Science.gov

Sample records for geobacillus sp strain

  1. Draft Genome Sequences of Geobacillus sp. Strains CAMR5420 and CAMR12739

    PubMed Central

    De Maayer, Pieter; Williamson, Carolyn E.; Vennard, Christopher T.; Danson, Michael J.

    2014-01-01

    Thermophilic Geobacillus spp. can efficiently hydrolyze hemicellulose polymers and are therefore of interest in biotechnological applications. Here we report the genome sequences of two hemicellulolytic strains, Geobacillus sp. CAMR12739 and CAMR5420. PMID:24903881

  2. Draft Genome Sequence of Thermophilic Geobacillus sp. Strain Sah69, Isolated from Saharan Soil, Southeast Algeria.

    PubMed

    Bezuidt, Oliver K I; Makhalanyane, Thulani P; Gomri, Mohamed A; Kharroub, Karima; Cowan, Don A

    2015-01-01

    Geobacillus spp. are potential sources of novel enzymes, such as those involved in the degradation of recalcitrant polymers. Here, we report a Geobacillus genome that may help reveal genomic differences between this strain and publicly available representatives of the same genus from diverse niches. PMID:26679578

  3. Draft Genome Sequence of Thermophilic Geobacillus sp. Strain Sah69, Isolated from Saharan Soil, Southeast Algeria

    PubMed Central

    Bezuidt, Oliver K. I.; Makhalanyane, Thulani P.; Gomri, Mohamed A.; Kharroub, Karima

    2015-01-01

    Geobacillus spp. are potential sources of novel enzymes, such as those involved in the degradation of recalcitrant polymers. Here, we report a Geobacillus genome that may help reveal genomic differences between this strain and publicly available representatives of the same genus from diverse niches. PMID:26679578

  4. Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass

    PubMed Central

    Bhalla, Aditya; Bischoff, Kenneth M.; Sani, Rajesh Kumar

    2015-01-01

    Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail) when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70°C, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70°C, respectively. At 70°C, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, Cellic-HTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70°C). High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes. PMID:26137456

  5. Crystallization and preliminary X-ray study of alpha-glucosidase from Geobacillus sp strain HTA-462, one of the deepest sea bacteria.

    PubMed

    Shirai, Tsuyoshi; Hung, Vo Si; Akita, Masatake; Hatada, Yuji; Ito, Susumu; Horikoshi, Koki

    2003-07-01

    An alpha-glucosidase (EC 3.2.1.20) was purified from Geobacillus sp. strain HTA-462 cells and crystallized using the hanging-drop vapour-diffusion technique. The Geobacillus strain is a thermophilic and high-pressure-resistant bacterium found at the bottom of the Challenger Deep in the Mariana Trench. The crystal was characterized by X-ray diffraction and belongs to space group C2, with unit-cell parameters a = 104.0, b = 91.5, c = 72.9 A, beta = 109.4 degrees. Diffraction data to 2.5 A resolution were collected and processed. PMID:12832785

  6. Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure.

    PubMed

    Yang, Seung-Hak; Cho, Jin-Kook; Lee, Soon-Youl; Abanto, Oliver D; Kim, Soo-Ki; Ghosh, Chiranjit; Lim, Joung-Soo; Hwang, Seong-Gu

    2013-11-01

    Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans 465(T) (99.6%). The optimal growth temperatures (55C), pH values (pH 7.0), and NaCl concentrations (1%) required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming. PMID:25049754

  7. Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure

    PubMed Central

    Yang, Seung-Hak; Cho, Jin-Kook; Lee, Soon-Youl; Abanto, Oliver D.; Kim, Soo-Ki; Ghosh, Chiranjit; Lim, Joung-Soo; Hwang, Seong-Gu

    2013-01-01

    Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans 465T (99.6%). The optimal growth temperatures (55C), pH values (pH 7.0), and NaCl concentrations (1%) required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming. PMID:25049754

  8. Lipid composition of thermophilic Geobacillus sp. strain GWE1, isolated from sterilization oven.

    PubMed

    Shah, Siddharth P; Jansen, Susan A; Taylor, Leeandrew Jacques-Asa; Chong, Parkson Lee-Gau; Correa-Llantn, Daniela N; Blamey, Jenny M

    2014-05-01

    GWE1 strain is an example of anthropogenic thermophilic bacterium, recently isolated from dark crusty material from sterilization ovens by Correa-Llantn et al. (Kor. J. Microb. Biotechnol. 2013. 41(3):278-283). Thermostability is likely to arise from the adaptation of macromolecules such as proteins, lipids and nucleic acids. Complex lipid arrangement and/or type in the cell membrane are known to affect thermostability of microorganisms and efforts were made to understand the chemical nature of the polar lipids of membrane. In this work, we extracted total lipids from GWE1 cell membrane, separated them by TLC into various fractions and characterize the lipid structures of certain fractions with analytical tools such as (1)H, (13)C, (31)P and 2D NMR spectroscopy, ATR-FTIR spectroscopy and MS(n) spectrometry. We were able to identify glycerophosphoethanolamine, glycerophosphate, glycerophosphocholine, glycerophosphoglycerol and cardiolipin lipid classes and an unknown glycerophospholipid class with novel MS/MS spectra pattern. We have also noticed the presence of saturated iso-branched fatty acids with NMR spectra in individual lipid classes. PMID:24613478

  9. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides. PMID:26500717

  10. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-01-01

    Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.599.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70C and was also stable up to 60C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Conclusion Strain T1T was able to secrete extracellular thermostable lipase into culture medium. The strain T1T was identified as Geobacillus zalihae T1T as it differs from its type strains Geobacillus kaustophilus (DSM 7263T) and Geobacillus thermoleovorans (DSM 5366T) on some physiological studies, cellular fatty acids composition, RiboPrint analysis, length of lipase gene and protein profile. PMID:17692114

  11. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov.

    PubMed

    Coorevits, An; Dinsdale, Anna E; Halket, Gillian; Lebbe, Liesbeth; De Vos, Paul; Van Landschoot, Anita; Logan, Niall A

    2012-07-01

    Sixty-two strains of thermophilic aerobic endospore-forming bacteria were subjected to polyphasic taxonomic study including 16S rRNA gene sequence analysis, polar lipid and fatty acid analysis, phenotypic characterization, and DNA-DNA hybridization experiments. Distinct clusters of the species Geobacillus stearothermophilus, Geobacillus thermodenitrificans, Geobacillus toebii and Geobacillus thermoglucosidasius were formed, allowing their descriptions to be emended, and the distinctiveness of the poorly represented species Geobacillus jurassicus, Geobacillus subterraneus and Geobacillus caldoxylosilyticus was confirmed. It is proposed that the name Geobacillus thermoglucosidasius be corrected to Geobacillus thermoglucosidans nom. corrig. Bacillus thermantarcticus clustered between Geobacillus species on the basis of 16S rRNA gene sequence analysis, and its transfer to the genus Geobacillus as Geobacillus thermantarcticus comb. nov. (type strain LMG 23032(T)=DSM 9572(T)=strain M1(T)=R-35644(T)) is proposed. The above-mentioned species, together with Geobacillus thermoleovorans and Geobacillus thermocatenulatus, form a monophyletic cluster representing the genus Geobacillus. The distinctiveness of 'Geobacillus caldoproteolyticus' was confirmed and it is proposed that it be accommodated, along with Geobacillus tepidamans, in the genus Anoxybacillus as Anoxybacillus caldiproteolyticus sp. nov. (type strain DSM 15730(T)=ATCC BAA-818(T)=LMG 26209(T)=R-35652(T)) and Anoxybacillus tepidamans comb. nov. (type strain LMG 26208(T)=ATCC BAA-942(T)=DSM 16325(T)=R-35643(T)), respectively. The type strain of Geobacillus debilis was not closely related to any members of the genera Anoxybacillus and Geobacillus, and it is proposed that this species be placed in the new genus Caldibacillus as Caldibacillus debilis gen. nov. comb. nov. The type strain of the type species, Caldibacillus debilis, is LMG 23386(T) (=DSM 16016(T)=NCIMB 13995(T)=Tf(T)=R-35653(T)). PMID:21856988

  12. Genome shuffling enhances lipase production of thermophilic Geobacillus sp.

    PubMed

    Chalopagorn, Pornchanok; Charoenpanich, Jittima; Choowongkomon, Kiattawee

    2014-10-01

    Thermostable lipases are potential enzymes for biocatalytic application. In this study, the lipase production of Geobacillus sp. CF03 (WT) was improved by genome shuffling. After two rounds of genome shuffling, one fusant strain (FB1) achieved increase lipase activity from the populations generated by ultraviolet irradiation and ethyl methylsulfonate (EMS) mutagenesis. The growth rate and lipase production of FB1 increased highest by 150 and 238%, respectively, in comparison to the wild type. The fusant enzyme had a significant change in substrate specificity but still prefers the long-chain length substrates. It had an optimum activity at 60C, pH at 7.0-8.0, with p-nitrophenyl palmitate (C16) as a substrate and retained about 50% of their activity after 15min at 70C, pH 8.0. Furthermore, the fusant lipase showed the preference of sesame oil, waste palm oil, and canola oil. Therefore, the genome shuffling strategy has been successful to strain improvement and selecting strain with multiple desirable characteristics. PMID:25119547

  13. Geobacillus sp., a thermophilic soil bacterium producing volatile antibiotics.

    PubMed

    Ren, Yuhao; Strobel, Gary; Sears, Joe; Park, Melina

    2010-07-01

    Geobacillus, a bacterial genus, is represented by over 25 species of Gram-positive isolates from various man-made and natural thermophilic areas around the world. An isolate of this genus (M-7) has been acquired from a thermal area near Yellowstone National Park, MT and partially characterized. The cells of this organism are globose (ca. 0.5 mu diameter), and they are covered in a matrix capsule which gives rise to elongate multicelled bacilliform structures (ranging from 3 to 12 mum) as seen by light and atomic force microscopy, respectively. The organism produces unique petal-shaped colonies (undulating margins) on nutrient agar, and it has an optimum pH of 7.0 and an optimum temperature range of 55-65 degrees C. The partial 16S rRNA sequence of this organism has 97% similarity with Geobacillus stearothermophilus, one of its closest relatives genetically. However, uniquely among all members of this genus, Geobacillus sp. (M-7) produces volatile organic substances (VOCs) that possess potent antibiotic activities. Some of the more notable components of the VOCs are benzaldehyde, acetic acid, butanal, 3-methyl-butanoic acid, 2-methyl-butanoic acid, propanoic acid, 2-methyl-, and benzeneacetaldehyde. An exposure of test organisms such as Aspergillus fumigatus, Botrytis cinerea, Verticillium dahliae, and Geotrichum candidum produced total inhibition of growth on a 48-h exposure to Geobacillus sp.(M-7) cells (ca.10(7)) and killing at a 72-h exposure at higher bacterial cell concentrations. A synthetic mixture of those available volatile compounds, at the ratios occurring in Geobacillus sp. (M-7), mimicked the bioactivity of this organism. PMID:20091406

  14. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake Gold Mine in Lead, South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulase...

  15. Permanent draft genome sequence of Geobacillus thermocatenulatus strain GS-1.

    PubMed

    Zheng, Beiwen; Zhang, Fan; Chai, Lujun; Yu, Gaoming; Shu, Fuchang; Wang, Zhengliang; Su, Sanbao; Xiang, Tingsheng; Zhang, Zhongzhi; Hou, DuJie; She, Yuehui

    2014-10-01

    Geobacillus thermocatenulatus strain GS-1 is a thermophilic bacillus having a growth optimum at 60C, capable of degrading alkanes. It was isolated from the formation water of a high-temperature deep oil reservoir in Qinghai oilfield, China. Here, we report the draft genome sequence with an estimated assembly size of 3.5Mb. A total of 3371 protein-coding sequences, including monooxygenase, alcohol dehydrogenase, aldehyde dehydrogenase, fatty acid-CoA ligase, acyl-CoA dehydrogenase, enoyl-CoA hydrogenase, hydroxyacyl-CoA dehydrogenase and thiolase, were detected in the genome, which are involved in the alkane degradation pathway. Our results may provide insights into the genetic basis of the adaptation of this strain to high-temperature oilfield ecosystems. PMID:25280889

  16. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents.

    PubMed

    Maugeri, Teresa L; Gugliandolo, Concetta; Caccamo, Daniela; Stackebrandt, Erko

    2002-10-01

    During a polyphasic taxonomic analysis performed on isolates from shallow marine hydrothermal vents of Eolian Islands (Italy), three thermophilic, halotolerant bacilli, designated as strain 1bw, strain 5-2 and strain 10-1, could not be affiliated to any described species. Physiological and biochemical characteristics, membrane lipids composition, mol % G+C content, and phylogenetic relationships determined on the basis of the 16S rRNA gene sequence analysis, placed these strains within the genus Geobacillus. The three strains were only moderately related to species of Geobacillus and their relatives, members of Saccharococcus. Determination of the relatedness among each other at a higher taxonomic level by DNA-DNA reassociation experiments demonstrated the three isolates to represent three different novel Geobacillus genomospecies. The taxonomic novelty of these three marine strains was substantiated by their physiological properties and by fatty acid patterns that did not match closely those of any Geobacillus type strain. These three novel strains could be of interest to biotechnology because of their ability to produce exopolysaccharides and to adhere on polystirene, characteristics undescribed so far for other Geobacillus species. They are also able to utilise hydrocarbons such as gas oil, kerosene and mineral lubricating oil. Strain 5-2 is tolerant to zinc. PMID:12421083

  17. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37 kDa) exhibited high specific activity of 461.0 U/ mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. Zn2+ and Ca2+ ions i...

  18. Draft Genome Sequences of Three Strains of Geobacillus stearothermophilus Isolated from a Milk Powder Manufacturing Plant

    PubMed Central

    Burgess, Sara A.; Cox, Murray P.; Flint, Steve H.; Lindsay, Denise

    2015-01-01

    Three strains of Geobacillus stearothermophilus (designated A1, P3, and D1) were isolated from a New Zealand milk powder manufacturing plant. Here, we describe their draft genome sequences. This information provided the first genomic insights into the nature of G.stearothermophilus strains present in the milk powder manufacturing environment. PMID:26472822

  19. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp.

    PubMed

    Jiang, Tao; Cai, Menghao; Huang, Mengmeng; He, Hao; Lu, Jian; Zhou, Xiangshan; Zhang, Yuanxing

    2015-10-01

    A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis. PMID:26073094

  20. Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies

    PubMed Central

    Brumm, Phillip J.; De Maayer, Pieter; Mead, David A.; Cowan, Don A.

    2015-01-01

    In this work we report the whole genome sequences of six new Geobacillus xylanolytic strains along with the genomic analysis of their capability to degrade carbohydrates. The six sequenced Geobacillus strains described here have a range of GC contents from 43.9% to 52.5% and clade with named Geobacillus species throughout the entire genus. We have identified a ~200 kb unique super-cluster in all six strains, containing five to eight distinct carbohydrate degradation clusters in a single genomic region, a feature not seen in other genera. The Geobacillus strains rely on a small number of secreted enzymes located within distinct clusters for carbohydrate utilization, in contrast to most biomass-degrading organisms which contain numerous secreted enzymes located randomly throughout the genomes. All six strains are able to utilize fructose, arabinose, xylose, mannitol, gluconate, xylan, and α-1,6-glucosides. The gene clusters for utilization of these seven substrates have identical organization and the individual proteins have a high percent identity to their homologs. The strains show significant differences in their ability to utilize inositol, sucrose, lactose, α-mannosides, α-1,4-glucosides and arabinan. PMID:26029180

  1. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain

    PubMed Central

    2012-01-01

    Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55C, 7.7?g/L of acetoin and 14.5?g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatographymass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. ?-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic fermentation also offers great prospect for improving its yields and efficiencies. This remains a core aim for future work. PMID:23217110

  2. Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.

    PubMed

    Wissuwa, Juliane; Stokke, Runar; Fedy, Anita-Elin; Lian, Kjersti; Smals, Arne Oskar; Steen, Ida Helene

    2016-01-01

    Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G?+?C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential. PMID:26913091

  3. Draft Genome Sequence of Geobacillus sp. Isolate T6, a Thermophilic Bacterium Collected from a Thermal Spring in Argentina

    PubMed Central

    Ortiz, Elio M.; Berretta, Marcelo F.; Benintende, Graciela B.; Amadio, Ariel F.; Zandomeni, Rubén O.

    2015-01-01

    Geobacillus sp. isolate T6 was collected from a thermal spring in Salta, Argentina. The draft genome sequence (3,767,773 bp) of this isolate is represented by one major scaffold of 3,46 Mbp, a second one of 207 kbp, and 20 scaffolds of <13 kbp. The assembled sequences revealed 3,919 protein-coding genes. PMID:26184933

  4. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1.

    PubMed

    Bhalla, Aditya; Bischoff, Kenneth M; Uppugundla, Nirmal; Balan, Venkatesh; Sani, Rajesh K

    2014-08-01

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37kDa) exhibited high specific activity of 461.0U/mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. The endo-xylanase was found to be highly thermostable at 50 and 60°C, retaining 82% and 50% of its original activity, respectively, after 60h. High xylan conversions (92%) were obtained with oat-spelt xylan hydrolysis. Higher glucan and xylan conversions were obtained on AFEX-treated corn stover with an enzyme cocktail containing WSUCF1 endo-xylanase (71% and 47%) as compared to enzyme cocktail containing commercial fungal endo-xylanase (64% and 41%). High specific activity, active at high pH's, wide substrate specificity, and higher hydrolytic activity on recalcitrant lignocellulose, make this endo-xylanase a suitable candidate for biofuel and bioprocess industries. PMID:24725385

  5. Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs.

    PubMed

    Sifour, Mohamed; Zaghloul, Taha I; Saeed, Hesham M; Berekaa, Mahmoud M; Abdel-Fattah, Yasser R

    2010-09-30

    Statistically based experimental designs were applied to optimize the cultural conditions for the production of a glycerol-inducible lipase from the thermophilic Geobacillus stearothermophilus strain-5. The effect of nineteen culture conditions on enzyme production was evaluated using Plackett-Burman factorial design. Tween 80, K(2)HPO(4), glycerol and glucose were the most significant factors in improving enzyme production. The selected parameters were then further investigated using central composite design to define the optimal process conditions. Maximal enzyme activity (578 U/ml) was reached under the following conditions: glycerol, 2.24% (v/v); Tween 80, 0.76% (v/v); glucose, 0.76% (w/v) and K(2)HPO(4), 0.38% (w/v) which is about five folds the activity in basal medium. A verification experiment was carried out to examine model validation and revealed more than 98% validity. PMID:20412872

  6. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.

    PubMed

    Cordova, Lauren T; Antoniewicz, Maciek R

    2016-01-01

    Thermophiles are increasingly used as versatile hosts in the biotechnology industry. One of the key advantages of thermophiles is the potential to achieve high rates of feedstock conversion at elevated temperatures. The recently isolated Geobacillus strain LC300 grows extremely fast on xylose, with a doubling time of less than 30min. In the accompanying paper, the genome of Geobacillus LC300 was sequenced and annotated. In this work, we have experimentally validated the metabolic network model using parallel (13)C-labeling experiments and applied (13)C-metabolic flux analysis to quantify precise metabolic fluxes. Specifically, the complete set of singly labeled xylose tracers, [1-(13)C], [2-(13)C], [3-(13)C], [4-(13)C], and [5-(13)C]xylose, was used for the first time. Isotopic labeling of biomass amino acids was measured by gas chromatography mass spectrometry (GC-MS). Isotopic labeling of carbon dioxide in the off-gas was also measured by an on-line mass spectrometer. The (13)C-labeling data was then rigorously integrated for flux elucidation using the COMPLETE-MFA approach. The results provided important new insights into the metabolism of Geobacillus LC300, its efficient xylose utilization pathways, and the balance between carbon, redox and energy fluxes. The pentose phosphate pathway, glycolysis and TCA cycle were found to be highly active in Geobacillus LC300. The oxidative pentose phosphate pathway was also active and contributed significantly to NADPH production. No transhydrogenase activity was detected. Results from this work provide a solid foundation for future studies of this strain and its metabolic engineering and biotechnological applications. PMID:26100076

  7. Heterologous expression of the alcohol dehydrogenase (adhI) gene from Geobacillus thermoglucosidasius strain M10EXG.

    PubMed

    Jeon, Young Jae; Fong, Jiunn C N; Riyanti, Eny I; Neilan, Brett A; Rogers, Peter L; Svenson, Charles J

    2008-06-01

    A thermostable alcohol dehydrogenase (ADH-I) isolated from the potential thermophilic ethanologen Geobacillus thermoglucosidasius strain M10EXG has been characterised. Inverse PCR showed that the gene (adhI) was localised with 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3 hexuloisomerase (PHI) on its genome. The deduced peptide sequence of the 1020-bp M10EXG adhI, which corresponds to 340 amino acids, shows 96% and 89% similarity to ADH-hT and ADH-T from Geobacillus stearothermophilus strains LLD-R and NCA 1503, respectively. Over-expression of M10EXG ADH-I in Escherichia coli DH5alpha (pNF303) was confirmed using an ADH activity assay and SDS-PAGE analysis. The specific ADH activity in the extract from this recombinant strain was 9.7(+/-0.3) U mg(-1) protein, compared to 0.1(+/-0.01) U mg(-1) protein in the control strain. The recombinant E. coli showed enzymatic activity towards ethanol, 1-butanol, 1-pentanol, 1-heptanol, 1-hexanol, 1-octanol and 2-propanol, but not methanol. In silico analysis, including phylogenetic reconstruction and protein modeling, confirmed that the thermostable enzyme from G. thermoglucosidasius is likely to belong to the NAD-Zn-dependent family of alcohol dehydrogenases. PMID:18436321

  8. Draft Genome Sequences of Geobacillus stearothermophilus Strains 22 and 53, Isolated from the Garga Hot Spring in the Barguzin River Valley of the Russian Federation.

    PubMed

    Rozanov, Aleksey S; Logacheva, Maria D; Peltek, Sergey E

    2014-01-01

    Geobacillus stearothermophilus strains 22 and 53 were isolated from sediment samples isolated from the Garga hot spring (72C) located in the valley of the river Barguzin (the Baikal region, Russian Federation) (5419'3.72?N, 11059'38.4?E). PMID:25414504

  9. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    PubMed

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592aa protein with a predicted molecular mass of 69.8kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10nmol of dNTP into acid insoluble material in 30min at 65C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA. PMID:26289299

  10. Highly active metallocarboxypeptidase from newly isolated Geobacillus strain SBS-4S: cloning and characterization.

    PubMed

    Tayyab, Muhammad; Rashid, Naeem; Angkawidjaja, Clement; Kanaya, Shigenori; Akhtar, Muhammad

    2011-03-01

    The carboxypeptidase gene from Geobacillus SBS-4S was cloned and sequenced. The sequence analysis displayed the gene consists of an open reading frame of 1503 nucleotides encoding a protein of 500 amino acids (CBP(SBS)). The amino acid sequence comparison revealed that CBP(SBS) exhibited a highest homology of 41.6% (identity) with carboxypeptidase Taq from Thermus aquaticus among the characterized proteases. CBP(SBS) contained an active site motif (265)HEXXH(269) which is conserved in family-M32 of carboxypeptidases. The gene was expressed with His-Tag utilizing Escherichia coli expression system and purified to apparent homogeneity. The purified CBP(SBS) showed highest activity at pH 7.5 and 70C. The enzyme activity was metal ion dependent. Among metal ions highest activity was found in the presence of Co(2+). Thermostability studies of CBP(SBS) by circular dichroism spectroscopy demonstrated the melting temperature of the protein around 77C. The enzyme exhibited K(m) and V(max) values of 14 mM and 10526 ?mol min(-1) mg(-1) when carbobenzoxy-alanine-arginine was used as substrate. k(cat) and k(cat)/K(m) valves were 10175 s(-1) and 726 mM(-1) s(-1). To our knowledge this is the highest ever reported enzyme activity of a metallocarboxypeptidase and the first characterization of a metallocarboxypeptidase from genus Geobacillus. PMID:21126910

  11. Functional and Structural Characterization of Thermostable d-Amino Acid Aminotransferases from Geobacillus spp.

    PubMed Central

    Lee, Seung-Goo; Hong, Seung-Pyo; Song, Jae Jun; Kim, Su-Jin; Kwak, Mi-Sun; Sung, Moon-Hee

    2006-01-01

    d-Amino acid aminotransferases (d-AATs) from Geobacillus toebii SK1 and Geobacillus sp. strain KLS1 were cloned and characterized from a genetic, catalytic, and structural aspect. Although the enzymes were highly thermostable, their catalytic capability was approximately one-third of that of highly active Bacilli enzymes, with respective turnover rates of 47 and 55 s?1 at 50C. The Geobacillus enzymes were unique and shared limited sequence identities of below 45% with d-AATs from mesophilic and thermophilic Bacillus spp., except for a hypothetical protein with a 72% identity from the G. kaustophilus genome. Structural alignments showed that most key residues were conserved in the Geobacillus enzymes, although the conservative residues just before the catalytic lysine were distinctively changed: the 140-LRcD-143 sequence in Bacillus d-AATs was 144-EYcY-147 in the Geobacillus d-AATs. When the EYcY sequence from the SK1 enzyme was mutated into LRcD, a 68% increase in catalytic activity was observed, while the binding affinity toward ?-ketoglutarate decreased by half. The mutant was very close to the wild-type in thermal stability, indicating that the mutations did not disturb the overall structure of the enzyme. Homology modeling also suggested that the two tyrosine residues in the EYcY sequence from the Geobacillus d-AATs had a ?/? interaction that was replaceable with the salt bridge interaction between the arginine and aspartate residues in the LRcD sequence. PMID:16461714

  12. Draft Genome Sequence of Geobacillus icigianus Strain G1w1T Isolated from Hot Springs in the Valley of Geysers, Kamchatka (Russian Federation).

    PubMed

    Bryanskaya, Alla V; Rozanov, Aleksey S; Logacheva, Maria D; Kotenko, Anastasia V; Peltek, Sergey E

    2014-01-01

    The Geobacillus icigianus G1w1(T) strain was isolated from sludge samples of unnamed vaporing hydrothermal (97°С) outlets situated in a geyser in the Troinoy region (Valley of Geysers, Kronotsky Nature Reserve, Kamchatka, Russian Federation; 54°25'51.40″N, 160°7'41.40″E). The sequenced and annotated genome is 3,457,810 bp and encodes 3,342 genes. PMID:25342695

  13. Draft Genome Sequence of Geobacillus icigianus Strain G1w1T Isolated from Hot Springs in the Valley of Geysers, Kamchatka (Russian Federation)

    PubMed Central

    Bryanskaya, Alla V.; Logacheva, Maria D.; Kotenko, Anastasia V.; Peltek, Sergey E.

    2014-01-01

    The Geobacillus icigianus G1w1T strain was isolated from sludge samples of unnamed vaporing hydrothermal (97°С) outlets situated in a geyser in the Troinoy region (Valley of Geysers, Kronotsky Nature Reserve, Kamchatka, Russian Federation; 54°25′51.40″N, 160°7′41.40″E). The sequenced and annotated genome is 3,457,810 bp and encodes 3,342 genes. PMID:25342695

  14. Preconditioning with Cations Increases the Attachment of Anoxybacillus flavithermus and Geobacillus Species to Stainless Steel

    PubMed Central

    Flint, Steve; Palmer, Jon; Brooks, John; Lindsay, Denise

    2013-01-01

    Preconditioning of Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 with cations prior to attachment often significantly increased (P ≤ 0.05) the number of viable cells that attached to stainless steel (by up to 1.5 log CFU/cm2) compared with unconditioned bacteria. It is proposed that the transition of A. flavithermus and Geobacillus spp. from milk formulations to stainless steel product contact surfaces in milk powder manufacturing plants is mediated predominantly by bacterial physiological factors (e.g., surface-exposed adhesins) rather than the concentrations of cations in milk formulations surrounding bacteria. PMID:23645192

  15. A putative Type IIS restriction endonuclease GeoICI from Geobacillus sp. - A robust, thermostable alternative to mezophilic prototype BbvI.

    PubMed

    Zebrowska, Joanna; Zolnierkiewicz, Olga; Skowron, Marta A; Zylicz-Stachula, Agnieszka; Jezewska-Frackowiak, Joanna; Skowron, Piotr M

    2016-03-01

    Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected. PMID:26949085

  16. Thermophilic Geobacillus galactosidasius sp. nov. loaded γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd.

    PubMed

    Özdemir, Sadin; Kılınç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida

    2016-02-01

    Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. PMID:26679049

  17. Characterisation of a new thermoalkaliphilic bacterium for the production of high-quality hemp fibres, Geobacillus thermoglucosidasius strain PB94A.

    PubMed

    Valladares Jurez, A G; Dreyer, J; Gpel, P K; Koschke, N; Frank, D; Mrkl, H; Mller, R

    2009-06-01

    Novel thermophilic and alkaliphilic bacteria for the processing of bast fibres were isolated using hemp pectin as substrate. The strain PB94A, which showed the highest growth rate (micro = 0.5/h) was identified as Geobacillus thermoglucosidasius (DSM 21625). The strain grew optimally at 60 degrees C and pH 8.5. During growth on citrus pectin, the strain produced pectinolytic lyases, which were excreted into the medium. In contrast to the commercially available pectinase Bioprep 3000 L, the enzymes from G. thermoglucosidasius PB94A converted pectin isolated from hemp fibres. In addition to hemp pectin, the culture supernatant also degraded citrus, sugar beet and apple pectin and polygalacturonic acid. When hemp fibres were incubated with the cell-free fermentation broth of G. thermoglucosidasius PB94A, the fineness of the fibres increased. The strain did not produce any cellulases, which is important in order to avoid damaging the fibres during incubation. Therefore, these bacteria or their enzymes can be used to produce fine high-quality hemp fibres. PMID:19333594

  18. Highly thermostable GH39 ß-xylosidase from a Geobacillus sp. strain WSUCF1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Complete enzymatic hydrolysis of xylan to xylose requires the action of endoxylanase and ß-xylosidase. ß-xylosidases play an important part in hydrolyzing xylo-oligosaccharides to xylose. Thermostable ß-xylosidases have been a focus of attention as industrially important enzymes due to th...

  19. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    SciTech Connect

    Tang, Yinjie J.; Sapra, Rajat; Joyner, Dominique; Hazen, Terry C.; Myers, Samuel; Reichmuth, David; Blanch, Harvey; Keasling, Jay D.

    2009-01-20

    A recently discovered thermophilic bacterium, Geobacillus thermoglucosidasius M10EXG, ferments a range of C5 (e.g., xylose) and C6 sugars (e.g., glucose) and istolerant to high ethanol concentrations (10percent, v/v). We have investigated the central metabolism of this bacterium using both in vitro enzyme assays and 13C-based flux analysis to provide insights into the physiological properties of this extremophile and explore its metabolism for bio-ethanol or other bioprocess applications. Our findings show that glucose metabolism in G. thermoglucosidasius M10EXG proceeds via glycolysis, the pentose phosphate pathway, and the TCA cycle; the Entner?Doudoroff pathway and transhydrogenase activity were not detected. Anaplerotic reactions (including the glyoxylate shunt, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase) were active, but fluxes through those pathways could not be accuratelydetermined using amino acid labeling. When growth conditions were switched from aerobic to micro-aerobic conditions, fluxes (based on a normalized glucose uptake rate of 100 units (g DCW)-1 h-1) through the TCA cycle and oxidative pentose phosphate pathway were reduced from 64+-3 to 25+-2 and from 30+-2 to 19+-2, respectively. The carbon flux under micro-aerobic growth was directed formate. Under fully anerobic conditions, G. thermoglucosidasius M10EXG used a mixed acid fermentation process and exhibited a maximum ethanol yield of 0.38+-0.07 mol mol-1 glucose. In silico flux balance modeling demonstrates that lactate and acetate production from G. thermoglucosidasius M10EXG reduces the maximum ethanol yieldby approximately threefold, thus indicating that both pathways should be modified to maximize ethanol production.

  20. Cadmium Ion Biosorption by the Thermophilic Bacteria Geobacillus stearothermophilus and G. thermocatenulatus

    PubMed Central

    Hetzer, Adrian; Daughney, Christopher J.; Morgan, Hugh W.

    2006-01-01

    This study reports surface complexation models (SCMs) for quantifying metal ion adsorption by thermophilic microorganisms. In initial cadmium ion toxicity tests, members of the genus Geobacillus displayed the highest tolerance to CdCl2 (as high as 400 to 3,200 ?M). The thermophilic, gram-positive bacteria Geobacillus stearothermophilus and G. thermocatenulatus were selected for further electrophoretic mobility, potentiometric titration, and Cd2+ adsorption experiments to characterize Cd2+ complexation by functional groups within and on the cell wall. Distinct one-site SCMs described the extent of cadmium ion adsorption by both studied Geobacillus sp. strains over a range of pH values and metal/bacteria concentration ratios. The results indicate that a functional group with a deprotonation constant pK value of approximately 3.8 accounts for 66% and 80% of all titratable sites for G. thermocatenulatus and G. stearothermophilus, respectively, and is dominant in Cd2+ adsorption reactions. The results suggest a different type of functional group may be involved in cadmium biosorption for both thermophilic strains investigated here, compared to previous reports for mesophilic bacteria. PMID:16751511

  1. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii.

    PubMed

    Jones, Katy J; Moore, Karen; Sambles, Christine; Love, John; Studholme, David J; Aves, Stephen J

    2016-01-01

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B.braunii, race B, strain Guadeloupe. PMID:26769927

  2. Draft Genome Sequences of Achromobacter piechaudii GCS2, Agrobacterium sp. Strain SUL3, Microbacterium sp. Strain GCS4, Shinella sp. Strain GWS1, and Shinella sp. Strain SUS2 Isolated from Consortium with the Hydrocarbon-Producing Alga Botryococcus braunii

    PubMed Central

    Jones, Katy J.; Moore, Karen; Love, John

    2016-01-01

    A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe. PMID:26769927

  3. Calcium Carbonate Formation by Synechococcus sp. Strain PCC 8806 and Synechococcus sp. Strain PCC 8807

    SciTech Connect

    Lee, Brady D.; William A. Apel; Michelle R. Walton

    2006-12-01

    Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of CO2 produced during the burning of coal for power generation. Microcosm experiments were performed in which Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and bicarbonate concentrations of 0.5, 1.25 and 2.5 mM. Disappearance of soluble calcium was used as an indicator of CaCO3 formation; results from metabolically active microcosms were compared to controls with no cells or no carbonate added. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment with approximately 18.6 mg of calcium in the solid phase. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of calcium was removed in the solid phase. The ability of the cyanobacteria to create an alkaline growth environment appeared to be the primary factor responsible for CaCO3 precipitation in these experiments. Removal of inorganic carbon by fixation into biomass was insignificant compared to the mass of inorganic carbon removed by incorporation into the growing CaCO3 solid.

  4. Influence of Cations on Growth of Thermophilic Geobacillus spp. and Anoxybacillus flavithermus in Planktonic Culture

    PubMed Central

    Palmer, Jon; Brooks, John; Smolinski, Edward; Lindsay, Denise; Flint, Steve

    2012-01-01

    Free ions of Na+, K+, Ca2+, and Mg2+ influenced the optical density of planktonic cultures of thermophilic bacilli. Anoxybacillus flavithermus E16 and Geobacillus sp. strain F75 (milk powder manufacturing plant isolates) and A. flavithermus DSM 2641 and G. thermoleovorans DSM 5366 were studied. Ca2+ and Mg2+ were associated with increases in optical density more so than Na+ and K+. Overall, it appeared that Ca2+ and/or Mg2+ was required for the production of protein in thermophilic bacilli, as shown by results obtained with A. flavithermus E16, which was selected for further study. PMID:22287005

  5. Haloalkylphosphorus hydrolases purified from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1.

    PubMed

    Abe, Katsumasa; Yoshida, Satoshi; Suzuki, Yuto; Mori, Junichi; Doi, Yuka; Takahashi, Shouji; Kera, Yoshio

    2014-09-01

    Phosphotriesterases catalyze the first step of organophosphorus triester degradation. The bacterial phosphotriesterases purified and characterized to date hydrolyze mainly aryl dialkyl phosphates, such as parathion, paraoxon, and chlorpyrifos. In this study, we purified and cloned two novel phosphotriesterases from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1 that hydrolyze tri(haloalkyl)phosphates, and we named these enzymes haloalkylphosphorus hydrolases (TDK-HAD and TCM-HAD, respectively). Both HADs are monomeric proteins with molecular masses of 59.6 (TDK-HAD) and 58.4 kDa (TCM-HAD). The enzyme activities were affected by the addition of divalent cations, and inductively coupled plasma mass spectrometry analysis suggested that zinc is a native cofactor for HADs. These enzymes hydrolyzed not only chlorinated organophosphates but also a brominated organophosphate [tris(2,3-dibromopropyl) phosphate], as well as triaryl phosphates (tricresyl and triphenyl phosphates). Paraoxon-methyl and paraoxon were efficiently degraded by TCM-HAD, whereas TDK-HAD showed weak activity toward these substrates. Dichlorvos was degraded only by TCM-HAD. The enzymes displayed weak or no activity against trialkyl phosphates and organophosphorothioates. The TCM-HAD and TDK-HAD genes were cloned and found to encode proteins of 583 and 574 amino acid residues, respectively. The primary structures of TCM-HAD and TDK-HAD were very similar, and the enzymes also shared sequence similarity with fenitrothion hydrolase (FedA) of Burkholderia sp. strain NF100 and organophosphorus hydrolase (OphB) of Burkholderia sp. strain JBA3. However, the substrate specificities and quaternary structures of the HADs were largely different from those of FedA and OphB. These results show that HADs from sphingomonads are novel members of the bacterial phosphotriesterase family. PMID:25038092

  6. Haloalkylphosphorus Hydrolases Purified from Sphingomonas sp. Strain TDK1 and Sphingobium sp. Strain TCM1

    PubMed Central

    Yoshida, Satoshi; Suzuki, Yuto; Mori, Junichi; Doi, Yuka; Takahashi, Shouji; Kera, Yoshio

    2014-01-01

    Phosphotriesterases catalyze the first step of organophosphorus triester degradation. The bacterial phosphotriesterases purified and characterized to date hydrolyze mainly aryl dialkyl phosphates, such as parathion, paraoxon, and chlorpyrifos. In this study, we purified and cloned two novel phosphotriesterases from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1 that hydrolyze tri(haloalkyl)phosphates, and we named these enzymes haloalkylphosphorus hydrolases (TDK-HAD and TCM-HAD, respectively). Both HADs are monomeric proteins with molecular masses of 59.6 (TDK-HAD) and 58.4 kDa (TCM-HAD). The enzyme activities were affected by the addition of divalent cations, and inductively coupled plasma mass spectrometry analysis suggested that zinc is a native cofactor for HADs. These enzymes hydrolyzed not only chlorinated organophosphates but also a brominated organophosphate [tris(2,3-dibromopropyl) phosphate], as well as triaryl phosphates (tricresyl and triphenyl phosphates). Paraoxon-methyl and paraoxon were efficiently degraded by TCM-HAD, whereas TDK-HAD showed weak activity toward these substrates. Dichlorvos was degraded only by TCM-HAD. The enzymes displayed weak or no activity against trialkyl phosphates and organophosphorothioates. The TCM-HAD and TDK-HAD genes were cloned and found to encode proteins of 583 and 574 amino acid residues, respectively. The primary structures of TCM-HAD and TDK-HAD were very similar, and the enzymes also shared sequence similarity with fenitrothion hydrolase (FedA) of Burkholderia sp. strain NF100 and organophosphorus hydrolase (OphB) of Burkholderia sp. strain JBA3. However, the substrate specificities and quaternary structures of the HADs were largely different from those of FedA and OphB. These results show that HADs from sphingomonads are novel members of the bacterial phosphotriesterase family. PMID:25038092

  7. Isolation and Characterization of a Geobacillus thermoleovorans Strain from an Ultra-Deep South African Gold Mine

    SciTech Connect

    Deflaun, Mary F.; Fredrickson, Jim K.; Dong, Hailiang; Pfiffner, Susan M.; Onstott, T. C.; Balkwill, David L.; Streger, Sheryl H.; Stackebrandt, E.; Knoessen, S.; van Heerden, E.

    2007-03-08

    A thermophilic, facultative bacterium was isolated from a depth of 3.1 km below ground surface in an ultradeep gold mine in South Africa. This isolate, designated GE-7, was cultivated from pH 8.0, 600C fissure water. GE-7 grows optimally at 650C, pH 6.5 on a wide range of carbon substrates including GE-7 is a long rod-shaped bacterium (4-6 µm long x 0.5 wide) with terminal endospores and flagella, in addition to O2, can also utilize nitrate as an electron acceptor. Phylogenetic analysis of GE-7 16S rDNA sequence revealed high sequence similarity with G. thermoleovorans DSM 5366T (99.6%), however, certain phenotypic characteristics of GE-7 were distinct from this and other strains of G. thermoleovorans previously described.

  8. Methylomonas sp. strain 761M: an unusual Type I methanotroph

    SciTech Connect

    Zhao, S.J.; Hanson, R.S.

    1985-01-01

    Methylomonas sp. strain 761M and strains derived from it are described as unusual type I methanotrophs that require multicarbon compounds for rapid growth. Alpha-ketoglutarate dehydrogenase is present in these strains, and they contain a functional tricarboxylic acid cycle. Methylomonas sp. strain 761M appears to be well-adapted to studies of energy and growth yields on C/sub 1/ substrates because the assimilation of C/sub 1/ units can be substantially reduced. 16 references, 2 figures, 4 tables.

  9. Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme

    PubMed Central

    Tamagnini, P.; Troshina, O.; Oxelfelt, F.; Salema, R.; Lindblad, P.

    1997-01-01

    The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications. PMID:16535596

  10. Genome sequencing and annotation of Serratia sp. strain TEL.

    PubMed

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  11. Genome sequencing and annotation of Serratia sp. strain TEL

    PubMed Central

    Lephoto, Tiisetso E.; Gray, Vincent M.

    2015-01-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  12. Draft Genome Sequence of Rhodococcus sp. Strain 311R

    PubMed Central

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jareck, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria. PMID:25999565

  13. Azospirillum sp. strain B510 enhances rice growth and yield.

    PubMed

    Isawa, Tsuyoshi; Yasuda, Michiko; Awazaki, Hirotoshi; Minamisawa, Kiwamu; Shinozaki, Satoshi; Nakashita, Hideo

    2010-01-01

    Inoculation experiments with the endophytic bacterium Azospirillum sp. strain B510, an isolate from surface-sterilized stems of field-grown rice, were conducted in pots in a greenhouse, and in paddy fields in Hokkaido, Japan. B510 significantly enhanced the growth of newly generated leaves and shoot biomass under greenhouse conditions. When rice seedlings were treated with 110(8) CFU ml(-1), then transplanted to paddy fields, tiller numbers and seed yield significantly increased. Azospirillum sp. strain B510 is a promising bacterial inoculant for plant growth promotion and agricultural practices. PMID:21576855

  14. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a.

    PubMed Central

    Hackert, M L; Carroll, D W; Davidson, L; Kim, S O; Momany, C; Vaaler, G L; Zhang, L

    1994-01-01

    A gene encoding biodegradative ornithine decarboxylase from Lactobacillus sp. strain 30a was isolated from a genomic DNA library and sequenced. Primer extension analysis revealed two transcription initiation sites. The deduced amino acid sequence is compared with the amino acid sequences of five previously reported bacterial decarboxylases, and conserved pyridoxal phosphate motif residues are identified. PMID:7961515

  15. Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2

    PubMed Central

    Xu, Hui; Han, Dongmei; Xu, Zhaohui

    2015-01-01

    The ability of Thermotoga spp. to degrade cellulose is limited due to a lack of exoglucanases. To address this deficiency, cellulase genes Csac_1076 (celA) and Csac_1078 (celB) from Caldicellulosiruptor saccharolyticus were cloned into T. sp. strain RQ2 for heterologous overexpression. Coding regions of Csac_1076 and Csac_1078 were fused to the signal peptide of TM1840 (amyA) and TM0070 (xynB), resulting in three chimeric enzymes, namely, TM1840-Csac_1078, TM0070-Csac_1078, and TM0070-Csac_1076, which were carried by Thermotoga-E. coli shuttle vectors pHX02, pHX04, and pHX07, respectively. All three recombinant enzymes were successfully expressed in E. coli DH5α and T. sp. strain RQ2, rendering the hosts with increased endo- and/or exoglucanase activities. In E. coli, the recombinant enzymes were mainly bound to the bacterial cells, whereas in T. sp. strain RQ2, about half of the enzyme activities were observed in the culture supernatants. However, the cellulase activities were lost in T. sp. strain RQ2 after three consecutive transfers. Nevertheless, this is the first time heterologous genes bigger than 1 kb (up to 5.3 kb in this study) have ever been expressed in Thermotoga, demonstrating the feasibility of using engineered Thermotoga spp. for efficient cellulose utilization. PMID:26273605

  16. Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov.

    PubMed

    Miana-Galbis, David; Pinzn, Dora L; Lorn, J Gaspar; Manresa, Angels; Oliart-Ros, Rosa M

    2010-07-01

    Although Anoxybacillus and Geobacillus, two genera of thermophilic bacteria close to the genus Bacillus, have only been described recently, the number of species in these genera has increased rapidly. Four thermophilic, lipolytic strains (DR01, DR02, DR03 and DR04) isolated from a hot spring in Veracruz (Mexico), which could not be identified phenotypically, were subjected to 16S rRNA gene sequence analysis. Three strains were identified as belonging to the genus Anoxybacillus, but strain DR03 was identified as Geobacillus pallidus. This result led us to perform a phylogenetic analysis of the genera Anoxybacillus and Geobacillus based on 16S rRNA gene sequences from all the type strains of these genera. Phylogenetic trees showed three major clusters, Anoxybacillus-Geobacillus tepidamans, Geobacillus sensu stricto and Geobacillus pallidus, while the 16S rRNA gene sequences of G. pallidus (DR03 and the type strain) showed low similarity to sequences of Anoxybacillus (92.5-95.1 %) and Geobacillus (92.8-94.5 %) species, as well as to Bacillus subtilis (92.2-92.4 %). In addition, G. pallidus could be differentiated from Anoxybacillus and Geobacillus on the basis of DNA G+C content and fatty acid and polar lipid profiles. From these results, it is proposed that Geobacillus pallidus should be classified in a novel genus, for which we propose the name Aeribacillus, as Aeribacillus pallidus gen. nov., comb. nov. The type strain of Aeribacillus pallidus is H12(T) (=ATCC 51176(T) =DSM 3670(T) =LMG 19006(T)). PMID:19700455

  17. Draft genome sequence of Paenibacillus sp. strain A2.

    PubMed

    Zheng, Beiwen; Zhang, Fan; Dong, Hao; Chai, Lujun; Shu, Fuchang; Yi, Shaojin; Wang, Zhengliang; Cui, Qingfeng; Dong, Hanping; Zhang, Zhongzhi; Hou, Dujie; Yang, Jinshui; She, Yuehui

    2016-01-01

    Paenibacillus sp. strain A2 is a Gram-negative rod-shaped bacterium isolated from a mixture of formation water and petroleum in Daqing oilfield, China. This facultative aerobic bacterium was found to have a broad capacity for metabolizing hydrocarbon and organosulfur compounds, which are the main reasons for the interest in sequencing its genome. Here we describe the features of Paenibacillus sp. strain A2, together with the genome sequence and its annotation. The 7,650,246bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 54.2% and contains 7575 protein-coding and 49 RNA genes, including 3 rRNA genes. One putative alkane monooxygenase, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter and four putative sulfate transporters were found in the draft genome. PMID:26819653

  18. Degradation of clodinafop propargyl by Pseudomonas sp. strain B2.

    PubMed

    Singh, Baljinder

    2013-12-01

    Using clodinafop propargyl (CF) as a sole carbon, nitrogen and energy source, a CF-degrading bacterial strain was isolated from crop soil field. This strain was identified as Pseudomonas sp. strain B2 by 16S rRNA gene sequence analysis. 87.14 % CF was degraded out of initial provided 80 mg/L CF. Degradation of CF was accompanied by release of chloride ion. The optimal pH and temperature for the growth of B2 were 7.0 and 30C, respectively in the mineral salts medium supplemented with CF. An actively growing culture of strain B2 degraded CF to clodinafop acid and 4-(4-Chloro-2-fluoro-phenoxy)-phenol within 9 h, as determined by GCMS analysis. A metabolic pathway for the degradation of CF by B2 has been proposed PMID:24121741

  19. Draft Genome of the Arthrobacter sp. Strain Edens01

    PubMed Central

    Couger, M. B.; Hanafy, Radwa A.; Edens, Curtis; Budd, Connie; French, Donald P.; Hoff, Wouter D.; Elshahed, Mostafa S.

    2015-01-01

    We report the draft genome sequence of Arthrobacter sp. strain Edens01, isolated from a leaf surface of a Rosa hybrid plant as part of the Howard Hughes Medical Institute-funded Student Initiated Microbial Discovery (SIMD) project. The genome has a total size of 3,639,179 bp and contig N50 of 454,897 bp. PMID:26679586

  20. Efficient Production of Lumichrome by Microbacterium sp. Strain TPU 3598

    PubMed Central

    Yamamoto, Kazunori

    2015-01-01

    Lumichrome is a photodegradation product of riboflavin and is available as a photosensitizer and fluorescent dye. To develop new efficient methods of lumichrome production, we isolated bacterial strains with high lumichrome productivity from soil. The strain with highest productivity was identified as Microbacterium sp. strain TPU 3598. Since this strain inductively produced lumichrome when cultivated with riboflavin, we developed two different methods, a cultivation method and a resting cell method, for the production of large amounts of lumichrome using the strain. In the cultivation method, 2.4 g (9.9 mmol) of lumichrome was produced from 3.8 g (10.1 mmol) of riboflavin at the 500-ml scale (98% yield). The strain also produced 4.7 g (19.4 mmol) of lumichrome from 7.6 g (20.2 mmol) of riboflavin (96% yield) by addition of riboflavin during cultivation at the 500-ml scale. In the resting cell method, 20 g of cells (wet weight) in 100 ml of potassium phosphate buffer, pH 7.0, produced 2.4 g of lumichrome from 3.8 g of riboflavin (98% yield). Since the lumichrome production by these methods was carried out in suspension, the resulting lumichrome was easily purified from the cultivation medium or reaction mixture by centrifugation and crystallization. Thus, the biochemical methods we describe here are a significant improvement in terms of simplicity and yield over the existing chemical, photolytic, and other biochemical methods of lumichrome production. PMID:26253661

  1. Efficient Production of Lumichrome by Microbacterium sp. Strain TPU 3598.

    PubMed

    Yamamoto, Kazunori; Asano, Yasuhisa

    2015-11-01

    Lumichrome is a photodegradation product of riboflavin and is available as a photosensitizer and fluorescent dye. To develop new efficient methods of lumichrome production, we isolated bacterial strains with high lumichrome productivity from soil. The strain with highest productivity was identified as Microbacterium sp. strain TPU 3598. Since this strain inductively produced lumichrome when cultivated with riboflavin, we developed two different methods, a cultivation method and a resting cell method, for the production of large amounts of lumichrome using the strain. In the cultivation method, 2.4 g (9.9 mmol) of lumichrome was produced from 3.8 g (10.1 mmol) of riboflavin at the 500-ml scale (98% yield). The strain also produced 4.7 g (19.4 mmol) of lumichrome from 7.6 g (20.2 mmol) of riboflavin (96% yield) by addition of riboflavin during cultivation at the 500-ml scale. In the resting cell method, 20 g of cells (wet weight) in 100 ml of potassium phosphate buffer, pH 7.0, produced 2.4 g of lumichrome from 3.8 g of riboflavin (98% yield). Since the lumichrome production by these methods was carried out in suspension, the resulting lumichrome was easily purified from the cultivation medium or reaction mixture by centrifugation and crystallization. Thus, the biochemical methods we describe here are a significant improvement in terms of simplicity and yield over the existing chemical, photolytic, and other biochemical methods of lumichrome production. PMID:26253661

  2. Genome Sequences of the Lignin-Degrading Pseudomonas sp. Strain YS-1p and Rhizobium sp. Strain YS-1r Isolated from Decaying Wood

    PubMed Central

    Prabhakaran, Madhu; Couger, Matthew B.; Jackson, Colin A.; Weirick, Tyler

    2015-01-01

    Pseudomonas sp. strain YS-1p and Rhizobium sp. strain YS-1r were isolated from a lignin-degrading enrichment culture. The isolates degraded lignin-derived monomers, dimers, alkali lignin, and, to a smaller extent (3% to 5%), lignin in switch grass and alfalfa. Genome analysis revealed the presence of a variety of lignin-degrading genes. PMID:25744986

  3. Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania.

    PubMed

    Kumaresan, Deepak; Wischer, Daniela; Hillebrand-Voiculescu, Alexandra M; Murrell, J Colin

    2015-01-01

    Facultative methylotrophs belonging to the genera Gemmobacter and Mesorhizobium were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of Gemmobacter sp. strain LW1 and Mesorhizobium sp. strain IM1. PMID:26586870

  4. Draft Genome Sequences of Facultative Methylotrophs, Gemmobacter sp. Strain LW1 and Mesorhizobium sp. Strain 1M-11, Isolated from Movile Cave, Romania

    PubMed Central

    Wischer, Daniela; Hillebrand-Voiculescu, Alexandra M.

    2015-01-01

    Facultative methylotrophs belonging to the genera Gemmobacter and Mesorhizobium were isolated from microbial mat and cave water samples obtained from the Movile Cave ecosystem. Both bacteria can utilize methylated amines as their sole carbon and nitrogen source. Here, we report the draft genome sequences of Gemmobacter sp. strain LW1 and Mesorhizobium sp. strain IM1. PMID:26586870

  5. Complete genome sequence of Paenibacillus sp. strain JDR-2

    PubMed Central

    Chow, Virginia; Nong, Guang; St. John, Franz J.; Rice, John D.; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, Alex; Land, Miriam L.; Goodwin, Lynne; Jones, Jeffrey B.; Ingram, Lonnie O.; Shanmugam, Keelnathan T.; Preston, James F.

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of ?-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources. PMID:22675593

  6. Complete genome sequence of Paenibacillus sp. strain JDR-2

    SciTech Connect

    Chow, Virginia; Nong, Guang; St. John, Franz J.; Dickstein, Ellen; Chertkov, Olga; Bruce, David; Detter, J. Chris; Brettin, Thomas S; Han, James; Woyke, Tanja; Pitluck, Sam; Nolan, Matt; Pati, Amrita; Martin, Joel; Copeland, A; Land, Miriam L; Goodwin, Lynne A.; Jones, Jeffrey B.; Ingram, Lonnie O.; Shanmugam, Keelnathan T.; Preston, James F.

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of -1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

  7. Complete Genome Sequence of Pseudomonas sp. Strain TKP, Isolated from a ?-Hexachlorocyclohexane-Degrading Mixed Culture

    PubMed Central

    Ohtsubo, Yoshiyuki; Kishida, Kouhei; Sato, Takuya; Tabata, Michiro; Kawasumi, Toru; Ogura, Yoshitoshi; Hayashi, Tetsuya; Tsuda, Masataka

    2014-01-01

    Pseudomonas sp. strain TKP does not degrade ?-hexachlorocyclohexane (?-HCH), but it persistently coexists with the ?-HCH-degrading Sphingobium sp. strain TKS in a mixed culture enriched by ?-HCH. Here, we report the complete genome sequence of strain TKP, which consists of one circular chromosome with a size of 7Mb. PMID:24482516

  8. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01.

    PubMed Central

    Maki, H; Masuda, N; Fujiwara, Y; Ike, M; Fujita, M

    1994-01-01

    An alkylphenol ethoxylate-degrading bacterium was isolated from activated sludge of a municipal sewage treatment plant by enrichment culture. This organism was found to belong to the genus Pseudomonas; since no corresponding species was identified, we designated it as Pseudomonas sp. strain TR01. This strain had an optimal temperature and pH of 30 degrees C and 7, respectively, for both growth and the degradation of Triton N-101 (a nonylphenol ethoxylate in which the average number of ethylene oxide [EO] units is 9.5). The strain was unable to mineralize Triton N-101 but was able to degrade its EO chain exclusively. The resulting dominant intermediate was identified by normal-phase high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry as a nonylphenol ethoxylate with 2 mol of EO units. A carboxylated metabolite, [(nonylphenoxy)ethoxy]acetic acid, was detected by gas chromatography-mass spectrometry. This bacterium also metabolized alcohol ethoxylates with various numbers of EO units but not polyethylene glycols whatever their degree of polymerization. By oxygen consumption assay, the alkyl group or arene corresponding to the hydrophobic part of alcohol ethoxylates or alkylphenol ethoxylates was shown to contribute to the induction of the metabolic system of the EO chain of Triton N-101, instead of the EO chain itself, which corresponds to its hydrophilic part. Thus, the isolated pseudomonad bacterium has unique substrate assimilability: it metabolizes the EO chain only when the chain linked to bulky hydrophobic groups. PMID:8074508

  9. Draft Genome Sequence of the Antarctic Polyextremophile Nesterenkonia sp. Strain AN1.

    PubMed

    Aliyu, Habibu; De Maayer, Pieter; Rees, Jasper; Tuffin, Marla; Cowan, Don A

    2014-01-01

    Nesterenkonia sp. strain AN1 was isolated from Antarctic soil and is a polyextremophile, being tolerant of low temperatures, high salt concentrations, and high alkalinity. Here we report the draft genome sequence of this strain. PMID:24675854

  10. Complete genome sequence of Arthrobacter sp. strain FB24

    SciTech Connect

    Nakatsu, C. H.; Barabote, Ravi; Thompson, Sue; Bruce, David; Detter, Chris; Brettin, T.; Han, Cliff F.; Beasley, Federico; Chen, Weimin; Konopka, Allan; Xie, Gary

    2013-09-30

    Arthrobacter sp. strain FB24 is a species in the genus Arthrobacter Conn and Dimmick 1947, in the family Micrococcaceae and class Actinobacteria. A number of Arthrobacter genome sequences have been completed because of their important role in soil, especially bioremediation. This isolate is of special interest because it is tolerant to multiple metals and it is extremely resistant to elevated concentrations of chromate. The genome consists of a 4,698,945 bp circular chromosome and three plasmids (96,488, 115,507, and 159,536 bp, a total of 5,070,478 bp), coding 4,536 proteins of which 1,257 are without known function. This genome was sequenced as part of the DOE Joint Genome Institute Program.

  11. Genome Sequence of Rhodococcus sp. Strain RD6.2 DSM 46800, a Methanesulfonate-Degrading Strain

    PubMed Central

    Henriques, Ana C.

    2015-01-01

    The complete genome sequence of a methanesulfonate-degrading strain, Rhodococcus sp. strain RD6.2 DSM 46800, which was isolated from a brackish marsh sediment sample, is described here. This is the first reported genome of a nonproteobacterial strain using methanesulfonate (MSA) as a sole source of carbon and energy, which does not possess the conventional MSA-monooxygenase (MSAMO). PMID:26184930

  12. Draft Genome Sequence of Brevibacillus sp. Strain BAB-2500, a Strain That Might Play an Important Role in Agriculture.

    PubMed

    Joshi, M N; Sharma, A; Pandit, A S; Pandya, R V; Saxena, A K; Bagatharia, S B

    2013-01-01

    A Gram-positive bacterium, Brevibacillus sp. strain BAB-2500, was isolated as a lab contaminant in Gandhinagar, Gujarat, India. The draft genome (5.3Mb) of the strain possesses genes for the reduction of arsenate and aluminum. These findings might provide insights into the utilization of this strain for improving crop production. PMID:23472223

  13. Draft Genome Sequences of Agrobacterium nepotum Strain 39/7T and Agrobacterium sp. Strain KFB 330

    PubMed Central

    Pu?awska, Joanna; Proki?, An?elka; Ivanovi?, Milan; Zlatkovi?, Nevena; Gai?, Katarina; Obradovi?, Aleksa

    2015-01-01

    Tumorigenic strains of Agrobacterium spp. are responsible for crown gall disease of numerous plant species. We present here draft genome sequences of nonpathogenic Agrobacterium nepotum strain 39/7T (CFBP 7436T, LMG 26435T), isolated from crown gall tumor on Prunus cerasifera, and tumorigenic Agrobacterium sp. strain KFB 330 (CFBP 8308, LMG 28674), isolated from galls on raspberry. PMID:25908139

  14. Draft Genome Sequences of Agrobacterium nepotum Strain 39/7T and Agrobacterium sp. Strain KFB 330.

    PubMed

    Kuzmanovi?, Nemanja; Pu?awska, Joanna; Proki?, An?elka; Ivanovi?, Milan; Zlatkovi?, Nevena; Gai?, Katarina; Obradovi?, Aleksa

    2015-01-01

    Tumorigenic strains of Agrobacterium spp. are responsible for crown gall disease of numerous plant species. We present here draft genome sequences of nonpathogenic Agrobacterium nepotum strain 39/7(T) (CFBP 7436(T), LMG 26435(T)), isolated from crown gall tumor on Prunus cerasifera, and tumorigenic Agrobacterium sp. strain KFB 330 (CFBP 8308, LMG 28674), isolated from galls on raspberry. PMID:25908139

  15. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  16. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  17. Draft Genome Sequence of Pedobacter sp. Strain Hv1, an Isolate from Medicinal Leech Mucosal Castings.

    PubMed

    Ott, Brittany M; Beka, Lidia; Graf, Joerg; Rio, Rita V M

    2015-01-01

    The Pedobacter sp. Hv1 strain was isolated from the medicinal leech, Hirudo verbana, mucosal castings. These mucosal sheds have been demonstrated to play a role in horizontal symbiont transmission. Here, we report the draft 4.9 Mbp genome sequence of Pedobacter sp. strain Hv1. PMID:26679583

  18. Draft Genome Sequence of Pedobacter sp. Strain Hv1, an Isolate from Medicinal Leech Mucosal Castings

    PubMed Central

    Ott, Brittany M.; Beka, Lidia; Graf, Joerg

    2015-01-01

    The Pedobacter sp. Hv1 strain was isolated from the medicinal leech, Hirudo verbana, mucosal castings. These mucosal sheds have been demonstrated to play a role in horizontal symbiont transmission. Here, we report the draft 4.9 Mbp genome sequence of Pedobacter sp. strain Hv1. PMID:26679583

  19. First Draft Genome Sequence of the Acidovorax caeni sp. nov. Type Strain R-24608 (DSM 19327)

    PubMed Central

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jarek, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    We report the draft genome sequence of the Acidovorax caeni type strain R-24608 that was isolated from activated sludge of an aerobic-anaerobic wastewater treatment plant. The closest strain to Acidovorax caeni strain R-24608 is Acidovorax sp. strain MR-S7 with a 55.4% (amino-acid sequence) open reading frames (ORFs) average similarity. PMID:26586902

  20. Complete genome sequence of deoxynivalenol-degrading bacterium Devosia sp. strain A16.

    PubMed

    Yin, Xianchao; Zhu, Ziwei; Zhou, Yidong; Ji, Fang; Yao, Zhenyu; Shi, Jianrong; Xu, Jianhong

    2016-01-20

    The strain A16, capable of degrading deoxynivalenol was isolated from a wheat field and identified preliminarily as Devosia sp. Here, we present the genome sequence of the Devosia sp. A16, which has a size of 5,032,994bp, with 4913 coding sequences (CDSs). The annotated full genome sequence of the Devosia sp. A16 strain might shed light on the function of its degradation. PMID:26630999

  1. Molecular responses of Frankia sp. strain QA3 to naphthalene.

    PubMed

    Baker, Ethan; Tang, Yang; Chu, Feixia; Tisa, Louis S

    2015-04-01

    The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments. PMID:25742598

  2. Draft Genome Sequence of Synechococcus sp. Strain CB0101, Isolated From the Chesapeake Bay Estuary.

    PubMed

    Marsan, David; Wommack, K Eric; Ravel, Jacques; Chen, Feng

    2014-01-01

    Here, we report the draft genome sequence of the estuarine Synechococcus sp. strain CB0101. The genomics information of this strain will facilitate the study of the poorly understood Synechococcus subcluster 5.2 and how this strain is capable of thriving in a dynamic estuarine system, such as the Chesapeake Bay. PMID:24407633

  3. Genome sequence of Oceanicaulis sp. strain HTCC2633, isolated from the Western Sargasso Sea.

    PubMed

    Oh, Hyun-Myung; Kang, Ilnam; Vergin, Kevin L; Lee, Kiyoung; Giovannoni, Stephen J; Cho, Jang-Cheon

    2011-01-01

    The genus Oceanicaulis represents dimorphic rods that were originally isolated from a marine dinoflagellate. Here, we announce the genome sequence of Oceanicaulis sp. strain HTCC2633, isolated by dilution-to-extinction culturing from the Sargasso Sea. The genome information of strain HTCC2633 indicates a chemoorganotrophic way of life of this strain. PMID:21036991

  4. Gliding motility of Cytophaga sp. strain U67.

    PubMed Central

    Lapidus, I R; Berg, H C

    1982-01-01

    Video techniques were used to analyze the motion of the gliding bacterium Cytophaga sp. strain U67. Cells moved singly on glass along the long axis at a speed of about 2 micrometers/s, advancing, retreating, stopping, pivoting about a pole, or flipping over. They did not flex or roll. Cells of different lengths moved at about the same speed. Cells sometimes spun continuously about a pole at a frequency of about 2 HZ, the body moving in a plane parallel to that of the glass or on the surface of a cone having either a large or a small solid angle. Polystyrene latex spheres moved to and fro on the surfaces of cells, also at a speed of about 2 micrometers/s. They moved in the same fashion whether a cell was in suspension, gliding, or at rest on the glass. Two spheres on the same cell often moved in opposite directions, passing by one another in close proximity. Small and large spheres and aggregates of spheres all moved at about the same speed. An aggregate moved down the side of a cell with a fixed orientation, even when only one sphere was in contact with the cell. Spheres occasionally left one cell and were picked up by another. Cell pretreated with small spheres did not adhere to glass. When the cells were deprived of oxygen, they stopped gliding, and the spheres stopped moving on their surfaces. The spheres became completely immobilized; they no longer moved from cell to cell or exhibited Brownian movement. Cytophaga spp. are known to have a typical gram-negative cell envelope: an inner (cytoplasmic) membrane, a thin peptidoglycan layer, and an outer (lipopolysaccharide) membrane. Our data are consistent with a model for gliding in which sites to which glass and polystyrene strongly adsorb move within the fluid outer membrane along tracks fixed to the rigid peptidoglycan framework. Images PMID:7085564

  5. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park

    SciTech Connect

    Mead, David; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, J. Chris; Han, Cliff; Tapia, Roxanne; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Kyrpides, Nikos C; Ivanova, N; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip

    2012-01-01

    Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.

  6. Growth in Coculture Stimulates Metabolism of the Phenylurea Herbicide Isoproturon by Sphingomonas sp. Strain SRS2

    PubMed Central

    Srensen, Sebastian R.; Ronen, Zeev; Aamand, Jens

    2002-01-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the ?-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent. PMID:12089031

  7. Draft Genome Sequence of Rhodovulum sp. Strain NI22, a Naphthalene-Degrading Marine Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Bowen, Loryn L.

    2015-01-01

    Rhodovulum sp. strain NI22 is a hydrocarbon-degrading member of the genus Rhodovulum. The draft genome of Rhodovulum sp. NI22 is 3.8 Mb in size, with 3,756 coding sequences and 64.4% G+C content. The catechol and gentisate pathways for naphthalene degradation are predicted to be present in Rhodovulum sp. NI22. PMID:25614575

  8. Draft Genome Sequence of Serratia sp. Strain DD3, Isolated from the Guts of Daphnia magna

    PubMed Central

    Poehlein, Anja; Freese, Heike M.; Daniel, Rolf

    2014-01-01

    We report the draft genome sequence of Serratia sp. strain DD3, a gammaproteobacterium from the family Enterobacteriaceae. It was isolated from homogenized guts of Daphnia magna. The genome size is 5,274Mb. PMID:25212623

  9. Draft Genome Sequence of Shewanella sp. Strain CP20.

    PubMed

    Lutz, Carla; Martin Tay, Qi Xiang; Sun, Shuyang; McDougald, Diane

    2015-01-01

    Shewanella sp. CP20 is a marine bacterium that survives ingestion by Tetrahymena pyriformis and is expelled from the protozoan within membrane-bound vacuoles, where the bacterial cells show long-term survival. Here, we report the draft genome sequence of Shewanella sp. CP20 and discuss the potential mechanisms facilitating intraprotozoan survival. PMID:25858840

  10. Whole-Genome Sequence of Enterobacter sp. Strain SST3, an Endophyte Isolated from Jamaican Sugarcane (Saccharum sp.) Stalk Tissue

    PubMed Central

    Gan, Han Ming; McGroty, Sean E.; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J.; Savka, Michael A.

    2012-01-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter. PMID:23045495

  11. Genome sequence of Pantoea sp. strain Sc 1 an opportunistic cotton pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pantoea is comprised of a broad spectrum of species including plant pathogens. Here, we provide an annotated genome sequence of Pantoea sp. strain Sc 1, which was isolated from a diseased cotton boll. This research provides the first genome sequence of a bona fide Pantoea sp. insect vectored cotton...

  12. Genome Sequence of the Microsporidian Species Nematocida sp1 Strain ERTm6 (ATCC PRA-372)

    PubMed Central

    Bakowski, Malina A.; Priest, Margaret; Young, Sarah

    2014-01-01

    Microsporidia comprise a phylum of obligate intracellular pathogens related to fungi. Microsporidia Nematocida sp1 strain ERTm6 was isolated from wild-caught Caenorhabditis briggsae and causes a lethal intestinal infection in Caenorhabditis nematodes. We report the genome sequence of N. sp1 ERTm6, which will facilitate study of the Nematocida genus and other Microsporidia. PMID:25237020

  13. Molecular Mechanism of Nicotine Degradation by a Newly Isolated Strain, Ochrobactrum sp. Strain SJY1

    PubMed Central

    Yu, Hao; Zhu, Xiongyu; Li, Yangyang

    2014-01-01

    A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ?10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation. PMID:25344232

  14. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6?

    PubMed Central

    Dheilly, Alexandra; Soum-Soutra, Emmanuelle; Klein, Graldine L.; Bazire, Alexis; Compre, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  15. Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

    PubMed Central

    Cappelletti, M.; Di Gennaro, P.; D’Ursi, P.; Orro, A.; Mezzelani, A.; Landini, M.; Fedi, S.; Frascari, D.; Presentato, A.; Milanesi, L.

    2013-01-01

    Rhodococcus sp. strain BCP1 cometabolizes chlorinated compounds and mineralizes a broad range of alkanes, as it is highly tolerant to them. The high-quality draft genome sequence of Rhodococcus sp. strain BCP1, consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNA genes, is presented here. PMID:24158549

  16. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobiumerdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobiumjarvisii sp. nov.

    PubMed

    Martnez-Hidalgo, Pilar; Ramrez-Bahena, Martha Helena; Flores-Flix, Jos David; Rivas, Ral; Igual, Jos M; Mateos, Pedro F; Martnez-Molina, Eustoquio; Len-Barrios, Milagros; Peix, lvaro; Velzquez, Encarna

    2015-06-01

    The species Mesorhizobim loti was isolated from nodules of Lotus corniculatus and its type strain deposited in several collections. Some of these type strains, such as those deposited in the USDA and ATCC collections before 1990, are not coincident with the original strain, NZP 2213T, deposited in the NZP culture collection. The analysis of the 16S rRNA gene showed that strains USDA 3471T and ATCC 33669T formed independent branches from that occupied by Mesorhizobium loti NZP 2213T and related to those occupied by Mesorhizobium opportunistum WSM2075T and Mesorhizobium huakuii IFO 15243T, respectively, with 99.9 % similarity in both cases. However, the analysis of concatenated recA, atpD and glnII genes with similarities lower than 96, 98 and 94 %, respectively, between strains USDA 3471T and M. opportunistum WSM2075T and between strains ATCC 33669T and M. huakuii IFO 15243T, indicated that the strains USDA 3471T and ATCC 33669T represent different species of the genus Mesorhizobium. These results were confirmed by DNA-DNA hybridization experiments and phenotypic characterization. Therefore, the two strains were reclassified as representatives of the two species Mesorhizobium erdmanii sp. nov. (type strain USDA 3471T = CECT 8631T = LMG 17826t2T) and Mesorhizobium jarvisii sp. nov. (type strain ATCC 33669T?= CECT 8632T = LMG 28313T). PMID:25736411

  17. Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development.

    PubMed Central

    Gray, J X; Zhan, H J; Levery, S B; Battisti, L; Rolfe, B G; Leigh, J A

    1991-01-01

    Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide. Images PMID:2022612

  18. Complete genome sequence of Kosakonia sacchari type strain SP1T

    PubMed Central

    Chen, Mingyue; Zhu, Bo; Lin, Li; Yang, Litao; Li, Yangrui; An, Qianli

    2014-01-01

    Kosakonia sacchari sp. nov. is a new species within the new genus Kosakonia, which was included in the genus Enterobacter. K sacchari is a nitrogen-fixing bacterium named for its association with sugarcane (Saccharum officinarum L.). K sacchari bacteria are Gram-negative, aerobic, non-spore-forming, motile rods. Strain SP1T (=CGMCC1.12102T=LMG 26783T) is the type strain of the K sacchari sp. nov and is able to colonize and fix N2 in association with sugarcane plants, thus promoting plant growth. Here we summarize the features of strain SP1T and describe its complete genome sequence. The genome contains a single chromosome and no plasmids, 4,902,024 nucleotides with 53.7% GC content, 4,460 protein-coding genes and 105 RNA genes including 22 rRNA genes, 82 tRNA genes, and 1 ncRNA gene. PMID:25197499

  19. [Geobacillus uralicus, a new species of thermophilic bacteria].

    PubMed

    Popova, N A; Nikolaev, Iu A; Turova, T P; Lysenko, A M; Osipov, G A; Verkhovtseva, N V; Panikov, N S

    2002-01-01

    The K2T strain of thermophilic spore-forming bacteria was isolated from a biofilm on the surface of a corroded pipeline in an extremely deep well (4680 m, 40-72 degrees C) in the Ural. The cells are rod-shaped, motile, gram-variable. They grow on a complex medium with tryptone and yeast extract and on a synthetic medium with glucose and mineral salts without additional growth factors. The cells use a wide range of organic substances as carbon and energy sources. They exhibit a respiratory metabolism but are also capable of anaerobic growth on a nitrate-containing medium and of fermentation. Growth occurs within the 40-75 degrees C temperature range (with an optimum of 65 degrees C) and at pH 5-9. The minimum generation time (15 min) was observed at pH 7.5. Ammonium salts and nitrates are used as nitrogen sources. The G + C content of the DNA is 54.5 mol%. From the morphological, physiological, and biochemical properties and the nucleotide sequence of the 16S rRNA gene, it was concluded that the isolate K2T represents a new species of the genus Geobacillus, Geobacillus uralicus. PMID:12138763

  20. Functional genomic approaches for understanding the mode of action of Bacillus sp biocontrol strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete genome sequencing of several Bacillus sp. strains has shed new light on the mode of action of these antagonists of plant pathogens. The use of genomic data mining tools provided the ability to quickly determine the potential of these strains to produce bioactive secondary metabolites. Our B...

  1. Production of Oxygenated Fatty Acids from Vegetable Oils by Flavobacterium sp. Strain DS5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium sp. strain DS5 (NRRL B-14859) was used to convert two vegetable oils, olive oil and soybean oil, directly to oxygenated fatty acids such as 10-ketostearic acid (10-KSA) and 10-hydroxystearic acid (10-HSA). Lipase addition to the culture was required because strain DS5 did not induce ...

  2. 3-Nitrotoluene dioxygenase from Diaphorobacter sp. strains: cloning, sequencing and evolutionary studies.

    PubMed

    Singh, Deepak; Kumari, Archana; Ramanathan, Gurunath

    2014-07-01

    The first step in the degradation of 3-nitrotoluene by Diaphorobacter sp. strain DS2 is the dihydroxylation of the benzene ring with the concomitant removal of nitro group. This is catalyzed by a dioxygenase enzyme system. We report here the cloning and sequencing of the complete dioxygenase gene with its putative regulatory sequence from the genomic DNA of Diaphorobacter sp. strains DS1, DS2 and DS3. Analysis of the 5 kb DNA stretch that was cloned, revealed five complete open reading frames (ORFs) encoding for a reductase, a ferredoxin and two dioxygenase subunits with predicted molecular weights (MW) of 35, 12, 50 and 23 kDa respectively. A regulatory protein was also divergently transcribed from the reductase subunit and has a predicated MW of 34 kDa. Presence of parts of two functional ORFs in between the reductase and the ferredoxin subunits reveals an evolutionary route from a naphthalene dioxygenase like system of Ralstonia sp. strain U2. Further a 100 % identity of its ferredoxin subunit reveals its evolution via dinitrotoluene dioxygenase like system present in Burkholderia cepacia strain R34. A modeled structure of oxygenase3NT from strain DS2 was generated using nitrobenzene dioxygenase as a template. The modeled structure only showed minor changes at its active site. Comparison of growth patterns of strains DS1, DS2 and DS3 revealed that Diaphorobacter sp. strain DS1 has been evolved to degrade 4-nitrotoluene better by an oxidative route amongst all three strains. PMID:24217981

  3. Draft Genome Sequence of Enterobacter sp. Strain UCD-UG_FMILLET (Phylum Proteobacteria).

    PubMed

    Ettinger, Cassandra L; Mousa, Walaa M; Raizada, Manish N; Eisen, Jonathan A

    2015-01-01

    Here, we present the draft genome of Enterobacter sp. strain UCD-UG_FMILLET. This strain is an endophyte isolated from the roots of finger millet, an Afro-Indian cereal crop. The genome contains 4,801,411bp in 53 scaffolds. PMID:25614569

  4. Draft Genome Sequence of Streptomyces sp. Strain PBH53, Isolated from an Urban Environment.

    PubMed

    Gosse, Jessica T; Hill, Patrick; Dowd, Scot E; Boddy, Christopher N

    2015-01-01

    We report the draft genome sequence of Streptomyces sp. strain PBH53, a strain isolated from an urban transit station in Ottawa, Canada. The analysis of the genome using the bioinformatics tool antiSMASH showed the presence of many unique natural product biosynthetic pathways. PMID:26227608

  5. Draft Genome Sequence of the Sulfonamide Antibiotic-Degrading Microbacterium sp. Strain C448

    PubMed Central

    Martin-Laurent, Fabrice; Marti, Romain; Waglechner, Nicholas; Wright, Gerard D.

    2014-01-01

    We report the draft genome sequence of Microbacterium sp. strain C448, isolated from agricultural soil with a decade of exposure to veterinary antibiotics on the basis of using sulfamethazine and other antibiotics as the sole sources of carbon. The genome sequence revealed that strain C448 harbors several antibiotic resistance genes, including sulI. PMID:24526651

  6. Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium sp. strain RPT-4213

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Clostridium sp. strain RPT-4213 was found producing butyrate under strict anaerobic conditions. This strain produced 9.47 g L-1 butyric acid from MRS media (0.48 g/g glucose). RPT-4213 was also used to ferment dilute acid pretreated hydrolysates including wheat straw (WSH), corn fiber (CFH...

  7. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. strain CA5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Pseudomonas sp. that may be useful in bioremediation projects was isolated from soil. The strain is of potential value because it reduces selenite to elemental red selenium and is unusual in that it was resistant to high concentrations of both selenate and selenite. Cell of the strain removed 1....

  8. Draft Genome Sequences of Type Strain Sediminibacterium salmoneum NJ-44 and Sediminibacterium sp. Strain C3, a Novel Strain Isolated from Activated Sludge

    PubMed Central

    Ayarza, Joaqun M.; Figuerola, Eva L. M.

    2014-01-01

    The genus Sediminibacterium comprises species present in diverse natural and engineered environments. Here, we report for the first time the genome sequences of the type strain Sediminibacterium salmoneum NJ-44 (NBRC 103935) and Sediminibacterium sp. strain C3 (BNM541), isolated from activated sludge, a valuable model for the study of substrate-dependent autoaggregation. PMID:24435857

  9. Genome sequence and description of Nesterenkonia massiliensis sp. nov. strain NP1T

    PubMed Central

    Edouard, Sophie; Sankar, Senthil; Dangui, Nicole Prisca Makaya; Lagier, Jean-Christophe; Michelle, Caroline; Raoult, Didier; Fournier, Pierre-Edouard

    2014-01-01

    Nesterenkonia massiliensis sp. nov., strain NP1T, is the type strain of Nesterenkonia massiliensis sp. nov., a new species within the genus Nesterenkonia. This strain, whose genome is described here, was isolated from the feces of a 32-year-old French woman suffering from AIDS and living in Marseille. Nesterenkonia massiliensis is a Gram-positive aerobic coccus. Here, we describe the features of this bacterium, together with the complete genome sequencing and annotation. The 2,726,371 bp long genome (one chromosome but no plasmid) contains 2,663 protein-coding and 51 RNA genes, including 1 rRNA operon. PMID:25197469

  10. Genomic analysis of novel phytopathogenic Georgenia sp. strain SUB25

    PubMed Central

    Patel, Pooja P.; Rakhashiya, Purvi M.; Thaker, Vrinda S.

    2015-01-01

    A Gram positive bacterium, Georgenia sp. SUB25 was isolated from infected leaves of Solanum lycopersicum L. in Rajkot (22.30N, 70.78E), Gujarat, India. We sequenced and analyzed Georgenia sp. SUB25 that is novel plant pathogen using next generation sequencing platform and assembly yielded contigs representing a size of 4.84Mb with 81 tRNAs and 88 rRNAs. The whole genome sequencing has been deposited in DDBJ/EMBL/GenBank under the accession number JNFL00000000. This genome sequence contains Type II secretion system genes, which involved in pathogenicity mechanism that may help to understand plant microbial interaction. PMID:26484278

  11. Draft Whole-Genome Sequence of Serratia sp. Strain TEL, Associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae) Isolated from a Grassland in South Africa

    PubMed Central

    Featherston, Jonathan; Gray, Vincent M.

    2015-01-01

    Here, we report on the draft genome sequence of Serratia sp. strain TEL, associated with Oscheius sp. TEL-2014 (Nematoda: Rhabditidae, KM492926) isolated from a grassland in Suikerbosrand Nature Reserve near Johannesburg in South Africa. Serratia sp. strain TEL has a genome size of 5,000,541 bp with 4,647 genes and a G+C content of 59.1%. PMID:26159531

  12. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children.

    PubMed

    Isolauri, E; Juntunen, M; Rautanen, T; Sillanaukee, P; Koivula, T

    1991-07-01

    To determine the effect of a human Lactobacillus strain (Lactobacillus casei sp strain GG, Gefilac) on recovery from acute diarrhea (82% rotavirus), 71 well-nourished children between 4 and 45 months of age were studied. After oral rehydration, the patients randomly received either Lactobacillus GG-fermented milk product, 125 g (10(10-11) colony-forming units) twice daily (group 1); Lactobacillus GG freeze-dried powder, one dose (10(10-11) colony-forming units) twice daily (group 2); or a placebo, a pasteurized yogurt (group 3) 125 g twice daily; each diet was given for 5 days, in addition to normal full diet otherwise free of fermented dairy products. The mean (SD) duration of diarrhea after commencing the therapy was significantly shorter in group 1 (1.4 [0.8] days) and in group 2 (1.4 [0.8] days) than in group 3 (2.4 [1.1] days); F = 8.70, P less than 0.001. After rehydration, each dietary group maintained a positive weight trend. The urinary lactulose-mannitol recovery ratios (means [95% confidence intervals]) on admission were 0.09 (0.03, 0.24) in group 1, 0.12 (0.07, 0.22) in group 2, and 0.08 (0.04, 0.18) in group 3; no significant alterations in intestinal permeability were observed at retesting after 2 days of realimentation. The result indicates that early nutritional repletion after rehydration causes no mucosal disruption and is beneficial for recovery from diarrhea. It is further suggested that Lactobacillus GG in the form of fermented milk or freeze-dried powder is effective in shortening the course of acute diarrhea. PMID:1905394

  13. Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens

    PubMed Central

    Aylward, Frank O.; Tremmel, Daniel M.; Starrett, Gabriel J.; Bruce, David C.; Chain, Patrick; Chen, Amy; Davenport, Karen W.; Detter, Chris; Han, Cliff S.; Han, James; Huntemann, Marcel; Ivanova, Natalia N.; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Teshima, Hazuki; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja

    2013-01-01

    Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism. PMID:23516234

  14. Indigoids Biosynthesis from Indole by Two Phenol-Degrading Strains, Pseudomonas sp. PI1 and Acinetobacter sp. PI2.

    PubMed

    Wang, Jing; Zhang, Xuwang; Fan, Jiangli; Zhang, Zhaojing; Ma, Qiao; Peng, Xiaojun

    2015-07-01

    In this study, two phenol-degrading bacterial strains, designated as PI1 and PI2, were isolated from activated sludge for the production of indigoids from indole. According to the 16S ribosomal RNA (rRNA) gene sequence analysis, strains PI1 and PI2 were identified as Pseudomonas sp. and Acinetobacter sp., respectively. Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) was applied to analyze the metabolites during the biotransformation of indole by the phenol-degrading strains. The results indicated that both strains could catalyze the formation of four indigoids with the same prominent molecular ion (M-H)(-) peak at m/z 261.067 and molecular formula of C16H10N2O2, including indigo and a purple product, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one. Isatin and 7-hydroxyindole were detected as the intermediates. Thus, the possible pathways for the production of indigoids from indole were proposed. Subsequently, the optimal conditions for the production of indigo from indole were determined using response surface methodology, and 11.82??0.30 and 17.19??0.49 mg/L indigo were produced by strains PI1 and PI2, respectively. The present study should provide potential candidates for microbial production of indigoids. PMID:25926013

  15. A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform.

    PubMed

    Ding, Chang; Zhao, Siyan; He, Jianzhong

    2014-11-01

    1,1,1-Trichloroethane (TCA) and chloroform are two notorious groundwater pollutants. Here we report the isolation and characterization of Desulfitobacterium sp. strain PR that rapidly dechlorinates both compounds. In pyruvate-amended medium, strain PR reductively dechlorinates ??1.0?mM TCA completely to monochloroethane within 15 days. Under the same conditions, strain PR dechlorinates ??1.2?mM chloroform to predominantly dichloromethane (??1.14?mM) and trace amount of monochloromethane (??0.06?mM) within 10 days. Strain PR shares 96.7% 16S rRNA gene sequence similarity with its closest relative - Desulfitobacterium metallireducens strain 853-15; however, it distinguishes itself from known Desulfitobacterium strains by its inability of utilizing several of their commonly shared substrates such as lactate, thiosulfate and sulfite. A reductive dehalogenase gene (ctrA) in strain PR was identified to be responsible for dechlorination of both TCA and chloroform, showing a maximum expression level of 5.95???6.25 copies of transcripts cell(-1) . CtrA shares 94% amino acid sequence identity with CfrA in Dehalobacter sp. strain CF50 and DcrA in Dehalobacter sp. strain DCA. Interestingly, strain PR could tolerate high aqueous concentrations (up to 0.45?mM) of trichloroethene, another groundwater pollutant that often coexists with TCA/chloroform. As the first chloroform-respiring and the second TCA-respiring isolate that has been identified, Desulfitobacterium sp. strain PR may prove useful in remediation of halogenated alkanes with trihalomethyl (-CX?) groups. PMID:24428759

  16. Lactococcus lactis SpOx Spontaneous Mutants: a Family of Oxidative-Stress-Resistant Dairy Strains

    PubMed Central

    Rochat, Tatiana; Gratadoux, Jean-Jacques; Corthier, Grard; Coqueran, Brard; Nader-Macias, Maria-Elena; Gruss, Alexandra; Langella, Philippe

    2005-01-01

    Numerous industrial bacteria generate hydrogen peroxide (H2O2), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H2O2. Three SpOx mutants displayed greater H2O2 resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H2O2-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected. PMID:15870374

  17. Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus.

    PubMed

    Durand, Loc; Planchon, Stella; Guinebretiere, Marie-Hlne; Carlin, Frdric; Remize, Fabienne

    2015-02-01

    Geobacillus stearothermophilus is the main thermophilic spore former involved in flat sour spoilage of canned foods. Three typing methods were tested and applied to differentiate strains at intra-species level: panC sequence analysis, REP-PCR and M13-PCR. panC gene was highly conserved within the studied strains, suggesting a low intra-specific diversity. This was supported by REP-PCR primary assays and M13-PCR results. M13-PCR profile analysis succeeded in differentiating six closely related groups (at 79% threshold similarity) among 127 strains from a range of spoiled canned food products and from different canneries. Phenotypic traits were investigated among 20 selected strains representing groups and origins. Ranges of growth under different temperatures (from 40 C to 70 C), pH (from 5.0 to 6.5), NaCl concentrations (from 1 to 5%) and sporulation conditions poorly differed between strains, but wet heat resistance of spores showed a 20-fold variation between strains. Furthermore, in this study, strains that belonged to the same M13-PCR genetic group did not share phenotypic characteristics or common origin. The work emphasizes a low diversity within the G. stearothermophilus species but data from this study may contribute to a better control of G. stearothermophilus spoilage in canned food. PMID:25481066

  18. Complete Genome Sequence of Geobacillus thermoglucosidans TNO-09.020, a Thermophilic Sporeformer Associated with a Dairy-Processing Environment

    PubMed Central

    Zhao, Yu; Caspers, Martien P.; Abee, Tjakko; Siezen, Roland J.

    2012-01-01

    Thermophilic spore-forming bacteria are a common cause of contamination in dairy products. We isolated the thermophilic strain Geobacillus thermoglucosidans TNO-09.020 from a milk processing plant and report the complete genome of a dairy plant isolate consisting of a single chromosome of 3.75 Mb. PMID:22815439

  19. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography

    PubMed Central

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, Johann Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry, Alison M.; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, Maria Pilar; Goltsman, Eugene; Huang, Ying; Kopp, Olga R.; Labarre, Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez, Michele; Mastronunzio, Juliana E.; Mullin, Beth C.; Niemann, James; Pujic, Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt, Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde, Claudio; Wall, Luis G.; Wang, Ying; Medigue, Claudine; Benson, David R.

    2007-01-01

    Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the actinorhizal symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses. PMID:17151343

  20. Changes in Sodium, Calcium, and Magnesium Ion Concentrations That Inhibit Geobacillus Biofilms Have No Effect on Anoxybacillus flavithermus Biofilms

    PubMed Central

    Somerton, B.; Lindsay, D.; Palmer, J.; Brooks, J.

    2015-01-01

    This study investigated the effects of varied sodium, calcium, and magnesium concentrations in specialty milk formulations on biofilm formation by Geobacillus spp. and Anoxybacillus flavithermus. The numbers of attached viable cells (log CFU per square centimeter) after 6 to 18 h of biofilm formation by three dairy-derived strains of Geobacillus and three dairy-derived strains of A. flavithermus were compared in two commercial milk formulations. Milk formulation B had relatively high sodium and low calcium and magnesium concentrations compared with those of milk formulation A, but the two formulations had comparable fat, protein, and lactose concentrations. Biofilm formation by the three Geobacillus isolates was up to 4 log CFU cm−2 lower in milk formulation B than in milk formulation A after 6 to 18 h, and the difference was often significant (P ≤ 0.05). However, no significant differences (P ≤ 0.05) were found when biofilm formations by the three A. flavithermus isolates were compared in milk formulations A and B. Supplementation of milk formulation A with 100 mM NaCl significantly decreased (P ≤ 0.05) Geobacillus biofilm formation after 6 to 10 h. Furthermore, supplementation of milk formulation B with 2 mM CaCl2 or 2 mM MgCl2 significantly increased (P ≤ 0.05) Geobacillus biofilm formation after 10 to 18 h. It was concluded that relatively high free Na+ and low free Ca2+ and Mg2+ concentrations in milk formulations are collectively required to inhibit biofilm formation by Geobacillus spp., whereas biofilm formation by A. flavithermus is not impacted by typical cation concentration differences of milk formulations. PMID:26002898

  1. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

    PubMed

    Cordova, Lauren T; Long, Christopher P; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2015-11-01

    We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72 °C, Geobacillus LC300 has a growth rate of 2.15 h(-1) on glucose and 1.52 h(-1) on xylose (doubling time less than 30 min). The corresponding specific glucose and xylose utilization rates are 5.55 g/g/h and 5.24 g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio's RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications. PMID:26391740

  2. Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential?

    PubMed Central

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields. PMID:21057013

  3. Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417

    PubMed Central

    Reeve, Wayne; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Tian, Rui; De Meyer, Sofie; Tiwari, Ravi; Yates, Ronald; OHara, Graham; Howieson, John; Ninawi, Mohamed; Teshima, Hazuki; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976884

  4. Draft Genome Sequence of Sphingobium sp. Strain BHC-A, Revealing Genes for the Degradation of Hexachlorocyclohexane.

    PubMed

    Xue, Chao; Cao, Li; Zhang, Rong; He, Jian; Li, Shunpeng; Hong, Qing

    2014-01-01

    Here, we report the draft genome sequence of Sphingobium sp. strain BHC-A, a lin gene-based hexachlorocyclohexane (HCH)-degrading strain, isolated from soil that suffered long-term HCH contamination in an insecticide factory. PMID:24699958

  5. Isolation and characterization of an Arthrobacter sp. strain HB-5 that transforms atrazine.

    PubMed

    Wang, Jinhua; Zhu, Lusheng; Liu, Aiju; Ma, Tingting; Wang, Qi; Xie, Hui; Wang, Jun; Jiang, Ting; Zhao, Rusong

    2011-06-01

    A bacterial strain (HB-5) capable of utilizing atrazine as sole carbon and nitrogen source for growth was isolated from an industrial wastewater sample by enrichment culture. The isolate was identified as Arthrobacter sp. according to its phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The strain exhibited faster atrazine degradation rates in atrazine-containing mineral media than the well-characterized atrazine-degrading bacteria Pseudomonas sp. ADP. The broad optimum pH and temperature ranges observed for strain HB-5 indicate that it has potential for remediation of atrazine-contaminated sites. Strain HB-5 first metabolizes atrazine to yield hydroxyatrazine. Then, the bacterium metabolizes hydroxyatrazine to cyanuric acid, but could not mineralize atrazine. PMID:20686824

  6. Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803

    SciTech Connect

    Flores, E.; Schmetterer, G.

    1986-05-01

    Fructose was bactericidal for the cyanobacterium Synechocystis sp. strain PCC 6803. Each of ten independently isolated fructose-resistant mutants had an alteration of the glucose transport system, measured as uptake of glucose or of 3-0-methyl-D-glucose. In the presence of the analog, the wild-type Synechocystis strain was protected against fructose. Two mutants altered in photoautotrophy were also isolated.

  7. Genome Sequence of the Methanotrophic Alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242) ?

    PubMed Central

    Stein, Lisa Y.; Bringel, Franoise; DiSpirito, Alan A.; Han, Sukkyun; Jetten, Mike S. M.; Kalyuzhnaya, Marina G.; Kits, K. Dimitri; Klotz, Martin G.; Op den Camp, Huub J. M.; Semrau, Jeremy D.; Vuilleumier, Stphane; Bruce, David C.; Cheng, Jan-Fang; Davenport, Karen W.; Goodwin, Lynne; Han, Shunsheng; Hauser, Loren; Lajus, Aurlie; Land, Miriam L.; Lapidus, Alla; Lucas, Susan; Mdigue, Claudine; Pitluck, Sam; Woyke, Tanja

    2011-01-01

    Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase but no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales. PMID:21441518

  8. Draft Genome Sequence of the Biocontrol Bacterium Chromobacterium sp. Strain C-61

    PubMed Central

    Kim, Hyun Jung; Park, Ju Yeon; Han, Song Hee; Lee, Jin Hee; Rong, Xiaoqing; McSpadden Gardener, Brian B.; Park, Seur Kee; Kim, Young Cheol

    2011-01-01

    Chromobacterium sp. strain C-61 is a plant-associated bacterium with proven capacities to suppress plant diseases. Here, we report the draft genome sequence and automatic annotation of strain C-61. A comparison of this sequence to the sequenced genome of Chromobacterium violaceum ATCC 12472 indicates the novelty of C-61 and a subset of gene functions that may be related to its biocontrol activities. PMID:22072653

  9. Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61.

    PubMed

    Kim, Hyun Jung; Park, Ju Yeon; Han, Song Hee; Lee, Jin Hee; Rong, Xiaoqing; McSpadden Gardener, Brian B; Park, Seur Kee; Kim, Young Cheol

    2011-12-01

    Chromobacterium sp. strain C-61 is a plant-associated bacterium with proven capacities to suppress plant diseases. Here, we report the draft genome sequence and automatic annotation of strain C-61. A comparison of this sequence to the sequenced genome of Chromobacterium violaceum ATCC 12472 indicates the novelty of C-61 and a subset of gene functions that may be related to its biocontrol activities. PMID:22072653

  10. Infection of Amblyomma ovale by Rickettsia sp. strain Atlantic rainforest, Colombia.

    PubMed

    Londoo, Andrs F; Daz, Francisco J; Valbuena, Gustavo; Gazi, Michal; Labruna, Marcelo B; Hidalgo, Marylin; Mattar, Salim; Contreras, Vernica; Rodas, Juan D

    2014-10-01

    Our goal was to understand rickettsial spotted fevers' circulation in areas of previous outbreaks reported from 2006 to 2008 in Colombia. We herein present molecular identification and isolation of Rickettsia sp. Atlantic rainforest strain from Amblyomma ovale ticks, a strain shown to be pathogenic to humans. Infected ticks were found on dogs and a rodent in Antioquia and Crdoba Provinces. This is the first report of this rickettsia outside Brazil, which expands its known range considerably. PMID:25090976

  11. Alkaloids from an algicolous strain of Talaromyces sp.

    NASA Astrophysics Data System (ADS)

    Yang, Haibin; Li, Fang; Ji, Naiyun

    2016-03-01

    Compounds isolated and identified in a culture of the alga-endophytic fungus Talaromyces sp. cf-16 included two naturally occurring alkaloids, 2-[( S)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one ( 1a) and 2-[( R)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one ( 1b), that were identified for the first time. In addition, seven known compounds ( 2- 8) were obtained from the culture. Following chiral column chromatography, compounds 1a and 1b were identified as enantiomers by spectroscopic analyses and quantum chemical calculations. Bioassay results showed that 5 was more toxic to brine shrimp than the other compounds, and that 3- 6 could inhibit Staphylococcus aureus.

  12. Alkaloids from an algicolous strain of Talaromyces sp.

    NASA Astrophysics Data System (ADS)

    Yang, Haibin; Li, Fang; Ji, Naiyun

    2015-09-01

    Compounds isolated and identified in a culture of the alga-endophytic fungus Talaromyces sp. cf-16 included two naturally occurring alkaloids, 2-[(S)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one (1a) and 2-[(R)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one (1b), that were identified for the first time. In addition, seven known compounds (2-8) were obtained from the culture. Following chiral column chromatography, compounds 1a and 1b were identified as enantiomers by spectroscopic analyses and quantum chemical calculations. Bioassay results showed that 5 was more toxic to brine shrimp than the other compounds, and that 3-6 could inhibit Staphylococcus aureus.

  13. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    PubMed Central

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  14. Complete Genome Sequence of Rhodococcus sp. Strain IcdP1 Shows Diverse Catabolic Potential

    PubMed Central

    Qu, Jie; Miao, Li-Li; Liu, Ying

    2015-01-01

    The complete genome sequence of Rhodococcus sp. strain IcdP1 is presented here. This organism was shown to degrade a broad range of high-molecular-weight polycyclic aromatic hydrocarbons and organochlorine pesticides. The sequence data can be used to predict genes for xenobiotic biodegradation and metabolism. PMID:26139718

  15. Draft Genome Sequence of Antarctic Pseudomonas sp. Strain KG01 with Full Potential for Biotechnological Applications

    PubMed Central

    Pavlov, Mara S.; Lira, Felipe; Martnez, Jos L.; Olivares, Jorge

    2015-01-01

    We report here the draft genome sequence of a free-living psychrotolerant, Pseudomonas sp. strain KG01, isolated from an Antarctic soil sample and displaying interesting antimicrobial and surfactant activities. The sequence is 6.3Mb long and includes 5,648 predicted-coding sequences. PMID:26294625

  16. Genome Sequence of the Plant Growth-Promoting Rhizobacterium Bacillus sp. Strain JS

    PubMed Central

    Song, Ju Yeon; Kim, Hyun A; Kim, Ji-Seoung; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su; Kim, Beom Seok; Kim, Sun-Hyung

    2012-01-01

    Volatile and nonvolatile compounds emitted from the plant growth-promoting rhizobacterium Bacillus sp. strain JS enhance the growth of tobacco and lettuce. Here, we report the high-quality genome sequence of this bacterium. Its 4.1-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis. PMID:22740679

  17. Draft Genome Sequence of a Benzo[a]pyrene-Degrading Bacterium, Olleya sp. Strain ITB9.

    PubMed

    Okai, Masahiko; Watanabe, Akihiro; Ishida, Masami; Urano, Naoto

    2015-01-01

    Olleya sp. ITB9 is a benzo[a]pyrene-degrading bacterium, isolated from surface water near a waste treatment plant at Tokyo Bay, Japan. Here, we present the draft genome sequence of this strain, which consists of 58 contigs corresponding to 3.4 Mb and a G+C content of 31.2%. PMID:26564047

  18. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  19. Draft Genome Sequence of Lysinibacillus sp. Strain A1, Isolated from Malaysian Tropical Soil

    PubMed Central

    Chen, Jian Woon; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    In this work, we describe the genome of Lysinibacillus sp. strain A1, which was isolated from tropical soil. Analysis of its genome sequence shows the presence of a gene encoding for a putative peptidase responsible for nitrogen compounds. PMID:25814592

  20. Draft Genome Sequence of Pedobacter sp. Strain NL19, a Producer of Potent Antibacterial Compounds

    PubMed Central

    2015-01-01

    Here, we report the draft genome sequence of Pedobacter sp. strain NL19. The genome has 5.99 Mbp and a G+C content of 39.0%. NL19 was isolated from sludge from an abandoned uranium mine in the north of Portugal, and it produces potent antibacterials against Gram-positive and Gram-negative bacteria. PMID:25814603

  1. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. his organism also cooxidizes several chlorinated biphenyl congeners. iphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of biphenyl ...

  2. Draft Genome Sequence of Sphingomonas sp. WG, a Welan Gum-Producing Strain

    PubMed Central

    Li, Hui; Feng, Zhi-mei; Sun, Ya-jie; Zhou, Wan-long; Jiao, Xue

    2016-01-01

    We report the draft genome sequence of Sphingomonas sp. WG, a high welan gum-producing strain with a yield of 33 g/L. The core of wel cluster for welan gum biosynthesis contained 24 coding sequences in the genome, which will provide the genetic information on welan gum production. PMID:26868397

  3. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    SciTech Connect

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  4. Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942.

    PubMed Central

    Scanlan, D J; Sundaram, S; Newman, J; Mann, N H; Carr, N G

    1995-01-01

    A mutant of the cyanobacterium Synechococcus sp. strain PCC 7942 carrying a disrupted gene encoding glucose-6-phosphate dehydrogenase (zwf) produced no detectable glucose-6-phosphate dehydrogenase as assessed by enzyme assay and Western blot (immunoblot) analysis. This mutant exhibited significantly impaired dark viability. PMID:7730289

  5. Genome Sequence of the Marine Photoheterotrophic Bacterium Erythrobacter sp. Strain NAP1

    PubMed Central

    Koblek, Michal; Janoukovec, Jan; Obornk, Miroslav; Johnson, Justin H.; Ferriera, Steven; Falkowski, Paul G.

    2011-01-01

    Here we report the full genome sequence of marine phototrophic bacterium Erythrobacter sp. strain NAP1. The 3.3-Mb genome contains a full set of photosynthetic genes organized in one 38.9-kb cluster; however, it does not contain genes for CO2 or N2 fixation, thereby confirming that the organism is a photoheterotroph. PMID:21952547

  6. Genome sequence of the marine photoheterotrophic bacterium Erythrobacter sp. strain NAP1.

    PubMed

    Koblzek, Michal; Janouskovec, Jan; Obornk, Miroslav; Johnson, Justin H; Ferriera, Steven; Falkowski, Paul G

    2011-10-01

    Here we report the full genome sequence of marine phototrophic bacterium Erythrobacter sp. strain NAP1. The 3.3-Mb genome contains a full set of photosynthetic genes organized in one 38.9-kb cluster; however, it does not contain genes for CO(2) or N(2) fixation, thereby confirming that the organism is a photoheterotroph. PMID:21952547

  7. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    DOE PAGESBeta

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  8. Genome sequence of Shinella sp. strain DD12, isolated from homogenized guts of starved Daphnia magna.

    PubMed

    Poehlein, Anja; Freese, Heike; Daniel, Rolf; Simeonova, Diliana D

    2016-01-01

    Shinella sp. strain DD12, a novel phosphite assimilating bacterium, has been isolated from homogenized guts of 4 days starved zooplankton Daphnia magna. Here we report the draft genome of this bacterium, which comprises 7,677,812 bp and 7505 predicted protein-coding genes. PMID:26865909

  9. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. Strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, ...

  10. Draft Genome Sequence of Sphingomonas sp. WG, a Welan Gum-Producing Strain.

    PubMed

    Li, Hui; Feng, Zhi-Mei; Sun, Ya-Jie; Zhou, Wan-Long; Jiao, Xue; Zhu, Hu

    2016-01-01

    We report the draft genome sequence of Sphingomonas sp. WG, a high welan gum-producing strain with a yield of 33g/L. The core of wel cluster for welan gum biosynthesis contained 24 coding sequences in the genome, which will provide the genetic information on welan gum production. PMID:26868397

  11. Genome Sequence of Amycolatopsis sp Strain ATCC 39116, a Plant Biomass-Degrading Actinomycete

    SciTech Connect

    Davis, Jennifer R.; Goodwin, Lynne A.; Woyke, Tanja; Teshima, Hazuki; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Shunsheng; Han, James; Pitluck, Sam; Nolan, Matt; Mikhailova, Natalia; Land, Miriam L; Sello, Jason K.

    2012-01-01

    We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.

  12. Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.

    SciTech Connect

    Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

    2014-01-02

    The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

  13. Draft Genome Sequence of Pseudoalteromonas sp. Strain PLSV, an Ulvan-Degrading Bacterium.

    PubMed

    Kopel, Moran; Helbert, William; Henrissat, Bernard; Doniger, Tirza; Banin, Ehud

    2014-01-01

    We present the draft genome sequence of Pseudoalteromonas sp. strain PLSV, isolated from the feces of an Aplysia sea slug. The addition of the PLSV genome to the existing genomes of three other ulvan-degrading bacterial species will enhance our understanding of ulvan utilization. PMID:25502665

  14. Draft Genome Sequence of Pseudoalteromonas sp. Strain PLSV, an Ulvan-Degrading Bacterium

    PubMed Central

    Kopel, Moran; Helbert, William; Henrissat, Bernard; Doniger, Tirza

    2014-01-01

    We present the draft genome sequence of Pseudoalteromonas sp. strain PLSV, isolated from the feces of an Aplysia sea slug. The addition of the PLSV genome to the existing genomes of three other ulvan-degrading bacterial species will enhance our understanding of ulvan utilization. PMID:25502665

  15. Genome Sequence of the Electrogenic Petroleum-Degrading Thalassospira sp. Strain HJ

    PubMed Central

    Kiseleva, Larisa; Garushyants, Sofya K.; Briliute, Justina; Simpson, David J. W.; Goryanin, Igor

    2015-01-01

    We present the draft genome of the petroleum-degrading Thalassospira sp. strain HJ, isolated from tidal marine sediment. Knowledge of this genomic information will inform studies on electrogenesis and means to degrade environmental organic contaminants, including compounds found in petroleum. PMID:25977412

  16. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  17. Draft genome sequence of Rickettsia sp. strain MEAM1, isolated from the whitefly Bemisia tabaci.

    PubMed

    Rao, Qiong; Wang, Shuang; Zhu, Dan-Tong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-09-01

    We report the draft genome sequence of the Rickettsia sp. strain MEAM1, which is a facultative symbiont from an invasive species of the whitefly Bemisia tabaci. The total length of the assembled genome is approximately 1.24 Mb, with 335 scaffolds and 1,247 coding sequences predicted within the genome. PMID:22887655

  18. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    PubMed

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  19. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    PubMed Central

    Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-01-01

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production. PMID:26089422

  20. Draft Genome Sequence of Ammonia-Producing Acinetobacter sp. Strain MCC2139 from Dairy Effluent.

    PubMed

    Chatterjee, Debasmita; Thakur, Ashoke Ranjan; Raychaudhuri, Shaon

    2013-01-01

    We report the draft genome sequence of an ammonia-producing, esculin-hydrolyzing, catalase-positive, gram-negative bacterium, Acinetobacter sp. strain MCC2139. This bacterium, isolated from dairy sludge and with optimum growth at 37C, has a genome size of 2,967,280bp with a G+C content of 42.3%. PMID:23814111

  1. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    EPA Science Inventory

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  2. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  3. Draft Genome Sequence of Alkaliphilic Exiguobacterium sp. Strain HUD, Isolated from a Polymicrobial Consortia

    PubMed Central

    Rout, Simon P.; Rai, Anup

    2015-01-01

    An alkaliphilic microorganism from the genus Exiguobacterium, Exiguobacterium sp. strain HUD was isolated from a fermentative, methanogenic polymicrobial microcosm operating at pH 10. The draft genome shows the presence of genes encoding for the metabolism of a range of carbohydrates under both aerobic and anaerobic conditions. PMID:25614564

  4. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    PubMed Central

    Nguyen, Thi Phi Oanh; De Mot, Ren

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam. PMID:26159535

  5. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2.

    PubMed

    Nguyen, Thi Phi Oanh; De Mot, Ren; Springael, Dirk

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam. PMID:26159535

  6. Draft Genome Sequence of Pseudomonas sp. Strain M47T1, Carried by Bursaphelenchus xylophilus Isolated from Pinus pinaster

    PubMed Central

    Proena, Diogo Neves; Esprito Santo, Christophe; Grass, Gregor

    2012-01-01

    The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified. PMID:22887683

  7. Draft Genome Sequence of Serratia sp. Strain M24T3, Isolated from Pinewood Disease Nematode Bursaphelenchus xylophilus

    PubMed Central

    Proena, Diogo Neves; Esprito Santo, Christophe; Grass, Gregor

    2012-01-01

    Here we report the draft genome sequence of Serratia sp. strain M24T3, which is associated with pinewood nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease. Serratia sp. strain M24T3 has been identified as a bionematocide for B. xylophilus in vitro, and multiple genes potentially involved in virulence and nematotoxity were identified. PMID:22740681

  8. Draft genome sequence of Pseudomonas sp. strain M47T1, carried by Bursaphelenchus xylophilus isolated from Pinus pinaster.

    PubMed

    Proena, Diogo Neves; Esprito Santo, Christophe; Grass, Gregor; Morais, Paula V

    2012-09-01

    The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified. PMID:22887683

  9. Draft genome sequence of Serratia sp. strain M24T3, isolated from pinewood disease nematode Bursaphelenchus xylophilus.

    PubMed

    Proena, Diogo Neves; Esprito Santo, Christophe; Grass, Gregor; Morais, Paula V

    2012-07-01

    Here we report the draft genome sequence of Serratia sp. strain M24T3, which is associated with pinewood nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease. Serratia sp. strain M24T3 has been identified as a bionematocide for B. xylophilus in vitro, and multiple genes potentially involved in virulence and nematotoxity were identified. PMID:22740681

  10. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome

    PubMed Central

    Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains. PMID:25931605

  11. Dissimilatory Iodate Reduction by Marine Pseudomonas sp. Strain SCT?

    PubMed Central

    Amachi, Seigo; Kawaguchi, Nahito; Muramatsu, Yasuyuki; Tsuchiya, Satoshi; Watanabe, Yuko; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-01-01

    Bacterial iodate (IO3?) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 ?M iodate to iodide (I?) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 ?M iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg?1), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg?1). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions. PMID:17644635

  12. Complete genome sequence of thiosulfate-oxidizing Bosea sp. strain PAMC26642 isolated from an Arctic lichen.

    PubMed

    Kang, Seunghyun; Han, So-Ra; Oh, Tae-Jin; Park, Hyun

    2016-04-10

    Thiosulfate-oxidizing Bosea sp. strain PAMC26642 was isolated from the Arctic lichen Stereocaulon sp. Complete genome sequencing of Bosea sp. PAMC26642 revealed several genes involved in thiosulfate oxidation. An analysis of the Bosea sp. PAMC26642 genome will provide novel insight into the genetic basis of its physiology and enable further analysis of key genes in the thiosulfate oxidation pathway. PMID:26924237

  13. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50?g/l of glucose for 72 h resulted in the production of 105?mg/l of butanol, 122?mg/l of acetone, 0.2?g/l of acetic acid, and 2.5?g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80?g/l) under aerobic and anaerobic conditions. Through fermentation with a 50?g/l initial glucose concentration under aerobic conditions, 66?mg/l of butanol, 125?mg/l of acetone, 291?mg/l of ethanol, 5.9?g/l of acetic acid, and 1.2?g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  14. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  15. Complete Genome Sequence of a Polypropylene Glycol-Degrading Strain, Microbacterium sp. No. 7.

    PubMed

    Ohtsubo, Yoshiyuki; Nagata, Yuji; Numata, Mitsuru; Tsuchikane, Kieko; Hosoyama, Akira; Yamazoe, Atsushi; Tsuda, Masataka; Fujita, Nobuyuki; Kawai, Fusako

    2015-01-01

    Microbacterium (formerly Corynebacterium) sp. No. 7 was isolated from activated sludge as a polypropylene glycol (PPG)-assimilating bacterial strain. Its oxidative PPG degradation has been proposed on the basis of PPG dehydrogenase activity and the metabolic products. Here, we report the complete genome sequence of Microbacterium sp. No. 7. The genome of the strain No. 7 is composed of a 4,599,046-bp circular chromosome and two linear plasmids. The whole finishing was conducted in silico with aids of the computational tools GenoFinisher and AceFileViewer. Strain No. 7 is available from the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan). PMID:26659673

  16. Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471

    PubMed Central

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Tian, Rui; Tiwari, Ravi; Howieson, John; Yates, Ronald; OHara, Graham; Ninawi, Mohamed; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976882

  17. Complete Genome Sequence of a Polypropylene Glycol-Degrading Strain, Microbacterium sp. No. 7

    PubMed Central

    Nagata, Yuji; Numata, Mitsuru; Tsuchikane, Kieko; Hosoyama, Akira; Yamazoe, Atsushi; Tsuda, Masataka; Fujita, Nobuyuki; Kawai, Fusako

    2015-01-01

    Microbacterium (formerly Corynebacterium) sp. No. 7 was isolated from activated sludge as a polypropylene glycol (PPG)-assimilating bacterial strain. Its oxidative PPG degradation has been proposed on the basis of PPG dehydrogenase activity and the metabolic products. Here, we report the complete genome sequence of Microbacterium sp. No. 7. The genome of the strain No. 7 is composed of a 4,599,046-bp circular chromosome and two linear plasmids. The whole finishing was conducted in silico with aids of the computational tools GenoFinisher and AceFileViewer. Strain No. 7 is available from the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan). PMID:26659673

  18. Transcriptomes of Frankia sp. strain CcI3 in growth transitions

    PubMed Central

    2011-01-01

    Background Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high. PMID:21867524

  19. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    PubMed Central

    2011-01-01

    Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C). The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry), was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment PMID:22078466

  20. Biodegradation of nicotine by a novel Strain Shinella sp. HZN1 isolated from activated sludge.

    PubMed

    Jiang, Hong J; Ma, Yun; Qiu, Guo J; Wu, Fei L; Chen, Sheng L

    2011-01-01

    The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L(-1) of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine. PMID:21864140

  1. Metabolism of bismuth subsalicylate and intracellular accumulation of bismuth by Fusarium sp. strain BI.

    PubMed

    Dodge, Anthony G; Wackett, Lawrence P

    2005-02-01

    Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-alpha, and beta-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 muM did not limit growth of this organism on glucose. The concentration of soluble bismuth in suspensions of bismuth subsalicylate decreased during growth of Fusarium sp. strain BI. Transmission electron microscopy and energy-dispersive spectroscopy revealed that the accumulated bismuth was localized in phosphorus-rich granules distributed in the cytoplasm and vacuoles. Long-chain polyphosphates were extracted from fresh biomass grown on bismuth subsalicylate, and inductively coupled plasma optical emission spectrometry showed that these fractions also contained high concentrations of bismuth. Enzyme activity assays of crude extracts of Fusarium sp. strain BI showed that salicylate hydroxylase and catechol 1,2-dioxygenase were induced during growth on salicylate, indicating that this organism degrades salicylate by conversion of salicylate to catechol, followed by ortho cleavage of the aromatic ring. Catechol 2,3-dioxygenase activity was not detected. Fusarium sp. strain BI grew with several other aromatic acids as carbon sources: benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, gentisate, d-mandelate, l-phenylalanine, l-tyrosine, phenylacetate, 3-hydroxyphenylacetate, 4-hydroxyphenylacetate, and phenylpropionate. PMID:15691943

  2. Preliminary characterization of the probiotic properties of Candida famata and Geobacillus thermoleovorans

    PubMed Central

    Mahdhi, A; Hmila, Z; Behi, A; Bakhrouf, A

    2011-01-01

    Background and Objective Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance, producing metabolites which inhibit the colonization or growth of other microorganisms or by competing with them for resources such as nutrients or space. The aim of this study was to investigate the probiotic properties of Candida famata and Geobacillus thermoleovorans. Material and Methods In this study, yeast and bacterial strains isolated from pure oil waste were identified using Api 50 CHB and Api Candida Systems and their probiotic properties were studied through antimicrobial activity, biofilm production, adherence assay and enzymatic characterization. Results and Conclusion According to biochemical analyses, these strains corresponded to Geobacillus thermoleovorans and Candida famata. Antagonism assay results showed that the tested strains have an inhibitory effect against tested pathogenic bacteria. The yeast Candida famata was unable to produce biofilm on Congo Red Agar (CRA), while the bacterial strain was a slime producer. Adherence assays to abiotic surfaces revealed that the investigated strains were fairly adhesive to polystyrene with values ranging from 0.18 to 0.34 at 595 nm. The enzymatic characterization revealed that the tested strains expressed enzymes such as phosphatase alkaline, esterase lipase (C8), amylase, lipase, lecitenase and caseinase. The obtained results may allow the isolated strains to be considered as having the potential to be candidate probiotics. PMID:22347595

  3. Submerged culture screening of two strains of Streptomyces sp. with high keratinolytic activity.

    PubMed

    Garcia-Kirchner, O; Bautista-Ramirez, M E; Segura-Granados, M

    1998-01-01

    Keratinases can be used for the production of potentially important hydrolyzed proteins and chemicals. This study investigated the keratinolytic activity of Streptomyces sp on keratinaceous materials like wool. High levels of proteolytic and keratinolytic activity were obtained after 96 h of culture when two Streptomyces sp strains were grown on basal medium containing mineral salts and 3% (w/v) of defatted wool as a source of energy, carbon, and nitrogen. The cell-free culture filtrates exhibited rapid proteolytic digestion of keratin powder. Currently, the authors are testing whether the enzymatic activity obtained is in fact keratinolytic, and not only an alkaline protease activity. PMID:18575997

  4. New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101

    SciTech Connect

    Casellas, M.; Grifoll, M.; Solanas, A.M.

    1997-03-01

    Fluorene is a major component of fossil fuels, is commonly identified in atmosphere, fresh water, and river and marine sediments. Fluorene is highly toxic to fish and aquantic algae and has carcinogenic potential. The Chemical structure of fluorene offers a variety of possibilities for biodegradation. Arthrobacter sp. strain F101 has been shown to grow on fluorene as a sole source of carbon and energy. This study identifies new metabolites and key enzymatic activities that support and extend the pathways previously proposed for the metabolism of fluorene by Arthrobacter sp. 41 refs., 3 figs., 2 tabs.

  5. Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3

    PubMed Central

    Xin, Fengxue; Wu, Yi-Rui

    2014-01-01

    Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin. PMID:24858088

  6. Identification of a Chlorobenzene Reductive Dehalogenase in Dehalococcoides sp. Strain CBDB1?

    PubMed Central

    Adrian, Lorenz; Rahnenfhrer, Jan; Gobom, Johan; Hlscher, Tina

    2007-01-01

    A chlorobenzene reductive dehalogenase of the anaerobic dehalorespiring bacterium Dehalococcoides sp. strain CBDB1 was identified. Due to poor biomass yields, standard protein isolation procedures were not applicable. Therefore, cell extracts from cultures grown on trichlorobenzenes were separated by native polyacrylamide gel electrophoresis and analyzed directly for chlorobenzene reductive dehalogenase activity within gel fragments. Activity was found in a single band, even though electrophoretic separation was performed under aerobic conditions. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and nano-liquid chromatography-MALDI MS analysis of silver-stained replicas of the active band on native polyacrylamide gels identified a protein product of the cbdbA84 gene, now called cbrA. The cbdbA84 gene is one of 32 reductive dehalogenase homologous genes present in the genome of strain CBDB1. The chlorobenzene reductive dehalogenase identified in our study represents a member of the family of corrinoid/iron-sulfur cluster-containing reductive dehalogenases. No orthologs of cbdbA84 were found in the completely sequenced genomes of Dehalococcoides sp. strains 195 and BAV1 nor among the genes amplified from Dehalococcoides sp. strain FL2 or mixed cultures containing Dehalococcoides. Another dehalogenase homologue (cbdbA80) was expressed in cultures that contained 1,2,4-trichlorobenzene, but its role is unclear. Other highly expressed proteins identified with our approach included the major subunit of a protein annotated as formate dehydrogenase, transporter subunits, and a putative S-layer protein. PMID:17933933

  7. Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat.

    PubMed Central

    Cho, K S; Hirai, M; Shoda, M

    1992-01-01

    Xanthomonas sp. strain DY44, capable of degrading H2S, was isolated from dimethyl disulfide-acclimated peat. This bacterium removed H2S either as a single gas or in the presence of the sulfur-containing compounds methanethiol, dimethyl sulfide, and dimethyl disulfide. The maximum specific H2S removal rate, obtained in the late stationary phase, was 3.92 mmol g of dry cells-1 h-1 (6.7 x 10(-16) mol cell-1 h-1) at pH 7 and 30 degrees C through a batch experiment in a basal mineral medium. Since Xanthomonas sp. strain DY44 exhibited no autotrophic growth with H2S, the H2S removal was judged not to be a consequence of chemolithotrophic activity. By using X-ray photoelectron spectroscopy, the metabolic product of H2S oxidation was determined to be polysulfide, which has properties very similar to those of elemental sulfur. Autoclaved cells (120 degrees C, 20 min) did not show H2S degradation, but cells killed by gamma-irradiation and cell extracts both oxidized H2S, suggesting the existence of a heat-labile intracellular enzymatic system for H2S oxidation. When Xanthomonas sp. strain DY44 was inoculated into fibrous peat, this strain degraded H2S without lag time, suggesting that it will be a good candidate for maintaining high H2S removability in the treatment of exhaust gases. PMID:1599238

  8. Production of Proteasome Inhibitor Syringolin A by the Endophyte Rhizobium sp. Strain AP16

    PubMed Central

    Bigler, Laurent; Dudler, Robert

    2014-01-01

    Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts. PMID:24727275

  9. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen.

    PubMed

    Guettler, M V; Rumler, D; Jain, M K

    1999-01-01

    Strain 130ZT was isolated from the bovine rumen. It is a facultatively anaerobic, pleomorphic, Gram-negative rod. It exhibits a 'Morse code' form of morphology, which is characteristic of the genus Actinobacillus. Strain 130ZT is a capnophilic, osmotolerant succinogen that utilizes a broad range of sugars. It accumulates high concentrations of succinic acid (> 70 g l-1). Strain 130ZT is positive for catalase, oxidase, alkaline phosphatase and beta-galactosidase, but does not produce indole or urease. Acid but no gas is produced from D-glucose and D-fructose. 16S rRNA sequence analysis places strain 130ZT within the family Pasteurellaceae; the most closely related members of the family Pasteurellaceae have 16S rRNA similarities of 95.5% or less with strain 130ZT. Strain 130ZT was compared with Actinobacillus lignieresii and the related Bisgaard Taxa 6 and 10. Based upon morphological and biochemical properties, strain 130ZT is most similar to members of the genus Actinobacillus within the family Pasteurellaceae. It is proposed that strain 130ZT be classified as a new species, Actinobacillus succinogenes. The type strain of Actinobacillus succinogenes sp. nov. is ATCC 55618T. PMID:10028265

  10. Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714.

    PubMed Central

    Jrgens, U J; Weckesser, J

    1985-01-01

    Outer membranes, free of cytoplasmic or thylakoid membranes and peptidoglycan components, were obtained from Synechocystis sp. strain PCC6714. Electron microscope studies revealed double-track outer membrane vesicles with a smooth-appearing exoplasmic surface, an exoplasmic fracture face covered by closely packed particles and a corresponding plasmic fracture face with regularly distributed holes. Lipopolysaccharide, proteins, lipids, and carotenoids were the constituents of the outer membrane of Synechocystis sp. PCC6714. Twelve polypeptides were found in outer membrane fractions, among them two dominant outer membrane proteins (Mrs, 67,000 and 61,000). Lipopolysaccharide-specific components were GlcN and an unidentified heptose. Outer membrane lipid extracts contained phosphatidylglycerol, sulfolipid, phosphatidylcholine, and unknown lipids. The carotenoids, myxoxanthophyll, related carotenoid-glycosides, zeaxanthin, echinenone, and beta-carotene were found to be true constituents of the outer membrane of Synechocystis sp. PCC6714. Images PMID:3930470

  11. Isolation of the stable strain Labrys sp. BK-8 for L(+)-tartaric acid production.

    PubMed

    Bao, Wenna; Pan, Haifeng; Zhang, Zhenhong; Cheng, Yongqing; Xie, Zhipeng; Zhang, Jianguo

    2015-05-01

    A novel cis-epoxysuccinate hydrolase (CESH) producing strain of Labrys sp. BK-8 for production of L(+)-tartaric acid was isolated and identified. After optimization, a maximum activity of 3597 151 U/g was achieved in batch culture in a 10 L fermentor. When Labrys sp. BK-8 was immobilized on ?-carrageenan, the immobilized cells showed a high conversion rate (>99%), enantioselectivity (EE > 99.5%) and storage stability (>90 d). A conversion rate of 97% was still achieved after 10 repeat batches. The CESH was stable over a broad range of temperatures (up to 45C) and pH values (4.0-10.0). The Labrys sp. BK-8 isolate provides a new alternative with good stability for the industrial biosynthesis of L(+)-tartaric acid. PMID:25468422

  12. Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents

    SciTech Connect

    Ruby, E.G.; Jannasch, H.W.

    1982-01-01

    Growth of the obligately chemolithotrophic Thiomicrospira sp. strain L-12, isolated from a hydrothermal vent at a depth of 2,550 m in the Galapagos Rift region, was optimal at pH 8 and required 200 mM Na/sup +/ and divalent ions (Ca/sup 2 +/ and Mg/sup 2 +/). The organism was microaerophilic and tolerated 300 ..mu..M sulfide without a decrease in the rate of CO/sub 2/ incorporation. Growth and CO/sub 2/ incorporation occurred within the temperature range of 10 to 35/sup 0/C, with both optimal at 25/sup 0/C. At the in situ pressure of 250 atm, the rate of CO/sub 2/ incorporation was reduced by 25% relative to that measured at 1 atm; it was entirely suppressed at 500 atm. The results of this physiological characterization suggest that Thiomicrospira sp. strain L-12 can be an active autotroph in the hydrothermal environment.

  13. Draft genome sequence of Sphingomonas paucimobilis strain LCT-SP1 isolated from the Shenzhou X spacecraft of China.

    PubMed

    Pan, Lei; Zhou, Hong; Li, Jia; Huang, Bing; Guo, Jun; Zhang, Xue-Lin; Gao, Long-Cheng; Xu, Chou; Liu, Chang-Ting

    2016-01-01

    Sphingomonas paucimobilis strain LCT-SP1 is a glucose-nonfermenting Gram-negative, chemoheterotrophic, strictly aerobic bacterium. The major feature of strain LCT-SP1, isolated from the Chinese spacecraft Shenzhou X, together with the genome draft and annotation are described in this paper. The total size of strain LCT-SP1 is 4,302,226 bp with 3,864 protein-coding and 50 RNA genes. The information gained from its sequence is potentially relevant to the elucidation of microbially mediated corrosion of various materials. PMID:26918090

  14. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    PubMed Central

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  15. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    PubMed

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  16. Noncontiguous finished genome sequence and description of Paenibacillus ihumii sp. nov. strain AT5

    PubMed Central

    Togo, A.H.; Khelaifia, S.; Lagier, J.-C.; Caputo, A.; Robert, C.; Fournier, P.-E.; Maraninchi, M.; Valero, R.; Raoult, D.; Million, M.

    2016-01-01

    Paenibacillus ihumii sp. nov. strain AT5 (= CSUR 1981 = DSM 100664) is the type strain of P. ihumii. This bacterium was isolated from a stool sample from a morbidly obese French patient using the culturomics approach. The genome of this Gram-negative, facultative anaerobic, motile and spore-forming bacillus is 5 924 686 bp long. Genomic analysis identified 253 (5%) of 3812 genes as ORFans and at least 2599 (50.03%) of 5194 orthologous proteins not shared with the closest phylogenetic species. PMID:26958346

  17. Secondary metabolite chemistry of the marine-derived fungus Massarina sp., strain CNT-016.

    PubMed Central

    Abdel-Wahab, Mohamed A.; Asolkar, Ratnakar N.; Inderbitzin, Patrik; Fenical, William

    2009-01-01

    Chemical investigation of the culture broth extracts of the marine-derived fungus Massarina sp. (strain CNT-019) has yielded two new secondary metabolites, spiromassaritone (1) and massariphenone (2), as well as the previously reported fungal metabolites 6-epi-5?-hydroxy-mycosporulone (3) and enalin A (4). The structures of these compounds were established by a variety of one- and two-dimensional NMR experiments, while the relative configuration of spiromassaritone (1) was determined by X-ray crystallographic methods. The fungal strain was isolated as a sterile mycelium from an ocean mud sample and identified using ITS sequence analysis. PMID:17376494

  18. Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1

    PubMed Central

    Krajmalnik-Brown, Rosa; Hölscher, Tina; Thomson, Ivy N.; Saunders, F. Michael; Ritalahti, Kirsti M.; Löffler, Frank E.

    2004-01-01

    Dehalococcoides sp. strain BAV1 couples growth with the reductive dechlorination of vinyl chloride (VC) to ethene. Degenerate primers targeting conserved regions in reductive dehalogenase (RDase) genes were designed and used to PCR amplify putative RDase genes from strain BAV1. Seven unique RDase gene fragments were identified. Transcription analysis of VC-grown BAV1 cultures suggested that bvcA was involved in VC reductive dechlorination, and the complete sequence of bvcA was obtained. bvcA was absent in Dehalococcoides isolates that failed to respire VC, yet was detected in four of eight VC-respiring mixed cultures. PMID:15466590

  19. Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Newly Isolated Carbazole-Degrading Sphingomonas sp. Strain?

    PubMed Central

    Gai, Zhonghui; Yu, Bo; Li, Li; Wang, Ying; Ma, Cuiqing; Feng, Jinhui; Deng, Zixin; Xu, Ping

    2007-01-01

    A carbazole-utilizing bacterium was isolated by enrichment from petroleum-contaminated soil. The isolate, designated Sphingomonas sp. strain XLDN2-5, could utilize carbazole (CA) as the sole source of carbon, nitrogen, and energy. Washed cells of strain XLDN2-5 were shown to be capable of degrading dibenzofuran (DBF) and dibenzothiophene (DBT). Examination of metabolites suggested that XLDN2-5 degraded DBF to 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienic acid and subsequently to salicylic acid through the angular dioxygenation pathway. In contrast to DBF, strain XLDN2-5 could transform DBT through the ring cleavage and sulfoxidation pathways. Sphingomonas sp. strain XLDN2-5 could cometabolically degrade DBF and DBT in the growing system using CA as a substrate. After 40 h of incubation, 90% of DBT was transformed, and CA and DBF were completely removed. These results suggested that strain XLDN2-5 might be useful in the bioremediation of environments contaminated by these compounds. PMID:17337542

  20. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  1. An insertion element prevents phycobilisome synthesis in N2-fixing Synechocystis sp. strain BO 8402.

    PubMed Central

    Brass, S; Ernst, A; Böger, P

    1996-01-01

    The unicellular diazotrophic cyanobacterium Synechocystis sp. strain BO 8402, isolated from Lake Constance, contains a novel insertion sequence, IS8402, in the apcA gene encoding a pigmented protein of phycobilisomes. IS8402 comprises 1,322 bp, flanked by two inverted repeats of 15 bp. Upon insertion in the target DNA, direct duplications of 8 nucleotides were generated. One open reading frame, potentially coding for a protein of 399 amino acids, was found. The deduced amino acid sequence shows homology to putative transposases of the IS4 family. Precise excision of the insertion element resulted in a spontaneous revertant, Synechocystis sp. strain BO 9201, that had regained the ability to form hemidiscoidal phycobilisomes. Apart from the unique insertion of IS8402 into apcA in strain BO 8402 both strains contain at least 12 further homologous insertion elements at corresponding sites in the genomes. The unique insertion in strain BO 8402 prevents the expression of apcABC operon and hence abolishes the formation of intact phycobilisomes. This decreases the quantum efficiency of photosystem II and promotes anaerobic N2 fixation in a unicellular cyanobacterium with a highly oxygen-sensitive nitrogenase. PMID:8787395

  2. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium.

    PubMed

    Horiike, Takumi; Yamashita, Mitsuo

    2015-05-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  3. Two Distinct Monooxygenases for Alkane Oxidation in Nocardioides sp. Strain CF8

    PubMed Central

    Hamamura, Natsuko; Yeager, Chris M.; Arp, Daniel J.

    2001-01-01

    Alkane monooxygenases in Nocardioides sp. strain CF8 were examined at the physiological and genetic levels. Strain CF8 can utilize alkanes ranging in chain length from C2 to C16. Butane degradation by butane-grown cells was strongly inhibited by allylthiourea, a copper-selective chelator, while hexane-, octane-, and decane-grown cells showed detectable butane degradation activity in the presence of allylthiourea. Growth on butane and hexane was strongly inhibited by 1-hexyne, while 1-hexyne did not affect growth on octane or decane. A specific 30-kDa acetylene-binding polypeptide was observed for butane-, hexane-, octane-, and decane-grown cells but was absent from cells grown with octane or decane in the presence of 1-hexyne. These results suggest the presence of two monooxygenases in strain CF8. Degenerate primers designed for PCR amplification of genes related to the binuclear-iron-containing alkane hydroxylase from Pseudomonas oleovorans were used to clone a related gene from strain CF8. Reverse transcription-PCR and Northern blot analysis showed that this gene encoding a binuclear-iron-containing alkane hydroxylase was expressed in cells grown on alkanes above C6. These results indicate the presence of two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. PMID:11679317

  4. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru.

    PubMed

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmn Moreno, Csar Wilber; Carreo Farfn, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico; Gomez, Jos Gregrio Cabrera

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487bp long, with a G+C content of 68%. PMID:26798101

  5. Three Replicons of Rhizobium sp. Strain NGR234 Harbor Symbiotic Gene Sequences

    PubMed Central

    Flores, Margarita; Mavingui, Patrick; Girard, Lourdes; Perret, Xavier; Broughton, William J.; Martnez-Romero, Esperanza; Dvila, Guillermo; Palacios, Rafael

    1998-01-01

    Rhizobium sp. strain NGR234 contains three replicons: the symbiotic plasmid or pNGR234a, a megaplasmid (pNGR234b), and the chromosome. Symbiotic gene sequences not present in pNGR234a were analyzed by hybridization. DNA sequences homologous to the genes fixLJKNOPQGHIS were found on the chromosome, while sequences homologous to nodPQ and exoBDFLK were found on pNGR234b. PMID:9811668

  6. Transformation of Acinetobacter sp. Strain BD413 by Transgenic Sugar Beet DNA

    PubMed Central

    Gebhard, Frank; Smalla, Kornelia

    1998-01-01

    The ability of Acinetobacter sp. strain BD413(pFG4?nptII) to take up and integrate transgenic plant DNA based on homologous recombination was studied under optimized laboratory conditions. Restoration of nptII, resulting in kanamycin-resistant transformants, was observed with plasmid DNA, plant DNA, and homogenates carrying the gene nptII. Molecular analysis showed that some transformants not only restored the 317-bp deletion but also obtained additional DNA. PMID:9546192

  7. Production and Rheological Properties of the Extracellular Polysaccharide Synthesized by Pseudomonas sp. Strain EPS-5028

    PubMed Central

    Marqus, Ana M.; Estaol, Inmaculada; Alsina, Joan M.; Fust, Carmen; Simon-Pujol, Dolores; Guinea, Jess; Congregado, Francisco

    1986-01-01

    During batch aerobic submerged fermentation, the exopolysaccharide synthesis by Pseudomonas sp. strain EPS-5028 occurred in growth- and non-growth-linked processes. Polysaccharide formation increased when the pH was controlled at 7 during fermentation. Exopolysaccharide production depended on the phosphate content of the medium. The polymer exhibited a pseudoplastic nature, had good thermostability, and was affected neither by pH nor by high concentrations of salt. PMID:16347222

  8. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  9. Isolation of Regulated Genes of the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Differential Display†

    PubMed Central

    Bhaya, Devaki; Vaulot, Daniel; Amin, Pinky; Takahashi, Akiko Watanabe; Grossman, Arthur R.

    2000-01-01

    Global identification of differentially regulated genes in prokaryotes is constrained because the mRNA does not have a 3′ polyadenylation extension; this precludes specific separation of mRNA from rRNA and tRNA and synthesis of cDNAs from the entire mRNA population. Knowledge of the entire genome sequence of Synechocystis sp. strain PCC 6803 has enabled us to develop a differential display procedure that takes advantage of a short palindromic sequence that is dispersed throughout the Synechocystis sp. strain PCC 6803 genome. This sequence, designated the HIP (highly iterated palindrome) element, occurs in approximately half of the Synechocystis sp. strain PCC 6803 genes but is absent in rRNA and tRNA genes. To determine the feasibility of exploiting the HIP element, alone or in combination with specific primer subsets, for analyzing differential gene expression, we used HIP-based primers to identify light intensity-regulated genes. Several gene fragments, including those encoding ribosomal proteins and phycobiliprotein subunits, were differentially amplified from RNA templates derived from cells grown in low light or exposed to high light for 3 h. One novel finding was that expression of certain genes of the pho regulon, which are under the control of environmental phosphate levels, were markedly elevated in high light. High-light activation of pho regulon genes correlated with elevated growth rates that occur when the cells are transferred from low to high light. These results suggest that in high light, the rate of growth of Synechocystis sp. strain PCC 6803 exceeds its capacity to assimilate phosphate, which, in turn, may trigger a phosphate starvation response and activation of the pho regulon. PMID:11004166

  10. Isolation and Characterization of Canthaxanthin Biosynthesis Genes from the Photosynthetic Bacterium Bradyrhizobium sp. Strain ORS278

    PubMed Central

    Hannibal, Laure; Lorquin, Jean; D'Ortoli, Nicolas Angles; Garcia, Nelly; Chaintreuil, Clemence; Masson-Boivin, Catherine; Dreyfus, Bernard; Giraud, Eric

    2000-01-01

    A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies. PMID:10851005

  11. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4

    PubMed Central

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma, Deepak

    2013-01-01

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores. PMID:24309733

  12. Toluene and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4

    SciTech Connect

    Lee, K.; Gibson, D.T.

    1996-09-01

    Naphthalene dioxygenase (NDO) catalyzes the first reaction in the aerobic catabolism of naphthalene by Pseudomonas sp strain NCIB 9816-4. Studies suggest that the enzyme may oxidize aromatic hydrocarbons such as toluene and ethylbenzene at the alkyl substituents rather than the aromatic nucleus. This paper reports on multiple pathways for the oxidation of the methyl and thyl groups of toluene and ethylbenzene by NDO. 47 refs., 6 figs., 3 tabs.

  13. Draft genome sequences of the biocontrol bacterium Mitsuaria sp. strain H24L5A.

    PubMed

    Rong, Xiaoqing; Gurel, Fulya Baysal; Meulia, Tea; McSpadden Gardener, Brian B

    2012-02-01

    Mitsuaria sp. strain H24L5A is a plant-associated bacterium with proven capacities to suppress plant pathogens. Here, we report the draft genome sequences and automatic annotation of H24L5A. Comparative genomic analysis indicates H24L5A's similarity to the Leptothrix and Methylibium species, as well as several genes potentially contributing to its biocontrol activities. PMID:22247532

  14. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru

    PubMed Central

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmán Moreno, César Wilber; Carreño Farfán, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487 bp long, with a G+C content of 68%. PMID:26798101

  15. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B.

    PubMed Central

    Gilbert, E S; Crowley, D E

    1997-01-01

    Plant compounds that induced Arthrobacter sp. strain B1B to cometabolize polychlorinated biphenyls (PCBs) were identified by a screening assay based on the formation of a 4,4'-dichlorobiphenyl ring fission product. A chemical component of spearmint (Mentha spicata), l-carvone, induced Arthrobacter sp. strain B1B to cometabolize Aroclor 1242, resulting in significant degradation of 26 peaks in the mixture, including selected tetra- and pentachlorobiphenyls. Evidence for PCB biodegradation included peak disappearance, formation of a phenylhexdienoate ring fission product, and chlorobenzoate accumulation in the culture supernatant. Carvone was not utilized as a growth substrate and was toxic at concentrations of greater than 500 mg liter-1. Several compounds structurally related to l-carvone, including limonene, p-cymene, and isoprene, also induced cometabolism of PCBs by Arthrobacter sp. strain B1B. A structure-activity analysis showed that chemicals with an unsaturated p-menthane structural motif promoted the strongest cometabolism activity. These data suggest that certain plant-derived terpenoids may be useful for promoting enhanced rates of PCB biodegradation by soil bacteria. PMID:9143124

  16. Conversion of the Pseudomonas aeruginosa Quinolone Signal and Related Alkylhydroxyquinolines by Rhodococcus sp. Strain BG43

    PubMed Central

    Müller, Christine; Birmes, Franziska S.; Niewerth, Heiko

    2014-01-01

    A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule. PMID:25239889

  17. Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1.

    PubMed

    Iino, Takao; Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2015-03-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe(0)) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe(0) oxidation. In this study, we describe Fe(0) corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe(0) as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe(0)-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe(0) concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe(0) foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe(0) to reduce nitrate. PMID:25548048

  18. Iron Corrosion Induced by Nonhydrogenotrophic Nitrate-Reducing Prolixibacter sp. Strain MIC1-1

    PubMed Central

    Ito, Kimio; Wakai, Satoshi; Tsurumaru, Hirohito; Ohkuma, Moriya; Harayama, Shigeaki

    2014-01-01

    Microbiologically influenced corrosion (MIC) of metallic materials imposes a heavy economic burden. The mechanism of MIC of metallic iron (Fe0) under anaerobic conditions is usually explained as the consumption of cathodic hydrogen by hydrogenotrophic microorganisms that accelerates anodic Fe0 oxidation. In this study, we describe Fe0 corrosion induced by a nonhydrogenotrophic nitrate-reducing bacterium called MIC1-1, which was isolated from a crude-oil sample collected at an oil well in Akita, Japan. This strain requires specific electron donor-acceptor combinations and an organic carbon source to grow. For example, the strain grew anaerobically on nitrate as a sole electron acceptor with pyruvate as a carbon source and Fe0 as the sole electron donor. In addition, ferrous ion and l-cysteine served as electron donors, whereas molecular hydrogen did not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MIC1-1 was a member of the genus Prolixibacter in the order Bacteroidales. Thus, Prolixibacter sp. strain MIC1-1 is the first Fe0-corroding representative belonging to the phylum Bacteroidetes. Under anaerobic conditions, Prolixibacter sp. MIC1-1 corroded Fe0 concomitantly with nitrate reduction, and the amount of iron dissolved by the strain was six times higher than that in an aseptic control. Scanning electron microscopy analyses revealed that microscopic crystals of FePO4 developed on the surface of the Fe0 foils, and a layer of FeCO3 covered the FePO4 crystals. We propose that cells of Prolixibacter sp. MIC1-1 accept electrons directly from Fe0 to reduce nitrate. PMID:25548048

  19. Engineering resistance to phage GVE3 in Geobacillus thermoglucosidasius.

    PubMed

    van Zyl, Leonardo Joaquim; Taylor, Mark Paul; Trindade, Marla

    2016-02-01

    Geobacillus thermoglucosidasius is a promising platform organism for the production of biofuels and other metabolites of interest. G. thermoglucosidasius fermentations could be subject to bacteriophage-related failure and financial loss. We develop two strains resistant to a recently described G. thermoglucosidasius-infecting phage GVE3. The phage-encoded immunity gene, imm, was overexpressed in the host leading to phage resistance. A phage-resistant mutant was isolated following expression of a putative anti-repressor-like protein and phage challenge. A point mutation was identified in the polysaccharide pyruvyl transferase, csaB. A double crossover knockout mutation of csaB confirmed its role in the phage resistance phenotype. These resistance mechanisms appear to prevent phage DNA injection and/or lysogenic conversion rather than just reducing efficiency of plating, as no phage DNA could be detected in resistant bacteria challenged with GVE3 and no plaques observed even at high phage titers. Not only do the strains developed here shed light on the biological relationship between the GVE3 phage and its host, they could be employed by those looking to make use of this organism for metabolite production, with reduced occurrence of GVE3-related failure. PMID:26536875

  20. Monooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1

    SciTech Connect

    Hage, J.C.; Hartmans, S.

    1999-06-01

    A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a K{sub m} value below the detection limit of 0.5 {micro}M. Instead of a hydrolytic dehalogenation, as in other DCA utilizers, the first step in DCA degradation in strain DCA1 is an oxidation reaction. Oxygen and NAD(P)H are required for this initial step. Propene was converted to 1,2-epoxypropane by DCA-grown cells and competitively inhibited DCA degradation. The authors concluded that a monooxygenase is responsible for the first step in DCA degradation in strain DCA1. Oxidation of DCA probably results in the formation of the unstable intermediate 1,2-dichloroethanol, which spontaneously releases chloride, yielding chloroacetaldehyde. The DCA degradation pathway is strain DCA1 proceeds from chloroacetaldehyde via chloroacetic acid and presumably glycolic acid, which is similar to degradation routes observed in other DCA-utilizing bacteria.

  1. Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations.

    PubMed

    Snauwaert, Isabel; Papalexandratou, Zoi; De Vuyst, Luc; Vandamme, Peter

    2013-05-01

    Six facultatively anaerobic, non-motile lactic acid bacteria were isolated from spontaneous cocoa bean fermentations carried out in Brazil, Ecuador and Malaysia. Phylogenetic analysis revealed that one of these strains, designated M75(T), isolated from a Brazilian cocoa bean fermentation, had the highest 16S rRNA gene sequence similarity towards Weissella fabaria LMG 24289(T) (97.7%), W. ghanensis LMG 24286(T) (93.3%) and W. beninensis LMG 25373(T) (93.4%). The remaining lactic acid bacteria isolates, represented by strain M622, showed the highest 16S rRNA gene sequence similarity towards the type strain of Fructobacillus tropaeoli (99.9%), a recently described species isolated from a flower in South Africa. pheS gene sequence analysis indicated that the former strain represented a novel species, whereas pheS, rpoA and atpA gene sequence analysis indicated that the remaining five strains belonged to F. tropaeoli; these results were confirmed by DNA-DNA hybridization experiments towards their respective nearest phylogenetic neighbours. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry proved successful for the identification of species of the genera Weissella and Fructobacillus and for the recognition of the novel species. We propose to classify strain M75(T) (?=?LMG 26217(T) ?=?CCUG 61472(T)) as the type strain of the novel species Weissella fabalis sp. nov. PMID:22922535

  2. High-quality permanent draft genome sequence of Bradyrhizobium sp. strain WSM1743 - an effective microsymbiont of an Indigofera sp. growing in Australia.

    PubMed

    Eshraghi, Leila; De Meyer, Sofie E; Tian, Rui; Seshadri, Rekha; Ivanova, Natalia; Pati, Amrita; Markowitz, Victor; Woyke, Tanja; Kyrpides, Nikos C; Tiwari, Ravi; Yates, Ron; Howieson, John; Reeve, Wayne

    2015-01-01

    Bradyrhizobium sp. strain WSM1743 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of an Indigofera sp. WSM1743 was isolated from a nodule recovered from the roots of an Indigofera sp. growing 20km north of Carnarvon in Australia. It is slow growing, tolerates up to 1% NaCl and is capable of growth at 37C. Here we describe the features of Bradyrhizobium sp. strain WSM1743, together with genome sequence information and its annotation. The 8,341,956bp high-quality permanent draft genome is arranged into 163 scaffolds and 167 contigs, contains 7908 protein-coding genes and 75 RNA-only encoding genes and was sequenced as part of the Root Nodule Bacteria chapter of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:26512312

  3. Draft Genome Sequence of Paenibacillus sp. Strain MSt1 with Broad Antimicrobial Activity, Isolated from Malaysian Tropical Peat Swamp Soil

    PubMed Central

    Ong, Kuan Shion; Yule, Catherine M.; Gan, Han Ming; Lee, Sui Mae

    2014-01-01

    We report the draft genome sequence of Paenibacillus sp. strain MSt1, which has broad-range antimicrobial activity, isolated from tropical peat swamp soil. Genes involved in antimicrobial biosynthesis are found to be present in this genome. PMID:25301658

  4. Draft Genome Sequence of Paenibacillus sp. Strain MSt1 with Broad Antimicrobial Activity, Isolated from Malaysian Tropical Peat Swamp Soil.

    PubMed

    Aw, Yoong Kit; Ong, Kuan Shion; Yule, Catherine M; Gan, Han Ming; Lee, Sui Mae

    2014-01-01

    We report the draft genome sequence of Paenibacillus sp. strain MSt1, which has broad-range antimicrobial activity, isolated from tropical peat swamp soil. Genes involved in antimicrobial biosynthesis are found to be present in this genome. PMID:25301658

  5. Complete Genome Sequence of the Cyanogenic Phosphate-Solubilizing Pseudomonas sp. Strain CCOS 191, a Close Relative of Pseudomonas mosselii

    PubMed Central

    Pothier, Joël F.; Ruinelli, Michela; Blom, Jochen; Frasson, David; Koechli, Chantal; Fabbri, Carlotta; Brandl, Helmut; Duffy, Brion; Sievers, Martin

    2015-01-01

    We sequenced the complete genome of the isolate Pseudomonas sp. CCOS 191. This strain is able to dissolve phosphate minerals and form cyanide. The genome sequence is used to establish the phylogenetic relationship of this species. PMID:26067963

  6. Identification, Purification and Characterization of Laterosporulin, a Novel Bacteriocin Produced by Brevibacillus sp. Strain GI-9

    PubMed Central

    Singh, Pradip Kumar; Chittpurna; Ashish; Sharma, Vikas; Patil, Prabhu B.; Korpole, Suresh

    2012-01-01

    Background Bacteriocins are antimicrobial peptides that are produced by bacteria as a defense mechanism in complex environments. Identification and characterization of novel bacteriocins in novel strains of bacteria is one of the important fields in bacteriology. Methodology/Findings The strain GI-9 was identified as Brevibacillus sp. by 16 S rRNA gene sequence analysis. The bacteriocin produced by strain GI-9, namely, laterosporulin was purified from supernatant of the culture grown under optimal conditions using hydrophobic interaction chromatography and reverse-phase HPLC. The bacteriocin was active against a wide range of Gram-positive and Gram-negative bacteria. MALDI-TOF experiments determined the precise molecular mass of the peptide to be of 5.6 kDa and N-terminal sequencing of the thermo-stable peptide revealed low similarity with existing antimicrobial peptides. The putative open reading frame (ORF) encoding laterosporulin and its surrounding genomic region was fished out from the draft genome sequence of GI-9. Sequence analysis of the putative bacteriocin gene did not show significant similarity to any reported bacteriocin producing genes in database. Conclusions We have identified a bacteriocin producing strain GI-9, belonging to the genus Brevibacillus sp. Biochemical and genomic characterization of laterosporulin suggests it as a novel bacteriocin with broad spectrum antibacterial activity. PMID:22403615

  7. Genome Sequence of a Typical Ultramicrobacterium, Curvibacter sp. Strain PAE-UM, Capable of Phthalate Ester Degradation

    PubMed Central

    Ma, Dan; Hao, Zhenyu; Sun, Rui

    2016-01-01

    Curvibacter sp. strain PAE-UM, isolated from river sediment, is a typical ultramicrobacterium capable of phthalate ester degradation. The genome of Curvibacter sp. PAE-UM consists of 3,284,473 bp, and its information will provide insights into the molecular mechanisms underlying its degradation ability. PMID:26769923

  8. Draft Genome Sequence of a Quorum-Sensing Bacterium, Dickeya sp. Strain 2B12, Isolated from a Freshwater Lake

    PubMed Central

    Tan, Kian-Hin; Sheng, Kit-Yeng; Chang, Chien-Yi; Yin, Wai-Fong

    2015-01-01

    Dickeya sp. strain 2B12 was isolated from a freshwater lake in Malaysia. Here, we report the draft genome sequence of Dickeya sp. 2B12 sequenced by the Illumina MiSeq platform. With the genome sequence available, this genome sequence will be useful for the study of quorum-sensing activity in this isolate. PMID:25657288

  9. Novel Antiphytopathogenic Compound 2-Heptyl-5-Hexylfuran-3-Carboxylic Acid, Produced by Newly Isolated Pseudomonas sp. Strain SJT25 ?

    PubMed Central

    Wang, Xiao-Ying; Xu, Yu-Quan; Lin, Shuang-Jun; Liu, Zhen-Zhen; Zhong, Jian-Jiang

    2011-01-01

    Pseudomonas sp. strain SJT25, which strongly antagonizes plant pathogens, was isolated from rice rhizosphere soil by a bioactivity-guided approach. A novel antiphytopathogenic compound was isolated from the fermentation broth of Pseudomonas sp. SJT25 and identified as 2-heptyl-5-hexylfuran-3-carboxylic acid. This compound showed antimicrobial activities both in vitro and in vivo. PMID:21742907

  10. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala. PMID:18406559

  11. Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat

    SciTech Connect

    Cho, Kyeoungsuk; Hirai, Mitsuyo; Shoda, Makoto )

    1992-04-01

    Xanthomonas sp. strain DY44, capable of degrading H{sub 2}S, was isolated from dimethyl disulfide-acclimated peat. This bacterium removed H{sub 2}S either as a single gas or in the presence of the sulfur-containing compounds methanethiol, dimethyl sulfide, and dimethyl disulfide. The maximum specific H{sub 2}S removal rate, obtained in the late stationary phase, was 3.92 mmol g of dry cells{sup {minus}1}h{sup {minus}1} (6.7 {times} 10{sup {minus}16} mol cell{sup {minus}1}h{sup {minus}1}) at pH 7 and 30C through a batch experiment in a basal mineral medium. Since Xanthomonas sp. Strain DY44 exhibited no autotrophic growth with H{sub 2}S, the H{sub 2}S removal was judged not to be a consequence of chemolithotrophic activity. By using x-ray photoelectron spectroscopy, the metabolic product of H{sub 2}S oxidation was determined to be polysulfide, which has properties very similar to those of elemental sulfur. Autoclaved cells (120C, 20 min) did not show H{sub 2}S degradation, but cells killed by {gamma}-irradiation and cell extracts both oxidized H{sub 2}S, suggesting the existence of a heat-labile intracellular enzymatic system for H{sub 2}S oxidation. When Xanthomonas sp. strain DY44 was inoculated into fibrous peat, this strain degraded H{sub 2}S without lag time, suggesting that it will be a good candidate for maintaining high H{sub 2}S removability in the treatment of exhaust gases.

  12. Survival of the anaerobic fungus Orpinomyces sp. strain C1A after prolonged air exposure

    PubMed Central

    Struchtemeyer, Christopher G.; Ranganathan, Abhaya; Couger, M. B.; Liggenstoffer, Audra S.; Youssef, Noha H.; Elshahed, Mostafa S.

    2014-01-01

    Anaerobic fungi are efficient plant biomass degraders and represent promising agents for a variety of biotechnological applications. We evaluated the tolerance of an anaerobic fungal isolate, Orpinomyces sp. strain C1A, to air exposure in liquid media using soluble (cellobiose) and insoluble (dried switchgrass) substrates. Strain C1A grown on cellobiose survived for 11, and 13.5 hours following air exposure when grown under planktonic, and immobilized conditions, respectively. When grown on switchgrass media, strain C1A exhibited significantly enhanced air tolerance and survived for 168 hours. The genome of strain C1A lacked a catalase gene, but contained superoxide dismutase and glutathione peroxidase genes. Real time PCR analysis indicated that superoxide dismutase, but not glutathione peroxidase, exhibits a transient increase in expression level post aeration. Interestingly, the C1A superoxide dismutase gene of strain C1A appears to be most closely related to bacterial SODs, which implies its acquisition from a bacterial donor via cross kingdom horizontal gene transfer during Neocallimastigomycota evolution. We conclude that strain C1A utilizes multiple mechanisms to minimize the deleterious effects of air exposure such as physical protection and the production of oxidative stress enzymes. PMID:25367149

  13. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov.

    PubMed Central

    Trujillo, Martha E.; Willems, Anne; Abril, Adriana; Planchuelo, Ana-Mara; Rivas, Ral; Ludea, Dolores; Mateos, Pedro F.; Martnez-Molina, Eustoquio; Velzquez, Encarna

    2005-01-01

    The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the ?-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to ? and ? subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain. PMID:15746334

  14. The sll1951 Gene Encodes the Surface Layer Protein of Synechocystis sp. Strain PCC 6803

    PubMed Central

    Trautner, Christoph

    2013-01-01

    Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ∼30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium. PMID:24078613

  15. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1.

    PubMed

    Myeong, Nu Ri; Seong, Hoon Je; Kim, Hye-Jin; Sul, Woo Jun

    2016-04-10

    Massilia sp. NR 4-1 was a violacein producing strain newly isolated from topsoil under nutmeg tree, Torreya nucifera in Korean national monument Bijarim Forest. Violacein is a novel class of drug exhibiting anticancer and antibiotic activities originated from l-tryptophan. Here, we present the complete genome of Massilia sp. strain NR 4-1 of 6,361,416bp and total 5285 coding sequences (CDSs) including a complete violacein biosynthesis pathway, vioABCDE. The genome sequence of Massilia sp. NR 4-1 will provide stable and efficient biotechnological applications of violacein production. PMID:26916415

  16. Isolation, identification and computational studies on Pseudomonas aeruginosa sp. strain MPC1 in tannery effluent

    PubMed Central

    Senthil, Renganathan; Angel, Kanagamani Jini; Malathi, Ravi; Venkatesan, Dhanapal

    2011-01-01

    A study about isolation, identification and analysis of bacteria in waste water. Here the tannery effluent used as a sample for the entire analysis. A bacterial strain, designated MPC1 was isolated from a waste water sample collected from tannery effluent, Trichy, India and identified using a molecular approach. On the basis of the bacterial 16s rRNA gene sequence phylogeny and comparison of this gene sequence with sequence in RNA sequence database, it is considered that isolate is closely related to members of the Pseudomonas aeruginosa Sp. Phylogenetic and molecular evolutionary analyses were conducted using MEGA. Identification of regulatory elements and Transcription Factor with their binding sites in 16S rRNA gene of Pseudomonas aeruginosa mpc1 was performed using BPROM tool. The sequence of 16s rRNA (Pseudomonas aeruginosa sp MPC 1) is submitted to Genbank in NCBI database (Ac.No-JF708077). PMID:21738311

  17. Draft genome sequence of Paenibacillus algorifonticola sp. nov., an antimicrobial-producing strain.

    PubMed

    Zhu, Liying; Wu, Qian; Xu, Qing; Xu, Xian; Jiang, Ling; Huang, He

    2015-09-01

    Paenibacillus algorifonticola sp. nov. is isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region (China), a novel strain that can produce antimicrobial substance against human pathogenic bacteria and fungi, including Staphylococcus aureus and Candida albicans. Here we report a 7.60-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for the biosynthesis of antibacterial factors, anaerobic respiration and several immune-associated reactions. Also, prospective studies on P. algorifonticola sp. nov. in the cold spring might offer a potential source for the discovery of bioactive compounds with medical value. The data repository is deposited on the website http://www.ncbi.nlm.nih.gov/nuccore/LAQO00000000 and the accession number is LAQO00000000. PMID:26484273

  18. Complete genome sequence of ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 isolated from an Arctic lichen.

    PubMed

    Ahn, Do-Hwan; Han, So-Ra; Oh, Tae-Jin; Park, Hyun

    2016-04-10

    Ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 was isolated from Stereocaulon sp., an Arctic lichen. Complete genome sequencing of Hymenobacter sp. PAMC26628 revealed one chromosome (5,277,381bp), one plasmid (89,596bp), and several genes involved in nucleotide excision repair, a DNA damage removal pathway. An analysis of the Hymenobacter sp. PAMC26628 genome will help us understand its evolution and provide novel insight into the adaptations that allow this organism to survive in the extreme cold of the Arctic. PMID:26924242

  19. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.

    PubMed

    She, Bojia; Tao, Xueqin; Huang, Ting; Lu, Guining; Zhou, Zhili; Guo, Chuling; Dang, Zhi

    2016-03-01

    Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp. GY2B were investigated in the present study. Results showed that the addition of NBC could improve the phenanthrene removal by Sphingomonas sp. GY2B, with removal efficiencies increased by 10.29-18.56% in comparison to the control at 24h, and phenanthrene was almost completely removed at 48h. With the presence of low dose of NBC (20 and 50mgL(-1)), strain GY2B displayed a better growth at 6h, suggesting that NBC was beneficial to the growth of GY2B and thus resulting in the quick removal of phenanthrene from water. However, the growth of strain GY2B in high dose of NBC (200mgL(-1)) was inhibited at 6h, and the inhibition could be attenuated and eliminated after 12h. NBC-effected phenanthrene solubility experiment suggested that NBC makes a negligible contribution to the solubilization of phenanthrene in water. Results of electronic microscopy analysis (SEM and TEM) indicated NBC may interact with the cell membrane, causing the enhanced membrane permeability and then NBC adsorbed on the membrane would enter into the cells. The findings of this work would provide important information for the future usage and long-term environmental risk assessment of NBC. PMID:26655231

  20. Short chain N-acyl homoserine lactone production by soil isolate Burkholderia sp. strain A9.

    PubMed

    Chen, Jian Woon; Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N-hexanoylhomoserine lactone (C6-HSL) and N-octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs. PMID:24084115

  1. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway.

    PubMed

    Ricken, Benjamin; Fellmann, Oliver; Kohler, Hans-Peter E; Schffer, Andreas; Corvini, Philippe Franois-Xavier; Kolvenbach, Boris Alexander

    2015-12-25

    Microbacterium sp. strain BR1 is among the first bacterial isolates which were proven to degrade sulfonamide antibiotics. The degradation is initiated by an ipso-substitution, initiating the decay of the molecule into sulfur dioxide, the substrate specific heterocyclic moiety as a stable metabolite and benzoquinone imine. The latter appears to be instantaneously reduced to p-aminophenol, as that in turn was detected as the first stable intermediate. This study investigated the downstream pathway of sulfonamide antibiotics by testing the strain's ability to degrade suspected intermediates of this pathway. While p-aminophenol was degraded, degradation products could not be identified. Benzoquinone was shown to be degraded to hydroquinone and hydroquinone in turn was shown to be degraded to 1,2,4-trihydroxybenzene. The latter is assumed to be the potential substrate for aromatic ring cleavage. However, no products from the degradation of 1,2,4-trihydroxybenzene could be identified. There are no signs of accumulation of intermediates causing oxidative stress, which makes Microbacterium sp. strain BR1 an interesting candidate for industrial waste water treatment. PMID:25796473

  2. Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium.

    PubMed

    Manickam, Natesan; Singh, Nitin Kumar; Bajaj, Abhay; Kumar, Rajendran Mathan; Kaur, Gurwinder; Kaur, Navjot; Bala, Monu; Kumar, Anand; Mayilraj, Shanmugam

    2014-07-01

    The taxonomic position of a Gram-positive, endospore-forming bacterium isolated from soil sample collected from an industrial site was analyzed by a polyphasic approach. The strain designated as IITR-54T matched most of the phenotypic and chemical characteristics of the genus Bacillus and represents a novel species. It was found to biodegrade 4-chlorobiphenyl through dechlorination and was isolated through enrichment procedure from an aged polychlorinated biphenyl-contaminated soil. Both resting cell assay and growth under aerobic liquid conditions using 4-chlorobiphenyl as sole source of carbon along with 0.01% yeast extract, formation of chloride ions was measured. 16S rRNA (1,489 bases) nucleotide sequence of isolated strain was compared with those of closely related Bacillus type strains and confirmed that the strain belongs to the genus Bacillus. Strain IITR-54T differs from all other species of Bacillus by at least 2.1% at the 16S rRNA level, and the moderately related species are Bacillus oceanisediminis (97.9%) followed by Bacillus infantis (97.7%), Bacillus firmus (97.4%), Bacillus drentensis (97.3%), Bacillus circulans (97.2%), Bacillus soli (97.1%), Bacillus horneckiae (97.1%), Bacillus pocheonensis (97.1%) and Bacillus bataviensis (97.1%), respectively. The cell wall peptidoglycan contained meso-diaminopimelic acid and the major isoprenoid quinone was MK-7. Major fatty acids are iso-C15:0 (32.4%) and anteiso-C15:0 (27.4%). Predominant polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The results of physiological and biochemical tests allowed the genotypic and phenotypic distinctiveness of strain IITR-54T with its phylogenetic relatives and suggest that the strain IITR-54T should be recognized as a novel species, for which the name Bacillus mesophilum sp. nov. is proposed. The type strain is IITR-54T (=MTCC 11060T=JCM 19208T). PMID:24807729

  3. Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7.

    PubMed

    Ma, Yun; Wei, Yin; Qiu, Jiguo; Wen, Rongti; Hong, Jun; Liu, Weiping

    2014-03-01

    Nicotine is a significant toxic waste generated in tobacco manufacturing. Biological methods for the degradation of nicotine waste are in high demand. In this study, we report the identification and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. This strain can degrade 500 mg/L nicotine completely within 3 h at 30 C and pH values of 6.5???8.0. The biodegradation of nicotine by Shinella sp. HZN7 involves five intermediate metabolites: 6-hydroxy-nicotine (6HN), 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine (6HPON), 6-hydroxy-3-succinoyl-pyridine (HSP), and 2,5-dihydroxypyridine, as detected by ultraviolet spectrophotometry, HPLC, and LC-MS. We generated three mutants, N7-W18, N7-X5, and N7-M17, by transposon mutagenesis, in which the nicotine-degrading pathway terminated at 6HN, 6HPON, and HSP, respectively. The production of the five intermediate metabolites and their order in the degradation pathway were confirmed in the three mutants, indicating that strain HZN7 degrades nicotine via a variant of the pyridine and pyrrolidine pathways. The mutant gene from strain N7-X5, orf2, was cloned by self-formed adaptor PCR, but the nucleotide and amino acid sequence showed no similarity to any gene or gene product with defined function. However, orf2 disruption and complementation suggested that the orf2 gene is essential for the conversion of 6HPON to HSP in strain HZN7. This is the first study to provide genetic evidence for this variant nicotine degradation pathway. PMID:24026891

  4. Chemoheterotrophic growth of the Cyanobacterium Anabaena sp. strain PCC 7120 dependent on a functional cytochrome c oxidase.

    PubMed

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus; Schmetterer, Georg

    2012-09-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth. PMID:22730128

  5. Chemoheterotrophic Growth of the Cyanobacterium Anabaena sp. Strain PCC 7120 Dependent on a Functional Cytochrome c Oxidase

    PubMed Central

    Stebegg, Ronald; Wurzinger, Bernhard; Mikulic, Markus

    2012-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth. PMID:22730128

  6. Alkane inducible proteins in Geobacillus thermoleovorans B23

    PubMed Central

    2009-01-01

    Background Initial step of ?-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal ?-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977

  7. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C.

    PubMed

    Mulla, Sikandar I; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L(-1)) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the (13)C12-TCS was completely mineralized into CO2 and part of heavier carbon ((13)C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L(-1)) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  8. Diversity of exophillic acid derivatives in strains of an endophytic Exophiala sp.

    PubMed

    Cheikh-Ali, Zakaria; Glynou, Kyriaki; Ali, Tahir; Ploch, Sebastian; Kaiser, Marcel; Thines, Marco; Bode, Helge B; Maci-Vicente, Jose G

    2015-10-01

    Members of the fungal genus Exophiala are common saprobes in soil and water environments, opportunistic pathogens of animals, or endophytes in plant roots. Their ecological versatility could imply a capacity to produce diverse secondary metabolites, but only a few studies have aimed at characterizing their chemical profiles. Here, we assessed the secondary metabolites produced by five Exophiala sp. strains of a particular phylotype, isolated from roots of Microthlaspi perfoliatum growing in different European localities. Exophillic acid and two previously undescribed compounds were isolated from these strains, and their structures were elucidated by spectroscopic methods using MS, 1D and 2D NMR. Bioassays revealed a weak activity of these compounds against disease-causing protozoa and mammalian cells. In addition, 18 related structures were identified by UPLC/MS based on comparisons with the isolated structures. Three Exophiala strains produced derivatives containing a ?-d-glucopyranoside moiety, and their colony morphology was distinct from the other two strains, which produced derivatives lacking ?-d-glucopyranoside. Whether the chemical/morphological strain types represent variants of the same genotype or independent genetic populations within Exophiala remains to be evaluated. PMID:26296744

  9. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.

    PubMed

    Wang, Xiangqian; Wu, Chao; Liu, Nan; Li, Sujing; Li, Wei; Chen, Jianmeng; Chen, Dongzhi

    2015-04-01

    A Pseudomonas sp. strain WL2 that is able to efficiently metabolize ethyl mercaptan (EM) into diethyl disulfide (DEDS) through enzymatic oxidation was isolated from the activated sludge of a pharmaceutical wastewater plant. One hundred percent removal of 113.5 mg L(-1) EM and 110.3 mg L(-1) DEDS were obtained within 14 and 32 h, respectively. A putative EM degradation pathway that involved the catabolism via DEDS was proposed, which indicated DEDS were further mineralized into carbon dioxide (CO2), bacterial cells, and sulfate (SO4 (2-)) through the transformation of element sulfur and ethyl aldehyde. Degradation kinetics for EM and DEDS with different initial concentrations by strain WL2 were evaluated using Haldane-Andrews model with maximum specific degradation rates of 3.13 and 1.33 g g(-1) h(-1), respectively, and maximum degradation rate constants of 0.522 and 0.175 h(-1) using pseudo-first-order kinetic model were obtained. Results obtained that aerobic degradation of EM by strain WL2 was more efficient than those from previous studies. Substrate range studies of strain WL2 demonstrated its ability to degrade several mercaptans, disulfides, aldehydes, and methanol. All the results obtained highlight the potential of strain WL2 for the use in the biodegradation of volatile organic sulfur compounds (VOSCs). PMID:25398287

  10. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C

    PubMed Central

    Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L−1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L−1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  11. Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS.

    PubMed

    Rangu, Shyam Sunder; Basu, Bhakti; Muralidharan, Bindu; Tripathi, S C; Apte, Shree Kumar

    2016-01-01

    A tri- and dibutyl phosphate (TBP/DBP) non-degrading spontaneous mutant, Sphingobium SS22, was derived from the Sphingobium sp. strain RSMS (wild type). Unlike the wild type strain, Sphingobium SS22 could not grow in a minimal medium supplemented with TBP or DBP as the sole source of carbon or phosphorous. Sphingobium SS22 also did not form any of the intermediates or end products of TBP or DBP degradation, namely DBP, butanol or inorganic phosphate. Proteomic analysis revealed the absence of three prominent proteins in Sphingobium SS22 as compared to wild type. These proteins were identified by MALDI mass spectrometry, and they showed similarities to phosphohydrolase- and exopolyphosphatase-like proteins from other bacteria, which belong to the class of phosphoesterases. Cellular proteins of Sphingobium SS22 showed none or negligible phosphodiesterase (PDE) and phosphomonoesterase (PME) activities at pH 7 and displayed approximately five- and approximately twofold less DBP and monobutyl phosphate (MBP) degradation activity, respectively, in comparison to the wild type strain. In-gel zymographic analysis revealed two PDE and PME activity bands in the wild type strain, one of which was absent in the Sphingobium SS22 mutant. The corresponding proteins from the wild type strain could degrade DBP and MBP. The results demonstrate the involvement of phosphoesterase enzymes in the TBP degradation pathway elucidated earlier. PMID:26399413

  12. Biodegradation of nitroglycerin in porous media and potential for bioaugmentation with Arthrobacter sp. strain JBH1.

    PubMed

    Husserl, Johana; Hughes, Joseph B

    2013-07-01

    Nitroglycerin (NG) is a toxic explosive found as a contaminant of soil and groundwater. Several microbial strains are capable of partially reducing the NG molecule to dinitro or mononitroesters. Recently, a strain capable of growing on NG as the sole source of carbon and nitrogen (Arthrobacter sp. strain JBH1) was isolated from contaminated soil. Despite the widespread presence of microbial strains capable of transforming NG in contaminated soils and sediments, the extent of NG biodegradation at contaminated sites is still unknown. In this study column experiments were conducted to investigate the extent of microbial degradation of NG in saturated porous media, specifically after bioaugmentation with JBH1. Initial experiments using sterile, low sorptivity sand, showed mineralization of NG after bioaugmentation with JBH1 in the absence of sources of carbon and nitrogen other than NG. Results could be modeled using a first order degradation rate of 0.14d(-1). Further experiments conducted using contaminated soil with high organic carbon content (highly sorptive) resulted in column effluents that did not contain NG although high dinitroester concentrations were observed. Bioaugmentation with JBH1 in sediments containing strains capable of partial transformation of NG resulted in complete mineralization of NG and faster degradation rates. PMID:23664478

  13. Hexavalent Chromium Removal by a Paecilomyces sp. Fungal Strain Isolated from Environment

    PubMed Central

    Cárdenas-González, Juan F.; Acosta-Rodríguez, Ismael

    2010-01-01

    A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics. Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied. When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI), the strain caused complete disappearance of Cr (VI), with the concomitant production of Cr (III) in the growth medium after 7 days of incubation, at 28°C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight. Decrease of Cr (VI) levels from industrial wastes was also induced by Paecilomyces biomass. These results indicate that reducing capacity of chromate resistant filamentous fungus Cr (VI) could be useful for the removal of Cr (VI) pollution. PMID:20634988

  14. Draft Genome Sequence of the Aquatic Phosphorus-Solubilizing and -Mineralizing Bacterium Bacillus sp. Strain CPSM8

    PubMed Central

    Maitra, Nilanjan; Whitman, William B.; Ayyampalayam, Saravanaraj; Samanta, Srikanta; Sarkar, Keka; Bandopadhyay, Chinmay; Aftabuddin, M.; Sharma, Anil P.

    2014-01-01

    Bacillus sp. strain CPSM8 is an efficient solubilizer and mineralizer of phosphorus. Here, we present the 4.39-Mb draft genome sequence of the strain, providing insight into the phosphorus-releasing genes related to productivity in aquatic habitats. PMID:24482525

  15. Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod) Ineffective (Fix) Isolate from Coriaria nepalensis

    PubMed Central

    Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Bruce, David; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Deshpande, Shweta; Detter, Chris; Furnholm, Teal; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Land, Miriam L.; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina L.; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja

    2013-01-01

    We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date. PMID:23516212

  16. Draft genome sequence of Sulfurospirillum sp. strain MES, reconstructed from the metagenome of a microbial electrosynthesis system

    DOE PAGESBeta

    Ross, Daniel E.; Marshall, Christopher W.; May, Harold D.; Norman, R. Sean

    2015-01-15

    A draft genome of Sulfurospirillum sp. strain MES was isolated through taxonomic binning of a metagenome sequenced from a microbial electrosynthesis system (MES) actively producing acetate and hydrogen. The genome contains the nosZDFLY genes, which are involved in nitrous oxide reduction, suggesting the potential role of this strain in denitrification.

  17. Whole-Genome Sequence of Fish-Pathogenic Mycobacterium sp. Strain 012931, Isolated from Yellowtail (Seriola quinqueradiata).

    PubMed

    Kurokawa, Satoru; Kabayama, Jun; Nho, Seong Won; Hwang, Seong Don; Hikima, Jun-Ichi; Jung, Tae Sung; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko; Aoki, Takashi

    2013-01-01

    The genus Mycobacterium comprises a large number of well-characterized species, several of which are human and animal pathogens. Here, we report the whole-genome sequence of Mycobacterium sp. strain 012931, a fish pathogen responsible for huge losses in aquaculture farms in Japan. The strain was isolated from a marine fish, yellowtail (Seriola quinqueradiata). PMID:23929466

  18. Complete Genome Sequence of Curtobacterium sp. Strain MR_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    PubMed Central

    Mariita, Richard M.; Bhatnagar, Srijak; Hanselmann, Kurt; Hossain, Mohammad J.; Korlach, Jonas; Boitano, Matthew; Roberts, Richard J.; Liles, Mark R.; Moss, Anthony G.; Leadbetter, Jared R.; Newman, Dianne K.

    2015-01-01

    Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA. PMID:26722011

  19. Complete Genome Sequence of Curtobacterium sp. Strain MR_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts.

    PubMed

    Mariita, Richard M; Bhatnagar, Srijak; Hanselmann, Kurt; Hossain, Mohammad J; Korlach, Jonas; Boitano, Matthew; Roberts, Richard J; Liles, Mark R; Moss, Anthony G; Leadbetter, Jared R; Newman, Dianne K; Dawson, Scott C

    2015-01-01

    Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA. PMID:26722011

  20. Whole-Genome Sequence of Fish-Pathogenic Mycobacterium sp. Strain 012931, Isolated from Yellowtail (Seriola quinqueradiata)

    PubMed Central

    Kurokawa, Satoru; Kabayama, Jun; Nho, Seong Won; Hwang, Seong Don; Hikima, Jun-ichi; Jung, Tae Sung; Kondo, Hidehiro; Hirono, Ikuo; Takeyama, Haruko

    2013-01-01

    The genus Mycobacterium comprises a large number of well-characterized species, several of which are human and animal pathogens. Here, we report the whole-genome sequence of Mycobacterium sp. strain 012931, a fish pathogen responsible for huge losses in aquaculture farms in Japan. The strain was isolated from a marine fish, yellowtail (Seriola quinqueradiata). PMID:23929466

  1. Draft Genome Sequence of a Selenite- and Tellurite-Reducing Marine Bacterium, Lysinibacillus sp. Strain ZYM-1

    PubMed Central

    Zhao, Yonghe; Dong, Yuxuan; Zhang, Yiwen; Che, Lin; Pan, Haixia

    2016-01-01

    Lysinibacillus sp. ZYM-1, a Gram-positive strain isolated from marine sediments, reduces selenite and tellurite efficiently. Meanwhile, it also exhibits high resistance to Zn2+ and Mn2+. Here, we report the draft genome sequence of strain ZYM-1, which contains genes related to selenite and tellurite reduction and also metal resistance. PMID:26769938

  2. Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications

    PubMed Central

    Ma, Qiao; Zhang, Zhaojing; Li, Pengpeng

    2015-01-01

    Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. PMID:25767238

  3. Draft genome sequence of Sulfurospirillum sp. strain MES, reconstructed from the metagenome of a microbial electrosynthesis system

    SciTech Connect

    Ross, Daniel E.; Marshall, Christopher W.; May, Harold D.; Norman, R. Sean

    2015-01-15

    A draft genome of Sulfurospirillum sp. strain MES was isolated through taxonomic binning of a metagenome sequenced from a microbial electrosynthesis system (MES) actively producing acetate and hydrogen. The genome contains the nosZDFLY genes, which are involved in nitrous oxide reduction, suggesting the potential role of this strain in denitrification.

  4. Whole-Genome Sequence of Burkholderia sp. Strain RPE67, a Bacterial Gut Symbiont of the Bean Bug Riptortus pedestris

    PubMed Central

    Takeshita, Kazutaka; Shibata, Tomoko F.; Nikoh, Naruo; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Fukatsu, Takema; Shigenobu, Shuji

    2014-01-01

    Burkholderia sp. strain RPE67 is a bacterial symbiont isolated from a field-collected bean bug, Riptortus pedestris. To understand the genetic basis of the insect-microbe symbiosis, we performed whole-genome sequencing of the Burkholderia strain, revealing an 8.69-Mb genome consisting of three chromosomes and three plasmids. PMID:24948758

  5. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae.

    PubMed

    Dunitz, Madison I; James, Pamela M; Jospin, Guillaume; Eisen, Jonathan A; Coil, David A; Chandler, James Angus

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D.suzukii. PMID:24762940

  6. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae

    PubMed Central

    Dunitz, Madison I.; James, Pamela M.; Jospin, Guillaume; Coil, David A.; Chandler, James Angus

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D.suzukii. PMID:24762940

  7. Light-Mediated Nitrite Accumulation during Denitrification by Pseudomonas sp. Strain JR12

    PubMed Central

    Barak, Yoram; Tal, Yossi; van Rijn, Jaap

    1998-01-01

    The effect of light on the denitrifying characteristics of a nonphotosynthetic denitrifier, Pseudomonas sp. strain JR12, was examined. Already at low light intensities, nitrite accumulated as a result of light inhibition of nitrite but not of nitrate reduction rates. Exposure of this bacterium to light caused a photooxidation of cytochrome c, an intermediate electron carrier in its respiratory pathway. Photoinhibition of nitrite reduction was reversible, as nitrite reduction rates returned to preillumination levels when light-exposed cells were returned to dark conditions. Antimycin A reversed the inhibitory effect of light on nitrite reduction by preventing a reversed electron flow. Aerobic respiration by this bacterium was not affected by light. PMID:16349525

  8. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106.

    PubMed

    Wu, Bin; Oesker, Vanessa; Wiese, Jutta; Schmaljohann, Rolf; Imhoff, Johannes F

    2014-03-01

    Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC?? values of 24 ?M and 4 ?M, respectively. PMID:24663111

  9. Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov.

    PubMed

    Tvrzová, Ludmila; Schumann, Peter; Sedlácek, Ivo; Pácová, Zdena; Spröer, Cathrin; Verbarg, Susanne; Kroppenstedt, Reiner M

    2005-01-01

    A Gram-positive actinobacterium, previously classified as Kocuria varians, was subjected to a polyphasic taxonomic study. The bacterium showed the peptidoglycan type Lys-Ala3 (variation A3alpha), MK-7(H2) was the major menaquinone and anteiso-C(15 : 0) and anteiso-C(17 : 0) were the major fatty acids. On the basis of the phylogenetic and phenotypic characteristics of the actinobacterium, a novel species, Kocuria carniphila sp. nov. (type strain, CCM 132T=DSM 16004T), is proposed. PMID:15653866

  10. Genome Sequence of the Ethene- and Vinyl Chloride-Oxidizing Actinomycete Nocardioides sp Strain JS614

    SciTech Connect

    Coleman, Nicholas V; Wilson, Neil L; Barry, Kerrie; Bruce, David; Copeland, A; Dalin, Eileen; Detter, J. Chris; Glavina Del Rio, Tijana; Goodwin, Lynne A.; Hammon, Nancy; Han, Shunsheng; Hauser, Loren John; Israni, Sanjay; Kim, Edwin; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Lucas, Susan; Pitluck, Sam; Richardson, Paul; Schmutz, Jeremy; Tapia, Roxanne; Thompson, Sue; Tice, Hope; Spain, Jim C; Gossett, James G; Mattes, Timothy E

    2011-01-01

    Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.

  11. Genome Sequence of the Ethene- and Vinyl Chloride-Oxidizing Actinomycete Nocardioides sp. Strain JS614?

    PubMed Central

    Coleman, Nicholas V.; Wilson, Neil L.; Barry, Kerrie; Brettin, Thomas S.; Bruce, David C.; Copeland, Alex; Dalin, Eileen; Detter, John C.; del Rio, Tijana Glavina; Goodwin, Lynne A.; Hammon, Nancy M.; Han, Shunsheng; Hauser, Loren J.; Israni, Sanjay; Kim, Edwin; Kyrpides, Nikolaos; Land, Miriam L.; Lapidus, Alla; Larimer, Frank W.; Lucas, Susan; Pitluck, Sam; Richardson, Paul; Schmutz, Jeremy; Tapia, Roxanne; Thompson, Sue; Tice, Hope N.; Spain, Jim C.; Gossett, James G.; Mattes, Timothy E.

    2011-01-01

    Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium. PMID:21551312

  12. Antimicrobial evaluation of fungal extracts produced by endophytic strains of Phomopsis sp.

    PubMed

    Corrado, Marcia; Rodrigues, Katia F

    2004-01-01

    Crude extract of cultures of 13 fungal strains identified as Phomopsis sp. and isolated as endophytes from the leaves of Aspidosperma tomentosum and twigs of Spondias mombin were examined for their antibacterial and antifungal activities. The screening was conducted using the bioautographic TLC agar-overlay technique against bacteria (E. coli, P. aeruginosa, S. aureus), yeast (C. albicans, S. cerevisiae), and readily adapted for use with filamentous fungi (A. niger, F. oxysporum). Three of the 13 extracts effectively inhibited the growth of all test-organisms, indicating that they may represent a potential for pharmaceutical and/or agricultural applications and are worthy of further study. PMID:15069675

  13. Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6.

    PubMed

    Ahemad, Munees; Khan, Mohammad Saghir

    2011-04-01

    The aim of this study was to investigate the toxicity of herbicides (metribuzin and glyphosate), insecticides (imidacloprid and thiamethoxam) and fungicides (hexaconazole, metalaxyl and kitazin) at the recommended and the higher dose rates on plant growth promoting activities of Bradyrhizobium sp. under in vitro conditions. The Bradyrhizobium sp. strain MRM6 was isolated from nodules of greengram plants. Pesticide-concentration dependent progressive-decline was observed in plant growth promoting traits of the strain MRM6 apart from exo-polysaccharides which increased consistently on increasing pesticide concentrations. Generally, the highest toxicity to plant growth promoting characteristics of the Bradyrhizobium sp. strain MRM6 was observed when the strain MRM6 was grown with three times the recommended field rates of glyphosate, imidacloprid and hexaconazole. PMID:21359648

  14. [Carotenogenesis of five strains of the algae Dunaliella sp. (Chlorophyceae) isolated from Venezuelan hypersaline lagoons].

    PubMed

    Guevara, Miguel; Lodeiros, Csar; Gmez, Olga; Lemus, Nathalie; Nez, Paulino; Romero, Lolymar; Vsquez, Alikar; Rosales, Nstor

    2005-01-01

    We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production. PMID:17354444

  15. Global Proteomic Analysis of the Chromate Response in Arthrobacter sp strain FB24

    SciTech Connect

    Henne, Kristene L.; Turse, Joshua E.; Nicora, Carrie D.; Lipton, Mary S.; Tollaksen, Sandra L.; Lindberg, Carl; Babbnig, Gyorgy; Giometti, Carol S.; Nakatsu, Cindy N.; Thompson, Dorothea K.; Konopka, Allan

    2009-04-01

    A global proteomic evaluation of the response of Arthrobacter sp. strain FB24 to 5 mM and 20 mM Cr(VI) was conducted using both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled to tandem mass spectrometry (LC/LC-MS/MS). The changes in protein expression found with 2-DGE indicate alterations in central metabolism and amino acid synthesis. Proteome coverage increased from 22% with 2-DGE to 71% with LC/LC-MS/MS. The proteins exhibiting the highest levels of expression under Cr(VI) stress suggest intracellular sulfur limitation, which could be driven by competition for the sulfate (SO42-) transporter by the chromate (CrO42-) ion. These results are consistent with the growth defects seen with strain FB24 when Cr(VI) concentrations exceed 5 mM.

  16. Cellular Response of Sinorhizobium sp. Strain A2 during Arsenite Oxidation

    PubMed Central

    Fukushima, Koh; Huang, He; Hamamura, Natsuko

    2015-01-01

    Arsenic (As) is a widely distributed toxic element in the environment and microorganisms have developed resistance mechanisms in order to tolerate it. The cellular response of the chemoorganotrophic arsenite (As[III])-oxidizing α-Proteobacteria, Sinorhizobium sp. strain A2, to arsenic was examined in the present study. Several proteins associated with arsenite oxidase and As resistance were shown to be accumulated in the presence of As(III). A shift in central carbon metabolism from the tricarboxylic acid pathway to glyoxylate pathway was also observed in response to oxidative stress. Our results revealed the strategy of the As(III)-oxidizing Sinorhizobium strain to mitigate arsenic toxicity and oxidative damage by multiple metabolic adaptations. PMID:26477790

  17. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    PubMed

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4mgL(-1)) within 5d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4mgL(-1)) and 4-chloroaniline (4mgL(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5d. PMID:26364219

  18. Purification and Characterization of Carbaryl Hydrolase from Blastobacter sp. Strain M501

    PubMed Central

    Hayatsu, Masahito; Nagata, Tadahiro

    1993-01-01

    A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45C, respectively. The enzyme was not stable at temperatures above 40C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate. Images PMID:16348989

  19. Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems

    SciTech Connect

    Xu, Min; Bernat, Gabor; Singh, Abhay K.; Mi, Hualing; Rogner, Matthias; Pakrasi, Himadri B.; Ogawa, Teruo

    2008-09-10

    A mutant ( 5) of Synechocystis sp. strain PCC 6803 constructed by inactivating five inorganic carbon sequestration systems did not take up CO2 or HCO3 and was unable to grow in air with or without glucose. The 4 mutant in which BicA is the only active inorganic carbon sequestration system showed low activity of HCO3 uptake and grew under these conditions but more slowly than the wild-type strain. The 5 mutant required 1.7% CO2 to attain half the maximal growth rate. Electron transport activity of the mutants was strongly inhibited under high light intensities, with the 5 mutant more susceptible to high light than the 4 mutant. The results implicated the significance of carbon sequestration in dissipating excess light energy.

  20. Global proteomic analysis of the chromate response in Arthrobacter sp strain FB24.

    SciTech Connect

    Henne, K. L.; Turse, J. E.; Nicora, C. D.; Lipton, M. S.; Tollaksen, S. L.; Lindberg, C.; Babnigg, G.; Giometti, C. S.; Nakatsu, C. H.; Thompson, D. K.; Konopka, A. E.; Biosciences Division; Purdue Univ.; PNNL

    2009-04-01

    A global proteomic evaluation of the response of Arthrobacter sp. strain FB24 to 5 and 20 mM Cr(VI) was conducted using both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). The changes in protein expression found with 2-DGE indicate alterations in central metabolism and amino acid synthesis. Proteome coverage increased from 22% with 2-DGE to 71% with LC/LC-MS/MS. The proteins exhibiting the highest levels of expression under Cr(VI) stress suggest intracellular sulfur limitation, which could be driven by competition for the sulfate (SO{sub 4}{sup 2-}) transporter by the chromate (CrO{sub 4}{sup 2-}) ion. These results are consistent with the growth defects seen with strain FB24 when Cr(VI) concentrations exceeded 5 mM.

  1. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6

    SciTech Connect

    Spain, J.C.; Gibson, D.T.

    1988-06-01

    The biodegradation of benzene, toluene, and chlorobenzenes by Pseudomonas putida involves the initial conversion of the parent molecules to cis-dihydrodiols by dioxygenase enzyme systems. The cis-dihydrodiols are then converted to the corresponding catechols by dihydrodiol dehydrogenase enzymes. Pseudomonas sp. strain JS6 uses a similar system for growth on toluene or dichlorobenzenes. We tested the wild-type organisms and a series of mutants for their ability to transform substituted phenols after induction with toluene. When grown on toluene, both wild-type organisms converted methyl-, chloro-, and nitro-substituted phenols to the corresponding catechols. Mutant strains deficient in dihydrodiol dehydrogenase or catechol oxygenase activities also transformed the phenols. Oxidation of phenols was closely correlated with the induction and activity of the toluene dioxygenase enzyme system.

  2. Role of heterotrophic bacteria in complete mineralization of trichloroethylene by Methylocystis sp. strain M.

    PubMed Central

    Uchiyama, H; Nakajima, T; Yagi, O; Nakahara, T

    1992-01-01

    Biodegradation experiments with radioactively labeled trichloroethylene showed that 32% of the radioactive carbon was converted to glyoxylic acid, dichloroacetic acid and trichloroacetic acid and that the same percentage was converted to CO2 and CO after 140 h of incubation by a pure culture of a type II methane-utilizing bacterium, Methylocystis sp. strain M, isolated from a mixed culture, MU-81, in our laboratory. In contrast, these water-soluble (14C)trichloroethylene degradation products were completely or partially degraded further and converted to CO2 by the MU-81 mixed culture. This phenomenon was attributed to the presence of a heterotrophic bacterium (strain DA4), which was identified as Xanthobacter autotrophicus, in the MU-81 culture. The results indicate that the heterotrophic bacteria play an important role in complete trichloroethylene degradation by methanotrophs. PMID:1444420

  3. Genome Sequence of Halomonas sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium.

    PubMed

    Gutierrez, Tony; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Halomonas sp. strain MCTG39a was isolated from coastal sea surface water based on its ability to utilize n-hexadecane. During growth in marine medium the strain produces an amphiphilic exopolymeric substance (EPS) amended with glucose, which emulsifies a variety of oil hydrocarbon substrates. Here, we present the genome sequence of this strain, which is 4,979,193bp with 4,614 genes and an average G+C content of 55.0%. PMID:26184945

  4. Draft Genome Sequence of Pseudomonas sp. Strain ADP, a Bacterial Model for Studying the Degradation of the Herbicide Atrazine

    PubMed Central

    Devers-Lamrani, Marion; Spor, Aym; Mounier, Arnaud

    2016-01-01

    We report here the 7,259,392-bp draft genome of Pseudomonas sp. strain ADP. This is a bacterial strain that was first isolated in the 1990s from soil for its ability to mineralize the herbicide atrazine. It has extensively been studied as a model to understand the atrazine biodegradation pathway. This genome will be used as a reference and compared to evolved populations obtained by experimental evolution conducted on this strain under atrazine selection pressure. PMID:26868408

  5. Draft Genome Sequence of Pseudomonas sp. Strain ADP, a Bacterial Model for Studying the Degradation of the Herbicide Atrazine.

    PubMed

    Devers-Lamrani, Marion; Spor, Aym; Mounier, Arnaud; Martin-Laurent, Fabrice

    2016-01-01

    We report here the 7,259,392-bp draft genome of Pseudomonas sp. strain ADP. This is a bacterial strain that was first isolated in the 1990s from soil for its ability to mineralize the herbicide atrazine. It has extensively been studied as a model to understand the atrazine biodegradation pathway. This genome will be used as a reference and compared to evolved populations obtained by experimental evolution conducted on this strain under atrazine selection pressure. PMID:26868408

  6. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes

    PubMed Central

    2009-01-01

    Background The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. Results A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. Conclusion Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study. PMID:19758450

  7. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus

    PubMed Central

    Servín-Garcidueñas, Luis E.; Rogel, Marco A.; Ormeño-Orrillo, Ernesto; Zayas-del Moral, Alejandra; Sánchez, Federico

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  8. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment

    PubMed Central

    2014-01-01

    Background Oxygenic photosynthetic microorganisms such as cyanobacteria and microalgae have attracted attention as an alternative carbon source for the next generation of biofuels. Glycogen abundantly accumulated in cyanobacteria is a promising feedstock which can be converted to ethanol through saccharification and fermentation processes. In addition, the utilization of marine cyanobacteria as a glycogen producer can eliminate the need for a freshwater supply. Synechococcus sp. strain PCC 7002 is a fast-growing marine coastal euryhaline cyanobacteria, however, the glycogen yield has not yet been determined. In the present study, the effects of light intensity, CO2 concentration, and salinity on the cell growth and glycogen content were investigated in order to maximize glycogen production in Synechococcus sp. strain PCC 7002. Results The optimal culture conditions for glycogen production in Synechococcus sp. strain PCC 7002 were investigated. The maximum glycogen production of 3.5 g L−1 for 7 days (a glycogen productivity of 0.5 g L−1 d−1) was obtained under a high light intensity, a high CO2 level, and a nitrogen-depleted condition in brackish water. The glycogen production performance in Synechococcus sp. strain PCC 7002 was the best ever reported in the α-polyglucan (glycogen or starch) production of cyanobacteria and microalgae. In addition, the robustness of glycogen production in Synechococcus sp. strain PCC 7002 to salinity was evaluated in seawater and freshwater. The peak of glycogen production of Synechococcus sp. strain PCC 7002 in seawater and freshwater were 3.0 and 1.8 g L−1 in 7 days, respectively. Glycogen production in Synechococcus sp. strain PCC 7002 maintained the same level in seawater and half of the level in freshwater compared with the optimal result obtained in brackish water. Conclusions We conclude that Synechococcus sp. strain PCC 7002 has high glycogen production activity and glycogen can be provided from coastal water accompanied by a fluctuation of salinity. This work supports Synechococcus sp. strain PCC 7002 as a promising carbohydrate source for biofuel production. PMID:24959200

  9. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  10. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate. PMID:25641713

  11. Plasmid Localization and Organization of Melamine Degradation Genes in Rhodococcus sp. Strain Mel

    PubMed Central

    Dodge, Anthony G.; Wackett, Lawrence P.

    2012-01-01

    Rhodococcus sp. strain Mel was isolated from soil by enrichment and grew in minimal medium with melamine as the sole N source with a doubling time of 3.5 h. Stoichiometry studies showed that all six nitrogen atoms of melamine were assimilated. The genome was sequenced by Roche 454 pyrosequencing to 13 coverage, and a 22.3-kb DNA region was found to contain a homolog to the melamine deaminase gene trzA. Mutagenesis studies showed that the cyanuric acid hydrolase and biuret hydrolase genes were clustered together on a different 17.9-kb contig. Curing and gene transfer studies indicated that 4 of 6 genes required for the complete degradation of melamine were located on an ?265-kb self-transmissible linear plasmid (pMel2), but this plasmid was not required for ammeline deamination. The Rhodococcus sp. strain Mel melamine metabolic pathway genes were located in at least three noncontiguous regions of the genome, and the plasmid-borne genes encoding enzymes for melamine metabolism were likely recently acquired. PMID:22210223

  12. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1

    SciTech Connect

    Wittich, R.M.; Wilkes, H.; Sinnwell, V.; Francke, W.; Fortnagel, P. )

    1992-03-01

    In the course of screening for dibenzo-p-dioxin-utilizing bacteria, a Sphingomonas sp. strain was isolated from enrichment cultures inoculated with water samples from the river Elbe. The isolate grew with both the biaryl ethers dibenzo-p-dioxin and dibenzofuran (DF) as the sole sources of carbon and energy, showing doubling times of about 8 and 5 h, respectively. Biodegradation of the two aromatic compounds initially proceeded after an oxygenolytic attack at the angular position adjacent to the ether bridge, producing 2,2{prime},3-trihydroxydiphenyl ether or 2,2{prime},3-trihydroxybiphenyl from the initially formed dihydrodiols, which represent extremely unstable hemiacetals. Results obtained from determinations of enzyme activities and oxygen consumption suggest meta cleavage of the trihydroxy compounds. During dibenzofuran degradation, hydrolysis of 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate yielded salicylate, which was branched into the catechol meta cleavage pathway and the gentisate pathway. Catechol obtained from the product of meta ring fission of 2,2{prime},3-trihydroxydiphenyl ether was both ortho and meta cleaved by Sphingomonas sp. strain RW1 when this organism was grown with dibenzo-p-dioxin.

  13. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate.

    PubMed

    Pradeep, S; Josh, M K Sarath; Binod, P; Devi, R Sudha; Balachandran, S; Anderson, Robin C; Benjamin, Sailas

    2015-02-01

    This study describes how Achromobacter denitrificans strain SP1, a novel isolate from heavily plastics-contaminated sewage sludge efficiently consumed the hazardous plasticizer, di(2-ethylhexyl)phthalate (DEHP) as carbon source supplemented in a simple basal salt medium (BSM). Response surface methodology was employed for the statistical optimization of the process parameters such as temperature (32°C), agitation (200 rpm), DEHP concentration (10 mM), time (72 h) and pH (8.0). At these optimized conditions, experimentally observed DEHP degradation was 63%, while the predicted value was 59.2%; and the correlation coefficient between them was 0.998, i.e., highly significant and fit to the predicted model. Employing GC-MS analysis, the degradation pathway was partially deduced with intermediates such as mono(2-ethylhexyl)phthalate and 2-ethyl hexanol. Briefly, this first report describes A. denitrificans strain SP1 as a highly efficient bacterium for completely remediating the hazardous DEHP (10 mM) in 96 h in BSM (50% consumed in 60 h), which offers great potentials for efficiently cleaning the DEHP-contaminated environments such as soil, sediments and water upon its deployment. PMID:25463861

  14. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  15. Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45.

    PubMed

    van Hylckama Vlieg, J E; Leemhuis, H; Spelberg, J H; Janssen, D B

    2000-04-01

    The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathione S-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathione S-transferase was identified (isoJ). The isoJ gene was overexpressed in Escherichia coli and was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1, 2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase from Xanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of alpha-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism. PMID:10715003

  16. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    PubMed

    Toms-Gallardo, Laura; Gmez-lvarez, Helena; Santero, Eduardo; Floriano, Beln

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  17. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8.

    PubMed Central

    Denome, S A; Oldfield, C; Nash, L J; Young, K D

    1994-01-01

    Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli. Images PMID:7961424

  18. Pyruvate carboxylase is involved in metabolism of mimosine by Rhizobium sp. strain TAL1145.

    PubMed

    Awaya, Jonathan D; Tittabutr, Panlada; Li, Qing X; Borthakur, Dulal

    2008-10-01

    The objective of this study was to determine the role of midK, which encodes a protein similar to pyruvate carboxylase, in mimosine degradation by Rhizobium sp. strain TAL1145. The midK gene is located downstream of midR in the cluster of genes for mimosine degradation in Rhizobium sp. strain TAL1145. The midK mutants of TAL1145 degraded mimosine slower than the wild-type. These mutants could utilize pyruvate as a source of carbon, indicating that there is another pyruvate carboxylase (pyc) gene in TAL1145. Two classes of clones were isolated from the library of TAL1145 by complementing a pyc mutant of Rhizobium etli, one class contained midK, while the other carried pyc. Both midK and pyc of TAL1145 complemented the midK mutant for mimosine degradation, and also the R. etli pyc mutant for pyruvate utilization. The midK-encoded pyruvate carboxylase was required for an efficient conversion of mimosine into 3-hydroxy-4-pyridone (HP). PMID:18493742

  19. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    SciTech Connect

    Hoffmann, Maren; Braaz, Reinhard; Jendrossek, Dieter; Einsle, Oliver

    2008-02-01

    The extracellular rubber-degrading enzyme rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y has been crystallized and diffraction data have been collected to high resolution. Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2{sub 1}, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.

  20. Potential contribution of the diazotrophic cyanobacterium, Cyanothece sp. strain 51142, to a bioregenerative life support system.

    PubMed

    Arieli, B; Schneegurt, M A; Sherman, L A

    1996-01-01

    Long-duration manned space missions will likely require the development of bioregenerative means of life support. Such a Controlled Ecological Life Support System (CELSS) would use higher plants to provide food and a breathable atmosphere for the crew and employ a waste processing system to recover elements for recycling. The current study identifies ways in which a cyanobacterial component may enhance the sustainability of a space-deployed CELSS, including balancing CO2/O2 gas exchange, production of bioavailable N, dietary supplementation, and contingency against catastrophic failure of the higher plant crops. Relevant quantitative data have been collected about the cyanobacterium, Cyanothece sp. strain ATCC 51142, a large, aerobic, unicellular diazotroph. This organism grew rapidly (466 g dry wt. m-3 d-1) and under diverse environmental conditions, was amenable to large-scale culture, could be grown with relative energy efficiency (3.8% conversion), could actively fix atmospheric N2 (35.0 g m-3 d-1), could survive extreme environmental insults, and exhibited gas exchange properties (assimilatory quotient of 0.49) that may be useful for correcting the gas exchange ratio imbalances observed between humans and higher plants. It is suggested that a diazotrophic cyanobacterium, like Cyanothece sp. strain ATCC 51142, may be a safe, effective, and renewable complement or alternative to physicochemical backup systems in a CELSS. PMID:11538563

  1. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC.

    PubMed Central

    Lewis, T A; Crawford, R L

    1993-01-01

    Pseudomonas sp. strain KC was grown on a medium with a low content of transition metals in order to examine the conditions for carbon tetrachloride (CT) transformation. Several carbon sources, including acetate, glucose, glycerol, and glutamate, were able to support CT transformation. The chelators 2,2'-dipyridyl and 1,10-phenanthroline stimulated CT transformation in a rich medium that otherwise did not support this activity. Low (< 10 microM) additions of dissolved iron(II), iron(III), and cobalt(II), as well as an insoluble iron(III) compound, ferric oxyhydroxide, inhibited CT transformation. The addition of 50 microM iron to actively growing cultures resulted in delayed inhibition of CT transformation. CT transformation was seen in aerobic cultures of KC, but with reduced efficiency compared with denitrifying cultures. Inhibition of CT transformation by iron was also seen in aerobically grown cultures. Optimal conditions were used in searching for effective CT transformation activity among denitrifying enrichments grown from samples of aquifer material. No activity comparable to that of Pseudomonas sp. strain KC was found among 16 samples tested. PMID:8517754

  2. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1.

    PubMed Central

    Nunn, D N; Lidstrom, M E

    1986-01-01

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H (D. N. Nunn and M. E. Lidstrom, J. Bacteriol. 166:582-591, 1986). In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; methanol-dependent whole-cell oxygen consumption; the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; the absorption spectra of purified mutant methanol dehydrogenase proteins; and the presence or absence of the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome cL, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome cL, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. Images PMID:3009412

  3. Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1

    PubMed Central

    Shinoda, Yoshifumi; Sakai, Yasuyoshi; Uenishi, Hiroshi; Uchihashi, Yasumitsu; Hiraishi, Akira; Yukawa, Hideaki; Yurimoto, Hiroya; Kato, Nobuo

    2004-01-01

    A newly isolated denitrifying bacterium, Thauera sp. strain DNT-1, grew on toluene as the sole carbon and energy source under both aerobic and anaerobic conditions. When this strain was cultivated under oxygen-limiting conditions with nitrate, first toluene was degraded as oxygen was consumed, while later toluene was degraded as nitrate was reduced. Biochemical observations indicated that initial degradation of toluene occurred through a dioxygenase-mediated pathway and the benzylsuccinate pathway under aerobic and denitrifying conditions, respectively. Homologous genes for toluene dioxygenase (tod) and benzylsuccinate synthase (bss), which are the key enzymes in aerobic and anaerobic toluene degradation, respectively, were cloned from genomic DNA of strain DNT-1. The results of Northern blot analyses and real-time quantitative reverse transcriptase PCR suggested that transcription of both sets of genes was induced by toluene. In addition, the tod genes were induced under aerobic conditions, whereas the bss genes were induced under both aerobic and anaerobic conditions. On the basis of these results, it is concluded that strain DNT-1 modulates the expression of two different initial pathways of toluene degradation according to the availability of oxygen in the environment. PMID:15006757

  4. Karyotype rearrangements and telomere analysis in Myzus persicae (Hemiptera, Aphididae) strains collected on Lavandula sp. plants

    PubMed Central

    Mandrioli, Mauro; Zanasi, Federica; Manicardi, Gian Carlo

    2014-01-01

    Abstract Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776), collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the Myzus persicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans. PMID:25610541

  5. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene

    SciTech Connect

    Reij, M.W.; Kieboom, J.; De Bont, J.A.M.; Hartmans, S.

    1995-08-01

    Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 {mu}M in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34 g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE. 23 refs., 5 figs., 2 tabs.

  6. Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants.

    PubMed

    Mizuno, Masayuki; Yurimoto, Hiroya; Iguchi, Hiroyuki; Tani, Akio; Sakai, Yasuyoshi

    2013-01-01

    Pink-pigmented facultative methylotrophs (PPFMs) are major inhabitants of the phyllosphere. In a preceding study, we found that perilla plants harbor a dominant population of PPFMs on their leaves and seeds, and that the closest relative of PPFMs (Methylobacterium sp. strain OR01 as representative strain) isolated from red perilla seeds was M. fujisawaense DSM5686(T). In the present study, the specific interaction between red perilla and Methylobacterium species was investigated. All the PPFMs isolated from red perilla seeds harvested in the Ohara area of Kyoto, Japan in 2009, 2010, and 2011 and the PPFMs isolated from red perilla leaves planted at four geographically different places in Japan had 16S rRNA sequences identical to that of strain OR01. Direct transmission of PPFMs from seeds to leaves and the competitiveness of strain OR01 were confirmed. This report is the first step toward understanding the species-level specificity of the interaction between perilla plants and Methylobacterium species. PMID:23832351

  7. Metabolism of dibenzofuran by pseudomonas sp. strain HH69 and the mixed culture HH27

    SciTech Connect

    Fortnagel, P.; Harms, H.; Wittich, R.M. ); Krohn, S.; Meyer, H.; Sinnwell, V.; Wilkes, H.; Francke, W. )

    1990-04-01

    A Pseudomonas sp. strain, HH69, and a mixed culture, designated HH27, were isolated by selective enrichment from soil samples. The pure strain and the mixed culture grew aerobically on dibenzofuran as the sole source of carbon and energy. Degradation proceeded via salicylic acid which was branched into the gentisic acid and the catechol pathway. Both salicylic acid and gentisic acid accumulated in the culture medium of strain HH69. The acids were slowly metabolized after growth ceased. The enzymes responsible for their metabolism showed relatively low activities. Besides the above-mentioned acids, 2-hydroxyacetophenone, benzopyran-4-one (chrome), several 2-substituted chroman-4-ones, and traces of the four isomeric monohydroxydibenzofurans were identified in the culture medium. 2,2{prime},3-Trihydroxybiphenyl was isolated from the medium of a dibenzofuran-converting mutant derived from parent strain HH69, which can no longer grow on dibenzofuran. This gives evidence for a novel type of dioxygenases responsible for the attack on the biarylether structure of the dibenzofuran molecule. A meta-fission mechanism for cleavage of the dihydroxylated aromatic nucleus of 2,2{prime},3-trihydroxybiphenyl is suggested as the next enzymatic step in the degradative pathway.

  8. Karyotype rearrangements and telomere analysis in Myzuspersicae (Hemiptera, Aphididae) strains collected on Lavandula sp. plants.

    PubMed

    Mandrioli, Mauro; Zanasi, Federica; Manicardi, Gian Carlo

    2014-01-01

    Karyotype analysis of nine strains of the peach-potato aphid Myzuspersicae (Sulzer, 1776), collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the Myzuspersicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans. PMID:25610541

  9. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.

    PubMed

    Wang, Libo; Xue, Chuizhao; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-04-01

    Microalgae are highly efficient photosynthesis cell factories for CO2 capture, biofuel productions and wastewater treatment. Phenol is a typical environmental contaminant. Microalgae normally have a low tolerance for, and a low degradation rate to, high concentration of phenol. Adaptive laboratory evolution was performed for phenolic wastewater treatment by Chlorella sp. The resulting strain was obtained after 31 cycles (about 95d) under 500mg/L phenol as environmental stress. It could grow under 500mg/L and 700mg/L phenol without significant inhibition. The maximal biomass concentrations of the resulting strain at day 8 were 3.40g/L under 500mg/L phenol and 2.70g/L under 700mg/L phenol, respectively. They were more than two times of those of the original strain. In addition, 500mg/L phenol was fully removed by the resulting strain in 7d when the initial cell density was 0.6g/L. PMID:26803904

  10. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses.

    PubMed Central

    Hurek, T; Reinhold-Hurek, B; Van Montagu, M; Kellenberger, E

    1994-01-01

    The invasive properties of Azoarcus sp. strain BH72, an endorhizospheric isolate of Kallar grass, on gnotobiotically grown seedlings of Oryza sativa IR36 and Leptochloa fusca (L.) Kunth were studied. Additionally, Azoarcus spp. were localized in roots of field-grown Kallar grass. To facilitate localization and to assure identity of bacteria, genetically engineered microorganisms expressing beta-glucuronidase were also used as inocula. beta-Glucuronidase staining indicated that the apical region of the root behind the meristem was the most intensively colonized. Light and electron microscopy showed that strain BH72 penetrated the rhizoplane preferentially in the zones of elongation and differentiation and colonized the root interior inter- and intracellularly. In addition to the root cortex, stelar tissue was also colonized; bacteria were found in the xylem. No evidence was obtained that Azoarcus spp. could reside in living plant cells; rather, plant cells were apparently destroyed after bacteria had penetrated the cell wall. A common pathogenicity test on tobacco leaves provided no evidence that representative strains of Azoarcus spp. are phytopathogenic. Compared with the control, inoculation with strain BH72 significantly promoted growth of rice seedlings. This effect was reversed when the plant medium was supplemented with malate (0.2 g/liter). N2 fixation was apparently not involved, because the same response was obtained with a nifK mutant of strain BH72, which has a Nif- phenotype. Also, Western blot (immunoblot) analysis of protein extracts from rice seedlings gave no indication that nitrogenase was present. PCR and Western immunoblotting, using primers specific for eubacteria and antibodies recognizing type-specific antigens, respectively, indicated that strain BH72 could colonize rice plants systemically, probably mediated by longitudinal spreading through vessels. Images PMID:8144457

  11. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses.

    PubMed

    Hurek, T; Reinhold-Hurek, B; Van Montagu, M; Kellenberger, E

    1994-04-01

    The invasive properties of Azoarcus sp. strain BH72, an endorhizospheric isolate of Kallar grass, on gnotobiotically grown seedlings of Oryza sativa IR36 and Leptochloa fusca (L.) Kunth were studied. Additionally, Azoarcus spp. were localized in roots of field-grown Kallar grass. To facilitate localization and to assure identity of bacteria, genetically engineered microorganisms expressing beta-glucuronidase were also used as inocula. beta-Glucuronidase staining indicated that the apical region of the root behind the meristem was the most intensively colonized. Light and electron microscopy showed that strain BH72 penetrated the rhizoplane preferentially in the zones of elongation and differentiation and colonized the root interior inter- and intracellularly. In addition to the root cortex, stelar tissue was also colonized; bacteria were found in the xylem. No evidence was obtained that Azoarcus spp. could reside in living plant cells; rather, plant cells were apparently destroyed after bacteria had penetrated the cell wall. A common pathogenicity test on tobacco leaves provided no evidence that representative strains of Azoarcus spp. are phytopathogenic. Compared with the control, inoculation with strain BH72 significantly promoted growth of rice seedlings. This effect was reversed when the plant medium was supplemented with malate (0.2 g/liter). N2 fixation was apparently not involved, because the same response was obtained with a nifK mutant of strain BH72, which has a Nif- phenotype. Also, Western blot (immunoblot) analysis of protein extracts from rice seedlings gave no indication that nitrogenase was present. PCR and Western immunoblotting, using primers specific for eubacteria and antibodies recognizing type-specific antigens, respectively, indicated that strain BH72 could colonize rice plants systemically, probably mediated by longitudinal spreading through vessels. PMID:8144457

  12. High-Level Chromate Resistance in Arthrobacter sp. strain FB24 Requires Previously Uncharacterized Accessory Genes

    SciTech Connect

    Henne, Kristene L.; Nakatsu, Cindy N.; Thompson, Dorothea K.; Konopka, Allan

    2009-09-24

    The annotated genome sequence of Arthrobacter sp. strain FB24 revealed a chromate resistance determinant (CRD): a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their regulatory roles. Collectively, our findings indicate that chromate resistance in strain FB24 is primarily achieved by plasmid-mediated chromate efflux with the contribution of previously unrecognized accessory genes.

  13. Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. strain ES6

    SciTech Connect

    Sivaswamy, Vaideeswaran; Brent Peyton; Viamajala, Sridhar; Robin Gerlach; William Apel; Rajesh Sani; Alice Dohnalkova; Thomas Borch

    2011-02-01

    Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption near edge structure (XANES) analysis showed U precipitates containing nearly equal fractions of U(IV) and U(VI), whereas in PIPES buffer, U precipitates consisted primarily of U(VI). Mass balance calculations for U and P corroborate these observations. High-resolution transmission electron microscopy (HR42TEM) and energy dispersive X-ray spectroscopy (EDS) showed both extracellular and intracellular accumulation of U solids. The U(VI)-phosphate precipitates, confirmed by EDS as containing U and P in equimolar concentrations, had nanometer sized lath structure. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, U reduction became the dominant removal mechanism, in contrast to primarily phosphate-mediated precipitation observed in the absence of AQDS. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, t 52 he presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6.

  14. Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. strain JS667.

    PubMed

    Shin, Kwanghee A; Spain, Jim C

    2009-05-01

    Diphenylamine (DPA) is a common contaminant at munitions-contaminated sites as well as at aniline manufacturing sites. Little is known about the biodegradation of the compound, and bacteria able to use DPA as the growth substrate have not been reported. Burkholderia sp. strain JS667 and Ralstonia sp. strain JS668 were isolated by selective enrichment from DPA-contaminated sediment. The isolates grew aerobically with DPA as the sole carbon, nitrogen, and energy source. During induction of DPA degradation, stoichiometric amounts of aniline accumulated and then disappeared, which suggested that aniline is on the DPA degradation pathway. Genes encoding the enzymes that catalyze the initial steps in DPA degradation were cloned from the genomic DNA of strain JS667. The Escherichia coli clone catalyzed stoichiometric transformation of DPA to aniline and catechol. Transposon mutagenesis, the sequence similarity of putative open reading frames to those of well-characterized dioxygenases, and (18)O(2) experiments support the conclusion that the initial reaction in DPA degradation is catalyzed by a multicomponent ring-hydroxylating dioxygenase. DPA is converted to aniline and catechol via dioxygenation at the 1,2 position of the aromatic ring and spontaneous rearomatization. Aniline and catechol are further biodegraded by the well-established aniline degradation pathway. Genes that encode the complete aniline degradation pathway were found 12 kb downstream of the genes that encode the initial dioxygenase. Expression of the relevant dioxygenases was confirmed by reverse transcription-PCR analysis. Both the sequence similarity and the gene organization suggest that the DPA degradation pathway evolved recently by the recruitment of two gene clusters that encode the DPA dioxygenase and aniline degradation pathway. PMID:19251893

  15. High-Quality Draft Genome Sequence of Leucobacter sp. Strain G161, a Distinct and Effective Chromium Reducer

    PubMed Central

    Ge, Shimei; Ai, Wenjing

    2016-01-01

    Here, we report the genome sequence for Leucobacter sp. strain G161 due to its distinct and effective hexavalent chromium reduction under aerobic growth conditions, followed by facultative anaerobic incubation. The draft genome sequence of Leucobacter sp. G161 comprises 3,554,188 bp, with an average G+C content of 65.3%, exhibiting 3,341 protein-coding genes and 55 predicted RNA genes. PMID:26893433

  16. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 ?g/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 ?g/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 ?g/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides. PMID:20721665

  17. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  18. Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256

    PubMed Central

    Eguchi, M.; Nishikawa, T.; MacDonald, K.; Cavicchioli, R.; Gottschal, J. C.; Kjelleberg, S.

    1996-01-01

    Sphingomonas sp. strain RB2256 was isolated from Resurrection Bay in Alaska and possibly represents the dominant bacterial species in some oligotrophic marine environments. Strain RB2256 has a high-affinity nutrient uptake system when growing under nutrient-limiting conditions, and growing cells are very small (<0.08 (mu)m(sup3)). These characteristics indicate that RB2256 is highly evolved for withstanding nutrient limitations and grazing pressure by heterotrophic nanoflagellates. In this study, strain RB2256 was subjected to nutrient starvation and other stresses (high temperature, ethanol, and hydrogen peroxide). It was found that growing cells were remarkably resistant, being able to survive at a temperature of 56(deg)C, in 25 mM hydrogen peroxide, or in 20% ethanol. In addition, growing cells were generally as resistant as starved cells. The fact that vegetative cells of this strain are inherently resistant to such high levels of stress-inducing agents indicates that they possess stress resistance mechanisms which are different from those of other nondifferentiating bacteria. Only minor changes in cell volume (0.03 to 0.07 (mu)m(sup3)) and maximum specific growth rate (0.13 to 0.16 h(sup-1)) were obtained for cells growing in media with different organic carbon concentrations (0.8 to 800 mg of C per liter). Furthermore, when glucose-limited, chemostat-grown cultures or multiple-nutrient-starved batch cultures were suddenly subjected to excess glucose, maximum growth rates were reached immediately. This immediate response to nutrient upshift suggests that the protein-synthesizing machinery is constitutively regulated. In total, these results are strong evidence that strain RB2256 possesses novel physiological and molecular strategies that allow it to predominant in natural seawater. PMID:16535292

  19. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413

    PubMed Central

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764 bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes. PMID:26203342

  20. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Burkholderia sp. strain UYPR1.413.

    PubMed

    De Meyer, Sofie E; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, Tbk; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Howieson, John; Kyrpides, Nikos; Reeve, Wayne

    2015-01-01

    Burkholderia sp. strain UYPR1.413 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida collected at the Angico plantation, Mandiyu, Uruguay, in December 2006. A survey of symbionts of P. rigida in Uruguay demonstrated that this species is nodulated predominantly by Burkholderia microsymbionts. Moreover, Burkholderia sp. strain UYPR1.413 is a highly efficient nitrogen fixing symbiont with this host. Currently, the only other sequenced isolate to fix with this host is Cupriavidus sp. UYPR2.512. Therefore, Burkholderia sp. strain UYPR1.413 was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the GEBA-RNB project. Here we describe the features of Burkholderia sp. strain UYPR1.413, together with sequence and annotation. The 10,373,764bp high-quality permanent draft genome is arranged in 336 scaffolds of 342 contigs, contains 9759 protein-coding genes and 77 RNA-only encoding genes. PMID:26203342

  1. Rapid decolorization of methyl orange by a novel Aeromonas sp. strain DH-6.

    PubMed

    Du, Lin-Na; Li, Gang; Xu, Fang-Cheng; Pan, Xiu; Wen, Ling-Ning; Wang, Yang

    2014-01-01

    Azo dyes are extensively used, but are recalcitrant and refractory. In this study, an indigenous strain DH-6 was isolated and identified as Aeromonas sp. based on 16S rDNA analysis for its excellent methyl orange (MO) decolorizing capability. Plackett-Burman design and response surface methodology (RSM) were employed to investigate the effect of operational parameters on decolorization and to optimize the decolorization process. Based on the results the concentrations of glucose, Na2HPO4 and MO and temperature were selected as the four significant parameters of RSM. The optimal conditions for MO decolorization by the strain were as follows: 3.0 g/L glucose, 4.9 g/L Na2HPO4, 100 mg/L MO, and at 40 C. The verification tests showed that 95.5% decolorization was observed after incubation for 2 h, which is within the confidence interval. Under the optimal conditions, the kinetics of the decolorization fitted the first-order model well (R(2) = 0.969). As the strain DH-6 still showed a good decolorizing capability at a relatively high temperature, it is considered a candidate for azo dye bioremediation in some tropical or subtropical regions. PMID:24845314

  2. High Production of Squalene Using a Newly Isolated Yeast-like Strain Pseudozyma sp. SD301.

    PubMed

    Song, Xiaojin; Wang, Xiaolong; Tan, Yanzhen; Feng, Yingang; Li, Wenli; Cui, Qiu

    2015-09-30

    A yeast-like fungus, termed strain SD301, with the ability to produce a high concentration of squalene, was isolated from Shuidong Bay, China. The nucleotide sequence analysis of the internal transcribed spacer (ITS) region of SD301 indicated the strain belonged to Pseudozyma species. The highest biomass and squalene production of SD301 were obtained when glucose and yeast extracts were used as the carbon and nitrogen sources, respectively, with a C/N ratio of 3. The optimal pH and temperature were 6 and 25 C, with 15 g L(-1) of supplemented sea salt. The maximum squalene productivity reached 0.039 g L(-1) h(-1) in batch fermentation, while the maximum squalene yield of 2.445 g L(-1) was obtained in fed-batch fermentation. According to our knowledge, this is the highest squalene yield produced thus far using fermentation technology, and the newly isolated strain Pseudozyma sp. SD301 is a promising candidate for commercial squalene production. PMID:26350291

  3. [Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp].

    PubMed

    Xu, Ran-Fang; Sun, Min-Xia; Liu, Juan; Wang, Hong; Li, Xin; Zhu, Xue-Zhu; Ling, Wan-Ting

    2014-08-01

    Utilizing the diethylstilbestrol (DES)-degrading bacteria to biodegrade DES is a most reliable technique for cleanup of DES pollutants from the environment. However, little information is available heretofore on the isolation of DES-degrading bacteria and their DES removal performance in the environment. A novel bacterium capable of degrading DES was isolated from the activated sludge of a wastewater treatment plant. According to its morphology, physiochemical characteristics, and 16S rDNA sequence analysis, this strain was identified as Serratia sp.. The strain was an aerobic bacterium, and it could degrade 68.3% of DES (50 mg x L(-1)) after culturing for 7 days at 30 degrees C, 150 r x min(-1) in shaking flasks. The optimal conditions for DES biodegradation by the obtained strain were 30 degrees C, 40-60 mg x L(-1) DES, pH 7.0, 5% of inoculation volume, 0 g x L(-1) of added NaCl, and 10 mL of liquid medium volume in 100 mL flask. PMID:25338395

  4. Biosynthesis of Polyunsaturated Fatty Acids in the Oleaginous Marine Diatom Fistulifera sp. Strain JPCC DA0580

    PubMed Central

    Liang, Yue; Maeda, Yoshiaki; Sunaga, Yoshihiko; Muto, Masaki; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Studies of polyunsaturated fatty acid (PUFA) biosynthesis in microalgae are of great importance for many reasons, including the production of biofuel and variable omega 3-long chain PUFAs. The elucidation of the PUFA biosynthesis pathway is necessary for bioengineering to increase or decrease PUFA content in certain microalgae. In this study, we identified the PUFA synthesis pathway in the oleaginous marine diatom, Fistulifera sp. strain JPCC DA0580, a promising candidate for biodiesel production. The data revealed not only the presence of the desaturases and elongases involved in eicosapentaenoic acid (EPA) synthesis, but also the unexpected localization of ?3-desaturase expression in the chloroplast. This suggests that this microalga might perform the final step of EPA synthesis in the chloroplast and not in the endoplasmic reticulum (ER) like other diatoms. The detailed fatty acid profile suggests that the EPA was synthesized only through the ?6-pathway in this strain, which was also different from other diatoms. Finally, the transcriptome analysis demonstrated an overall down-regulation of desaturases and elongases over incubation time. These genetic features might explain the decrease of PUFA percentage over incubation time in this strain. The important insights into metabolite synthesis acquired here will be useful for future metabolic engineering to control PUFA content in this diatom. PMID:24335525

  5. Modification of Norfloxacin by a Microbacterium sp. Strain Isolated from a Wastewater Treatment Plant?

    PubMed Central

    Kim, Dae-Wi; Heinze, Thomas M.; Kim, Bong-Soo; Schnackenberg, Laura K.; Woodling, Kellie A.; Sutherland, John B.

    2011-01-01

    Antimicrobial residues found in municipal wastewater may increase selective pressure on microorganisms for development of resistance, but studies with mixed microbial cultures derived from wastewater have suggested that some bacteria are able to inactivate fluoroquinolones. Medium containing N-phenylpiperazine and inoculated with wastewater was used to enrich fluoroquinolone-modifying bacteria. One bacterial strain isolated from an enrichment culture was identified by 16S rRNA gene sequence analysis as a Microbacterium sp. similar to a plant growth-promoting bacterium, Microbacterium azadirachtae (99.70%), and a nematode pathogen, M. nematophilum (99.02%). During growth in medium with norfloxacin, this strain produced four metabolites, which were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) analyses as 8-hydroxynorfloxacin, 6-defluoro-6-hydroxynorfloxacin, desethylene norfloxacin, and N-acetylnorfloxacin. The production of the first three metabolites was enhanced by ascorbic acid and nitrate, but it was inhibited by phosphate, amino acids, mannitol, formate, and thiourea. In contrast, N-acetylnorfloxacin was most abundant in cultures supplemented with amino acids. This is the first report of defluorination and hydroxylation of a fluoroquinolone by an isolated bacterial strain. The results suggest that some bacteria may degrade fluoroquinolones in wastewater to metabolites with less antibacterial activity that could be subject to further degradation by other microorganisms. PMID:21724893

  6. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    PubMed

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg?). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant. PMID:23632906

  7. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512

    PubMed Central

    2015-01-01

    Cupriavidus sp. strain UYPR2.512 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida grown in soils from a native forest of Uruguay. Here we describe the features of Cupriavidus sp. strain UYPR2.512, together with sequence and annotation. The 7,858,949 bp high-quality permanent draft genome is arranged in 365 scaffolds of 369 contigs, contains 7,411 protein-coding genes and 76 RNA-only encoding genes, and is part of the GEBA-RNB project proposal. PMID:26203327

  8. High-quality permanent draft genome sequence of the Parapiptadenia rigida-nodulating Cupriavidus sp. strain UYPR2.512.

    PubMed

    De Meyer, Sofie E; Fabiano, Elena; Tian, Rui; Van Berkum, Peter; Seshadri, Rekha; Reddy, Tbk; Markowitz, Victor; Ivanova, Natalia N; Pati, Amrita; Woyke, Tanja; Howieson, John; Kyrpides, Nikos C; Reeve, Wayne

    2015-01-01

    Cupriavidus sp. strain UYPR2.512 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Parapiptadenia rigida grown in soils from a native forest of Uruguay. Here we describe the features of Cupriavidus sp. strain UYPR2.512, together with sequence and annotation. The 7,858,949bp high-quality permanent draft genome is arranged in 365 scaffolds of 369 contigs, contains 7,411 protein-coding genes and 76 RNA-only encoding genes, and is part of the GEBA-RNB project proposal. PMID:26203327

  9. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    SciTech Connect

    Balotra, Sahil; Newman, Janet; French, Nigel G.; Briggs, Lyndall J.; Peat, Thomas S.; Scott, Colin

    2014-02-19

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.

  10. Molecular detection of the human pathogenic Rickettsia sp. strain Atlantic rainforest in Amblyomma dubitatum ticks from Argentina.

    PubMed

    Monje, Lucas D; Nava, Santiago; Eberhardt, Ayelen T; Correa, Ana I; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-02-01

    To date, three tick-borne pathogenic Rickettsia species have been reported in different regions of Argentina, namely, R. rickettsii, R. parkeri, and R. massiliae. However, there are no reports available for the presence of tick-borne pathogens from the northeastern region of Argentina. This study evaluated the infection with Rickettsia species of Amblyomma dubitatum ticks collected from vegetation and feeding from capybaras (Hydrochoerus hydrochaeris) in northeastern Argentina. From a total of 374 A. dubitatum ticks collected and evaluated by PCR for the presence of rickettsial DNA, 19 were positive for the presence of Rickettsia bellii DNA, two were positive for Rickettsia sp. strain COOPERI, and one was positive for the pathogenic Rickettsia sp. strain Atlantic rainforest. To our knowledge, this study is the first report of the presence of the human pathogen Rickettsia sp. strain Atlantic rainforest and Rickettsia sp. strain COOPERI in Argentina. Moreover, our findings posit A. dubitatum as a potential vector for this pathogenic strain of Rickettsia. PMID:25700048

  11. Glaciimonas alpina sp. nov. isolated from alpine glaciers and reclassification of Glaciimonas immobilis Cr9-12 as the type strain of Glaciimonas alpina sp. nov.

    PubMed

    Frasson, David; Udovi?i?, Matije; Frey, Beat; Lapanje, Ale; Zhang, De-Chao; Margesin, Rosa; Sievers, Martin

    2015-06-01

    Psychrophilic bacterial strains were isolated from alpine glaciers in Switzerland and characterized taxonomically. On the basis of phylogenetic analysis of partial 16S rRNA and rpoB genes, three of those strains, strain 79 (?= CCOS 247), strain 4/58 (?=?CCOS 250) and strain 4/56 (?= CCOS 258) clustered together with strain Cr9-12T and separately from the type strains Glaciimonas immobilis Cr9-30T and Glaciimonas singularis LMG 27070T. Strain Cr9-12T has been previously described as a strain of G. immobilis. The three newly isolated strains were compared phenotypically with strain Cr9-12T and with the type strains of the species G. immobilis and G. singularis. Cr9-12T and the three novel strains from an alpine glacier in Switzerland were Gram-stain-negative, non-motile, rod-shaped and psychrophilic and showed good growth throughout a temperature range of 1-20 C and characteristically oxidized d-mannitol, l-fucose and bromosuccinic acid. The predominant cellular fatty acids of strain Cr9-12T and the three novel strains were summed feature 3 (C16 : 1?7c and/or iso-C15 : 0 2-OH), C16 : 0 and C18 : 1?7c. The respiratory quinone of these strains was ubiquinone 8 (UQ-8). The genomic DNA G+C content of Cr9-12T was 49.2 mol%. The combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies strongly support the reclassification of strain Cr9-12T as representing a novel species. This strain and the isolates 79 (?= CCOS 247), 4/58 (?= CCOS 250) and 4/56 (?= CCOS 258) are representatives of a novel species of the genus Glaciimonas, for which the name Glaciimonas alpina sp. nov. is proposed. The type strain of Glaciimonas alpina is Cr9-12T (?= CCOS 761T = DSM 22814T). PMID:26184665

  12. Genomics of the Proteorhodopsin-Containing Marine Flavobacterium Dokdonia sp. Strain MED134▿†

    PubMed Central

    González, José M.; Pinhassi, Jarone; Fernández-Gómez, Beatriz; Coll-Lladó, Montserrat; González-Velázquez, Mónica; Puigbò, Pere; Jaenicke, Sebastian; Gómez-Consarnau, Laura; Fernàndez-Guerra, Antoni; Goesmann, Alexander; Pedrós-Alió, Carlos

    2011-01-01

    Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle. PMID:22003006

  13. Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119

    SciTech Connect

    Serrano, A.; Rivas, J.; Losada, M.

    1984-04-01

    An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive

  14. Unique modification of adenine in genomic DNA of the marine cyanobacterium Trichodesmium sp. strain NIBB 1067.

    PubMed Central

    Zehr, J P; Ohki, K; Fujita, Y; Landry, D

    1991-01-01

    The genomic DNA of the marine nonheterocystous nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067 was found to be highly resistant to DNA restriction endonucleases. The DNA was digested extensively by the restriction enzyme DpnI, which requires adenine methylation for activity. The DNA composition, determined by high-performance liquid chromatography (HPLC), was found to be 69% AT. Surprisingly, it was found that a modified adenine which was not methylated at the usual N6 position was present and made up 4.7 mol% of the nucleosides in Trichodesmium DNA (15 mol% of deoxyadenosine). In order for adenine residues to be modified at this many positions, there must be many modifying enzymes or at least one of the modifying enzymes must have a degenerate recognition site. The reason(s) for this extensive methylation has not yet been determined but may have implications for the ecological success of this microorganism in nature. Images FIG. 1 FIG. 2 PMID:1657876

  15. Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium Synechococcus sp. strain PCC 7002

    PubMed Central

    2015-01-01

    The application of synthetic biology requires characterized tools to precisely control gene expression. This toolbox of genetic parts previously did not exist for the industrially promising cyanobacterium, Synechococcus sp. strain PCC 7002. To address this gap, two orthogonal constitutive promoter libraries, one based on a cyanobacterial promoter and the other ported from Escherichia coli, were built and tested in PCC 7002. The libraries demonstrated 3 and 2.5 log dynamic ranges, respectively, but correlated poorly with E. coli expression levels. These promoter libraries were then combined to create and optimize a series of IPTG inducible cassettes. The resultant induction system had a 48-fold dynamic range and was shown to out-perform Ptrc constructs. Finally, a RBS library was designed and tested in PCC 7002. The presented synthetic biology toolbox will enable accelerated engineering of PCC 7002. PMID:25216157

  16. Degradation of 2-hydroxybiphenyl and 2,2 prime -dihydroxybiphenyl by Pseudomonas sp. strain HBP1

    SciTech Connect

    Kohler, H.P.E.; Kohler-Staub, D.; Focht, D.D. )

    1988-11-01

    Pseudomonas sp. strain HBP1 was found to grow on 2-hydroxy- and 2,2{prime}-dihydroxy-biphenyl as the sole carbon and energy sources. The first step in the degradation of these compounds was catalyzed by an NADH-dependent monooxygenase. The enzyme inserted a hydroxyl group adjacent to the already existing hydroxyl group to form 2,3-dihydroxybiphenyl when acting on 2-hydroxybiphenyl and to form 2,2{prime},3-trihydroxybiphenyl when acting on 2,2{prime}-dihydroxybiphenyl. To be substrates of the monooxygenase, compounds required a 2-hydroxyphenyl-R structure, with R being a hydrophobic group (e.g., methyl, ethyl, propyl, sec-butyl, phenyl, or 2-hydroxyphenyl). Several chlorinated hydroxybiphenyls served as pseudosubstrates by effecting consumption of NADH and oxygen without being hydroxylated. Further degradation of 2,3-dihydroxy- and 2,2{prime},3-trihydroxybiphenyl involved meta cleavage, with subsequent formation of benzoate and salicylate, respectively.

  17. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3.

    PubMed Central

    Yokota, T; Omori, T; Kodama, T

    1987-01-01

    A haloalkane dehalogenase was purified to electrophoretic homogeneity from cell extracts of a 1-chlorobutane-utilizing strain, m15-3, which was identified as a Corynebacterium sp. The enzyme hydrolyzed C2 to C12 mono- and dihalogenated alkanes, some haloalcohols, and haloacids. The Km value of the enzyme for 1-chlorobutane was 0.18 mM. Its molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 33,000 by gel filtration. The isoelectric point was pH 4.5. The optimum pH for enzyme activity was found to be 9.4, and the optimum temperature was 30 to 35 degrees C. The enzyme was stable for 1 h at temperatures ranging from 4 to 30 degrees C but was progressively less stable at 40 and 50 degrees C. Images PMID:3624201

  18. A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1.

    PubMed Central

    Okuyama, H; Sasaki, S; Higashi, S; Murata, N

    1990-01-01

    A high level of a trans-unsaturated fatty acid was found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1. This fatty acid was identified as 9-trans-hexadecenoic acid (C16:19t) by gas-liquid chromatography and infrared absorption spectrometry. C16:1(9)t accounted for less than 1% of the total fatty acids in cells grown at 5 degrees C and reached 12% of the total at 20 degrees C. We suggest that the increase in the level of the trans-unsaturated fatty acid is related to the high growth rate of this bacterium at elevated temperatures. Possible biological roles of the trans-unsaturated fatty acid in the adaptation of the microorganism to the ambient temperature are discussed. PMID:2345157

  19. Clustered Genes Required for the Synthesis of Heterocyst Envelope Polysaccharide in Anabaena sp. Strain PCC 7120

    PubMed Central

    Huang, Guocun; Fan, Qing; Lechno-Yossef, Sigal; Wojciuch, Elizabeth; Wolk, C. Peter; Kaneko, Takakazu; Tabata, Satoshi

    2005-01-01

    As demonstrated with alr2835 (hepA) and alr2834 (hepC) mutants, heterocysts of Anabaena sp. strain PCC 7120, a filamentous cyanobacterium, must have an envelope polysaccharide layer (the Hep+ phenotype) to fix dinitrogen in an oxygen-containing milieu (the Fox+ phenotype). Transpositions presumptively responsible for a Fox− phenotype were localized in open reading frames (ORFs) near hepA and hepC. A mutation in each of nine of these ORFs was complemented by a clone bearing only that single, intact ORF. Heterocysts of the nine mutants were found to lack an envelope polysaccharide layer. Complementation of mutations in alr2832 and alr2840 may have resulted from recombination. However, alr2825, alr2827, alr2831, alr2833, alr2837, alr2839, and alr2841, like hepA and hepC, are required for a Hep+ Fox+ phenotype. PMID:15659688

  20. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522).

    PubMed

    Sasidharan, Anju; Sasidharan, Nishanth Kumar; Amma, Dileepkumar Bhaskaran Nair Saraswathy; Vasu, Radhakrishnan Kokkuvayil; Nataraja, Anupama Vijaya; Bhaskaran, Krishnakumar

    2015-10-01

    A novel strain of Chromobacterium sp. NIIST (MTCC 5522) producing high level of purple blue bioactive compound violacein was isolated from clay mine acidic sediment. During 24 h aerobic incubation in modified Luria Bertani medium, around 0.6 g crude violacein was produced per gram of dry weight biomass. An inexpensive method for preparing crystalline, pure violacein from crude pigment was developed (12.8 mg violacein/L) and the pure compound was characterized by different spectrometric methods. The violacein prepared was found effective against a number of plant and human pathogenic fungi and yeast species such as Cryptococcus gastricus, Trichophyton rubrum, Fusarium oxysporum, Rhizoctonia solani, Aspergillus flavus, Penicillium expansum, and Candida albicans. The best activity was recorded against Trichophyton rubrum (2 -g/ml), a human pathogen responsible for causing athlete-s foot infection. This is the first report of antifungal activity of purified violacein against pathogenic fungi and yeast. PMID:26428920

  1. A cryptic miniplasmid from the hyperthermophilic bacterium Thermotoga sp. strain RQ7.

    PubMed Central

    Harriott, O T; Huber, R; Stetter, K O; Betts, P W; Noll, K M

    1994-01-01

    An 846-bp cryptic plasmid has been discovered in the hyperthermophilic bacterium Thermotoga sp. strain RQ7. This is the first plasmid described for an organism from this ancient bacterial lineage and the smallest plasmid described to date for any organism. Nucleotide sequencing revealed a single open reading frame possibly encoding a 25,460-Da basic protein (212 amino acids). Upstream of the putative promoter lie five 11-bp direct repeats, each separated by 1 to 4 bp, while between the promoter and the open reading frame lies an 11-bp palindromic sequence. Its mode of replication is unknown, but its sequence bears similarities to those of plasmids which replicate by a rolling-circle mechanism. Images PMID:8169230

  2. Active NDH-1 complexes from the cyanobacterium Synechocystis sp. strain PCC 6803

    SciTech Connect

    Ma, Weimin; Deng, Young; Ogawa, Teruo; Mi, Hualing

    2006-10-01

    We identified eight bands by staining the native gels for NADPH-nitroblue tetrazolium oxidoreductase activity after electrophoresis of n-dodecyl--maltoside-treated membranes of Synechocystis sp. strain PCC 6803. Among them, bands A, C, D and E were attributed to the activity of NADPH dehydrogenase (NDH-1). Band A is a highly active super-complex of NDH-1 (about 1,000 kDa) that was absent in ?ndhD1/D2 mutant and was suppressed under low CO2. Band C was induced under low CO2 or in ?ndhD1/D2 mutant and was converted to bands D and E. Bands A and C appear to be NDH-1L dimer and NDH-1M, respectively, with subunits essential for the activity.

  3. Structure and transcription analysis of the gene encoding a cellobiase from Agrobacterium sp. strain ATCC 21400.

    PubMed Central

    Wakarchuk, W W; Greenberg, N M; Kilburn, D G; Miller, R C; Warren, R A

    1988-01-01

    The DNA sequence was determined for the cloned Agrobacterium sp. strain ATCC 21400 beta-glucosidase gene, abg. High-resolution nuclease S1 protection studies were used to map the abg mRNA 5' and 3' termini. A putative abg promoter was identified whose sequence shows similarities to the consensus promoter of Escherichia coli and with the nif promoter regions of Klebsiella. The abg coding sequence was 1,374 nucleotides long. The molecular weight of the enzyme, based on the predicted amino acid sequence, was 51,000. The observed Mr was 50,000 to 52,000. A region of deduced protein sequence was homologous to a region from two other beta-glucosidase sequences. This region of homology contained a putative active site by analogy with the active site of hen egg white lysozyme. Images PMID:2826395

  4. Saccharification of corn fiber using enzymes from Aureobasidium sp. strain NRRL Y-2311-1

    SciTech Connect

    Leathers, T.D.; Gupta, S.C.

    1996-06-01

    Crude enzyme preparations from Aureobasidium sp. strain NRRL Y-2311-1 were characterized and tested for the capacity to saccharify corn fiber. Cultures grown on xylan, corn fiber, and alkaline hydrogen peroxide (AHP)-pretreated corn fiber produced specific levels of endoxylanase, amylase, protease, cellulose, and other activities. Using equal units of endoxylanase activity, crude enzymes from AHP-pretreated corn fiber cultures were most effective in saccharification. Multiple enzyme activities were implicated in this process. Pretreatment of corn fiber with AHP nearly doubled the susceptibility of hemicellulose to enzymatic digestion. Up to 138 mg xylose, 125 mg arabinose, and 490 mg glucose were obtained per g pretreated corn fiber under conditions tested. 31 refs., 2 figs., 4 tabs.

  5. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3.

    PubMed Central

    Schmidt, S; Wittich, R M; Erdmann, D; Wilkes, H; Francke, W; Fortnagel, P

    1992-01-01

    The bacterium Sphingomonas sp. strain SS3, which utilizes diphenyl ether and its 4-fluoro, 4-chloro, and (to a considerably lesser extent) 4-bromo derivatives as sole sources of carbon and energy, was enriched from soil samples of an industrial waste deposit. The bacterium showed cometabolic activities toward all other isomeric monohalogenated diphenyl ethers. During diphenyl ether degradation in batch culture experiments, phenol and catechol were produced as intermediates which were then channeled into the 3-oxoadipate pathway. The initial step in the degradation follows the recently discovered mechanism of 1,2-dioxygenation, which yields unstable phenolic hemiacetals from diphenyl ether structures. Oxidation of the structure-related dibenzo-p-dioxin yielded 2-(2-hydroxyphenoxy)-muconate upon ortho cleavage of the intermediate 2,2',3-trihydroxydiphenyl ether. Formation of phenol, catechol, halophenol, and halocatechol from the conversion of monohalogenated diphenyl ethers gives evidence for a nonspecific attack of the dioxygenating enzyme system. PMID:1444384

  6. Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99

    SciTech Connect

    Kern, H.W.; Kirk, T.K.

    1987-09-01

    The purpose of this study was to examine the relationship between the molecular size of lignin in several preparations and extent of degradation (mineralization) by Xanthomonas sp. strain 99. The influence of ligninase pretreatment was also examined. Five synthetic lignins and one /sup 14/C-methylated spruce lignin were used. The extent of mineralization to /sup 14/CO/sub 2/ was greatest for the samples containing the most low-molecular-weight material, and the low-molecular-weight portions were preferentially (or perhaps solely) degraded. Pretreatment of the five synthetic lignins with crude ligninase increased their molecular size and decreased their degradability by the xanthomonad. Pretreatment of the methylated spruce lignin with crude ligninase caused both polymerization and depolymerization but resulted in a net decrease in bacterial degradability. Their results suggest that the xanthomonad can degrade lignins only up to a molecular weight of 600 to 1000.

  7. Oxidation of biphenyl by a multicomponent enzyme system from pseudomonas sp. strain LB400

    SciTech Connect

    Haddock, J.D.; Nadim, L.M.; Gibson, D.T.

    1993-01-01

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. The organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of biphenyl to cis-2,3-dihydroxy-2,3-dihydrobiphenyl. Incorporation of both atoms of molecular oxygen into the substrate was shown with (18)O2. The nonlinear relationship between enzyme activity and protein concentration suggested that the enzyme is composed of multiple protein components. Ion-exchange chromatography of the cell extract gave three protein fractions that were required together to restore enzymatic activity. Similarities with other multicomponent aromatic hydrocarbon dioxygenases indicated that biphenyl dioxygenase may consist of a flavoprotein and iron-sulfur proteins that constitute a short electron transport chain involved in catalyzing the incorporation of both atoms of molecular oxygen into the aromatic ring.

  8. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    SciTech Connect

    Wolk, C. Peter Wolk; Fan, Qing; Zhou, Ruanbao; Huang, Guocun; Lechno-Yossef, Sigal; Kuritz, Tanya; Wojciuch, Elizabeth

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  9. Enhancing atrazine biodegradation by Pseudomonas sp. strain ADP adsorption to Layered Double Hydroxide bionanocomposites.

    PubMed

    Alekseeva, Tatiana; Prevot, Vanessa; Sancelme, Martine; Forano, Claude; Besse-Hoggan, Pascale

    2011-07-15

    To mimic the role of hydroxide minerals and their humic complex derivatives on the biodegradability of pesticides in soils, synthetic Mg(R)Al Layered Double Hydroxides (LDH) and Mg(R)Al modified by Humic substances (LDH-HA) were prepared for various R values (2, 3 and 4) and fully characterized. Adsorption properties of LDH and LDH-HA toward Pseudomonas sp. strain ADP were evaluated. The adsorption kinetics were very fast (<5 min to reach equilibrium). The adsorption capacities were greater than previously reported (13.510(11), 4110(11) and 45.510(11) cells/gLDH for Mg(2)Al, Mg(3)Al and Mg(4)Al, respectively) and varied with both surface charge and textural properties. Surface modification by HA reduced the adsorption capacities of cells by 2-6-fold. Biodegradation kinetics of atrazine by Pseudomonas sp. adsorbed on both LDHs and LDH-HA complexes were measured for various solid/liquid ratios and adsorbed cell amounts. Biodegradation activity of bacterial cells was strongly boosted after adsorption on LDHs, the effect depending on the quantity and properties of the LDH matrix. The maximum biodegradation rate was obtained in the case of a 100 mg/mL Mg(2)Al LDH suspension (26 times higher than that obtained with cells alone). PMID:21596476

  10. Photoheterotrophic Fluxome in Synechocystis sp. Strain PCC 6803 and Its Implications for Cyanobacterial Bioenergetics

    PubMed Central

    You, Le; He, Lian

    2014-01-01

    This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on 13C-metabolic flux analysis (13C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the ?-aminobutyric acid pathway or ?-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria. PMID:25535269

  11. Compositional and toxicological evaluation of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; McKeehen, J. D.; Stephens, S. D.; Nielsen, S. S.; Saha, P. R.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Compositional analyses of Cyanothece sp. strain ATCC 51142 showed high protein (50-60%) and low fat (0.4-1%) content, and the ability to synthesize vitamin B12. The amino acid profile indicated that Cyanothece sp. was a balanced protein source. Fatty acids of the 18:3n-3 type were also present. Mineral analyses indicated that the cellular biomass may be a good source of Fe, Zn and Na. Caloric content was 4.5 to 5.1 kcal g dry weight-1 and the carbon content was approximately 40% on a dry weight basis. Nitrogen content was 8 to 9% on a dry weight basis and total nucleic acids were 1.3% on a dry weight basis. Short-term feeding studies in rats followed by histopathology found no toxicity or dietary incompatibility problems. The level of uric acid and allantoin in urine and tissues was low, suggesting no excess of nucleic acids, as sometimes reported in the past for a cyanobacteria-containing diet. The current work discusses the potential implications of these results for human nutrition applications.

  12. Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42.

    PubMed

    Lee, Kyung-Seon; Parales, Juanito V; Friemann, Rosmarie; Parales, Rebecca E

    2005-10-01

    Acidovorax (formerly Pseudomonas) sp. strain JS42 utilizes 2-nitrotoluene as sole carbon, nitrogen, and energy source. 2-Nitrotoluene 2,3-dioxygenase (2NTDO) catalyzes the initial step in 2-nitrotoluene degradation by converting 2-nitrotoluene to 3-methylcatechol. In this study, we identified specific amino acids at the active site that control specificity. The residue at position 350 was found to be critical in determining both the enantiospecificity of 2NTDO with naphthalene and the ability to oxidize the ring of mononitrotoluenes. Substitution of Ile350 by phenylalanine resulted in an enzyme that produced 97% (+)-(1R, 2S)-cis-naphthalene dihydrodiol, in contrast to the wild type, which produced 72% (+)-(1R, 2S)-cis-naphthalene dihydrodiol. This substitution also severely reduced the ability of the enzyme to produce methylcatechols from nitrotoluenes. Instead, the methyl group of each nitrotoluene isomer was preferentially oxidized to form the corresponding nitrobenzyl alcohol. Substitution of a valine at position 258 significantly changed the enantiospecificity of 2NTDO (54% (-)-(1S, 2R)-cis-naphthalene dihydrodiol formed from naphthalene) and the ability of the enzyme to oxidize the aromatic ring of nitrotoluenes. Based on active site modeling using the crystal structure of nitrobenzene 1,2 dioxygenase from Comamonas sp. JS765, Asn258 appears to contribute to substrate specificity through hydrogen bonding to the nitro group of nitrotoluenes. PMID:16175409

  13. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater.

    PubMed

    Ji, Fang; Liu, Ying; Hao, Rui; Li, Gang; Zhou, Yuguang; Dong, Renjie

    2014-06-01

    Anaerobic digestion wastewater (ADW), which contains large amount of nitrogen and phosphorus, particularly high concentration of ammonium, might lead to severely environmental pollution. A new unicellular green microalgae species from a wetland at the Olympic Forest Park, Beijing, China was screened based on its growth rates and nutrients removal capability under ADW. Results of 18s rDNA and ITS1 analysis indicated that this strain have a close relationship with Desmodesmus sp., named as EJ9-6. Desmodesmus sp. EJ9-6 could remove 100% NH4-N (68.691mg/L), TP (4.565mg/L) and PO4-P (4.053mg/L), and 75.50% TN (84.236mg/L) at 10.0% ADW, which the highest biomass production was 0.412g/L after 14d cultivation. Maximum nutrients removal was observed at 10.0% ADW with daily removal rates of TN, NH4-N, TP and PO4-P at 4.542, 5.284, 0.326 and 0.290mg/L/d, respectively. PMID:24704885

  14. Hfq is required for optimal nitrate assimilation in the Cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Puerta-Fernández, Elena; Vioque, Agustín

    2011-07-01

    Hfq is an RNA binding protein involved in posttranscriptional regulation of gene expression in bacteria. It acts by binding to regulatory small RNAs (sRNAs), which confer specificity for the regulation. Recently, orthologues of the Hfq protein were annotated in cyanobacterial genomes, although its capacity to regulate gene expression by interacting with sRNAs has not been yet demonstrated. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that, in the absence of combined nitrogen, is able to fix atmospheric nitrogen by differentiating specialized cells called heterocysts. We have generated an hfq knockout mutant of Anabaena sp. PCC 7120. Deletion of this gene results in differentiation of heterocysts in the presence of nitrate, suggesting a defect in nitrate assimilation. We show that hfq mutant cells are affected in transport and use of nitrate and nitrite. An analysis of the expression of several genes in the nir operon, encoding different elements of the nitrate assimilation pathway, demonstrates a downregulation of their transcription in mutant cells. We also observed that genes ntcB and cnaT, involved in the regulation of the nir operon, show a lower expression in cells lacking Hfq. Finally, when hfq was reintroduced in the mutant, heterocyst differentiation was no longer observed in the presence of nitrate. Therefore, our results indicate that the RNA chaperone Hfq is involved in the regulation of the nir operon, although the mechanism for this regulation is still unknown. PMID:21602329

  15. Hfq Is Required for Optimal Nitrate Assimilation in the Cyanobacterium Anabaena sp. Strain PCC 7120 ▿

    PubMed Central

    Puerta-Fernández, Elena; Vioque, Agustín

    2011-01-01

    Hfq is an RNA binding protein involved in posttranscriptional regulation of gene expression in bacteria. It acts by binding to regulatory small RNAs (sRNAs), which confer specificity for the regulation. Recently, orthologues of the Hfq protein were annotated in cyanobacterial genomes, although its capacity to regulate gene expression by interacting with sRNAs has not been yet demonstrated. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that, in the absence of combined nitrogen, is able to fix atmospheric nitrogen by differentiating specialized cells called heterocysts. We have generated an hfq knockout mutant of Anabaena sp. PCC 7120. Deletion of this gene results in differentiation of heterocysts in the presence of nitrate, suggesting a defect in nitrate assimilation. We show that hfq mutant cells are affected in transport and use of nitrate and nitrite. An analysis of the expression of several genes in the nir operon, encoding different elements of the nitrate assimilation pathway, demonstrates a downregulation of their transcription in mutant cells. We also observed that genes ntcB and cnaT, involved in the regulation of the nir operon, show a lower expression in cells lacking Hfq. Finally, when hfq was reintroduced in the mutant, heterocyst differentiation was no longer observed in the presence of nitrate. Therefore, our results indicate that the RNA chaperone Hfq is involved in the regulation of the nir operon, although the mechanism for this regulation is still unknown. PMID:21602329

  16. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    SciTech Connect

    Chen, C.H.; Van Baalen, C.; Tabita, F.R.

    1987-03-01

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-(/sup 14/C)glutamate from 2-keto-(1-/sup 14/C)glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with (/sup 14/C)bicarbonate and L-(1-/sup 14/C)ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.

  17. Multiple Light Inputs Control Phototaxis in Synechocystis sp. Strain PCC6803†

    PubMed Central

    Ng, Wing-On; Grossman, Arthur R.; Bhaya, Devaki

    2003-01-01

    The phototactic behavior of individual cells of the cyanobacterium Synechocystis sp. strain PCC6803 was studied with a glass slide-based phototaxis assay. Data from fluence rate-response curves and action spectra suggested that there were at least two light input pathways regulating phototaxis. We observed that positive phototaxis in wild-type cells was a low fluence response, with peak spectral sensitivity at 645 and 704 nm. This red-light-induced phototaxis was inhibited or photoreversible by infrared light (760 nm). Previous work demonstrated that a taxD1 mutant (Cyanobase accession no. sll0041; also called pisJ1) lacked positive but maintained negative phototaxis. Therefore, the TaxD1 protein, which has domains that are similar to sequences found in both bacteriophytochrome and the methyl-accepting chemoreceptor protein, is likely to be the photoreceptor that mediates positive phototaxis. Wild-type cells exhibited negative phototaxis under high-intensity broad-spectrum light. This phenomenon is predominantly blue light responsive, with a maximum sensitivity at approximately 470 nm. A weakly negative phototactic response was also observed in the spectral region between 600 and 700 nm. A ΔtaxD1 mutant, which exhibits negative phototaxis even under low-fluence light, has a similar action maximum in the blue region of the spectrum, with minor peaks from green to infrared (500 to 740 nm). These results suggest that while positive phototaxis is controlled by the red light photoreceptor TaxD1, negative phototaxis in Synechocystis sp. strain PCC6803 is mediated by one or more (as yet) unidentified blue light photoreceptors. PMID:12591877

  18. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  19. Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1.

    PubMed Central

    Adriaens, P; Focht, D D

    1991-01-01

    When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2036004

  20. Coregulated Genes Link Sulfide:Quinone Oxidoreductase and Arsenic Metabolism in Synechocystis sp. Strain PCC6803

    PubMed Central

    Nagy, Csaba I.; Vass, Imre; Rákhely, Gábor; Vass, István Zoltán; Tóth, András; Duzs, Ágnes; Peca, Loredana; Kruk, Jerzy

    2014-01-01

    Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer. PMID:25022856

  1. Distinct Actions by Paenibacillus sp. Strain E18 ?-l-Arabinofuranosidases and Xylanase in Xylan Degradation

    PubMed Central

    Shi, Pengjun; Chen, Xiaoyan; Meng, Kun; Huang, Huoqing; Bai, Yingguo; Luo, Huiying; Yang, Peilong

    2013-01-01

    We cloned a Paenibacillus sp. strain E18 5.3-kb xylanolytic gene cluster that contains three open reading frames encoding two family 43 ?-l-arabinofuranosidases (Abf43A and Abf43B) and one family 10 xylanase (XynBE18). The deduced amino acid sequences of Abf43A and Abf43B were at most 68% and 63% identical to those of two putative family 43 proteins from Clostridium sp. strain DL-VIII (EHI98634.1 and EHI98635.1), respectively, but were only 11% identical to each other. Recombinant Abf43A and Abf43B had similar activities at 45C and pH 6.0 but varied in thermostabilities and substrate specificities. Abf43B was active against only 4-nitrophenyl ?-l-arabinofuranoside, whereas Abf43A acted on 4-nitrophenyl ?-l-arabinofuranoside, wheat arabinoxylan, 4-nitrophenyl ?-d-xylopyranoside, and sugar beet arabinan. The sequential and combined effects on xylan degradation by XynBE18, Abf43A, and Abf43B were characterized. For beechwood, birchwood, and oat spelt xylans as the substrates, synergistic effects were found when XynBE18 and Abf43A or Abf43B were incubated together and when the substrates were first incubated with Abf43A or Abf43B and then with XynBE18. Further high-performance liquid chromatography (HPLC) analysis showed that the amounts of xylobiose and xylose increased sharply in the aforementioned reactions. For water-soluble wheat arabinoxylan as the substrate, Abf43A not only released arabinose but also had a synergistic effect with XynBE18. Synergy may arise as the result of removal of arabinose residues from xylans by ?-l-arabinofuranosidases, which eliminates steric hindrance caused by the arabinose side chains and which allows xylanases to then degrade the xylan backbone, producing short xylooligosaccharides. PMID:23335774

  2. Metabolism of hydroxydibenzofurans, methoxydibenzofurans, acetoxydibenzofurans, and nitrodibenzofurans by Sphingomonas sp. strain HH69

    SciTech Connect

    Harms, H. |; Wittich, R.M.; Fortnagel, P.

    1995-07-01

    The metabolism of 11 substituted dibenzofurans by the dibenzofuran-degrading Sphingomonas sp. strain HH69 was investigated. Strain HH69 utilizes 2-, 3-, and 4-acetoxydibenzofuran as well as 2-, 3-, and 4-hydroxydibenzofuran as sole sources of carbon and energy. The degradation of acetoxydibenzofurans is initiated by hydrolysis of the ester bonds, yielding the corresponding hydroxydibenzofurans and acetate. Strain HH69 grew on 2-methoxydibenzofuran only after it was adapted to the utilization of 5-methoxysalicylic acid, whereas 3- and 4-methoxydibenzofuran as well as 2- and 3-nitrodibenzofuran were only cooxidized. During the breakdown of all eight hydroxy-, methoxy-, and nitrodibenzofurans studied here, the corresponding substituted salicylic acids accumulated in the culture broth. In the cases of 2- and 3-hydroxydibenzofuran as well as 2- and 3-nitrodibenzofuran, salicylic acid was also formed. Those four dibenzofurans which did not serve as carbon sources for strain HH69 were converted to a nonutilizable salicylic acid derivative. From turnover experiments with the mutant HH69/II, which is deficient in meta-cleavage, 2,2{prime}, 3,4{prime}-tetrahydroxybiphenyl, 2,2{prime},3-trihydroxy-5{prime}-methoxybiphenyl, 2,2{prime},3-trihydroxy-5{prime}-nitrobiphenyl, and 2,2{prime},3-trihydroxy-4{prime}-nitrobiphenyl were isolated as the main products formed from 3-hydroxydibenzofuran, 2-methoxydibenzofuran, and 2- and 3-nitrodibenzo-furan, respectively. These results indicate significant regioselectivity for the dioxygenolytic cleavage of the ether bond of these monosubstituted dibenzofurans, with a preference for the nonsubstituted aromatic nucleus. Substituted trihydroxybiphenyls are converted further by meta-cleavage followed by the removal of the side chain of the resulting product. A stepwise degradation of this side chain was found to be involved in the metabolism of 2-hydroxydibenzofuran. 34 refs., 5 figs., 2 tabs.

  3. Isolation of a novel microalgae strain Desmodesmus sp. and optimization of environmental factors for its biomass production.

    PubMed

    Ji, Fang; Hao, Rui; Liu, Ying; Li, Gang; Zhou, Yuguang; Dong, Renjie

    2013-11-01

    A novel strain of unicellular green algae was isolated from fresh water samples collected from Yesanpo National Geopark, Laishui County of Hebei Province, China. The morphological and genomic identification of this strain was carried out using 18s rRNA analysis. This novel strain was identified as Desmodesmus sp. named as EJ15-2. Environmental factors for biomass production of Desmodesmus sp. EJ15-2 grown under autotrophic condition (BG11 medium) was optimized using response surface methodology (RSM). A high correlation coefficient (R(2)=0.923, p ≤ 0.01) indicated the adaptability of the second-order equation matched well with the growth condition of this strain. The optimal conditions for a relatively high biomass production (up to 0.758 g/L) were at 30°C, 98 μmol/m(2)/s and 14:10 (L:D), respectively. PMID:24055966

  4. Genome Sequence of Rhodococcus sp. Strain PML026, a Trehalolipid Biosurfactant Producer and Biodegrader of Oil and Alkanes

    PubMed Central

    2015-01-01

    Rhodococcus sp. strain PML026 produces an array of trehalolipid biosurfactant compounds in order to utilize hydrophobic carbon sources, such as oils and alkanes. Here, we report the high-quality draft genome sequence of this strain, which has a total length of 5,168,404 bp containing 4,835 protein-coding sequences, 12 rRNAs, and 45 tRNAs. PMID:25953162

  5. Genome Sequence of Rhodococcus sp. Strain PML026, a Trehalolipid Biosurfactant Producer and Biodegrader of Oil and Alkanes.

    PubMed

    Sambles, C M; White, D A

    2015-01-01

    Rhodococcus sp. strain PML026 produces an array of trehalolipid biosurfactant compounds in order to utilize hydrophobic carbon sources, such as oils and alkanes. Here, we report the high-quality draft genome sequence of this strain, which has a total length of 5,168,404bp containing 4,835 protein-coding sequences, 12 rRNAs, and 45 tRNAs. PMID:25953162

  6. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    PubMed

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. PMID:26656223

  7. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4

    SciTech Connect

    Resnick, S.M.; Gibson, D.T.

    1996-11-01

    Fluorene, dibenzofuran, dibenzothiophene, and carbazole are structural analogs differing only in the type of atom bridging the two aromatic rings. These compounds are constituents of fossil fuels. The authors have examined the oxidation of fluorene, dibenzofuran, and dibenzothiophene by mutant and recombinant strains which express NDO from Pseudomonas sp. strain NCIB 9816-4 and reports the yields, region chemistry, absolute stereochemistry, and enantiomeric purity of the isolated initial metabolites. 71 refs., 3 figs., 2 tabs.

  8. Draft Genome Sequence of Thermophilic Exiguobacterium sp. Strain JLM-2, Isolated from Deep-Sea Ferromanganese Nodules

    PubMed Central

    Zhang, De-Chao; Liu, Yan-Xia; Huo, Ying-Yi; Xu, Xue-Wei

    2015-01-01

    Exiguobacterium sp. strain JLM-2 is a thermophilic bacterium isolated from deep-sea ferromanganese (FeMn) nodules. The estimated genome of this strain is 2.9 Mb, with a G+C content of 48.32%. It has a novel circular 15,570-bp plasmid. The draft genome sequence may provide useful information about Mn-microbe interactions and the genetic basis for tolerance to environment stresses. PMID:26205856

  9. Draft Genome Sequence of Pseudozyma brasiliensis sp. nov. Strain GHG001, a High Producer of Endo-1,4-Xylanase Isolated from an Insect Pest of Sugarcane

    PubMed Central

    Oliveira, Juliana Velasco de Castro; dos Santos, Renato Augusto Corra; Borges, Thuanny A.

    2013-01-01

    Here, we present the nuclear and mitochondrial genome sequences of Pseudozyma brasiliensis sp. nov. strain GHG001. P.brasiliensis sp. nov. is the closest relative of Pseudozymavetiver. P.brasiliensis sp. nov. is capable of growing on xylose or xylan as a sole carbon source and has great biotechnological potential. PMID:24356824

  10. Draft Genome Sequence of Pseudozyma brasiliensis sp. nov. Strain GHG001, a High Producer of Endo-1,4-Xylanase Isolated from an Insect Pest of Sugarcane.

    PubMed

    Oliveira, Juliana Velasco de Castro; Dos Santos, Renato Augusto Corra; Borges, Thuanny A; Riao-Pachn, Diego Mauricio; Goldman, Gustavo Henrique

    2013-01-01

    Here, we present the nuclear and mitochondrial genome sequences of Pseudozyma brasiliensis sp. nov. strain GHG001. P.brasiliensis sp. nov. is the closest relative of Pseudozymavetiver. P.brasiliensis sp. nov. is capable of growing on xylose or xylan as a sole carbon source and has great biotechnological potential. PMID:24356824

  11. Differential Degradation of Bicyclics with Aromatic and Alicyclic Rings by Rhodococcus sp. Strain DK17 ?

    PubMed Central

    Kim, Dockyu; Yoo, Miyoun; Choi, Ki Young; Kang, Beom Sik; Kim, Tai Kyoung; Hong, Soon Gyu; Zylstra, Gerben J.; Kim, Eungbin

    2011-01-01

    The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations. PMID:21965391

  12. Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU.

    PubMed

    Ibrahim, Salihu; Shukor, Mohd Y; Syed, Mohd A; Johari, Wan L W; Shamaan, Nor A; Sabullah, Mohd K; Ahmad, Siti A

    2016-01-01

    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum. PMID:26923127

  13. Expression Dynamics of Arsenic Respiration and Detoxification in Shewanella sp. Strain ANA-3

    PubMed Central

    Saltikov, Chad W.; Wildman, Richard A.; Newman, Dianne K.

    2005-01-01

    Because arsenate [As(V)] reduction by bacteria can significantly enhance arsenic mobility in the environment, it is important to be able to predict when this activity will occur. Currently, two bacterial systems are known that specifically reduce As(V), namely, a respiratory system (encoded by the arr genes) and a detoxification system (encoded by the ars genes). Here we analyze the conditions under which these two systems are expressed in Shewanella sp. strain ANA-3. The ars system is expressed under both aerobic and anaerobic conditions, whereas the arr system is only expressed anaerobically and is repressed by oxygen and nitrate. When cells are grown on As(V), the arr system is maximally induced during exponential growth, with peak expression of the ars system occurring at the beginning of stationary phase. Both the arr and ars systems are specifically induced by arsenite [As(III)], but the arr system is activated by a concentration of As(III) that is 1,000 times lower than that required for the arsC system (?100 nM versus ?100 ?M, respectively). A double mutant was constructed that does not reduce As(V) under any growth conditions. In this strain background, As(V) is capable of inducing the arr system at low micromolar concentrations, but it does not induce the ars system. Collectively, these results demonstrate that the two As(V) reductase systems in ANA-3 respond to different amounts and types of inorganic arsenic. PMID:16237022

  14. Premethylation of foreign DNA improves integrative transformation efficiency in Synechocystis sp. strain PCC 6803.

    PubMed

    Wang, Bo; Yu, Jianping; Zhang, Weiwen; Meldrum, Deirdre R

    2015-12-01

    Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5' untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803. PMID:26452551

  15. Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06.

    PubMed Central

    Feng, X; Ou, L T; Ogram, A

    1997-01-01

    A bacterial strain (CF06) that mineralized both the carbonyl group and the aromatic ring of the insecticide carbofuran and that is capable of using carbofuran as a sole source of carbon and nitrogen was isolated from a soil in Washington state. Phospholipid fatty acid and 16S rRNA sequencing analysis indicate that CF06 is a Sphingomonas sp. CF06 contains five plasmids, at least some of which are required for metabolism of carbofuran. Loss of the plasmids induced by growth at 42 degrees C resulted in the inability of the cured strain to grow on carbofuran as a sole source of carbon. Introduction of the plasmids confers on Pseudomonas fluorescens M480R the ability to use carbofuran as a sole source of carbon for growth and energy. Of the five plasmids, four are rich in insertion sequence elements and contain large regions of overlap. Rearrangements, deletions, and loss of individual plasmids that resulted in the loss of the carbofuran-degrading phenotype were observed following introduction of Tn5. PMID:9097429

  16. Influence of culture conditions of Streptomyces sp. (strain S242) on chitinase production.

    PubMed

    Saadoun, Ismail; Al-Omari, Ruqayyah; Jaradat, Ziad; Ababneh, Qotaiba

    2009-01-01

    The purpose of this study was to determine the influence of growth conditions and medium composition on the production ofchitinase by Streptomyces sp. (strain S242). Production of chitinase by strain S242 was detected on colloidal chitin agar (CCA) medium after 8 days of incubation at 28 degrees C resulting in a clear zone 10 mm around the colony. Chitinase activity was assayed as the amount of N-acetylglucosamine released in micromol/ml/min using the dinitrosalicylic acid assay method. The crude enzyme had maximum activity (0.162 U ml/l) after 4 days of incubation at pH 7 and 30 degrees C when the broth medium was supplemented with 1.6% of colloidal chitin. However, enzyme activity was strongly decreased at 40 degrees C and extreme acidic and alkaline pH values. SDS-PAGE and zymogram analysis revealed six distinctive bands that range from 39 to 97 kDa with chitinolytic activity. The findings of this investigation create a possibility for the use of the organism in the commercial production of chitinase. In addition, it can be a source of DNA for cloning the chitinase gene(s) to generate phytopathogen resistant transgenic plants. PMID:20380144

  17. Enhancement of the potential to utilize octopine in the nonfluorescent Pseudomonas sp. strain 92

    SciTech Connect

    Gill, S.S.; Boivin, R.; Dion, P. )

    1991-08-01

    The nonfluorescent Pseudomonas sp. strain 92 requires the presence of a supplementary carbon source for growth on octopine, whereas the spontaneous mutant RB100 has acquired the capacity to utilize this opine as the sole carbon and nitrogen source. Insertional mutagenesis of RB100 with transposon Tn5 generated mutants which were unable to grow on octopine and others which grew slowly on this substrate. Both types of mutants yielded revertants that had regained the ability to utilize octopine. Some of the revertants had lost the transposon, whereas in others the transposon was retained but with rearrangements of the insertion site. Genes of octopine catabolism from strain 92 were cloned on a cosmid vector to generate pK3. The clone pK3 conferred the ability to utilize octopine as the sole carbon and nitrogen source on the host Pseudomonas putida KT2440. Although they conferred an equivalent growth phenotype, the mutant genes carried by RB100 and the cloned genes on pK3 differed in their regulation. Utilization of ({sup 14}C)octopine was inducible by octopine in RB100 and was constitutive in KT2440(pK3).

  18. Anilofos Tolerance and Its Mineralization by the Cyanobacterium Synechocystis sp. Strain PUPCCC 64

    PubMed Central

    Singh, D. P.; Khattar, J. I. S.; Kaur, Mandeep; Kaur, Gurdeep; Gupta, Meenu; Singh, Yadvinder

    2013-01-01

    This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L?1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L?1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L?1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L?1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L?1, pH 8.0 and 30C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L?1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate. PMID:23382844

  19. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.

  20. Using Transcriptomics To Improve Butanol Tolerance of Synechocystis sp. Strain PCC 6803

    PubMed Central

    Anfelt, Josefine; Hallström, Björn; Nielsen, Jens; Uhlén, Mathias

    2013-01-01

    Cyanobacteria are emerging as promising hosts for production of advanced biofuels such as n-butanol and alkanes. However, cyanobacteria suffer from the same product inhibition problems as those that plague other microbial biofuel hosts. High concentrations of butanol severely reduce growth, and even small amounts can negatively affect metabolic processes. An understanding of how cyanobacteria are affected by their biofuel product can enable identification of engineering strategies for improving their tolerance. Here we used transcriptome sequencing (RNA-Seq) to assess the transcriptome response of Synechocystis sp. strain PCC 6803 to two concentrations of exogenous n-butanol. Approximately 80 transcripts were differentially expressed at 40 mg/liter butanol, and 280 transcripts were different at 1 g/liter butanol. Our results suggest a compromised cell membrane, impaired photosynthetic electron transport, and reduced biosynthesis. Accumulation of intracellular reactive oxygen species (ROS) scaled with butanol concentration. Using the physiology and transcriptomics data, we selected several genes for overexpression in an attempt to improve butanol tolerance. We found that overexpression of several proteins, notably, the small heat shock protein HspA, improved tolerance to butanol. Transcriptomics-guided engineering created more solvent-tolerant cyanobacteria strains that could be the foundation for a more productive biofuel host. PMID:24056459

  1. Draft genome sequence of Thauera sp. strain SWB20, isolated from a Singapore wastewater treatment facility using gel microdroplets

    DOE PAGESBeta

    Dichosa, Armand E. K.; Davenport, Karen W.; Li, Po-E; Ahmed, Sanaa A.; Daligault, Hajnalka; Gleasner, Cheryl D.; Kunde, Yuliya; McMurry, Kim; Lo, Chien -Chi; Reitenga, Krista G.; et al

    2015-03-19

    In this study, we report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.

  2. Draft Genome Sequence of Treponema sp. Strain JC4, a Novel Spirochete Isolated from the Bovine Rumen

    PubMed Central

    Rosewarne, Carly P.; Cheung, Jane L.; Smith, Wendy J. M.; Evans, Paul N.; Tomkins, Nigel W.; Denman, Stuart E.; Cuv, Praic

    2012-01-01

    Morphologically and biochemically diverse members of the Treponema genus are present in the gastrointestinal tract of ruminants, yet very little is understood about their functional importance to this microbiome. Here we describe the annotated draft genome sequence of Treponema sp. strain JC4, a novel spirochete isolated from a bovine rumen sample. PMID:22815447

  3. HIGH LEVEL EXPRESSION AND CHARACTERIZATION OF THE CYCLOPHILIN B GENE FROM THE ANAEROBIC FUNGUS ORPINOMYCES SP. STRAIN PC-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclophilins are an evolutionarily conserved family of peptidyl-prolyl cis-trans isomerases (PPIases). A cyclophilin B (CyPB) gene from anaerobic fungus Orpinomyces sp. strain PC-2 was cloned and overexpressed in Escherichia coli. It was expressed as amino terminal 6 x His-tagged recombinant prote...

  4. Biodegradation of n-Alkylcycloalkanes and n-Alkylbenzenes via New Pathways in Alcanivorax sp. Strain MBIC 4326

    PubMed Central

    Dutta, Tapan K.; Harayama, Shigeaki

    2001-01-01

    The degradation of long-chain n-alkylbenzenes and n-alkylcyclohexanes by Alcanivorax sp. strain MBIC 4326 was investigated. The alkyl side chain of these compounds was mainly processed by ?-oxidation. In the degradation of n-alkylcyclohexanes, cyclohexanecarboxylic acid was formed as an intermediate. This compound was further transformed to benzoic acid via 1-cyclohexene-1-carboxylic acid. PMID:11282659

  5. Pandoraea sp. Strain E26: Discovery of Its Quorum-Sensing Properties via Whole-Genome Sequence Analysis.

    PubMed

    Chan, Kok-Gan; Yin, Wai-Fong; Tee, Kok Keng; Chang, Chien-Yi; Priya, Kumutha

    2015-01-01

    We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate. PMID:26021935

  6. Pandoraea sp. Strain E26: Discovery of Its Quorum-Sensing Properties via Whole-Genome Sequence Analysis

    PubMed Central

    Yin, Wai-Fong; Tee, Kok Keng; Chang, Chien-Yi; Priya, Kumutha

    2015-01-01

    We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate. PMID:26021935

  7. Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis

    PubMed Central

    Wall, Luis G.; Beauchemin, Nicholas; Cantor, Michael N.; Chaia, Eugenia; Chen, Amy; Detter, J. Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P.; Nouioui, Imen; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wei, Chia-Lin; Woyke, Tanja

    2013-01-01

    Frankia forms a nitrogen-fixing symbiosis with actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis grown in the Patagonia region of Argentina. PMID:23846281

  8. Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils

    PubMed Central

    Nouioui, Imen; Beauchemin, Nicholas; Cantor, Michael N.; Chen, Amy; Detter, J. Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P.; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wall, Luis; Wei, Chia-Lin; Woyke, Tanja

    2013-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale. PMID:23846272

  9. Draft Genome Sequence of the Picocyanobacterium Synechococcus sp. Strain GFB01, Isolated from a Freshwater Lagoon in the Brazilian Amazon

    PubMed Central

    Leo, Tiago Ferreira; de Melo, Aline Grasielle Costa; Ramos, Rommel Thiago Juc; Silva, Artur; Fiore, Marli Fatima; Schneider, Maria Paula Cruz

    2015-01-01

    We present the draft genome of the cyanobacterium strain Synechococcus sp. GFB01, the first genome sequencing of this genus isolated from South America. This draft genome consists of 125 contigs with a total size of 2,339,812bp. Automatic annotation identified several genes involved with heavy metal resistance and natural transformation. PMID:26272565

  10. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation

    PubMed Central

    Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA). PMID:25953174

  11. Draft Genome Sequence of Thauera sp. Strain SWB20, Isolated from a Singapore Wastewater Treatment Facility Using Gel Microdroplets

    PubMed Central

    Davenport, Karen W.; Li, Po-E; Ahmed, Sanaa A.; Daligault, Hajnalka; Gleasner, Cheryl D.; Kunde, Yuliya; McMurry, Kim; Lo, Chien-Chi; Reitenga, Krista G.; Daughton, Ashlynn R.; Shen, Xiaohong; Frietze, Seth; Wang, Dongping; Drautz-Moses, Daniela I.; Schuster, Stephan; Chain, Patrick S.; Han, Cliff

    2015-01-01

    We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species. PMID:25792053

  12. Draft Genome Sequence of Vibrio sp. Strain Evh12, a Bacterium Retrieved from the Gorgonian Coral Eunicella verrucosa

    PubMed Central

    Franco, Telma; Califano, Gianmaria; Gonçalves, Ana C. S.; Cúcio, Catarina

    2016-01-01

    To shed light on the associations established between Vibrio species and soft corals in coastal ecosystems, we report here the draft genome sequence of Vibrio sp. strain Evh12, a bacterium that has been isolated from the gorgonian coral Eunicella verrucosa and that shows antagonistic activity against Escherichia coli. PMID:26868405

  13. Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of tropical legume Sesbania rostrata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sinorhizobium sp. strain MUS10, a rhizobium from the Indian subcontinent, forms nitrogen-fixing nodules on the stems and roots of tropical legume Sesbania rostrata. The structure of Nod factors (NFs) of MUS10 are similar to those of Azorhizobium caulinodans, S. saheli bv sesbaniae and S. terangae bv...

  14. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Bottos, Eric M.; Van Hamme, Jonathan D.; Thijs, Sofie; Rineau, Francois; Balseiro-Romero, Maria; Weyens, Nele

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  15. Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts

    PubMed Central

    Mariita, Richard M.; Bhatnagar, Srijak; Hanselmann, Kurt; Hossain, Mohammad J.; Korlach, Jonas; Boitano, Matthew; Roberts, Richard J.; Liles, Mark R.; Moss, Anthony G.; Leadbetter, Jared R.; Newman, Dianne K.

    2015-01-01

    Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences. PMID:26722012

  16. Genome Sequence of the Deep-Sea Denitrifier Pseudomonas sp. Strain MT-1, Isolated from the Mariana Trench

    PubMed Central

    Fujinami, Shun; Oikawa, Yuji; Araki, Takuma; Shinmura, Yui; Midorikawa, Ryota; Ishizaka, Hikari; Kato, Chiaki; Horikoshi, Koki; Ito, Masahiro

    2014-01-01

    Pseudomonas sp. strain MT-1 was the first deep-sea denitrifier isolated and characterized from mud recovered from a depth of 11,000m in the Mariana Trench. We report here the genome sequence of this bacterium, which contributes to our understanding of denitrification and bioenergetics in the deep sea. PMID:25523772

  17. Draft Genome Sequence of Novosphingobium sp. Strain MBES04, Isolated from Sunken Wood from Suruga Bay, Japan

    PubMed Central

    Ohta, Yukari; Kobayashi, Kiwa; Tsubouchi, Taishi; Iida, Kagami; Tanizaki, Akiko; Kurosawa, Kanako; Adachi, Akiko; Nishihara, Mizue; Sato, Reona; Hasegawa, Ryoichi; Hatada, Yuji

    2015-01-01

    This report describes the draft genome sequence of Novosphingobium sp. strain MBES04, isolated from sunken wood from Suruga Bay, Japan, which is capable of degrading a wide range of lignin-related aromatic monomers. The draft genome sequence contains 5,361,448bp, with a G+C content of 65.4%. PMID:25593249

  18. Initial Reactions in Anaerobic Oxidation of m-Xylene by the Denitrifying Bacterium Azoarcus sp. Strain T

    PubMed Central

    Krieger, Cynthia J.; Beller, Harry R.; Reinhard, Martin; Spormann, Alfred M.

    1999-01-01

    The initial enzymatic steps in anaerobic m-xylene oxidation were studied in Azoarcus sp. strain T, a denitrifying bacterium capable of mineralizing m-xylene via 3-methylbenzoate. Permeabilized cells of m-xylene-grown Azoarcus sp. strain T catalyzed the addition of m-xylene to fumarate to form (3-methylbenzyl)succinate. In the presence of succinyl coenzyme A (CoA) and nitrate, (3-methylbenzyl)succinate was oxidized to E-(3-methylphenyl)itaconate (or a closely related isomer) and 3-methylbenzoate. Kinetic studies conducted with permeabilized cells and whole-cell suspensions of m-xylene-grown Azoarcus sp. strain T demonstrated that the specific rate of in vitro (3-methylbenzyl)succinate formation accounts for at least 15% of the specific rate of in vivo m-xylene consumption. Based on these findings, we propose that Azoarcus sp. strain T anaerobically oxidizes m-xylene to 3-methylbenzoate (or its CoA thioester) via (3-methylbenzyl)succinate and E-(3-methylphenyl)itaconate (or its CoA thioester) in a series of reactions that are analogous to those recently proposed for anaerobic toluene oxidation to benzoyl-CoA. A deuterium kinetic isotope effect was observed in the (3-methylbenzyl)succinate synthase reaction (and the benzylsuccinate synthase reaction), suggesting that a rate-determining step in this novel fumarate addition reaction involves breaking a C-H bond. PMID:10515931

  19. Draft Genome Sequence of Rheinheimera sp. F8, a Biofilm-Forming Strain Which Produces Large Amounts of Extracellular DNA.

    PubMed

    Schuster, Anna-Kathrin; Szewzyk, Ulrich

    2016-01-01

    Rheinheimera sp. strain F8 is a biofilm-forming gammaproteobacterium that has been found to produce large amounts of filamentous extracellular DNA. Here, we announce the de novo assembly of its genome. It is estimated to be 4,464,511 bp in length, with 3,970 protein-coding sequences and 92 RNA-coding sequences. PMID:26966195

  20. Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts.

    PubMed

    Mariita, Richard M; Bhatnagar, Srijak; Hanselmann, Kurt; Hossain, Mohammad J; Korlach, Jonas; Boitano, Matthew; Roberts, Richard J; Liles, Mark R; Moss, Anthony G; Leadbetter, Jared R; Newman, Dianne K; Dawson, Scott C

    2015-01-01

    Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences. PMID:26722012

  1. Genome Sequence of the Deep-Sea Denitrifier Pseudomonas sp. Strain MT-1, Isolated from the Mariana Trench.

    PubMed

    Fujinami, Shun; Oikawa, Yuji; Araki, Takuma; Shinmura, Yui; Midorikawa, Ryota; Ishizaka, Hikari; Kato, Chiaki; Horikoshi, Koki; Ito, Masahiro; Tamegai, Hideyuki

    2014-01-01

    Pseudomonas sp. strain MT-1 was the first deep-sea denitrifier isolated and characterized from mud recovered from a depth of 11,000m in the Mariana Trench. We report here the genome sequence of this bacterium, which contributes to our understanding of denitrification and bioenergetics in the deep sea. PMID:25523772

  2. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    PubMed Central

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified. PMID:25977440

  3. Complete Genome Sequence of Rahnella sp Strain Y9602, a Gammaproteobacterium Isolate from Metal- and Radionuclide-Contaminated Soil

    SciTech Connect

    Martinez, Robert J; Bruce, David; Detter, J. Chris; Goodwin, Lynne A.; Han, James; Han, Cliff; Held, Brittany; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Sobeckya, Patricia A.

    2012-01-01

    Rahnella sp. strain Y9602 is a gammaproteobacterium isolated from contaminated subsurface soils that is capable of promoting uranium phosphate mineralization as a result of constitutive phosphatase activity. Here we report the first complete genome sequence of an isolate belonging to the genus Rahnella.

  4. Draft Genome Sequence of Arthrobacter sp. Strain SPG23, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Bottos, Eric M; Van Hamme, Jonathan D; Thijs, Sofie; Rineau, Francois; Franzetti, Andrea; Balseiro-Romero, Maria; Weyens, Nele; Vangronsveld, Jaco

    2015-01-01

    We report here the 4.7-Mb draft genome of Arthrobacter sp. SPG23, a hydrocarbonoclastic Gram-positive bacterium belonging to the Actinobacteria, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain SPG23 is a potent plant growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:26701084

  5. Draft Genome Sequence of Vibrio sp. Strain Evh12, a Bacterium Retrieved from the Gorgonian Coral Eunicella verrucosa.

    PubMed

    Franco, Telma; Califano, Gianmaria; Gonçalves, Ana C S; Cúcio, Catarina; Costa, Rodrigo

    2016-01-01

    To shed light on the associations established between Vibrio species and soft corals in coastal ecosystems, we report here the draft genome sequence of Vibrio sp. strain Evh12, a bacterium that has been isolated from the gorgonian coral Eunicella verrucosa and that shows antagonistic activity against Escherichia coli. PMID:26868405

  6. Draft Genome Sequence of Massilia sp. Strain BSC265, Isolated from Biological Soil Crust of Moab, Utah

    PubMed Central

    Bailey, Alexis C.; Kellom, Matthew; Poret-Peterson, Amisha T.; Noonan, Kathryn; Hartnett, Hilairy E.

    2014-01-01

    Massilia sp. BSC265 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and exopolysaccharide synthesis for biofilm adhesion. The BSC265 genome contains a complete dissimilatory nitrate reduction pathway as well as a TCA cycle, making it a facultative anaerobe. PMID:25395652

  7. Draft Genome Sequence of Bacillus sp. Strain BSC154, Isolated from Biological Soil Crust of Moab, Utah

    PubMed Central

    Bailey, Alexis C.; Kellom, Matthew; Poret-Peterson, Amisha T.; Noonan, Kathryn; Hartnett, Hilairy E.

    2014-01-01

    Bacillus sp. BSC154 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and biofilm production. The BSC154 genome contains iron siderophore production, nitrate reduction, mixed acid-butanediol fermentation, and assimilatory and dissimilatory sulfate metabolism pathways. PMID:25395651

  8. Draft Genome Sequence of Microvirga sp. Strain BSC39, Isolated from Biological Soil Crust of Moab, Utah

    PubMed Central

    Bailey, Alexis C.; Kellom, Matthew; Poret-Peterson, Amisha T.; Noonan, Kathryn; Hartnett, Hilairy E.

    2014-01-01

    Microvirga sp. BSC39 was isolated from a biological soil crust near Moab, Utah. The strain appears to be capable of chemotaxis and exopolysaccharide synthesis for biofilm adhesion. The BSC39 genome contains iron siderophore uptake and hydrolysis enzymes; however, it lacks siderophore synthesis pathways, suggesting the uptake of siderophores produced by neighboring microbes. PMID:25395650

  9. Draft Genome Sequence of Frankia sp. Strain DC12, an Atypical, Noninfective, Ineffective Isolate from Datisca cannabina

    PubMed Central

    Beauchemin, Nicholas; Cantor, Michael N.; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Copeland, Alex; Gtari, Maher; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nouioui, Imen; Oshone, Rediet; Ovchinnikova, Galina; Pagani, Ioanna; Palaniappan, Krishnaveni; Pati, Amrita; Sen, Arnab; Shapiro, Nicole; Szeto, Ernest; Wall, Luis; Wishart, Jessie; Woyke, Tanja

    2015-01-01

    Frankia sp. strain DC12, isolated from root nodules of Datisca cannabina, is a member of the fourth lineage of Frankia, which is unable to reinfect actinorhizal plants. Here, we report its 6.88-Mbp high-quality draft genome sequence, with a G+C content of 71.92% and 5,858 candidate protein-coding genes. PMID:26251504

  10. Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

    PubMed

    Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar

    2015-11-20

    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified. PMID:26376470

  11. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    PubMed Central

    Nielsen, Tue Kjrgaard; Srensen, Sebastian R.; Hansen, Lars Hestbjerg

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaugmented sand filters. Genes associated with MCPA degradation are situated on a putative conjugative plasmid. PMID:25676756

  12. Degradation of Chlorobenzenes at Nanomolar Concentrations by Burkholderia sp. Strain PS14 in Liquid Cultures and in Soil

    PubMed Central

    Rapp, Peter; Timmis, Kenneth N.

    1999-01-01

    The utilization of 1,2,4,5-tetrachloro-, 1,2,4-trichloro-, the three isomeric dichlorobenzenes and fructose as the sole carbon and energy sources at nanomolar concentrations was studied in batch experiments with Burkholderia sp. strain PS14. In liquid culture, all chlorobenzenes were metabolized within 1 h from their initial concentration of 500 nM to below their detection limits of 0.5 nM for 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzene and 7.5 nM for the three dichlorobenzene isomers, with 63% mineralization of the tetra- and trichloroisomers. Fructose at the same initial concentration was, in contrast, metabolized over a 4-h incubation period down to a residual concentration of approximately 125 nM with 38% mineralization during this time. In soil microcosms, Burkholderia sp. strain PS14 metabolized tetrachlorobenzene present at 64.8 ppb and trichlorobenzene present at 54.4 ppb over a 72-h incubation period to below the detection limits of 0.108 and 0.09 ppb, respectively, with approximately 80% mineralization. A high sorptive capacity of Burkholderia sp. strain PS14 for 1,2,4,5-tetrachlorobenzene was found at very low cell density. The results demonstrate that Burkholderia sp. strain PS14 exhibits a very high affinity for chlorobenzenes at nanomolar concentrations. PMID:10347041

  13. Draft Genome Sequence of Cellulosimicrobium sp. Strain MM, Isolated from Arsenic-Rich Microbial Mats of a Himalayan Hot Spring

    PubMed Central

    Sharma, Anukriti; Hira, Princy; Shakarad, Mallikarjun

    2014-01-01

    Microbial mats situated at the Manikaran hot springs (>95C) are characterized by their high arsenic content (140ppb), qualifying as a stressed niche. Here, we report the annotated draft genome (3.85Mb) of Cellulosimicrobium sp. strain MM, isolated from these microbial mats, consisting of 3,718 coding sequences, with an average % G+C of 74.4%. PMID:25301656

  14. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOAL-CALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. hese results are attributed to differences in the...

  15. Draft Genome Sequence of Rheinheimera sp. F8, a Biofilm-Forming Strain Which Produces Large Amounts of Extracellular DNA

    PubMed Central

    Szewzyk, Ulrich

    2016-01-01

    Rheinheimera sp. strain F8 is a biofilm-forming gammaproteobacterium that has been found to produce large amounts of filamentous extracellular DNA. Here, we announce the de novo assembly of its genome. It is estimated to be 4,464,511 bp in length, with 3,970 protein-coding sequences and 92 RNA-coding sequences. PMID:26966195

  16. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    PubMed

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. PMID:26876481

  17. Draft Genome Sequence and Description of Janthinobacteriumsp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium

    PubMed Central

    Smith, Heidi; Akiyama, Tatsuya; Franklin, Michael; Woyke, Tanja; Teshima, Hazuki; Davenport, Karen; Daligault, Hajnalka; Erkkila, Tracy; Goodwin, Lynne; Gu, Wei; Xu, Yan; Chain, Patrick

    2013-01-01

    Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments. PMID:24265494

  18. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

    PubMed Central

    Hennessy, Rosanna C.; Glaring, Mikkel A.; Michelsen, Charlotte F.; Olsson, Stefan

    2015-01-01

    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight into the genetics behind the antimicrobial activity of this strain. PMID:26607883

  19. Genome Sequence of Halomonas sp. Strain A3H3, Isolated from Arsenic-Rich Marine Sediments

    PubMed Central

    Plewniak, Frdric; Barbe, Valrie; Battaglia-Brunet, Fabienne; Jost, Bernard; Joulian, Catherine; Philipps, Muriel; Vicaire, Serge; Vincent, Stphanie; Ye, Tao; Bertin, Philippe N.

    2013-01-01

    We report the genome sequence of Halomonas sp. strain A3H3, a bacterium with a high tolerance to arsenite, isolated from multicontaminated sediments of the lEstaque harbor in Marseille, France. The genome is composed of a 5,489,893-bp chromosome and a 157,085-bp plasmid. PMID:24115546

  20. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity.

    PubMed

    Hennessy, Rosanna C; Glaring, Mikkel A; Michelsen, Charlotte F; Olsson, Stefan; Stougaard, Peter

    2015-01-01

    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight into the genetics behind the antimicrobial activity of this strain. PMID:26607883

  1. Rhizobium sp. strain BN4 (a selenium oxyanion-reducing bacterium) 16S rRNA gene complete sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study used 1482 base pair 16S rRNA gene sequence methods in conjunction with other biochemical and morphological studies to confirm the identification of a bacterium (refer to as the BN4 strain) as a Rhizobium sp. The 16S rRNA gene sequence places it with the Rhizobium clade that includes R. d...

  2. Draft Genome Sequence of Thalassotalea sp. Strain ND16A Isolated from Eastern Mediterranean Sea Water Collected from a Depth of 1,055Meters

    PubMed Central

    Stelling, Savannah C.; Utturkar, Sagar M.; Alshibli, Noor K.; Brown, Steven D.

    2014-01-01

    Thalassotalea sp. strain ND16A belongs to the family Colwelliaceae and was isolated from eastern Mediterranean Sea water at a depth of 1,055m. Members of Colwelliaceae are ubiquitous marine heterotrophs. Here, we report the draft genome sequence of Thalassotalea sp. strain ND16A, a member of the newly described genus Thalassotalea. PMID:25428976

  3. Complete Genome Sequence of Sphingobacterium sp. Strain ML3W, Isolated from Wings of Myotis lucifugus Infected with White Nose Syndrome

    PubMed Central

    Smith, Stephen A.; Krasucki, Stephen P.; McDowell, John V.

    2015-01-01

    Sphingobacterium sp. strain ML3W was isolated from the wing of a bat infected with white nose syndrome. We report the complete 5.33-Mb genome sequence of Sphingobacterium sp. strain ML3W, obtained using Pacific Biosciences technology. Being the second complete Sphingobacterium sequence, this will increase knowledge of the genus. PMID:25614576

  4. Complete Genome Sequence of Sphingobacterium sp. Strain ML3W, Isolated from Wings of Myotis lucifugus Infected with White Nose Syndrome.

    PubMed

    Smith, Stephen A; Krasucki, Stephen P; McDowell, John V; Balke, Virginia L

    2015-01-01

    Sphingobacterium sp. strain ML3W was isolated from the wing of a bat infected with white nose syndrome. We report the complete 5.33-Mb genome sequence of Sphingobacterium sp. strain ML3W, obtained using Pacific Biosciences technology. Being the second complete Sphingobacterium sequence, this will increase knowledge of the genus. PMID:25614576

  5. Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6

    SciTech Connect

    Sivaswamy, Vaideeswaran; Boyanov, Maxim I.; Peyton, Brent M.; Viamajala, Sridhar; Gerlach, Robin; Apel, William; Sani, Rajesh K.; Dohnalkova, Alice; Kemner, Kenneth M.; Borch, Thomas

    2011-02-24

    Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO3-4 . In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6.

  6. Comparative Physiology of Dimethyl Sulfide Production by Dimethylsulfoniopropionate Lyase in Pseudomonas doudoroffii and Alcaligenes sp. Strain M3A

    PubMed Central

    de Souza, M. P.; Yoch, D. C.

    1995-01-01

    Dimethylsulfoniopropionate (DMSP) lyase enzymatically cleaves DMSP, an algal metabolite, to produce acrylate, a proton, and dimethyl sulfide (DMS), the most abundant volatile sulfur compound emitted from oceans. The physiology of DMS production by DMSP lyase was studied in vivo in an Alcaligenes-like organism, strain M3A, a salt marsh bacterial isolate, and in a marine strain, Pseudomonas doudoroffii. Enzymes from both strains were induced at optimum rates by 1 mM DMSP and vigorous aeration. P. doudoroffii was very sensitive to continued aeration and lost activity rapidly; the enzyme was more stable when aeration ceased. In addition to DMSP, acrylate and several of its analogs acted as inducers of DMSP lyase in Alcaligenes sp. strain M3A but not in P. doudoroffii. Turnover of DMSP by P. doudoroffii was enhanced by 3.5% NaCl or seawater, whereas the Alcaligenes sp. strain M3A enzyme was not salt dependent and salt did not greatly affect its activity. The pH profile showed two peaks of DMSP lyase activity (6.5 and 8.8) for Alcaligenes sp. strain M3A and a single peak at pH 8 for P. doudoroffii. Enzyme activity in both organisms was inhibited by methyl-3-mercaptopropionate and homocysteine. Cyanide, azide and p-chloromercuribenzoate inhibited only the P. doudoroffii DMSP lyase. The apparent K(infm) values for DMSP for cell cultures of Alcaligenes sp. strain M3A and P. doudoroffii were ca. 2 mM and <20 (mu)M, respectively. The differences in the physiology of DMSP metabolism in these two bacterial isolates may enable them to exist in diverse ecological niches. PMID:16535162

  7. "Dehalococcoides" sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260.

    PubMed

    Adrian, Lorenz; Dudkov, Vlasta; Demnerov, Katarina; Bedard, Donna L

    2009-07-01

    "Dehalococcoides" sp. strain CBDB1 in pure culture dechlorinates a wide range of PCB congeners with three to eight chlorine substituents. Congener-specific high-resolution gas chromatography revealed that CBDB1 extensively dechlorinated both Aroclor 1248 and Aroclor 1260 after four months of incubation. For example, 16 congeners comprising 67.3% of the total PCBs in Aroclor 1260 were decreased by 64%. We confirmed the dechlorination of 43 different PCB congeners. The most prominent dechlorination products were 2,3',5-chlorinated biphenyl (25-3-CB) and 24-3-CB from Aroclor 1248 and 235-25-CB, 25-25-CB, 24-25-CB, and 235-236-CB from Aroclor 1260. Strain CBDB1 removed flanked para chlorines from 3,4-, 2,4,5-, and 3,4,5-chlorophenyl rings, primarily para chlorines from 2,3,4,5-chlorophenyl rings, primarily meta chlorines from 2,3,4- and 2,3,4,6-chlorophenyl rings, and either meta or para chlorines from 2,3,4,5,6-chlorophenyl rings. The site of attack on the 2,3,4-chorophenyl ring was heavily influenced by the chlorine configuration on the opposite ring. This dechlorination pattern matches PCB Process H dechlorination, which was previously observed in situ both in the Acushnet Estuary (New Bedford, MA) and in parts of the Hudson River (New York). Accordingly, we propose that Dehalococcoides bacteria similar to CBDB1 are potential agents of Process H PCB dechlorination in the environment. This is the first time that a complex naturally occurring PCB dechlorination pattern has been reproduced in the laboratory using a single bacterial strain. PMID:19429555

  8. Lauric Acid Production in a Glycogen-Less Strain of Synechococcus sp. PCC 7002

    PubMed Central

    Work, Victoria H.; Melnicki, Matthew R.; Hill, Eric A.; Davies, Fiona K.; Kucek, Leo A.; Beliaev, Alexander S.; Posewitz, Matthew C.

    2015-01-01

    The cyanobacterium Synechococcus sp. Pasteur culture collection 7002 was genetically engineered to synthesize biofuel-compatible medium-chain fatty acids (FAs) during photoautotrophic growth. Expression of a heterologous lauroyl-acyl carrier protein (C12:0-ACP) thioesterase with concurrent deletion of the endogenous putative acyl-ACP synthetase led to secretion of transesterifiable C12:0 FA in CO2-supplemented batch cultures. When grown at steady state over a range of light intensities in a light-emitting diode turbidostat photobioreactor, the C12-secreting mutant exhibited a modest reduction in growth rate and increased O2 evolution relative to the wild-type (WT). Inhibition of (i) glycogen synthesis by deletion of the glgC-encoded ADP-glucose pyrophosphorylase (AGPase) and (ii) protein synthesis by nitrogen deprivation were investigated as potential mechanisms for metabolite redistribution to increase FA synthesis. Deletion of AGPase led to a 10-fold decrease in reducing carbohydrates and secretion of organic acids during nitrogen deprivation consistent with an energy spilling phenotype. When the carbohydrate-deficient background (ΔglgC) was modified for C12 secretion, no increase in C12 was achieved during nutrient replete growth, and no C12 was recovered from any strain upon nitrogen deprivation under the conditions used. At steady state, the growth rate of the ΔglgC strain saturated at a lower light intensity than the WT, but O2 evolution was not compromised and became increasingly decoupled from growth rate with rising irradiance. Photophysiological properties of the ΔglgC strain suggest energy dissipation from photosystem II and reconfiguration of electron flow at the level of the plastoquinone pool. PMID:25964950

  9. Alginate-Dependent Gene Expression Mechanism in Sphingomonas sp. Strain A1

    PubMed Central

    Hayashi, Chie; Takase, Ryuichi; Momma, Keiko; Maruyama, Yukie; Murata, Kousaku

    2014-01-01

    Sphingomonas sp. strain A1, a Gram-negative bacterium, directly incorporates alginate polysaccharide into the cytoplasm through a periplasmic alginate-binding protein-dependent ATP-binding cassette transporter. The polysaccharide is degraded to monosaccharides via the formation of oligosaccharides by endo- and exotype alginate lyases. The strain A1 proteins for alginate uptake and degradation are encoded in both strands of a genetic cluster in the bacterial genome and inducibly expressed in the presence of alginate. Here we show the function of the alginate-dependent transcription factor AlgO and its mode of action on the genetic cluster and alginate oligosaccharides. A putative gene within the genetic cluster seems to encode a transcription factor-like protein (AlgO). Mutant strain A1 (?AlgO mutant) cells with a disrupted algO gene constitutively produced alginate-related proteins. DNA microarray analysis indicated that wild-type cells inducibly transcribed the genetic cluster only in the presence of alginate, while ?AlgO mutant cells constitutively expressed the genetic cluster. A gel mobility shift assay showed that AlgO binds to the specific intergenic region between algO and algS (algO-algS). Binding of AlgO to the algO-algS intergenic region diminished with increasing alginate oligosaccharides. These results demonstrated a novel alginate-dependent gene expression mechanism. In the absence of alginate, AlgO binds to the algO-algS intergenic region and represses the expression of both strands of the genetic cluster, while in the presence of alginate, AlgO dissociates from the algO-algS intergenic region via binding to alginate oligosaccharides produced through the lyase reaction and subsequently initiates transcription of the genetic cluster. This is the first report on the mechanism by which alginate regulates the expression of the gene cluster. PMID:24816607

  10. Alginate-dependent gene expression mechanism in Sphingomonas sp. strain A1.

    PubMed

    Hayashi, Chie; Takase, Ryuichi; Momma, Keiko; Maruyama, Yukie; Murata, Kousaku; Hashimoto, Wataru

    2014-07-01

    Sphingomonas sp. strain A1, a Gram-negative bacterium, directly incorporates alginate polysaccharide into the cytoplasm through a periplasmic alginate-binding protein-dependent ATP-binding cassette transporter. The polysaccharide is degraded to monosaccharides via the formation of oligosaccharides by endo- and exotype alginate lyases. The strain A1 proteins for alginate uptake and degradation are encoded in both strands of a genetic cluster in the bacterial genome and inducibly expressed in the presence of alginate. Here we show the function of the alginate-dependent transcription factor AlgO and its mode of action on the genetic cluster and alginate oligosaccharides. A putative gene within the genetic cluster seems to encode a transcription factor-like protein (AlgO). Mutant strain A1 (?AlgO mutant) cells with a disrupted algO gene constitutively produced alginate-related proteins. DNA microarray analysis indicated that wild-type cells inducibly transcribed the genetic cluster only in the presence of alginate, while ?AlgO mutant cells constitutively expressed the genetic cluster. A gel mobility shift assay showed that AlgO binds to the specific intergenic region between algO and algS (algO-algS). Binding of AlgO to the algO-algS intergenic region diminished with increasing alginate oligosaccharides. These results demonstrated a novel alginate-dependent gene expression mechanism. In the absence of alginate, AlgO binds to the algO-algS intergenic region and represses the expression of both strands of the genetic cluster, while in the presence of alginate, AlgO dissociates from the algO-algS intergenic region via binding to alginate oligosaccharides produced through the lyase reaction and subsequently initiates transcription of the genetic cluster. This is the first report on the mechanism by which alginate regulates the expression of the gene cluster. PMID:24816607

  11. Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from brazilian soil

    PubMed Central

    Menocci, Vivian; Goulart, Antonio Jos; Adalberto, Paulo Roberto; Tavano, Olga Luisa; Marques, Daniela Parreira; Contiero, Jonas; Monti, Rubens

    2008-01-01

    Three strains of Bacillus sp. (BACRP, BACNC-1 and BACAR) were isolated from soil adhered to cassava husk. CGTase specific activity for the three isolated strains was higher when cultivated at 40C. Potato starch, cassava starch, maltodextrin and glucose were used as carbon source and growth temperatures varied from 25 to 55C. The three isolates presented higher CGTase specific activity when cultivated with potato starch at 40C. Isolated BACRP and BACAR presented specific activity of 4.0103 and 2.2103 U/mg prot at pH 7.0, respectively, when cultivated in mediums added with NaCl 2%; at pH 10,0 their activities were of 3.4103 and 3.0103 U/mg prot, respectively, in the same concentration of NaCl. On the other hand, the isolated BACNC-1 presented activity specific of 2.4103 U/mg prot when cultivated at pH 7.0 added of NaCl 1%, and at pH 10.0 the specific activity was of 3.4103 U/mg prot without NaCl addition. This work also showed the presence of cyclodextrins formed during fermentation process and that precipitation with acetone or lyophilization followed by dialysis was efficient at removing CDs (cyclodextrins), thus, eliminating interference in the activity assays. The enzyme produced by the BACAR strain was partially purified and ?-CD was liberated as a reaction product. PMID:24031289

  12. Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production.

    PubMed

    Chtourou, Haifa; Dahmen, Ines; Jebali, Ahlem; Karray, Fatma; Hassairi, Ilem; Abdelkafi, Slim; Ayadi, Habib; Sayadi, Sami; Dhouib, Abdelhafidh

    2015-07-01

    Microalgae as feedstock for biofuel production have attracted serious consideration as an important sustainable source of energy. For biodiesel production with microalgae, a series of consecutive processes should be performed as selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. The aim of this study was to investigate the growth and lipid accumulation of a new isolated marine microalgal strain by optimizing culture medium composition and applying different stressful culture conditions. Microalga CTM 20023 was isolated from the evaporating salt-ponds at Sfax, Tunisia, using serial-dilution technique from enriched cultures. Phylogenetic analysis based on SSU rDNA and rbcL-3P sequences attributed this isolate to a new species of the Amphora genus. This wild strain possesses rapid gravity sedimentation of 2.91 m h(-1), suitable for an easy and low-cost biomass harvest. The optimization of the composition of the culture medium through statistical experimental designs improved the specific growth rate of Amphora sp. from 0.149 to 0.262 day(-1) and increased its 15-day culture biomass production from 465 to 2200 mg L(-1) (dw) and its lipid content from 140 to 370 mg g(-1) (dw). Highest biomass productivity of 178 mg L(-1) day(-1) was achieved at the 10th day of culture. Highest lipid content of 530 mg g(-1) (dw) was obtained under phosphorus starvation and 64.34% of these lipids were saturated fatty acids. A first growth stage, in optimized condition, would thus offer the maximum productivity for an algal biomass feed stream, followed by second stressful stage for lipid accumulation, thus suitable for biodiesel production. PMID:25716001

  13. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium.

    PubMed

    Sung, Youlboong; Fletcher, Kelly E; Ritalahti, Kirsti M; Apkarian, Robert P; Ramos-Hernández, Natalia; Sanford, Robert A; Mesbah, Noha M; Löffler, Frank E

    2006-04-01

    A bacterial isolate, designated strain SZ, was obtained from noncontaminated creek sediment microcosms based on its ability to derive energy from acetate oxidation coupled to tetrachloroethene (PCE)-to-cis-1,2-dichloroethene (cis-DCE) dechlorination (i.e., chlororespiration). Hydrogen and pyruvate served as alternate electron donors for strain SZ, and the range of electron acceptors included (reduced products are given in brackets) PCE and trichloroethene [cis-DCE], nitrate [ammonium], fumarate [succinate], Fe(III) [Fe(II)], malate [succinate], Mn(IV) [Mn(II)], U(VI) [U(IV)], and elemental sulfur [sulfide]. PCE and soluble Fe(III) (as ferric citrate) were reduced at rates of 56.5 and 164 nmol min(-1) mg of protein(-1), respectively, with acetate as the electron donor. Alternate electron acceptors, such as U(VI) and nitrate, did not inhibit PCE dechlorination and were consumed concomitantly. With PCE, Fe(III) (as ferric citrate), and nitrate as electron acceptors, H(2) was consumed to threshold concentrations of 0.08 +/- 0.03 nM, 0.16 +/- 0.07 nM, and 0.5 +/- 0.06 nM, respectively, and acetate was consumed to 3.0 +/- 2.1 nM, 1.2 +/- 0.5 nM, and 3.6 +/- 0.25 nM, respectively. Apparently, electron acceptor-specific acetate consumption threshold concentrations exist, suggesting that similar to the hydrogen threshold model, the measurement of acetate threshold concentrations offers an additional diagnostic tool to delineate terminal electron-accepting processes in anaerobic subsurface environments. Genetic and phenotypic analyses classify strain SZ as the type strain of the new species, Geobacter lovleyi sp. nov., with Geobacter (formerly Trichlorobacter) thiogenes as the closest relative. Furthermore, the analysis of 16S rRNA gene sequences recovered from PCE-dechlorinating consortia and chloroethene-contaminated subsurface environments suggests that Geobacter lovleyi belongs to a distinct, dechlorinating clade within the metal-reducing Geobacter group. Substrate versatility, consumption of electron donors to low threshold concentrations, and simultaneous reduction of electron acceptors suggest that strain SZ-type organisms have desirable characteristics for bioremediation applications. PMID:16597982

  14. Characterization of an iron- and manganese-containing superoxide dismutase from Methylobacillus sp. strain SK1 DSM 8269.

    PubMed

    Seo, Sung Nam; Lee, Jae Ho; Kim, Young Min

    2007-06-30

    A superoxide dismutase was purified 62-fold in seven steps to homogeneity from Methylobacillus sp. strain SK1, an obligate methanol-oxidizing bacterium, with a yield of 9.6%. The final specific activity was 4,831 units per milligram protein as determined by an assay based on a 50% decrease in the rate of cytochrome c reduction. The molecular weight of the native enzyme was estimated to be 44,000. Sodium dodecyl sulfate gel electrophoresis revealed two identical subunits of molecular weight 23,100. The isoelectric point of the purified enzyme was found to be 4.4. Maximum activity of the enzyme was measured at pH 8. The enzyme was stable at pH range from 6 to 8 and at high temperature. The enzyme showed an absorption peak at 280 nm with a shoulder at 292 nm. Hydrogen peroxide and sodium azide, but not sodium cyanide, was found to inhibit the purified enzyme. The enzyme activity in cell-free extracts prepared from cells grown in manganese-rich medium, however, was not inhibited by hydrogen peroxide but inhibited by sodium azide. The activity in cell extracts from cells grown in iron-rich medium was found to be highly sensitive to hydrogen peroxide and sodium azide. One mol of native enzyme was found to contain 1.1 g-atom of iron and 0.7 g-atom of manganese. The N-terminal amino acid sequence of the purified enzyme was Ala-Tyr-Thr-Leu-Pro-Pro-Leu-Asn-Tyr-Ala-Tyr. The superoxide dismutase of Methylobacillus sp. strain SK1 was found to have antigenic sites identical to those of Methylobacillus glycogenes enzyme. The enzyme, however, shared no antigenic sites with Mycobacterium sp. strain JC1, Methylovorus sp. strain SS1, Methylobacterium sp. strain SY1, and Methylosinus trichosproium enzymes. PMID:17646712

  15. Differential Expression of the Two kdp Operons in the Nitrogen-Fixing Cyanobacterium Anabaena sp. Strain L-31

    PubMed Central

    Ballal, Anand; Apte, Shree K.

    2005-01-01

    In several types of bacteria, the Kdp ATPase (comprising of the KdpABC complex) is an inducible, high-affinity potassium transporter that scavenges K+ from the environment. The cyanobacterium Anabaena sp. strain L-31 showed the presence of not one but two distinct kdp operons in its genome. The kdp1 consisted of kdpA1B1G1C1D genes, whereas the kdp2 contained the kdpA2B2G2C2 genes. Among the regulatory genes, the kdpD open reading frame of Anabaena sp. strain L-31 was truncated compared to the kdpD of other bacteria, whereas a kdpE-like gene was absent in the vicinity of the two kdp operons. In response to K+ limitation (<0.05 mM external K+), only kdp2 (and not kdp1) expression could be detected as a 5.3-kb transcript on Northern blots, indicating that kdpA2B2G2C2 genes constitute a polycystronic operon. Unlike E. coli, addition of osmolytes like NaCl, or a change in pH of the medium did not enhance the kdp expression in Anabaena sp. strain L-31. Interestingly, the Anabaena sp. strain L-31 kdp2 operon was strongly induced in response to desiccation stress. The addition of K+ to K+-starved cultures resulted in repression and degradation of kdp2 transcripts. Our results clearly show that kdp2 is the major kdp operon expressed in Anabaena sp. strain L-31 and may play an important role in adaptation to K+ limitation and desiccation stress. PMID:16151117

  16. Characterization of some strains from human clinical sources which resemble "Leptotrichia sanguinegens": description of Sneathia sanguinegens sp. nov., gen. nov.

    PubMed

    Collins, M D; Hoyles, L; Tornqvist, E; von Essen, R; Falsen, E

    2001-11-01

    Three strains of a gram-negative, blood or serum requiring, rod-shaped bacterium recovered from human clinical specimens were characterised by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed the unknown rod-shaped strains are members of the same species as some fastidious isolates recovered from human blood specimens and previously designated "Leptotrichia sanguinegens". Based on phylogenetic and phenotypic evidence, it is proposed that the isolates from human sources be classified in a new genus Sneathia, as Sneathia sanguinegens gen. nov., sp. nov. The type strain of Sneathia sanguinegens is CCUG 41628T. PMID:11822670

  17. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production.

    PubMed

    Nakazawa, Atsushi; Matsuura, Hiroshi; Kose, Ryoji; Kato, Syou; Honda, Daiske; Inouye, Isao; Kaya, Kunimitsu; Watanabe, Makoto M

    2012-04-01

    Optimum conditions of temperature, salinity and glucose concentration were investigated for squalene production of the strain of Aurantiochytrium sp. 18 W-13a, with a high content of squalene. Squalene production by this strain was optimum at 25 C, 25-50% seawater concentration and 2-6% glucose concentration. When this strain was grown in the optimum condition, the squalene content and production of approximately 171 mg/g dry weight and 0.9 g/L were much higher than that previously reported in thraustochytrids, plants and yeasts, respectively. Therefore, 18 W-13a could be used as an alternative source of commercial squalene. PMID:22023965

  18. The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca(2+)-transporting ATPase.

    PubMed Central

    Berkelman, T.; Garret-Engele, P.; Hoffman, N. E.

    1994-01-01

    An ATP-dependent Ca2+ uptake activity was identified in plasma membrane vesicles prepared from Synechococcus sp. strain PCC 7942. This activity was insensitive to agents which collapse pH gradients and membrane potentials but sensitive to vanadate, indicating that the activity is catalyzed by a P-type Ca(2+)-ATPase. A gene was cloned from Synechococcus sp. strain PCC 7942 by using a degenerate oligonucleotide based on a sequence conserved among P-type ATPases. This gene (pacL) encodes a product similar in structure to eukaryotic Ca(2+)-ATPases. We have shown that pacL encodes a Ca(2+)-ATPase by demonstrating that a strain in which pacL is disrupted has no Ca(2+)-ATPase activity associated with its plasma membrane. In addition, Ca(2+)-ATPase activity was restored to the delta pacL strain by introducing pacL into a second site in the Synechococcus sp. strain PCC 7942 chromosome. Images PMID:8021228

  19. High-quality permanent draft genome sequence of the Mimosa asperata - nodulating Cupriavidus sp. strain AMP6.

    PubMed

    De Meyer, Sofie E; Parker, Matthew; Van Berkum, Peter; Tian, Rui; Seshadri, Rekha; Reddy, T B K; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Howieson, John; Reeve, Wayne

    2015-01-01

    Cupriavidus sp. strain AMP6 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Mimosa asperata collected in Santa Ana National Wildlife Refuge, Texas, in 2005. Mimosa asperata is the only legume described so far to exclusively associates with Cupriavidus symbionts. Moreover, strain AMP6 represents an early-diverging lineage within the symbiotic Cupriavidus group and has the capacity to develop an effective nitrogen-fixing symbiosis with three other species of Mimosa. Therefore, the genome of Cupriavidus sp. strain AMP6 enables comparative analyses of symbiotic trait evolution in this genus and here we describe the general features, together with sequence and annotation. The 7,579,563bp high-quality permanent draft genome is arranged in 260 scaffolds of 262 contigs, contains 7,033 protein-coding genes and 97 RNA-only encoding genes, and is part of the GEBA-RNB project proposal. PMID:26478786

  20. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176.

    PubMed

    De Meyer, Sofie E; Tian, Rui; Seshadri, Rekha; Reddy, Tbk; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Yates, Ron; Howieson, John; Reeve, Wayne

    2015-01-01

    Burkholderia sp. strain WSM4176 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N2-fixing root nodule of Lebeckia ambigua collected in Nieuwoudtville, Western Cape of South Africa, in October 2007. This plant persists in infertile, acidic and deep sandy soils, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. Here we describe the features of Burkholderia sp. strain WSM4176, which represents a potential inoculant quality strain for L. ambigua, together with sequence and annotation. The 9,065,247bp high-quality-draft genome is arranged in 13 scaffolds of 65 contigs, contains 8369 protein-coding genes and 128 RNA-only encoding genes, and is part of the GEBA-RNB project proposal (Project ID 882). PMID:26478785

  1. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B

    PubMed Central

    Rao, Minxi; Smith, Brian C.

    2015-01-01

    ABSTRACT Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. PMID:25944856

  2. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120.

    PubMed Central

    Xu, X; Khudyakov, I; Wolk, C P

    1997-01-01

    Fox- mutants of Anabaena sp. strain PCC 7120 are unable to fix dinitrogen in the presence of oxygen. A fragment of the DNA of Anabaena sp. was cloned by complementation of a spontaneous Fox-, cyanophage-resistant mutant, R56, and characterized. Random insertion of transposon Tn5 delimited the complementing DNA to a 0.6-kb portion of the cloned fragment. Sequencing of this region and flanking DNA showed one complete open reading frame (ORF) similar to the gene rfbP (undecaprenyl-phosphate galactosephosphotransferase) and two partial ORFs similar to genes rfbD (GDP-D-mannose dehydratase) and rfbZ (first mannosyl transferase), all of which are active in the synthesis of the O antigen unit of the lipopolysaccharide (LPS) component of the outer membrane of gram-negative bacteria. In a transposon (Tn5-1087b)-induced, Fox-, cyanophage-resistant mutant, B14, the transposon was found within the same rfbP-like ORF. The three ORFs were insertionally inactivated with the omega cassette (P. Prentki and H. M. Krisch, Gene 29:303-313, 1984) or with Tn5::omega. Only the insertions in the rfbZ- and rfbP-like ORFs led to resistance to cyanophages A-1(L) and A-4(L) and to a Fox- phenotype. Electrophoretic analysis showed that interruption of the rfbZ- and rfbP-like ORFs resulted in a change in or loss of the characteristic pattern of the lengths of the LPS, whereas interruption of the rfbD-like ORF merely changed the distribution of the lengths of the LPS to one with a greater prevalence of low molecular weights. According to electron microscopy, interruption of the rfbP-like ORF may have led to aberrant deposition of the layers of the heterocyst envelope, resulting in increased leakage of oxygen into the heterocyst. The results suggest that modified LPS may prevent cyanophage infection of Anabaena sp. vegetative cells and the formation of a functional heterocyst envelope. PMID:9139904

  3. Staurosporine from the endophytic Streptomyces sp. strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber.

    PubMed

    Li, Xiaolin; Huang, Pei; Wang, Qian; Xiao, Lie; Liu, Miaomiao; Bolla, Krishna; Zhang, Bo; Zheng, Linyong; Gan, Bingcheng; Liu, Xueting; Zhang, Lixin; Zhang, Xiaoping

    2014-09-01

    Chinese medicinal plants and their surrounding rhizospheric soil serve as promising sources of actinobacteria. A total of 180 actinobacteria strains were isolated from the rhizosphere soil, leaves, stems, and roots of nine selected plants and have been identified as potential biocontrol agents against Fusarium oxysporum f. sp. cucumerinum. An endophytic strain CNS-42 isolated from Alisma orientale showed the largest zone of inhibition demonstrating a potent effect against F. oxysporum f. sp. cucumerinum and a broad antimicrobial activity against bacteria, yeasts, and other pathogenic fungi. The in vivo biocontrol assays showed that the disease severity index was significantly reduced (P < 0.05), and plant shoot fresh weight and height increased greatly (P < 0.05) in plantlets treated with strain CNS-42 compared to the negative control. This isolate was identified as Streptomyces sp. based on cultural, physiological, morphological characteristics, and 16S rRNA gene analysis. Further bioassay-guided isolation and purification revealed that staurosporine was responsible for its antifungal and plant growth promoting activities and the latter property of staurosporine is reported for the first time. The in vivo assay was further performed and indicated that staurosporine showed good growth promoting effect on the plant shoot biomass of cucumber. This is the first critical evidence identifying CNS-42 as a biocontrol agent for the soil borne pathogen, F. oxysporum f. sp. cucumerinum. PMID:25035061

  4. Characterization of 17 strains belonging to the Mycobacterium simiae complex and description of Mycobacterium paraense sp. nov.

    PubMed

    Fusco da Costa, Ana R; Fedrizzi, Tarcisio; Lopes, Maria L; Pecorari, Monica; Oliveira da Costa, Wana L; Giacobazzi, Elisabetta; da Costa Bahia, Jeann R; De Sanctis, Veronica; Batista Lima, Karla V; Bertorelli, Roberto; Grottola, Antonella; Fabio, Anna; Mariottini, Alessandro; Ferretti, Pamela; Di Leva, Francesca; Fregni Serpini, Giulia; Tagliazucchi, Sara; Rumpianesi, Fabio; Jousson, Olivier; Segata, Nicola; Tortoli, Enrico

    2015-02-01

    Fourteen mycobacterial strains isolated from pulmonary samples of independent patients in the state of Par (Brazil), and three strains isolated in Italy, were characterized using a polyphasic approach. Thorough genetic investigation, including whole-genome sequencing, demonstrated that the strains belong to the M. simiae complex, being most closely related to Mycobacterium interjectum. For 14 of the strains, evidence emerged supporting their inclusion in a previously unreported species of the genus Mycobacterium, for which the name Mycobacterium paraense sp. nov. is proposed (type strain, IEC26(T)?= DSM 46749(T)?= CCUG 66121(T)). The novel species is characterized by slow growth, unpigmented or pale yellow scotochromogenic colonies, and a HPLC mycolic acid profile different from other known mycobacteria. In different genetic regions, high sequence microheterogeneity was detected. PMID:25487637

  5. Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2015-09-01

    Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was <30%, indicating that they were likely to be new species. DNA relatedness between these 2 strains was only 65%, suggesting that they also belonged to different species. The ?-amino group content of 6-month-old fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P < 0.05). Histamine was not produced during fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P < 0.05). The major volatile compound detected in fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. PMID:26256665

  6. Characterization of a New Providencia sp. Strain X1 Producing Multiple Xylanases on Wheat Bran

    PubMed Central

    Kumar, Sharad; Singh, Sudheer Kumar; Kumar, Mahadeo

    2013-01-01

    Providencia sp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications. PMID:24348154

  7. NolL of Rhizobium sp. Strain NGR234 Is Required for O-Acetyltransferase Activity

    PubMed Central

    Berck, S.; Perret, X.; Quesada-Vincens, D.; Prom, J.-C.; Broughton, W. J.; Jabbouri, S.

    1999-01-01

    Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGR?nolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not. PMID:9922261

  8. Cloning of a novel arylamidase gene from Paracoccus sp. strain FLN-7 that hydrolyzes amide pesticides.

    PubMed

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; He, Jian; Zhou, Shun-Gui; Li, Shun-Peng

    2012-07-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with K(m) and k(cat) values of 29.5 ?M and 49.2 s(-1), respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249

  9. Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides

    PubMed Central

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; Li, Shun-Peng

    2012-01-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with Km and kcat values of 29.5 ?M and 49.2 s?1, respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249

  10. Transcriptomic Analysis of Xylan Utilization Systems in Paenibacillus sp. Strain JDR-2

    PubMed Central

    Sawhney, Neha; Crooks, Casey; St. John, Franz

    2014-01-01

    Xylans, including methylglucuronoxylans (MeGXn) and methylglucuronoarabinoxylans (MeGAXn), are the predominant polysaccharides in hemicellulose fractions of dicots and monocots available for conversion to biofuels and chemicals. Paenibacillus sp. strain JDR-2 (Pjdr2) efficiently depolymerizes MeGXn and MeGAXn and assimilates the generated oligosaccharides, resulting in efficient saccharification and subsequent metabolism of these polysaccharides. A xylan utilization regulon encoding a cell-associated GH10 (glycoside hydrolase family 10) endoxylanase, transcriptional regulators, ABC (ATP binding cassette) transporters, an intracellular GH67 α-glucuronidase, and other glycoside hydrolases contributes to complete metabolism. This GH10/GH67 system has been proposed to account for preferential utilization of xylans compared to free oligo- and monosaccharides. To identify additional genes contributing to MeGXn and MeGAXn utilization, the transcriptome of Pjdr2 has been sequenced following growth on each of these substrates as well as xylose and arabinose. Increased expression of genes with different substrates identified pathways common or unique to the utilization of MeGXn or MeGAXn. Coordinate upregulation of genes comprising the GH10/GH67 xylan utilization regulon is accompanied with upregulation of genes encoding a GH11 endoxylanase and a GH115 α-glucuronidase, providing evidence for a novel complementary pathway for processing xylans. Elevated expression of genes encoding a GH43 arabinoxylan arabinofuranohydrolase and an arabinose ABC transporter on MeGAXn but not on MeGXn supports a process in which arabinose may be removed extracellularly followed by its rapid assimilation. Further development of Pjdr2 for direct conversion of xylans to targeted products or introduction of these systems into fermentative strains of related bacteria may lead to biocatalysts for consolidated bioprocessing of hemicelluloses released from lignocellulose. PMID:25527555

  11. Metabolomic Analysis of Cold Acclimation of Arctic Mesorhizobium sp. Strain N33

    PubMed Central

    Ghobakhlou, Abdollah; Laberge, Serge; Antoun, Hani; Wishart, David S.; Xia, Jianguo; Krishnamurthy, Ramanarayan; Mandal, Rupasri

    2013-01-01

    Arctic Mesorhizobium sp. N33 isolated from nodules of Oxytropis arctobia in Canadas eastern Arctic has a growth temperature range from 0C to 30C and is a well-known cold-adapted rhizobia. The key molecular mechanisms underlying cold adaptation in Arctic rhizobia remains totally unknown. Since the concentration and contents of metabolites are closely related to stress adaptation, we applied GC-MS and NMR to identify and quantify fatty acids and water soluble compounds possibly related to low temperature acclimation in strain N33. Bacterial cells were grown at three different growing temperatures (4C, 10C and 21C). Cells from 21C were also cold-exposed to 4C for different times (2, 4, 8, 60 and 240 minutes). We identified that poly-unsaturated linoleic acids 18?2 (9, 12) & 18?2 (6, 9) were more abundant in cells growing at 4 or 10C, than in cells cultivated at 21C. The mono-unsaturated phospho/neutral fatty acids myristoleic acid 14?1(11) were the most significantly overexpressed (45-fold) after 1hour of exposure to 4C. As reported in the literature, these fatty acids play important roles in cold adaptability by supplying cell membrane fluidity, and by providing energy to cells. Analysis of water-soluble compounds revealed that isobutyrate, sarcosine, threonine and valine were more accumulated during exposure to 4C. These metabolites might play a role in conferring cold acclimation to strain N33 at 4C, probably by acting as cryoprotectants. Isobutyrate was highly upregulated (19.4-fold) during growth at 4C, thus suggesting that this compound is a precursor for the cold-regulated fatty acids modification to low temperature adaptation. PMID:24386418

  12. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9.

    PubMed

    Wrangstadh, M; Szewzyk, U; Ostling, J; Kjelleberg, S

    1990-07-01

    The marine bacterium Pseudomonas sp. strain S9 produces exopolysaccharides (EPS) during both growth and total energy source and nutrient starvation. Transmission electron microscopy of immunogold-labeled cells demonstrated that the EPS is closely associated with the cell surface during growth (integral EPS), while both the integral form and a loosely associated extracellular (peripheral) form were observed during starvation. Formation and release of the latter rendered the starvation medium viscous. In addition, after 3 h of starvation in static conditions, less than 5% of the cells were motile, compared with 100% at the onset of starvation and approximately 80% subsequent to release of the peripheral EPS at 27 h of starvation. Inhibition of protein synthesis with chloramphenicol added before 3 h of starvation caused no increase in viscosity. However, addition of chloramphenicol at 3 h did not prevent the subsequent increase in viscosity displayed by S9 cells. The amount of integral EPS increased for both nontreated and chloramphenicol-treated S9 cells during the first hour of starvation, with a subsequent equal decrease. The chloramphenicol-treated cells, as well as cells of a transposon-generated mutant strain deficient in peripheral EPS formation, remained adhesive to a hydrophobic inanimate surface during the initial 5 h of starvation, whereas nontreated wild-type cells had progressively decreased adhesion capacity. During the initial 5 h of starvation, most of the nontreated cells but only a small fraction of the chloramphenicol-treated and mutant cells detached from the hydrophobic substratum.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2202255

  13. A Novel (S)-6-Hydroxynicotine Oxidase Gene from Shinella sp. Strain HZN7

    PubMed Central

    Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong

    2014-01-01

    Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s?1) and nicotine (Km = 2.03 mM, kcat = 0.396 s?1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. PMID:25002425

  14. A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7.

    PubMed

    Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong; Liu, Weiping

    2014-09-01

    Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s(-1)) and nicotine (Km = 2.03 mM, kcat = 0.396 s(-1)) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. PMID:25002425

  15. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem.

    PubMed

    Satsuma, Koji

    2006-04-01

    A Gram-positive bacterial strain able to degrade the herbicide atrazine was isolated using a simple model ecosystem constituted with Japanese riverbed sediment and its associated water (microcosm). Treatment of the water phase of the microcosm with 1 mg litre-1 [ring-14C]atrazine resulted in the rapid degradation of atrazine after a 10 day lag phase period. The [ring-14C]cyanuric acid formed was transiently accumulated as an intermediary metabolite in the water phase and was subsequently mineralised through triazine ring cleavage. Possible atrazine-degrading microbes suspended in the water phase of the microcosm were isolated by the plating method while rapid degradation of atrazine was in progress. Among the 48 strains that were isolated, 47 exhibited atrazine-degrading activity. From these 47 isolates, 12 strains that were randomly selected were found to identically convert atrazine to cyanuric acid via hydroxyatrazine. Polymerase chain reaction (PCR) amplification of the genes corresponding to atrazine degradation revealed that these strains at least carried the genes trzN (atrazine chlorohydrolase from Nocardioides C190) and atzC (N-isopropylammelide isopropyl amidohydrolase from Pseudomonas ADP). Physiological characteristics and 16S rDNA partial sequences of six strains that were further selected strongly suggested that all these isolates originated from the same Nocardioides sp. strain. Additionally, only one isolate could mineralise the triazine ring of cyanuric acid. Based on microscopic observations, this strain appears to be a two-membered microbial consortium consisting of Nocardioides sp. and a Gram-negative bacterium. In conclusion, atrazine biodegradation in the microcosm appeared to occur predominantly by Nocardioides sp. to yield cyanuric acid, which could be mineralised by the other relatively ubiquitous microbes. PMID:16493696

  16. Isolation and Characterization of a Novel Imidacloprid-Degrading Mycobacterium sp. Strain MK6 from an Egyptian Soil.

    PubMed

    Kandil, Mahrous M; Trigo, Carmen; Koskinen, William C; Sadowsky, Michael J

    2015-05-20

    Thus far, only a small number and types of bacteria with limited ability in degrading imidacloprid have been reported. Also, genes regulating imidacloprid (IMDA) degradation have yet to be discovered. To study this in more detail, an enrichment technique was used to isolate consortia and pure cultures of IMDA-degrading bacteria. Through this approach, we successfully isolated a novel bacterium capable of completely degrading IMDA as a sole nitrogen source. The bacterium was subsequently identified as Mycobacterium sp. strain MK6 by sequence analysis of its 16S rRNA gene (Genbank accession number KR052814 ). BLASTn searches indicated that 16S rRNA gene from Mycobacterium sp. strain MK6 was 99% identical to several Mycobacterium spp. Mycobacterium sp. strain MK6 transformed 99.7% added IMDA (150 μg mL(-1)) in <2 weeks (t1/2 = 1.6 days) to 6-chloronicotinic acid (6-CNA) as its major metabolite. Although the isolated strain and mixed bacterial consortia were able to degrade IMDA, they failed to grow further on 6-CNA, indicating a lack of IMDA mineralization to carbon dioxide. Small amounts of the desnitro-olefin and desnitro-degradates of IMDA were observed during the incubation but did not accumulate in culture medium. PMID:25932751

  17. Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites.

    PubMed

    Arun Prasad, A S; Satyanarayana, V S V; Bhaskara Rao, K V

    2013-11-15

    The ability of halophiles to survive in the extreme salt concentrations has gained them the importance of being used in the treatment of industrial waste waters. A moderately halophilic bacterial strain with the ability to degrade the complex azo dye Direct Blue-1 (DB-1) was isolated from sea water and identified as Marinobacter sp. strain HBRA. Complete decolorization of DB-1 (100 mg L(-1)) was achieved in 6h at 37 C, pH 8 and with 70 g L(-1) NaCl. Decolorization was analyzed by UV-vis spectrophotometer. The FT-IR spectrum revealed that Marinobacter sp. strain HBRA specifically targeted azo bond (NN) at 1631 cm(-1) to break down Direct Blue-1. Formation of metabolites at different retention times in HPLC indicated degradation. Biotransformation pathway for DB-1 was proposed based on LC-MS. Phytotoxicity study revealed the less toxic nature of the metabolites compared to the dye. Genotoxicity with Allium cepa confirmed the cytotoxic nature of DB-1 by inducing several chromosomal abnormalities compared to the negligible effects of degraded metabolites. The current study is the first report on the detoxification of DB-1 by Marinobacter sp. strain HBRA. PMID:24121630

  18. Selection of Pseudomonas sp. strain HBP1 Prp for metabolism of 2-propylphenol and elucidation of the degradative pathway.

    PubMed Central

    Kohler, H P; van der Maarel, M J; Kohler-Staub, D

    1993-01-01

    A mutant of Pseudomonas sp. strain HBP1, originally isolated on 2-hydroxybiphenyl, was selected for the ability to grow on 2-propylphenol as the sole carbon and energy source. In the mutant strain, which was designated as Pseudomonas sp. strain HBP1 Prp, the cellular induction mechanism involved in the synthesis of the NADH-dependent monooxygenase is changed. 2-Propylphenol, which is known to be a substrate of the monooxygenase, does not induce formation of the monooxygenase in the wild type but does have an induction effect in the mutant strain. Furthermore, in contrast to the wild type, mutant strain HBP1 Prp constitutively produces a small amount of monooxygenase and metapyrocatechase. The enzymes from strain HBP1 Prp catalyzing the first three steps in the degradation of 2-propylphenol--the NADH-dependent monooxygenase, the metapyrocatechase, and the meta fission product hydrolase--were partially purified, and their activities were measured. The product of the monooxygenase activity was identified by mass spectrometry as 3-propylcatechol. The metapyrocatechase used this compound as a substrate and produced a yellow meta fission product that was identified by mass spectrometry as 2-hydroxy-6-oxo-nona-2,4- dienoate. Butyrate could be detected as a product of the meta fission product hydrolase in crude cell extract of 2-propylphenol-grown cells, as well as an intermediate in culture broths during growth on 2-propylphenol. All three enzymes expressed highest activities for the metabolites of the degradation of 2-hydroxybiphenyl. PMID:8481010

  19. Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction

    PubMed Central

    Ghio, Silvina; Lorenzo, Gonzalo Sabars Di; Lia, Vernica; Talia, Paola; Cataldi, Angel; Grasso, Daniel; Campos, Eleonora

    2012-01-01

    Prospection of cellulose-degrading bacteria in natural environments allows the identification of novel cellulases and hemicellulases that could be useful in second-generation bioethanol production. In this work, cellulolytic bacteria were isolated from decaying native forest soils by enrichment on cellulose as sole carbon source. There was a predominance of Gram positive isolates that belonged to the phyla Proteobacteria and Firmicutes. Many primary isolates with cellulolytic activity were not pure cultures. From these consortia, isolation of pure constituents was attempted in order to test the hypothesis whether microbial consortia are needed for full degradation of complex substrates. Two isolates, CB1-2-A-5 and VG-4-A-2, were obtained as the pure constituents of CB1-2 and VG-4 consortia, respectively. Based on 16S RNA sequence, they could be classified as Variovorax paradoxus and Paenibacillus alvei. Noteworthy, only VG-4 consortium showed measurable xylan degrading capacity and signs of filter paper degradation. However, no xylan or filter paper degrading capacities were observed for the pure cultures isolated from it, suggesting that other members of this consortium were necessary for these hydrolyzing activities. Our results indicated that Paenibacillus sp. and Variovorax sp. as well as VG-4 consortium, might be a useful source of hydrolytic enzymes. Moreover, although Variovorax sp. had been previously identified in metagenomic studies of cellulolytic communities, this is the first report on the isolation and characterization of this microorganism as a cellulolytic genus. PMID:23301200

  20. Genomic and Transcriptomic Analyses of the Facultative Methanotroph Methylocystis sp. Strain SB2 Grown on Methane or Ethanol

    PubMed Central

    Vorobev, Alexey; Jagadevan, Sheeja; Jain, Sunit; Anantharaman, Karthik; Dick, Gregory J.; Vuilleumier, Stphane

    2014-01-01

    A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathway and the serine cycle for carbon assimilation from methane was obtained, as well as for operation of the complete tricarboxylic acid (TCA) cycle and the ethylmalonyl-coenzyme A (EMC) pathway. Experiments with Methylocystis sp. strain SB2 grown on methane revealed that genes responsible for the first step of methane oxidation, the conversion of methane to methanol, were expressed at a significantly higher level than those for downstream oxidative transformations, suggesting that this step may be rate limiting for growth of this strain with methane. Further, transcriptomic analyses of Methylocystis sp. strain SB2 grown with ethanol compared to methane revealed that on ethanol (i) expression of the pathway of methane oxidation and the serine cycle was significantly reduced, (ii) expression of the TCA cycle dramatically increased, and (iii) expression of the EMC pathway was similar. Based on these data, it appears that Methylocystis sp. strain SB2 converts ethanol to acetyl-coenzyme A, which is then funneled into the TCA cycle for energy generation or incorporated into biomass via the EMC pathway. This suggests that some methanotrophs have greater metabolic flexibility than previously thought and that operation of multiple pathways in these microorganisms is highly controlled and integrated. PMID:24610846

  1. Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol.

    PubMed

    Vorobev, Alexey; Jagadevan, Sheeja; Jain, Sunit; Anantharaman, Karthik; Dick, Gregory J; Vuilleumier, Stéphane; Semrau, Jeremy D

    2014-05-01

    A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathway and the serine cycle for carbon assimilation from methane was obtained, as well as for operation of the complete tricarboxylic acid (TCA) cycle and the ethylmalonyl-coenzyme A (EMC) pathway. Experiments with Methylocystis sp. strain SB2 grown on methane revealed that genes responsible for the first step of methane oxidation, the conversion of methane to methanol, were expressed at a significantly higher level than those for downstream oxidative transformations, suggesting that this step may be rate limiting for growth of this strain with methane. Further, transcriptomic analyses of Methylocystis sp. strain SB2 grown with ethanol compared to methane revealed that on ethanol (i) expression of the pathway of methane oxidation and the serine cycle was significantly reduced, (ii) expression of the TCA cycle dramatically increased, and (iii) expression of the EMC pathway was similar. Based on these data, it appears that Methylocystis sp. strain SB2 converts ethanol to acetyl-coenzyme A, which is then funneled into the TCA cycle for energy generation or incorporated into biomass via the EMC pathway. This suggests that some methanotrophs have greater metabolic flexibility than previously thought and that operation of multiple pathways in these microorganisms is highly controlled and integrated. PMID:24610846

  2. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    PubMed Central

    Othman, A. R.; Bakar, N. A.; Halmi, M. I. E.; Johari, W. L. W.; Ahmad, S. A.; Jirangon, H.; Syed, M. A.; Shukor, M. Y.

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  3. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  4. Description, host-specificity, and strain selectivity of the dinoflagellate parasite Parvilucifera sinerae sp. nov. (Perkinsozoa).

    PubMed

    Figueroa, Rosa Isabel; Garcs, Esther; Massana, Ramon; Camp, Jordi

    2008-10-01

    A new species of parasite, Parvilucifera sinerae sp. nov., isolated from a bloom of the toxic dinoflagellate Alexandrium minutum in the harbor of Arenys de Mar (Mediterranean Sea, Spain), is described. This species is morphologically, behaviourally, and genetically (18S rDNA sequence) different from Parvilucifera infectans, until now the only species of the genus Parvilucifera to be genetically analyzed. Sequence analysis of the 18S ribosomal DNA supported P. sinerae as a new species placed within the Perkinsozoa and close to P. infectans. Data on the seasonal occurrence of P. sinerae, its infective rates in natural and laboratory cultures, and intra-species strain-specific resistance are presented. Life-cycle studies in field samples showed that the dinoflagellate resting zygote (resting cyst) was resistant to infection, but the mobile zygote (planozygote) or pellicle stage (temporary cyst) became infected. The effects of light and salinity levels on the growth of P. sinerae were examined, and the results showed that low salinity levels promote both sporangial germination and higher rates of infection. Our findings on this newly described parasite point to a complex host-parasite interaction and provide valuable information that leads to a reconsideration of the biological strategy to control dinoflagellate blooms by means of intentional parasitic infections. PMID:18693068

  5. Aerobic Biodegradation of 2,4-Dinitroanisole by Nocardioides sp. Strain JS1661

    PubMed Central

    Fida, Tekle Tafese; Palamuru, Shannu; Pandey, Gunjan

    2014-01-01

    2,4-Dinitroanisole (DNAN) is an insensitive munition ingredient used in explosive formulations as a replacement for 2,4,6-trinitrotoluene (TNT). Little is known about the environmental behavior of DNAN. There are reports of microbial transformation to dead-end products, but no bacteria with complete biodegradation capability have been reported. Nocardioides sp. strain JS1661 was isolated from activated sludge based on its ability to grow on DNAN as the sole source of carbon and energy. Enzyme assays indicated that the first reaction involves hydrolytic release of methanol to form 2,4-dinitrophenol (2,4-DNP). Growth yield and enzyme assays indicated that 2,4-DNP underwent subsequent degradation by a previously established pathway involving formation of a hydride-Meisenheimer complex and release of nitrite. Identification of the genes encoding the key enzymes suggested recent evolution of the pathway by recruitment of a novel hydrolase to extend the well-characterized 2,4-DNP pathway. PMID:25281383

  6. Discovery and Characterization of a 5-Hydroxymethylfurfural Oxidase from Methylovorus sp. Strain MP688

    PubMed Central

    Dijkman, Willem P.

    2014-01-01

    In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations. PMID:24271187

  7. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227.

    PubMed Central

    Eaton, R W; Karns, J S

    1991-01-01

    Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences. Images PMID:1846859

  8. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227.

    PubMed

    Eaton, R W; Karns, J S

    1991-02-01

    Pseudomonas sp. strain NRRLB-12227 degrades the s-triazine melamine by a six-step pathway which allows it to use melamine and pathway intermediates as nitrogen sources. With the plasmid pLG221, mutants defective in five of the six steps of the pathway were generated. Tn5-containing-EcoRI fragments from these mutants were cloned and identified by selection for Tn5-encoded kanamycin resistance in transformants. A restriction fragment from ammelide-negative mutant RE411 was used as a probe in colony hybridization experiments to identify cloned wild-type s-triazine catabolic genes encoding ammeline aminohydrolase, ammelide aminohydrolase, and cyanuric acid amidohydrolase. These genes were cloned from total cellular DNA on several similar, but not identical, HindIII fragments, as well as on a PstI fragment and a BglII fragment. Restriction mapping and Southern hybridization analyses of these cloned DNA fragments suggested that these s-triazine catabolic genes may be located on a transposable element, the ends of which are identical 2.2-kb insertion sequences. PMID:1846859

  9. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan Janardhana; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results ( R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  10. Response surface optimization for efficient dye removal by isolated strain Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Shanmugam; Perumalsamy, Muthiah; Prabhuy, Harinarayan; AhmedBasha, Chiya; Anantharaman, Narayan

    2012-09-01

    Response surface methodology (RSM) involving the central composite design (CCD) was employed to optimize three important process variables for the decolourization of synthetic dye solutions containing Remazol Turquoise Blue (RTB) and Reactive Black 5 (RB5) with isolated bacterial strain Pseudomonas sp. The interaction between three variables i.e. Initial concentration of dye, carbon source and nitrogen source were studied and modeled. According to the Analysis of variance (ANOVA) results the predicted results were found to be in good agreement with experimental results (R 2: 0.9726; Adj R 2: 0.9480 for RTB and R 2: 0.9789; Adj R 2: 0.9750 for RB5) which indicated excellent evaluation of experimental data from the second order polynomial regression model. Mathematical models were developed by the proposed system, for each process variable showed the effect of each factor and their interactions on biodecolourization process. The optimum concentrations of Dye, Carbon source, and Nitrogen source were found to be 20 mgL-1, 1.5 g/L and 1.5 g/L, respectively for RTB and RB5 to obtain maximum dye removing capacity. Predicted values were validated with experimental results, which indicated appropriateness of the employed model and the success of RSM.

  11. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    PubMed Central

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-01-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein. Images FIG. 2 FIG. 3 FIG. 4 PMID:2106513

  12. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13.

    PubMed

    Shukor, M Y; Rahman, M F; Shamaan, N A; Syed, M A

    2009-09-01

    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. PMID:19455513

  13. Purification and Characterization of Hydroxyquinol 1,2-Dioxygenase from Azotobacter sp. Strain GP1

    PubMed Central

    Latus, M.; Seitz, H.; Eberspacher, J.; Lingens, F.

    1995-01-01

    Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene) and was found to perform ortho cleavage of the hydroxyquinol compounds, yielding chloromaleylacetate and maleylacetate, respectively. With the conversion of 1 mol of 6-chlorohydroxyquinol, the consumption of 1 mol of O(inf2) and the formation of 1 mol of chloromaleylacetate were observed. Catechol was not accepted as a substrate. The enzyme has to be induced, and no activity was found in cells grown on succinate. The molecular weight of native hydroxyquinol 1,2-dioxygenase was estimated to 58,000, with a sedimentation coefficient of 4.32. The subunit molecular weight of 34,250 indicates a dimeric structure of the dioxygenase enzyme. The addition of Fe(sup2+) ions significantly activated enzyme activity, and metal-chelating agents inhibited it. Electron paramagnetic resonance data are consistent with high-spin iron(III) in a rhombic environment. The NH(inf2)-terminal amino acid sequence was determined for up to 40 amino acid residues and compared with sequences from literature data for other catechol and chlorocatechol dioxygenases. PMID:16535063

  14. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    PubMed

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 ?mole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  15. Biotransformations of bisphenols mediated by a novel Arthrobacter sp. strain YC-RL1.

    PubMed

    Ren, Lei; Jia, Yang; Ruth, Nahurira; Shi, Yanhua; Wang, Junhuan; Qiao, Cheng; Yan, Yanchun

    2016-02-01

    Arthrobacter sp. strain YC-RL1, capable of utilizing bisphenol A (BPA) as sole carbon source for growth, was isolated from petroleum contaminated soil. YC-RL1 could rapidly degrade BPA in a wide range of pH (5.0-9.0) and temperature (20-40C). Substrate analysis found that YC-RL1 could also degrade bisphenol F (BPF) and tetrabromobisphenol A (TBBPA). The maximum and minimum concentrations of BPA (0.2-600mg/L), BPF (0.2-600mg/L), and TBBPA (0.2-300mg/L) for efficient biodegradation were detected. The released bromide ion and metabolic intermediates of BPF and BPA/TBBPA were detected, as well as the degradation pathways for BPF and BPA/TBBPA were deduced tentatively. The present study provides important information for the investigation of BPs degrading mechanism and the application of microbial remediation in BP-contaminated environment. This study is the first report about a genus Arthrobacter bacterium which could simultaneously degrade BPA, BPF, and TBBPA. PMID:26515562

  16. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    PubMed

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. PMID:21030223

  17. Rhizobium sp. Strain NGR234 Possesses a Remarkable Number of Secretion Systems?

    PubMed Central

    Schmeisser, Christel; Liesegang, Heiko; Krysciak, Dagmar; Bakkou, Nadia; Le Qur, Antoine; Wollherr, Antje; Heinemeyer, Isabelle; Morgenstern, Burkhard; Pommerening-Rser, Andreas; Flores, Margarita; Palacios, Rafael; Brenner, Sydney; Gottschalk, Gerhard; Schmitz, Ruth A.; Broughton, William J.; Perret, Xavier; Strittmatter, Axel W.; Streit, Wolfgang R.

    2009-01-01

    Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule. PMID:19376903

  18. Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil.

    PubMed

    Halmi, M I E; Hussin, W S W; Aqlima, A; Syed, M A; Ruberto, L; MacCormack, W P; Shukor, M Y

    2013-11-01

    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS. PMID:24555340

  19. Characterization of the Highly Active Polyhydroxyalkanoate Synthase of Chromobacterium sp. Strain USM2▿

    PubMed Central

    Bhubalan, Kesaven; Chuah, Jo-Ann; Shozui, Fumi; Brigham, Christopher J.; Taguchi, Seiichi; Sinskey, Anthony J.; Rha, ChoKyun; Sudesh, Kumar

    2011-01-01

    The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaCCs). PhaCCs showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaCCs expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaCCs was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaCCs of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaCCs is a naturally occurring, highly active PHA synthase with superior polymerizing ability. PMID:21398494

  20. Global Analysis of Circadian Expression in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Kucho, Ken-ichi; Okamoto, Kazuhisa; Tsuchiya, Yuka; Nomura, Satoshi; Nango, Mamoru; Kanehisa, Minoru; Ishiura, Masahiro

    2005-01-01

    Cyanobacteria are the only bacterial species found to have a circadian clock. We used DNA microarrays to examine circadian expression patterns in the cyanobacterium Synechocystis sp. strain PCC 6803. Our analysis identified 54 (2%) and 237 (9%) genes that exhibited circadian rhythms under stringent and relaxed filtering conditions, respectively. The expression of most cycling genes peaked around the time of transition from subjective day to night, suggesting that the main role of the circadian clock in Synechocystis is to adjust the physiological state of the cell to the upcoming night environment. There were several chromosomal regions where neighboring genes were expressed with similar circadian patterns. The physiological functions of the cycling genes were diverse and included a wide variety of metabolic pathways, membrane transport, and signal transduction. Genes involved in respiration and poly(3-hydroxyalkanoate) synthesis showed coordinated circadian expression, suggesting that the regulation is important for the supply of energy and carbon source in the night. Genes involved in transcription and translation also followed circadian cycling patterns. These genes may be important for output of the rhythmic information generated by the circadian clock. Our findings provided critical insights into the importance of the circadian clock on cellular physiology and the mechanism of clock-controlled gene regulation. PMID:15743968

  1. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007.

    PubMed

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2016-02-01

    A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40C, and retained more than 80% of initial activity after 1 H incubation at 60C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application. PMID:25639796

  2. A further insight into the mechanism of Ag + biosorption by Lactobacillus sp. strain A09

    NASA Astrophysics Data System (ADS)

    Lin, Zhongyu; Zhou, Chaohui; Wu, Jianming; Zhou, Jianzhang; Wang, Lin

    2005-04-01

    The mechanism of Ag + biosorption by resting cell of Lactobacillus sp. strain A09 has been further investigated at the molecular level using spectroscopic techniques. The values of estimated equilibrium constants, rate constants, half-life periods and apparent enthalpies of the binding reaction were calculated via the determination of Ag + adsorbed by the biomass using atomic absorption spectrophotometry (AAS). The reductive ratio of the Ag + to Ag 0 by the A09 biomass was examined by X-ray photoelectron spectroscopy (XPS). Analysis for sulfur and nitrogen atomic contents in dry powder of the biomass with EA-1110 elemental analysis (EA) showed that amino acid residues retaining the reductive property of Ag + to Ag 0 are very small quantity, whereas glucose content in the hydrolysates of the biomass analyzed by ultraviolet-visible spectrophotometry (UV-vis) indicated that the amount of reducing sugars in the biomass is much larger than 2.71%. The fourier transform infrared (FTIR) spectrophotometry on blank and silver-loaded biomass demonstrated that the chemical functional group such as the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides from the cell wall plays a leading role in serving as the electron donor for reducing the Ag + to Ag 0. This result was further supported by characterizations on the interaction of the Ag + with glucose using X-ray powder diffractometry (XRD) and FTIR spectroscopy.

  3. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants. PMID:26126873

  4. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12

    SciTech Connect

    Trent, J.D.; Osipiuk, J.; Pinkau, T. )

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70{degrees}C culture at the lethal temperature of 92{degrees}C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88{degrees}C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  5. Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765

    SciTech Connect

    Nishino, S.F.; Spain, J.C.

    1995-06-01

    Previous studies have shown that the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 proceeds by the reduction of nitrobenzene through nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage. We report here the isolation of a Comamonas sp. that uses an oxidative pathway for the complete mineralization of nitrobenzene. The isolate, designated strain JS765, uses nitrobenzene as a sole source of carbon, nitrogen, and energy. Nitrobenzene-grown cells oxidized nitrobenzene, with the stoichiometric release of nitrite. Extracts of nitrobenzene-grown JS765 showed high levels of catechol 2,3-dioxygenase activity that were not abolished by heating the cell extracts to 60{degrees}C for 10 min. The ring cleavage product had an absorbance maximum at 375 nm, consistent with that of 2-hydroxymuconic semialdehyde. Both NAD-dependent dehydrogenase and NAD-indipendent hydrolase activities towards 2-hydroxymuconic semialdehyde were induced in extracts of nitrobenzene-grown cells. Catechol accumulated in the reaction mixture when cells preincubated with 3-chloracatechol were incubated with nitrobenzene. Conversion of nitrobenzene to catechol by induced cells in the presence of 3-chlorocatechol and {sup 13}O{sub 2} demonstrated the simultaneous incorporation of two atoms of oxygen, which indicated that the initial reaction was dioxygenation. Their results indicate that the catabolic pathway involves an initial dioxygenase attack on nitrobenzene with the release of nitrite and formation of catechol, which is subsequently degraded by a meta cleavage pathway. 37 refs., 4 figs., 4 tabs.

  6. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM.

    PubMed Central

    Fathepure, B Z; Boyd, S A

    1988-01-01

    Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation. Images PMID:3223763

  7. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  8. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  9. Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874?

    PubMed Central

    Throne-Holst, Mimmi; Wentzel, Alexander; Ellingsen, Trond E.; Kotlar, Hans-Kristian; Zotchev, Sergey B.

    2007-01-01

    Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains. PMID:17400787

  10. Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain.

    PubMed

    Mellouli, Lotfi; Ben Ameur-Mehdi, Raoudha; Sioud, Samiha; Salem, Mansour; Bejar, Samir

    2003-06-01

    A new actinomycete strain designated US24 producing antibacterial activities against Gram-positive and Gram-negative bacteria was isolated from Tunisian soil. Culture characteristic studies strongly suggested that the US24 strain belonged to the genus Streptomyces. Analysis of the nucleotide sequence of the 16S rRNA gene of the Streptomyces sp. US24 strain showed high similarity (98%) with the 16S rRNA gene of Streptomyces caelestis which produces two antibiotics, niddamycin and celesticetin. Study of the influence of different nutritional compounds on antibiotic biosynthesis showed that the highest antibacterial activities were obtained when starch at 1% (w/v) was used as sole carbon source in the presence of traces of mineral oligoelements. Application to the supernatant culture of the Streptomyces sp. US24 strain of various separation steps led to isolation of two pure active molecules having a retention time of 34 and 37.26 min, respectively. P(34 min) possessed antibacterial activity against Gram-positive and Gram-negative bacteria, whereas P(37.26 min) inhibited only Gram-positive bacteria. Partial characterization of the P(34 min) molecule using spectroscopic studies showed that this active molecule is different from the two antibiotics produced by the S. caelestis strain. PMID:12837510

  11. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation

    SciTech Connect

    Patel, S.M.; Stark, B.C.; Hwang, K.W.; Dikshit, K.L.; Webster, D.A.

    2000-02-01

    The gene (vgb) encoding the hemoglobin (VHb) of Vitreoscilla sp. was cloned into a broad host range vector and stably transformed into Burkholderia (formerly Pseudomonas) sp. strain DNT, which is able to degrade and metabolize 1,4-dinitrotoluene (DNT). Vgb was stably maintained and expressed in functional form in this recombinant strain (YV1). When growth of YV1, in both tryptic soy broth and minimal salts broth containing DNT and yeast extract, was compared with that of the untransformed strain, YV1 grew significantly better on a cell mass basis (A{sub 600}) and reached slightly higher maximum viable cell numbers. YV1 also had roughly twice the respiration as strain DNT on a cell mass basis, and in DNT-containing medium, YV1 degraded DNT faster than the untransformed strain. YV1 cells pregrown in medium containing DNT plus succinate showed the fastest degradation: 100% of the initial 200 ppm DNT was removed from the medium within 3 days.

  12. The Draft Genome Sequence of Xanthomonas sp. Strain Mitacek01 Expands the Pangenome of a Genus of Plant Pathogens.

    PubMed

    Couger, M B; Hanafy, Radwa A; Mitacek, Rachel M; Budd, Connie; French, Donald P; Hoff, Wouter D; Elshahed, Mostafa S; Youssef, Noha H

    2015-01-01

    We report the draft genome sequence of Xanthomonas sp. strain Mitacek01, isolated from an indoor environment vending machine surface with frequent human use in Stillwater, Oklahoma, USA, as part of the Student-Initiated Microbial Discovery project. The genome has a total size of 3,617,426 bp and a contig N50 of 1,906,967 bp. PMID:26659686

  13. Genome Sequence of Pseudomonas sp. Strain P482, a Tomato Rhizosphere Isolate with Broad-Spectrum Antimicrobial Activity

    PubMed Central

    Krzyzanowska, Dorota M.; Ossowicki, Adam

    2014-01-01

    The tomato rhizosphere isolate Pseudomonas sp. strain P482 is a member of a diverse group of fluorescent pseudomonads. P482 produces a yet unidentified broad-spectrum antimicrobial compound(s), active inter alia (i.a.) against Dickeya spp. Here, we present a nearly complete genome of P482 obtained by a hybrid assembly of Illumina and PacBio sequencing data. PMID:24970823

  14. Synthesis of Strained ?-Lactams by Palladium(0)-Catalyzed C(sp(3) )-H Alkenylation and Application to Alkaloid Synthesis.

    PubMed

    Holstein, Philipp M; Dailler, David; Vantourout, Julien; Shaya, Janah; Millet, Anthony; Baudoin, Olivier

    2016-02-01

    A variety of strained ?-alkylidene-?-lactams were synthesized by palladium(0)-catalyzed intramolecular C(sp(3) )-H alkenylation from easily accessible acyclic and monocyclic bromoalkene precursors. These lactams are valuable intermediates for accessing various classes of mono- and bicylic alkaloids containing a pyrrolidine ring, as illustrated with the synthesis of an advanced model of the marine natural product plakoridine?A and of the indolizidine alkaloid ?-coniceine. PMID:26799445

  15. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    PubMed

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. Biotechnol. Bioeng. 2016;113: 424-432. 2015 Wiley Periodicals, Inc. PMID:26192329

  16. Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi).

    PubMed

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Schuster, Stephan C; Ward, David M; Bryant, Donald A

    2014-01-01

    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons. PMID:25189583

  17. On the Origins of Cyanuric Acid Hydrolase: Purification, Substrates, and Prevalence of AtzD from Pseudomonas sp. Strain ADP

    PubMed Central

    Fruchey, Isaac; Shapir, Nir; Sadowsky, Michael J.; Wackett, Lawrence P.

    2003-01-01

    Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes. PMID:12788776

  18. The Draft Genome Sequence of Xanthomonas sp. Strain Mitacek01 Expands the Pangenome of a Genus of Plant Pathogens

    PubMed Central

    Couger, M. B.; Hanafy, Radwa A.; Mitacek, Rachel M.; Budd, Connie; French, Donald P.; Hoff, Wouter D.; Elshahed, Mostafa S.

    2015-01-01

    We report the draft genome sequence of Xanthomonas sp. strain Mitacek01, isolated from an indoor environment vending machine surface with frequent human use in Stillwater, Oklahoma, USA, as part of the Student-Initiated Microbial Discovery project. The genome has a total size of 3,617,426 bp and a contig N50 of 1,906,967 bp. PMID:26659686

  19. Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)

    PubMed Central

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Schuster, Stephan C.; Ward, David M.

    2014-01-01

    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons. PMID:25189583

  20. Exo-Oligosaccharides of Rhizobium sp. Strain NGR234 Are Required for Symbiosis with Various Legumes

    PubMed Central

    Staehelin, Christian; Forsberg, Lennart S.; D'Haeze, Wim; Gao, Mu-Yun; Carlson, Russell W.; Xie, Zhi-Ping; Pellock, Brett J.; Jones, Kathryn M.; Walker, Graham C.; Streit, Wolfgang R.; Broughton, William J.

    2006-01-01

    Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with ?-1,3, ?-1,4, ?-1,6, ?-1,3, and ?-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGR?exoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGR?exoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGR?exoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, ?50 ?g per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-?-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes. PMID:16923883