide, and potassium bromate) on THP-1 cells through comet assay. The results of the single tests indicated that the pollutants increased the percentage of tail DNA (% tail DNA) in a dose-dependent manner. Moreover, the % tail DNA values induced by synthetic colorants (Chrysoidine G, Sudan I, acid orange II, and malachite green) were significantly higher than those by acrylamide or potassium bromate at most concentrations. In the combined tests, Chrysoidine G (422 μmol/L) or acrylamide (400 μmol/L) was mixed with different concentrations of the other five pollutants respectively. In the first combined tests, most mixtures significantly increased the % tail DNA values with the exception of Chrysoidine G and acid orange II. In the second tests, there were no significant differences in the % tail DNA values between the single and combined tests at most cases. PMID:27375233

  11. Cytotoxic and Genotoxic effects of Arsenic and Lead on Human Adipose Derived Mesenchymal Stem Cells (AMSCs)

    PubMed Central

    Shakoori, AR; Ahmad, A

    2013-01-01

    Arsenic and lead, known to have genotoxic and mutagenic effects, are ubiquitously distributed in the environment. The presence of arsenic in drinking water has been a serious health problem in many countries. Human exposure to these metals has also increased due to rapid industrialization and their use in formulation of many products. Liposuction material is a rich source of stem cells. In the present study cytotoxic and genotoxic effects of these metals were tested on adipose derived mesenchymal stem cells (AMSCs). Cells were exposed to 1-10 μg/ml and 10-100 μg/ml concentration of arsenic and lead, respectively, for 6, 12, 24 and 48 h. The cytotoxic effects were measured by neutral red uptake assay, while the genotoxic effects were tested by comet assay. The growth of cells decreased with increasing concentration and the duration of exposure to arsenic. Even the morphology of cells was changed; they became round at 10 μg /ml of arsenic. The cell growth was also decreased after exposure to lead, though it proved to be less toxic when cells were exposed for longer duration. The cell morphology remained unchanged. DNA damage was observed in the metal treated cells. Different parameters of comet assay were investigated for control and treated cells which indicated more DNA damage in arsenic treated cells compared to that of lead. Intact nuclei were observed in control cells. Present study clearly demonstrates that both arsenic and lead have cytotoxic and genotoxic effects on AMSCs, though arsenic compared to lead has more deleterious effects on AMSCs. PMID:24693207

  12. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  13. Cytotoxic and genotoxic effects of mercury in house fly Musca domestica (Diptera: Muscidae).

    PubMed

    Mishra, N; Tewari, R R

    2011-01-01

    Mercury, one of the most widely diffused and hazardous environmental contaminants, induces oxidative stress in organisms, which ultimately leads to genotoxicity and cytotoxicity. House fly Musca domestica L. was used as a model for assaying the genotoxic potential of mercury with the help of micronucleus assay, chromosomal aberration assay as end points and cytotoxicity by assaying the mitotic index and the extent of tissue damage by trypan blue dye exclusion. Late third instar larvae were exposed to different dietary concentrations of mercury (0.0001 mg/ml- 10 mg/ml) for various time intervals. A dose dependent increase in chromosomal aberrations, micronucleus frequency and mitotic index was observed. Micronucleus frequency increases with time while mitotic index decreases showing decreasing rate of cell proliferation due to an increase in cell death. Trypan blue staining gives the visual manifestation of cytotoxicity at higher concentrations of mercury (1 mg/ml- 10mg/ml). The present study suggests that the house fly model may be used to assay the genotoxicity and cytotoxicity of mercury as well as other environmental pollutants. PMID:21366971

  14. Genotoxic effects of water from São Francisco River, Brazil, in Astyanax paranae.

    PubMed

    Ribeiro, Diego Luis; Barcelos, Gustavo Rafael Mazzaron; d'Arce, Luciana Paula Grégio

    2014-09-01

    Aquatic monitoring is an important tool for identifying potential compounds in rivers that may damage the environment. Here, we evaluate the potential genotoxic effects of water samples from São Francisco River (Brazil) using the micronuclei (MN) assay in resident species, Astyanax paranae. Four seasonal collections occurred between the years 2009 and 2010, at three locations between two nearby cities in the region. It was clearly observed an increase of MN frequency in fish caught in the river. This result is most likely due to the sewage contamination from the treatment plant, the waste pesticides from crops and the lack of riparian vegetation along the river, especially during the winter when there was a significant increase in the frequencies of MN. These results indicate that compounds in waters from São Francisco River may have genotoxic effects and consequently, cause damage to the environment as well as to human health. PMID:24849712

  15. A review of the genotoxic and carcinogenic effects of aspartame: does it safe or not?

    PubMed

    Yılmaz, Serkan; Uçar, Aslı

    2014-12-01

    The objective of this article is to review genotoxicologic and carcinogenic profile of the artificial sweetener aspartame. Aspartame is a synthetic dipeptide, nearly 180-200 times sweeter than sucrose. It is the most widely used artificial sweetener especially in carbonated and powdered soft drinks, beverages, drugs and hygiene products. There is a discussion ongoing for many years whether aspartame posses genotoxic and carcinogenic risk for humans. This question led to many studies to specify the adverse effects of aspartame. Therefore, we aimed to review the oldest to latest works published in major indices to gather information within this article. With respect to published data, genotoxicity and carcinogenicity of aspartame is still confusing. So, consumers should be aware of the potential side effects of aspartame before they consume it. PMID:24510317

  16. Beta-carotene breakdown products enhance genotoxic effects of oxidative stress in primary rat hepatocytes.

    PubMed

    Alija, A J; Bresgen, N; Sommerburg, O; Langhans, C D; Siems, W; Eckl, P M

    2006-06-01

    Since it has to be expected that individuals exposed to oxidative stress who take supplements of beta-carotene are simultaneously exposed to both beta-carotene cleavage products (CPs) and oxidative stress, and both exposures have been demonstrated to cause genotoxic effects in primary rat hepatocytes, cyto- and genotoxic effects on primary rat hepatocytes after supplementation of the medium with increasing concentrations of a CP mixture during exposure to oxidative stress by treatment with either DMNQ (2,3-dimethoxy-1,4-naphthoquinone) or hypoxia/reoxygenation (Hy/Reox) was investigated. The cytological endpoints analysed were the mitotic indices, the percentages of apoptotic and necrotic cells, the percentages of micronucleated (MN) cells and the number of chromosomal aberrations (CAs) and sister chromatid exchanges (SCE). The results obtained clearly demonstrate that the CP mixture enhances the genotoxic effects of oxidative stress exposure, whereas it had no effect at all on the endpoints of cytotoxicity studied. These results further support the hypothesis that CP might be responsible for the reported carcinogenic response in the beta-CArotene and Retinol Efficacy Trial (CARET) and Alpha-Tocopherol Beta-carotene Cancer prevention (ATBC) chemoprevention trials. PMID:16418177

  17. The genotoxic effects of benzo[a]pyrene and methamidophos on black porgy evaluated by comet assay

    NASA Astrophysics Data System (ADS)

    Liu, Rixian; Hong, Huasheng; Wang, Xinhong; Wang, Kejian; Wang, Chunguang

    2005-12-01

    In this study, two common pollutants (benzo[a]pyrene and methamidophos) in marine environment were tested by comet assay for their inducement of in vivo genotoxic effect to the blood cells of black porgy ( Acanthopagrus schlegeli). The fish was exposed to 2 μg/L of benzo[a]pyrene (BaP) and methamidophos, and their mixture. The assay was performed on whole blood at 2 h, 5 h, 24 h and 96 h exposure intervals. A significant increase in DNA damage was observed in each treatment with the pollutants. Additive effect of BaP and methamidophos was also found in the experiment. However, the decrease ratios of DNA damage for 5 h and 96 h exposure interals compared with 2 h and 24 h exposure ones, respectively, were noticed. This phenomenon may be explained by the function of repairing process via enzyme cytochrome P450 in the animal. Evidence of the genotoxicity of organophosphorus pesticides (OPs) and polynuclear aromatic hydrocarbons (PAHs) on marine fish are discussed in this paper.

  18. Tomato and garlic by gavage modulate 7,12-dimethylbenz[a]anthracene-induced genotoxicity and oxidative stress in mice.

    PubMed

    Bhuvaneswari, V; Velmurugan, B; Abraham, S K; Nagini, S

    2004-07-01

    Chemoprotection by dietary agents is a promising strategy for cancer prevention. The aim of the present study was to evaluate the combined effect of tomato and garlic against 7,12-dimethylbenz-[a]anthracene (DMBA)-induced genetic damage and oxidative stress in 12-14-week-old male Swiss albino mice. The animals were randomized into experimental and control groups and divided into eight groups of five animals each. Group 1 animals were injected intraperitoneally with 35 mg/kg body weight DMBA suspended in peanut oil as a single dose. Groups 2-4 animals received tomato (500 mg/kg body weight), garlic (125 mg/kg body weight) and a combination of tomato and garlic for 5 days by gavage, respectively, followed by DMBA 1.5 h after the final feeding. The doses of tomato and garlic correspond to the average human daily consumption. Animals in groups 5, 6 and 7 received tomato alone, garlic alone and tomato + garlic combination, respectively, for 5 days. Group 8 animals received the same volume of water and served as control. The incidence of bone marrow micronuclei and the extent of lipid peroxidation and the concentrations of antioxidants glutathione, glutathione peroxidase and glutathione-S-transferase were measured in the liver, 48 h after DMBA exposure. Increased frequency of micronuclei and enhanced lipid peroxidation accompanied by compromised antioxidant defenses were observed in DMBA-treated animals. Although pretreatment with tomato or garlic significantly reduced the frequency of DMBA-induced bone marrow micronuclei, the combination of tomato and garlic exhibited more profound effect in inhibiting DMBA-induced genotoxicity and oxidative stress. We suggest that a broad spectrum of antimutagenic and anticlastogenic effects can be achieved through an effective combination of functional foods such as tomato and garlic. PMID:15264010

  19. Genotoxic effects of water pollution on two fish species living in Karasu River, Erzurum, Turkey.

    PubMed

    Yazıcı, Zehra; Sişman, Turgay

    2014-11-01

    Karasu River, which is the only river in the Erzurum plain, is the source of the Euphrates River (Eastern Anatolia of Turkey). The river is in a serious environmental situation as a result of pollution by agricultural and industrial sewage and domestic discharges. The present study aims to evaluate genotoxic effects of toxic metals in chub, Leuciscus cephalus, and transcaucasian barb, Capoeta capoeta, collected from contaminated site of the Karasu River, in comparison with fish from an unpolluted reference site. Heavy metal concentrations in surface water of the river were determined. The condition factor (CF) was taken as a general biomarker of the health of the fish, and genotoxicity assays such as micronucleus (MN) and other nuclear abnormalities (NA) were carried out on the fish species studied. MN and NA such as kidney-shaped nucleus, notched nucleus, binucleated, lobed nucleus, and blebbed nucleus were assessed in peripheral blood erythrocytes, gill epithelial cells, and liver cells of the fish. A significant decrease in CF values associated with a significant elevation in MN and NA frequencies was observed in fish collected from the polluted sites compared with those from the reference site. Results of the current study show the significance of integrating a set of biomarkers to identify the effects of anthropogenic pollution. High concentrations of heavy metals have a potential genotoxic effects, and the toxicity is possibly related to industrial, agricultural, and domestic activities. PMID:25117493

  20. Control and target gene selection for studies on UV-induced genotoxicity in whales

    PubMed Central

    2013-01-01

    on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18. PMID:23837727

  1. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-01

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity. PMID:25853218

  2. Bioaccumulation of nickel and its biochemical and genotoxic effects on juveniles of the neotropical fish Prochilodus lineatus.

    PubMed

    Palermo, Francine F; Risso, Wagner E; Simonato, Juliana D; Martinez, Claudia B R

    2015-06-01

    Juveniles of the freshwater fish Prochilodus lineatus were exposed to three concentrations of nickel (Ni): 25, 250 and 2500 µg L(-1) or water only for periods of 24 and 96 h to test for Ni bioaccumulation, its effects on antioxidant defenses and metallothioneins, and the occurrence of DNA damage. After exposure, the fish were sampled and tissue removed from the gills, liver, kidney and muscle to test for Ni accumulation and conduct biochemical (gills and liver) and genotoxic (blood cells and gills) analyses. The results showed that Ni accumulates in the organs in different proportions (kidney>liver>gills>muscle) and accumulation varied according to exposure time. Metallothionein (MT) levels increased in the liver and gills after exposure to Ni, implying that the presence of Ni in these tissues could induce MT synthesis. We also observed that Ni exposure affected antioxidant defenses, increasing lipid peroxidation in the liver of fish exposed to Ni for 96 h at the highest concentration tested. DNA damage increased in both blood cells and gills of fish exposed to all Ni concentrations, indicating the genotoxic potential of Ni on fish. We therefore concluded that Ni accumulates in various tissues and results in oxidative and DNA damage in P. lineatus, and that the maximum permitted Ni concentration set in Brazilian legislation (25 µg L(-1)) for freshwaters is not safe for this species. PMID:25744913

  3. Long-term genotoxic effects of immunosuppressive drugs on lymphocytes of kidney transplant recipients.

    PubMed

    Lizotti Cilião, Heloísa; Batista de Oliveira Camargo-Godoy, Rossana; Mazzaron Barcelos, Gustavo Rafael; Zanuto, Amanda; Daher Alvares Delfino, Vinicius; de Syllos Cólus, Ilce Mara

    2016-08-01

    Immunosuppressive therapy can prevent rejection after organ transplantation. However, increased cancer risk is a serious complication among patients undergoing such therapy. We have evaluated whether prolonged use of immunosuppressive drugs is genotoxic. DNA instability was assessed, using the comet and micronucleus assays, in blood lymphocytes of 76 kidney transplant patients. DNA damage detected by the comet assay increased with time after transplantation. The estimated glomerular filtration rate of the patients did not influence the incidence of DNA damage. No association between micronucleated mononucleated cells and time elapsed after transplantation was observed. Our results suggest that prolonged use of immunosuppressive drugs in kidney transplant patients can induce genetic instability. PMID:27476335

  4. Genetic toxicology of phthalate esters: mutagenic and other genotoxic effects.

    PubMed Central

    Douglas, G R; Hugenholtz, A P; Blakey, D H

    1986-01-01

    The effects of DEHP on sperm morphology and on peripheral blood micronuclei were studied for 12 weeks following five subacute IP injections of DEHP at 1/6, 1/12, and 1/60 of the LD50 per day. Sperm morphology was examined in both adult mice and rats, while peripheral blood micronuclei were scored in mice up to 4 weeks after treatment. In mice, DEHP at 1/6 LD50 significantly depressed body weight gain for up to 12 weeks after treatment, and reduced epididymal sperm number by 4 weeks. Numbers of morphologically abnormal sperm did not differ from controls in the 12 weeks following treatment. In addition, DEHP did not increase the numbers of peripheral blood micronuclei. Studies in the rat indicated that exposure to doses of 1/6 and 1/12 of the LD50 per day of DEHP resulted in a reduced gain in body weight compared to controls. Testis weight, sperm number, and numbers of morphologically abnormal sperm were unaffected by DEHP following treatment. In separate experiments, DEHP did not induce sister chromatid exchange (SCE) or DNA damage in Chinese hamster ovary (CHO) cells. Although DEHP is known to cause testicular atrophy in rats and to a lesser extent in mice, it did not cause an increase in abnormal sperm in either species. Together with the CHO and micronucleus data, these findings suggest that DEHP has a low probability of causing genetic damage capable of being transmitted through the male germ line. PMID:3709450

  5. Genotoxic effects of catmint (Nepeta meyeri Benth.) essential oils on some weed and crop plants.

    PubMed

    Kekeç, Güzin; Mutlu, Salih; Alpsoy, Lokman; Sakçali, M Serdal; Atici, Ökkes

    2013-07-01

    This study investigates the genotoxicity of the essential oils extracted from the aerial parts of catmint (Nepeta meyeri Benth.) against two weeds (Bromus danthoniae and Lactuca serriola) and two crop plants (Brassica napus and Zea mays). The essential oils of N. meyeri analyzed by gas chromatography-mass spectrometry contained 14 compounds, with 4aα, 7α, 7aβ-nepetalactone (83.4%), 4aα, 7α, and 7aα-nepetalactone (8.83%) as the major components. The oils were diluted (25, 50, 100, and 150 ppm) and the solutions were applied to seeds or leaves of these plants. The study compared the germination percentage and random amplified polymorphic DNA (RAPD) results with the control group. The results showed that the oils had a strong inhibitory activity and caused a change in RAPD profiles in terms of variation in band intensity, loss of bands, and appearance of new bands compared with the control group. The results suggested that RAPD analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals. This study indicates the genotoxical potential of N. meyeri essential oils on weed and crop plants. PMID:22434692

  6. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    PubMed

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants. PMID:21495879

  7. Dose-Response for Multiple Biomarkers of Exposure and Genotoxic Effect Following Repeated Treatment of Rats with the Alkylating Agents, MMS and MNU.

    PubMed

    Ji, Zhiying; LeBaron, Matthew J; Schisler, Melissa R; Zhang, Fagen; Bartels, Michael J; Gollapudi, B Bhaskar; Pottenger, Lynn H

    2016-05-01

    The nature of the dose-response relationship for various in vivo endpoints of exposure and effect were investigated using the alkylating agents, methyl methanesulfonate (MMS) and methylnitrosourea (MNU). Six male F344 rats/group were dosed orally with 0, 0.5, 1, 5, 25 or 50mg/kg bw/day (mkd) of MMS, or 0, 0.01, 0.1, 1, 5, 10, 25 or 50 mkd of MNU, for 4 consecutive days and sacrificed 24h after the last dose. The dose-responses for multiple biomarkers of exposure and genotoxic effect were investigated. In MMS-treated rats, the hemoglobin adduct level, a systemic exposure biomarker, increased linearly with dose (r (2) = 0.9990, P < 0.05), indicating the systemic availability of MMS; however, the N7MeG DNA adduct, a target exposure biomarker, exhibited a non-linear dose-response in blood and liver tissues. Blood reticulocyte micronuclei (MN), a genotoxic effect biomarker, exhibited a clear no-observed-genotoxic-effect-level (NOGEL) of 5 mkd as a point of departure (PoD) for MMS. Two separate dose-response models, the Lutz and Lutz model and the stepwise approach using PROC REG both supported a bilinear/threshold dose-response for MN induction. Liver gene expression, a mechanistic endpoint, also exhibited a bilinear dose-response. Similarly, in MNU-treated rats, hepatic DNA adducts, gene expression changes and MN all exhibited clear PoDs, with a NOGEL of 1 mkd for MN induction, although dose-response modeling of the MNU-induced MN data showed a better statistical fit for a linear dose-response. In summary, these results provide in vivo data that support the existence of clear non-linear dose-responses for a number of biologically significant events along the pathway for genotoxicity induced by DNA-reactive agents. PMID:26040483

  8. Hospital waste incinerator bottom ash leachate induced cyto-genotoxicity in Allium cepa and reproductive toxicity in mice.

    PubMed

    Akinbola, Temitayo I; Adeyemi, Adetutu; Morenikeji, Olajumoke A; Bakare, Adekunle A; Alimba, Chibuisi G

    2011-07-01

    The potentials of hospital incinerator bottom ash leachate (HIBAL) to induce cyto-genotoxicity in Allium cepa and reproductive anomalies in the mouse were investigated. The leachate obtained from simulation of the bottom ash was analyzed for some physico-chemical parameters. The A. cepa, mouse sperm morphology and histopathological tests were carried out at concentrations ranging from 1% to 50% of the leachate sample. In A. cepa, HIBAL caused significant (p < 0.05) inhibition of root growth and induction of chromosomal aberrations. In the animal assays, there was 100% mortality at the 50% concentrations. The leachate caused insignificant (p > 0.05) concentration-dependent induction of various types of sperm morphology. There was accumulation of fluid in the seminiferous tubule lumen and necrosis of stem cells in the testes. These effects were believed to be provoked by the somatic and germ cell genotoxins, particularly the heavy metals in the leachate. Our finding is of environmental and public health significance. PMID:21343229

  9. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer

    SciTech Connect

    Klein, Catherine B.; Leszczynska, Joanna; Hickey, Christina; Rossman, Toby G.

    2007-08-01

    Arsenic in drinking water, a mixture of arsenite and arsenate, is associated with increased skin and other cancers in Asia and Latin America, but not the United States. Arsenite alone in drinking water does not cause skin cancers in experimental animals; therefore, it is not a complete carcinogen in skin. We recently showed that low concentrations of arsenite enhanced the tumorigenicity of solar UV irradiation in hairless mice, suggesting arsenic cocarcinogenesis with sunlight in skin cancer and perhaps with different carcinogenic partners for lung and bladder tumors. Cocarcinogenic mechanisms could include blocking DNA repair, stimulating angiogenesis, altering DNA methylation patterns, dysregulating cell cycle control, induction of aneuploidy and blocking apoptosis. Arsenicals are documented clastogens but not strong mutagens, with weak mutagenic activity reported at highly toxic concentrations of inorganic arsenic. Previously, we showed that arsenite, but not monomethylarsonous acid (MMA[III]), induced delayed mutagenesis in HOS cells. Here, we report new data on the mutagenicity of the trivalent methylated arsenic metabolites MMA(III) and dimethylarsinous acid [DMA(III)] at the gpt locus in Chinese hamster G12 cells. Both methylated arsenicals seemed mutagenic with apparent sublinear dose responses. However, significant mutagenesis occurred only at highly toxic concentrations of MMA(III). Most mutants induced by MMA(III) and DMA(III) exhibited transgene deletions. Some non-deletion mutants exhibited altered DNA methylation. A critical discussion of cell survival leads us to conclude that clastogenesis occurs primarily at highly cytotoxic arsenic concentrations, casting further doubt as to whether a genotoxic mode of action (MOA) for arsenicals is supportable.

  10. The genotoxicity of selenium.

    PubMed

    Shamberger, R J

    1985-07-01

    Selenium at nutritional levels has been shown to have numerous anticarcinogenic or preventative effects against carcinogen-induced breast, colon, liver and skin cancer in animals. Many of these anticarcinogenic effects have been summarized. In addition, numerous mutagenic and antimutagenic effects of selenium compounds have been reported. Some of the selenium compounds frequently tested for mutagenicity are listed in Table 1. Because of the numerous reported anticarcinogenic and preventative effects of selenium, many individuals are supplementing their diets with amounts of selenium that are greater than the recommended daily requirement. Selenium is also used widely in industrial products such as selenium rectifiers, photoelectric batteries, alloys and paints. Because selenium at higher levels is known to be toxic, there should be a greater understanding about its genotoxic as well as its beneficial effect. The object of this review is to summarize experimental evidence both for the antimutagenic and the mutagenic effect of selenium. PMID:3923345

  11. Ocimum sanctum Linn. (Holy Basil) ethanolic leaf extract protects against 7,12-dimethylbenz(a)anthracene-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes.

    PubMed

    Manikandan, P; Murugan, R Senthil; Abbas, H; Abraham, S K; Nagini, S

    2007-09-01

    The present study was designed to evaluate the protective effects of ethanolic Ocimum sanctum leaf extract against 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes. Four different concentrations of ethanolic O. sanctum leaf extract (100, 200, 300, and 400 mg/kg of body weight) were administered to Wistar rats by intragastric intubation for five consecutive days followed by intraperitoneal injection of DMBA (35 mg/kg of body weight) 90 minutes after the final dose of the extract. Administration of DMBA increased bone marrow micronuclei, phase I enzymes, lipid peroxidation, and protein carbonyl formation. This was accompanied by a significant decrease in the activities of phase II detoxification enzymes and antioxidants in the liver, erythrocytes, and bone marrow. Pretreatment with ethanolic O. sanctum leaf extract at a concentration of 300 mg/kg of body weight significantly reduced micronuclei formation and phase I enzymes as well as lipid and protein oxidation with enhanced antioxidant and phase II enzyme activities. The results of the present study suggest that ethanolic O. sanctum leaf extract inhibits DMBA-induced genotoxicity and oxidative stress by modulating xenobiotic-metabolizing enzymes, reducing the extent of lipid and protein oxidation and up-regulating antioxidant defenses. PMID:17887944

  12. The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication.

    PubMed

    Geyikoglu, Fatime; Türkez, Hasan; Bakir, Tülay Ozhan; Cicek, Mustafa

    2013-10-01

    Aluminium (Al) is used in water purification and is also present in several manufactured foods and medicines. Al is known to induce a broad range of physiological, biochemical and behavioural dysfunctions in laboratory animals and humans. This investigation was carried out to investigate the effects of subchronic exposure to Al (as AlCl₃) in rats. Sprague-Dawley rats were randomly separated into two groups. Group 1 rats treated with sodium chloride served as the control, group 2 rats were treated with Al (as AlCl₃, 5 mg/kg body weight) intraperitonally for 10 weeks. Animals were killed and blood samples were analyzed for blood serum alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) enzyme activities and creatinine, urea (U) and uric acid (UA) levels for evaluating hepatotoxicity and nephrotoxicity. Blood parameters including red blood cells (RBCs), haemoglobin (Hb) concentration, haematocrit (Ht), platelets (PLTs) and white blood cells (WBCs) were compared between control and experimental group to assess haematoxicity. In order to determine the genotoxicity, the number of micronucleated hepatocytes (MNHEPs) was counted in isolated hepatocytes. In addition, histological alterations in liver and kidney samples were investigated. After exposure with Al, the enzymatic activities of ALP, AST, ALT and LDH, and the levels of U and UA significantly increased. RBC, WBC, PLT, Hb and Ht revealed significant decreases in experimental group compared to the control. AlCl₃ caused a significant increase in MNHEPs. Furthermore, severe pathological damages were established in both liver and kidney samples. Subchronic exposure to low doses of Al can produce serious dysfunctions in rat blood, liver and kidney, and exposure to this metal can result in greater damages. PMID:22421584

  13. Genotoxic effects of bisphenol A on somatic cells of female mice, alone and in combination with X-rays.

    PubMed

    Gajowik, Aneta; Radzikowska, Joanna; Dobrzyńska, Małgorzata M

    2013-10-01

    Bisphenol A (BPA), a monomer used in the manufacture of epoxy, polycarbonate, and polystyrene resins, is a xenoestrogen present in many consumer products. We investigated the effects of 2-week exposure to BPA, either alone or in combination with X-rays, on the induction of DNA damage in somatic cells of female mice in vivo. The micronucleus and alkaline comet assays were used to evaluate genotoxicity. BPA induced DNA strand breaks in lung cells but not in bone marrow lymphocytes, liver, kidney, or spleen cells. Induction of micronuclei was observed only in polychromatic reticulocytes of peripheral blood. Levels of damage following combination exposure to ionizing radiation plus BPA depended on tissue, assay, and time. PMID:23954285

  14. Genotoxicity and Cytotoxicity Evaluation of the Neolignan Analogue 2-(4-Nitrophenoxy)-1Phenylethanone and its Protective Effect Against DNA Damage

    PubMed Central

    Hanusch, Alex Lucas; de Oliveira, Guilherme Roberto; de Sabóia-Morais, Simone Maria Teixeira; Machado, Rafael Cosme; dos Anjos, Murilo Machado; Chen Chen, Lee

    2015-01-01

    Neolignans are secondary metabolites found in various groups of Angiosperms. They belong to a class of natural compounds with great diversity of chemical structures and pharmacological activities. These compounds are formed by linking two phenylpropanoid units. Several compounds that have ability to prevent genetic damage have been isolated from plants, and can be used to prevent or delay the development of tumor cells. Genetic toxicology evaluation is widely used in risk assessment of new drugs in preclinical screening tests. In this study, we evaluated the genotoxicity and cytotoxicity of the neolignan analogue 2-(4-nitrophenoxy)-1-phenylethanone (4NF) and its protective effect against DNA damage using the mouse bone marrow micronucleus test and the comet assay in mouse peripheral blood. Our results showed that this neolignan analogue had no genotoxic activity and was able to reduce induced damage both in mouse bone marrow and peripheral blood. Although the neolignan analogue 4NF was cytotoxic, it reduced cyclophosphamide-induced cytotoxicity. In conclusion, it showed no genotoxic action, but exhibited cytotoxic, antigenotoxic, and anticytotoxic activities. PMID:26554835

  15. The effect of gamma radiation on the Common carp (Cyprinus carpio): In vivo genotoxicity assessment with the micronucleus and comet assays.

    PubMed

    M K, Praveen Kumar; Soorambail K, Shyama; Bhagatsingh Harisingh, Sonaye; D'costa, Avelyno; Ramesh Chandra, Chaubey

    2015-10-01

    Radioactive wastes may be leached into freshwater, either accidentally or in industrial effluents. We have studied gamma radiation-induced DNA damage in the freshwater fish Cyprinus carpio. Fish were irradiated with 2-10Gy gamma radiation and genotoxic effects in blood cells were studied with the micronucleus (MN) and comet assays. Micronuclei and a dose-dependent increase in comet-tail DNA were seen in dose- and time-dependent studies. The highest % tail DNA was observed at 24h, declining until 72h, which may indicate the repair of radiation-induced DNA single-strand breaks after gamma radiation. However, double-stranded DNA damage may not have been repaired, as indicated by increased micronuclei at later periods. A positive correlation was observed between the comet and micronucleus assay results. This study confirms the mutagenic/genotoxic potential of gamma radiation in the Common carp, as well as the possible combined use of the micronucleus and comet assays for in vivo laboratory studies with fresh-water fish for screening the genotoxic potential of radioactive pollution. PMID:26433258

  16. Monitoring of genotoxicity in marine zooplankton induced by toxic metals in Ennore estuary, Southeast coast of India.

    PubMed

    Goswami, Prasun; Thirunavukkarasu, Subramani; Godhantaraman, Nallamuthu; Munuswamy, Natesan

    2014-11-15

    The present study provides preliminary in-situ data on genetic integrity of marine zooplankton. Paracalanus parvus, Oithona rigida and Euterpina acutifrons were collected during four different seasons (summer, pre-monsoon, monsoon and post-monsoon) from 2011 to 2012 in Ennore and Kovalum estuaries. DNA damage levels in different zooplankton were analyzed by comet assay and were correlated with different environmental stressors. Spatial and temporal variations in DNA damage was observed in all the species. Zooplankton from Ennore estuary showed significantly lower genetic integrity. Particulate, sediment, and zooplankton fractions of Pb, Ni, Cu, Cr and Co were associated with high DNA damage during the period of lowest pH, salinity and dissolved oxygen. Zn and Cd showed lower genotoxic impact than the other metals. Feeding modes strongly influenced the genetic integrity in the zooplankton species studied. These results support the use of comet assay as a tool in effectively monitoring genotoxicity in marine plankton communities. PMID:25287225

  17. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents.

    PubMed

    Armand, Lucie; Tarantini, Adeline; Beal, David; Biola-Clier, Mathilde; Bobyk, Laure; Sorieul, Sephanie; Pernet-Gallay, Karin; Marie-Desvergne, Caroline; Lynch, Iseult; Herlin-Boime, Nathalie; Carriere, Marie

    2016-09-01

    Titanium dioxide nanoparticles (TiO2-NPs) are one of the most produced NPs in the world. Their toxicity has been studied for a decade using acute exposure scenarios, i.e. high exposure concentrations and short exposure times. In the present study, we evaluated their genotoxic impact using long-term and low concentration exposure conditions. A549 alveolar epithelial cells were continuously exposed to 1-50 μg/mL TiO2-NPs, 86% anatase/14% rutile, 24 ± 6 nm average primary diameter, for up to two months. Their cytotoxicity, oxidative potential and intracellular accumulation were evaluated using MTT assay and reactive oxygen species measurement, transmission electron microscopy observation, micro-particle-induced X-ray emission and inductively-coupled plasma mass spectroscopy. Genotoxic impact was assessed using alkaline and Fpg-modified comet assay, immunostaining of 53BP1 foci and the cytokinesis-blocked micronucleus assay. Finally, we evaluated the impact of a subsequent exposure of these cells to the alkylating agent methyl methanesulfonate. We demonstrate that long-term exposure to TiO2-NPs does not affect cell viability but causes DNA damage, particularly oxidative damage to DNA and increased 53BP1 foci counts, correlated with increased intracellular accumulation of NPs. In addition, exposure over 2 months causes cellular responses suggestive of adaptation, characterized by decreased proliferation rate and stabilization of TiO2-NP intracellular accumulation, as well as sensitization to MMS. Taken together, these data underline the genotoxic impact and sensitization effect of long-term exposure of lung alveolar epithelial cells to low levels of TiO2-NPs. PMID:26785166

  18. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production

    PubMed Central

    2010-01-01

    Background According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive

  19. Long-term exposure to cypermethrin and piperonyl butoxide cause liver and kidney inflammation and induce genotoxicity in New Zealand white male rabbits.

    PubMed

    Vardavas, Alexander I; Stivaktakis, Polychronis D; Tzatzarakis, Manolis N; Fragkiadaki, Persefoni; Vasilaki, Fotini; Tzardi, Maria; Datseri, Galateia; Tsiaoussis, John; Alegakis, Athanasios K; Tsitsimpikou, Christina; Rakitskii, Valerii N; Carvalho, Félix; Tsatsakis, Aristidis M

    2016-08-01

    Cypermethrin (CY) is a frequently used class II pyrethroid pesticide, while piperonyl butoxide (PBO) plays a major role in the pesticide formulation of synthetic pyrethroids. Synthetic pyrethroids are metabolized in mammals via oxidation and ester hydrolysis. PBO can prevent the metabolism of CY and enhances its pesticide effect. While this potentiation effect reduces the amount of pesticide required to eliminate insects, it is not clear how this mixture affects mammals. In our in vivo experiment, New Zealand white male rabbits were exposed to low and high doses of CY, PBO, and their combinations, for 4 months. Genotoxicity and cytotoxicity were monitored by measuring binucleated cells with micronuclei (BNMN), micronuclei (MN) and the cytokinesis block proliferation index (CBPI) in lymphocytes. After two months of exposure, a statistically significant increase in the frequency of BNMN was observed for all exposed animals (p < 0.001) in a dose-dependent way. MN were significantly elevated compared to controls (p < 0.001), with high dose groups reaching a 442% increase when co-exposed. BNMN and MN continued to increase after four months. Histopathological examination of lesions showed damage involving inflammation, attaining lymphoplasmatocytic infiltration in the high dose groups. Both CY and PBO cause liver and kidney inflammation and induce genotoxicity. PMID:27321377

  20. Synergistic and antagonistic effects on genotoxicity of chemicals commonly found in hazardous waste sites

    SciTech Connect

    Ma, T.H.; Sandhu, S.S.; Peng, Y.; Chen, T.D.; Kim, T.W.

    1992-01-01

    Synergistic and antagonistic effects on genotoxicity of mixtures of four chemicals; i.e., lead tetraacetate (LTA), arsenic trioxide (ATO), dieldrin (DED), and tetrachloroethylene (TCE), were evaluated by the Tradescantia-micronucleus (Trad-MCN) assay. The chemicals were mixed in ratios of 1:1, 1:2 and 2:1 for mixtures of two chemicals and 1:1:1 each for three chemicals. The concentration of stock solution of these chemicals was around the minimum effective dose (MED) or below the MED for these chemicals as reported by Sandhu et al. (1989). Treatments were applied to plant cuttings by hydroponic uptake of the mixed solutions through the stems of the plant for 30 h followed by fixation of the flower buds in aceto-alcohol (1:3 ratio) without a recovery period. Microslides were prepared for scoring MCN frequencies. Results of two series of repeated experiments indicated that all mixtures of LTA/ATO exhibited antagonistic effects. On the other hand, all mixtures of TCE and DED exhibited synergistic effect. These data indicate that for evaluating biological hazards at chemical waste sites, it is prudent to evaluate the genotoxicity of complex chemical mixtures as these exist in nature because the biological effects based on evaluating individual chemicals may not be true predictors of the interactive effects of the pollutants.

  1. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    EPA Science Inventory

    Human ATAD5 is an excellent biomarker for identifying genotoxic compounds because ATADS protein levels increase post-transcriptionally following exposure to a variety of DNA damaging agents. Here we report a novel quantitative high-throughput ATAD5-Iuciferase assay that can moni...

  2. Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots.

    PubMed

    Béraud, Eric; Cotelle, Sylvie; Leroy, Pierre; Férard, Jean-François

    2007-10-01

    This study investigates different effects in roots of Vicia faba (broad bean) after exposure to cadmium. Genotoxic effects were assessed by use of the well-known Vicia root tip micronucleus assay. Cytotoxic effects were evaluated by determining the mitotic index in root tip cells. Finally, molecular induction mechanisms were evaluated by measuring phytochelatins with HPLC. After hydroponical exposure of V. faba roots to a range of cadmium concentrations and during different exposure times, the results of this approach showed large variations, according to the endpoint measured: after 48 h of exposure, genotoxic effects were found between 7.5 x 10(-8) and 5 x 10(-7)M CdCl(2), and cytotoxic effects were observed between 2.5 x 10(-7) and 5 x 10(-7)M CdCl(2). Statistically significant phytochelatin (PC) concentrations were measured at >or=10(-6)M CdCl(2) for PC(2), and at >or=10(-5)M CdCl(2) for PC3 and PC4. PMID:17689137

  3. Antiproliferative and genotoxic effects of nature identical and artificial synthetic food additives of aroma and flavor.

    PubMed

    Nunes, R D M; Sales, I M S; Silva, S I O; Sousa, J M C; Peron, A P

    2016-07-25

    This study aimed to analyze the antiproliferative and genotoxic potential of synthetic food flavorings, nature identical passion fruit and artificial vanilla. This assessment used root meristem cells of Allium cepa L., in exposure times of 24 and 48 hours and using doses of 0.2; 0.4 and 0.6 mL. Roots were fixed in Carnoy's solution, hydrolyzed in hydrochloric acid, stained with acetic orcein and analyzed with optical microscope at 400× magnification, 5,000 cells for each treatment. For data analysis, it was used Chi-square test at 5%. Doses of 0.2 mL at ET 48 h; 0.4 and 0.6 mL at ET 24 and 48 h of passion fruit flavor, and the three doses of the vanilla flavor at ET 24 and 48 h significantly reduced the cell division rate in the meristems of roots, proving to be cytotoxic. Doses of 0.2; 0.4 and 0.6 mL of the passion fruit additive, and the three doses of vanilla tested, in the two exposure times, induced mitotic spindle changes and micronuclei formation in the cells of the test organism used, proving to be genotoxic. Therefore, under the studied conditions, flavoring solutions of vanilla and passion fruit, marketed nationally and internationally, significantly altered the functioning of the cell cycle in root meristem cells of A. cepa. PMID:27463833

  4. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata.

    PubMed

    Galdiero, Emilia; Maselli, Valeria; Falanga, Annarita; Gesuele, Renato; Galdiero, Stefania; Fulgione, Domenico; Guida, Marco

    2015-08-01

    Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata. PMID:25884346

  5. Benzophenone guttiferone A from Garcinia achachairu Rusby (Clusiaceae) Presents Genotoxic Effects in Different Cells of Mice

    PubMed Central

    Terrazas, Peterson Menezes; de Souza Marques, Eduardo; Mariano, Luisa Nathália Bolda; Cechinel-Filho, Valdir; Niero, Rivaldo; Andrade, Sergio Faloni; Maistro, Edson Luis

    2013-01-01

    Benzophenones from natural sources and those of synthetic analogues present several reports of potent biological properties, and Guttiferone A represents a promising medicinal natural compound with analgesic and gastroprotective profiles. Considering that there are no reports that assess the genetic toxicity of Guttiferone A, the present study was undertaken to investigate the genotoxic potential of this benzophenone isolated from seeds of Garcinia achachairu in terms of DNA damage in different cells of Swiss albino mice using the comet assay, and its clastogenic/aneugenic effects in bone marrow cells in vivo by the micronucleus test. Cytotoxicity was assessed by scoring polychromatic (PCE) and normochromatic (NCE) erythrocytes ratio. Guttiferone A was administered by oral gavage at doses of 15, 30 and 60 mg/kg. The results showed that Guttiferone A produced genotoxic effects in leukocytes, liver, bone marrow, brain and testicle cells and clastogenic/aneugenic effects in bone marrow erythrocytes of mice. The PCE/NCE ratio indicated no cytotoxicity. Since guttiferone A is harmful to the genetic material we suggest caution in its use by humans. PMID:24250785

  6. [Genotoxic effects of pesticide-treated vegetable extracts using the Allium cepa chromosome aberration and micronucleus tests].

    PubMed

    Biscardi, D; De Fusco, R; Feretti, D; Zerbini, I; Izzo, C; Esposito, V; Nardi, G; Monarca, S

    2003-01-01

    The presence of chemical residues in vegetables and fruit is a source of human exposure to toxic and genotoxic chemicals. The mutagenic and carcinogenic action of herbicides, insecticides and fungicides on experimental animals is already known. Several studies have shown that chronic exposure to low levels of pesticides can cause adverse health effects and that many pesticides are mutagenic/carcinogenic. In the present research we monitored concurrently the presence of pesticides and genotoxic compounds extracted from 21 treated vegetables and 8 types of grapes sampled from the markets of a region in Southern Italy. The extracts were analysed for pesticides by gas-chromatography and HPLC, and for genotoxicity with two plant tests in Allium cepa roots: the micronucleus test and the chromosomal aberration test. We found 33 pesticides, some of which are outlawed. Genotoxicity was found in some of the vegetables and grapes tested. Allium cepa tests were sensitive for monitoring genotoxicity in food extracts. The micronucleus test in interphase cells gave much higher mutagenicity than the chromosomal aberration test in anaphase-telophase cells. PMID:15049565

  7. Early genotoxic effects in gill cells and haemocytes of Dreissena polymorpha exposed to cadmium, B[a]P and a combination of B[a]P and Cd.

    PubMed

    Vincent-Hubert, Françoise; Arini, Adeline; Gourlay-Francé, Catherine

    2011-07-14

    The aim of this study was to assess the genotoxic potential of environmentally relevant concentrations of Cd on the zebra mussel, an important freshwater sentinel organism, and to determine the stability of DNA damage in gill cells and haemocytes. The oxidative DNA damage and the co-genotoxicity of Cd in combination with B[a]P were investigated. We measured DNA damage in haemocytes and gill cells of zebra mussels exposed for 11 days to a constant concentration of Cd (10μg/L), B[a]P (10μg/L) or the two combined chemicals (10μg/L+1μg/L). Enzymatic dissociation of gills with dispase gave the lower percentage DNA in tail, compared with collagenase/dispase or collagenase. Bioaccumulation of cadmium in the soft tissues of mussels exposed to CdCl(2) or CdCl(2)+B[a]P increased in a time-dependent manner indicating that both exposures were effective. Cd (10μg/L) is genotoxic only during the first 3 days of exposure in gill cells, while in haemocytes the genotoxicity of Cd was observed later. B[a]P (10μg/L) induced an early increase of DNA damage in gill cells (after 10h and 1 day), while in both gill cells and haemocytes, B[a]P caused a marked increase of DNA damage after 3 days of exposure. The Cd+B[a]P mixture decreased the DNA-damaging effect of Cd and B[a]P in both cell types. Cd induced an increase of DNA damage in Fpg-treated slides, indicating that Cd contributed to oxidative DNA damage. Cadmium induced a cytogenetic effect in gill cells, assessed by the number of micronuclei, throughout the duration of the exposure, while B[a]P did not induce any cytogenetic effect. B[a]P, Cd and Cd+B[a]P induced a transient increase in the number of bi-nucleated cells. Our data clearly show that gills are more sensitive to Cd and B[a]P, which makes them more suitable for future bio-monitoring studies. PMID:21453782

  8. Genotoxic effect of cadmium in okra seedlings: comparative investigation with population parameters and molecular markers.

    PubMed

    Aydin, Semra Soydam; Basaran, Esin; Cansaran-Duman, Demet; Aras, Sümer

    2013-11-01

    Plants are considered as good bioindicators because of their significant role in food chain transfer. They are also easy to grow, adaptable to environmental stresses and can be used for assaying a range of environmental conditions in different habitats. Thus, many plant species have been used as bioindicators. In order to evaluate the genotoxic effect of cadmium, okra (Abelmoschus esculontus L.) seedlings were treated with different concentrations (30, 60, 120 mg I(-1)) of cadmium and investigated for their population parameters such as inhibition of root growth; total soluble protein content, dry weight and also the impact of metal on the genetic material by RAPD analysis. Root growth and total soluble protein content in okra seedlings were reduced with increased Cd concentrations. RAPD analysis indicated formation of new bands mostly at 60 and 120 mg I(-1) Cd treatments. Altered DNA band patterns and population parameters after Cd treatments suggest that okra could be used as an indicator to reveal the effects of genotoxic agents. PMID:24555326

  9. Investigation of cytotoxic and genotoxic effects of Ecballium elaterium juice based on Allium test.

    PubMed

    Celik, Tülay Askin; Aslantürk, O S

    2009-11-01

    The genus Ecballium only comprises the Ecballium elaterium (EE) (L.) A.Rich species which is a wild medicinal plant found in the Mediterranean region. EE fruit juice is widely used in Turkish folk medicine for the relief of sinusitis and for several illnesses. Up to date, there has been no report on the genotoxicity of EE fruit juice. Thus, the aim of this study was to investigate the potential genotoxic effects of EE fruit juice using the Allium test system. Allium cepa (A. cepa) bulbs were treated with four concentrations (10 ml/L, 20 ml/L, 50 ml/L and undiluted) of EE fruit juice for 72 h and tap water (pH 7.3) was used as a control. The results showed significant dose-dependent (P < 0.05) inhibition of root growth and mitodepressive effects on cell division in A. cepa root tip cells after the EE fruit juice treatments. Also, EE fruit juice significantly increased the dose-dependent frequency of chromosome aberrations (breaks, stickiness and pole deviations) in root tip cells and micronucleus formations. There was no dividing cell in the undiluted EE fruit juice treated group, but there were pyknotic/apoptotic cells with varying frequency. PMID:20094642

  10. Estimation of TiO₂ nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice.

    PubMed

    Mohamed, Hanan Ramadan Hamad

    2015-09-01

    Titanium dioxide (TiO2) nanoparticles are widely used as a food additive and coloring agent in many consumer products however limited data is available on the nano-TiO2 induced genotoxicity persistence. Thus, this study investigated the persistence of nano-TiO2 induced genotoxicity and possible induction of chronic gastritis in mice. The mice were orally administered 5, 50 or 500 mg/kg body weight nano-TiO2 for five consecutive days, and then mice from each dosage group were sacrificed 24 h or one or two weeks after the last treatment. The administration of nano-TiO2 resulted in persistent apoptotic DNA fragmentation and mutations in p53 exons (5-8) as well as significant persistent elevations in malondialdehyde and nitric oxide levels and decreases in the reduced glutathione level and catalase activity compared with the control mice in a dose- and time-dependent manner. Necrosis and inflammation were evident upon histological examination. These findings could be attributed to the persistent accumulation of nano-TiO2 at the tested doses at all three time points. Based on these findings, we conclude that the administration of nano-TiO2, even at low doses, leads to persistent accumulation of nano-TiO2 in mice, resulting in persistent inflammation, apoptosis and oxidative stress, ultimately leading to the induction of chronic gastritis. PMID:26072100

  11. Assessment of genotoxic effects of lead in occupationally exposed workers.

    PubMed

    Chinde, Srinivas; Kumari, Monika; Devi, Kanapuram Rudrama; Murty, Upadhyayula Suryanarayana; Rahman, Mohammed Fazlur; Kumari, Srinivas Indu; Mahboob, Mohammed; Grover, Paramjit

    2014-10-01

    The genotoxicological effects in 200 lead acid storage battery recycling and manufacturing industry workers in Hyderabad along with matched 200 controls were studied. The genetic damage was determined by comet, micronucleus (MN), and chromosomal aberration (CA) test in peripheral blood lymphocytes (PBL). The MN test was also carried out in buccal epithelial cells (BECs). Pb in ambient air, blood Pb (B-Pb) concentrations, and hematological parameters were measured. The superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and malondialdehyde (MDA) formed were also studied. The results of the present study showed that there was a statistically significant (P < 0.01) increase in mean percent tail DNA, frequency of CA, and MN in PBL as well as in BEC as compared to controls. Pb in ambient air and B-Pb concentrations were found to be significantly higher (P < 0.01). The hematocrit, hemoglobin, and red blood cell values were significantly lowered in Pb-exposed workers in comparison to controls. SOD, GPx, and CAT levels were significantly decreased while GSH and MDA levels increased in exposed group when compared to control group. The present study suggests that environmental health standards should be enforced to control Pb contamination from battery industries to reduce human health risk. PMID:24906834

  12. The effect of long term storage on tobacco smoke particulate matter in in vitro genotoxicity and cytotoxicity assays.

    PubMed

    Crooks, I; Dillon, D M; Scott, J K; Ballantyne, M; Meredith, C

    2013-03-01

    Particulate matter (PM) collected from mainstream tobacco smoke is a test article commonly used for in vitro genotoxicity and cytotoxicity testing of combustible tobacco products. However, little published data exists concerning the stability of PM. We completed a 2 year study to quantify the effect of PM storage at -80 °C, on the genotoxicity and cytotoxicity of PM generated from 3R4F and M4A reference cigarettes. The Ames test, Micronucleus assay (MNvit), Mouse Lymphoma assay (MLA) and the Neutral Red Uptake assay (NRU) were used. The majority of M4A and 3R4F PMs were genotoxic and cytotoxic at the timepoints tested. Some minor but statistically significant differences were observed for stored versus freshly prepared PM, but the magnitude of changes were within the variability observed for repeat testing. PMID:23220485

  13. Nandrolone androgenic hormone presents genotoxic effects in different cells of mice.

    PubMed

    do Carmo, Carolina Almeida; Gonçalves, Álvaro Luiz Martini; Salvadori, Daisy Maria Fávero; Maistro, Edson Luis

    2012-10-01

    Nandrolone is an androgenic-anabolic steroid (AAS) with diverse medical applications but taken indiscriminately by some to rapidly increase muscle mass. The aim of this study was to evaluate the genotoxic and clastogenic potential of nandrolone (deca-durabolin®) in vivo in different cells of mice, using the comet assay and micronucleus test, respectively. The animals received subcutaneous injection of the three doses of the steroid (1.0, 2.5 and 5.0 mg kg⁻¹ body weight). Cytotoxicity was assessed by scoring 200 consecutive total polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE-NCE ratio). The results showed a significant dose-related increase in the frequency of DNA damage in leukocytes, liver, bone marrow, brain and testicle cells at the three tested doses and a significant increase of the micronucleated polychromatic erythrocytes at all tested doses. Under our experimental conditions, the nandrolone steroid hormone showed genotoxic and clastogenic effects when administered subcutaneously to mice. PMID:21717486

  14. Genotoxic and mutagenic effects of permethrin in mice: micronuclei analysis in peripheral blood erythrocytes.

    PubMed

    Roma, Gislaine Cristina; de Oliveira, Patrícia Rosa; Araujo, Andrea Mendez; Bechara, Gervásio Henrique; Mathias, Maria Izabel Camargo

    2012-12-01

    Pyrethroids such as permethrin are synthetic compounds widely used in the agriculture of many countries to combat plagues and in domestic products, such as acaricides. Not so long ago these chemicals were characterized as non-toxic for non-target organisms; however, recent studies have showed that these compounds could present toxic potential for many organisms. In this sense, this study presents genotoxic and mutagenic potential of permethrin administered intraperitoneally in mice under artificial conditions by the use of micronucleus assay in the peripheral blood of these animals. The mice were divided into five groups: group I = negative control (distilled water), group II = positive control (cyclophosphamide), group III = 30% of permethrin LD(50) (96 mg/kg), group IV = 50% of permethrin LD(50) (160 mg/kg), and group V = 80% of permethrin LD(50) (256 mg/kg). The peripheral blood was collected 24, 48, and 72 h after treatment. Results showed that all the tested permethrin dosages presented genotoxic and mutagenic effects 24 h after treatment, which would contradict the classification of this chemical product as moderately toxic, i.e., unable to cause damages to the cell DNA. PMID:22965619

  15. Genotoxic effects of cadmium in human head and neck cell line SQ20B.

    PubMed

    Trabelsi, Fatma; Khlifi, Rim; Goux, Didier; Guillamin, Marilyne; Hamza-Chaffai, Amel; Sichel, François

    2016-08-01

    As cadmium may be involved in the etiology of head and neck cancers, we investigated in the present work, the cytotoxic and genotoxic effects of Cd on human larynx cells. SQ20B cells were exposed to 25 and 50 μM Cd for 48 and 72 h. Results showed a dose-dependent decrease in cell viability, especially after 48 h, associated with mitochondria alterations as showed by transmission electronic microscopy. Surprisingly, the flow cytometry shows that the cells treated with Cd have a normal proliferative cycle like the untreated cell especially in G1 or G2 phase of cell cycle. DNA damages were investigated by comet assay and immunofluorescence for gamma layer of the H2AX (g-H2AX) foci formation. Results show a strong induction of DNA double-strand breaks after Cd exposure. Overall, our results demonstrate the cytotoxicity and genotoxicity of Cd in human larynx cells and support the view that Cd could be an etiologic factor of head and neck cancers. PMID:27151237

  16. Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus.

    PubMed

    Ruiz de Arcaute, C; Soloneski, S; Larramendy, M L

    2016-06-01

    Acute toxicity and genotoxicity of the 54.8% 2,4-D-based commercial herbicide DMA® were assayed on Cnesterodon decemmaculatus (Pisces, Poeciliidae). Whereas lethal effect was used as the end point for mortality, frequency of micronuclei (MNs), other nuclear abnormalities and primary DNA damage evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Mortality studies demonstrated an LC50 96h value of 1008mg/L (range, 929-1070) of 2,4-D. Behavioral changes, e.g., gathering at the bottom of the aquarium, slowness in motion, slow reaction and abnormal swimming were observed. Exposure to 2,4-D within the 252-756mg/L range increased the frequency of MNs in fish exposed for both 48 and 96h. Whereas blebbed nuclei were induced in treatments lasting for 48 and 96h, notched nuclei were only induced in fish exposed for 96h. Regardless of both concentration and exposure time, 2,4-D did not induce lobed nuclei and binucleated erythrocytes. In addition, we found that exposure to 2,4-D within the 252-756mg/L range increased the genetic damage index in treatments lasting for either 48 and 96h. The results represent the first experimental evidence of the lethal and several sublethal effects, including behavioral alterations and two genotoxic properties namely the induction of MNs and primary DNA strand breaks, exerted by 2,4-D on an endemic organism as C. decemmaculatus. PMID:26950899

  17. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol) on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice

    PubMed Central

    García-Rodríguez, María del Carmen; Hernández-Cortés, Lourdes Montserrat; Altamirano-Lozano, Mario Agustín

    2016-01-01

    This study was conducted to investigate the effects of vanadium pentoxide (V2O5), ascorbic acid (AA), and alpha-tocopherol (α-TOH) on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a) vehicle, distilled water; (b) vehicle, corn oil; (c) AA, 100 mg/kg intraperitoneally (ip); (d) α-TOH, 20 mg/kg by gavage; (e) V2O5, 40 mg/kg by ip injection; (f) AA + V2O5; and (g) α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE) obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE). The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5. PMID:27413422

  18. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol) on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice.

    PubMed

    García-Rodríguez, María Del Carmen; Hernández-Cortés, Lourdes Montserrat; Altamirano-Lozano, Mario Agustín

    2016-01-01

    This study was conducted to investigate the effects of vanadium pentoxide (V2O5), ascorbic acid (AA), and alpha-tocopherol (α-TOH) on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a) vehicle, distilled water; (b) vehicle, corn oil; (c) AA, 100 mg/kg intraperitoneally (ip); (d) α-TOH, 20 mg/kg by gavage; (e) V2O5, 40 mg/kg by ip injection; (f) AA + V2O5; and (g) α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE) obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE). The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5. PMID:27413422

  19. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    PubMed

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore

  20. AID-Induced Genotoxic Stress Promotes B Cell Differentiation in the Germinal Center via ATM and LKB1 Signaling

    PubMed Central

    Sherman, Mara H.; Kuraishy, Ali I.; Deshpande, Chetan; Hong, Jason S.; Cacalano, Nicholas A.; Gatti, Richard A.; Manis, John P.; Damore, Michael A.; Pellegrini, Matteo; Teitell, Michael A.

    2010-01-01

    SUMMARY During an immune response, B cells undergo rapid proliferation and AID-dependent remodeling of immunoglobulin (IG) genes within germinal centers (GCs) to generate memory B and plasma cells. Unfortunately, the genotoxic stress associated with the GC reaction also promotes most B cell malignancies. Here we report that exogenous- and intrinsic AID-induced DNA strand breaks activate ATM, which signals through an LKB1 intermediate to inactivate CRTC2, a transcriptional coactivator of CREB. Using genome-wide location analysis, we determined that CRTC2 inactivation unexpectedly represses a genetic program that controls GC B cell proliferation, self-renewal, and differentiation while opposing lymphomagenesis. Inhibition of this pathway results in increased GC B cell proliferation, reduced antibody secretion, and impaired terminal differentiation. Multiple distinct pathway disruptions were also identified in human GC B cell lymphoma patient samples. Combined, our data show that CRTC2 inactivation, via physiologic DNA damage response signaling, promotes B cell differentiation in response to genotoxic stress. PMID:20864035

  1. ASSESSING HUMAN EXPOSURE AND GENOTOXIC EFFECTS IN HUMAN EXFOLIATED EPITHELIA FROM INDIVDUALS IVING IN AN ENDEMIC REGION IN INNER MONGOLAI

    EPA Science Inventory

    A pilot study was conducted to characterize arsenic exposure and genotoxic effects in Ba Men located in West Central Inner Mongolia in an attempt to identify biomarkers useful for assessing health risk resulting from chronic arsenic exposure. The study subjects included 19 high ...

  2. Cell-Based Genotoxicity Testing

    NASA Astrophysics Data System (ADS)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective ­genotoxicity

  3. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro

    PubMed Central

    Bellagamba, Bruno Corrêa; de Abreu, Bianca Regina Ribas; Grivicich, Ivana; Markarian, Carolina Franke; Chem, Eduardo; Camassola, Melissa; Nardi, Nance Beyer; Dihl, Rafael Rodrigues

    2016-01-01

    Abstract Mesenchymal stem cells (MSCs) are known for their important properties involving multilineage differentiation potential., trophic factor secretion and localization along various organs and tissues. On the dark side, MSCs play a distinguished role in tumor microenvironments by differentiating into tumor-associated fibroblasts or supporting tumor growth via distinct mechanisms. Cisplatin (CIS) is a drug widely applied in the treatment of a large number of cancers and is known for its cytotoxic and genotoxic effects, both in vitro and in vivo. Here we assessed the effects of CIS on MSCs and the ovarian cancer cell line OVCAR-3, by MTT and comet assays. Our results demonstrated the resistance of MSCs to cell death and DNA damage induction by CIS, which was not observed when OVCAR-3 cells were exposed to this drug. PMID:27007906

  4. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation

    PubMed Central

    Singh, Narendra Nath; Sreedhar, Gadiputi; Mukherjee, Saikat

    2016-01-01

    Introduction Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. Aim To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. Materials and Methods The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. Results The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. Conclusion Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity

  5. Determination of chemical composition and genotoxic effects of essential oil obtained from Nepeta nuda on Zea mays seedlings.

    PubMed

    Bozari, Sedat; Agar, Guleray; Aksakal, Ozkan; Erturk, Filiz A; Yanmis, Derya

    2013-05-01

    We aimed to determine the genotoxic potential of essential oil (EO) obtained from Nepeta nuda. The chemical content of EO was measured via gas chromatography/mass spectrometry. The most abundant contents were 4aα,7β,7aα-nepetalactone (18.10%), germacrene (15.68%) and elemol (14.38%). For genotoxic effects of EO, Zea mays' seeds were exposed to four different concentrations of this oil. Inhibition of root and stem growth were observed with an increase in EO concentrations. Randomly amplified polymorphic DNA (RAPD) method was used to determine the genotoxic effects of EO. Some changes occurred in RAPD profiles of germinated EO-treated seeds. Even though total soluble protein quantity vary, the data observed from the protein profiles of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that there was a little differentiation between band profiles of treated samples and control group. We concluded that the basis of interactions between plants, like allelopathy, may be related with genotoxic effects of EO. PMID:22312034

  6. In Vivo and In Vitro Genotoxic and Epigenetic Effects of Two Types of Cola Beverages and Caffeine: A Multiassay Approach.

    PubMed

    Mateo-Fernández, Marcos; Merinas-Amo, Tania; Moreno-Millán, Miguel; Alonso-Moraga, Ángeles; Demyda-Peyrás, Sebastián

    2016-01-01

    The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models. PMID:27471731

  7. In Vivo and In Vitro Genotoxic and Epigenetic Effects of Two Types of Cola Beverages and Caffeine: A Multiassay Approach

    PubMed Central

    Merinas-Amo, Tania; Moreno-Millán, Miguel; Alonso-Moraga, Ángeles; Demyda-Peyrás, Sebastián

    2016-01-01

    The aim of this work was to assess the biological and food safety of two different beverages: Classic Coca Cola™ (CCC) and Caffeine-Free Coca Cola (CFCC). To this end, we determined the genotoxicological and biological effects of different doses of lyophilised CCC and CFCC and Caffeine (CAF), the main distinctive constituent. Their toxic/antitoxic, genotoxic/antigenotoxic, and chronic toxicity (lifespan assay) effects were determined in vivo using the Drosophila model. Their cytotoxic activities were determined using the HL-60 in vitro cancer model. In addition, clastogenic DNA toxicity was measured using internucleosomal fragmentation and SCGE assays. Their epigenetic effects were assessed on the HL-60 methylation status using some repetitive elements. The experimental results showed a slight chemopreventive effect of the two cola beverages against HL-60 leukaemia cells, probably mediated by nonapoptotic mechanisms. Finally, CCC and CAF induced a global genome hypomethylation evaluated in LINE-1 and Alu M1 repetitive elements. Overall, we demonstrated for the first time the safety of this famous beverage in in vivo and in vitro models. PMID:27471731

  8. ATR-FTIR spectroscopy detects alterations induced by organotin(IV) carboxylates in MCF-7 cells at sub-cytotoxic/-genotoxic concentrations

    PubMed Central

    Ahmad, Muhammad S; Mirza, Bushra; Hussain, Mukhtiar; Hanif, Muhammad; Ali, Saqib; Walsh, Michael J; Martin, Francis L

    2008-01-01

    The environmental impact of metal complexes such as organotin(IV) compounds is of increasing concern. Genotoxic effects of organotin(IV) compounds (0.01 μg/ml, 0.1 μg/ml or 1.0 μg/ml) were measured using the alkaline single-cell gel electrophoresis (comet) assay to measure DNA single-strand breaks (SSBs) and the cytokinesis-block micronucleus (CBMN) assay to determine micronucleus formation. Biochemical-cell signatures were also ascertained using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In the comet assay, organotin(IV) carboxylates induced significantly-elevated levels of DNA SSBs. Elevated micronucleus-forming activities were also observed. Following interrogation using ATR-FTIR spectroscopy, infrared spectra in the biomolecular range (900 cm-1 – 1800 cm-1) derived from organotin-treated MCF-7 cells exhibited clear alterations in their biochemical-cell fingerprint compared to control-cell populations following exposures as low as 0.0001 μg/ml. Mono-, di- or tri-organotin(IV) carboxylates (0.1 μg/ml, 1.0 μg/ml or 10.0 μg/ml) were markedly cytotoxic as determined by the clonogenic assay following treatment of MCF-7 cells with ≥ 1.0 μg/ml. Our results demonstrate that ATR-FTIR spectroscopy can be applied to detect molecular alterations induced by organotin(IV) compounds at sub-cytotoxic and sub-genotoxic concentrations. This biophysical approach points to a novel means of assessing risk associated with environmental contaminants. PACS codes: 87.15.-v, 87.17.-d, 87.18.-h PMID:19351425

  9. Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead.

    PubMed

    Gonzalez, Laetitia; Kirsch-Volders, Micheline

    2016-01-01

    Exposures to nanomaterials (NMs), with their specific physico-chemical characteristics, are likely to increase over the next years, as their production for industrial, consumer and medical applications is steadily rising. Therefore, there is an urgent need for the implementation of human biomonitoring studies of genotoxic effects after NM exposures in order to monitor and assure safety for workers and the general population. In this review, most commonly used biomarkers of early genetic effects were analyzed for their adequacy after NM exposures. A more in depth analysis of the ex vivo/in vitro lymphocyte MN assay was performed, although, in literature no studies are available using this assay for NM exposures. Therefore, the known factors determining the NMs tissue/cellular targets and the multiplicity of modes of action of NMs were summarized. The main pending questions are whether (1) lymphocytes are a NM target or an adequate surrogate tissue, (2) whether the buccal MN assay might be more suitable for NM exposures via inhalation or ingestion, as buccal cells might be exposed more directly. While the current state-of-the-art does not allow for drawing firm conclusions, major research gaps are identified and some cautious recommendations can be formulated. Therefore in vitro and in vivo studies should be conducted comparing methodologies side-by-side in the same subjects and for different types of NMs. The ex vivo/in vitro MN assay in its automated version, allowing objective analysis of large cohorts and detection of direct and indirect genotoxic effects, remains a valuable candidate for human biomonitoring to NM exposure. Considering the potential cancer risk from exposure to NMs and previous dramatic experiences with too late surveillance of occupational exposures to similar substances (e.g. to asbestos), there is an urgent need to define and implement adequate scientifically sound biomonitoring methods and programme for exposure to NMs. PMID:27234560

  10. Proinflammatory mesenchymal effects of the non-genotoxic hepatocarcinogen phenobarbital: a novel mechanism of antiapoptosis and tumor promotion.

    PubMed

    Riegler, Teresa; Nejabat, Marzieh; Eichner, Johannes; Stiebellehner, Melanie; Subosits, Sandra; Bilban, Martin; Zell, Andreas; Huber, Wolfgang W; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina

    2015-12-01

    Many environmental pollutants and drugs, including steroid hormones, hypolipidemics and antiepileptics, are non-genotoxic carcinogens (NGC) in rodent liver. The mechanism of action and the risk for human health are still insufficiently known. Here, we study the effects of phenobarbital (PB), a widely used model NGC, on hepatic epithelial-mesenchymal crosstalk and the impact on hepatic apoptosis. Mesenchymal cells (MC) and hepatocytes (HC) were isolated from control and PB-treated rat livers. PB induced extensive changes in gene expression in MC and much less in HC as shown by transcriptomics with oligoarrays. In MC only, transcript levels of numerous proinflammatory cytokines were elevated. Correspondingly, ELISA on the supernatant of MC from PB-treated rats revealed enhanced release of various cytokines. In cultured HC, this supernatant caused (i) nuclear translocation and activation of nuclear factor-κB (shown by immunoblots of nuclear extracts and reporter gene assays), (ii) elevated expression of proinflammatory genes and (iii) protection from the proapoptotic action of transforming growth factor beta 1 (TGFß1). PB treatment in vivo or in vitro elevated the production and release of tumor necrosis factor alpha from MC, which was identified as mainly responsible for the inhibition of apoptosis in HC. In conclusion, our findings reveal profound proinflammatory effects of PB on hepatic mesenchyme and mesenchymal-epithelial interactions. The resulting release of cytokines acts antiapoptotic in HC, an effect crucial for tumor promotion and carcinogenesis by NGC. PMID:26378027

  11. In vitro study of the cytotoxic and genotoxic effects of indomethacin-loaded Eudragit(®) L 100 nanocapsules.

    PubMed

    Froder, J G; Dupeyrón, D; Carvalho, J C T; Maistro, E L

    2016-01-01

    Indomethacin is a non-steroidal anti-inflammatory agent included in one of the most commonly used drug classes worldwide. The use of this drug results in certain side effects, including gastrointestinal complications. Therefore, there exists a need to develop better methods for the delivery of such drugs into the body, such as those employing nanoparticles. The aim of the present study was to evaluate the cytotoxic and genotoxic effects of indomethacin-loaded Eudragit(®) L 100 nanocapsules (NI; based on methacrylic acid and methyl methacrylate) on cells unable (lymphocytes) and able to metabolize drugs (HepG2 cells), using comet and cytokinesis-block micronucleus (CBMN) assays in vitro. Cells were exposed to NI at concentrations of 5, 10, 50, 125, 250, and 500 μg/mL. The comet assay showed that NI induced no significant DNA damage in either cell type at any of the concentrations tested. The CBMN test confirmed these results; however, the highest concentration of 500 μg/mL resulted in a small but statistically significant clastogenic/aneugenic effect in HepG2 cells. These findings should encourage the development of new investigations of this nanomaterial as a delivery vehicle for anti-inflammatory drugs, such as indomethacin. PMID:27525928

  12. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  13. Studies on genotoxicity of orally administered crocidolite asbestos in rats: implications for ingested asbestos induced carcinogenesis.

    PubMed

    Varga, C; Pocsai, Z; Horváth, G; Timbrell, V

    1996-01-01

    The early genotoxic action of oral exposure to UICC crocidolite asbestos fibres was studied in different short-term tests. Fischer-344 rats were gavaged with 50 mg/b.w.kg untreated asbestos fibres and fibres which had been allowed to adsorb benzo(a)pyrene molecules from extremely low concentration (0.25-2.5 microg/ml) aqueous solutions. This system can be considered a model for the drinking of potable water contaminated by asbestos fibres together with biologically active organic micro-pollutants. The Ames Salmonella mutagenicity assay was performed on concentrated urine and serum samples of treated animals. The formation of micronuclei and sister chromatid exchanges was also studied in the bone marrow of the exposed rats. The micronucleus analysis indicated marginal genotoxic activity only upon treatment with crocidolite prepared from the solution of 1 microg/ml. A dose-dependent increase was, however, demonstrated in the sister chromatid exchange frequency upon treatment with benzo(a)pyrene coated fibres. These experiments suggest the acute cogenotoxic activity of such fibres in orally exposed animals. PMID:8687133

  14. Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes.

    PubMed

    Machado, Michel M; Oliveira, Luis F S de; Zuravski, Luisa; Souza, Raul O de; Fischer, Paula; Duarte, Jonathaline A; Rocha, Manoelly O; Güez, Camila M; Boligon, Aline A; Athayde, Margareth L

    2016-03-01

    Euphorbia tirucalli (L.), commonly known as aveloz, has been indiscriminately used in popular medicine to treat various illnesses. However, some components can have devastating consequences. Injury to a cell's genetic material can cause mutations, cancer, and cell death. Our main goal in this work was to evaluate the genotoxic and cytotoxic effects of E. tirucalli extract on human leukocytes. For this purpose, we performed a phytochemical analysis to evaluate the plant's components. In the second step, we treated cultured human leukocytes with different concentrations of the dry extract of the plant and then evaluated the oxidative and genotoxic profiles of these leukocytes. We found that at 1% and 10% concentrations, the aveloz extract acted as a genotoxic agent that could damage DNA and increase oxidative damage. We conclude that despite its popular use, aveloz can act as a genotoxic agent, especially when it contains phorbol ester. Aveloz's indiscriminate use might actually promote tumors and therefore carry a considerable genetic risk for its users. PMID:26840004

  15. Genotoxicity of phthalates.

    PubMed

    Erkekoglu, Pınar; Kocer-Gumusel, Belma

    2014-12-01

    Many of the environmental, occupational and industrial chemicals are able to generate reactive oxygen species (ROS) and cause oxidative stress. ROS may lead to genotoxicity, which is suggested to contribute to the pathophysiology of many human diseases, including inflammatory diseases and cancer. Phthalates are ubiquitous environmental chemicals and are well-known peroxisome proliferators (PPs) and endocrine disruptors. Several in vivo and in vitro studies have been conducted concerning the carcinogenic and mutagenic effects of phthalates. Di(2-ethylhexyl)-phthalate (DEHP) and several other phthalates are shown to be hepatocarcinogenic in rodents. The underlying factor in the hepatocarcinogenesis is suggested to be their ability to generate ROS and cause genotoxicity. Several methods, including chromosomal aberration test, Ames test, micronucleus assay and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutation test and Comet assay, have been used to determine genotoxic properties of phthalates. Comet assay has been an important tool in the measurement of the genotoxic potential of many chemicals, including phthalates. In this review, we will mainly focus on the studies, which were conducted on the DNA damage caused by different phthalate esters and protection studies against the genotoxicity of these chemicals. PMID:25174766

  16. p-Aramid RFP do not induce chromosomal aberrations in a standardized in vitro genotoxicity assay using human lymphocytes.

    PubMed

    Warheit, D B; Donner, M; Murli, H

    2001-12-01

    Genotoxicity evaluations have been proposed as regulatory requirements for establishing German MAK values for inhaled fibrous dusts. The objective of this in vitro assay was to assess the potential for para-aramid (p-aramid) respirable-sized, fiber-shaped particulates (RFP) to induce chromosomal aberrations in cultured human peripheral blood lymphocytes without metabolic activation. The highest concentration tested in this assay was limited by the physical characteristics of p-aramid RFP. The test substance was suspended in fully supplemented RPMI culture medium with 1% Pluronic F68. All dosing was achieved using a dosing volume of 90% (900 microl/ml), and the vehicle control cultures were treated with 900 microl/ml of fully supplemented RPMI culture medium with 1% Pluronic F68. In the chromosomal aberrations assay, the treatments were either 3 or 19 h without metabolic activation. Cultures were harvested 22 h from the initiation of treatment. Replicated cultures of human whole blood lymphocytes were incubated with p-aramid RFP concentrations of 6.30, 12.6, 25.2, 50.4, 101, 201, and 401 microg/ml. Cultures treated with concentrations to 50.4 microg/ml for 3 h and 6.30, 12.6, 25.2, and 201 microg/ml for 19 h were analyzed for structural and numerical chromosomal aberrations. No significant increase in cells with chromosomal aberrations, polyploidy, or endoreduplication was observed in the cultures analyzed. The results demonstrated that p-aramid RFP was negative for inducing chromosomal aberrations in cultured human peripheral blood lymphocytes without metabolic activation. In addition, we conclude that the utility of these tests for evaluating the genotoxicity of fibrous or particulate materials is questionable. PMID:11696875

  17. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the

  18. Genotoxic and cytotoxic effects of X-ray on buccal epithelial cells following panoramic radiography: A pediatric study

    PubMed Central

    Agarwal, Poonam; Vinuth, Dhundanalli puttalingaiah; Haranal, Shashidevi; Thippanna, Chandrashekar K.; Naresh, Nitesh; Moger, Ganapathi

    2015-01-01

    Background: Ionizing radiation is a potent mutagenic agent capable of inducing both mutation and chromosomal aberrations. Non-lethal doses of ionizing radiation may induce genomic instability favoring carcinogenesis. In spite of their mutagenic potential, this kind of radiation is an important tool for diagnosis of the disease and is used in medical and dental practice. It has been believed that the number of micronucleus and increased frequency of other nuclear alterations, including karyorrhexis, condensed chromatin and pyknosis, are related to the increasing effects of carcinogens. Many approaches and techniques have been developed for the monitoring of human populations exposed to various mutagens, but the analysis of micronuclei (MN) has become a standard approach for the assessment of chromosomal damage in human populations. Aim: To assess the effects of radiation exposure from panoramic radiography on the buccal epithelial cells (BECs) of pediatric patients. Materials and Methods: The study included 20 pediatric patients who had to undergo panoramic radiography for further dental treatment. Exfoliated BECs were obtained and examined immediately before and 10 days after radiation exposure. The cells were stained using rapid Papanicolaou (PAP) kit. Evaluation for MN and nuclear alterations was carried out by an oral pathologist and data were statistically analyzed using the “t” test. Results: The mean number of MN in the BECs before exposure of pediatric patients to panoramic radiography was 4.25 and after exposure was 4.40. This difference was not found to be statistically significant (P < 0.0001). However, the mean nuclear alterations of 8.70 and 15.75 before and after exposure were statistically significant (P < 0.0001). Conclusion: Panoramic radiographs can induce cytotoxicity but not genotoxic effects in buccal mucosal cells. Hence, dental radiographs should be prescribed only when deemed indispensable. PMID:26229246

  19. 2,4,5-TRICHLOROPHENOXYACETIC ACID INFLUENCE ON 2,6-DINITROTOLUENE-INDUCED URINE GENOTOXICITY IN FISCHER 344 RATS: EFFECT ON G.I. MICROFLORA AND ENZYME ACTIVITY

    EPA Science Inventory

    2,4,5-Trichlorophenoxyacetic acid and 2,6-dinitrotoluene are hazardous chemicals that have potential harmful effects 2,6-DNT is recognized as a hepatoxicant while 2,4,5-T, a component in Agent Orange, is also suspect. ,6-DNT requires both oxidative and reductive metabolism to eli...

  20. An in vitro study on the genotoxic effect of substituted furans in cells transfected with human metabolizing enzymes: 2,5-dimethylfuran and furfuryl alcohol.

    PubMed

    Huffman, Minor P; Høie, Anja H; Svendsen, Camilla; Brunborg, Gunnar; Murkovic, Michael; Glatt, Hansruedi; Husøy, Trine

    2016-09-01

    2,5-Dimethylfuran (DMF) and furfuryl alcohol (FFA) are two substituted furans that are formed during the processing of foods and have also been used as food flavorings. DMF and FFA are proposed to be bioactivated by human sulfotransferases (SULTs) which are not expressed in conventional cell lines used for genotoxicity testing. Therefore, in addition to the standard V79 cell line, we used a transfected V79 derived cell line co-expressing human cytochrome P450 (CYP) 2E1 and human SULT1A1 to assess the genotoxicity of DMF and FFA. The alkaline single cell gel electrophoresis (SCGE) assay was used to detect DNA damage in the form of single strand breaks and alkali-labile sites after exposure to DMF (0.5h; 0.5, 1, 1.5 or 2mM) or FFA (3h; 1, 3, 6 or 15mM). DMF induced DNA damage in V79 cells in a concentration-dependent manner irrespective of the expression of human CYP2E1 and SULT1A1. Almost no increase in the level of DNA damage was detected after exposure to FFA, except for a weak effect at the highest concentration in the transfected cell line. The results suggest that DNA damage in V79 cells from exposure to DMF detected by the alkaline SCGE assay is independent of human CYP2E1 and SULT1A1, and the genotoxic effect of FFA, as assessed by SCGE, is minimal in V79 cells. PMID:27226491

  1. Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers

    PubMed Central

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  2. Lymphocyte oxidative stress/genotoxic effects are related to serum IgG and IgA levels in coke oven workers.

    PubMed

    Gao, Meili; Li, Yongfei; Zheng, Aqun; Xue, Xiaochang; Chen, Lan; Kong, Yu

    2014-01-01

    We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions. PMID:25136686

  3. An in vitro study on the genotoxic effect of substituted furans in cells transfected with human metabolizing enzymes: 2,5-dimethylfuran and furfuryl alcohol

    PubMed Central

    Huffman, Minor P.; Høie, Anja H.; Svendsen, Camilla; Brunborg, Gunnar; Murkovic, Michael; Glatt, Hansruedi; Husøy, Trine

    2016-01-01

    2,5-Dimethylfuran (DMF) and furfuryl alcohol (FFA) are two substituted furans that are formed during the processing of foods and have also been used as food flavorings. DMF and FFA are proposed to be bioactivated by human sulfotransferases (SULTs) which are not expressed in conventional cell lines used for genotoxicity testing. Therefore, in addition to the standard V79 cell line, we used a transfected V79 derived cell line co-expressing human cytochrome P450 (CYP) 2E1 and human SULT1A1 to assess the genotoxicity of DMF and FFA. The alkaline single cell gel electrophoresis (SCGE) assay was used to detect DNA damage in the form of single strand breaks and alkali-labile sites after exposure to DMF (0.5h; 0.5, 1, 1.5 or 2mM) or FFA (3h; 1, 3, 6 or 15mM). DMF induced DNA damage in V79 cells in a concentration-dependent manner irrespective of the expression of human CYP2E1 and SULT1A1. Almost no increase in the level of DNA damage was detected after exposure to FFA, except for a weak effect at the highest concentration in the transfected cell line. The results suggest that DNA damage in V79 cells from exposure to DMF detected by the alkaline SCGE assay is independent of human CYP2E1 and SULT1A1, and the genotoxic effect of FFA, as assessed by SCGE, is minimal in V79 cells. PMID:27226491

  4. Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment.

    PubMed

    Ventura-Camargo, Bruna de Campos; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2016-10-01

    The present study evaluated the cytotoxic, genotoxic and mutagenic actions of different concentrations (50 and 200 μg/L) of BDCP (Black Dye Commercial Product) used by textile industries, before and after bacterial biodegradation, by the conventional staining cytogenetic technique and NOR-banding in Allium cepa cells. Differences in the chromosomal and nuclear aberrations and alterations in the number of nucleoli were observed in cells exposed to BDCP with and without the microbial treatment. The significant frequencies of chromosome and nuclear aberrations noted in the tests with bacterially biodegraded BDCP indicate that the metabolites generated by degradation are more genotoxic than the chemical itself. Losses of genetic material characterize a type of alteration that was mainly associated with the action of the original BDCP, whereas chromosome stickiness, nuclear buds and binucleated cells were the aberrations that were preferentially induced by BDCP metabolites after biodegradation. The significant frequencies of cell death observed in the tests with biodegraded BDCP also show the cytotoxic effects of the BDCP metabolites. The reduction in the total frequency of altered cells after the recovery treatments showed that the test organism A. cepa has the ability to recover from damage induced by BDCP and its metabolites after the exposure conditions are normalized. PMID:27441992

  5. Evaluation of the co-genotoxic effects of 1800 MHz GSM radiofrequency exposure and a chemical mutagen in cultured human cells

    NASA Astrophysics Data System (ADS)

    Perrin, Anne; Freire, Maëlle; Bachelet, Christine; Collin, Alice; Levêque, Philippe; Pla, Simon; Debouzy, Jean-Claude

    2010-11-01

    We investigated the effect of a 1800 MHz radiofrequency GSM signal combined with a known chemical mutagen (4-nitroquinoline-N-oxide: 4NQO) on human THP1 cells. Comet and γ-H2AX assays were used to assess DNA damage. No heating of the cell cultures was noted during exposure (2 h). The exposure of cells to electromagnetic fields with SARs of 2 to 16 W/kg did not increase the DNA damage induced by 4NQO, whereas the number of DNA strand breaks increased with a temperature increase of at least 4 °C. In conclusion, no co-genotoxic effect of radiofrequency was found at levels of exposure that did not induce heating.

  6. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells.

    PubMed

    Borgie, Mireille; Ledoux, Frédéric; Verdin, Anthony; Cazier, Fabrice; Greige, Hélène; Shirali, Pirouz; Courcot, Dominique; Dagher, Zeina

    2015-01-01

    Assessment of air pollution by particulate matter (PM) is strongly required in Lebanon in the absence of an air quality law including updated air quality standards. Using two different PM2.5-0.3 samples collected at an urban and a rural site, we examined genotoxic/epigenotoxic effects of PM exposure within a human bronchial epithelial cell line (BEAS-2B). Inorganic and organic contents evidence the major contribution of traffic and generating sets in the PM2.5-0.3 composition. Urban PM2.5-0.3 sample increased the phosphorylation of H2AX, the telomerase activity and the miR-21 up-regulation in BEAS-2B cells in a dose-dependent manner. Furthermore, urban PM2.5-0.3 induced a significant increase in CYP1A1, CYP1B1 and AhRR genes expression. The variable concentrations of transition metals and organic compounds detected in the collected PM2.5-0.3 samples might be the active agents leading to a cumulative DNA damage, critical for carcinogenesis. PMID:25460656

  7. METABOLISM, MICROFLORA EFFECTS, AND GENOTOXICITY IN HALOACETIC ACID-TREATED CULTURES OF RAT CECAL MICROBIOTA

    EPA Science Inventory

    Haloacetic acids are by-products of drinking water disinfection. Several compounds in this class are genotoxic and have been identified as rodent hepatocarcinogens. Enzymes produced by the normal intestinal bacteria can transform some promutagens and procarcinogens to their bio...

  8. Assessment of genotoxic effects of boron on wheat (Triticum aestivum L.) and bean (Phaseolus vulgaris L.) by using RAPD analysis.

    PubMed

    Kekec, Guzin; Sakcali, M Serdal; Uzonur, Irem

    2010-06-01

    In boron-rich soils of Turkey, boron tolerant wheat (Triticum aestivum L.) and sensitive bean (Phaseolus vulgaris L.) are most widely cultivated crops. In this study they have been studied to elucidate the probable genotoxic effects of boron by using RAPD analysis. During the study, root and stem lengths have been measured and inhibitory rates (%) of root growth have been found to be significant, starting from 10 (13%) and 5 ppm (19%) for wheat and bean, respectively, which is in strong correlation with the root DNA alterations; RAPD variations starting from 100 ppm for wheat and 25 ppm for bean. The preliminary findings encourage the use of these tools in investigation of genotoxic effects of boron on wheat, bean and the other crops. PMID:20467724

  9. Vigna unguiculata modulates cholesterol induced cardiac markers, genotoxicity and gene expressions profile in an experimental rabbit model.

    PubMed

    Janeesh, P A; Abraham, Annie

    2013-04-25

    Vigna unguiculata (VU) leaves are edible and used as a leafy vegetable in cuisine from traditional times in India. This study was designed to investigate the cardioprotective effect of VU in cholesterol fed rabbits. The animals were randomly divided into 4 groups of 6 animals each and the experimental period was 3 months. Group I-ND [normal diet 40 g feed], Group II-ND + FVU [flavanoid fraction of Vigna unguiculata (150 mg kg (-1) per body weight)], Group III-ND + CH [cholesterol (400 mg)] and Group IV-ND + CH (400 mg) +FVU (150 mg kg(-1) per body weight). After the experimental period, animals were sacrificed and the various parameters, such as cardiac markers, toxicity parameters, genotoxicity and gene expression, were investigated. Cholesterol feeding causes a significant increase in the levels of cardiac marker enzymes, namely lactate dehydrogenase (LDH) and creatine phospokinase (CPK), atherogenic index, toxicity parameters like serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were elevated. Antioxidant enzyme levels were decreased, lipid peroxidation products in heart tissue and inflammatory markers, namely cyclooxygenase (COX2) and lipooxygenase (LOX15) in peripheral blood monocytes (PBMCs), were significantly increased. A genotoxicity study using a Comet assay and gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR) of transforming growth factor-b1 (TGF-b1) and heme oxygenase-1 (HO-1) from heart tissue showed an altered expression in the disease group. The supplementation of the flavonoid fraction of Vigna unguiculata leaves (FVU) in the CH + FVU group caused the reversal of the above parameters and cardiotoxicity to near normal when compared with the CH group and FVU. This study revealed the cardioprotective nature of Vigna unguiculata in preventing cardiovascular diseases and this effect is attributed to the presence of antioxidants and the antihyperlipidemic properties of the

  10. Evaluating the Effects of Bioremediation on Genotoxicity of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Genetically Engineered, Higher Eukaryotic Cell Lines

    PubMed Central

    Hu, Jing; Nakamura, Jun; Richardson, Stephen D.; Aitken, Michael D.

    2012-01-01

    Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal; column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation. PMID:22443351

  11. Occupational exposure in airport personnel: characterization and evaluation of genotoxic and oxidative effects.

    PubMed

    Cavallo, Delia; Ursini, Cinzia Lucia; Carelli, Giovanni; Iavicoli, Ivo; Ciervo, Aureliano; Perniconi, Barbara; Rondinone, Bruna; Gismondi, Massimo; Iavicoli, Sergio

    2006-06-01

    Airport personnel can be exposed to several polycyclic aromatic hydrocarbons (PAHs) from jet fuel vapours, jet fuel combustion products and diesel exhaust. The aim of this study was to characterize the exposure and to evaluate genotoxic and oxidative effects in airport personnel (n=41) in comparison with a selected control group (n=31). Environmental monitoring of exposure was carried out analysing 23 PAHs on air samples collected from airport apron, airport building and terminal/office area during 5 working days. The urinary 1-hydroxy-pyrene (1-OHP) following 5 working days, was used as biomarker of exposure. Genotoxic effects and early direct-oxidative DNA damage were evaluated by micronucleus (MN) and Fpg-modified comet assay on lymphocytes and exfoliated buccal cells, and by chromosomal aberrations (CA) and sister chromatid exchange (SCE) analyses. For comet assay, tail moment (the product of comet relative tail intensity and length) values from Fpg-enzyme treated cells (TMenz) and from untreated cells (TM) were used as parameters of oxidative and direct DNA damage, respectively. We found 27,703 microg/m(3) total PAHs in airport apron, 17,275 microg/m(3) in airport building and 9,494 microg/m(3) in terminal/office area. Urinary OH-pyrene did not show differences between exposed and controls. The exposed group showed a higher mean value of SCE frequency in respect to controls (4.6 versus 3.8) and an increase (1.3-fold) of total structural CA in particular breaks (up to 2.0-fold) and fragments (0.32% versus 0.00%), whereas there were no differences of MN frequency in both cellular types. Comet assay evidenced in the exposed group a higher value in respect to controls of mean TM and TMenz in both exfoliated buccal cells (TM 118.87 versus 68.20, p=0.001; TMenz 146.11 versus 78.32, p<0.001) and lymphocytes (TM 43.01 versus 36.01, p=0.136; TMenz 55.86 versus 43.98, p=0.003). An oxidative DNA damage was found, for exfoliated buccal cells in the 9.7% and for

  12. Effects of chronic exposure to benzalkonium chloride in Oncorhynchus mykiss: cholinergic neurotoxicity, oxidative stress, peroxidative damage and genotoxicity.

    PubMed

    Antunes, S C; Nunes, B; Rodrigues, S; Nunes, R; Fernandes, J; Correia, A T

    2016-07-01

    Benzalkonium chloride (BAC) is one of the most used conservatives in pharmaceutical preparations. However, its use is limited to a small set of external use formulations, due to its high toxicity. Benzalkonium chloride effects are related to the potential exertion of deleterious effects, mediated via oxidative stress and through interaction with membrane enzymes, leading to cellular damage. To address the ecotoxicity of this specific compound rainbow trouts were chronically exposed to BAC at environmental relevant concentrations (ranging from 0.100 to 1.050mg/L), and the biological response of cholinergic neurotoxicity, modulation of the antioxidant defense, phase II metabolism, lipid peroxidation and genotoxicity was studied. The obtained results showed a dual pattern of antioxidant response, with significant alterations in catalase activity (starting at 0.180mg/L), and lipid peroxidation, for intermediate (0.180 and 0.324mg/L) concentrations. No significant alterations occurred for glutathione-S-transferases activity. An unexpected increased of the acetylcholinesterase activity was also recorded for the individuals exposed to higher concentrations of BAC (starting at 0.180mg/L). Furthermore, exposure to BAC resulted in the establishment of genotoxic alterations, observable (for the specific case of the comet assay results) for all tested BAC concentrations. However, and considering that the oxidative response was not devisable, other mechanisms may be involved in the genotoxic effects reported here. PMID:27280532

  13. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    PubMed

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. PMID:25488706

  14. Interplay between Smoking-induced Genotoxicity and Altered Signaling in Pancreatic Carcinogenesis

    PubMed Central

    Batra, Surinder K.

    2012-01-01

    Despite continuous research efforts directed at early diagnosis and treatment of pancreatic cancer (PC), the status of patients affected by this deadly malignancy remains dismal. Its notoriety with regard to lack of early diagnosis and resistance to the current chemotherapeutics is due to accumulating signaling abnormalities. Hoarding experimental and epidemiological evidences have established a direct correlation between cigarette smoking and PC risk. The cancer initiating/promoting nature of cigarette smoke can be attributed to its various constituents including nicotine, which is the major psychoactive component, and several other toxic constituents, such as nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and polycyclic aromatic hydrocarbons. These predominant smoke-constituents initiate a series of oncogenic events facilitating epigenetic alterations, self-sufficiency in growth signals, evasion of apoptosis, sustained angiogenesis, and metastasis. A better understanding of the molecular mechanisms underpinning these events is crucial for the prevention and therapeutic intervention against PC. This review presents various interconnected signal transduction cascades, the smoking-mediated genotoxicity, and genetic polymorphisms influencing the susceptibility for smoking-mediated PC development by modulating pivotal biological aspects such as cell defense/tumor suppression, inflammation, DNA repair, as well as tobacco-carcinogen metabolization. Additionally, it provides a large perspective toward tumor biology and the therapeutic approaches against PC by targeting one or several steps of smoking-mediated signaling cascades. PMID:22623649

  15. The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals.

    PubMed

    Major, J; Jakab, M G; Tompa, A

    1999-09-30

    Premature (early) centromere division (PCD, i.e., the separation of centromeres during the prometaphase/metaphase of the mitotic cycle) seems to be a possible manifestation of chromosome instability in human chromosome-breakage syndromes. Chromosome instability also frequently occurs in the peripheral blood lymphocytes (PBL) of humans occupationally exposed to clastogenic agents, and is considered an etiologic factor of neoplastic diseases. In order to investigate the importance of PCD in cancer risk assessment, we studied the frequency of PCDs in PBL of 400 Hungarian subjects. The various groups comprised 188 control donors and 212 subjects occupationally exposed to different genotoxic chemicals, such as acrylonitrile (ACN) and/or dimethylformamide (DMF), benzene, cytostatic drugs, ethylene oxide (ETO), mixed exposure in the rubber industry, mixed organic solvents including CCl4, hot oil-mist, bitumen, and polychlorinated biphenyls (PCB). Data were compared with chromosomal aberration frequencies determined in the same samples. PCD yields are significantly higher in populations exposed to mixed chemicals, crude oil and cytostatic drugs, compared with controls. PCDs involving more than three chromosomes are also more frequent in ETO- and oil mist-exposed groups than in the others. The results indicate that the induction of PCDs is neither incidental nor artificial. As a consequence, we suggest that PCD can be developed into a new, exposure-related cytogenetic biomarker for a more adequate occupational cancer risk assessment. A further, follow-up epidemiological and cytogenetic investigation of PCD is in progress. PMID:10575433

  16. Toxicopathic changes and genotoxic effects in liver of rat following exposure to diazinon.

    PubMed

    Ezzi, Lobna; Haouas, Zohra; Salah, Imen Belhadj; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Cheikh, Hassen Ben

    2016-06-01

    In general, people may come in contact with mixtures of insecticides through domestic use, consumption of contaminated food or drinks, and/or living close to treated areas. We analyzed the toxic effects of diazinon on histological structure of liver and hematological parameters in male rats. DNA-damaging potential of diazinon was also investigated using the comet assay in blood cells and the micronucleus test in bone marrow. Two groups of six male rats orally received different amounts of diazinon: 1/50 and 1/25 LD 50 for 4 weeks (5 day/week). The present study showed that diazinon caused hypertrophy of sinusoids, central vein, and portal triad, in addition to the formation of oedema, vacuoles, hemorrhage, necrosis, and lymphoid infiltration in rats' liver. A significant decrease in red blood cells, hemoglobin, hematocrite levels, and platelet counts was observed in the treated groups. However, the white blood cell count increased. Micronucleus test results revealed aneugenic effects of diazinon. Furthermore, we noticed an increase in comet tail length in treated groups. So, the comet assay confirmed the genotoxic potential of diazinon in vivo. On the assumption that all alterations observed in rats could be observed in human, it is necessary to raise the awareness about the health risk posed by this insecticide. PMID:26916269

  17. A multispecies study to assess the toxic and genotoxic effect of pharmaceuticals: furosemide and its photoproduct.

    PubMed

    Isidori, Marina; Nardelli, Angela; Parrella, Alfredo; Pascarella, Luigia; Previtera, Lucio

    2006-05-01

    Pharmaceutical products for humans and animals, as well as their related metabolites end up in the aquatic environment after use. Recent investigations show that concentrations of pharmaceuticals are detectable in the order of ng/l-mug/l in municipal wastewater, groundwater and also drinking water. Little is known about the effects, and the hazard of long-term exposure to low concentrations of pharmaceuticals for non-target aquatic organisms. This study was designed to assess the ecotoxicity of furosemide, a potent diuretic agent, and its photoproduct in the aquatic environment. Bioassays were performed on bacteria, algae, rotifers and microcrustaceans to assess acute and chronic toxicity, while the SOS Chromotest and the Ames test were utilized to detect the genotoxic potential of the investigated compounds. A first approach to risk characterization was to calculate the environmental impact of furosemide by measured environmental concentration and predicted no effect concentration ratio (MEC/PNEC). To do so we used occurrence data reported in the literature and our toxicity results. The results showed that acute toxicity was in the order of mg/l for the crustaceans and absent for bacteria and rotifers. Chronic exposure to these compounds caused inhibition of growth population on the consumers, while the algae did not seem to be affected. A mutagenic potential was found for the photoproduct compared to the parental compound suggesting that byproducts ought to be considered in the environmental assessment of drugs. The risk calculated for furosemide suggested its harmlessness on the aquatic compartment. PMID:16213548

  18. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies

    PubMed Central

    Ghodbane, Soumaya; Lahbib, Aida; Sakly, Mohsen; Abdelmelek, Hafedh

    2013-01-01

    The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. The magnetic fields (MFs) effect observed with radical pair recombination is one of the well-known mechanisms by which MFs interact with biological systems. Exposure to SMF can increase the activity, concentration, and life time of paramagnetic free radicals, which might cause oxidative stress, genetic mutation, and/or apoptosis. Current evidence suggests that cell proliferation can be influenced by a treatment with both SMFs and anticancer drugs. It has been recently found that SMFs can enhance the anticancer effect of chemotherapeutic drugs; this may provide a new strategy for cancer therapy. This review focuses on our own data and other data from the literature of SMFs bioeffects. Three main areas of investigation have been covered: free radical generation and oxidative stress, apoptosis and genotoxicity, and cancer. After an introduction on SMF classification and medical applications, the basic phenomena to understand the bioeffects are described. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts; international safety guidelines are also cited. PMID:24027759

  19. Cytotoxic and genotoxic effects of in vitro exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes.

    PubMed

    Binelli, A; Cogni, D; Parolini, M; Riva, C; Provini, A

    2009-07-01

    Pharmaceuticals and personal care products (PPCPs) have been detected in several aquatic ecosystems for a number of years, but the potential for biological effects in exposed non-target organisms is only now being reported. In this study the potential cellular damage due to two of the main PPCPs found in aquatic environments was investigated by in vitro exposures. Hemolymph samples of the freshwater bivalve Dreissena polymorpha were collected and treated with increasing concentrations of the antibacterial agent Triclosan (TCS) and the antibiotic Trimethoprim (TMP). Doses selected for TCS were 0.1, 0.15, 0.2, and 0.3 microM, while 0.2, 1, and 5 microM for TMP exposures, respectively. We evaluated the potential genotoxicity on hemocytes by the SCGE (single cell gel electrophoresis) assay and apoptosis frequency evaluation, while the cytotoxicity was measured by the lysosomal membranes stability test (NRRA, neutral red retention assay). TCS genotoxicity increased in a dose-dependent manner and this pharmaceutical significantly affects hemocyte functionality due to severe DNA injuries at very low doses. In contrast, TMP seems to be less dangerous than TCS for D. polymorpha because the cytotoxic and the moderate genotoxic effects noticed were obtained only at very high concentration levels. PMID:19232398

  20. A comparative study of genotoxic effects in the treatment of trichomonas vaginalis infection: metronidazole or nalidixic acid.

    PubMed

    Akyol, D; Mungan, T; Baltaci, V

    2000-07-01

    We performed a prospective randomized study to compare the potential genotoxic effects of metronidazole and nalidixic acid which they are used in the treatment of Trichomonas vaginalis infection. 20 patients with Trichomonas vaginalis infections participated in this study. 14 patients with vaginal trichomoniasis were treated with therapeutic doses of metronidazole 250 mg 3 times/d and six patients were treated with nalidixic acid 400 mg twice a day for 10 d. The genotoxic potential of a variety of mutagenic and carcinogenic agents can be evaluated by sister-chromatid exchange (SCE) test as a rapid cytogenetic test. An increased number of exchanges in lymphocytes reflects the influence of mutagens. No significant difference was observed in the SCE frequency of metronidazole treated patient however, a statistically significant increase (P<0.05) after nalidixic acid treatment could be described. We conclude that in spite of wide use of nalidixic acid for Trichomonas vaginalis infection, because of its potential genotoxic effect its usage must be individualized especially for pregnant women and small babies. PMID:10985613

  1. A short-term test adapted to detect the genotoxic effects of environmental volatile pollutants (benzene fumes) using the filamentous fungus Aspergillus nidulans.

    PubMed

    Domingues Zucchi, Tiago; Domingues Zucchi, Fernando; Poli, Paola; Soares de Melo, Itamar; Zucchi, Tania M A D

    2005-06-01

    With the recent focus on environmental problems, increasing awareness of the harmful effects of industrial and agricultural pollution has created a demand for progressively more sophisticated pollutant and toxicity detection methods. Using Aspergillus nidulans strains this work presents a new short term-test that, most importantly, enables the rapid and inexpensive detection of volatile pollutants that induce genotoxic/carcinogenic effects in animals. The main aim is to contribute to environmental health protection, and special attention is directed to monitoring the hazard posed by benzene (as a carcinogenic agent model) mainly because its ubiquitous presence often leads to severe noxious effects in humans among whom increased rates of human leukemia have been reported. To evaluate even the submutagenic effects of benzene fumes, two Aspergillus nidulans diploid strains, heterozygous for several auxotrophic mutations, were used. The DNA lesions produced stimulate mitotic recombination and homozygotization of auxotrophic recessive mutations. Conidial exposure to a saturated atmosphere of benzene fumes for 20 s was enough to increase the mitotic recombination frequencies significantly. Genetic analyses of treated diploids evidenced alterations related to mitotic recombination frequencies, gene expression, and allelic segregation rates. Altogether they reflect the potential of benzene to induce alterations in the fungal DNA, and albeit indirectly, they also respond for the genotoxic/carcinogenic harmful side effects widely connected to benzene. This is the first description of a sensitive, rapid and inexpensive test able to detect the submutagenic dose effects of volatile environmental compounds. In addition, despite concentrating on benzene the same test can be applied to many other pollutants, volatile or not. Additionally, the test can also be used to detect the antigenotoxic properties of foods and drugs. PMID:15931421

  2. The effect of pyrazole, phenobarbital, ethanol and 3-methylcholanthrene pretreatment on the in vivo and in vitro genotoxicity of N-nitrosopyrrolidine.

    PubMed

    Gold, B; Brunk, G

    1988-06-01

    The in vitro genotoxicity of N-nitrosopyrrolidine (NPy) has been studied in Salmonella typhimurium strain TA1535 in the presence of untreated and pyrazole-, phenobarbital (PB)-, 4-day ethanol (EtOH)-, 10-day EtOH- and 3-methylcholanthrene (3-MC)-pretreated male Sprague-Dawley rat liver S-9 fractions. Unless stated otherwise, the last pretreatment exposure was 24 h prior to sacrifice and isolation of hepatic enzymes. Pyrazole and EtOH (10-day exposure) both effectively induced the conversion of NPy into a mutagen at doses as low as 500 microM. PB and EtOH (4-day exposure) had a modest enhancing effect on the number of revertants scored, while 3-MC and uninduced S-9 fractions gave results not significantly different from background (no NPy). The same pretreatment protocols were used to determine the in vivo genotoxicity of NPy in rat liver using the technique of alkaline elution. The inducing agents had the exact opposite effect in vivo with control, 3-MC- and 4-day EtOH-treated animals showing the highest level of DNA damage. Pyrazole and 10-day EtOH pretreatments gave DNA elution rate constants comparable to animals not treated with NPy. However, in 10-day EtOH-pretreated animals which were administered NPy without a 24-h interval between EtOH and NPy exposure, DNA damage was observed at the same high levels as was seen in uninduced and 3-MC treated rats. The results are discussed in terms of a detoxification role for microsomal proteins and that the observed in vivo DNA damage may be induced by enzymes associated with the nuclear compartment. PMID:3286025

  3. Genotoxic effects of occupational exposure measured in lymphocytes of waste-incinerator workers.

    PubMed

    Wultsch, Georg; Mišík, Miroslav; Nersesyan, Armen; Knasmueller, Siegfried

    2011-02-28

    Workers of solid-waste incinerators are exposed to a variety of pollutants such as dioxins, polycyclic aromatic hydrocarbons and heavy metals. It has been shown that the emissions and the fly ash produced by incineration have mutagenic properties. To our knowledge, no studies have been conducted in which genotoxic effects were investigated in exposed workers. Therefore, we monitored DNA damage by means of the single-cell gel electrophoresis (SCGE) and micronucleus (MN) assays in lymphocytes of individuals (n=23) who were temporarily (1-11 months) conducting maintenance works of an incinerator and in unexposed controls (n=19). Additionally, we measured the urinary concentrations of selected metals (Cr, Mn, Ni, As) with atomic absorption resonance. We found no differences in the levels of DNA migration and in the MN frequencies between different exposure groups and controls. Likewise, we also failed to find differences in the metal concentrations. Taken together, our results indicate that incinerator workers at the site investigated here have no increased health risks due to DNA damage. PMID:20708710

  4. Effects of SO2 or NOx on toxic and genotoxic properties of chemical carcinogens. I. In vitro studies.

    PubMed

    Pool, B L; Janowsky, I; Klein, P; Klein, R G; Schmezer, P; Vogt-Leucht, G; Zeller, W J

    1988-07-01

    This paper describes in vitro studies on the effects of environmental pollutants (SO2/NOx) in biological systems. Basic physical, chemical and biochemical parameters were analyzed to establish the rate of SO2/NOx absorption by the culture medium. It was shown that the pH remains constant for 24 h of exposure to gas concentrations up to 50 p.p.m. The concentration of ions resulting from absorption of each pollutant in the liquid phase is dependent on their concentration in the gas phase and on exposure time. Short exposure times and high gas dosages resulted in similar doses in the medium as long exposure periods and low gas dosages. The activities of a human serum standard (alkaline phosphatase, ALP; aspartate amino transferase, AST; alanine amino transferase, ALT; gamma-glutamyltransferase, gamma-GT; lactate dehydrogenase, LDH) were determined after gaseous exposure to SO2 and NOx. The results revealed a distinct decrease in the activity of LDH after 1, 3 and 5 h exposure to 200 p.p.m. SO2. The effects of the pollutants were assayed in vitro using fetal hamster lung cells (FHLC), rat hepatocytes and the cell line CO60. For the determination of toxic effects, it was shown that the plating efficiency was a more sensitive parameter than the assay for trypan blue exclusion. Toxicity indicated as an increase of LDH leakage was not observed from FHLC in culture. Instead, a decrease of LDH was found following SO2 exposition. This decrease was similar to that observed for the human serum standard. The induction of DNA single-strand breaks was determined as a measure of genotoxic effects. SO2 application decreased the rate of DNA single-strand breaks induced by N-nitroso-acetoxymethyl-methylamine in both FHLC and in rat hepatocytes. SO2 or NOx treatment of CO60 cells for 1 h did not result in the induction of DNA amplification. HSO3- added directly to the medium as the sodium salt, however, distinctly induced the amplification of SV40 DNA. The amplification rates induced

  5. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes.

    PubMed

    Lacaze, Emilie; Pédelucq, Julie; Fortier, Marlène; Brousseau, Pauline; Auffret, Michel; Budzinski, Hélène; Fournier, Michel

    2015-07-01

    The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment. PMID:25829077

  6. Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; da Silva Souza, Tatiana

    2016-04-01

    The objective of this study was to ascertain the cytotoxic, genotoxic and mutagenic potential of sewage sludge using Allium cepa bioassay. Solubilized and crude sludge from two sewage treatment stations (STSs), herein named JM and M, were tested. In addition, sanitized, crude and solubilized sludge were also analyzed from STS M. The treatments showed positive response to phytotoxicity, cytotoxicity, genotoxicity and/or mutagenicity. Despite negative results for MN F1 (micronuclei counted in F1 root cells, derived from meristematic cells), the monitoring of genotoxic and mutagenic activities of sewage sludge are recommended because in agricultural areas this residue is applied in large scale and continuously. Based on our results we advise caution in the use of sewage sludge in agricultural soils. PMID:26841290

  7. Protective role of methanol extract of Cetraria islandica (L.) against oxidative stress and genotoxic effects of AFB₁ in human lymphocytes in vitro.

    PubMed

    Kotan, Elif; Alpsoy, Lokman; Anar, Mustafa; Aslan, Ali; Agar, Guleray

    2011-08-01

    In this study, the antigenotoxic and antioxidant effects of Cetraria islandica methanol (CME) extract were determined by using sister chromatid exchange (SCE), micronuclei (MN) assays and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and malondialdehyde (MDA) levels against effects of aflatoxin B1 (AFB₁) induced oxidative stress and genotoxicity in human lymphocytes in vitro. The results showed that the frequencies of SCE, MN and MDA level decreased, SOD and GPx activities increased when 5 μg/mL and 10 μg/mL doses of CME were added to AFB₁-treated cultures. Also, the present results indicate that CME has strong antioxidative and the antigenotoxicity mechanisms of CME are associated with its antioxidant nature. PMID:21357634

  8. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (lemna minor L.).

    PubMed

    Cvjetko, Petra; Tolić, Sonja; Sikić, Sandra; Balen, Biljana; Tkalec, Mirta; Vidaković-Cifrek, Zeljka; Pavlica, Mirjana

    2010-09-01

    We investigated interactions between copper (in the concentrations of 2.5 μmol L-1 and 5 μmol L-1) and cadmium (5 μmol L-1) in common duckweed (Lemna minor L.) by exposing it to either metal or to their combinations for four or seven days. Their uptake increased with time, but it was lower in plants treated with combinations of metals than in plants treated with either metal given alone. In separate treatments, either metal increased malondialdehyde (MDA) level and catalase and peroxidase activity. Both induced DNA damage, but copper did it only after 7 days of treatment. On day 4, the combination of cadmium and 5 μmol L-1 copper additionally increased MDA as well as catalase and peroxidase activity. In contrast, on day 7, MDA dropped in plants treated with combinations of metals, and especially with 2.5 μmol L-1 copper plus cadmium. In these plants, catalase activity was higher than in copper treated plants. Peroxidase activity increased after treatment with cadmium and 2.5 μmol L-1 copper but decreased in plants treated with cadmium and 5 μmol L-1 copper. Compared to copper alone, combinations of metals enhanced DNA damage after 4 days of treatment but it dropped on day 7. In conclusion, either metal given alone was toxic/genotoxic and caused oxidative stress. On day 4 of combined treatment, the higher copper concentration was more toxic than either metal alone. In contrast, on day 7 of combined treatment, the lower copper concentration showed lower oxidative and DNA damage. These complex interactions can not be explained by simple antagonism and/or synergism. Further studies should go in that direction. PMID:20860969

  9. Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7 cells

    PubMed Central

    Ahamed, Maqusood; Alhadlaq, Hisham A

    2014-01-01

    Despite the widespread application of nickel nanoparticles (Ni NPs) in industrial, commercial, and biomedical fields, their response to human cells has not been clearly elucidated. In the study reported here, Ni NPs with a 28 nm diameter were used to study their interaction with human breast carcinoma (MCF-7) cells. Dose-dependent decreased cell viability and damaged cell membrane integrity showed the cytotoxic potential of the Ni NPs. We further found that Ni NPs induce oxidative stress in a dose-dependent manner, as evidenced by glutathione depletion and reactive oxygen species (ROS) generation. Comet assay indicated the dose-dependent induction of DNA damage due to Ni NP exposure. The level of messenger RNA, as well as activity of caspase-3 enzyme, was higher in MCF-7 cells exposed to Ni NPs than in control cells. Moreover, we observed statistically significant correlations of ROS with cell viability (R2=0.984), DNA damage (% tail DNA) (R2=0.982), and caspase-3 enzyme activity (R2=0.991). To the best of our knowledge, this is the first study on human breast cancer cells to have shown the cyto-genotoxicity of Ni NPs, which seems to be mediated through ROS. PMID:24627639

  10. Radiation-induced micronuclei in peripheral erythrocytes of Rana catesbeiana: an aquatic animal model for in vivo genotoxicity studies

    SciTech Connect

    Krauter, P.W.; Anderson, S.L.; Harrison, F.L.

    1987-01-01

    An in vivo micronucleus assay for peripheral erythrocytes of Rana catesbeiana tadpoles was developed and evaluated. The assay was used to determine the spontaneous frequency of micronuclei in circulating erythrocytes in tadpoles from two different populations, to define the time from administering the clastogen to the maximum micronucleus frequency in peripheral erythrocytes, and to determine the response to radiation. The spontaneous frequency of micronuclei in circulating erythrocytes of early-stage tadpoles was low, but higher than that of late-stage tadpoles. The time from the exposure of early-stage tadpoles to radiation (2.1 Gy) to the maximum micronucleus frequency was about 2 wk. The increase in frequency of micronuclei in peripheral erythrocytes of late-stage tadpoles receiving doses ranging from 0.5 to 3.0 Gy was linear with dose; a 3-fold increase was obtained with a dose of 3.0 Gy. The spontaneous frequency of micronuclei in erythrocytes and the increase in frequency induced by radiation appeared to differ in tadpoles from different populations. Quantification of micronuclei in the peripheral erythrocytes of R castesbeiana tadpoles provides a promising whole-animal system for studies of genotoxicity in aquatic environments.

  11. Radiation-induced micronuclei in peripheral erythrocytes of Rana catesbeiana: an aquatic animal model for in vivo genotoxicity studies

    SciTech Connect

    Krauter, P.W.; Anderson, S.L.; Harrison, F.L.

    1987-01-01

    An in vivo micronucleus assay for peripheral erythrocytes of Rana catesbeiana tadpoles was developed and evaluated. The assay was used to determine the spontaneous frequency of micronuclei in circulating erythrocytes in tadpoles from two different populations, to define the time from administering the clastogen to the maximum micronucleus frequency in peripheral erythrocytes, and to determine the response to radiation. The spontaneous frequency of micronuclei in circulating erythrocytes of early-stage tadpoles was low (3.6 +/- 2.8 micronuclei per 1,000 erythrocytes, MN o/oo), but higher than that of late-stage tadpoles (1.7 +/- 0.7 MN o/oo). The time from the exposure of early-stage tadpoles to radiation (2.1 Gy) to the maximum micronucleus frequency was about 2 wk. The increase in frequency of micronuclei in peripheral erythrocytes of late-stage tadpoles receiving doses ranging from 0.5 to 3.0 Gy was linear with dose; a 3-fold increase was obtained with a dose of 3.0 Gy. The spontaneous frequency of micronuclei in erythrocytes and the increase in frequency induced by radiation appeared to differ in tadpoles from different populations. Quantification of micronuclei in the peripheral erythrocytes of R catesbeiana tadpoles provides a promising whole-animal system for studies of genotoxicity in aquatic environments.

  12. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity.

    PubMed

    Butler, Kimberly S; Peeler, David J; Casey, Brendan J; Dair, Benita J; Elespuru, Rosalie K

    2015-07-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  13. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity

    PubMed Central

    Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.

    2015-01-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  14. [Modified DNA-halo method for assessment of DNA damage induced by various genotoxic agents].

    PubMed

    2013-01-01

    Using a modified DNA-halo method single-strand breaks and DNA alkaline-labile site induction were stud- ied in human peripheral blood lymphocytes after a short-term (up to 10 min) exposure in vitro to X-rays, hy- drogen peroxide and long-wave ultraviolet light (365 ± 10 nm). It was shown that the dose-effect dependence in thee X-ray dose range of 0.3-2 Gy approximates by a linear function of y = 0.25 + 0.42x (R2 = 0.98), where y is a DNA-halo index in standardized units, x--a radiation dose in Gy. The effect of "saturation" was ob- served in the range of 2-5 Gy. Under exposure to hydrogen peroxide up to a concentration of 25 μmol/L, the dose-effect is described by a linear function y = 0.23 + 0.033x (R2 = 0.96), where y is the DNA-halo index in standardized units, x--hydrogen peroxide concentration in μmol/L. UV exposure induced a linear in- crease of the DNA-halo index in the dose range of 2-10 kJ/m2 (y = 0.26 + 0.032x (R2 = 0.99), where y is theDNA-halo index in standardized units, x--a radiation dose in kJ/m2). In summary, the described modi- fication of the DNA-halo method provides a simple, sensitive, well reproducible and rapid assay for the anal- ysis of DNA single-strand breaks and alkaline-labile sites in living cells. PMID:25507621

  15. [Modified DNA-halo method for assessment of DNA damage induced by various genotoxic agents].

    PubMed

    Smetanina, N M; Pustovalova, M V; Osipov, A N

    2013-01-01

    Using a modified DNA-halo method single-strand breaks and DNA alkaline-labile site induction were stud- ied in human peripheral blood lymphocytes after a short-term (up to 10 min) exposure in vitro to X-rays, hy- drogen peroxide and long-wave ultraviolet light (365 ± 10 nm). It was shown that the dose-effect dependence in thee X-ray dose range of 0.3-2 Gy approximates by a linear function of y = 0.25 + 0.42x (R2 = 0.98), where y is a DNA-halo index in standardized units, x--a radiation dose in Gy. The effect of "saturation" was ob- served in the range of 2-5 Gy. Under exposure to hydrogen peroxide up to a concentration of 25 μmol/L, the dose-effect is described by a linear function y = 0.23 + 0.033x (R2 = 0.96), where y is the DNA-halo index in standardized units, x--hydrogen peroxide concentration in μmol/L. UV exposure induced a linear in- crease of the DNA-halo index in the dose range of 2-10 kJ/m2 (y = 0.26 + 0.032x (R2 = 0.99), where y is theDNA-halo index in standardized units, x--a radiation dose in kJ/m2). In summary, the described modi- fication of the DNA-halo method provides a simple, sensitive, well reproducible and rapid assay for the anal- ysis of DNA single-strand breaks and alkaline-labile sites in living cells. PMID:25427371

  16. Genotoxicity of streptonigrin: a review.

    PubMed

    Bolzán, A D; Bianchi, M S

    2001-03-01

    Streptonigrin (SN, CAS no. 3930-19-6) is an aminoquinone antitumor antibiotic isolated from cultures of Streptomyces flocculus. This compound is a member of a group of antitumor agents which possess the aminoquinone moiety and that includes also mitomycin C, porfiromycin, actinomycin, rifamycin and geldanamycin. Because of the potential use of SN in clinical chemotherapy, the study of its genotoxicity has considerable practical significance.SN inhibits the synthesis of DNA and RNA, causes DNA strand breaks after reduction with NADH, induces unscheduled DNA synthesis and DNA adducts and inhibits topoisomerase II. At the chromosome level, this antibiotic causes chromosome damage and increases the frequency of sister-chromatid exchanges.SN cleaves DNA in cell-free systems by a mechanism that involves complexing with metal ions and autoxidation of the quinone moiety to semiquinone in the presence of NADH with production of oxygen-derived reactive species. Recent evidence strongly suggests that the clastogenic action of this compound is partially mediated by free radicals. The present review aims at summarizing past and current knowledge concerning the genotoxic effects of SN. PMID:11223403

  17. Genotoxicity of glycol ethers.

    PubMed Central

    McGregor, D B

    1984-01-01

    The genetic toxicology of glycol ethers is reviewed. Ethylene glycol monomethyl ether (EGME) and diglyme have been more extensively studied than other members of this series. Most results indicate a lack of genotoxic potential, but certain tests have yielded positive responses with certain compounds. Ethylene glycol monoethyl ether (EGEE) induced sister chromatid exchanges and chromosomal aberrations in cultured cells. Both EGME and diglyme induced mouse sperm head morphological changes, male rat weak dominant lethal mutations and marked, but reversible, loss of male rat fertility. PMID:6541999

  18. GENOTOXIC EFFECTS OF COMPLEX MARINE SEDIMENT EXTRACTS ON V79 CHINESE HAMSTER LUNG FIBROBLASTS

    EPA Science Inventory

    A mammalian in vitro system was used to evaluate the genotoxic potential of two complex environmental samples. ister chromatid exchanges (SCEs) were measured in Chinese hamster V79 lung fibroblast cells, following exposure to whole extracts of sediments collected from a highly co...

  19. Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice.

    PubMed

    Khan, Sabbir; Ahmad, Tauseef; Parekh, Chintan Vishnubhai; Trivedi, Priyanka Pushkarbhai; Kushwaha, Sapana; Jena, Gopabandhu

    2011-12-01

    Sodium valproate (VPA) is the most widely used antiepileptic drug for the treatment of epilepsy, bipolar psychiatric disorders and migraine. However, long-term VPA treatment has several adverse effects on the reproductive system. The present study was aimed to investigate the possible germ cell toxicity of VPA in mice. Animals were treated with VPA intraperitoneally for 10 and 28 days at the doses of 500 mg/kg-d and 100, 200 and 400 mg/kg-d, respectively, and were sacrificed 24h after the last dose. The germ cell toxicity of VPA was assessed using oxidative stress parameters, sperm count, sperm head morphology, sperm comet assay, 8-oxo-dG expression and histology. VPA treatment significantly decreased the sperm count, testes and epididymis weight and significantly increased the sperm head abnormality, sperm DNA damage, oxidative stress and 8-oxo-dG expression in the testes of mice. The present study illustrates that VPA induced germ cell toxicity in mice. PMID:22001255

  20. High-altitude medicines: a short-term genotoxicity study.

    PubMed

    Ghosh, Manosij; Biswas, Dhrubojyoti; Mukherjee, Anita

    2010-08-01

    People live in the mountains distributed across the world and are exposed to reduced inspired oxygen and lower barometric pressure along with other factors that lead to high-altitude diseases. The present study was conducted to examine what extent of marketed medicines used in the management of high-altitude sickness has been tested for their genotoxic activity. Comet assay or the single-cell gel electrophoresis was utilized to evaluate genotoxicity of the six medicines on human peripheral whole blood cells and isolated lymphocytes at the concentrations 250 microg/mL, 500 microg/mL and 1 mg/mL. The comet assay endpoints included percentage Tail DNA (% Tail DNA) and olive tail moment (OTM) as they were considered to be sensitive and reliable scores across different laboratories. The results show that dexamethasone, deriphylline and furosemide can induce significant DNA damage in human whole blood and lymphocytes alike. Acetazolamide, ibuprofen and nifedipine show no genotoxic effect, neither on human whole blood nor on human lymphocytes. Taking into account the results of genotoxicity, it will be a prudent choice to restrict the use of these compounds for longer periods, until more information on the in vitro mutagenicity and in vivo genotoxicity studies are available. PMID:20504830

  1. Evaluation of the genotoxicity/mutagenicity and antigenotoxicity/antimutagenicity induced by propolis and Baccharis dracunculifolia, by in vitro study with HTC cells.

    PubMed

    Roberto, Matheus Mantuanelli; Matsumoto, Sílvia Tamie; Jamal, Cláudia Masrouah; Malaspina, Osmar; Marin-Morales, Maria Aparecida

    2016-06-01

    The ethanolic extract of propolis, especially the Brazilian green type, is widely and mainly used for therapeutic purposes despite the lack of knowledge about its effects and its cellular mode of action. This type of propolis, derived from Baccharis dracunculifolia (alecrim-do-campo), has been extensively commercialized and the consumers use it to enhance health. This work aimed to assess the genotoxic/mutagenic and antigenotoxic/antimutagenic potentials of the ethanolic extracts of Brazilian green propolis and of B. dracunculifolia, on mammalian cells. It was not observed genotoxic and mutagenic effects by both extracts. After evaluate the exposure of the cells to each extract with a recognized mutagen, simultaneously, the results showed a significant reduction on DNA damage. The experiment carried out with a pre-incubation period was more effective than without incubation test, showing that the tested extracts were able to inactivate the mutagen before it could react with the DNA. PMID:26891814

  2. Genotoxic effects of 1 GeV/amu Fe ions in mouse kidney epithelial cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S. S.; Connolly, L.; Turker, M.

    Human exploration of space places individuals in environments where they are exposed to charged particle radiation. The goal of our studies is to assess the genotoxic and mutagenic effects of high energy Fe ions (1 GeV/amu) in kidney epithelial cells of the mouse irradiated either in vitro or in vivo. The initial study focused on establishing the toxicity of these heavy ions (LET=159 keV/micron) in two Aprt heterozygous kidney epithelial cell lines: K06 cells derived from a C57BL6/129Sv animal, and clone 4a cells derived from a C57BL6/DBA2 animal. Cells were exposed in vitro to graded doses of Fe ions (0-300 cGy) and the toxicity of the treatment was established using colony forming assays. Experiments were performed in triplicate at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. The results indicate that Fe ions are toxic to mouse kidney epithelial cells and that no shoulder is observed on the survival curve for cells from either genetic background. The clone 4a cells were more sensitive to Fe ion exposures than the K06 cells. The D(37) for clone 4a cells was 92 cGy and the D(10) was 212 cGy. The more resistant K06 cells had a D(37) of 192 cGy and an estimated D(10) of 388 cGy. Parallel experiments are underway to establish the RBE's for cell killing for these two cell lines. Supported by NASA grant T-403X to A. Kronenberg

  3. Involvement of oxidative stress in methyl parathion and parathion-induced toxicity and genotoxicity to human liver carcinoma (HepG₂) cells.

    PubMed

    Edwards, Falicia L; Yedjou, Clement G; Tchounwou, Paul B

    2013-06-01

    Methyl parathion (C₈H₁₀NO₅PS) and parathion (C₁₀H14 NO₅PS) are both organophosphate insecticides (OPI) widely used for household and agricultural applications. They are known for their ability to irreversibly inhibit acetylcholinesterase which often leads to a profound effect on the nervous system of exposed organisms. Many recently published studies have indicated that human exposure to OPI may be associated with neurologic, hematopoietic, cardiovascular, and reproductive adverse effects. Studies have also linked OPI exposure to a number of degenerative diseases including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis. Also, oxidative stress (OS) has been reported as a possible mechanism of OPI toxicity in humans. Hence, the aim of the present investigation was to use human liver carcinoma (HepG₂) cells as a test model to evaluate the role of OS in methyl parathion- and parathion-induced toxicity. To achieve this goal, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay for cell viability, lipid peroxidation assay for malondialdehyde (MDA) production, and Comet assay for DNA damage, respectively. Results from MTT assay indicated that methyl parathion and parathion gradually reduce the viability of HepG₂ cells in a dose-dependent manner, showing 48 h-LD₅₀ values of 26.20 mM and 23.58 mM, respectively. Lipid peroxidation assay resulted in a significant increase (P < 0.05) of MDA level in methyl parathion- and parathion-treated HepG₂ cells compared with controls, suggesting that OS plays a key role in OPI-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of OPI exposure. Overall, we found that methyl-parathion is slightly less toxic than parathion to HepG₂ cells. The cytotoxic effect of these OPI was found to be associated, at least in part, with oxidative cell/tissue damage. PMID:21544925

  4. Involvement of Oxidative Stress in Methyl Parathion and Parathion-Induced Toxicity and Genotoxicity to Human Liver Carcinoma (HepG2) Cells

    PubMed Central

    Edwards, Falicia L.; Yedjou, Clement G.; Tchounwou, Paul B.

    2013-01-01

    Methyl parathion (C8H10NO5PS) and parathion (C10H14NO5PS) are both organophosphate insecticides (OPI) widely used for household and agricultural applications. They are known for their ability to irreversibly inhibit acetylcholinesterase which often leads to a profound effect on the nervous system of exposed organisms. Many recently published studies have indicated that human exposure to OPI may be associated with neurologic, hematopoietic, cardiovascular, and reproductive adverse effects. Studies have also linked OPI exposure to a number of degenerative diseases including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis. Also, oxidative stress (OS) has been reported as a possible mechanism of OPI toxicity in humans. Hence, the aim of the present investigation was to use human liver carcinoma (HepG2) cells as a test model to evaluate the role of OS in methyl parathion- and parathion-induced toxicity. To achieve this goal, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay for cell viability, lipid peroxidation assay for malondialdehyde (MDA) production, and Comet assay for DNA damage, respectively. Results from MTT assay indicated that methyl parathion and parathion gradually reduce the viability of HepG2 cells in a dose-dependent manner, showing 48 h-LD50 values of 26.20 mM and 23.58 mM, respectively. Lipid peroxidation assay resulted in a significant increase (p<0.05) of MDA level in methyl parathion- and parathion-treated HepG2 cells compared to controls, suggesting that OS plays a key role in OPI-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of OPI exposure. Overall, we found that methyl-parathion is slightly less toxic than parathion to HepG2 cells. The cytotoxic effect of these OPI was found to be associated, at least in part, with oxidative cell/tissue damage. PMID:21544925

  5. Detection of genotoxic, cytotoxic, and protective activities of Eugenia dysenterica DC. (Myrtaceae) in mice.

    PubMed

    Vieira, Pabline Marinho; Veronezi, Eduardo; Silva, Carolina R; Chen-Chen, Lee

    2012-06-01

    Eugenia dysenterica DC. (Myrtaceae), popularly known in Brazil as cagaiteira, is a widespread plant species in the Brazilian Cerrado. In folk medicine, the leaves of this plant are used to treat diarrhea and dysentery. The fruits are used for fresh consumption and industrial purposes. Because of the use of this plant as a therapeutic resource and food, the present study evaluated the genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of the lyophilized ethanolic leaf extract of E. dysenterica using the mouse bone marrow micronucleus test. The genotoxicity and antigenotoxicity of this extract were evaluated using the frequency of micronucleated polychromatic erythrocytes, and the cytotoxicity and anticytotoxicity were assessed by the polychromatic and normochromatic erythrocyte ratio. According to our results, the lyophilized ethanolic leaf extract of E. dysenterica exhibited genotoxic and cytotoxic effects at the higher doses and protection against cyclophosphamide-induced genotoxic and cytotoxic actions at all doses tested. PMID:22404573

  6. 7,12-Dimethylbenz(a)anthracene-induced genotoxicity on bone marrow cells from mice phenotypically selected for low acute inflammatory response.

    PubMed

    Katz, Iana Suly Santos; Albuquerque, Layra Lucy; Suppa, Alessandra Paes; da Silva, Graziela Batista; Jensen, José Ricardo; Borrego, Andrea; Massa, Solange; Starobinas, Nancy; Cabrera, Wafa Hanna Koury; De Franco, Marcelo; Borelli, Primavera; Ibañez, Olga Martinez; Ribeiro, Orlando Garcia

    2016-01-01

    Exposure to polycyclic aromatic hydrocarbon (PAH) environmental contaminants has been associated with the development of mutations and cancer. 7,12-Dimethylbenz(a)anthracene ( DMBA), a genotoxic agent, reacts with DNA directly, inducing p53-dependent cytotoxicity resulting in cell death by apoptosis or giving rise to cancer. DMBA metabolism largely depends on activation of the aryl hydrocarbon receptor (AhR). Mice phenotypically selected for high (AIRmax) or low (AIRmin) acute inflammatory response present a complete segregation of Ahr alleles endowed with low (Ahr(d)) or high (Ahr(b1)) affinity to PAHs, respectively. To evaluate the role of AhR genetic polymorphism on the bone marrow susceptibility to DMBA, AIRmax and AIRmin mice were treated with a single intraperitoneal injection of DMBA (50mg/kg b.w.) in olive oil. Bone marrow cells (BMCs) were phenotyped by both flow cytometry and cytoslide preparations. Despite a significant decrease in total cell count in BM from AIRmin mice, there was an increase of blast cells and immature neutrophils at 1 and 50 days after DMBA treatment, probably due to a cell-cycle blockade at the G1/S transition leading to immature stage cell production. A panel of proteins related to cell cycle regulation was evaluated in immature BM cells (Lin(-)) by Western Blot, and DNA damage and repair were measured using an alkaline version of the Comet assay. In Lin(-) cells isolated from AIRmin mice, high levels were found in both p53 and p21 protein contents in contrast with the low levels of CDK4 and Ciclin D1. Evaluation of DNA repair in DMBA-treated BMCs, indicated long-lasting genotoxicity and cytotoxicity in BMC from AIRmin mice and a blockade of cell cycle progression. On the other hand, AIRmax mice have a high capacity of DNA damage repair and protection. These mechanisms can be associated with the differential susceptibility to the toxic and carcinogenic effects of DMBA observed in these mice. PMID:26687588

  7. Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River.

    PubMed

    Aborgiba, Mustafa; Kostić, Jovana; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Elbahi, Samia; Knežević-Vukčević, Jelena; Lenhardt, Mirjana; Paunović, Momir; Gačić, Zoran; Vuković-Gačić, Branka

    2016-01-01

    Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism. PMID:25861862

  8. Flow-cytometric determination of genotoxic effects of exposure to petroleum in mink and sea otters

    USGS Publications Warehouse

    Bickham, J.W.; Mazet, J.A.; Blake, J.; Smolen, M.J.; Lou, Y.; Ballachey, B.E.

    1998-01-01

    Three experiments were conducted to investigate the genotoxic effects of crude oil on mink and sea otters, In the first experiment, the effects on mink of chronic exposure to weathered Prudhoe Bay crude oil were studied, Female mink were fed a diet that included weathered crude oil for a period of 3 weeks prior to mating, during pregnancy and until weaning. Kits were exposed through lactation and by diet after weaning until 4 months of age. Kidney and liver tissues of the kits were examined using flow cytometry (FCM) and it was found that the genome size was increased in kidney samples from the experimental group compared to the control group. This effect was probably due to some type of DNA amplification and it could have been inherited from the exposed mothers or have been a somatic response to oil exposure in the pups, No evidence of clastogenic effects, as measured by the coefficient of variation (CV) of the G(1) peak, was found in kidney or liver tissue. In the second experiment, yearling female mink were exposed either by diet or externally to crude oil or bunker C fuel oil. Evidence for clastogenic damage was found in spleen tissue for the exposure groups, but not in kidney tissue. No evidence of increased genome size was observed. In the third experiment, blood was obtained from wild-caught sea otters in Prince William Sound. The sea otters represented two populations: one from western Prince William Sound that was potentially exposed to oil from the Exxon Valdez oil spill and a reference population from eastern Prince William Sound that did not receive oil from the spill. The spill had occurred 1.5 years prior to obtaining the blood samples. Although the mean CVs did not differ between the populations, the exposed population had a significantly higher variance of CV measurements and five out of 15 animals from the exposed population had CVs higher than the 95% confidence limits of the reference population, It is concluded that FCM is a sensitive indicator

  9. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha.

    PubMed

    Binelli, A; Pedriali, A; Riva, C; Parolini, M

    2012-03-01

    The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L(-1); 220 ng L(-1); and 10 μg L(-1)). Cocaine caused significant (p<0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects. PMID:22119280

  10. The in vivo genotoxicity of cisplatin, isoflurane and halothane evaluated by alkaline comet assay in Swiss albino mice.

    PubMed

    Brozovic, Gordana; Orsolic, Nada; Knezevic, Fabijan; Horvat Knezevic, Anica; Benkovic, Vesna; Sakic, Katarina; Borojevic, Nikola; Dikic, Domagoj

    2011-08-01

    The aim of this study was to evaluate the genotoxicity of repeated exposure to isoflurane or halothane and compare it with the genotoxicity of repeated exposure to cisplatin. We also determined the genotoxicity of combined treatment with inhalation anaesthetics and cisplatin on peripheral blood leucocytes (PBL), brain, liver and kidney cells of mice. The mice were divided into six groups as follows: control, cisplatin, isoflurane, cisplatin-isoflurane, halothane and cisplatin-halothane, and were exposed respectively for three consecutive days. The mice were treated with cisplatin or exposed to inhalation anaesthetic; the combined groups were exposed to inhalation anaesthetic after treatment with cisplatin. The alkaline comet assay was performed. All drugs had a strong genotoxicity (P<0.05 vs. control group) in all of the observed cells. Isoflurane caused stronger DNA damage on the PBL and kidney cells, in contrast to halothane, which had stronger genotoxicity on brain and liver cells. The combination of cisplatin and isoflurane induced lower genotoxicity on PBL than isoflurane alone (P<0.05). Halothane had the strongest effect on brain cells, but in the combined treatment with cisplatin, the effect decreased to the level of cisplatin alone. Halothane also induced the strongest DNA damage of the liver cells, while the combination with cisplatin increased its genotoxicity even more. The genotoxicity of cisplatin and isoflurane on kidney cells were nearly at the same level, but halothane caused a significantly lower effect. The combinations of inhalation anaesthetics with cisplatin had stronger effects on kidney cells than inhalation anaesthetics alone. The observed drugs and their combinations induced strong genotoxicity on all of the mentioned cells. PMID:21509577

  11. Co-exposure to aluminum and acrylamide disturbs expression of metallothionein, proinflammatory cytokines and induces genotoxicity: Biochemical and histopathological changes in the kidney of adult rats.

    PubMed

    Ghorbel, Imen; Maktouf, Sameh; Fendri, Nesrine; Jamoussi, Kamel; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2016-09-01

    The individual toxic effects of aluminum and acrylamide are known but there is no data on their combined effects. The present study investigates the toxic effects after combined exposure to these toxicants on: (i) oxidative stress during combined chronic exposure to aluminum and acrylamide on kidney function (ii) correlation of oxidative stress with metallothionein (MT) and inflammatory cytokines expression, DNA damage, and histopathological changes. Rats were exposed to aluminum (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage either individually or in combination for 3 weeks. Exposure rats to aluminum chloride or acrylamide alone and in combination induced nephrotoxicity, as evidenced by a decrease in the 24-h urine volume and uric acid levels in plasma and an increase of plasma creatinine, urea, and blood urea nitrogen levels. Nephrotoxicity was objectified by a significant increase in malondialdehyde level, advanced oxidation protein, and protein carbonyl contents, whereas reduced glutathione, nonprotein thiol, vitamin C levels, catalase, and glutathione peroxidase activities showed a significant decline. Superoxide dismutase activity and its gene expression were increased. Aluminum and acrylamide co-exposure exhibited synergism in various biochemical variables and also in DNA damage. Kidney total MT levels and genes expression of MT1, MT2, and proinflammatory cytokines were increased. All these changes were supported by histopathological observations. Co-exposure to aluminum and acrylamide exhibited synergism and more pronounced toxic effects compared with their individual effects based on various biochemical variables, genotoxic, and histopathological changes. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1044-1058, 2016. PMID:25858877

  12. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  13. Evaluation of genotoxic effects of Apitol (cymiazole hydrochloride) in vitro by measurement of sister chromatid exchange.

    PubMed

    Stanimirovic, Zoran; Stevanovic, Jevrosima; Jovanovic, Slobodan; Andjelkovic, Marko

    2005-12-30

    Apitol, with cymiazole hydrochloride as the active ingredient, is used in bee-keeping against the ectoparasitic mite Varroa destructor. The preparation was evaluated for genotoxicity in cultured human peripheral blood lymphocytes. Sister chromatid exchange, the mitotic index and the cell proliferation index were determined for three experimental concentrations of Apitol (0.001, 0.01 and 0.1 mg/ml). All concentrations significantly (p < 0.001) increased the mitotic index (MI = 7.35+/-0.18%, 8.31+/-0.20% and 12.33+/-0.25%, respectively), the proliferative index (PI = 1.83+/-0.01, 1.84+/-0.01 and 1.88+/-0.02, respectively) and the frequency of sister chromatid exchange (SCE = 8.19+/-1.81, 8.78+/-1.80 and 13.46+/-1.88, respectively), suggesting that cymiazole hydrochloride has genotoxic potential. PMID:16309949

  14. Three-Dimensional Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S.; Wu, H.; Pingerelli, P.; Glickman, B.

    2000-01-01

    In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of mUltiple copies of defined target genes for genotoxic assessment. The Rat 2(lambda) fibroblasts (Stratagene, Inc.) were genetically engineered to contain high-density target genes for mutagenesis. Stable three-dimensional, multicellular spheroids were formed when human mammary epithelial cells and Rat 2(lambda) fibroblasts were cocultured on Cytodex 3 Beads in a rotating wall bioreactor. The utility of this spheroidal model for genotoxic assessment was indicated by a linear dose response curve and by results of gene sequence analysis of mutant clones from 400micron diameter spheroids following low-dose, high-energy, neon radiation exposure

  15. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila.

    PubMed

    Gao, Li; Yuan, Tao; Cheng, Peng; Bai, Qifeng; Zhou, Chuanqi; Ao, Junjie; Wang, Wenhua; Zhang, Haimou

    2015-11-01

    The information about adverse effects of emerging contaminants on aquatic protozoa is very scarce. The growth inhibition effect, cell viability, genotoxicity and multixenobiotic resistance (MXR) responses of two commonly used antimicrobial agents, triclosan (TCS) and triclocarban (TCC) to protozoan Tetrahymena thermophila were investigated in this study. The results revealed that TCS and TCC can inhibit the growth of T. thermophila with 24h EC50 values of 1063 and 295μgL(-1), respectively. The impairment of plasma membrane was observed after 2h exposure of TCS or TCC at the level of mg/L. Furthermore, it is noticeable that at environmentally relevant concentration (1.0μgL(-1)), both TCS and TCC can lead to statistically significant DNA damage in T. thermophila, while the inhibition of growth and change of cell viability cannot be observed. Our results firstly provide the evidence for genotoxic effects of TCS and TCC on the freshwater protozoan. Additionally, both TCS and TCC were found to inhibit the efflux transporter activities, with the inhibitory potencies of 39% and 40% (using verapamil as a model inhibitor), respectively. Particularly, TCC could significantly down-regulate the expression of MXR related gene Abcb15, which encodes the membrane efflux protein that acting as P-gp in T. thermophila. The results raise the awareness of potential aquatic ecological and human health risks from the exposure of TCS and TCC, as they might potentiate the toxic effects by chemosensitizing with co-existing toxicants. PMID:26246462

  16. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line.

    PubMed

    Kienzler, Aude; Mahler, Barbara J; Van Metre, Peter C; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. PMID:25795989

  17. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  18. Evaluation of genotoxicity using automated detection of γH2AX in metabolically competent HepaRG cells.

    PubMed

    Quesnot, Nicolas; Rondel, Karine; Audebert, Marc; Martinais, Sophie; Glaise, Denise; Morel, Fabrice; Loyer, Pascal; Robin, Marie-Anne

    2016-01-01

    The in situ detection of γH2AX was recently reported to be a promising biomarker of genotoxicity. In addition, the human HepaRG hepatoma cells appear to be relevant for investigating hepatic genotoxicity since they express most of drug metabolizing enzymes and a wild type p53. The aim of this study was to determine whether the automated in situ detection of γH2AX positive HepaRG cells could be relevant for evaluation of genotoxicity after single or long-term repeated in vitro exposure compared to micronucleus assay. Metabolically competent HepaRG cells were treated daily with environmental contaminants and genotoxicity was evaluated after 1, 7 and 14 days. Using these cells, we confirmed the genotoxicity of aflatoxin B1 and benzo(a)pyrene and demonstrated that dimethylbenzanthracene, fipronil and endosulfan previously found genotoxic with comet or micronucleus assays also induced γH2AX phosphorylation. Furthermore, we showed that fluoranthene and bisphenol A induced γH2AX while no effect had been previously reported in HepG2 cells. In addition, induction of γH2AX was observed with some compounds only after 7 days, highlighting the importance of studying long-term effects of low doses of contaminants. Together, our data demonstrate that automated γH2AX detection in metabolically competent HepaRG cells is a suitable high-through put genotoxicity screening assay. PMID:26282955

  19. Investigation of genotoxic effect of taxol plus radiation on mice bone marrow cells.

    PubMed

    Ozkan, Lütfi; Egeli, Unal; Tunca, Berrin; Aydemir, Nilüfer; Ceçener, Gülşah; Akpinar, Gürler; Ergül, Emel; Cimen, Ciğdem; Ozuysal, Sema; Kahraman-Cetintaş, Sibel; Engin, Kayihan; Ahmed, Mansoor M

    2002-01-01

    In this study, we investigated the genotoxic effect of taxol, radiation, or taxol plus radiation on highly proliferative normal tissue-bone marrow cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered bolus intravenously through the tail vein. Radiation was given by using a linear accelerator. There were four treatment categories, which had a total of 34 groups. Each group consisted of five animals. The first was the control category that had one group (n = 5). The second treatment category was taxol alone, which had three groups as per taxol dose alone (n = 15). The third treatment category was radiation alone, which had three groups as per the radiation dose (n = 15). The fourth treatment category was taxol plus radiation, which had 27 groups as per combined radiation dose plus taxol dose concentration and as per pre-treatment timing sequence of taxol before radiation (n = 135). Mice were sacrificed 24 h after taxol or radiation or combined administration using ether anesthesia. The cells were then dropped on two labeled slides, flamed, air dried, and stained in 7% Giemsa; 20-30 well-spread mitotic metaphases were analyzed for each animal; the cells with chromosome breaks, acentric fragments, and rearrangements were evaluated on x1,000 magnification with light microscope (Zeiss axioplan). The mitotic index was determined by counting the number of mitotic cells among 1,000 cells per animal. Differences between groups were evaluated with Student's t-test statistically. Taxol caused a dose-dependent increase in chromosomal aberrations (P = 0.027). Similarly, radiation caused a dose-dependent increase in chromosomal aberrations (P = 0.003) and decreased mitotic index (P = 0.002). In combination, there were a small enhancements at the 40 mg/kg taxol dose level and at 0.25 and 0.5 Gy radiation doses in the 48 h group. However, an increase in chromosomal aberrations was observed after 48 hours of taxol exposure

  20. Genotoxic effect of exposure to metal(loid)s. A molecular epidemiology survey of populations living and working in Panasqueira mine area, Portugal.

    PubMed

    Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; de Lima, João Pereira; Gaspar, Jorge Francisco; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo

    2013-10-01

    Previous studies investigating the exposure to metal(loid)s of populations living in the Panasqueira mine area of central Portugal found a higher internal dose of elements such as arsenic, chromium, lead, manganese, molybdenum and zinc in exposed individuals. The aims of the present study were to evaluate the extent of genotoxic damage caused by environmental and occupational exposure in individuals previously tested for metal(loid) levels in different biological matrices, and the possible modulating role of genetic polymorphisms involved in metabolism and DNA repair. T-cell receptor mutation assay, comet assay, micronucleus (MN) test and chromosomal aberrations (CA) were performed in a group of 122 subjects working in the Panasqueira mine or living in the same region. The modifying effect of polymorphisms in GSTA2, GSTM1, GSTP1, GSTT1, XRCC1, APEX1, MPG, MUTYH, OGG1, PARP1, PARP4, ERCC1, ERCC4, and ERCC5 genes was investigated. Significant increases in the frequency of all biomarkers investigated were found in exposed groups, however those environmentally exposed were generally higher. Significant influences of polymorphisms were observed for GSTM1 deletion and OGG1 rs1052133 on CA frequencies, APEX1 rs1130409 on DNA damage, ERCC1 rs3212986 on DNA damage and CA frequency, and ERCC4 rs1800067 on MN and CA frequencies. Our results show that the metal(loid) contamination in the Panasqueira mine area induced genotoxic damage both in individuals working in the mine or living in the area. The observed effects are closely associated to the internal exposure dose, and are more evident in susceptible genotypes. The urgent intervention of authorities is required to protect exposed populations. PMID:24036326

  1. Genotoxicity of monosodium glutamate.

    PubMed

    Ataseven, Nazmiye; Yüzbaşıoğlu, Deniz; Keskin, Ayten Çelebi; Ünal, Fatma

    2016-05-01

    Monosodium glutamate (MSG) is one of the most widely used flavor enhancers throughout the world. The aim of this study is to investigate the genotoxic potential of MSG by using chromosome aberrations (CAs), sister-chromatid exchanges (SCEs), cytokinesis-blocked micronucleus (CBMN), and random amplified polymorphic DNA-polimerase chain reaction (RAPD-PCR) in cultured human lymphocytes and alkaline comet assays in isolated human lymphocytes, which were incubated with six concentrations (250, 500, 1000, 2000, 4000 and 8000 μg/mL) of MSG. The result of this study indicated that MSG significantly and dose dependently increased the frequencies of CAs, SCE and MN in all treatments and times, compared with control. However, the replication (RI) and nuclear division indices (NDI) were not affected. In this paper, in vitro genotoxic effects of the MSG was also investigated on human peripheral lymphocytes by analysing the RAPD-PCR with arbitrary 10-mer primers. The changes occurring in RAPD profiles after MSG treatment include increase or decrease in band intensity and gain or loss of bands. In the comet assay, this additive caused DNA damage at all concentrations in isolated human lymphocytes after 1-h in vitro exposure. Our results demonstrate that MSG is genotoxic to the human peripheral blood lymphocytes in vitro. PMID:26929995

  2. Arsenic Is A Genotoxic Carcinogen

    EPA Science Inventory

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  3. Selective inhibition by aspirin and naproxen of mainstream cigarette smoke-induced genotoxicity and lung tumors in female mice.

    PubMed

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Micale, Rosanna T; La Maestra, Sebastiano; D'Oria, Chiara; Steele, Vernon E; De Flora, Silvio

    2016-05-01

    The role of nonsteroidal anti-inflammatory drugs (NSAIDs) in smoke-related lung carcinogenesis is still controversial. We have developed and validated a murine model for evaluating the tumorigenicity of mainstream cigarette smoke (MCS) and its modulation by chemopreventive agents. In the present study, the protective effects of the nonselective cyclooxygenase inhibitors aspirin and naproxen were investigated by using a total of 277 Swiss H neonatal mice of both genders. Groups of mice were exposed whole-body to MCS during the first 4 months of life, followed by an additional 3.5 months in filtered air in order to allow a better growth of tumors. Aspirin (1600 mg/kg diet) and naproxen (320 mg/kg diet) were given after weanling until the end of the experiment. After 4 months of exposure, MCS significantly enhanced the frequency of micronucleated normochromatic erythrocytes in the peripheral blood of mice, and naproxen prevented such systemic genotoxic damage in female mice. After 7.5 months, exposure of mice to MCS resulted in the formation of lung tumors, both benign and malignant, and in several other histopathological lesions detectable both in the respiratory tract and in the urinary tract. Aspirin and, even more sharply, naproxen significantly inhibited the formation of lung tumors in MCS-exposed mice, but this protective effect selectively occurred in female mice only. These results lend support to the views that estrogens are involved in smoke-related pulmonary carcinogenesis and that NSAIDs have antiestrogenic properties. The two NSAIDs proved to be safe and efficacious in the experimental model used. PMID:26104855

  4. Evaluation of the Genotoxic and Physiological Effects of Decabromodiphenyl Ether (BDE-209) and Dechlorane Plus (DP) Flame Retardants in Marine Mussels (Mytilus galloprovincialis).

    PubMed

    Barón, Enrique; Dissanayake, Awantha; Vilà-Cano, Judit; Crowther, Charlotte; Readman, James W; Jha, Awadhesh N; Eljarrat, Ethel; Barceló, Damià

    2016-03-01

    Dechlorane Plus (DP) is a proposed alternative to the legacy flame retardant decabromodiphenyl ether (BDE-209), a major component of Deca-BDE formulations. In contrast to BDE-209, toxicity data for DP are scarce and often focused on mice. Validated dietary in vivo exposure of the marine bivalve (Mytilus galloprovincialis) to both flame retardants did not induce effects at the physiological level (algal clearance rate), but induced DNA damage, as determined by the comet assay, at all concentrations tested. Micronuclei formation was induced by both DP and BDE-209 at the highest exposure concentrations (100 and 200 μg/L, respectively, at 18% above controls). DP caused effects similar to those by BDE-209 but at lower exposure concentrations (5.6, 56, and 100 μg/L for DP and 56, 100, and 200 μg/L for BDE-209). Moreover, bioaccumulation of DP was shown to be concentration dependent, in contrast to BDE-209. The results described suggest that DP poses a greater genotoxic potential than BDE-209. PMID:26829245

  5. Evaluation of the genotoxicity of process stream extracts from a coal gasification system

    SciTech Connect

    Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems.

  6. Cytotoxic and genotoxic activities of waters and sediments from highway and parking lot runoffs.

    PubMed

    Haile, Tadele Measho; Mišík, Miroslav; Grummt, Tamara; Halh, Al-Serori; Pichler, Clemens; Knasmueller, Siegfried; Fuerhacker, Maria

    2016-01-01

    The genotoxicity of water and sediment samples from stormwater treatment systems and water from urban highway runoff was tested in the Salmonella/microsome assays with Salmonella typhimurium, micronucleus assay (Trad-MN) with plants and with human-derived liver cells (HepG2), or comet assay with HepG2. Cytotoxicity of water samples was studied using either reactive oxygen species (ROS) generation, cell proliferation or dye exclusion assay in HepG2. Concentrations of several contaminants in the tested samples were also measured. Results suggested that urban highway runoff exposed to severe vehicle traffic emissions caused genotoxic effects in comet assay and in Trad-MN assays. Sediments induced either mutagenic effects in strain YG1024 or genotoxic effects in Trad-MN assay. These effects could be due to the presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) which possess carcinogenic and mutagenic properties. Influent and effluents of stormwater treatment systems did not induce genotoxic activity or effects on HepG2 cell viability; however, the influents were able to induce ROS generation and cell proliferation in HepG2 cells. As the methods require a sterile filtration of the water samples, this could have also removed particulate-associated polycyclic aromatic hydrocarbons (PAHs) and resulted in a less pronounced induction of genotoxicity, as would be expected by PAH contamination. PMID:27232415

  7. Genotoxicity effect, antioxidant and biomechanical correlation: experimental study of agarose-chitosan bone graft substitute in New Zealand white rabbit model.

    PubMed

    Jebahi, Samira; Ben Saleh, Ghada; Saoudi, Mongi; Besaleh, Salma; Oudadesse, Hassane; Mhadbi, Moufida; Rebai, Tarek; Keskes, Hassib; El Feki, Abdelfattah

    2014-08-01

    Bone loss associated with skeletal trauma or metabolic diseases often requires bone grafting. In such situations, a biomaterial is necessary for migrated cells to produce new tissue. In this study, agarose-chitosan was implanted in the femoral condyle of New Zealand White rabbits that were divided into three groups: Group I was used as control; Groups II and III were used as implanted tissue with agarose-chitosan and presenting empty defects, respectively. This study evaluated the agarose-chitosan biocompatibility by determining the in vivo genotoxicity, oxidative stress balance that correlated with the hardness mechanical property. Moreover, the histopathological and quantitative elements analyzed by using inductively coupled plasma optical emission spectrometry were determined. After 30 days of implantation, the in vivo analysis of genotoxicity showed that agarose-chitosan did not induce chromosome aberration or micronucleus damage. A significant decrease in thiobarbituric and acid-reactive substance was observed after agarose-chitosan implantation in the bone tissue. Superoxide dismutase, catalase and glutathione peroxidase were significantly enhanced in agarose-chitosan-treated group compared with that of control group. A negative correlation coefficient of the mechanical property with malonyldialdehyde level was detected (R = -0.998). The histological study exhibited a significantly increased angiogenesis and newly formed tissue. No presence of inflammatory process, necrotic or fibrous tissue was detected. Major and trace elements such as Ca, P, Zn, Mg and Fe were increased significantly in the newly formed bone. These findings show that agarose-chitosan biomaterial implantation might be effective for treating trauma and bone regeneration. PMID:25205747

  8. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  9. Investigation of the genotoxicity of substances migrating from polycarbonate replacement baby bottles to identify chemicals of high concern.

    PubMed

    Mertens, Birgit; Simon, Coraline; Van Bossuyt, Melissa; Onghena, Matthias; Vandermarken, Tara; Van Langenhove, Kersten; Demaegdt, Heidi; Van Hoeck, Els; Van Loco, Joris; Vandermeiren, Karin; Covaci, Adrian; Scippo, Marie-Louise; Elskens, Marc; Verschaeve, Luc

    2016-03-01

    Due to the worldwide concern that bisphenol A might act as an endocrine disruptor, alternative materials for polycarbonate (PC) have been introduced on the European market. However, PC-replacement products might also release substances of which the toxicological profile--including their genotoxic effects--has not yet been characterized. Because a thorough characterization of the genotoxic profile of all these substances is impossible in the short term, a strategy was developed in order to prioritize those substances for which additional data are urgently needed. The strategy consisted of a decision tree using hazard information related to genotoxicity. The relevant information was obtained from the database of the European Chemicals Agency (ECHA), in silico prediction tools (ToxTree and Derek Nexus(TM)) and the in vitro Vitotox(®) test for detecting DNA damage. By applying the decision tree, substances could be classified into different groups, each characterized by a different probability to induce genotoxic effects. Although none of the investigated substances could be unequivocally identified as genotoxic, the presence of genotoxic effects could neither be excluded for any of them. Consequently, all substances require more data to investigate the genotoxic potential. However, the type and the urge for these data differs among the substances. PMID:26802677

  10. In vitro assessment of genotoxic effects of electric arc furnace dust on human lymphocytes using the alkaline comet assay.

    PubMed

    Garaj-Vrhovac, Vera; Orescanin, Visnja; Ruk, Damir; Gajski, Goran

    2009-02-15

    In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included. Mean values of the tail lengths established in the samples treated with the leachate stemming from the original dust for 6 and 24 hours, were 15.70 microm and 16.78 microm, respectively, as compared to 12.33 microm found in the control sample. Slight, but significant increase in the tail length was also found with the dust treated with a strong alkaline solution (13.37 microm and 13.60 microm). In case of high heavy metal concentrations (the extract of the original furnace dust), the incubation period was revealed to be of significance as well. The obtained results lead to the conclusion that alkaline comet assay could be used as a rapid, sensitive and low-cost tool when assessing genotoxicity of various waste materials, such as leachates of the electric arc furnace dust. PMID:19132591

  11. Genotoxic and histopathological biomarkers for assessing the effects of magnetic exfoliated vermiculite and exfoliated vermiculite in Danio rerio.

    PubMed

    Cáceres-Vélez, Paolin Rocio; Fascineli, Maria Luiza; Grisolia, Cesar Koppe; de Oliveira Lima, Emília Celma; Sousa, Marcelo Henrique; de Morais, Paulo César; Bentes de Azevedo, Ricardo

    2016-05-01

    Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects. PMID:26878635

  12. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  13. Rosemary components inhibit benzo[a]pyrene-induced genotoxicity in human bronchial cells.

    PubMed

    Offord, E A; Macé, K; Ruffieux, C; Malnoë, A; Pfeifer, A M

    1995-09-01

    The commonly used spice and flavouring agent, rosemary, derived from the leaves of the plant Rosmarinus officinalis L., displays antioxidant properties in foods and in biological systems. Moreover, in animal models rosemary components were found to inhibit the initiation and tumour promotion phases of carcinogenesis. In this work, we studied the mechanisms by which rosemary components block initiation of carcinogenesis by the procarcinogen benzo[a]pyrene (B[a]P) in human bronchial epithelial cells (BEAS-2B). Whole rosemary extract (6 micrograms/ml) or an equivalent concentration of its most potent antioxidant constituents, carnosol or carnosic acid, inhibited DNA adduct formation by 80% after 6 h co-incubation with 1.5 muM B[a]P. Under similar conditions, cytochrome P450 (CYP) 1A1 mRNA expression was 50% lower in the presence of rosemary components, and CYP1A1 activity was inhibited 70-90%. The observed reduction of DNA adduct formation by rosemary components may mostly result from the inhibition of the activation of benzo[a]pyrene to its ultimate metabolites. Carnosol also affected expression of the phase II enzyme glutathione-S-transferase which is known to detoxify the proximate carcinogenic metabolite of B[a]P. Treatment of BEAS-2B cells with carnosol (1 microgram/ml) for 24 h resulted in a 3- to 4-fold induction of GST pi mRNA. Moreover, expression of a second important phase II enzyme, NAD(P)H: quinone reductase, was induced by carnosol in parallel with GST pi. Therefore, rosemary components have the potential to decrease activation and increase detoxification of an important human carcinogen, identifying them as promising candidates for chemopreventive programs. PMID:7554054

  14. Genotoxic effects of erioflorin acetate and erioflorin methacrylate: Sesquiterpene lactones isolated from Podanthus ovatifolius Lag. (Compositae)

    SciTech Connect

    Cea, G.; Alarcon, M.; Weigert, G.; Sepulveda, R. )

    1990-01-01

    Three major sesquiterpene lactones: eriflorin methacrylate (EM), erioflorin acetate (EA), and ovatifolin acetate (OA) have been isolated from neutral extracts of Podanthus ovatifolius, and all of them have been shown to exhibit antineoplastic properties as tested in standard KB human epidermoid carcinoma of the nasopharynx assay procedures. In the present study the authors report in vivo induction of micronuclei in bone-marrow mice polychromatic erythrocytes (MPCE) by EM, and EA. Chemicals can be screened for chromosome breaking ability by measuring the frequency of erythrocytes with micronuclei derived from acentric chromosomal fragments or lagging chromosomes. This assay has also been described for genotoxicity studies in several mammalian tissues other than polychromatic erythrocytes.

  15. Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It.

    PubMed

    Dunlap, Tareisha L; Wang, Shuai; Simmler, Charlotte; Chen, Shao-Nong; Pauli, Guido F; Dietz, Birgit M; Bolton, Judy L

    2015-08-17

    Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI ≫ GG > GU and LigC ≅ LicA ≫ LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as nontoxic and 4-MeOE1 as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 μg/mL), and LigC (1 μM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1, 10 μM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50 = 12.3 μM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 μg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women's health. Additionally, the

  16. Genotoxic effects of alpha-hexachlorocyclohexane in primary cultures of rodent and human hepatocytes.

    PubMed

    Mattioli, F; Robbiano, L; Adamo, D; Federa, R; Martelli, A; Brambilla, G

    1996-01-01

    The genotoxicity of alpha-hexachlorocyclohexane (alpha-HCH) was evaluated in primary cultures of mouse, rat and human hepatocytes. DNA fragmentation was measured by the alkaline elution technique and DNA repair synthesis by quantitative autoradiography. A 20 h exposure to subtoxic concentrations ranging from 0.056 to 0.32 mM produced a dose-dependent frequency of DNA breaks in rat hepatocytes and in hepatocytes from four of five human donors, but not in mouse hepatocytes, DNA repair induction was absent in hepatocytes from all three species. The reduction in the frequency of DNA breaks observed in rat hepatocytes simultaneously exposed to metyrapone suggests that alpha-HCH is transformed into reactive species by a cytochrome P450-dependent reaction. The detection of DNA fragmentation but not of DNA repair synthesis may be tentatively explained by assuming that alpha-HCH behaves as a chemical eliciting short patch DNA repair, which is more easily revealed as genotoxic by the occurrence of DNA single-strand breaks. PMID:8671720

  17. Penicillium sp. as an organism that degrades endosulfan and reduces its genotoxic effects.

    PubMed

    Romero-Aguilar, Mariana; Tovar-Sánchez, Efrain; Sánchez-Salinas, Enrique; Mussali-Galante, Patricia; Sánchez-Meza, Juan Carlos; Castrejón-Godínez, María Luisa; Dantán-González, Edgar; Trujillo-Vera, Miguel Ángel; Ortiz-Hernández, Ma Laura

    2014-01-01

    Endosulfan is an organochloride and persistent pesticide that has caused concern because of its impact in the environment and its toxicity to and bioaccumulation in living organisms. In this study, we isolated an endosulfan-degrading fungus from the activated sludge from an industrial wastewater treatment plant. Through repetitive enrichment and successive subculture in media containing endosulfan as the sole carbon source, a fungus designated CHE 23 was isolated. Based on a phylogenetic analysis, strain CHE 23 was assigned to the genus Penicillium sp. In a mineral salt medium with 50 mg/l endosulfan as the sole source carbon, CHE 23 removed the added endosulfan in a period of six days. To verify the decrease in endosulfan toxicity due to the activity of the fungus, we performed genotoxicity tests trough the single cell gel electrophoresis assay or comet assay, with Eisenia fetida as the bioindicator species. This organism was exposed to the supernatants of the culture of the fungus and endosulfan. Our results indicated that the genotoxicity of endosulfan was completely reduced due the activity of this fungus. These results suggest that the Penicillium sp. CHE 23 strain can be used to degrade endosulfan residues and/or for water and soil bioremediation processes without causing toxicity problems, which are probably due to the generation of no-toxic metabolites during biodegradation. PMID:25279327

  18. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents

    SciTech Connect

    Weisburger, J.H.; Williams, G.M. )

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventative approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully selected batteries of complementary in vitro and in vivo bioassays. One such battery consists of the Ames test, a reverse mutation assay in prokaryotic Salmonella typhimurium, and the Williams test, involving DNA repair in freshly explanted metabolically highly competent liver cells from diverse species, including humans. Determination of DNA-carcinogen adducts by varied techniques, including {sup 32}P-postlabeling, as well as DNA breakage, mammalian cell mutagenicity, chromosome aberrations, sister chromatid exchange, or cell transformation represent additional approaches, each with its own advantages and disadvantages. More research is needed on systems to apprehend neoplasm promoters, but tests to determine interruption of intercellular communications through gap junctions appear promising. Other approaches rely on measurement of enzymes such as ornithine decarboxylase and protein kinase C. Approaches to the definition of risk to fish or humans require characterization of the genotoxic or nongenotoxic properties of a chemical, relative potency data obtained in select, limited rodent bioassays, and knowledge of prevailing environmental concentrations of specific carcinogens.

  19. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    PubMed Central

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully selected batteries of complementary in vitro and in vivo bioassays. One such battery consists of the Ames test, a reverse mutation assay in prokaryotic Salmonella typhimurium, and the Williams test, involving DNA repair in freshly explanted metabolically highly competent liver cells from diverse species, including humans. Determination of DNA-carcinogen adducts by varied techniques, including 32P-postlabeling, as well as DNA breakage, mammalian cell mutagenicity, chromosome aberrations, sister chromatid exchange, or cell transformation represent additional approaches, each with its own advantages and disadvantages. More research is needed on systems to apprehend neoplasm promoters, but tests to determine interruption of intercellular communications through gap junctions appear promising. Other approaches rely on measurement of enzymes such as ornithine decarboxylase and protein kinase C. Approaches to the definition of risk to fish or humans require characterization of the genotoxic or nongenotoxic properties of a chemical, relative potency data obtained in select, limited rodent bioassays, and knowledge of prevailing environmental concentrations of specific carcinogens. PMID:2050049

  20. Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

    PubMed Central

    Park, Jin Hong; Kwon, Jung-Taek; Arassh, Minai-Teherani; Hwang, Soon-Kyung; Chang, Seung-Hee; Lim, Hwang Tae; Cho, Hyun-Seon

    2010-01-01

    In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs 124.4 ± 24.5 μg/m3 (low concentration) , 220.2 ± 34.5 μg/m3 (middle concentration) , 426.4 ± 40.3 μg/m3 (high concentration) doped with arsenic 1.4 μg/m3 (Low concentration) ,2.5 μg/m3 (middle concentration) , 5.7 μg/m3 (high concentration) for 4 wks (6 h/d, 5 d/wk) , respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace. PMID:24278533

  1. Tobacco Dust Induced Genotoxicity as an Occupational Hazard in Workers of Bidi Making Cottage Industry of Central India

    PubMed Central

    Khanna, Asha; Gautam, Daya Shankar; Gokhale, Mamta; Jain, Salil Kumar

    2014-01-01

    Context: To explore genotoxicity in bidi rollers occupationally exposed to bidi tobacco dust. Aims: To assess the extent of genotoxicity of tobacco dust to bidi rollers of Jabalpur, Madhya Pradesh, India and cytotoxicity of bidi tobacco extract. Settings and Design: Blood samples from 31 bidi rollers and 30 controls taken after written informed consent were analyzed for chromosome aberrations (CA) and comet assay. Materials and Methods: Genotoxicity was studied by CA in cultured peripheral blood lymphocytes of bidi rollers and the deoxyribonucleic acid (DNA) damage studies were done by comet assay of their blood. The toxicity of bidi tobacco extract to normal human lymphocytes was studied by MMT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay as drop in viability. Statistical Analysis Used: Student's t-test and DMRT. Results: There is a general trend of increase in CA% of both in exposed and control groups with age, but in every group the bidi rollers have a significantly higher CA% than the controls. The CA % is also directly related to exposure. The comet assay findings reveal that the mean comet length and tail length increases with exposure time. The toxicity of bidi tobacco extract (TE) to normal human lymphocytes was tested in vitro by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay at 2 h of incubation. The trend of drop in viability with increasing concentrations of TE was clearly evident from the data from four donors in spite of their individual differences in viability. Conclusions: The results obtained in this investigation indicate that bidi rollers seem to be facing the occupational hazard of genotoxicity due to handling bidi tobacco and inhalation of tobacco dust. They should be advised to work under well-ventilated conditions. PMID:24748730

  2. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  3. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings.

    PubMed

    Vannini, Candida; Domingo, Guido; Onelli, Elisabetta; De Mattia, Fabrizio; Bruni, Ilaria; Marsoni, Milena; Bracale, Marcella

    2014-08-15

    We investigated the effects of 1 and 10 mg L(-1) AgNPs on germinating Triticum aestivum L. seedlings. The exposure to 10 mg L(-1) AgNPs adversely affected the seedling growth and induced morphological modifications in root tip cells. TEM analysis suggests that the observed effects were due primarily to the release of Ag ions from AgNPs. To gain an increased understanding of the molecular response to AgNP exposure, we analyzed the genomic and proteomic changes induced by AgNPs in wheat seedlings. At the DNA level, we applied the AFLP technique and we found that both treatments did not induce any significant DNA polymorphisms. 2DE profiling of roots and shoots treated with 10 mg L(-1) of AgNPs revealed an altered expression of several proteins mainly involved in primary metabolism and cell defense. PMID:24973586

  4. Serum Oxidative Stress Markers and Genotoxic Profile Induced by Chemotherapy in Patients with Breast Cancer: A Pilot Study

    PubMed Central

    Júnior, Antonio Luiz Gomes; Paz, Marcia Fernanda Correia Jardim; da Silva, Laís Iasmin Soares; Carvalho, Simone da Costa e Silva; Sobral, André Luiz Pinho; Machado, Kátia da Conceição; Ferreira, Paulo Michel Pinheiro; Satyal, Prabodh; de Freitas, Rivelilson Mendes; Cavalcante, Ana Amélia de Carvalho Melo

    2015-01-01

    The aim of this study was to evaluate the oxidative parameters of erythrocytes and genotoxicity in leukocytes of patients with breast cancer. Oxidative parameters were detected by spectrophotometry and genotoxic damage by single cell gel electrophoresis. Twenty-eight women with breast cancer were monitored before chemotherapy and after the second and fourth cycles of therapy with cyclophosphamide and doxorubicin. After the fourth cycle, increases (P < 0.05) in the reactive substances to thiobarbituric acid levels, nitrite content, and superoxide dismutase activity and high rates of DNA damage in leukocytes were observed when compared with healthy women group and baseline levels. Similarly, after the second cycle, the same parameters were increased (P < 0.05) when compared with baseline levels. Increase in catalase activity was detected only after the fourth cycle and reduced glutathione levels and glutathione peroxidase activity were decreased in all cycles when compared with healthy women, as well as after the second and fourth chemotherapy cycles compared to baseline (P < 0.05). Patients with breast cancer presented an indicative of oxidative stress before, during, and after chemotherapy, as well as increased genotoxic damage in all stages of treatment, demonstrating the clinical applicability of this investigation. PMID:26576218

  5. Serum Oxidative Stress Markers and Genotoxic Profile Induced by Chemotherapy in Patients with Breast Cancer: A Pilot Study.

    PubMed

    Gomes Júnior, Antonio Luiz; Paz, Marcia Fernanda Correia Jardim; da Silva, Laís Iasmin Soares; Carvalho, Simone da Costa e Silva; Sobral, André Luiz Pinho; Machado, Kátia da Conceição; Ferreira, Paulo Michel Pinheiro; Satyal, Prabodh; de Freitas, Rivelilson Mendes; Cavalcante, Ana Amélia de Carvalho Melo

    2015-01-01

    The aim of this study was to evaluate the oxidative parameters of erythrocytes and genotoxicity in leukocytes of patients with breast cancer. Oxidative parameters were detected by spectrophotometry and genotoxic damage by single cell gel electrophoresis. Twenty-eight women with breast cancer were monitored before chemotherapy and after the second and fourth cycles of therapy with cyclophosphamide and doxorubicin. After the fourth cycle, increases (P < 0.05) in the reactive substances to thiobarbituric acid levels, nitrite content, and superoxide dismutase activity and high rates of DNA damage in leukocytes were observed when compared with healthy women group and baseline levels. Similarly, after the second cycle, the same parameters were increased (P < 0.05) when compared with baseline levels. Increase in catalase activity was detected only after the fourth cycle and reduced glutathione levels and glutathione peroxidase activity were decreased in all cycles when compared with healthy women, as well as after the second and fourth chemotherapy cycles compared to baseline (P < 0.05). Patients with breast cancer presented an indicative of oxidative stress before, during, and after chemotherapy, as well as increased genotoxic damage in all stages of treatment, demonstrating the clinical applicability of this investigation. PMID:26576218

  6. The influence of organic solvents on estimates of genotoxicity and antigenotoxicity in the SOS chromotest

    PubMed Central

    Quintero, Nathalia; Stashenko, Elena E.; Fuentes, Jorge Luis

    2012-01-01

    In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity. PMID:22888301

  7. Use of the alkaline in vivo Comet assay for mechanistic genotoxicity investigations.

    PubMed

    Hartmann, Andreas; Schumacher, Martin; Plappert-Helbig, Ulla; Lowe, Phil; Suter, Willi; Mueller, Lutz

    2004-01-01

    The alkaline Comet assay was used to investigate the in vivo genotoxicity of 17 compounds. Altogether 21 studies were conducted with these compounds. The investigations were triggered for various reasons. The main reason for performing the studies was to evaluate the in vivo relevance of in vitro genotoxicity findings with 10 compounds. Eight of these compounds showed no effects in the in vivo Comet assay while two compounds induced altered DNA migration patterns in specific organs. The remaining seven compounds were tested to follow up on neoplastic/preneoplastic or chronic toxicity changes as detected in specific target organs identified in rodent studies, to investigate the possibility of site-of-contact genotoxicity and to test the liver as a target organ for a suspected reactive metabolite. For the studies, various organs of rodents were analyzed, depending on the suspected properties of the compounds, including liver, jejunum, leukocytes, stomach mucosa, duodenum, lung and kidney. All tissues were amenable to investigation by gel electrophoresis after simple disaggregation of organs by means of mincing or, in the case of epithelial cells from the gastrointestinal tract, scraping off cells from the epithelium. In conclusion, the Comet assay was found to be a reliable and robust test to investigate in vivo genotoxicity in a variety of rodent organs. Therefore, it is concluded that in vivo Comet assay data are useful for elucidating positive in vitro genotoxicity findings and to evaluate genotoxicity in target organs of toxicity. PMID:14681313

  8. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Audebert, Marc; Wong, Ximena; Yamada, Kana; Yin, Yulong; Tomé, Daniel; Carrasco-Pozo, Catalina; Gotteland, Martin; Kong, Xiangfeng; Blachier, François

    2015-08-01

    p-Cresol that is produced by the intestinal microbiota from the amino acid tyrosine is found at millimolar concentrations in the human feces. The effects of this metabolite on colonic epithelial cells were tested in this study. Using the human colonic epithelial HT-29 Glc(-/+) cell line, we found that 0.8mM p-cresol inhibits cell proliferation, an effect concomitant with an accumulation of the cells in the S phase and with a slight increase of cell detachment without necrotic effect. At this concentration, p-cresol inhibited oxygen consumption in HT-29 Glc(-/+) cells. In rat normal colonocytes, p-cresol also inhibited respiration. Pretreatment of HT-29 Glc(-/+) cells with 0.8mM p-cresol for 1 day resulted in an increase of the state 3 oxygen consumption and of the cell maximal respiratory capacity with concomitant increased anion superoxide production. At higher concentrations (1.6 and 3.2mM), p-cresol showed similar effects but additionally increased after 1 day the proton leak through the inner mitochondrial membrane, decreasing the mitochondrial bioenergetic activity. At these concentrations, p-cresol was found to be genotoxic toward HT-29 Glc(-/+) and also LS-174T intestinal cells. Lastly, a decreased ATP intracellular content was observed after 3 days treatment. p-Cresol at 0.8mM concentration inhibits colonocyte respiration and proliferation. In response, cells can mobilize their "respiratory reserve." At higher concentrations, p-cresol pretreatment uncouples cell respiration and ATP synthesis, increases DNA damage, and finally decreases the ATP cell content. Thus, we have identified p-cresol as a metabolic troublemaker and as a genotoxic agent toward colonocytes. PMID:25881551

  9. The Genotoxicity of Particulate and Soluble Chromate in Sperm Whale (Physeter macrocephalus) Skin Fibroblasts

    PubMed Central

    Wise, John Pierce; Wise, Sandra S.; LaCerte, Carolyne; Wise, John Pierce; Aboueissa, AbouEl-Makarim

    2016-01-01

    Hexavalent chromium is a marine pollutant of concern, both for the health of ocean ecosystems and for public health. Hexavalent chromium is known to induce genotoxicity in human and other terrestrial mammals. It is also known to be present in both water and air in the marine environment. However, currently there are limited data concerning both chromium levels and its toxicological effects in marine mammals. This study investigated the cytotoxic and genotoxic effects of soluble and particulate hexavalent chromium in sperm whale skin fibroblasts. Both forms of hexavalent chromium induced concentration-dependent increases in cytotoxicity and genotoxicity indicating that these compounds can be a health risk if the whales are exposed to them. These data support a hypothesis that chromium is a concern in the marine environment in general and for the health of sperm whales in particular. PMID:20839228

  10. The genotoxicity of particulate and soluble chromate in sperm whale (physeter macrocephalus) skin fibroblasts.

    PubMed

    Wise, John Pierce; Wise, Sandra S; LaCerte, Carolyne; Wise, John Pierce; Aboueissa, AbouEl-Makarim

    2011-01-01

    Hexavalent chromium is a marine pollutant of concern, both for the health of ocean ecosystems and for public health. Hexavalent chromium is known to induce genotoxicity in human and other terrestrial mammals. It is also known to be present in both water and air in the marine environment. However, currently there are limited data concerning both chromium levels and its toxicological effects in marine mammals. This study investigated the cytotoxic and genotoxic effects of soluble and particulate hexavalent chromium in sperm whale skin fibroblasts. Both forms of hexavalent chromium induced concentration-dependent increases in cytotoxicity and genotoxicity indicating that these compounds can be a health risk if the whales are exposed to them. These data support a hypothesis that chromium is a concern in the marine environment in general and for the health of sperm whales in particular. PMID:20839228

  11. Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha.

    PubMed

    Rani, G; Kaur, K; Wadhwa, R; Kaul, S C; Nagpal, A

    2005-01-01

    We have undertaken the studies to investigate the presence of various activities of the leaf extract of Ashwagandha (Lash), a commonly used shrub in Indian traditional medicine, Ayurveda. In the present study, we studied the effect of Lash against MNNG-induced genotoxicity in onion root tip cells. We report that Lash offered substantial protection against the mutagenic effects of MNNG. PMID:15582200

  12. Interdependent genotoxic mechanisms of monomethylarsonous acid: Role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells

    SciTech Connect

    Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.; Medeiros, Matthew K.; Liu, Ke J.; Lau, Serrine S.; Gandolfi, A.J.

    2011-11-15

    Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA

  13. Genotoxicity hazard assessment of Caramel Colours III and IV.

    PubMed

    Brusick, D J; Jagannath, D R; Galloway, S M; Nestmann, E R

    1992-05-01

    Results from a battery of short-term tests in vitro and in vivo used to assess the genotoxicity of caramel colours are presented and discussed in relation to reports from the literature. No evidence of genotoxicity was found in the Salmonella plate incorporation test using five standard strains or in the Saccharomyces cerevisiae gene conversion assay using strain D4, either with or without S-9 for activation. A weak clastogenic effect for a sample of Caramel Colour III in CHO cells was abolished in the presence of S-9. Two samples of Caramel Colour IV were not clastogenic in CHO cells. Salmonella pre-incubation tests without S-9 also failed to reveal any mutagenic activity for any of the caramel colours tested. The Caramel Colour III sample that showed clastogenic activity in CHO cells in vitro did not induce micronuclei when evaluated in a mouse bone marrow assay. These results are in general agreement with reports in the literature regarding the genotoxicity of caramel colours, and support the conclusion that caramel colours do not pose a genotoxic hazard to humans. PMID:1644382

  14. Sunlight activation of shale-oil byproducts as measured by genotoxic effects in cultured Chinese hamster cells

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1981-01-01

    Activation of certain classes of promutagens/procarcinogens can be accomplished by exposure to various radiation sources. Retort processes currently in use in the production of shale oil generate significant quantities of process waters which contain a wide spectrum of uv-absorbing, organic material. Photoactivation of these waters with an artificial source of NUV results in genotoxic events in cultured mammalian cells. Since significant amounts (2 to 4%) of solar radiation reaching the earth's surface is NUV, we were concerned about potential biological effects resulting from solar-irradiated waste streams. This paper summarizes new and previously published data concerning the induction of both cytotoxicity and mutagenicity in cultured Chinese hamster cells (line CHO) after their exposure to a particular oil shale retort process water and natural sunlight.

  15. Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest.

    PubMed

    Ghosh, Manosij; Jana, Aditi; Sinha, Sonali; Jothiramajayam, Manivannan; Nag, Anish; Chakraborty, Anirban; Mukherjee, Amitava; Mukherjee, Anita

    2016-09-01

    Cytotoxicity, genotoxicity, and biochemical effects were evaluated in the plants Allium cepa, Nicotiana tabacum, and Vicia faba following exposure to ZnO nanoparticles (np; diameter, ∼85nm). In the root meristems of Allium cepa cells, we observed loss of membrane integrity, increased chromosome aberrations, micronucleus formation, DNA strand breaks, and cell-cycle arrest at the G2/M checkpoint. In Vicia faba and Nicotiana tabacum, we observed increased intracellular ROS production, lipid peroxidation, and activities of some antioxidant enzymes. TEM images revealed gross morphological alterations and internalization of the np. Our findings provide evidence of ZnO np toxicity, characterized by deregulation of components of ROS-antioxidant machinery, leading to DNA damage, cell-cycle arrest, and cell death. These plants, especially Allium cepa, are reliable systems for assessment of np toxicology. PMID:27542712

  16. Indirect mechanisms of genotoxicity.

    PubMed

    Kirsch-Volders, Micheline; Vanhauwaert, Annelies; Eichenlaub-Ritter, Ursula; Decordier, Ilse

    2003-04-11

    Indirect mechanisms of genotoxicity correspond to interactions of mutagens with non-DNA targets, and are expected to show threshold concentration-effect response curves. If these thresholds can be proven experimentally they may provide a third alternative for risk assessment, besides the No Effect Level/Safety Factor approach and the low dose linear extrapolation method. We contributed significantly to the in vitro assessment of thresholds in human lymphocytes exposed to the spindle inhibitors nocodazole and carbendazim showing dose dependency and existence of lower thresholds for induction of non-disjunction as compared to chromosome loss. Micronuclei correlated with p53-independent or p53-dependent apoptosis and elimination of aneuploid cells. Extrapolation from in vitro threshold values to the in vivo situation remains unsolved. Comparing the in vitro threshold values for griseofulvin in human and rat lymphocytes with in vivo NOAEL/LOAEL in bone marrow/gut/erythrocytes suggests that the in vitro human system is the most sensitive. The threshold for induction of non-disjunction in in vitro maturing, nocodazole-exposed mouse oocytes was in the same low range. Regulators (UK Committee on Mutagenicity, http://www.doh.gov.uk/com/com.htm) considered the importance of thresholds for indirect mechanisms of genotoxicity. Acceptance of a non-linear extrapolation for mutagens requires mechanistic studies identifying the mutagen/target interactions. Moreover appropriate risk evaluation will require additional studies on individual susceptibility for indirect mutagenic effects and on interactions of aneugens in complex mixtures. PMID:12676452

  17. Using the comet assay to assess the combined and separate genotoxic effects of Cd and Zn in Eisenia andrei (Oligochaeta) at different temperatures.

    PubMed

    Voua Otomo, P; Reinecke, S A; Reinecke, A J

    2014-03-01

    Using the comet assay, the genotoxicity of Cd, Zn and Cd/Zn mixtures in Eisenia andrei was assessed after 4 weeks of exposure at 15, 20 and 25 °C. Relative to the controls, significant increases in TDNA% were observed in exposures to Cd alone at 500 and 1,000 mg/kg soil at both 20 and 25 °C, while a general decrease occurred at 15 °C. For Zn alone, a decreasing trend in TDNA% occurred at all three temperatures with increasing Zn concentration. For the Cd/Zn mixtures at 15 °C, genotoxicity was reduced at all mixture concentrations relative to the control. At 20 °C, the genotoxic response was similar to the control at all exposures. At 25 °C, the response was elevated at the 50 + 50 and 250 + 250 mg/kg mixture concentrations. In the remaining treatments at 25 °C, TDNA% was similar to the values in the respective control. The lack of consistently significant mixture genotoxicity may indicate antagonistic interactions between Cd and Zn in the mixtures. However, this was not conclusively determined because temperature alone had an inconsistent effect upon TDNA% readings in the control exposures. PMID:24233261

  18. The benzene metabolite para-benzoquinone is genotoxic in human, phorbol-12-acetate-13-myristate induced, peripheral blood mononuclear cells at low concentrations.

    PubMed

    Westphal, Götz Alexander; Bünger, Jürgen; Lichey, Nadine; Taeger, Dirk; Mönnich, Angelika; Hallier, Ernst

    2009-07-01

    Benzene is one of the most prominent occupational and environmental pollutants. The substance is a proven human carcinogen that induces hematologic malignancies in humans, probably at even low doses. Yet knowledge of the mechanisms leading to benzene-induced carcinogenesis is still incomplete. Benzene itself is not genotoxic. The generation of carcinogenic metabolites involves the production of oxidized intermediates such as catechol, hydroquinone and para-benzoquinone (p-BQ) in the liver. Further activation to the ultimate carcinogenic intermediates is most probably catalyzed by myeloperoxidase (MPO). Yet the products of the MPO pathway have not been identified. If an oxidized benzene metabolite such as p-BQ was actually the precursor for the ultimate carcinogenic benzene metabolite and further activation proceeds via MPO mediated reactions, it should be possible to activate p-BQ to a genotoxic compound in vitro. We tested this hypothesis with phorbol-12-acetate-13-myristate (PMA) activated peripheral blood cells exposed to p-BQ, using the cytokinesis-block micronucleus test. Addition of 20-28 ng/ml PMA caused a significant increase of micronuclei at low and non-cytotoxic p-BQ concentrations between 0.04 and 0.2 microg/ml (0.37-1.85 microM). Thus with PMA or p-BQ alone no reproducible elevation of micronuclei was seen up to toxic concentrations. PMA and p-BQ induce micronuclei when administered jointly. Our results add further support to the hypothesis that MPO is a key enzyme in the activation of benzene. PMID:19212761

  19. Evaluation of the genotoxicity of process stream extracts from a coal gasification system.

    PubMed

    Shimizu, R W; Benson, J M; Li, A P; Henderson, R F; Brooks, A L

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. PMID:6389110

  20. Evaluation of the genotoxicity of process stream extracts from a coal gasification system

    SciTech Connect

    Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

    1984-01-01

    Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays. The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. 24 references, 3 figures, 2 tables.

  1. Photoactivated hypericin is not genotoxic.

    PubMed

    Feruszová, Jana; Imreová, Petronela; Bodnárová, Kristína; Ševčovičová, Andrea; Kyzek, Stanislav; Chalupa, Ivan; Gálová, Eliška; Miadoková, Eva

    2016-04-01

    The study was designed to test the potential photogenotoxicity of hypericin (HYP) at three different levels: primary DNA damages, gene mutations and chromosome aberrations. Primary genetic changes were detected using the comet assay. The potential mutagenic activity of HYP was assessed using the Ames/Salmonella typhimurium assay. Finally, the ability of photoactivated HYP to induce chromosome aberrations was evaluated by the in vitro mammalian chromosome aberration test and compared to that of non-photoactivated HYP. The results have shown that photoactivated HYP can only induce primary DNA damages (single-strand DNA breaks), acting in a dose-response manner. This activity depended both on HYP concentrations and an intensity of the light energy needed for its photoactivation. However, mutagenic effect of photoactivated HYP evaluated in the Ames assay using three bacterial strains S. typhimurium (TA97, TA98 and TA100) was not confirmed. Moreover, photoactivated HYP in the range of concentrations (0.005-0.01 µg/ml) was not found to be clastogenic against HepG2 cells. Our findings from both the Ames assay and the chromosome aberrations test provide evidence that photoactivated HYP is not genotoxic, which might be of great importance mainly in terms of its use in the photodynamic therapy. PMID:26891274

  2. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products.

    PubMed

    Zeinvand-Lorestani, Hamed; Sabzevari, Omid; Setayesh, Neda; Amini, Mohsen; Nili-Ahmadabadi, Amir; Faramarzi, Mohammad Ali

    2015-09-01

    In this paper, the enzymatic detoxification of aflatoxin B1 (AFB1) by laccase was studied, and the prooxidant properties and mutagenicity of the detoxification products were compared with those of AFB1. The optimal enzymatic reaction occurred in 0.1M of citrate buffer containing 20% DMSO at 35 °C, a pH of 4.5, and a laccase activity of 30 U mL(-1). After 2 d, sixty-seven percent of the toxic substrate was removed. The prooxidative properties of the detoxified products (27% versus 86%) and the mutagenicity were significantly decreased in comparison with the parent toxin. Unlike AFB1, which promoted metabolism-dependent genetic mutations by base-pair substitution, the detoxified products did not induce genotoxicity. Comparison of the Km values for AFB1 and riboflavin, a valuable food nutrient, indicated that laccase showed greater affinity for the toxin than for riboflavin. PMID:25876029

  3. Genotoxic effects of high-energy iron particles in human lymphoblasts differing in radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Evans, T. E.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.

  4. Genotoxicity of 2-alkylcyclobutanones, markers for an irradiation treatment in fat-containing food—Part I: cyto- and genotoxic potential of 2-tetradecylcyclobutanone

    NASA Astrophysics Data System (ADS)

    Delincée, Henry; Soika, Christiane; Horvatovich, Péter; Rechkemmer, Gerhard; Marchioni, Eric

    2002-03-01

    Previous experiments had indicated a slight genotoxic potential both in rat and in human colon cells of a sample of 2-dodecylcyclobutanone, a compound formed by irradiation of food containing palmitic acid in its triglycerides. Up to date, there is no evidence that 2-alkylcyclobutanones occur in non-irradiated foodstuffs, consequently it is prudent to test several members of the class of 2-alkylcyclobutanones which are produced by treatment of fat-containing food with ionising radiation. In this work, 2-tetradecylcyclobutanone (derived from stearic acid) has been tested for its cytotoxic and genotoxic potential. Human colon tumor cell lines, i.e. HT 29 and HT 29 clone 19A, were employed as models for in vitro experiments for cytotoxicity and genotoxicity tests. Cytotoxicity was measured by tetrazolium salt reduction assays (MTT and WST-1) and genotoxicity by determining DNA damage using the Comet Assay. Neither cytotoxic nor genotoxic effects were induced by 2-TCB in HT 29 or HT 29 cl 19A cells at an incubation time of 30 min at 37°C, not even at the highest concentration (400 μM) tested. After prolonged incubation times (1-2 days) at higher concentrations (>50 μM) cytotoxicity did, however, appear. Studies on other 2-alkylcyclobutanones are in progress.

  5. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells.

    PubMed

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè

    2014-01-01

    The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774

  6. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis.

    PubMed

    Ruiz, Pamela; Katsumiti, Alberto; Nieto, Jose A; Bori, Jaume; Jimeno-Romero, Alba; Reip, Paul; Arostegui, Inmaculada; Orbea, Amaia; Cajaraville, Miren P

    2015-10-01

    The aim of this work was to study short-term effects on antioxidant enzyme activities and long-term genotoxic and carcinogenic potential of CuO nanoparticles (NPs) in comparison to bulk CuO and ionic copper in mussels Mytilus galloprovincialis after 21 days exposure to 10 μg Cu L(-1). Then, mussels were kept for up to 122 days in clean water. Cu accumulation depended on the form of the metal and on the exposure time. CuO NPs were localized in lysosomes of digestive cells, as confirmed by TEM and X ray microanalysis. CuO NPs, bulk CuO and ionic copper produced different effects on antioxidant enzyme activities in digestive glands, overall increasing antioxidant activities. CuO NPs significantly induced catalase and superoxide dismutase activities. Fewer effects were observed in gills. Micronuclei frequency increased significantly in mussels exposed to CuO NPs and one organism treated with CuO NPs showed disseminated neoplasia. However, transcription levels of cancer-related genes did not vary significantly. Thus, short-term exposure to CuO NPs provoked oxidative stress and genotoxicity, but further studies are needed to determine whether these early events can lead to cancer development in mussels. PMID:26297043

  7. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet.

    PubMed

    Leffa, Daniela Dimer; da Silva, Juliana; Daumann, Francine; Dajori, Ana Luiza Formentin; Longaretti, Luiza Martins; Damiani, Adriani Paganini; de Lira, Fabio; Campos, Fernanda; Ferraz, Alexandre de Barros Falcão; Côrrea, Dione Silva; de Andrade, Vanessa Moraes

    2014-12-01

    Acerola contains high levels of vitamin C and rutin and shows the corresponding antioxidant properties. Oxidative stress on the other hand is an important factor in the development of obesity. In this study, we investigated the biochemical and antigenotoxic effects of acerola juice in different stages of maturity (unripe, ripe and industrial) and its main pharmacologically active components vitamin C and rutin, when given as food supplements to obese mice. Initial HPLC analyses confirmed that all types of acerola juice contained high levels of vitamin C and rutin. DPPH tests quantified the antioxidant properties of these juices and revealed higher antioxidant potentials compared to pure vitamin C and rutin. In an animal test series, groups of male mice were fed on a standard (STA) or a cafeteria (CAF) diet for 13 weeks. The latter consisted of a variety of supermarket products, rich in sugar and fat. This CAF diet increased the feed efficiency, but also induced glucose intolerance and DNA damage, which was established by comet assays and micronucleus tests. Subsequently, CAF mice were given additional diet supplements (acerola juice, vitamin C or rutin) for one month and the effects on bone marrow, peripheral blood, liver, kidney, and brain were examined. The results indicated that food supplementation with ripe or industrial acerola juice led to a partial reversal of the diet-induced DNA damage in the blood, kidney, liver and bone marrow. For unripe acerola juice food supplementation, beneficial effects were observed in blood, kidney and bone marrow. Food supplementation with vitamin C led to decreased DNA damage in kidney and liver, whereas rutin supplementation led to decreased DNA damage in all tissue samples observed. These results suggest that acerola juice helps to reduce oxidative stress and may decrease genotoxicity under obesogenic conditions. PMID:24296107

  8. Plant antimutagens and their mixtures in inhibition of genotoxic effects of xenobiotics and aging processes.

    PubMed

    Alekperov, Urkhan K

    2002-08-01

    The antimutagenic effect of the bioactive compounds from fruits of Morus alba L. (MA), Punica granatum L. (PG), Diospyros kaki L. (DK), Cydonia oblonga Mill. (CO) and roots of Glycyrrhiza glabra (GG) were investigated. The antimutagenic effects of compounds separately as well as their action in complex mixtures were studied on mutations induced by genotoxicants (X-rays, N-methylnitrosourea, cyclophosphamide, NaF) and aging in bone marrow cell chromosomes from mice and rats. When tested separately and in a complex mixture, the plant products showed an ability to decrease the frequency of chromosome aberrations. The antimutagenic properties of the complex mixtures were considerably greater than those of the separate components. More antimutagenic activity of the mixture was revealed when mutagenesis was the result of X-rays and the natural aging processes. PMID:12570329

  9. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells

    SciTech Connect

    Moore, L.E.; Warner, M.L.; Smith, A.H.

    1996-12-31

    The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN-) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. The assay was used on 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 {mu}g As/L) and 18 matched controls (average level, 16 {mu}g As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher`s exact test). Frequencies of micronuclei containing acentric fragments (MN-) and those containing whole chromosomes (MN+) both increased, suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P =0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN and MN+ were positively associated with urinary arsenic and its metabolites. The association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can not be determined in epithelial tissues. 35 refs., 4 tabs.

  10. Genotoxicity of intraperitoneal injection of lipoamphiphile CdSe/ZnS quantum dots in rats.

    PubMed

    Aye, Mélanie; Di Giorgio, Carole; Mekaouche, Mourad; Steinberg, Jean-Guillaume; Brerro-Saby, Christelle; Barthélémy, Philippe; De Méo, Michel; Jammes, Yves

    2013-12-12

    The main objective of the present in vivo rat study was to determine the genotoxicity of lipoamphiphile-coated CdSe/ZnS Quantum Dots (QDs), in several organs (brain, liver, kidneys, lungs and testicles). The second objective was to establish the correlations between the QDs genotoxic activity and the oxidative stress, the production of a proinflammatory cytokine (TNF-α), a stress-induced chaperone protein, the phosphorylated heat shock protein 70 (pHsp70), and an increase in the caspase-3 apoptosis factor. Four QDs doses were injected into the peritoneal cavity (5, 5×10(-1), 5×10(-2) and 5×10(-3)μg/kg). DNA lesions in the different organs were measured by the comet assay, and chromosome abnormalities were evaluated by the micronucleus assay on blood reticulocytes (MNRET). Twenty-four hours after the QDs injection, genotoxic effects were observed in the brain and liver and, only for the highest QDs concentration, in testicles. No genotoxic effect was seen in the kidney and lung. The MNRET test revealed a dose-response induction of micronuclei. In parallel, we did neither reveal oxidative stress nor significant variations of TNF-α, pHsp70, and caspase-3. In conclusion, the QDs exerted significant genotoxic effects in the brain and liver, even in the absence of any associated oxidative stress and inflammatory processes. PMID:24055877

  11. Genotoxicity of glycidamide in comparison to 3-N-nitroso-oxazolidin-2-one.

    PubMed

    Baum, Matthias; Loeppky, Richard N; Thielen, Silke; Eisenbrand, Gerhard

    2008-08-13

    Acrylamide (AA) is generated by thermal processing of foods, depending on processing conditions and precursor availability. AA is not genotoxic by itself but becomes activated to its genotoxic metabolite glycidamide (GA) via epoxidation, mediated primarily by cytochrome P450 2E1. In the Comet assay in V79 cells and in human lymphocytes, GA induced DNA damage down to 300 microM concentration (4 h). After post-treatment with the DNA repair enzyme formamidopyrimidine-DNA-glycosylase (FPG), DNA damage became already detectable at 10 microM (4 h). By comparison, the N-nitroso compound 3- N-nitroso-oxazolidin-2-one (NOZ-2) is a much stronger genotoxic agent, significantly inducing DNA damage already at 15 min (3 microM). Post-treatment with FPG in this case did not enhance response. GA induced DNA damage in V79 cells rather slowly, with first response detectable at 4 h. The hPRT forward mutation test encompasses 5 days of expression time during which also repair can take place. GA-induced hPRT mutations only became detectable at concentrations of 800 microM and above. This is 80-fold higher than the lowest significant response to GA in the Comet assay (10 microM with FPG). In contrast, NOZ-2 was as effective in the hPRT test as in the Comet assay (3 microM). These results demonstrate substantial differences in the genotoxic potency of GA and NOZ-2. Whereas NOZ-2 is a pontent genotoxic mutagen, GA in comparison shows only low genotoxic and mutagenic potential, presumably as a result, at least in part, of preferential N7-G alkylation. PMID:18624445

  12. Genotoxic effects of five polycyclic aromatic hydrocarbons in human and rat mammary epithelial cells

    SciTech Connect

    Mane, S.S.; Purnell, D.M.; Hsu, Ih-chang )

    1990-01-01

    Five polycyclic aromatic hydrocarbons (PAHs) of different carcinogenic activities were evaluated for their effects on DNA synthesis ({sup 3}HTdR labeling index (L.I.)) of rat and human mammary epithelial cells (MEC) and for their effects on chromosomes in MEC-mediated sister chromatid exchange (SCE) assays. When compared with DMSO-treated cells, exposures of rat MEC to the two most potent carcinogens, i.e., 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P), resulted in a 45-62% reduction in the L.I. of rat MEC. Another carcinogen, 20-methylcholanthrene (MCA), produced a 35-48% reduction in L.I., while the noncarcinogenic PAHs, 1,2-benzanthracene (BA) and benzo(e)pyrene (B(e)P), showed no effect. Similarly, exposures of human MEC to DMBA and B(a)P resulted in a 50-90% depression in L.I. while BA was significantly less effective. When co-cultivated with Chinese hamster V-79 cells in the presence of PAH, both rat and human MEC can activate and release the active metabolites to induce SCE in V-79 cells. Comparing depression of L.I., SCE, and in vivo carcinogenicity for the 5 PAHs, SCE mediated by rat MEC is better correlated with carcinogenicity in rat than L.I. depression.

  13. Guaiazulene biochemical activity and cytotoxic and genotoxic effects on rat neuron and N2a neuroblastom cells

    PubMed Central

    Togar, Basak; Turkez, Hasan; Hacimuftuoglu, Ahmet; Tatar, Abdulgani; Geyikoglu, Fatime

    2015-01-01

    Aim: Neuroblastoma (NB)cells are often used in cancer researches such as glioblastoma cells since they have the potential of high mitotic activity, nuclear pleomorphism, and tumor necrosis. Guaiazulene (GYZ 1,4-dimethyl-7-isopropylazulene)is present in several essential oils of medicinal and aromatic plants. Many studies have reported the cytotoxic effect of GYZ; however, there are no studies that compare such effects between cancer cell lines and normal human cells after treatment with GYZ. Materials and Methods: In this study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties (by 3-[4,5 dimetylthiazol -2-yl]-2,5 diphenlytetrazolium bromide [MTT] test), oxidative effects (by total antioxidant capacity [TAC] and total oxidative stress [TOS] analysis)and genotoxic damage potentials (by single cell gel electrophoresis)of GYZ. Result: The results indicated that GYZ have anti-proliferative activity suppressing the proliferation of neuron and N2a-NB cells at high doses. In addition, GYZ treatments at higher doses led to decreases of TAC levels and increases of TOS levels in neuron and N2a-NB cells. On the other hand, the mean values of the total scores of cells showing DNA damage were not found different from the control values. Conclusion: From this study, it is observed that GYZ has in vitro cytotoxic activity against neuron and N2a-NB cells. PMID:26401381

  14. The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings.

    PubMed

    Liu, Tong; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui

    2015-03-21

    Although considered as "green" solvents, the toxic effects of ionic liquids (ILs) on organisms have been widely investigated in recent years. However, studies on the toxic effects of ILs on plants all focus on toxicity in nutrient solution. In the present paper, the toxic effects of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) on Vicia faba seedlings in soil at 0, 500, 1500, and 2500 mg kg(-1) on day 10 were studied. The present results showed that the growth of V. faba seedlings may be seriously inhibited when the IL concentrations were higher than 500 mg kg(-1). The EC50 values for shoot length, root length, and dry weight were 3886, 2483, and 3359 mg kg(-1), respectively. In addition, [C4mim]Cl caused lipid peroxidation and DNA damage at 500 mg kg(-1) and oxidative stress at 1500 mg kg(-1), which indicated that [C4mim]Cl may have genotoxicity and cytotoxicity on V. faba seedlings. Moreover, oxidative damage may be the main toxic mechanism of ILs. PMID:25462868

  15. Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents.

    PubMed

    Olvera-Néstor, Corina G; Morales-Avila, Enrique; Gómez-Olivan, Leobardo M; Galár-Martínez, Marcela; García-Medina, Sandra; Neri-Cruz, Nadia

    2016-03-01

    Hospital wastewater is an important source of emerging contaminants. Recent studies emphasize the importance of assessing the effects of mixtures of contaminants rather than environmental risk of their individual components, as well as the determination of intrinsic toxicity of wastewater. Mixtures of pollutants has possible interactions that have notable environmental side effects. The aim of this study is an attempt to characterize biomarkers in Cyprinus carpio related to the exposure to a complex mixture of contaminants found in hospital wastewater. Results of a particular hospital effluent show the presence of traces of heavy metals, high chlorine concentration and emerging contaminants such as non-steroidal anti-inflammatory drugs. The LC50 was of 5.49 % at 96 h. The cytotoxic, genotoxic and apoptotic biomarkers increase when fishes were exposed to wastewater (1/10 CL50) from hospital wastewater. This study emphasizes the importance of identifying and quantifying the effects of contaminants as pharmaceuticals, disinfectants and surfactants in order to design and implement an ecotoxicological plan. PMID:26754545

  16. Cytotoxic and genotoxic characterization of titanium dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human fibroblasts.

    PubMed

    Setyawati, Magdiel Inggrid; Khoo, Pheng Kian Stella; Eng, Bao Hui; Xiong, Sijing; Zhao, Xinxin; Das, Gautom Kumar; Tan, Timothy Thatt-Yang; Loo, Joachim Say Chye; Leong, David Tai; Ng, Kee Woei

    2013-03-01

    Engineered nanomaterials have become prevalent in our everyday life. While the popularity of using nanomaterials in consumer products continues to rise, increasing awareness of nanotoxicology has also fuelled efforts to accelerate our understanding of the ill effects that different nanomaterials can bring to biological systems. In this study, we investigated the potential cytotoxicity and genotoxicity of three nanoparticles: titanium dioxide (TiO(2)), terbium-doped gadolinium oxide (Tb-Gd(2)O(3)), and poly(lactic-co-glycolic acid) (PLGA). To evaluate nanoparticle-induced genotoxicity more realistically, a human skin fibroblast cell line (BJ) with less mutated genotype compared with cancer cell line was used. The nanoparticles were first characterized by size, morphology, and surface charge. Cytotoxicity effects of the nanoparticles were then evaluated by monitoring the proliferation of treated BJ cells. Genotoxic influence was ascertained by profiling DNA damage via detection of γH2AX expression. Our results suggested that both TiO(2) and Tb-Gd(2)O(3) nanoparticles induced cytotoxicity in a dose dependent way on BJ cells. These two nanomaterials also promoted genotoxicity via DNA damage. On the contrary, PLGA nanoparticles did not induce significant cytotoxic or genotoxic effects on BJ cells. PMID:22927021

  17. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro.

    PubMed

    Koc, Kubra; Incekara, Umit; Turkez, Hasan

    2014-09-01

    In this investigation, the genotoxic and oxidative effects of water soluble extracts of dung beetles, flying grasshopper and mole crickets have been assessed on cultured human blood cells. The extracts were added to the culture tubes at 12 different concentrations (0-2000 ppm). Micronucleus test was used to monitor the DNA and the chromosomal damage produced by aqueous extracts in vitro. In addition, to assess the oxidative effects, total antioxidant capacity (TAC) and total oxidant status (TOS) levels were also measured. Our results indicated that these extracts did not show genotoxic effects at the tested concentrations. However, the extracts caused dose-dependent alterations in both TAC and TOS levels. Based on the findings, it was concluded that the studied insects can be consumed safely, but it is necessary to consider the cellular damages which are likely to appear depending on oxidative stress at higher concentrations. It has also been suggested that this in vitro approach for oxidative and genotoxicity assessments may be useful to evaluate the potential health risks of edible insects. PMID:24700298

  18. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  19. Short-term exposure of rodents to diesel exhausts: usefulness for studies of genotoxic and immunotoxic effects.

    PubMed

    Nilsen, A; Trønnes, T; Westerholm, R; Rannug, U; Nilsen, O G; Helleberg, H; Kautiainen, A; Hedenskog, M; Törnqvist, M

    1999-03-01

    An exposure facility was tested with regard to the information obtainable from short-term animal experiments for the assessment of health hazards from automotive engine exhausts. Indicators of immunotoxicity and genotoxicity were studied in guinea pigs and mice, respectively, exposed for 2 weeks, 8 h/day, to ten times diluted exhausts from a one-cylinder research diesel engine running at constant load. Regulated and non-regulated pollutants were determined. Besides increased number of lavageable cells in the airways, exposed guinea pigs exhibited, after immunization and challenge to ovalbumin, reduced leukotrienes B4 and C4 in lavage fluid and reduced anti-ovalbumin IgG in serum. Absence of increased CYP1A activity indicated that the exposure was below the threshold for induction of these enzymes. Instead a certain reduction of this activity indicated interaction with active enzyme sites. In vivo doses of some reactive metabolites of low molecular mass were measured by adducts to hemoglobin. Doses from aliphatic epoxides were low, in accordance with low hydrocarbon levels in the exhaust. The levels of hemoglobin adducts from aldehydes showed no clearcut influences of exposure. Genetic effects determined by DNA fingerprint analysis were indicated. It is concluded that repeated dose inhalation exposure of small numbers of animals is a useful mode of exposure for studying parameters that may elucidate toxic effects of air pollutants emitted from automotive engines, with a possibility to evaluate engine and fuel with regard to health hazards. PMID:10227576

  20. Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae.

    PubMed

    Soloneski, Sonia; Ruiz de Arcaute, Celeste; Larramendy, Marcelo L

    2016-09-01

    The acute toxicity of two herbicide formulations, namely, the 57.71 % dicamba (DIC)-based Banvel(®) and the 48 % glyphosate (GLY)-based Credit(®), alone as well as the binary mixture of these herbicides was evaluated on late-stage Rhinella arenarum larvae (stage 36) exposed under laboratory conditions. Mortality was used as an endpoint for determining acute lethal effects, whereas the single-cell gel electrophoresis (SCGE) assay was employed as genotoxic endpoint to study sublethal effects. Lethality studies revealed LC5096 h values of 358.44 and 78.18 mg L(-1) DIC and GLY for Banvel(®) and Credit(®), respectively. SCGE assay revealed, after exposure for 96 h to either 5 and 10 % of the Banvel(®) LC5096 h concentration or 5 and 10 % of the Credit(®) LC5096 h concentration, an equal significant increase of the genetic damage index (GDI) regardless of the concentration of the herbicide assayed. The binary mixtures of 5 % Banvel(®) plus 5 % Credit(®) LC5096 h concentrations and 10 % Banvel(®) plus 10 % Credit(®) LC5096 h concentrations induced equivalent significant increases in the GDI in regard to GDI values from late-stage larvae exposed only to Banvel(®) or Credit(®). This study represents the first experimental evidence of acute lethal and sublethal effects exerted by DIC on the species, as well as the induction of primary DNA breaks by this herbicide in amphibians. Finally, a synergistic effect of the mixture of GLY and DIC on the induction of primary DNA breaks on circulating blood cells of R. arenarum late-stage larvae could be demonstrated. PMID:27250090

  1. Effects of Perivitelline Fluid Obtained from Horseshoe Crab on The Proliferation and Genotoxicity of Dental Pulp Stem Cells

    PubMed Central

    Musa, Marahaini; Mohd Ali, Khadijah; Kannan, Thirumulu Ponnuraj; Azlina, Ahmad; Omar, Nor Shamsuria; Chatterji, Anil; Mokhtar, Khairani Idah

    2015-01-01

    Objective Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA) and mutagenicity of the dental pulp stem cells (DPSCs). Materials and Methods This is an in vitro experimental study. PVF samples were collected from horseshoe crabs from beaches in Malaysia and the crude extract was prepared. DPSCs were treated with different concentrations of PVF crude extract in an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (cytotoxicity test). We choose two inhibitory concentrations (IC50 and IC25) and two PVF concentrations which produced more cell viability compared to a negative control (100%) for further tests. Quantitative analysis of the proliferation activity of PVF was studied using the AlamarBlue®assay for 10 days. Population doubling times (PDTs) of the treatment groups were calculated from this assay. Genotoxicity was evaluated based on the CA and Ames tests. Statistical analysis was carried out using independent t test to calculate significant differences in the PDT and mitotic indices in the CA test between the treatment and negative control groups. Significant differences in the data were P<0.05. Results A total of four PVF concentrations retrieved from the MTT assay were 26.887 mg/ml (IC50), 14.093 mg/ml (IC25), 0.278 mg/ml (102% cell viability) and 0.019 mg/ml (102.5% cell viability). According to the AlamarBlue®assay, these PVF groups produced comparable proliferation activities compared to the negative (untreated) control. PDTs between PVF groups and the negative control were insignificantly different (P>0.05). No significant aberrations in chromosomes were observed in the PVF groups and the Ames test on the PVF showed the absence of significant positive results. Conclusion PVF from horseshoe crabs produced insignificant proliferative

  2. Modulation of genotoxicity and endocrine disruptive effects of malathion by dietary honeybee pollen and propolis in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Kandiel, Mohamed M.M.; El-Asely, Amel M.; Radwan, Hasnaa A.; Abbass, Amany A.

    2013-01-01

    The present study aimed at verifying the usefulness of dietary 2.5% bee-pollen (BP) or propolis (PROP) to overcome the genotoxic and endocrine disruptive effects of malathion polluted water in Oreochromis niloticus (O. niloticus). The acute toxicity test was conducted in O. niloticus in various concentrations (0–8 ppm); mortality rate was assessed daily for 96 h. The 96 h-LC50 was 5 ppm and therefore 1/5 of the median lethal concentration (1 ppm) was used for chronic toxicity assessment. In experiment (1), fish (n = 8/group) were kept on a diet (BP/PROP or without additive (control)) and exposed daily to malathion in water at concentration of 5 ppm for 96 h “acute toxicity experiment”. Protective efficiency against the malathion was verified through chromosomal aberrations (CA), micronucleus (MN) and DNA-fragmentation assessment. Survival rate in control, BP and PROP groups was 37.5%, 50.0% and 100.0%, respectively. Fish in BP and PROP groups showed a significant (P < 0.05) reduction in the frequency of CA (57.14% and 40.66%), MN (53.13% and 40.63%) and DNA-fragmentation (53.08% and 30.00%). In experiment (2), fish (10 males and 5 females/group) were kept on a diet with/without BP for 21 days before malathion-exposure in water at concentration of 0 ppm (control) or 1 ppm (Exposed) for further 10 days “chronic toxicity experiment”. BP significantly (P < 0.05) reduced CA (86.33%), MN (82.22%) and DNA-fragmentation (93.11%), prolonged the sperm motility when exposed to 0.01 ppm of pollutant in vitro and increased the estradiol level in females comparing to control. In conclusion, BP can be used as a feed additive for fish prone to be raised in integrated fish farms or cage culture due to its potency to chemo-protect against genotoxicity and sperm-teratogenicity persuaded by malathion-exposure. PMID:25685536

  3. Cytotoxicity and Genotoxicity of Hexavalent Chromium in Human and North Atlantic Right Whale (Eubalaena glacialis) Lung Cells

    PubMed Central

    Chen, Tânia Li; Wise, Sandra S.; Holmes, Amie; Shaffiey, Fariba; Wise, John Pierce; Thompson, W. Douglas; Kraus, Scott; Wise, John Pierce

    2009-01-01

    Humans and cetaceans are exposed to a wide range of contaminants. In this study, we compared the cytotoxic and genotoxic effects of a metal pollutant, hexavalent chromium [Cr(VI)], which has been shown to cause damage in lung cells from both humans and North Atlantic right whales. Our results show that Cr induces increased cell death and chromosome damage in lung cells from both species with increasing intracellular Cr ion levels. Soluble Cr(VI) induced less of a cytotoxic and genotoxic effect on administered dose in right whale (Eubalaena glacialis) cells than in human (Homo sapiens) cells. Whereas, particulate Cr(VI) induced a similar cytotoxic effect but less of a genotoxic effect based on administered dose in right whale cells than in human cells. Differences in chromium ion uptake explained some but not all of the soluble chromate-induced cell death and chromosome damage. Uptake differences of lead ions could explain the differences in particulate chromate-induced toxicity. The data show that both forms of Cr(VI) are less genotoxic to right whale than human lung cells, and that soluble Cr(VI) induces a similar cytotoxic effect in both right whale and human cells, while particulate Cr(VI) is more cytotoxic to right whale lung cells. PMID:19632355

  4. Genotoxic effects of fly ash in bacteria, mammalian cells and animals

    SciTech Connect

    Morris, D.L.; Connor, T.H.; Harper, J.B.; Ward, J.B. Jr.; Legator, M.S. )

    1989-01-01

    The increasing use of fossil fuels has raised concerns about possible deleterious health effects of the final combustion product, fly ash. Seven ash samples from coal sources obtained from Battelle Columbus Laboratories were evaluated in the Salmonella/mammalian microsome mutagenicity assay to determine their mutagenic potential. While dimethyl sulfoxide extracts of five samples showed no mutagenicity, sample 102 caused an increase in the number of revertants per plate over controls in TA100 and TA98 with activation by liver homogenate (2-fold and 2.4-fold, respectively), and without (2-fold and 6-fold). This ash was thus evaluated in whole animal studies. Animals treated by inhalation or oral gavage were assayed for the presence of mutagens in the urine, micronuclei in polychromatic erythrocytes, and chromosomal aberrations in metaphase bone marrow cells. Those animals treated by inhalation were also examined for local damage in the lung. The assay for mutagens in the urine was negative as shown by the Ames assay with TA100 and TA98 and there was no increase in micronuclei or in metaphase aberrations. Histological sections from the animals treated by inhalation did not show the presence of particles, macrophage infiltrations and generalized lung damage. We tested the same fly ash with an in vitro cell transformation assay with the cell line Balb/c 3T3 subclone A31-1-13. Although there was not an increase in Type III foci, there was a dose-dependent increase of Type II foci in the treated cells over the controls. In one assay, there was approximately a 14-fold increase in Type II foci in the highest dose (2 mg/ml) compared to the solvent control. One other ash sample induced cell transformation without being markedly cytotoxic, while a third sample was highly toxic but did not induce transformation.

  5. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    PubMed

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot. PMID:27441588

  6. Avocado fruit (Persea americana Mill) exhibits chemo-protective potentiality against cyclophosphamide induced genotoxicity in human lymphocyte culture.

    PubMed

    Paul, Rajkumar; Kulkarni, Paresh; Ganesh, Narayan

    2011-01-01

    Diets rich in fruits and vegetables have been associated with reduced risks for many types of cancers. Avocado (Persea americana Mill.) is a widely consumed fruit containing many cancer preventing nutrients, vitamins and phytochemicals. Studies have shown that phytochemicals extracted from the avocado fruit selectively induce cell cycle arrest, inhibit growth, and induce apoptosis in precancerous and cancer cell lines. Our recent studies indicate that phytochemicals extracted with 50% Methanol from avocado fruits help in proliferation of human lymphocyte cells and decrease chromosomal aberrations induced by cyclophosphamide. Among three concentrations (100 mg, 150 mg and 200 mg per Kg Body Weight), the most effective conc. of extract was 200 mg/Kg Body Wt. It decreased significant level of numerical and structural aberrations (breaks, premature centromeric division etc. up to 88%, p < 0.0001)), and accrocentric associtation within D & G group (up to 78%, p = 0.0008). These studies suggest that phytochemicals from the avocado fruit can be utilized for making active chemoprotective ingredient for lowering the side effect of chemotherapy like cyclophosphamide in cancer therapy. PMID:22070054

  7. Genotoxicity of 2-bromo-3′-chloropropiophenone

    SciTech Connect

    Meng, Fanxue; Yan, Jian; Li, Yan; Fu, Peter P.; Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I; Moore, Martha M.; Chen, Tao

    2013-07-15

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  8. Genotoxicity testing of Persicariae Rhizoma (Persicaria tinctoria H. Gross) aqueous extracts

    PubMed Central

    LEE, WON HO; CHOI, SEONG HUN; KANG, SU JIN; SONG, CHANG HYUN; PARK, SOO JIN; LEE, YOUNG JOON; KU, SAE KWANG

    2016-01-01

    Persicariae Rhizoma (PR) has been used as an anti-inflammatory and detoxification agent in Korea, and contains the biologically active dyes purple indirubin and blue indigo. Despite synthetic indigo showing genotoxic potential, thorough studies have not been carried out on the genotoxicity of PR. The potential genotoxicity of an aqueous extract of PR containing indigo (0.043%) and indirubin (0.009%) was evaluated using a standard battery of tests for safety assessment. The PR extract did not induce any genotoxic effects under the conditions of this study. The results of a reverse mutation assay in four Salmonella typhimurium strains and one Escherichia coli strain indicated that PR extract did not increase the frequency of revertant colonies in any strain, regardless of whether S9 mix was present or not. The PR extract also did not increase chromosomal aberrations in the presence or absence of S9 mix. Although slight signs of diarrhea were restrictedly detected in the mice treated with 2,000 mg/kg PR extract, no noteworthy changes in the frequency of micronucleated polychromatic erythrocytes were observed at doses ≤2,000 mg/kg in a bone marrow micronucleus test. These results indicate the potential safety of the PR extract, particularly if it is consumed in small amounts compared with the quantities used in the genotoxicity tests. PMID:27347027

  9. Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water.

    PubMed

    Nobukawa, T; Sanukida, S

    2001-12-01

    Genotoxicity of halogenated by-products obtained by chlorination of humic acid in water was evaluated in the presence of bromide ions (Br-). After the halogenated humic acid solution was made to flow through CSP800 cartridge, absorbed substances were eluted with dimethyl sulfoxide or acetone, and subjected to mutagenicity assays and to analysis of trihalomethanes (THMs). Mutagenic activity was measured by Ames tests using S. typhimurium TA100 strain without metabolic activation, and by the frequencies of micronuclei formation using cultured Chinese hamster lung cells (CHL/IU) in vitro. A powerful effect of bromide ions in chlorinated humic acid solutions was observed on the reverse mutation and micronuclei formations. The formations of total THMs and more brominated THMs were also enhanced in the presence of bromide ions. The ratio of [Br-/Cl-] regulated the composition and concentrations of THMs intensely, and the rate of substitution of Br- was greater than that of chloride ions (Cl-). The increments of the mutagenicity and total THMs formed in chlorinated solutions were observed in parallel with the concentration of Br- or Cl-. From the observations, it was concluded that the increasing mutagenicity might be caused by the increasing chlorinated and/or brominated by-products. PMID:11763030

  10. Comparative cytotoxic and genotoxic effects of permethrin and its nanometric form on human erythrocytes and lymphocytes in vitro.

    PubMed

    Sundaramoorthy, Rajiv; Velusamy, Yuvaraj; Balaji, A P B; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-09-25

    The research on the novel pesticides such as nanopesticides has become inevitable to control the mosquito population. Nanopermethrin (NP), one of such kind was formulated in pesticide loaded oil-in-water (o/w) microemulsion by rapid evaporation. Even though NP possess improved efficacy against the target pests, the toxicological investigation on the human or mammalian system remains unexplored. So, the present study focused on a comparative investigation of the cytotoxic and genotoxic effects of NP in vitro and its commercial parental bulk form of permethrin (BP) on human peripheral erythrocyte/lymphocyte by erythrocyte morphology analysis, cell viability assay, and cytokinesis-block micronucleus (CBMN) assay. The NP and BP concentrations (10, 25, 50 and 100 μg/ml) interacted with human blood cells, and the morphological changes were observed using a phase contrast microscope. The drastic increase of echinocyte was observed at 24, 48 and 72 h treatment as compared with the control. The cell viability studies have shown the significant decrease with increase in NP and BP concentration. CBMN study showed a series correlation in the number of micronuclei, bridge, bud, trinucleated and tetranucleated when interacted with different levels of NP and BP, as comparative to control *p < 0.05, **p < 0.001, ***p < 0.0001. PMID:27502151

  11. Effects of the water soluble fraction of gasoline on ZFL cell line: Cytotoxicity, genotoxicity and oxidative stress.

    PubMed

    Lachner, Debora; Oliveira, Luciana F; Martinez, Claudia B R

    2015-12-25

    This work aimed to evaluate the effects of different dilutions of gasoline water-soluble fraction (GSF) on Danio rerio hepatocyte cell line (ZFL). Two tests were used to assess cell viability, MTT reduction assay (MTT) and the Trypan blue (TB) exclusion test. Oxidative stress was evaluated through the quantification of reactive oxygen species (ROS) and the assessment of the total antioxidant capacity against peroxyl radicals (ACAP) and the comet assay was employed to assess DNA damage. ZFL cells were exposed to 5, 10, 25 and 50% GSF or only to saline for 1, 3 and 6h. The GSF exhibited concentration-dependent cytotoxicity, and longer exposure times resulted in lower cell viability as indicated by both MTT and TB assays. The establishment of oxidative stress in cells exposed to GSF was not observed at any exposure period and the lower ROS levels could be related to the increased antioxidant capacity after 6-hour exposure. DNA damage was significantly increased after exposure to GSF at the three experimental times. Taking together these results show that GSF has a genotoxic potential at the lower concentrations and becomes cytotoxic at higher concentrations and that ZFL can be considered a good biological model for in vitro toxicological studies. PMID:26578467

  12. In vivo evaluation of the genotoxic effects of Hyrax auxiliary orthodontic appliances containing silver-soldered joints.

    PubMed

    Gonçalves, Tatiana Siqueira; Menezes, Luciane Macedo de; Trindade, Cristiano; Thomas, Philip; Fenechc, Michael; Henriques, João Antonio Pêgas

    2015-09-01

    Auxiliary appliances consisting of silver-soldered joints may be present in the patient's oral cavity for a long time. The aim of this study was to investigate, in vivo, the potential genotoxic effects of Hyrax-type maxillary expanders containing silver-soldered joints on the cells of the buccal mucosa. Buccal cells were collected from 20 patients and processed to perform the buccal comet assay (BCA) and the buccal micronucleus cytome (BMCyt) assay, to investigate DNA and chromosomal damage, respectively. For the BCA, patients were evaluated before and 14 days after the appliances were installed. For the BMCyt assay, the patients were evaluated longitudinally; before the insertion of the appliance and after one, six, and twelve months. The BCA showed significant increases in damage frequency and damage index in exfoliated buccal cells, following insertion of the appliance. For the BMCyt assay, the endpoints related to cell proliferation, cell death, and chromosomal damage (micronuclei and nuclear buds) resulted in no significant differences over the 12-month study period. In conclusion, the use of orthodontic appliances containing silver-soldered joints can significantly increase DNA damage as measured by the BCA. PMID:26338539

  13. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response

    PubMed Central

    Dang, Weiwei; Sutphin, George L.; Dorsey, Jean A.; Otte, Gabriel L.; Cao, Kajia; Perry, Rocc