Science.gov

Sample records for geocronologia da suite

  1. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  2. PDock Suite

    Energy Science and Technology Software Center (ESTSC)

    2007-03-01

    The PDock suite is a software package for performing molecular docking simulations. PDock was designed to bea modular and extensible software package that interfaces easily with third party codes to quickly evaluate and test different methods for moleuclar docking simulations. Docking calculations start with three dimensional atomistic models of two molecules (usually a protein and small molecule) and predict how they will bind to each other. This problem can be broken down into 2 mainmore » steps: 1) predicting various orientation/conformation combinations (called 'poses') of one molecule to "dock" into the other one and 2) scoring each possible pose. The best scoring pose is predicted to be the biological one. PDock has two main algoritms for performing the first step of docking. The first performs a biased search of poses using its own implementation of the published DOCK algorithm. The second is an evolutionary search algorithm. PDock uses a force-field based scoring scheme with an option of perform a more computationally expensive solvation correction. The PDock suite includes the following programs : PDock (main program); PGrid: for pre-processing input files; ProteinPDock (simplified main ()and input file for special case of protein-protein docking); and CombiPDock (simpliefied main() and input file for special case of combinatorial libraries).« less

  3. STS-2 suit preparation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Flight crew equipment specialists perform a checkout of an astronaut flight suit to be worn during STS-2 on Columbia. This particular suit is an Ejection Escape Suit (EES). Technician is examining the cuffs and sleeves (38928); equipment specialist installs prescription eyeglasses into the helmet of an astronaut flight suit (38929).

  4. Music Education Suites

    ERIC Educational Resources Information Center

    Kemp, Wayne

    2009-01-01

    This publication describes options for designing and equipping middle and high school music education suites, and suggests ways of gaining community support for including full service music suites in new and renovated school facilities. In addition to basic music suites, and practice rooms, other options detailed include: (1) small ensemble…

  5. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  6. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  7. Validation suite for MCNP

    SciTech Connect

    Mosteller, R. D.

    2002-01-01

    Two validation suites, one for criticality and another for radiation shielding, have been defined and tested for the MCNP Monte Carlo code. All of the cases in the validation suites are based on experiments so that calculated and measured results can be compared in a meaningful way. The cases in the validation suites are described, and results from those cases are discussed. For several years, the distribution package for the MCNP Monte Carlo code1 has included an installation test suite to verify that MCNP has been installed correctly. However, the cases in that suite have been constructed primarily to test options within the code and to execute quickly. Consequently, they do not produce well-converged answers, and many of them are physically unrealistic. To remedy these deficiencies, sets of validation suites are being defined and tested for specific types of applications. All of the cases in the validation suites are based on benchmark experiments. Consequently, the results from the measurements are reliable and quantifiable, and calculated results can be compared with them in a meaningful way. Currently, validation suites exist for criticality and radiation-shielding applications.

  8. Suite versus composite statistics

    USGS Publications Warehouse

    Balsillie, J.H.; Tanner, W.F.

    1999-01-01

    Suite and composite methodologies, two statistically valid approaches for producing statistical descriptive measures, are investigated for sample groups representing a probability distribution where, in addition, each sample is probability distribution. Suite and composite means (first moment measures) are always equivalent. Composite standard deviations (second moment measures) are always larger than suite standard deviations. Suite and composite values for higher moment measures have more complex relationships. Very seldom, however, are they equivalent, and they normally yield statistically significant but different results. Multiple samples are preferable to single samples (including composites) because they permit the investigator to examine sample-to-sample variability. These and other relationships for suite and composite probability distribution analyses are investigated and reported using granulometric data.

  9. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  10. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  11. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  12. Oracle Management Tool Suite

    Energy Science and Technology Software Center (ESTSC)

    2007-06-01

    The Oracle Management Tool Suite is used to automatically manage Oracle based systems. This includes startup and shutdown of databases and application servers as well as backup, space management, workload management and log file management.

  13. DSN Data Visualization Suite

    NASA Technical Reports Server (NTRS)

    Bui, Bach X.; Malhotra, Mark R.; Kim, Richard M.

    2009-01-01

    The DSN Data Visualization Suite is a set of computer programs and reusable Application Programming Interfaces (APIs) that assist in the visualization and analysis of Deep Space Network (DSN) spacecraft-tracking data, which can include predicted and actual values of downlink frequencies, uplink frequencies, and antenna-pointing angles in various formats that can include tables of values and polynomial coefficients. The data can also include lists of antenna-pointing events, lists of antenna- limit events, and schedules of tracking activities. To date, analysis and correlation of these intricately related data before and after tracking have been difficult and time-consuming. The DSN Data Visualization Suite enables operators to quickly diagnose tracking-data problems before, during, and after tracking. The Suite provides interpolation on demand and plotting of DSN tracking data, correlation of all data on a given temporal point, and display of data with color coding configurable by users. The suite thereby enables rapid analysis of the data prior to transmission of the data to DSN control centers. At the control centers, the same suite enables operators to validate the data before committing the data to DSN subsystems. This software is also Web-enabled to afford its capabilities to international space agencies.

  14. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes. PMID:11540717

  15. PLANNING THE MUSIC SUITE.

    ERIC Educational Resources Information Center

    HICK, BASIL L.; SAETVEIT, JOSEPH G.

    A PUBLICATION DESIGNED TO IMPROVE THE PLANNING OF MUSIC SUITES IN SCHOOLS. THE INFORMATION CAN BE USED IN THE PREPARATION OF PLANS FOR NEW BUILDINGS AND IMPROVING FACILITIES FOR MUSIC EDUCATION IN EXISTING BUILDINGS. SECTIONS INCLUDED DEAL WITH--(1) THE MUSIC PROGRAM AND SPECIAL NEEDS OF THE MUSIC DEPARTMENT, (2) LOCATION OF MUSIC ROOMS, (3) TYPES…

  16. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  17. STAYSL PNNL Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-04-12

    The STAYSL PNNL Suite of software provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of themore » reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations. The software suite consists of the STAYSL PNNL, SHIELD, BCF, and NJpp Fortran codes and the SigPhi Calculator spreadsheet tool. In addition, the development of this software suite and associated data libraries used the third-party NJOY99 Fortran code (http://t2.lanl.gov/nis/codes/njoy99/). The NJOY99 and NJpp codes are used to assemble cross section and covariance input data libraries (for both SHIELD and STAYSL PNNL) from the International Reactor Dosimetry File of 2002 (IRDF-2002; http://www-nds.iaea.org/irdf2002/) developed by the Nuclear Data Section of the International Atomic Energy Agency (Vienna, Austria). The BCF, SigPhi Calculator, and SHIELD software tools are used to calculate corrected activation rates and neutron self-shielding correction factors, which are inputs to the STAYSL PNNL code.« less

  18. STAYSL PNNL Suite

    SciTech Connect

    2013-04-12

    The STAYSL PNNL Suite of software provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations. The software suite consists of the STAYSL PNNL, SHIELD, BCF, and NJpp Fortran codes and the SigPhi Calculator spreadsheet tool. In addition, the development of this software suite and associated data libraries used the third-party NJOY99 Fortran code (http://t2.lanl.gov/nis/codes/njoy99/). The NJOY99 and NJpp codes are used to assemble cross section and covariance input data libraries (for both SHIELD and STAYSL PNNL) from the International Reactor Dosimetry File of 2002 (IRDF-2002; http://www-nds.iaea.org/irdf2002/) developed by the Nuclear Data Section of the International Atomic Energy Agency (Vienna, Austria). The BCF, SigPhi Calculator, and SHIELD software tools are used to calculate corrected activation rates and neutron self-shielding correction factors, which are inputs to the STAYSL PNNL code.

  19. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  20. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  1. [Signal Processing Suite Design

    NASA Technical Reports Server (NTRS)

    Sahr, John D.; Mir, Hasan; Morabito, Andrew; Grossman, Matthew

    2003-01-01

    Our role in this project was to participate in the design of the signal processing suite to analyze plasma density measurements on board a small constellation (3 or 4) satellites in Low Earth Orbit. As we are new to space craft experiments, one of the challenges was to simply gain understanding of the quantity of data which would flow from the satellites, and possibly to interact with the design teams in generating optimal sampling patterns. For example, as the fleet of satellites were intended to fly through the same volume of space (displaced slightly in time and space), the bulk plasma structure should be common among the spacecraft. Therefore, an optimal, limited bandwidth data downlink would take advantage of this commonality. Also, motivated by techniques in ionospheric radar, we hoped to investigate the possibility of employing aperiodic sampling in order to gain access to a wider spatial spectrum without suffering aliasing in k-space.

  2. Clementine sensor suite

    SciTech Connect

    Ledebuhr, A.G.

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  3. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  4. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  5. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  6. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  7. Variable Vector Countermeasure Suit (V2Suit) for Space Exploration

    NASA Astrophysics Data System (ADS)

    Duda, K. R.; Newman, D. J.

    The “ Variable Vector Countermeasure Suit (V2Suit) for Space Exploration” is an integrated countermeasure platform to mitigate the spaceflight-induced physiologic adaptation and de-conditioning that manifests during long-duration spaceflight and gravitational transitions. The V2Suit integrates flywheel gyroscopes and inertial measurement units within a wearable module that can be placed on the body segments, and when commanded in a coordinated manner provides a “ viscous resistance” during movements. The system architecture, human-system integration, and three six degree-of-freedom simulations are presented which describe the magnitude and direction of the gyroscopic torque and resulting force within the module during representative arm movements. The results demonstrate of the ability of the V2Suit module design to generate a reaction force along a specified direction and reject perturbations due to body kinematics - collectively illustrating the feasibility of the concept.

  8. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  9. Orion ECLSS/Suit System Intermediate Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2014-01-01

    The Intermediate Pressure Integrated Suit Test (IPIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. This test was performed in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center by the Crew and Thermal Systems Division. This testing is the second phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. The IPIST configuration consisted of development hardware that included the CAMRAS, air revitalization loop fan and suit loop regulator. Two test subjects were in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2014, will utilize the same hardware with human test subjects in pressure suits at vacuum. This paper will discuss the results and findings of IPIST and will also discuss future testing.

  10. The Dichotomous HED Meteorite Suite

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2004-01-01

    The howardite, eucrite and diogenite (HED) clan is the largest suite of crustal rocks available from a differentiated asteroid. Attempts to unravel the petrogenetic history of the HED parent body have tacitly assumed that the suite is representative of the crust, and thus can be used to understand the differentiation history of the entire parent body. This assumption is a holdover from a time when we knew little about the HED parent body. Much has changed. Is this assumption still valid? HED Geochemistry: The HED suite is composed

  11. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  12. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  13. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Vassallo, Andrew; Lewis, John F.; Campbell, Melissa

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multipule suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development and integrated testing of the suit loop regulator for Orion.

  14. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Lewis, John F.; Campbell, Melissa

    2012-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multiple suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development of the suit loop regulator for Orion.

  15. Development of Power Assisting Suit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  16. Space Suit (Mobil Biological Isolation)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A Houston five-year-old known as David is getting a "space suit," a vitally important gift that will give him mobility he has never known. David suffers from a rare malady called severe combined immune deficiency, which means that be was born without natural body defenses against disease; germs that would have little or no effect on most people could cause his death. As a result, he has spent his entire life in germ-free isolation rooms, one at Houston's Texas Children's hospital, another at his home. The "space suit" David is getting will allow him to spend four hours ata a time in a mobile sterile environment outside his isolation rooms. Built by NASA's Johnson Space Center, it is a specially-designed by product of Space Suit technology known as the mobile biological isolation system.

  17. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  18. Combinatorial Generation of Test Suites

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Barrett, Anthony C.

    2009-01-01

    Testgen is a computer program that generates suites of input and configuration vectors for testing other software or software/hardware systems. As systems become ever more complex, often, there is not enough time to test systems against all possible combinations of inputs and configurations, so test engineers need to be selective in formulating test plans. Testgen helps to satisfy this need: In response to a test-suite-requirement-specification model, it generates a minimal set of test vectors that satisfies all the requirements.

  19. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  20. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  1. Suited Contingency Ops Food - 2

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  2. Trends in Personal Injury Suits.

    ERIC Educational Resources Information Center

    van der Smissen, Betty

    1985-01-01

    Professional competence becomes more important as personal injury suits against recreation enterprises and parks focus increasingly on the professional responsible for facility safety. All professionals should be aware of and educated in risk management. Trends in liability awards and providers' legal responsibilities in various situations are…

  3. Astronaut space suit communication antenna

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F., III; Nason, G. H.

    1968-01-01

    Astronaut space suit communication antenna consists of a spring steel monopole in a blade-type configuration. This antenna is mounted in a copper cup filled with a potting compound that is recessed in the center to facilitate bending the blade flat for stowing when not in use.

  4. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (ESTSC)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  5. Spinoff From a Moon Suit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Al Gross transferred expertise obtained as an ILC engineer for NASA's Apollo program to the manufacture of athletic shoes. Gross substituted DuPont's Hytrel plastic for foam materials in the shoe's midsole, eliminating cushioning loss caused by body weight. An external pressurized shell applied from space suit technology was incorporated into the shoe. Stiffness and cushioning properties of the midsole were "tuned" by varying material thickness and styling lines. A stress free "blow molding" process adapted from NASA space suit design was also utilized. The resulting compression chamber midsole performed well in tests. It allows AVIA to re-configure for specific sports and is a "first step" toward a durable, foamless, non-fatiguing midsole.

  6. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  7. Emergency space-suit helmet

    NASA Technical Reports Server (NTRS)

    Smith, H. A. (Inventor)

    1970-01-01

    A frusto-conically shaped distensible component is described which inflates to encircle a portion of the wearer's head and carries a collapsible member which automatically extends over the remaining portion of the head. A pulley arrangement secured between the walls of the distensible component automatically extends and retracts the collapsible member. When deflated, the unit is carried on the back of the wearer so as to provide an automatic emergency space suit helmet.

  8. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (ESTSC)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  9. Mojo Application Monitoring Tool Suite

    SciTech Connect

    Ballance, Robert

    2009-12-11

    Mojo is a software tool suite that can be used to monitor the progress of compute jobs on Linux Clusters and other high-performance computing platforms.Mojo is designed to allow system administrators to monitor the health and progress of computing jobs, and to allow users to view the progress and status of their own jobs. The facilities provided include the ability to notify users of job “hangs”, and to take an automated action (e.g killing the job) when something goes wrong. These operations can lead to a more efficient use of scarce resources.

  10. EV space suit gloves (passive)

    NASA Technical Reports Server (NTRS)

    Fletcher, E. G.; Dodson, J. D.; Elkins, W.; Tickner, E. G.

    1975-01-01

    A pair of pressure and thermal insulating overgloves to be used with an Extravehicular (EV) suit assembly was designed, developed, fabricated, and tested. The design features extensive use of Nomex felt materials in lieu of the multiple layer insulation formerly used with the Apollo thermal glove. The glove theoretically satisfies all of the thermal requirements. The presence of the thermal glove does not degrade pressure glove tactility by more than the acceptable 10% value. On the other hand, the thermal glove generally degrades pressure glove mobility by more than the acceptable 10% value, primarily in the area of the fingers. Life cycling tests were completed with minimal problems. The thermal glove/pressure glove ensemble was also tested for comfort; the test subjects found no problems with the thermal glove although they did report difficulties with pressure points on the pressure glove which were independent of the thermal glove.

  11. Mojo Application Monitoring Tool Suite

    Energy Science and Technology Software Center (ESTSC)

    2009-12-11

    Mojo is a software tool suite that can be used to monitor the progress of compute jobs on Linux Clusters and other high-performance computing platforms.Mojo is designed to allow system administrators to monitor the health and progress of computing jobs, and to allow users to view the progress and status of their own jobs. The facilities provided include the ability to notify users of job “hangs”, and to take an automated action (e.g killing themore » job) when something goes wrong. These operations can lead to a more efficient use of scarce resources.« less

  12. Underwater space suit pressure control regulator

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Cooper, C. R.; Rasquin, J. R. (Inventor)

    1973-01-01

    A device is reported for regulating the pneumatic pressure in a ventilated space suit relative to the pressure imposed on the suit when being worn by a person underwater to simulate space environment for testing and experimentation. A box unit located on the chest area of the suit comprises connections for suit air supply and return lines and carries a regulator valve that stabilizes the air pressure differential between the inside and outside of the suit. The valve and suit pressure is controlled by the suit occupant and the valve includes a mechanism for quickly dumping the suit pressure in case of emergency. Pressure monitoring and relief devices are also included in the box unit.

  13. 46 CFR 199.273 - Immersion suits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits. 199.273 Section 199.273 Shipping COAST... SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Cargo Vessels § 199.273 Immersion suits. (a) Each cargo vessel must carry an immersion suit approved under approval series 160.171 of...

  14. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  15. Identifying Initial Suit-Body Contact

    NASA Technical Reports Server (NTRS)

    Bernal, Yaritza

    2016-01-01

    Extravehicular Activity EVA suits like the Extravehicular Mobility Unit EMU are the key component used by the crew to perform EVA operations. The crew is trained extensively in the EMU to be able to perform their EVA's effectively. This extensive training can cause problems and even lead to injury if any abnormal forces are used. In the case of a bad design, if the humans movement exceeds the suits design parameters it can result in unusual wear and tear of the suit components, or may result in failed tasks when the human is not able to perform a task the necessary way. This study is intended to quantify suit-body contact and suited range of upper extremity motions while wearing a pressurized EMU suit as compared to their unsuited trials. This study also compares the effect in mobility of the suited subject in free standing versus constrained standing for upper extremity movements.

  16. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  17. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  18. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  19. 46 CFR 169.551 - Exposure suits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Exposure suits. 169.551 Section 169.551 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.551 Exposure suits. (a) This section applies to each vessel operating in exposed...

  20. 46 CFR 169.551 - Exposure suits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Exposure suits. 169.551 Section 169.551 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.551 Exposure suits. (a) This section applies to each vessel operating in exposed...

  1. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Private suits. 36.501 Section 36.501... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... the civil action without the payment of fees, costs, or security. Nothing in this section...

  2. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Private suits. 36.501 Section 36.501... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... the civil action without the payment of fees, costs, or security. Nothing in this section...

  3. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Private suits. 36.501 Section 36.501... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... the civil action without the payment of fees, costs, or security. Nothing in this section...

  4. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Private suits. 36.501 Section 36.501... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... the civil action without the payment of fees, costs, or security. Nothing in this section...

  5. 28 CFR 36.501 - Private suits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Private suits. 36.501 Section 36.501... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... the civil action without the payment of fees, costs, or security. Nothing in this section...

  6. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  7. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  8. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  9. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  10. Complexity of Sizing for Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    The `fit? of a garment is often considered to be a subjective measure of garment quality. However, some experts attest that a complaint of poor garment fit is a symptom of inadequate or excessive ease, the space between the garment and the wearer. Fit has traditionally been hard to quantify, and space suits are an extreme example, where fit is difficult to measure but crucial for safety and operability. A proper space suit fit is particularly challenging because of NASA?s need to fit an incredibly diverse population (males and females from the 1st to 99th percentile) while developing a minimum number of space suit sizes. Because so few sizes are available, the available space suits must be optimized so that each fits a large segment of the population without compromising the fit of any one wearer.

  11. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  12. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  13. Suites of dwarfs around Nearby giant galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I. E-mail: kei@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. All suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the

  14. Suites of Dwarfs around nearby Giant Galaxies

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ~1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ1, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ1. All suite members with positive Θ1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ~ n -2. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at MB = -18m. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not quite seem to be a typical

  15. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  16. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  17. Effects of Varying Surface Inclines and Suit Pressure: Implications on Space Suit Design

    NASA Technical Reports Server (NTRS)

    Clowers, Kurt; Clark, Timothy; Harvill, Lauren; Morency, Richard; Rajulu, Sudhakar

    2008-01-01

    Suited human performance studies in reduced gravity environments to date include limited observations from Apollo Lunar surface Extravehicular Activities (EVA) and from previous studies conducted in partial gravity simulation environments. The Constellation Program EVA Systems Project office has initiated tests to develop design requirements for the next generation Lunar EVA suit. Theses studies were conducted in the Space Vehicle Mock-Up Facility (SVMF) at Johnson Space Center from which the results provided recommendations for suit weight, mass, center of gravity, pressure, and suit kinematic constraints that optimize human performance in partial gravity environments.

  18. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  19. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  20. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  1. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  2. STS-86 Mission Specialist Chretien suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist Jean-Loup J.M. Chretien of the French Space Agency, CNES, gets assistance from a suit technician in adjusting his launch and entry suit in the Operations and Checkout Building. This will be Chretiens third spaceflight, but his first on the Space Shuttle. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Shuttle with the Russian Space Station Mir.

  3. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  4. STS-76 Pilot Richard Searfoss suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Pilot Richard A. Searfoss checks the fit of his launch/entry suit gloves with assistance from a suit technician in the Operations and Checkout Building. STS-76 will be Searfoss' second trip into space and will be highlighted by the third docking between the Russian Space Station Mir and the U.S. Space Shuttle. Once suitup activities are completed the six-member STS- 76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  5. Terrestrial EVA Suit = Fire Fighter's Protective Clothing

    NASA Technical Reports Server (NTRS)

    Foley, Tico; Brown, Robert G.; Burrell, Eddie; DelRosso, Dominic; Krishen, Kumar; Moffitt, Harold; Orndoff, Evelyne; Santos, Beatrice; Butzer, Melissa; Dasgupta, Rajib

    1999-01-01

    Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.

  6. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  7. Antigravity Suits For Studies Of Weightlessness

    NASA Technical Reports Server (NTRS)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  8. What's New with MS Office Suites

    ERIC Educational Resources Information Center

    Goldsborough, Reid

    2012-01-01

    If one buys a new PC, laptop, or netbook computer today, it probably comes preloaded with Microsoft Office 2010 Starter Edition. This is a significantly limited, advertising-laden version of Microsoft's suite of productivity programs, Microsoft Office. This continues the trend of PC makers providing ever more crippled versions of Microsoft's…

  9. Cave biosignature suites: microbes, minerals, and Mars.

    PubMed

    Boston, P J; Spilde, M N; Northup, D E; Melim, L A; Soroka, D S; Kleina, L G; Lavoie, K H; Hose, L D; Mallory, L M; Dahm, C N; Crossey, L J; Schelble, R T

    2001-01-01

    Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms. PMID:12448994

  10. The One in the Purple Suit.

    ERIC Educational Resources Information Center

    Sargeant, Hope

    2003-01-01

    In this article, a parent of a gifted child muses on the challenges of raising her daughter, coping with her daughter's frustrations, her decision to stay home, and her brief envy of a doppelganger, a professional in a purple suit. (CR)

  11. Introduction to the HPC Challenge Benchmark Suite

    SciTech Connect

    Luszczek, Piotr; Dongarra, Jack J.; Koester, David; Rabenseifner,Rolf; Lucas, Bob; Kepner, Jeremy; McCalpin, John; Bailey, David; Takahashi, Daisuke

    2005-04-25

    The HPC Challenge benchmark suite has been released by the DARPA HPCS program to help define the performance boundaries of future Petascale computing systems. HPC Challenge is a suite of tests that examine the performance of HPC architectures using kernels with memory access patterns more challenging than those of the High Performance Linpack (HPL) benchmark used in the Top500 list. Thus, the suite is designed to augment the Top500 list, providing benchmarks that bound the performance of many real applications as a function of memory access characteristics e.g., spatial and temporal locality, and providing a framework for including additional tests. In particular, the suite is composed of several well known computational kernels (STREAM, HPL, matrix multiply--DGEMM, parallel matrix transpose--PTRANS, FFT, RandomAccess, and bandwidth/latency tests--b{sub eff}) that attempt to span high and low spatial and temporal locality space. By design, the HPC Challenge tests are scalable with the size of data sets being a function of the largest HPL matrix for the tested system.

  12. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  13. Enhancements to the opera-3d suite

    NASA Astrophysics Data System (ADS)

    Riley, Christopher P.

    1997-02-01

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules—a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers.

  14. XTCE GOVSAT Tool Suite 1.0

    NASA Technical Reports Server (NTRS)

    Rice, J. Kevin

    2013-01-01

    The XTCE GOVSAT software suite contains three tools: validation, search, and reporting. The Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) GOVSAT Tool Suite is written in Java for manipulating XTCE XML files. XTCE is a Consultative Committee for Space Data Systems (CCSDS) and Object Management Group (OMG) specification for describing the format and information in telemetry and command packet streams. These descriptions are files that are used to configure real-time telemetry and command systems for mission operations. XTCE s purpose is to exchange database information between different systems. XTCE GOVSAT consists of rules for narrowing the use of XTCE for missions. The Validation Tool is used to syntax check GOVSAT XML files. The Search Tool is used to search (i.e. command and telemetry mnemonics) the GOVSAT XML files and view the results. Finally, the Reporting Tool is used to create command and telemetry reports. These reports can be displayed or printed for use by the operations team.

  15. [Aspects of communication regarding medical malpractice suits].

    PubMed

    Pilling, János; Erdélyi, Kamilla

    2016-04-24

    Due to problems experienced in health care, there is an increased amount of malpractice suits nowadays. Nevertheless, some physicians are more likely to be sued, or more frequently sued, than others. Numerous studies indicate that this phenomenon fundamentally results from a lack of interpersonal and communication skills on the part of the sued doctor, namely, deficiencies in questioning the patient, listening, conveying information, etc. Communication is of pivotal importance in patient care vis-à-vis medical errors as well. The majority of physicians aim to conceal the error, albeit this may lead to further deterioration of the patient's condition. In institutions where open communication regarding errors was introduced within the medical team and toward the patient and their family alike, the number of malpractice suits decreased. It is crucial to establish a means of support for doctors, and to promote communication trainings, as well as a supportive legal environment. PMID:27084438

  16. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  17. The keys to the executive suite.

    PubMed

    Lindstrom, C C; Tracy, T

    2001-01-01

    How does a person who wants to move into an executive role prepare him or herself to successfully transition into the executive suite? Personal and behavioral traits are the basic foundations. These include the ability to work with diverse groups of people, willingness to listen and appreciate ideas and views different from your own, respect for others, personal courage, and a sense of balance and perspective. Exposure to effective learning experiences, such as work on organizational projects and participation on teams, enhances the needed skill base. Establishing a relationship with the right mentor is the next step. Knowing when to change organizations as part of career growth is the last key to the executive suite, since it often happens that promotions come from outside your current organization. PMID:18193599

  18. The BTeV Software Tutorial Suite

    SciTech Connect

    Robert K. Kutschke

    2004-02-20

    The BTeV Collaboration is starting to develop its C++ based offline software suite, an integral part of which is a series of tutorials. These tutorials are targeted at a diverse audience, including new graduate students, experienced physicists with little or no C++ experience, those with just enough C++ to be dangerous, and experts who need only an overview of the available tools. The tutorials must both teach C++ in general and the BTeV specific tools in particular. Finally, they must teach physicists how to find and use the detailed documentation. This report will review the status of the BTeV experiment, give an overview of the plans for and the state of the software and will then describe the plans for the tutorial suite.

  19. The LLNL MPI_Tool Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-10-25

    MPI_T is an interface for tools introduced in the 3.0 version of MPI. The interface provides mechanisms for tools to access and set performance and control variables that are exposed by an MPI implementation. We have developed an MPI_T tool suite to provide a first set of tools exploiting the new interface and to get tool writers started on the path to more sophisticated support.

  20. An MBSE Approach to Space Suit Development

    NASA Technical Reports Server (NTRS)

    Cordova, Lauren; Kovich, Christine; Sargusingh, Miriam

    2012-01-01

    The EVA/Space Suit Development Office (ESSD) Systems Engineering and Integration (SE&I) team has utilized MBSE in multiple programs. After developing operational and architectural models, the MBSE framework was expanded to link the requirements space to the system models through functional analysis and interfaces definitions. By documenting all the connections within the technical baseline, ESSD experienced significant efficiency improvements in analysis and identification of change impacts. One of the biggest challenges presented to the MBSE structure was a program transition and restructuring effort, which was completed successfully in 4 months culminating in the approval of a new EVA Technical Baseline. During this time three requirements sets spanning multiple DRMs were streamlined into one NASA-owned Systems Requirement Document (SRD) that successfully identified requirements relevant to the current hardware development effort while remaining extensible to support future hardware developments. A capability-based hierarchy was established to provide a more flexible framework for future space suit development that can support multiple programs with minimal rework of basic EVA/Space Suit requirements. This MBSE approach was most recently applied for generation of an EMU Demonstrator technical baseline being developed for an ISS DTO. The relatively quick turnaround of operational concepts, architecture definition, and requirements for this new suit development has allowed us to test and evolve the MBSE process and framework in an extremely different setting while still offering extensibility and traceability throughout ESSD projects. The ESSD MBSE framework continues to be evolved in order to support integration of all products associated with the SE&I engine.

  1. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  2. Advanced Space Suit Insulation Feasibility Study

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Orndoff, Evelyne S.

    2000-01-01

    For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications

  3. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting. PMID:18018432

  4. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Izenson, Mike; Chen, Weibo

    2008-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at low pressures that simulate a PLSS environment. We obtained head/flow performance curves over a range of operating speeds, identified the maximum efficiency point for the blower, and used these results to specify the design and operating conditions for the ventilation fan. We designed a compact motor that can drive the blower under all anticipated operating requirements and operate with high efficiency during normal operation. We identified materials for the blower that will enhance safety for operation in a lunar environment. We produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSS ventilation subsystem while running at 5400 rpm and consuming only 9 W of electric power and using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power blower can meet the performance requirements for future PLSSs.

  5. Developing consultant care on delivery suite.

    PubMed

    Hackett, M

    1998-01-01

    The need to develop a consultant presence on the delivery suite has never been greater given the emerging quality agenda that is occurring within the speciality. This is identifying a clear impetus for changing consultant practice and also meeting the needs of women more effectively. The article describes these trends, the impetus for change and identifies practically how such a change was achieved within the largest women's hospital in the UK. It defines the basis for building a vision for an improved future and the practical use of management and transformational leadership skills to change consultant behaviour and attitudes with a clear set of outcomes that were achieved. PMID:10346330

  6. DASCAR sensor suite and video data system

    NASA Astrophysics Data System (ADS)

    Carter, Richard J.; Barickman, Frank S.; Goodman, Michael J.

    1997-02-01

    A research program oriented toward the development of a portable data acquisition system for crash avoidance research has been conducted. This paper discusses the background to the project and the requirements for the data acquisition system. It also provides a brief system overview and describes two of the system's five major elements, the sensor suite and the video data system, in detail. Components, functions, and specifications are covered. Finally the paper addresses the central data collection/analysis facility which was assembled to mange the sensor and video data, and presents the potential uses of the data acquisition system.

  7. DASCAR sensor suite and video data system

    SciTech Connect

    Carter, R.J.; Barickman, F.S.; Goodman, M.J.

    1996-12-31

    A research program oriented toward the development of a portable data acquisition system for crash avoidance research has been conducted. This paper discusses the background to the project and the requirements for the data acquisition system. it also provides a brief system overview and describes two of the system`s five major elements, the sensor suite and the video data system, in detail. Components, functions, and specifications are covered Finally the paper addresses the central data collection/analysis facility which was assembled to manage the sensor and video data, and presents the potential uses of the data acquisition system.

  8. Software suite for finite difference method models.

    PubMed

    Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J

    2006-01-01

    We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057

  9. Glenn Suits-Up for Launch

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr. dons his silver Mercury pressure suit in preparation for launch. On February 20, 1962 Glenn lifted off into space aboard his Mercury Atlas (MA-6) rocket and became the first American to orbit the Earth. After orbiting the Earth 3 times, Friendship 7 landed in the Atlantic Ocean 4 hours, 55 minutes and 23 seconds later, just East of Grand Turk Island in the Bahamas. Glenn and his capsule were recovered by the Navy Destroyer Noa, 21 minutes after splashdown.

  10. Data processing suite for GIFTS testing

    NASA Astrophysics Data System (ADS)

    Smuga-Otto, Maciej J.; Garcia, Raymond K.; Knuteson, Robert O.; Olson, Erik R.

    2005-08-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument is a hyperspectral sounder slated to undergo thermal vacuum testing within a year. The University of Wisconsin - Madison is authoring a software suite to answer the requirement of testing the conversion of raw interferogram images into calibrated high-resolution spectra. The software consists of algorithm components that assemble into a processing pipeline as well as a testing harness utilizing a lightweight scripting language. The processing requirements for an imaging FTS are considerable, and necessitate an understanding of maximum achievable accuracy as well as exploration of tradeoffs in the interest of processing efficiency. We present an overview of the design of this testing software.

  11. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  12. GenePattern flow cytometry suite

    PubMed Central

    2013-01-01

    Background Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased the amount of data generated by the technology and outpaced the development of data analysis approaches. While there are advanced tools available, including many R/BioConductor packages, these are only accessible programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible research. Results In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms for automated identification of cell populations, normalization and quality assessment. Internally, these modules leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be connected to build analytical pipelines. Conclusions GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily accessible from a web browser. PMID:23822732

  13. Breaking the Silos: The art Documentation Suite

    NASA Astrophysics Data System (ADS)

    Kutschke, Robert K.

    2015-12-01

    The art event-processing framework is used by almost all new experiments at Fermilab, and by several outside of Fermilab. All use art as an external product in the same sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team has embarked on a campaign to document art and develop training materials for new users. Many new users of art have little or no knowledge of C++, software engineering, build systems or the many external packages used by art or their experiments, such as ROOT, CLHEP, HEPPDT, and boost. To effectively teach art requires that the training materials include appropriate introductions to these topics as they are encountered. Experience has shown that simply referring readers to the existing native documentation does not work; too often a simple idea that they need to understand is described in a context that presumes prerequisites that are unimportant for a beginning user of art. There is the additional complication that the training materials must be presented in a way that does not presume knowledge of any of the experiments using art. Finally, new users of art arrive at random times throughout the year and the training materials must allow them to start to learn art at any time. This presentation will explain the strategies adopted by the art team to develop a documentation suite that complies with these boundary conditions. It will also show the present status of the documentation suite, including feedback the art team has received from pilot users.

  14. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; Tsang, Leung; Shams, Khawaja; Jaruwatanadilok, Sermsak; Oveisgharan, Shadi; Simard, Marc; Turk, Francis J.

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  15. Breaking the silos: The art documentation suite

    SciTech Connect

    Kutschke, Robert K.

    2015-12-23

    The art event-processing framework is used by almost all new experiments at Fermilab, and by several outside of Fermilab. All use art as an external product in the same sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team has embarked on a campaign to document art and develop training materials for new users. Many new users of art have little or no knowledge of C++, software engineering, build systems or the many external packages used by art or their experiments, such as ROOT, CLHEP, HEPPDT, and boost. To effectively teach art requires that the training materials include appropriate introductions to these topics as they are encountered. Experience has shown that simply referring readers to the existing native documentation does not work, too often a simple idea that they need to understand is described in a context that presumes prerequisites that are unimportant for a beginning user of art. There is the additional complication that the training materials must be presented in a way that does not presume knowledge of any of the experiments using art. Finally, new users of art arrive at random times throughout the year and the training materials must allow them to start to learn art at any time. This presentation will explain the strategies adopted by the art team to develop a documentation suite that complies with these boundary conditions. It will also show the present status of the documentation suite, including feedback the art team has received from pilot users.

  16. Astro-E's Mission Independent Scheduling Suite

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Saunders, A.; Hilton, P.

    The next generation of Mission Scheduling software will be cheaper, easier to customize for a mission, and faster than current planning systems. TAKO (``Timeline Assembler, Keyword Oriented'', or in Japanese, ``octopus'') is our in-progress suite of software that takes database input and produces mission timelines. Our approach uses openly available hardware, software, and compilers, and applies current scheduling and N-body methods to reduce the scope of the problem. A flexible set of keywords lets the user define mission-wide and individual target constraints, and alter them on-the-fly. Our goal is that TAKO will be easily adapted for many missions, and will be usable with a minimum of training. The especially pertinent deadline of Astro-E's launch motivates us to convert theory into software within 2 years. The design choices, methods for reducing the data and providing flexibility, and steps to get TAKO up and running for any mission are discussed.

  17. UniPOPS: Unified data reduction suite

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Garwood, Robert W.; Salter, Christopher J.; Stobie, Elizabeth B.; Cram, Thomas R.; Morgan, Lorrie; Vance, Bob; Hudson, Jerome

    2015-03-01

    UniPOPS, a suite of programs and utilities developed at the National Radio Astronomy Observatory (NRAO), reduced data from the observatory's single-dish telescopes: the Tucson 12-m, the Green Bank 140-ft, and archived data from the Green Bank 300-ft. The primary reduction programs, 'line' (for spectral-line reduction) and 'condar' (for continuum reduction), used the People-Oriented Parsing Service (POPS) as the command line interpreter. UniPOPS unified previous analysis packages and provided new capabilities; development of UniPOPS continued within the NRAO until 2004 when the 12-m was turned over to the Arizona Radio Observatory (ARO). The submitted code is version 3.5 from 2004, the last supported by the NRAO.

  18. Specification for the VERA Depletion Benchmark Suite

    SciTech Connect

    Kim, Kang Seog

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  19. STS-81 Commander Mike Baker suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Commander Michael A. Baker is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Baker is on his fourth space flight and will have responsibility for the 10-day mission, including the intricate docking and undocking maneuvers with the Russian Mir space station. He will also be in charge of two in-flight Risk Mitigation experiments and be the subject of a Human Life Sciences experiment. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  20. STAYSL PNNL Suite of Software Tools.

    SciTech Connect

    GREENWOOD, LARRY R.

    2013-07-19

    Version: 00 The STAYSL PNNL software suite provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations.

  1. A small evaluation suite for Ada compilers

    NASA Technical Reports Server (NTRS)

    Wilke, Randy; Roy, Daniel M.

    1986-01-01

    After completing a small Ada pilot project (OCC simulator) for the Multi Satellite Operations Control Center (MSOCC) at Goddard last year, the use of Ada to develop OCCs was recommended. To help MSOCC transition toward Ada, a suite of about 100 evaluation programs was developed which can be used to assess Ada compilers. These programs compare the overall quality of the compilation system, compare the relative efficiencies of the compilers and the environments in which they work, and compare the size and execution speed of generated machine code. Another goal of the benchmark software was to provide MSOCC system developers with rough timing estimates for the purpose of predicting performance of future systems written in Ada.

  2. STAYSL PNNL Suite of Software Tools.

    Energy Science and Technology Software Center (ESTSC)

    2013-07-19

    Version: 00 The STAYSL PNNL software suite provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist ofmore » the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations.« less

  3. Probation officers immune in wrongful transmission suit.

    PubMed

    1998-05-01

    A woman who contracted HIV from a parolee cannot hold his probation officers liable for failing to warn her. [Name removed], who had a previous sexual relationship with [name removed], said she would not have had sex with him on his release from prison had she known he was HIV-positive, and blames the Iowa probation officers for withholding the information. [Name removed] died in 1993, and [name removed] died while the suit was pending. Judge Rodney Webb found that the officers were entitled to qualified immunity. At the time of her infection, [name removed]'s estate claims, the officers put her in a position of danger, violating her due process according to the State-created danger theory. However, the theory was just being developed, and the judge found it just as likely that an official would have thought disclosing [name removed]' HIV status to [name removed] violated [name removed]' privacy rights. PMID:11365323

  4. Docking Fixture and Mechanism for a Protective Suit

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip, Jr.

    2003-01-01

    A suitlock assembly that comprises a docking fixture and mechanism has been invented to facilitate and accelerate donning and doffing of a sealed protective suit and/or to enable ingress and egress between the protective suit and a sealed vessel. The sealed protective suit could be a space suit, in which case the sealed vessel could be a spacecraft. Alternatively, the sealed suit could be an environmental protective suit of a type worn on Earth during cleanup of a hazardous-material site, in which case the sealed vessel could be a vehicle equipped to maintain a safe interior environment for workers in transit to and from the site. Figure 1 depicts a typical situation in which several crewmembers are working inside such a vehicle, one is working outside in a protective suit, and one is donning or doffing a protective suit while holding onto an overhead bar for support.

  5. Astronaut Scott Carpenter and technician Joe Schmidt during suiting exercise

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Mercury Astronaut M. Scott Carpenter, prime pilot for the Mercury-Atlas 7 flight, and Crew Equipment Specialist Joe Schmidt are before a suiting exercise. Schmidt is seen checking the gloves on the Carpenter's pressure suit.

  6. Breaking the silos: The art documentation suite

    DOE PAGESBeta

    Kutschke, Robert K.

    2015-12-23

    The art event-processing framework is used by almost all new experiments at Fermilab, and by several outside of Fermilab. All use art as an external product in the same sense that the compiler, ROOT, Geant4, CLHEP and boost are external products. The art team has embarked on a campaign to document art and develop training materials for new users. Many new users of art have little or no knowledge of C++, software engineering, build systems or the many external packages used by art or their experiments, such as ROOT, CLHEP, HEPPDT, and boost. To effectively teach art requires that themore » training materials include appropriate introductions to these topics as they are encountered. Experience has shown that simply referring readers to the existing native documentation does not work, too often a simple idea that they need to understand is described in a context that presumes prerequisites that are unimportant for a beginning user of art. There is the additional complication that the training materials must be presented in a way that does not presume knowledge of any of the experiments using art. Finally, new users of art arrive at random times throughout the year and the training materials must allow them to start to learn art at any time. This presentation will explain the strategies adopted by the art team to develop a documentation suite that complies with these boundary conditions. It will also show the present status of the documentation suite, including feedback the art team has received from pilot users.« less

  7. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  8. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of a type approved under 46 CFR 160.171. (d) Each exposure suit must have a personal flotation device light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder area of the exposure suit. (e) Each exposure suit on a MODU must be provided with a whistle of the...

  9. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of a type approved under 46 CFR 160.171. (d) Each exposure suit must have a personal flotation device light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder area of the exposure suit. (e) Each exposure suit on a MODU must be provided with a whistle of the...

  10. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of a type approved under 46 CFR 160.171. (d) Each exposure suit must have a personal flotation device light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder area of the exposure suit. (e) Each exposure suit on a MODU must be provided with a whistle of the...

  11. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of a type approved under 46 CFR 160.171. (d) Each exposure suit must have a personal flotation device light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder area of the exposure suit. (e) Each exposure suit on a MODU must be provided with a whistle of the...

  12. 28 CFR 15.4 - Removal and defense of suits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Removal and defense of suits. 15.4 Section 15.4 Judicial Administration DEPARTMENT OF JUSTICE CERTIFICATION AND DECERTIFICATION IN CONNECTION WITH CERTAIN SUITS BASED UPON ACTS OR OMISSIONS OF FEDERAL EMPLOYEES AND OTHER PERSONS § 15.4 Removal and defense of suits. (a) The United...

  13. Automated structure solution with the PHENIX suite

    SciTech Connect

    Terwilliger, Thomas C; Zwart, Peter H; Afonine, Pavel V; Grosse - Kunstleve, Ralf W

    2008-01-01

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  14. Automated Structure Solution with the PHENIX Suite

    SciTech Connect

    Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R.; McCoy, A.J.; McKee, Eric; Moriarty, Nigel; Read, Randy J.; Sacchettini, James C.; Sauter, Nicholas K.; Storoni, L.C.; Terwilliger, Tomas C.; Adams, Paul D.

    2008-06-09

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  15. The lunar highland melt-rock suite

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1978-01-01

    Size can be used as a criterion to select 18 large (larger than 1 cm) samples from among 148 melt-rock fragments of all sizes. This selection provides a suite of large samples which represent the important chemical variants among highland melt rocks; each large sample has enough material for a number of sample-destructive studies, as well as for future reference. Cluster analysis of the total data base of 148 highland melt rocks shows six distinct groups: anorthosite, gabbroic anorthosite, anorthositic gabbro ('highland basalt'), low K Fra Mauro, intermediate-K Fra Mauro, and high-K. Large samples are available for four of the melt-rock groups (gabbroic anorthosite, anorthositic gabbro, low-K Fra Mauro, and intermediate-K Fra Mauro). This sample selection reveals two subgroups of anorthositic gabbro (one anorthite-poor with negative Eu anomaly and one anorthite-rich without Eu anomaly). There is a sharp distinction between those Apollo 16 melt rocks and glasses which have both been classified as 'gabbroic anorthosite'.

  16. Engineering Software Suite Validates System Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  17. The Space Environment Sensor Suite for NPOESS

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Eastman, K. W.; Eraker, J. H.; Belue, J.; Citrone, P.; Bloom, J. D.; Christensen, T. E.; Talmadge, S.; Ubhayakar, S. K.; Denig, W. F.

    2005-12-01

    The Space Environment Sensor Suite (SESS) is a set of instruments of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that takes measurements to produce space environment data products. The SESS includes a complement of instruments that provide in-situ data on particles, fields, aurora, and the ionosphere. The SESS team consists of the NPOESS Integrated Program Office (IPO), Northrop Grumman Space Technology (NGST) -- the prime contractor for NPOESS, Ball Aerospace & Technologies Corp. (BATC) -- lead systems integrator for SESS, key instrument/algorithm suppliers, and the science community advisors who represent the future users of SESS data products. This team has developed a baseline design and constellation that address the NPOESS requirements for the SESS-specific in-situ Environmental Data Records (EDRs). These EDRs are allocated to a Thermal Plasma Sensor (TPS), a Low Energy Particle Sensor (LEPS), a Medium Energy Particle Sensor (MEPS), and a High Energy Particle Sensor (HEPS) that are distributed on the multi-orbit NPOESS system architecture to satisfy the user community's performance and coverage needs. This paper will present details on the SESS sensors, the architecture and its expected performance.

  18. The Inelastic Instrument suite at the SNS

    SciTech Connect

    Granroth, Garrett E; Abernathy, Douglas L; Ehlers, Georg; Hagen, Mark E; Herwig, Kenneth W; Mamontov, Eugene; Ohl, Michael E; Wildgruber, Christoph U

    2008-01-01

    Abstract The instruments in the extensive suite of spectrometers at the SNS are in various stages of installation and commissioning. The Back Scattering Spectrometer (BASIS) is installed and is in commissioning. It's near backscattering analyzer crystals provide the 3 eV resolution as expected. BASIS will enter the user program in the fall of 2007. The ARCS wide angular-range thermal to epithermal neutron spectrometer will come on line in the fall of 2007 followed shortly by the Cold Neutron Chopper Spectrometer. These two direct geometry instruments provide moderate resolution and the ability to trade resolution for flux. In addition both instruments have detector coverage out to 140o to provide a large Q range. The SEQUOIA spectrometer, complete in 2008, is the direct geometry instrument that will provide fine resolution in the thermal to epithermal range. The Spin-Echo spectrometer, to be completed on a similar time scale, will provide the finest energy resolution worldwide. The HYSPEC spectrometer, available no later than 2011, will provide polarized capabilities and optimized flux in the thermal energy range. Finally, the Vision chemical spectrometer will use crystal analyzers to study energy transfers into the epithermal range

  19. Teaching Physics: with the Physics Suite

    NASA Astrophysics Data System (ADS)

    Redish, Edward F.

    2003-01-01

    Acompanion guide to using the Physics Suite,Teaching Physicsis a book about learning to be a more effective physics teacher. It is meant for anyone who is interested inlearning about recent developments in physics education. It is not a review of specific topics in physics with hints for how to teach them and lists of common student difficulties. Rather, it is a handbook with a variety of tools for improving both teaching and learning of physics from new kinds of homework and exam problems, to surveys for figuring out what has happened in your class, to tools for taking and analyzing data using computers and video. Teaching Physics includes: an introduction to the cognitive model of thinking and learning that underlies modern physics education research principles and guidelines for making use of and understanding the implications of this cognitive model for the classroom a discussion of formative and summative evaluation with a variety of "thinking problems" useful for homework and exams a discussion of assessment of the success of instruction using research-based concept and attitude surveys discussion of 11 research-based curricular materials for use in lecture, lab, recitation, and workshops environments tips and guidelines for how to improve your instruction In addition, the book comes with a Resource CD containing 14 conceptual and 3 attitude surveys, more than 250 thinking problems covering all areas of introductory physics, resource materials from commercial vendors on use of computerized data acquisition and video, and a variety of other useful reference materials.

  20. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

    PubMed Central

    Duda, Kevin R.; Vasquez, Rebecca A.; Middleton, Akil J.; Hansberry, Mitchell L.; Newman, Dava J.; Jacobs, Shane E.; West, John J.

    2015-01-01

    The “Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration” is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a “viscous resistance” during movements against a specified direction of “down”—initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from “down” initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  1. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation. PMID:25914631

  2. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  3. A highly integrated payload suite for Europa

    NASA Astrophysics Data System (ADS)

    Bentley, M.; Kraft, S.; Steiger, R.; Varlet, F.; Voigt, D.; Falkner, P.; Peacock, A.

    The four Galilean moons have always held a public and scientific fascination due to their diverse and dynamic nature. Amongst the moons, Europa holds a special place for its potential liquid water ocean, beneath its icy crust. This prospect of water places Europa on a par with Mars in terms of its viability for harbouring life. The first hints of Europa's icy surface came from early telescopic observations, which noted an unusually high albedo. Ground based spectroscopy then demonstrated absorption features of relatively pure water ice. Imagery from Pioneer, Voyager, and more recently Galileo confirm this, with the kilometre scale resolution of Galileo showing what appear to be ice flows. The lack of cratering, pointing to a geologically recent surface, furthermore suggests that liquid water could well exist today. The Galileo Europa Mission (GEM) provided much more extensive data during its 8 close orbits, including limited areas of extremely high resolution imaging (6 m), and radio science that confirmed the differentiated nature of Europa. However, many fundamental questions remain that can best be answered by a dedicated orbiter. For example: - Does a liquid water ocean exist? What it its extent vertically and laterally? - What is the composition of the crust? - What are the geological processes operating? The importance of these most basic questions have inspired mission proposals from all of the major space agencies. In Europe, ESA have performed a study into a mission called the "Jupiter Minisat Explorer" in order to identify the key technologies that would have to be developed [1]. The key technological challenges are caused by the harsh Jovian radiation environment, the lack of solar energy available and the thermal problems of such a cold environment. Last, but not least, a payload must be designed that satisfies these requirements and is both low power and low mass. All of these factors dictate the use of a Highly Integrated Payload Suite (HIPS). Such a

  4. The ESA's Space Trajectory Analysis software suite

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  5. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  6. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  7. Measuring the integrity of totally encapsulating chemical protective suits

    SciTech Connect

    Johnson, J.S.; Stull, J.O.

    1987-01-01

    To date, there is one completed ASTM TECP suit test, ''Practice for Pressure Testing of Gas Tight Totally Encapsulating Chemical Protective Suits.'' The other three tests described in this article, a quantitative test, a worst-case chemical exposure test, and a chemical leak rate test are in various stages of development. When they are finished and available as ASTM standard test methods or practices, a complete and reproducible battery of tests can be completed on commercially available TECP suits. Results from these tests, along with information presently being generated using ASTM test methods for permeation and penetration, will provide the user with a sound technical data base. This will allow the user to effectively evaluate the performance of the TECP suits he purchases and uses. By using these, TECP suit tests and related data can assure a high degree of TECP suit reliability. 2 refs., 9 figs.

  8. Innovative technology summary report: Sealed-seam sack suits

    SciTech Connect

    1998-09-01

    Sealed-seam sack suits are an improved/innovative safety and industrial hygiene technology designed to protect workers from dermal exposure to contamination. Most of these disposable, synthetic-fabric suits are more protective than cotton suits, and are also water-resistant and gas permeable. Some fabrics provide a filter to aerosols, which is important to protection against contamination, while allowing air to pass, increasing comfort level of workers. It is easier to detect body-moisture breakthrough with the disposable suits than with cotton, which is also important to protecting workers from contamination. These suits present a safe and cost-effective (6% to 17% less expensive than the baseline) alternative to traditional protective clothing. This report covers the period from October 1996 to August 1997. During that time, sealed-seam sack suits were demonstrated during daily activities under normal working conditions at the C Reactor and under environmentally controlled conditions at the Los Alamos National Laboratory (LANL).

  9. CASS—CFEL-ASG software suite

    NASA Astrophysics Data System (ADS)

    Foucar, Lutz; Barty, Anton; Coppola, Nicola; Hartmann, Robert; Holl, Peter; Hoppe, Uwe; Kassemeyer, Stephan; Kimmel, Nils; Küpper, Jochen; Scholz, Mirko; Techert, Simone; White, Thomas A.; Strüder, Lothar; Ullrich, Joachim

    2012-10-01

    The Max Planck Advanced Study Group (ASG) at the Center for Free Electron Laser Science (CFEL) has created the CFEL-ASG Software Suite CASS to view, process and analyse multi-parameter experimental data acquired at Free Electron Lasers (FELs) using the CFEL-ASG Multi Purpose (CAMP) instrument Strüder et al. (2010) [6]. The software is based on a modular design so that it can be adjusted to accommodate the needs of all the various experiments that are conducted with the CAMP instrument. In fact, this allows the use of the software in all experiments where multiple detectors are involved. One of the key aspects of CASS is that it can be used either 'on-line', using a live data stream from the free-electron laser facility's data acquisition system to guide the experiment, and 'off-line', on data acquired from a previous experiment which has been saved to file. Program summary Program title: CASS Catalogue identifier: AEMP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence, version 3 No. of lines in distributed program, including test data, etc.: 167073 No. of bytes in distributed program, including test data, etc.: 1065056 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-64. Operating system: GNU/Linux (for information about restrictions see outlook). RAM: >8 GB Classification: 2.3, 3, 15, 16.4. External routines: Qt-Framework[1], SOAP[2], (optional HDF5[3], VIGRA[4], ROOT[5], QWT[6]) Nature of problem: Analysis and visualisation of scientific data acquired at Free-Electron-Lasers Solution method: Generalise data access and storage so that a variety of small programming pieces can be linked to form a complex analysis chain. Unusual features: Complex analysis chains can be built without recompiling the program Additional comments: An updated extensive documentation of CASS is available

  10. Immersion suit insulation: the effect of dampening on survival estimates.

    PubMed

    Light, I M; Avery, A; Grieve, A M

    1987-10-01

    Immersion suit leakage values were obtained from realistic testing of helicopter passenger immersion suits using eight subjects. Simulated helicopter underwater escape resulted in mean leakages of 198 +/- 103, 283 +/- 127, 203 +/- 179, and 45.7 +/- 31.6 g (mean +/- S.D.) when wearing four different immersion suits. Suit leakages obtained from a 20-min swim test to simulate vital in-water survival actions produced leakages of 213 +/- 224, 1398 +/- 691, 145 +/- 96.5, and 177 +/- 139 g (mean +/- S.D.). Dampening of undergarments during simulated helicopter travel at an elevated cabin temperature of 30 degrees C was 115 +/- 47.3 (mean +/- S.D.; n = 4) when wearing an impermeable suit and 19 +/- 16.7 g (mean +/- S.D.; n = 4) when wearing a vapour-permeable suit. The commensurate loss of insulation with the impermeable suit at the upper level of temperature could reduce clothing insulation by 17%. A reduction of less than 5% may result under similar conditions when wearing the permeable suit. The combined dampening effect of sweating, helicopter underwater escape, and performance of vital survival actions could result in a total dampening of 247-1712 g, depending on the type of suit worn. The respective loss of insulation would be 15% and 50% respectively. This could reduce, for the 10th percentile thin man, his survival time in water at 5 degrees C from 3.5 h to between 2.4 h and 1.1 h, respectively. PMID:3675468

  11. Suit Port Aft Bulkhead Mockup 2008 Test Results

    NASA Technical Reports Server (NTRS)

    Romig, Barbara A.; Allton, Charles S.; Litaker, Harry L.

    2009-01-01

    The Lunar Electric Rover (LER), formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the current Lunar Surface Architectures under consideration in the Constellation program. One element of the LER is the suit port, the means by which the crew performs Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: an aft bulkhead mockup for functional integrated testing with the 1-G LER mockup and a functional and pressurizable Engineering Unit (EU). This paper focuses on the aft bulkhead mockup test results from Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. Refer to 39th International Conference on Environmental Systems (ICES) for test results of the EU. The suit port aft bulkhead mockup was integrated with the mockup of the LER cabin and chassis. It is located on the aft bulkhead of the LER cabin structure and includes hatches, a locking mechanism, seals, interior and exterior suit don/doff aids, and exterior platforms to accommodate different crewmember heights. A lightweight mockup of the Mark III suit was tested with the suit port aft bulkhead mockup. There are several limitations to the suit port and mockup suits, and results of the suit port evaluation are presented and interpreted within the context of the limitations.

  12. Suit Port Aft Bulkhead Mockup Test Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Romig, Barbara A.; Allton, Charles

    2009-01-01

    The Small Pressurized Rover (SPR) is currently being carried as an integral part of the current Lunar Surface Architectures under consideration in the Constellation program. One element of the SPR is the suit port, the means by which the crew performs Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: an aft bulkhead mockup for functional integrated testing with the 1-G SPR mockup and a functional and pressurizable engineering unit. This paper focuses on the test results and lessons learned on the aft bulkhead mockup. The suit port aft bulkhead mockup was integrated with the mockup of the SPR cabin and chassis. It is located on the aft bulkhead of the SPR cabin structure and includes hatches, a locking mechanism, seals, interior and exterior suit don/doff aids, and exterior platforms to accommodate different crewmember heights. A lightweight mockup of the Mark III suit was tested with the suit port aft bulkhead mockup. There are several limitations to the suit port and mockup suits, and results of the suit port evaluation are presented and interpreted within the context of the limitations.

  13. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  14. Morphing: A Novel Approach to Astronaut Suit Sizing

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah; Clowers, Kurt; Rajulu, Sudhakar

    2006-01-01

    The fitting of a spacesuit to an astronaut is an iterative process consisting of two parts. The first uses anthropometric data to provide an approximation of the suit components that will fit the astronaut. The second part is the subjective fitting, where small adjustments are made based on the astronaut s preference. By providing a better approximation of the correct suit components, the entire fit process time can be reduced significantly. The goals of this project are twofold: (1) To evaluate the effectiveness of the existing sizing algorithm for the Mark III Hybrid suit and (2) to determine what additional components are needed in order to provide adequate sizing for the existing astronaut population. A single subject was scanned using a 3D whole-body scanner (VITUS 3D) in the Mark III suit in eight different poses and four subjects in minimal clothing were also scanned in similar poses. The 3D external body scans of the suit and the subject are overlaid and visually aligned in a customized MATLAB program. The suit components were contracted or expanded linearly along the subjects limbs to match the subjects segmental lengths. Two independent measures were obtained from the morphing program on four subjects and compared with the existing sizing information. Two of the four subjects were in correspondence with the sizing algorithm and morphing results. The morphing outcome for a third subject, incompatible with the suit, suggested that an additional arm element at least 6 inches smaller than the existing smallest suit component would need to be acquired. The morphing result of the fourth subject, deemed incompatible with the suit using the sizing algorithm, indicated a different suit configuration which would be compatible. This configuration matched with the existing suit fit check data.

  15. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  16. 46 CFR 108.649 - Lifejackets, immersion suits, and lifebuoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and lifebuoys. 108.649... DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.649 Lifejackets, immersion... with the appropriate symbol from IMO Resolution A.760(18). (c) Each immersion suit or...

  17. Astronaut C. Gordon Fullerton in suit donning/doffing exercise

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut C. Gordon Fullerton, STS-3 pilot, takes part in a suit donning/doffing exercise aboard a KC-135 'zero-gravity' aircraft. Mission Specialist William F. Fisher, far left, holds a mirror to assist Fullerton with hose and cable linkups to his suit. Fullerton is wearing an extravehicular mobility unit (EMU) minus gloves and helmet.

  18. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  19. 32 CFR 750.12 - Claims: Action when suit filed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under the civil action provisions of the Federal Tort Claims Act, and there being no investigative... 32 National Defense 5 2011-07-01 2011-07-01 false Claims: Action when suit filed. 750.12 Section... REGULATIONS General Provisions for Claims § 750.12 Claims: Action when suit filed. (a) Action required of...

  20. 32 CFR 750.12 - Claims: Action when suit filed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under the civil action provisions of the Federal Tort Claims Act, and there being no investigative... 32 National Defense 5 2010-07-01 2010-07-01 false Claims: Action when suit filed. 750.12 Section... REGULATIONS General Provisions for Claims § 750.12 Claims: Action when suit filed. (a) Action required of...

  1. 28 CFR 15.4 - Removal and defense of suits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Removal and defense of suits. 15.4 Section 15.4 Judicial Administration DEPARTMENT OF JUSTICE CERTIFICATION AND DECERTIFICATION IN CONNECTION... and defense of suits. (a) The United States Attorney for the district where the civil action...

  2. 28 CFR 15.4 - Removal and defense of suits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Removal and defense of suits. 15.4 Section 15.4 Judicial Administration DEPARTMENT OF JUSTICE CERTIFICATION AND DECERTIFICATION IN CONNECTION... and defense of suits. (a) The United States Attorney for the district where the civil action...

  3. 28 CFR 15.4 - Removal and defense of suits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Removal and defense of suits. 15.4 Section 15.4 Judicial Administration DEPARTMENT OF JUSTICE CERTIFICATION AND DECERTIFICATION IN CONNECTION... and defense of suits. (a) The United States Attorney for the district where the civil action...

  4. 28 CFR 15.4 - Removal and defense of suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Removal and defense of suits. 15.4 Section 15.4 Judicial Administration DEPARTMENT OF JUSTICE CERTIFICATION AND DECERTIFICATION IN CONNECTION... and defense of suits. (a) The United States Attorney for the district where the civil action...

  5. A New Ablative Heat Shield Sensor Suite Project

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2014-01-01

    A new sensor suite is developed to measure performance of ablative thermal protection systems used in planetary entry vehicles for robotic and human exploration. The new sensor suite measures ablation of the thermal protection system under extreme heating encountered during planetary entry. The sensor technology is compatible with a variety of thermal protection materials, and is applicable over a wide range of entry conditions.

  6. 33 CFR 144.30-5 - Exposure suits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MODU is documented may be used in lieu of suits approved under 46 CFR 160.071, provided that they are... may be used in lieu of lights approved under 46 CFR 161.012. ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Exposure suits. 144.30-5...

  7. 33 CFR 144.30-5 - Exposure suits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MODU is documented may be used in lieu of suits approved under 46 CFR 160.071, provided that they are... may be used in lieu of lights approved under 46 CFR 161.012. ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Exposure suits. 144.30-5...

  8. 33 CFR 144.30-5 - Exposure suits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MODU is documented may be used in lieu of suits approved under 46 CFR 160.071, provided that they are... may be used in lieu of lights approved under 46 CFR 161.012. ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Exposure suits. 144.30-5...

  9. 33 CFR 144.30-5 - Exposure suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MODU is documented may be used in lieu of suits approved under 46 CFR 160.071, provided that they are... may be used in lieu of lights approved under 46 CFR 161.012. ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Exposure suits. 144.30-5...

  10. 33 CFR 144.30-5 - Exposure suits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MODU is documented may be used in lieu of suits approved under 46 CFR 160.071, provided that they are... may be used in lieu of lights approved under 46 CFR 161.012. ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Exposure suits. 144.30-5...

  11. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  12. Mark III Space Suit Mobility: A Reach Evaluation Case Study

    NASA Technical Reports Server (NTRS)

    Thaxton, Sherry S.; Abercromby, Andrew F. J.; Onady, Elizabeth A.; Rajulu, Sudhakar L.

    2007-01-01

    A preliminary assessment of the reach envelope and field of vision (FOV) for a subject wearing a Mark III space suit was requested for use in human-machine interface design of the Science Crew Operations and Utility Testbed (SCOUT) vehicle. The reach and view of two suited and unsuited subjects were evaluated while seated in the vehicle using 3-dimensional position data collected during a series of reaching motions. Data was interpolated and displayed in orthogonal views and cross-sections. Compared with unsuited conditions, medio-lateral reach was not strongly affected by the Mark III suit, whereas vertical and antero-posterior reach were inhibited by the suit. Lateral FOV was reduced by approximately 40 deg. in the suit. The techniques used in this case study may prove useful in human-machine interface design by providing a new means of developing and displaying reach envelopes.

  13. Shuttle Space Suit: Fabric/LCVG Model Validation. Chapter 8

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2003-01-01

    A detailed space suit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the space suit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of space suit shielding properties assumed the basic fabric layup (Thermal Micrometeoroid Garment, fabric restraints, and pressure envelope) and LCVG could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present space suit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and high-resolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the space suit s protection properties.

  14. Development of a thermal control coating for space suits

    NASA Technical Reports Server (NTRS)

    Squire, Bernadette; Webbon, Bruce

    1987-01-01

    Past space suits and the current Shuttle suit, which are constructed primarily from fabric, use the Integrated Thermal and Micrometeoroid Garment, which insulates the astronaut from his environment. The new generation of hard suits affords designers the opportunity to incorporate thermal control into the suit structure. Environmental influence on the suit temperature and heat flux can then be minimized with a high reflectance coating. Candidate coatings have been identified and ranked on the basis of thermophysical properties; wear, corrosion and atomic oxygen degradation resistance; and coating process and cost. Laboratory determination of properties, thermal cycling and wear resistance tests are underway to identify the optimum coating. A computer model is being developed to evaluate various environmental configurations. Preliminary results are presented here.

  15. Correction factors for assessing immersion suits under harsh conditions.

    PubMed

    Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael

    2016-03-01

    Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. PMID:26674408

  16. Virtual observatory publishing with DaCHS

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Neves, M. C.; Rothmaier, F.; Wambsganss, J.

    2014-11-01

    The Data Center Helper Suite DaCHS is an integrated publication package for building VO and Web services, supporting the entire workflow from ingestion to data mapping to service definition. It implements all major data discovery, data access, and registry protocols defined by the VO. DaCHS in this sense works as glue between data produced by the data providers and the standard protocols and formats defined by the VO. This paper discusses central elements of the design of the package and gives two case studies of how VO protocols are implemented using DaCHS' concepts.

  17. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  18. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  19. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  20. The physiology of spacecraft and space suit atmosphere selection

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    1991-01-01

    Factors which are considered in arriving at control values and control ranges of the parameters established for spacecraft and space suit environments include physiological, engineering, operational cost, and safety considerations. A number of physiological considerations are discussed, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness. The impact of these considerations on space craft and space suit atmosphere selection is considered. The past experience in controlling these parameters in the U.S. and Soviet spacecraft and space suits and the associated physical responses are also reviewed. Physiological factors currently under investigation are discussed, including decompression sickness.

  1. Enabling interoperability in Geoscience with GI-suite

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  2. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  3. 12. Interior, guest suite on the second floor. Plaster ceiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior, guest suite on the second floor. Plaster ceiling with stencilled border design, plaster molded cornice, and window frame detail. - Trenton House Hotel, 20-24 North Warren Street & 1-19 East Hanover Street, Trenton, Mercer County, NJ

  4. Astronaut John Glenn dons space suit during preflight operations

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John Glenn dons space suit during preflight operations at Cape Canaveral, February 20, 1962, the day he flew his Mercury-Atlas 6 spacecraft, Friendship 7, into orbital flight around the Earth.

  5. Fighting Back: What Redress Media have against Frivolous Libel Suits.

    ERIC Educational Resources Information Center

    Riley, Sam G.

    1982-01-01

    Concludes that while mechanisms exist to enable news media defendants to file countersuits in nuisance and trivial suits, recent cases in the medical field indicate that the likelihood of success is slight. (FL)

  6. 55. FLIGHT SUIT MESS (GALLEY) CENTERLINE LOOKING TO PORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. FLIGHT SUIT MESS (GALLEY) - CENTERLINE LOOKING TO PORT SHOWING REACH-REFRIGERATOR, GRIDDLE, COUNTER TOP, SINK AND DISH HOLDER. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  7. The thermal performance of partial coverage wet suits.

    PubMed

    Allan, J R; Elliott, D H; Hayes, P A

    1986-11-01

    A wet-suit worn external to normal clothing and covering the trunk and arms only has been assessed as a method for providing short-term immersion protection for helicopter passengers in offshore oil field operations. Manikin measurements of effective insulation in water give a mean figure of 0.54 togs for the areas covered by the suit and 0.09 togs for uncovered areas. These figures were used to obtain model predictions of survival time for 'thin' and 'average' men which suggest that the suit can give adequate protection for 1 h at 5 degrees C subject to care in fitting. Direct measurements of heat flux have demonstrated the presence of water flushing beneath the suit and the potentially serious loss of insulation that can result. PMID:3790024

  8. 115. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, RECEPTION AREA, DETAIL OF GRAINED RADIATOR CABINET - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  9. NASA Research Announcement for Space Suit Survivability Enhancement

    NASA Technical Reports Server (NTRS)

    Fredrickson, Thad H.; Ware, Joanne S.; Lin, John K.; Pastore, Christopher M.

    1998-01-01

    This report documents the research activities for space suit survivability material enhancements. Self-sealing mechanisms for the pressure envelope were addressed, as were improvements in materials for cut, puncture, and hypervelocity impact resistance.

  10. 130. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM 6156, OFFICE OF THE SECRETARY OF THE INTERIOR, BRONZE WALL CLOCK - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  11. 33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST SLIDING GLASS WALL THAT DIVIDES SOLARIUM FROM EXECUTIVE DINING ROOM - Philadelphia Saving Fund Society, Twelfth & Market Streets, Philadelphia, Philadelphia County, PA

  12. 19. View west, foreground, north facade of Forest East Suites, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View west, foreground, north facade of Forest East Suites, background north & east facades of Forest Hall. - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  13. Comparative study of Suits and SAIL canopy reflectance models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Verhoef, W.; Bunnik, N. J. J.

    1985-01-01

    A detailed understanding of the relationships between the canopy reflectance and the characteristics of canopy elements is an important factor for the full exploitation of the potential of remote sensing from aircraft and spacecraft altitudes to map vegetation and estimate key agronomic parameters such as the leaf area index (LAI) and biomass (BM). Suits (1972) idealized the canopy geometry by replacing each plant component with three orthogonal projections of that component. Verhoeff and Bunnik (1981) extended the Suits model, henceforth called the SAIL (Scattering from Arbitrarily Inclined Leaves) model, by removing certain constraints. The present investigation is concerned with an evaluation of the performance of the Suits and SAIL models, taking into account two data sets on soybean and corn. It was found that the tested models have significant deficiencies. However, the performance of the SAIL model is better than that of the Suits model because it provides a more realistic description of the canopy architecture.

  14. Potential techniques and development activities in diver suit heating

    NASA Technical Reports Server (NTRS)

    Shlosinger, A. P.

    1972-01-01

    A prototype compact reactor suitable for combustion of propane with oxygen under shallow as well as submerged deep submergence diving conditions is reported. The device is used to heat the circulating water in a water tube-type diving suit.

  15. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  16. 15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NBS TOP SIDE CONTROL ROOM. THE SUIT SYSTEMS CONSOLE IS USED TO CONTROL AIR FLOW AND WATER FLOW TO THE UNDERWATER SPACE SUIT DURING THE TEST. THE SUIT SYSTEMS ENGINEER MONITORS AIR FLOW ON THE PANEL TO THE LEFT, AND SUIT DATA ON THE COMPUTER MONITOR JUST SLIGHTLY TO HIS LEFT. WATER FLOW IS MONITORED ON THE PANEL JUST SLIGHTLY TO HIS RIGHT AND TEST VIDEO TO HIS FAR RIGHT. THE DECK CHIEF MONITORS THE DIVER'S DIVE TIMES ON THE COMPUTER IN THE UPPER RIGHT. THE DECK CHIEF LOGS THEM IN AS THEY ENTER THE WATER, AND LOGS THEM OUT AS THEY EXIT THE WATER. THE COMPUTER CALCULATES TOTAL DIVE TIME. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  17. 21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  18. Thermal modeling, analysis and control of a space suit

    NASA Astrophysics Data System (ADS)

    Campbell, Anthony Bruce

    The thermal dynamics of two space suits, the Space Shuttle EMU and the MPLSS Advanced Space Suit, are considered as they relate to astronaut thermal comfort control. The activities documented in this dissertation cover three related areas, modeling, analysis, and control. A detailed dynamic lumped capacitance thermal model of the operational Space Shuttle EMU is used to analyze the thermal dynamics of the system with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The thermal dynamics and design of an Advanced Space Suit are next considered. A transient model of the MPLSS Advanced Space Suit design is developed and implemented using MATLAB/Simulink, to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space Suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed. The observations and insights about the thermal dynamics of a space suit are then applied to the automatic thermal comfort control of the MPLSS Advanced Space Suit. Automatic thermal comfort control for the Advanced Space Suit is investigated using three proposed strategies. These strategies use a transient thermal comfort definition based on body heat storage. The first strategy is measurement based using a proposed body heat storage estimation method to determine the astronaut's thermal state. The second strategy

  19. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  20. STS-74 Mission Cmdr Kenneth D. Cameron suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-74 Commander Kenneth D. Cameron is donning his launch/entry suit in the Operations and Checkout Building as a suit technician lends a helping hand. Cameron and four fellow astronauts are scheduled to depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits a second liftoff attempt during a seven- minute window scheduled to open at approximately 7:30 a.m. EST, Nov. 12.

  1. Water Vapor Permeability of the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuzneth, Larry; Gillis, David; Jones, Jeffery; Daniel, Brian; Gernhardt, Michael; Hamilton, Douglas

    2009-01-01

    Crew Exploration Vehicle (CEV) crewmembers are expected to return to earth wearing a suit similar to the current Advanced Crew Escape Suit (ACES). To ensure optimum cognitive performance, suited crewmembers must maintain their core body temperature within acceptable limits. There are currently several options for thermal maintenance in the post-landing phase. These include the current baseline, which uses an ammonia boiler, purge flow using oxygen in the suit, accessing sea water for liquid cooling garment (LCG) cooling and/or relying on the evaporative cooling capacity of the suit. These options vary significantly in mass, power, engineering and safety factors, with relying on the evaporative cooling capacity of the suit being the least difficult to implement. Data from previous studies indicates that the evaporative cooling capacity of the ACES was much higher than previously expected, but subsequent tests were performed for longer duration and higher metabolic rates to better define the water vapor permeability of the ACES. In these tests five subjects completed a series of tests performing low to moderate level exercise in order to control for a target metabolic rate while wearing the ACES in an environmentally controlled thermal chamber. Four different metabolic profiles at a constant temperature of 95 F and relative humidity of 50% were evaluated. These tests showed subjects were able to reject about twice as much heat in the permeable ACES as they were in an impermeable suit that had less thermal insulation. All of the heat rejection differential is attributed to the increased evaporation capability through the Gortex bladder of the suit.

  2. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  3. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  4. EVA Suit R and D for Performance Optimization

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations

  5. Elastic-Tether Suits for Artificial Gravity and Exercise

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.

    2005-01-01

    Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

  6. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  7. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  8. Preliminary Shuttle Space Suit Shielding Model. Chapter 9

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.; Persans, A. E.

    2003-01-01

    There are two space suits in current usage within the space program: EMU [2] and Orlan-M Space Suit . The Shuttle space suit components are discussed elsewhere [2,5,6] and serve as a guide to development of the current model. The present model is somewhat simplified in details which are considered to be second order in their effects on exposures. A more systematic approach is ongoing on a part-by-part basis with the most important ones in terms of exposure contributions being addressed first with detailed studies of the relatively thin space suit fabric as the first example . Additional studies to validate the model of the head coverings (bubble, helmet, visors.. .) will be undertaken in the near future. The purpose of this paper is to present the details of the model as it is now and to examine its impact on estimates of astronaut health risks. In this respect, the nonuniform distribution of mass of the space suit provides increased shielding in some directions and some organs. These effects can be most important in terms of health risks and especially critical to evaluation of potential early radiation effects .

  9. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet; Cencer, Daniel

    2015-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for long-duration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  10. Effect of a triathlon wet suit on drag during swimming.

    PubMed

    Toussaint, H M; Bruinink, L; Coster, R; De Looze, M; Van Rossem, B; Van Veenen, R; De Groot, G

    1989-06-01

    The effect of a triathlon wet suit on drag was studied in 12 subjects (eight male, four female) swimming at different velocities (1.10, 1.25 and 1.50 m.s-1). The active drag force was directly measured during front crawl swimming using a system of underwater push off pads instrumented with a force transducer (M.A.D. system: 6). Measurements were made when swimming over the system with and without a wet suit. A 14% reduction in drag (from 48.7 to 41.8 Newtons) is found at a swimming velocity of 1.25 m.s-1, which is a typical swimming speed for triathlon distances. At 1.50 m.s-1 a reduction in drag of 12% was observed, which suggests that the wearing of such a suit might be beneficial in conventional swimming events. The reduction in drag can explain the higher swimming velocities observed in triathletes using a wet suit. The effect of the reduction is probably largely due to an increased buoyancy inducing less frontal resistance. However, since the effect of the suit on the lighter female swimmers was not different from the effect on the heavier male swimmers, a reduction in friction drag and drag coefficient may also be significant. PMID:2733583

  11. Multifunctional Cooling Garment for Space Suit Environmental Control

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Ferl, Janet

    2014-01-01

    Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these future space suits face daunting challenges, since they must maintain healthy and comfortable conditions inside the suit for longduration missions while minimizing weight and water venting. We have demonstrated the feasibility of an innovative, multipurpose garment for thermal and humidity control inside a space suit pressure garment that is simple, rugged, compact, and lightweight. The garment is a based on a conventional liquid cooling and ventilation garment (LCVG) that has been modified to directly absorb latent heat as well as sensible heat. This hybrid garment will prevent buildup of condensation inside the pressure garment, prevent loss of water by absorption in regenerable CO2 removal beds, and conserve water through use of advanced lithium chloride absorber/radiator (LCAR) technology for nonventing heat rejection. We have shown the feasibility of this approach by sizing the critical components for the hybrid garment, developing fabrication methods, building and testing a proof-of-concept system, and demonstrating by test that its performance is suitable for use in space suit life support systems.

  12. The Los Alamos suite of relativistic atomic physics codes

    SciTech Connect

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  13. Auto-calibration system of EMG sensor suit

    NASA Astrophysics Data System (ADS)

    Suzuki, Yousuke; Tanaka, Takayuki; Feng, Maria Q.

    2005-12-01

    Biogenic measurement has been studied as a robot's interface. We have studied the wearable sensor suit as a robot's interface. Some kinds of sensor disks are embedded the sensor suit to the wet suit-like material. The sensor suit measures a wearing person's joint, and muscular activity. In this report, we aim to establish an auto-calibration system for measuring joint torques by using EMG sensors based on neural network and sensor disks of a lattice. The Torque presumption was performed using the share neural network, which learned the data that formed the whole subject's teacher data. Additional training of the share neural network was carried out using the individual teaching data. As a result, that was able to do the neural network training in short time, high probability and high accuracy to training of initial neural network. Moreover, high-presumed accuracy was able to be acquired by this method Next, Sensor disks of a lattice was developed. EMG is measurable, checking the state of an electrode by that can measure biogenic impedance. That was able to measure EMG by sensor disks which has low impedance We measured EMG and joint torque by trial production sensor suit and torque measuring instrument. The predominancy of the torque presumption using the share neural network was check. We proposed Measurement system, which consists sensor disk of lattice. Experimental results show the proposed method is effective for the auto-calibration.

  14. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  15. STS-69 Mission Specialist James H. Newman suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-69 Mission Specialist James H. Newman dons his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Note that Newman's name tag reads Pluto. The STS-69 crew has dubbed itself the Dog Crew II, continuing a spirit of camaraderie that began on an earlier flight, STS-53, on which STS-69 astronauts James Voss and David Walker were crew members. Each of the STS-69 crew members adopted a dog-theme name, and the crew is even sporting a Dog Crew II patch along with the traditional mission emblem. After donning their launch/ entry suits, Newman and four fellow crewmembers will depart for Launch Pad 39A, where the Space Shuttle Endeavour awaits liftoff during a two and a half hour window opening at 11:09 a.m. EDT.

  16. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  17. A Conformance Test Suite for Arden Syntax Compilers and Interpreters.

    PubMed

    Wolf, Klaus-Hendrik; Klimek, Mike

    2016-01-01

    The Arden Syntax for Medical Logic Modules is a standardized and well-established programming language to represent medical knowledge. To test the compliance level of existing compilers and interpreters no public test suite exists. This paper presents the research to transform the specification into a set of unit tests, represented in JUnit. It further reports on the utilization of the test suite testing four different Arden Syntax processors. The presented and compared results reveal the status conformance of the tested processors. How test driven development of Arden Syntax processors can help increasing the compliance with the standard is described with two examples. In the end some considerations how an open source test suite can improve the development and distribution of the Arden Syntax are presented. PMID:27577408

  18. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  19. Development and Evaluation of Titanium Space Suit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Ray, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z series space suit architecture allows us to reduce mass by an estimated 23 pounds per suit system compared to the previously used stainless steel bearing designs without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race: 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approximately 2 years), bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination around a maximum contact stress that will allow the bearing to survive the life of an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an exploration mission.

  20. MIR 19 Mission Commander Anatoly Y. Solovyev suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Veteran Russian cosmonaut and STS-71 crew member Anatoly Y. Solovyev looks relaxed and at ease as he dons his launch/entry suit with assistance from a suit technician in the Operations and Checkout Building. His fourth trip into space will be both historic and unusual for Solovyev. He and fellow crew member Nikolai Budarin are scheduled to transfer to the Mir Space Station during STS-71 and remain there, meaning they will begin their spaceflight in one country, the United States, and complete it with a return trip home to another, Russia. Solovyev is assigned as the Mir 19 mission commander, while Budarin is the Mir 19 flight engineer.

  1. STS-72 Mission Specialist Dr. Daniel T. Barry suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Looking elated at the prospect of his upcoming spaceflight, STS- 72 Mission Specialist Dr. Daniel T. Barry dons his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The trip into space will be the first for Barry, a medical doctor who also has a Ph.D. in electrical engineering. He and five fellow crew members will soon depart for Launch Pad 39, where the Space Shuttle Endeavour is undergoing final preparations for liftoff during an approximately 49-minute window opening at about 4:18 am EST, January 11.

  2. STS-71 Payload Commander Dr. Ellen S. Baker suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-71 Payload Commander Dr. Ellen S. Baker is assisted by a suit technician as she dons her launch/entry suit in the Operations and Checkout Building. Her third spaceflight will be an historic one for Baker, a medical doctor, as she oversees the series of scientific investigations that will be conducted during the first docking of the U.S. Space Shuttle to the Russian Space Station Mir. Baker and six fellow crew members -- four Americans and two Russian cosmonauts -- will shortly depart for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff during a 10- minute launch window opening at 3:32 p.m. EDT.

  3. Benefits of advanced space suits for supporting routine extravehicular activity

    NASA Technical Reports Server (NTRS)

    Alton, L. R.; Bauer, E. H.; Patrick, J. W.

    1975-01-01

    Technology is available to produce space suits providing a quick-reaction, safe, much more mobile extravehicular activity (EVA) capability than before. Such a capability may be needed during the shuttle era because the great variety of missions and payloads complicates the development of totally automated methods of conducting operations and maintenance and resolving contingencies. Routine EVA now promises to become a cost-effective tool as less complex, serviceable, lower-cost payload designs utilizing this capability become feasible. Adoption of certain advanced space suit technologies is encouraged for reasons of economics as well as performance.

  4. Extending the GI Brokering Suite to Support New Interoperability Specifications

    NASA Astrophysics Data System (ADS)

    Boldrini, E.; Papeschi, F.; Santoro, M.; Nativi, S.

    2014-12-01

    The GI brokering suite provides the discovery, access, and semantic Brokers (i.e. GI-cat, GI-axe, GI-sem) that empower a Brokering framework for multi-disciplinary and multi-organizational interoperability. GI suite has been successfully deployed in the framework of several programmes and initiatives, such as European Union funded projects, NSF BCube, and the intergovernmental coordinated effort Global Earth Observation System of Systems (GEOSS). Each GI suite Broker facilitates interoperability for a particular functionality (i.e. discovery, access, semantic extension) among a set of brokered resources published by autonomous providers (e.g. data repositories, web services, semantic assets) and a set of heterogeneous consumers (e.g. client applications, portals, apps). A wide set of data models, encoding formats, and service protocols are already supported by the GI suite, such as the ones defined by international standardizing organizations like OGC and ISO (e.g. WxS, CSW, SWE, GML, netCDF) and by Community specifications (e.g. THREDDS, OpenSearch, OPeNDAP, ESRI APIs). Using GI suite, resources published by a particular Community or organization through their specific technology (e.g. OPeNDAP/netCDF) can be transparently discovered, accessed, and used by different Communities utilizing their preferred tools (e.g. a GIS visualizing WMS layers). Since Information Technology is a moving target, new standards and technologies continuously emerge and are adopted in the Earth Science context too. Therefore, GI Brokering suite was conceived to be flexible and accommodate new interoperability protocols and data models. For example, GI suite has recently added support to well-used specifications, introduced to implement Linked data, Semantic Web and precise community needs. Amongst the others, they included: DCAT: a RDF vocabulary designed to facilitate interoperability between Web data catalogs. CKAN: a data management system for data distribution, particularly used by

  5. A Suite of Criticality Benchmarks for Validating Nuclear Data

    SciTech Connect

    Stephanie C. Frankle

    1999-04-01

    The continuous-energy neutron data library ENDF60 for use with MCNP{trademark} was released in the fall of 1994, and was based on ENDF/B-Vl evaluations through Release 2. As part of the data validation process for this library, a number of criticality benchmark calculations were performed. The original suite of nine criticality benchmarks used to test ENDF60 has now been expanded to 86 benchmarks. This report documents the specifications for the suite of 86 criticality benchmarks that have been developed for validating nuclear data.

  6. Skylab 2 prime crew suit up during prelaunch training activity

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, prime crew pilot of the first manned Skylab mission, is suited up in bldg 5 at JSC during prelaunch training activity. He is assisted by Astronaut Charles Conrad Jr., prime crew commander. The man in the left background is wearing a face mask to insure that Conrad, Joseph Kerwin, and Weitz are not exposed to disease prior to launch (25399); Scientist-Astronaut Joseph P. Kerwin (on left), and Weitz assist each other in suiting up in bldg 5 at JSC during pre-launch training activity (25400).

  7. STS-76 Mission Specialist Richard Clifford suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Mission Specialist Michael Richard 'Rich' Clifford is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Clifford has flown in space twice before, on Missions STS-53 and STS-59, the latter including fellow STS-76 crew members Kevin Chilton and Linda Godwin. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  8. STS-82 Mission Specialist Steven L. Smith Suit Up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith gives a ''';thumbs up'''; while donning his launch and entry suit in the Operations and Checkout Building. A suit technician stands ready to assist with final adjustments. This is Smith''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  9. STS-87 Mission Specialist Winston E. Scott suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  10. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  11. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  12. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  13. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  14. DYNA3D/ParaDyn Regression Test Suite Inventory

    SciTech Connect

    Lin, J I

    2011-01-25

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  15. 132. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM 6156, OFFICE OF THE SECRETARY OF THE INTERIOR, PLASTER CEILING MEDALLION AND BRONZE CHANDELIER (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  16. Well-Suited Partners: Psychoanalytic Research and Grounded Theory

    ERIC Educational Resources Information Center

    Anderson, Janet

    2006-01-01

    Research is a "core activity" of "central importance in improving mental health and social care" (NIME, CAMHS National Conference, 2005). This paper examines the philosophical issues confronted when considering psychoanalytic clinical research. It is argued that a well-suited partnership can be formed between psychoanalytic clinical research and…

  17. Extravehicular Mobility Unit Training Suit Symptom Study Report

    NASA Technical Reports Server (NTRS)

    Strauss, Samuel

    2004-01-01

    The purpose of this study was to characterize the symptoms and injuries experienced by NASA astronauts during extravehicular activity (space walk) spacesuit training at the Neutral Buoyancy Laboratory at Ellington Field, Houston, Texas. We identified the frequency and incidence rates of symptoms by each general body location and characterized mechanisms of injury and effective countermeasures. Based on these findings a comprehensive list of recommendations was made to improve training, test preparation, and current spacesuit components, and to design the next -generation spacesuit. At completion of each test event a comprehensive questionnaire was produced that documented suit symptom comments, identified mechanisms of injury, and recommended countermeasures. As we completed our study we found that most extravehicular mobility unit suit symptoms were mild, self-limited, and controlled by available countermeasures. Some symptoms represented the potential for significant injury with short- and long-term consequences regarding astronaut health and interference with mission objectives. The location of symptoms and injuries that were most clinically significant was in the hands, shoulders, and feet. Correction of suit symptoms issues will require a multidisciplinary approach to improve prevention, early medical intervention, astronaut training, test planning, and suit engineering.

  18. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  19. American ASTP backup crew suited for testing of Apollo spacecraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The three members of the American Apollo Soyuz Test Project (ASTP) backup crew are suited up for testing of the Apollo spacecraft at the Kenney Space Center. They are (from foreground) Astronauts Alan L. Bean, commander; Ronald E. Evans, command module pilot; and Jack R. Lousma, docking module pilot.

  20. 33 CFR 144.20-5 - Exposure suits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... North latitude in the Atlantic Ocean or south of 35 degrees North latitude in all other waters. (a) Each... of a type approved under 46 CFR 160.171. (d) Each exposure suit must have a personal flotation device light that is approved under 46 CFR 161.012. Each light must be securely attached to the front...

  1. THE AGWA – KINEROS2 SUITE OF MODELING TOOLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...

  2. The Zoot Suit Riots: Exploring Social Issues in American History

    ERIC Educational Resources Information Center

    Chiodo, John J.

    2013-01-01

    The Zoot Suit Riots provide students with a case study of social unrest in American history. The influx of Latinos into the Los Angeles area prior to World War II created high levels of social unrest between Mexican Americans, military servicemen, and local residences. With large numbers of soldiers stationed in the area during the Second World…

  3. Surgical suite environmental control system. [using halothane absorbing filter

    NASA Technical Reports Server (NTRS)

    Higginbotham, E. J.; Jacobs, M. L.

    1974-01-01

    Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.

  4. Astronauts Weitz and Conrad suit up during prelaunch activity

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Paul J. Weitz, prime crew pilot of the first manned Skylab mission, is suited up in bldg 5 at JSC during prelaunch training activity. He is assisted by Astronaut Charles Conrad Jr., prime crew commander. The man in the left background is wearing a face mask to insure that Conrad, Joseph Kerwin, and Weitz are not exposed to disease prior to launch.

  5. Certification of EEOC Class Suits under Rule 23.

    ERIC Educational Resources Information Center

    Becker, Mary E.

    1979-01-01

    The purposes, functions, and underlying policies of both rule 23 of the Federal Rules of Civil Procedure and Title VII indicate that the Equal Employment Opportunity Commission should be required to certify when it brings class action suits. Available from University of Chicago Law School, 1111 E. 60th St., Chicago, IL 60637; single issue $3.50.…

  6. Astronaut Story Musgrave recieves assistance during suiting for WETF training

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Larry Kasallis of Hamilton Standard assists Astronaut Story Musgrave as the STS-6 mission specialist suits up for an underwater training session in the Weightless environment training facility (WETF). Kasallis is assisting Musgrave to don the extravehicular mobility unit's gloves. Musgrave is already wearing the EMU and the communication carrier assembly but not the helmet.

  7. Apollo 13 crewmembers in suiting room prior to launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Astronaut John L. Swigert Jr., command module pilot, appears to be relaxing in the suiting room at Kennedy Space Center prior to launch. Swigert replaced Astronaut Thomas K. Mattingly II when it was discovered that Mattingly had been exposed to the measles (34847); Astronaut James A. Lovell Jr., commander for Apollo 13 mission, undergoes spacesuit checks a few hours before launch (34848).

  8. Radiation safety for health care workers in the bronchoscopy suite.

    PubMed

    Jain, P; Fleming, P; Mehta, A C

    1999-03-01

    Increased use of fluoroscopy during flexible bronchoscopy has raised concerns about radiation safety of health care workers in the bronchoscopy suite. We review the potential health risks associated with occupational radiation exposure, the monitoring devices available, and discuss the measures to reduce radiation exposure during flexible bronchoscopy. PMID:10205715

  9. Age Discrimination in Employment Suits: A Practical Guide.

    ERIC Educational Resources Information Center

    McDonald, J. Michael

    1979-01-01

    Focuses on those elements of an age discrimination suit that have traditionally presented the most difficulty for attorneys--burden of proof, bona fide occupational qualifications, and procedure matters among them. Available from West Virginia Law Review, W.V.U. Law Center, Morgantown, West Virginia 26506; sc $4.00. (Author/IRT)

  10. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  11. 28 CFR 36.503 - Suit by the Attorney General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Suit by the Attorney General. 36.503 Section 36.503 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY... discrimination raises an issue of general public importance....

  12. 71. Historic American Buildings Survey COURT BETWEEN OWNER'S SUITE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Historic American Buildings Survey COURT BETWEEN OWNER'S SUITE AND BABY HOUSE PHOTOCOPY OF PLATE FROM IRVIN L. SCOTT, 'MARALAGO', THE AMERICAN ARCHITECT (JUNE 20, 1928), P. 807 - Mar-a-Lago, 1100 South Ocean Boulevard, Palm Beach, Palm Beach County, FL

  13. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  14. 129. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. INTERIOR, SIXTH FLOOR, WING 6100 WEST, SUITE 6000, ROOM 6156, OFFICE OF THE SECRETARY OF THE INTERIOR, DOUBLE DOOR (4' x 5' negative; 8' x 10' print) - U.S. Department of the Interior, Eighteenth & C Streets Northwest, Washington, District of Columbia, DC

  15. Education and/as Art: A Found Poetry Suite

    ERIC Educational Resources Information Center

    Prendergast, Monica

    2012-01-01

    Embracing "metaphor as method" (Prendergast, 2005; see also Prendergast, 2006a, 2006b, 2008a), which I suggest is a key characteristic of thinking poetically and doing poetic inquiry, is the process conveyed in this suite of found poems. The investigation began with a cross-disciplinary scholarly database search on the term "education as art" that…

  16. Financial Pressures and Desegregation Suit Are Tennessee Concerns.

    ERIC Educational Resources Information Center

    Ivey, Saundra

    1981-01-01

    Financial pressures and the possibility of a major desegregation suit have dominated the 1980-81 academic year for Tennessee's public colleges and universities. The higher education community is moving toward managing the decline with limitations on enrollment and by eliminating unnecessary duplicated academic programs. (MLW)

  17. Situational awareness and its application in the delivery suite.

    PubMed

    Edozien, Leroy C

    2015-01-01

    The delivery suite is a high-risk environment. Transitions between low-risk and high-risk can be swift, and sentinel events can occur without warning. The prevention of accidents in this environment rests on the vigilance of the individual practitioner at the frontline. It is, therefore, important that the individual practitioner should develop and maintain the cognitive skills to anticipate, recognize, and intercept unfolding error chains. This commentary gives an overview of a nontechnical skill that is essential for safe practice in a delivery suite: situational awareness. A basic description of situational awareness is provided, using examples of loss of situational awareness in the delivery suite and examples of simple interventions that could promote situational awareness. Involuntary automaticity readily creeps in during performance of routine tasks, and cognitive overload could deplete attentional resources that are, by nature, limited. Strategies and tactics for maintaining situational awareness include proactively seeking and managing information on unfolding events, continually updating individual and team mental models, mindful use of checklists and scoreboards, and avoidance of attentional blindness. These simple interventions require minimal financial resources but could immensely enhance clinical performance and patient safety. Situational awareness should be included in the training of obstetrician-gynecologists and other staff working in a delivery suite. PMID:25560106

  18. 28 CFR 51.31 - Communications concerning voting suits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Communications concerning voting suits. 51.31 Section 51.31 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED Communications From Individuals and Groups § 51.31 Communications...

  19. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGESBeta

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  20. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  1. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  2. Complexity of Fit, with Application to Space Suits

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely

  3. STS-86 Mission Specialist David Wolf suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf gets assistance from a suit technician while donning his orange launch and entry suit in the Operations and Checkout Building. This will be Wolfs second flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a 10-day mission slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Wolf will transfer to the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who will return to Earth aboard Atlantis with the rest of the STS-86 crew. Wolf is expected to live and work aboard the Russian space station for about four months.

  4. Feasibility of Suited 10-km Ambulation "Walkback" on the Moon

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Lee, Lesley; DeWitt, John K.; Klein, Jill; Wessell, James; Gernhardt, Michael L.

    2008-01-01

    This viewgraph presentation reviews a study that examined the feasibility of having astronauts walk about 10 kilometers to the base in the event of a breakdown of the lunar rover. This was done in part to examine the possibility of having a single rover on the lunar exploration missions. Other objectives of the study are to: (1) Understand specific biomedical and human performance limitations of the suit compared to matched shirt-sleeve controls; (2) Collect metabolic and ground-reaction force data to develop an EVA simulator for use on future prebr eathe protocol verification tests (3) Provide data to estimate consum ables usage for input to suit and portable life support system (PLSS) design (4) Assess the cardiovascular and resistance exercise associa ted with partialgravity EVA for planning appropriate exploration exer cise countermeasures

  5. STS-88 Mission Specialist Nancy Currie suits up before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-88 Mission Specialist Nancy J. Currie gets help with her flight suit from suit technician Drew Billingsley before launch. Mission STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, landing at 10:17 p.m. EST on Dec. 14.

  6. Treatment of complex neurovascular lesions: an interdisciplinary angio suite approach

    PubMed Central

    Breyer, Tobias; Wrede, Karsten H.; Stein, Klaus-Peter; Wanke, Isabel; Grams, Astrid E.; Gizewski, Elke R.; Schlamann, Marc; Forsting, Michael; Sandalcioglu, I. Erol; Sure, Ulrich

    2014-01-01

    Objective: The objective of this study was to analyse our initial experience using an interdisciplinary angio suite approach to neurosurgical treatment of complex neurovascular lesions and expound technical feasibility and possible applications. Subjects: Six out of 451 patients with cranial or spinal neurovascular lesions were surgically treated in the angio suite (biplane angiographic system) during a 28-month observation period. Clinical baseline data, radiological and intraoperative findings as well as clinical and radiological outcome were assessed. Results: A ventral spinal perimedullary arteriovenous malformation, a ventral spinal perimedullary fistula, two diffuse frontal dural arteriovenous fistulas, a multifocal temporal arteriovenous malformation and a partially embolized fronto-temporo-basal dural arteriovenous fistula were successfully treated with angiographically confirmed complete occlusion and unimpaired neurological condition of the patients at the 12-month follow up. Conclusion: This study demonstrates the feasibility of this approach and points out possible indications, namely ventrally located spinal lesions and diffuse, deep seated cranial lesions. PMID:24409203

  7. STS-99 Mission Specialist Kavandi dons suit for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, a smiling STS-99 Mission Specialist Janet Kavandi waves after donning her launch and entry suit during final launch preparations. In background is a suit technician. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for liftoff at 12:30 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3- D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour.

  8. STS-99 Mission Specialist Thiele dons suit for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Gerhard Thiele of Germany smiles as suit technician Andre Denard, with United Space Alliance, helps him with his launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled for liftoff at 12:30 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour.

  9. Suit alleges Chicago schools denied job based on HIV.

    PubMed

    1997-04-18

    In 1996, the Lambda Legal Defense and Education Fund persuaded the Chicago Board of Education to revoke a policy that demands applicants to disclose their HIV status. The Board promised to revise the policy, but on March 27, 1997 Lambda filed suit in U.S. District Court against the school board on behalf of an applicant who says he continues to be denied a teaching job because of his positive HIV status. The lawsuit claims that the board of education's requirement for any job applicant to provide a complete medical history and to submit to a medical examination is tantamount to requiring HIV status disclosure. The lawsuit states that the board is violating the Americans with Disabilities Act (ADA), the Rehabilitation Act, and Federal and State constitutional guarantees to privacy and equal protection under the law. The suit also says the board lacks procedural safeguards to ensure confidentiality of applicants' medical information. PMID:11364234

  10. STS-81 Mission Specialist Marsha Ivins suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Marsha S. Ivins gets a helping hand from a suit technician as she prepares to don the helmet of her launch/entry suit in the suitup room of the Operations and Checkout (O&C) Building. She is the veteran of three Shuttle flights and became an astronaut in 1984. Among other responsibilities, Ivins will perform photo and video surveys of the Russian Mir space station and operate the Kidsat experiment camera on the orbiters aft flight deck. She and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  11. STS-80 Mission Specialist Story Musgrave suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-80 Mission Specialist Story Musgrave is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. Musgrave's sixth flight into space is noteworthy in two respects. First, he will tie NASA astronaut John Young's record for most number of spaceflights by any human being. Secondly, at age 61, Musgrave will be the oldest person ever to fly in space. He and four crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour window opening at 2:53 p.m. EST, Nov. 19.

  12. Dual hybrid suite 'a first' for the UK.

    PubMed

    Baillie, Jonathan

    2014-08-01

    A new 6.4 million pounds sterling dual hybrid endovascular theatre suite at the Manchester Royal Infirmary (MRI), which the Central Manchester University Hospitals NHS Foundation Trust (CMFT) says will 'transform the treatment of patients undergoing minimally invasive vascular and cardiac procedures', has recently come into operation. As HEJ editor, Jonathan Baillie, discovered, when he met, a few weeks before its completion, with one of the vascular surgeons who championed it, and the Trust's associate director for Surgical Services, who wrote the business case, the surgical suite makes the MRI the UK's first hospital equipped with two adjacent full hybrid theatres utilising a robotic imaging system, with a fully flexible, synchronised operating table. PMID:25219084

  13. Mission Specialist Scott Parazynski checks his flight suit

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  14. Incorporating the TRMM Dataset into the GPM Mission Data Suite

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Ji, Yimin; Chou, Joyce; Kelley, Owen; Kwiatkowski, John; Stout, John

    2016-01-01

    In June 2015 the TRMM satellite came to its end. The 17 plus year of mission data that it provided has proven a valuable asset to a variety of science communities. This 17plus year data set does not, however, stagnate with the end of the mission itself. NASA/JAXA intend to integrate the TRMM data set into the data suite of the GPM mission. This will ensure the creation of a consistent, intercalibrated, accurate dataset within GPM that extends back to November of 1998. This paper describes the plans for incorporating the TRMM 17plus year data into the GPM data suite. These plans call for using GPM algorithms for both radiometer and radar to reprocess TRMM data as well as intercalibrating partner radiometers using GPM intercalibration techniques. This reprocessing will mean changes in content, logical format and physical format as well as improved geolocation, sensor corrections and retrieval techniques.

  15. STS-94 Mission Specialist Michael Gernhardt suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Specialist Michael L. Gernhardt is assisted into his launch/entry suit by a suit technician in the Operations and Checkout (O&C) Building. He first flew in this capacity on STS- 69. He has been a professional deep sea diver and engineer and holds a doctorate in bioengineering. Gernhardt will be in charge of the Blue shift and as flight engineer will operate and maintain the orbiter while Halsell and Still are asleep as members of the Red shift. He will also back them up on the flight deck during the ascent and re-entry phases of the mission. Gernhardt and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 a.m. EDT, July opportunity to lift off before Florida summer rain showers reached the space center.

  16. STS-90 Pilot Scott Altman is suited up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body - - the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  17. Mission Specialist Nicollier gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Claude Nicollier of Switzerland waves while having his launch and entry suit checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.) and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  18. Mission Specialist Foale gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist C. Michel Foale (Ph.D.) smiles as his launch and entry suit is checked by a suit techician during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  19. Mission Specialist Grunsfeld gets help suiting up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist John M. Grunsfeld (Ph.D.) is assisted by a suit technician in donning his launch and entry suit during final launch preparations. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  20. STS-88 Mission Specialist Currie suits up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy J. Currie dons her orange launch and entry suit in the Operations and Checkout Building. STS-88 will be Currie's third spaceflight. She and the five other STS-88 crew members will depart shortly for Launch Pad 39A where the Space Shuttle Endeavour is poised for liftoff on the first U.S. mission dedicated to the assembly of the International Space Station.

  1. Apollo 11 astronaut Neil Armstrong suits up before launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  2. STS-84 M.S Edward Tsang Lu suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 Mission Specialist Edward Tsang Lu gives a 'thumbs up' as he dons his launch and entry suit during final prelaunch preparations in the Operations and Checkout Building. This will be Lus first space flight. Lu and six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits liftoff on a mission to dock with the Russian Space Station Mir.

  3. Evaluation of sensors for use inside chemical protective suits

    NASA Astrophysics Data System (ADS)

    Russell, Derrick A.; Duncan, E. J. S.; Hunt, Stephen; Gudgin Dickson, Eva F.; Weagle, Glenn E.

    1999-11-01

    Organizations such as the military, hazardous materials units, first responders and industries involved in the processing and manufacture of chemicals all have requirements for specialized whole body protection for those people in their organizations whose job it is to work with toxic chemicals on a day to day basis or in emergency situations. Currently, excluding chemical biological (CB) challenge scenarios, there is no routine monitoring of the possible ingress of toxic chemicals within chemical protective suits. Under existing national standards, swatches of the protective suit fabric are usually tested for chemical breakthrough and if they meet certain criteria, the suit is considered to provide adequate protection to the individual. Despite advances in protection level research provided by full system protective clothing tests, inexpensive, real-time, sensitive and robust chemical monitoring systems for use both under protective clothing and within a challenge environment, remains a technologically deficient area. This paper presents the results of a preliminary assessment of the feasibility of miniature detectors for monitoring real-time volatile organic chemical (VOC) challenges under chemical protective clothing and in closed environments where such suits are used. Nine gas sensors of n-type semiconductor design (Figaro Engineering Inc) were assessed for their response to a dichloromethane concentration of 560 ppm at a temperature of 23 degrees Celsius and relative humidity of 20%. Absolute voltage output, speed of response to dichloromethane exposure, and time required to return to zero, were considered. The top ranked sensor was further evaluated for its calibration response to a range of dichloromethane concentrations up to 560 ppm. Variables that were considered include effect of temperature and relative humidity, hysteresis and repeatability. Increasing RH causes an increase in the zero output of the sensor with an approximate linear relationship. The

  4. 3D Magnetron simulation with CST STUDIO SUITE

    SciTech Connect

    Balk, Monika C.

    2011-07-01

    The modeling of magnetrons compared to other tubes is more difficult since it requires 3D modeling rather than a 2D investigation. This is not only due to the geometry which can include complicated details to be modeled in 3D but also due to the interaction process itself. The electric field, magnetic field and particle movement span a 3D space. In this paper 3D simulations of a strapped magnetron with CSTSTUDIO SUITE{sup TM} are presented. (author)

  5. Patient Care, Communication, and Safety in the Mammography Suite.

    PubMed

    Arnold, Leisa

    2016-09-01

    Producing high-quality mammograms requires excellent technical skills along with exemplary communication. Mammographers must be able to address differences in patients' mental states, body habitus, and physical ability to obtain an optimal examination. In addition, every mammographer must practice consistently with patient safety, care, and satisfaction in mind. This article discusses verbal and nonverbal communication strategies, barriers to communication, and the care and safety of patients in the mammography suite who present special challenges. PMID:27601710

  6. Compression under a mechanical counter pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p<0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  7. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  8. Defensive aids suite prototype for light armored vehicles

    NASA Astrophysics Data System (ADS)

    Cantin, Andre; Fortin, Jean; Venter, Johan; Philip, Brian G.; Hagen, Russell; Krieger, Dietmar; Greenley, Mike

    2001-09-01

    The Defence Research Establishment Valcartier has initiated in 1998 R&D work to investigate and to demonstrate key technologies required for future Defensive Aid Suite to protect Light Armoured Vehicles. A basic Defensive Aid Suite demonstrator (Phase I) was built and integrated into the LAV vetronics by Litton Systems Canada and his consortium. The Defensive Aid Suite consisted of a 2-band HARLIDTM-based laser detection head, a processor capable to control and deploy countermeasures and a DAS touch-screen display all integrated in a Light Armored Vehicle. The crew was able to select the operation mode for direct fire or smoke deployment by pushing one of the pair of buttons available at the bottom of the display. This system was successfully demonstrated in October 1999 during an international trial. This article gives an overview of the results obtained in the field as well as some of the lessons learnt. It also describes laboratory and field measurements made on the Laser Warning Receiver unit itself. The results of the DAS tactical use and of Human factor evaluation will illustrate its performance within typical laser threat scenarios. This work will serve as the basis for the recommendation of a future DAS demonstrator (Phase II) integrating more sensors and countermeasures.

  9. STS-91 Mission Specialist Ryumin suits up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist and Russian cosmonaut Valery Victorovitch Ryumin is outfitted with his ascent/reentry flight suit and helmet by two suit technicians in the Operations and Checkout (O&C) Building. The final suit fitting and checkout takes place prior to the crew walkout and transport to Launch Pad 39A. He has been director of the Russian Shuttle-Mir program and flight director for the Salyut-7 and Mir space stations and is a veteran of three space flights with a total of 362 days in space. This will be Ryumin's first visit to Mir. However, his experience with Russian spacecraft in orbit will prove extremely valuable as he helps the crew with Mir equipment transfer operations. He will also be assessing the condition of the station for the Russian space program. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will return to Earth as a STS- 91 crew member after living more than four months aboard Mir.

  10. Revel8or: Model Driven Capacity Planning Tool Suite

    SciTech Connect

    Zhu, Liming; Liu, Yan; Bui, Ngoc B.; Gorton, Ian

    2007-05-31

    Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of design diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.

  11. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Carignan, Daniel; Cascia, Mark; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; Everson, Paula; Franz, Heather; Farley, Rodger; Feng, Steven; Frazier, Gregory; Freissinet, Caroline; Glavin, Daniel P.; Harpold, Daniel N.

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  12. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; Farley, Rodger; Feng, Steven; Frazier, Gregory; Glavin, Daniel P.; Harpold, Daniel N.; Jordan, Partick; Kellogg, James; Lewis, Jesse; Martin, David K.; Maurer, John; McAdam, Amy C.; McLennan, Douglas; Pavlov, Alexander A.; Raaen, Eric; Schinman, Oren

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  13. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs...

  14. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs...

  15. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs...

  16. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs...

  17. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs...

  18. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Approval testing for child size immersion suit. 160.171..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Immersion Suits § 160.171-19 Approval testing for child size immersion suit. A child size suit must pass the following tests: (a)...

  19. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain...

  20. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  1. FRHAM-TEX{trademark} cool suit - OST reference No. 1854. Deactivation and decommissioning focus area

    SciTech Connect

    1998-02-01

    This paper describes a demonstration project for the FRHAM-TEX Cool Suit{trademark} manufactured by FRHAM Safety Products. It is a one-piece, disposable, breathable, waterproof coverall designed to permit moisture generated by the wearer to be transmitted outside the suit. The performance of this suit was compared to a Tyvek{reg_sign} suit as a baseline. The suit is proposed as safety ware for workers at decontamination and decommissioning projects.

  2. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    PubMed

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X. PMID:25811713

  3. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  4. Biomechanical comparison of the current army chemical, biological and radiological protection suit and two prototype suits. Technical report, October 1984-September 1985

    SciTech Connect

    Styer, D.J.; Tamura, L.; Pepper, S.; Bachrach, A.J.

    1986-12-01

    This study compares the biomechanical characteristics of the current U. S. Army CBR suit, Overgarment 84, and two prototypes, C and D, developed by the Naval Surface Warfare Center and the Marine Corps Research and Development Command. This study assessed the range of motion in the three CBR suits using a biomechanical analysis. Fourteen anthropometric measurements were used representing gross body movement. Measurements on each of the CBR suits and on a swim suit baseline were compared using a repeated measure ANOVA to determine which CBR suit was least restrictive as measured by the fourteen movements assessed. While the three CBR suits demonstrated a restriction in movement when compared to baseline measures, neither of the CBR suits differ significantly for each other. Implication of the data are discussed.

  5. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to

  6. Results from an integrated AOTF-LDTOF spectrometer suite for planetary surfaces

    NASA Astrophysics Data System (ADS)

    Chanover, N.; Voelz, D.; Glenar, D.; Xiao, Xifeng; Tawalbeh, R.; Uckert, K.; Boston, P.; Getty, S.; Brinckerhoff, W.; Mahaffy, P.; Li, Xiang

    On future landed missions to Mars and small solar system bodies, efficient sample prescreening will be necessary to select interesting targets for further analysis by analytical instruments with very limited time and power resources. Near infrared spectroscopy is well suited for rapid and non-invasive identification of mineral classes, and for determining the possible presence of organic molecules. Here we describe a miniature acousto-optic tunable filter (AOTF) point spectrometer that is tunable from ~1.6 - 3.6 μ m. It identifies minerals associated with aqueous environments at sample scales of ~1 mm, as well as organic molecules and volatiles. The AOTF point spectrometer was integrated with a laser desorption time-of-flight (LDTOF) mass spectrometer developed at NASA's Goddard Space Flight Center, and can be used to prescreen samples for evidence of organics before the laser desorption step and subsequent mass spectrometer measurement. The LDTOF mass spectrometer provides pulsed-laser desorption and analysis of refractory organic compounds up to 150,000 Da on a spatial scale of 50-100 μ m, determined by the laser spot size at the target. The recent integration of the two instruments allowed for coincident spectral measurements of geologic samples; follow-up measurements from the LDTOF were taken from an identical region on the samples of interest, allowing for a direct comparison between the two complementary data sets. We present measurements of a standard sample suite consisting of sulfates, carbonates, clay minerals, and iron oxides. We also compare AOTF and LDTOF spectra of calcite, as well as gypsum doped with phthalic acid and valine, and discuss the relationship between reflectance spectra acquired by the AOTF and the LDTOF mass spectra. Finally, we discuss measurements made of irradiated ices such as those found in areas of high astrobiological interest like Europa.

  7. Initiation of medical malpractice suits: a conceptualization and test.

    PubMed

    Penchansky, R; Macnee, C

    1994-08-01

    Despite the concern with medical malpractice suits and research about them, little is known about why some perceived injuries lead to claims of malpractice while other similar injuries do not. This paper presents a conceptualization and hypotheses regarding the determinants of an injury or perceived injury leading to suit. The conceptualization and hypotheses are tested using information collected from 113 medical malpractice plaintiffs' attorneys in three states. A series of proposed concepts prove useful in explaining patient willingness to pursue a suit as well as the plaintiff's success and award size. These are concepts of anger, reluctance to sue, patient and provider worthiness, affinity, economic burden and potential for compensation. Specific attributes of the injury, the patient, the provider, and the doctor-patient relationship relate to these concepts. Injury and doctor-patient relationship attributes prove more important than patient or provider attributes. However, the reported impact of the attributes of the patient and physician on plaintiff success and award is high and suggests that the impact of "non-relevant" variables in the medical malpractice process. Doctor-patient relationship variables hypothesized to reflect affinity are reported to be important in reducing patient willingness to pursue a case; and, certain populations, such as minorities, elderly, foreign-born, are perceived to have a reluctance to sue. The effect of specific characteristics of the patient, the doctor, the injury and the patient-doctor relationship on patient reaction and on disposition is reported, as well as evidence that relates to the validity of the overall conceptualization. PMID:8057697

  8. A Novel Method for Breath Capture Inside a Space Suit

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Filburn, Tom

    2007-01-01

    Any non-robotic mission to the Mars surface will need to rely on various life support technologies. The large metabolic generation rate and low tolerance to elevated levels of carbon dioxide (CO2) in the Mars atmosphere make CO2 removal one of the preeminent tasks in this domain. In addition, these same features provide a strong impetus for using regenerable CO2 removal technologies. In the past, many of these regenerable technologies have relied on the low partial pressure CO2 surrounding the vehicle to provide an ultimate sink for removing this gas contaminant, however any Mars mission will have to overcome the presence of the Mars atmosphere. This paper describes the investigation of methods to capture the exhaled CO2 from a suited crewmember before it becomes diluted with the high volumetric air flow present within the space suit. Typical expired air contains CO2 partial pressures in the range of 20-35 mm Hg. This research investigated methods to capture this high partial pressure CO2 prior to its dilution with the low partial pressure CO2 ventilation flow. Specifically the research looked at potential designs for a collection cup for use inside the space suit helmet. This collection cup should not be considered the same as a breathing mask typical of that worn by firefighters, etc. Instead, the collection cup is a non-contact device that makes use of detailed analyses of the ventilation flow environment within the helmet. The research used a detailed Computational Fluid Dynamic (CFD) code called Fluent to provide modeling of the various gas species (CO2, water vapor, O2) as they pass through a helmet. This same model was used to numerically evaluate several different collection cup designs for this same CO2 segregation effort.

  9. STS-112 M.S. Wolf suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf suits up for launch, just hours away. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  10. Beauty school, former executive settle suit alleging harassment.

    PubMed

    1996-02-01

    The [name removed] School of Beauty Culture in suburban Philadelphia settled a lawsuit filed by [name removed], former controller of the school. The suit claimed that the school had a policy of harassing and forcing out employees who might present a high risk for health-care costs, such as gay men who might develop HIV/AIDS. [Name removed] charged that the school violated the Americans with Disabilities Act (ADA) and the Federal Rehabilitation Act by targeting him for harassment after he revealed that he had a brain tumor. The terms of the settlement are confidential. PMID:11363166

  11. EVA Roadmap: New Space Suit for the 21st Century

    NASA Technical Reports Server (NTRS)

    Yowell, Robert

    1998-01-01

    New spacesuit design considerations for the extra vehicular activity (EVA) of a manned Martian exploration mission are discussed. Considerations of the design includes:(1) regenerable CO2 removal, (2) a portable life support system (PLSS) which would include cryogenic oxygen produced from in-situ manufacture, (3) a power supply for the EVA, (4) the thermal control systems, (5) systems engineering, (5) space suit systems (materials, and mobility), (6) human considerations, such as improved biomedical sensors and astronaut comfort, (7) displays and controls, and robotic interfaces, such as rovers, and telerobotic commands.

  12. STS-112 Pilot Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Pilot Pamela Melroy finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  13. STS-112 M.S. Magnus suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus finishes suiting up before launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  14. Space Suit Technologies Protect Deep-Sea Divers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Working on NASA missions allows engineers and scientists to hone their skills. Creating devices for the high-stress rigors of space travel pushes designers to their limits, and the results often far exceed the original concepts. The technologies developed for the extreme environment of space are often applicable here on Earth. Some of these NASA technologies, for example, have been applied to the breathing apparatuses worn by firefighters, the fire-resistant suits worn by racecar crews, and, most recently, the deep-sea gear worn by U.S. Navy divers.

  15. STS-87 Commander Kevin R. Kregel suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel sits in his launch and entry suit in the Operations and Checkout Building holding a cap of his sons soccer team of which Kregel is the coach. Shortly, he and the five other crew members of STS-87 will depart for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. A veteran of two space flights (STS-70 and -78), Kregel has logged more than 618 hours in space.

  16. STS-112 Commander Ashby suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Commander Jeffrey Ashby finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  17. STS-106 Mission Specialist Lu suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-106 Mission Specialist Edward T. Lu smiles as he gets suited up in the Operations and Checkout Building before launch. This is Lu'''s second space flight. Space Shuttle Atlantis is set to lift off 8:45 a.m. EDT on the fourth flight to the International Space Station. During the 11-day mission, the seven-member crew will perform support tasks on orbit, transfer supplies and prepare the living quarters in the newly arrived Zvezda Service Module. The first long-duration crew, dubbed '''Expedition One,''' is due to arrive at the Station in late fall.

  18. STS-89 M.S. James F. Reilly suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist James Reilly, Ph.D., smiles as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. He holds a doctorate in geosciences. He and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station.

  19. pcircle - A Suite of Scalable Parallel File System Tools

    SciTech Connect

    WANG, FEIYI

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as async progress report, checkpoint and restart, as well as integrity checking.

  20. pcircle - A Suite of Scalable Parallel File System Tools

    Energy Science and Technology Software Center (ESTSC)

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as asyncmore » progress report, checkpoint and restart, as well as integrity checking.« less

  1. STS-102 MS Richards has launch suit checked during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 Mission Specialist Paul Richards has his launch suit checked for fit in the Operations and Checkout Building. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency exit from the launch pad and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on board, heading to the Space station for a four-month tenure. The Expedition One crew will return to Earth aboard Discovery. Launch on mission STS-102 is scheduled for March 8

  2. Determining a bends-preventing pressure for a space suit

    NASA Technical Reports Server (NTRS)

    Krutz, R. W., Jr.; Webb, J. T.; Dixon, G. A.

    1989-01-01

    Research conducted to determine the proper pressure for preventing bends during EVA without preoxygenation is examined. Male and female subjects with different breathing gas mixtures and pressures are studied in order to define the pressure. Visual and auditory Doppler ultrasonic signals are utilized to monitor intravascular gas bubbles. The workload, which simulates EVA, consists of a handturned bicycle ergometer, a torque wrench operation, and a rope pull. The experimental data reveal that the minimum space suit pressure needed to prevent decompression sickness is 9.5 psi.

  3. STS-110 M.S. Smith suits up for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-110 Mission Specialist Steven Smith relaxes during suit fit, which is part of Terminal Countdown Demonstration Test activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide flight crews an opportunity to participate in simulated launch countdown activities. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  4. STS-87 Pilot Steven W. Lindsey suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Pilot Steven Lindsey dons his launch and entry suit with the help of two assistants in the Operations and Checkout Building. Shortly, he and the five other crew members of STS-87 will depart for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Although this is his first Shuttle flight, Lindsey has logged more than 2,700 hours of flying time in 49 different types of aircraft.

  5. STS-87 Mission Specialist Takao Doi suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Dr. Doi is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Winston Scott during STS-87.

  6. STS-67 Payload Specialists Durrance and Parise suit up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In the Operations and Checkout Building, STS-67 Payload Specialists Samuel T. Durrance (left) and Ronald A. Parise have finished donning their launch/entry suits and chat with astronaut Joe Tanner while waiting for the rest of the crew. The two payload specialists -- who are both making their second trip into space -- and five fellow crew members will soon depart for Launch Pad 39A, where the Space Shuttle Endeavour is being readied for liftoff during a launch window opening at 1:37 a.m. EST, March 2.

  7. caTissue Suite 1.2 released —

    Cancer.gov

    caTissue Suite 1.2 is an open-source, web and programmatically accessible tool for managing biospecimens collected in support of basic and clinical research. Building on the capabilities of previous releases the application helps users manage biospecimen inventory, annotation and sample tracking. It also supports clinical and pathology report annotation and provides query capabilities for researchers to identify and find biospecimens for their research projects. In addition, it features "Dynamic Extensions", allowing Biorepositories to extend the caTissue data model and develop annotations customized for their institution.

  8. The SECO suite of codes for site Performance Assessment

    SciTech Connect

    Roache, P.J.

    1993-03-01

    Modeling for Performance Assessment of the Waste Isolation Pilot Plant (WIPP ) has led to development of the SECO suite of codes for groundwater flow, particle tracking, and transport. Algorithm and code developments include the following areas: facilitation of grid convergence tests in multiple domains; correct treatment of transmissivity factors for unconfined aquifers; efficient multigrid algorithms; a formulation of brine Darcy flow equations that uses freshwater head as the dependent able; boundary-fitted coordinates; temporal high order particle tracking; an efficient and accurate implicit Finite Volume TVD algorithm for radionuclide transport in (possibly) fractured porous media; accurate calculation of advection via a flux-based modified method of characteristics; and Quality Assurance procedures.

  9. STS-104 MS Reilly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, STS-104 Pilot Charles O. Hobaugh gets help donning his launch and entry suit before heading to the launch pad. This launch will be his first space flight. Liftoff of Space Shuttle Atlantis on mission STS-104 is targeted for 5:04 a.m., July 12, from Launch Pad 39B. The primary payload on the mission is the joint airlock module, which will be added to the International Space Station. The airlock will be the primary path for Space Station spacewalk entry and departure for U.S. spacesuits, and will also support the Russian Orlan spacesuit for EVA activity.

  10. STS-104 MS Gernhardt has suit check during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist Michael L. Gernhardt has suit and fit check during Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in Space Shuttle Atlantiss payload bay, and simulated countdown exercises. Other crew members participating are Commander Steven W. Lindsey, Pilot Charles O. Hobaugh and Mission Specialists Janet Lynn Kavandi and James F. Reilly. The launch of Atlantis on mission STS-104 is scheduled no earlier than July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  11. STS-104 MS Kavandi suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist Janet Lynn Kavandi adjusts her helmet as she dons her launch and entry suit before heading to the launch pad. This launch will be her third space flight. Liftoff of Space Shuttle Atlantis on mission STS-104 is targeted for 5:04 a.m., July 12, from Launch Pad 39B. The primary payload on the mission is the joint airlock module, which will be added to the International Space Station. The airlock will be the primary path for Space Station spacewalk entry and departure for U.S. spacesuits, and will also support the Russian Orlan spacesuit for EVA activity.

  12. STS-96 Pilot Rick Husband suits up for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-96 Pilot Rick D. Husband waves while being checked by a suit technician after donning his launch and entry suit during final launch preparations. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction.. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  13. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  14. Electromagnetic tracker accuracy in the CyberKnife suite

    NASA Astrophysics Data System (ADS)

    Wilson, Emmanuel; Slack, Rebecca; Banovac, Filip; Dieterich, Sonja; Zhang, Hui; Cleary, Kevin

    2006-03-01

    Electromagnetic trackers have found inroads into medical applications as a tool for navigation in recent years. Their susceptibility to interference from both electromagnetic and ferromagnetic sources have prompted several accuracy assessment studies in past years. To the best of our knowledge, this is the first accuracy study conducted to characterize measurement accuracy of an NDI AURORA electromagnetic tracker within a CyberKnife radiosurgery suite. CyberKnife is a frameless, stereotactic radiosurgery device used to ablate tumors within the brain, spine and in recent years, the chest and abdomen. This paper uses a data collection protocol to collect uniformly distributed data points within a subset of the AURORA measurement volume in a CyberKnife suite. The key aim of the study is to determine the extent to which large metal components of the CyberKnife stereotactic radiosurgery device and robot mount contribute to overall system performance for the AURORA electromagnetic device. A secondary goal of the work is to determine the variation in accuracy and device behavior with the presence of ionizing radiation when the LINAC is turned on.

  15. Wireless hydrotherapy smart suit for monitoring handicapped people

    NASA Astrophysics Data System (ADS)

    Correia, Jose H.; Mendes, Paulo M.

    2005-02-01

    This paper presents a smart suit, water impermeable, containing sensors and electronics for monitoring handicapped people at hydrotherapy sessions in swimming-pools. For integration into textiles, electronic components should be designed in a functional, robust and inexpensive way. Therefore, small-size electronics microsystems are a promising approach. The smart suit allows the monitoring of individual biometric data, such as heart rate, temperature and movement of the body. Two solutions for transmitting the data wirelessly are presented: through a low-voltage (3.0 V), low-power, CMOS RF IC (1.6 mm x 1.5 mm size dimensions) operating at 433 MHz, with ASK modulation and a patch antenna built on lossy substrates compatible with integrated circuits fabrication. Two different substrates were used for antenna implementation: high-resistivity silicon (HRS) and Corning Pyrex #7740 glass. The antenna prototypes were built to operate close to the 5 GHz ISM band. They operate at a center frequency of 5.705 GHz (HRS) and 5.995 GHz (Pyrex). The studied parameters were: substrate thickness, substrate losses, oxide thickness, metal conductivity and thickness. The antenna on HRS uses an area of 8 mm2, providing a 90 MHz bandwidth and ~0.3 dBi of gain. On a glass substrate, the antenna uses 12 mm2, provides 100 MHz bandwidth and ~3 dBi of gain.

  16. Integration of APECS and VE-Suite for Data Overlay

    SciTech Connect

    McCorkel, Doug; Bivins, Gerrick; Jordan, Terry; Bryden, Mark; Zitney, S.E.; Widmann, John; Osawe, Maxwell

    2008-06-01

    In the design of advanced power generation facilities, process simulation tools are being utilized to model plant behavior and quickly analyze results. While such tools enable investigation of crucial aspects of plant design, typical commercial process simulators still do not explore some plant design information, including high-fidelity data from computational fluid dynamics (CFD) models of complex thermal and fluid flow phenomena, economics data used for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Software tools must be created that allow disparate sources of information to be integrated for facilitating accurate and effective plant design. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus®) and high-fidelity equipment simulation (e.g., FLUENT®). In this paper, the integration of the high-fidelity CFD data with overall process data in a virtual power simulation environment will be described. More specifically, we will highlight VE-Suite, an open-source virtual engineering (VE) software toolkit, and its support of Aspen Plus® Hierarchy blocks via the VE-AspenUnit.

  17. Beyond Petascale with the HipGISAXS Software Suite

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Li, Sherry; Chourou, Slim; Sarje, Abhinav

    2014-03-01

    We have developed HipGISAXS, a software suite to analyze GISAXS and SAXS data for structural characterization of materials at the nano scale using X-rays. The software has been developed as a massively-parallel system capable of harnessing the raw computational power offered by clusters and supercomputers built using graphics processors (GPUs), Intel Phi co-processors, or commodity multi-core CPUs. Currently the forward GISAXS simulation is a major component of HipGISAXS, which simulates the X-ray scattering process based on the Distorted Wave Born Approximation (DWBS) theory, for any given nano structures and morphologies with a set of experimental configurations. These simulations are compute-intensive, and have a high degree of parallelism available, making them well-suited for fine-grained parallel computations on highly parallel many core processors like GPUs. Furthermore, a large number of such simulations can be carried out simultaneously for various experimental input parameters. HipGISAXS also includes a Reverse Monte Carlo based modeling tool for SAXS data. With HipGISAXS we have demonstrated a sustained compute performance of over 1 Petaflop on 8000 GPU nodes of the Titan supercomputer at ORNL, and have shown it to be highly scalable.

  18. Development of NASA Earth Observing System Simulator Suite (NEOS3)

    NASA Astrophysics Data System (ADS)

    Niamsuwan, N.; Tanelli, S.; Johnson, M. P.; Jacob, J. C.

    2012-12-01

    NASA Earth Observing System Simulator Suite (NEOS3) is a web-based integrated simulator for Earth remote sensing applications. Initially developed for atmospheric remote sensing instruments, NEOS3 is equipped with start-of-the-art modules to enable the realistic simulation of satellite observables. The main objective of the development is to provide an advanced, sophisticated, and user-friendly simulator package that can be used by both scientists for research-oriented applications and by system engineers for an instrument design purpose. This system is accessible via a web interface and capable of distributing computationally intensive tasks to remote servers such as those at the NASA Advanced Supercomputing (NAS) Division. Among other advanced models, the propagation models integrated in NEOS3 include DOMUS (DOppler MUltiple-Scattering simulator) and SHDOM (Spherical Harmonic Discrete Ordinate Method) for simulation of radars and radiometers, respectively. These two models enable 3D simulation of wave propagation through the atmosphere. The electromagnetic scattering properties of snow and cloud ice particles can be obtained from the Snowfake database (built upon a realistic snow growth model and the Discrete Dipole Approximation technique). Alternatively, different libraries of models can be selected for individual components of the simulation procedure. The presentation will cover an overview of 3 distinct perspectives of the NEOS3 system: capabilities, architecture and basic workflow. It will serve as an introduction for prospective users as well as contributors who desire to further enhance this simulator suite by providing an improved model.

  19. Analysis of a Radiation Model of the Shuttle Space Suit

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, John E.; Kim, Myung-Hee; Qualls, Garry D.; Wilson, John W.

    2003-01-01

    The extravehicular activity (EVA) required to assemble the International Space Station (ISS) will take approximately 1500 hours with 400 hours of EVA per year in operations and maintenance. With the Space Station at an inclination of 51.6 deg the radiation environment is highly variable with solar activity being of great concern. Thus, it is important to study the dose gradients about the body during an EVA to help determine the cancer risk associated with the different environments the ISS will encounter. In this paper we are concerned only with the trapped radiation (electrons and protons). Two different scenarios are looked at: the first is the quiet geomagnetic periods in low Earth orbit (LEO) and the second is during a large solar particle event in the deep space environment. This study includes a description of how the space suit's computer aided design (CAD) model was developed along with a description of the human model. Also included is a brief description of the transport codes used to determine the total integrated dose at several locations within the body. Finally, the results of the transport codes when applied to the space suit and human model and a brief description of the results are presented.

  20. A comparison of two Shuttle launch and entry suits - Reach envelope, isokinetic strength, and treadmill tests

    NASA Technical Reports Server (NTRS)

    Schafer, Lauren E.; Rajulu, Sudhakar L.; Klute, Glenn K.

    1992-01-01

    A quantification has been conducted of any existing differences between the performance, in operational conditions, of the Space Shuttle crew Launch Entry Suit (LES) and the new Advanced Crew Escape Suit (ACES). While LES is a partial-pressure suit, the ACES system which is being considered as a replacement for LES is a full-pressure suit. Three tests have been conducted with six subjects to ascertain the suits' reach envelope, strength, and treadmill performance. No significant operational differences were found between the two suit designs.

  1. Enhanced Verification Test Suite for Physics Simulation Codes

    SciTech Connect

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater

  2. Laboratory validation of the IMEEDS nuclear detection suite

    SciTech Connect

    Bandong, B. B.; Volpe, A. M.

    1998-12-17

    There are naturally occurring radionuclides in the ocean that are derived from cosmic ray interaction in the atmosphere and weathering of crustal rocks on land and under the sea. In addition, man-made radioisotopes are present as a consequence of mining, processing, enrichment, re-processing and testing of fissile nuclear material. The distribution of radioisotopes in natural waters is a function of the chemical properties of the elements and the physico-chemical properties of the medium (Harvey et al., 1990; von Gunten and Benes, 1995). To improve analytical detection levels, the sampling system described in this report is capable of processing hundreds of liters of seawater rapidly, and isolating, or pre-concentrating radionuclides found on particle, colloidal and dissolved phases. Results for a variety of trace elements and radiocesium in river and coastal waters processed through this sampler system are described in a companion report (Field Test of the Radionuclide Sampling System). The previous report discussed fraction of elements and radionuclides between the dissolved and solid phases in natural waters that show large salinity and turbidity variation. The following report describes results for laboratory tests using identical natural waters that were spiked with a broad suite of traceable reference gamma-emitting radioisotopes. These isotopes are man-made, and they are found in natural waters only as a consequence of human activity. The spiked water samples were processed through the sampler system, and radionuclides in the solid and dissolved phases were analyzed directly by gamma spectrometry without further extraction using mineral acids and solvents. Radioisotope abundance in the different samples provide additional information on partitioning in the environment, as well as the efficiency, or effective recovery of isotopes in waters processed through the sampler. The objective of this test is to quantify extraction efficiency for a suite of

  3. The Software Architecture of the Upgraded ESA DRAMA Software Suite

    NASA Astrophysics Data System (ADS)

    Kebschull, Christopher; Flegel, Sven; Gelhaus, Johannes; Mockel, Marek; Braun, Vitali; Radtke, Jonas; Wiedemann, Carsten; Vorsmann, Peter; Sanchez-Ortiz, Noelia; Krag, Holger

    2013-08-01

    In the beginnings of man's space flight activities there was the belief that space is so big that everybody could use it without any repercussions. However during the last six decades the increasing use of Earth's orbits has lead to a rapid growth in the space debris environment, which has a big influence on current and future space missions. For this reason ESA issued the "Requirements on Space Debris Mitigation for ESA Projects" [1] in 2008, which apply to all ESA missions henceforth. The DRAMA (Debris Risk Assessment and Mitigation Analysis) software suite had been developed to support the planning of space missions to comply with these requirements. During the last year the DRAMA software suite has been upgraded under ESA contract by TUBS and DEIMOS to include additional tools and increase the performance of existing ones. This paper describes the overall software architecture of the ESA DRAMA software suite. Specifically the new graphical user interface, which manages the five main tools ARES (Assessment of Risk Event Statistics), MIDAS (MASTER-based Impact Flux and Damage Assessment Software), OSCAR (Orbital Spacecraft Active Removal), CROC (Cross Section of Complex Bodies) and SARA (Re-entry Survival and Risk Analysis) is being discussed. The advancements are highlighted as well as the challenges that arise from the integration of the five tool interfaces. A framework had been developed at the ILR and was used for MASTER-2009 and PROOF-2009. The Java based GUI framework, enables the cross-platform deployment, and its underlying model-view-presenter (MVP) software pattern, meet strict design requirements necessary to ensure a robust and reliable method of operation in an environment where the GUI is separated from the processing back-end. While the GUI framework evolved with each project, allowing an increasing degree of integration of services like validators for input fields, it has also increased in complexity. The paper will conclude with an outlook on

  4. Physiological responses to wearing the space shuttle launch and entry suit and the prototype advanced crew escape suit compared to the unsuited condition

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Mcbrine, John J.; Hayes, Judith C.; Stricklin, Marcella D.; Greenisen, Michael C.

    1993-01-01

    The launch and entry suit (LES) is a life support suit worn during Orbiter ascent and descent. The impact of suit weight and restricted mobility on egress from the Orbiter during an emergency is unknown. An alternate suit - the advanced crew escape suite (ACES) - is being evaluated. The physiological responses to ambulatory exercise of six subjects wearing the LES and ACES were measured and compared to those measurements taken while unsuited. Dependent variables included heart rate and metabolic response to treadmill walking at 5.6 km/h (3.5 mph), and also bilateral concentric muscle strength about the knee, shoulder, and elbow. No significant (p greater than 0.06) differences in heart rate or metabolic variables were measured in either suit while walking at 5.6 km/h. Significant (p less than 0.05) decreases in all metabolic variables were remarked when both suits were compared to the unsuited condition. There were no significant (p greater than 0.05) differences among the three suit conditions at 30 or 180 deg/s for muscles about the elbow and knee; however, about the shoulder, a significant (p = 0.0215) difference between the ACES and the unsuited condition was noted. Therefore, wearing a life support suit while performing Orbiter egress imposes a significant metabolic demand on crewmembers. Selective upper body strength movements may be compromised.

  5. STS-96 Commander Kent Rominger suits up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-96 Commander Kent V. Rominger dons his launch and entry suit, plus helmet, during final launch preparations. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction.. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  6. CoMD Implementation Suite in Emerging Programming Models

    Energy Science and Technology Software Center (ESTSC)

    2014-09-23

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecularmore » dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.« less

  7. STS-88 Mission Specialist James Newman suits up before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-88 Mission Specialist James H. Newman takes part in a complete suit check before launch. Newman holds a toy dog, 'Pluto,' representing the crew nickname Dog Crew 3 and Newman's nickname, Pluto. Mission STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, landing at 10:17 p.m. EST on Dec. 14.

  8. Cyclops: new modular software suite for cryo-EM.

    PubMed

    Plaisier, J R; Jiang, L; Abrahams, J P

    2007-01-01

    Cyclops is a new computer program designed as a graphical front-end that allows easy control and interaction with tasks and programs for 3D reconstruction of biological complexes using cryo-electron microscopy. Cyclops' current plug-ins are designed for automated particle picking and include two new algorithms, automated carbon masking and quaternion based rotation space sampling, which are also presented here. Additional plug-ins are in the pipeline. Cyclops allows straightforward organization and visualization of all data and tasks and allows both interactive and batch-wise processing. Furthermore, it was designed for straightforward implementation in grid architectures. As a front-end to a collection of programs it provides a common interface to these programs, thus enhancing the usability of the suite and the productivity of the user. PMID:16931052

  9. Test suite for evaluating performance of multithreaded MPI communication.

    SciTech Connect

    Thakur, R.; Gropp, W.; Mathematics and Computer Science; Univ. of Illinois

    2009-12-01

    As parallel systems are commonly being built out of increasingly large multicore chips, application programmers are exploring the use of hybrid programming models combining MPI across nodes and multithreading within a node. Many MPI implementations, however, are just starting to support multithreaded MPI communication, often focussing on correctness first and performance later. As a result, both users and implementers need some measure for evaluating the multithreaded performance of an MPI implementation. In this paper, we propose a number of performance tests that are motivated by typical application scenarios. These tests cover the overhead of providing the MPI-THREAD-MULTIPLE level of thread safety for user programs, the amount of concurrency in different threads making MPI calls, the ability to overlap communication with computation, and other features. We present performance results with this test suite on several platforms (Linux cluster, Sun and IBM SMPs) and MPI implementations (MPICH2, Open MPI, IBM, and Sun).

  10. CoMD Implementation Suite in Emerging Programming Models

    SciTech Connect

    Haque, Riyaz; Reeve, Sam; Juallmes, Luc; Asal, Sameer Abu; Landmehr, Aaron; Gaffer, Sanian; Teodor Bercea, Gheorghe; Rubinstein, Zach

    2014-09-23

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecular dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.

  11. Elbow and knee joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    An elbow or knee joint for a hard space suit or similar usage is formed of three serially connected rigid sections which have truncated spherical configurations. The ends of each section form solid geometric angles, and the sections are interconnected by hermetically sealed ball bearings. The outer two sections are fixed together for rotation in a direction opposite to rotation of the center section. A preferred means to make the outer sections track each other in rotation comprises a rotatable continuous bead chain which engages sockets circumferentially spaced on the facing sides of the outer races of the bearings. The joint has a single pivot point and the bearing axes are always contained in a single plane for any articulation of the joint. Thus flexure of the joint simulates the coplanar flexure of the knee or elbow and is not susceptible to lockup.

  12. Suit alleges cosmetology school targeted gays for removal.

    PubMed

    1995-09-01

    A former executive at the [name removed] School of Beauty Culture has filed a lawsuit alleging that the school identifies employees who have higher than average health-care costs and then initiates a harassment campaign against these employees. According to the executive, [name removed], the school president discussed a plan to reduce expenses by decreasing health care insurance benefits. The suit states that the Philadelphia-based company follows a policy of identifying cancer patients and homosexuals and then targets these individuals for harassment and abuse. When Mr. [Name removed] was diagnosed with a brain tumor, he was subjected to a range of tactics that encouraged him to quit, including a barrage of verbal abuse, being barred from meetings of his peers, and an expanded workload. The former executive charges the school and its president with violating the Americans with Disabilities Act (ADA). Discovery in the litigation has begun, but no trial date has been scheduled. PMID:11362768

  13. STS-78 Mission Specialist Charles E. Brady suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 Mission Specialist Charles E. Brady Jr. is donning his launch/entry suit in the Operations and Checkout Building. A spaceflight rookie, Brady was selected by NASA to join the astronaut corps in March 1992; he is a medical doctor who also is a commander in the U.S. Navy. Along with six fellow crew members, he will depart the O&C in a short while and head for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and-a-half hour launch window opening at 10:49 a.m. EDT, June 20. STS-78 will be an extended duration flight during which extensive research will be conducted in the Life and Microgravity Spacelab (LMS) located in the payload bay.

  14. STS-81 Mission Specialist Jerry Linenger suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Jerry Linenger waves to the camera in his launch/entry suit and helmet in the suitup room of the Operations and Checkout (O&C) Building. He is on his second Shuttle flight and has been an astronaut since 1992. Linenger will become a member of the Mir 22 crew and replace astronaut John Blaha on the Russian space station for a four-month stay after the Space Shuttle orbiter Atlantis docks with the orbital habitat on flight day 3. A medical doctor and an exercise buff, Linenger will conduct physiological experiments during his stay on Mir. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  15. STS-81 Mission Specialist Peter Wisoff suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-81 Mission Specialist Peter J. K. 'Jeff' Wisoff prepares for the fifth Shuttle- Mir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS- 57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.

  16. STS-87 Payload Specialist Leonid K. Kadenyuk suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members of STS-87will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Kadenyuk will be flying his first mission on STS-87. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbias middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings.

  17. STS-99 Commander Kregel suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Commander Kevin Kregel waves as he suits up during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  18. STS-89 M.S. Bonnie Dunbar suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Bonnie Dunbar, Ph.D., smiles as she completes the donning of her launch/entry suit in the Operations and Checkout (O&C) Building. Dr. Dunbar completed her doctorate at the University of Houston in Texas. Her multi-disciplinary dissertation (materials science and physiology) involved evaluating the effects of simulated space flight on bone strength and fracture toughness. She and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station.

  19. STS-113 cosmonaut Budarin during suit check for TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 crew member Nikolai Budarin relaxes during fit check of his launch and entry suit, part of Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes emergency egress training and a launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  20. Expedition 6 Commander Ken Bowersox during TCDT suit fit check

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 Commander Ken Bowersox adjusts his launch and entry suit during fit check, part of Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes emergency egress training and a launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  1. Expedition 6 Commander Ken Bowersox during TCDT suit fit check

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 Commander Ken Bowersox adjusts his gloves during fit check of his launch and entry suit, part of Terminal Countdown Demonstration Test activities. He and the rest of the crew are preparing for the mission aboard Space Shuttle Endeavour, which is scheduled to launch Nov. 10. The TCDT includes emergency egress training and a launch countdown. The Expedition 6 crew will travel on Space Shuttle Endeavour to the International Space Station to replace Expedition 5, returning to Earth after 4 months. The primary payloads on mission STS-113 are the first port truss segment, P1, and the Crew and Equipment Translation Aid (CETA) Cart B. Once delivered, the P1 truss will remain stowed until flight 12A.1 in 2003 when it will be attached to the central truss segment, S0, on the Space Station. Launch is scheduled for Nov. 10, 2002.

  2. STS-83 Mission Commander James D. Halsell, Jr. suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-83 Mission Commander James D. Halsell, Jr., gives a thumbs-up after he is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Halsell is on his third space flight, having served as pilot of both STS-74 and STS-65. He is a lieutenant colonel in the Air Force and a former SR-71 Blackbird test pilot and holds master's degrees in management and space operations. Halsell will have responsibility for the success of the mission and will operate and maintain Columbia during the Red, or second shift. He will also assist with a materials science experiment and a protein crystal growth payload during the 16-day mission. Halsell and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 p.m. EST, April 4.

  3. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  4. STS-89 Commander Terrence W. Wilcutt suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Commander Terrence Wilcutt smiles as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. A veteran of two space flights, he has logged more than 512 hours in space. He served as pilot on STS-68 and STS-79. He and six fellow crew members will soon depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station.

  5. STS-102 MS Richards suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - STS-102 Mission Specialist Paul Richards signals thumbs up for launch as he suits up in the Operations and Checkout Building. This will be Richards''' first Shuttle launch. . STS-102 is the eighth construction flight to the International Space Station, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. In addition, three of the crew members Mission Specialists James Voss, Susan Helms and Yury Usachev, known as Expedition Two are flying to the Station to replace Expedition One, who will return to Earth on Discovery. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  6. STS-103 Commander Brown suits up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Commander Curtis L. Brown Jr. is suited up and ready to go for the second launch attempt of Space Shuttle Discovery. The previous launch attempt on Dec. 17 was scrubbed about 8:52 p.m. due to numerous violations of weather launch commit criteria at KSC. Brown and fellow crew members Pilot Scott J. Kelly and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Francois Clervoy of France are scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  7. Linear Analysis and Verification Suite for Edge Turbulence

    SciTech Connect

    Myra, J R; Umansky, M

    2008-04-24

    The edge and scrape-off-layer region of a tokamak plasma is subject to well known resistive and ideal instabilities that are driven by various curvature- and sheath-related mechanisms. While the boundary plasma is typically strongly turbulent in experiments, it is useful to have computational tools that can analyze the linear eigenmode structure, predict quantitative trends in growth rates and elucidate and the underlying drive mechanisms. Furthermore, measurement of the linear growth rate of unstable modes emerging from a known, established equilibrium configuration provides one of the few quantitative ways of rigorously benchmarking large-scale plasma turbulence codes with each other and with a universal standard. In this report, a suite of codes that can describe linearized, nonlocal (e.g. separatrix-spanning) modes in axisymmetric (realistic divertor), toroidal geometry is discussed. Examples of several benchmark comparisons are given, and future development plans for a new eigenvalue edge code are presented.

  8. User Guide for the STAYSL PNNL Suite of Software Tools

    SciTech Connect

    Greenwood, Lawrence R.; Johnson, Christian D.

    2013-02-27

    The STAYSL PNNL software suite provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations.

  9. Mission Specialist Smith is suited and ready for launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Operations and Checkout Building, STS-103 Mission Specialist Steven L. Smith signals he is suited up and ready for launch. Other crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michel Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland. Clervoy and Nicollier are with the European Space Agency. The STS-103 mission, to service the Hubble Space Telescope, is scheduled for launch Dec. 17 at 8:47 p.m. EST from Launch Pad 39B. Mission objectives include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. After the 8-day, 21-hour mission, Discovery is expected to land at KSC Sunday, Dec. 26, at about 6:30 p.m. EST.

  10. STS-100 MS Lonchakov suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Smiling, STS-100 Mission Specialist Yuri V. Lonchakov waves as he suits up for launch in the Operations and Checkout Building. Lonchakov is with the Russian Aviation and Space Agency. The 11-day mission to the International Space Station will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator system and the UHF Antenna, and the Multi-Purpose Logistics Module Raffaello. The mission includes two planned spacewalks for installation of the SSRMS. The mission is also the inaugural flight of Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  11. Impact verification of space suit design for space station

    NASA Technical Reports Server (NTRS)

    Fish, Richard H.

    1987-01-01

    The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.

  12. Recent advances in the CRANK software suite for experimental phasing

    SciTech Connect

    Pannu, Navraj S. Waterreus, Willem-Jan; Skubák, Pavol; Sikharulidze, Irakli; Abrahams, Jan Pieter; Graaff, Rudolf A. G. de

    2011-04-01

    Recent developments in the CRANK software suite for experimental phasing have led to many more structures being built automatically. For its first release in 2004, CRANK was shown to effectively detect and phase anomalous scatterers from single-wavelength anomalous diffraction data. Since then, CRANK has been significantly improved and many more structures can be built automatically with single- or multiple-wavelength anomalous diffraction or single isomorphous replacement with anomalous scattering data. Here, the new algorithms that have been developed that have led to these substantial improvements are discussed and CRANK’s performance on over 100 real data sets is shown. The latest version of CRANK is freely available for download at http://www.bfsc.leidenuniv.nl/software/crank/ and from CCP4 (http://www.ccp4.ac.uk/)

  13. Scalable sensing electronics towards a motion capture suit

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Gisby, Todd A.; Xie, Shane; Anderson, Iain A.

    2013-04-01

    Being able to accurately record body motion allows complex movements to be characterised and studied. This is especially important in the film or sport coaching industry. Unfortunately, the human body has over 600 skeletal muscles, giving rise to multiple degrees of freedom. In order to accurately capture motion such as hand gestures, elbow or knee flexion and extension, vast numbers of sensors are required. Dielectric elastomer (DE) sensors are an emerging class of electroactive polymer (EAP) that is soft, lightweight and compliant. These characteristics are ideal for a motion capture suit. One challenge is to design sensing electronics that can simultaneously measure multiple sensors. This paper describes a scalable capacitive sensing device that can measure up to 8 different sensors with an update rate of 20Hz.

  14. STS-83 Mission Specialist Michael L. Gernhardt suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-83 Mission Specialist Michael L. Gernhardt is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. He first flew in this capacity on STS-69. He has been a professional deep sea diver and engineer and holds a doctorate in bioengineering. Gernhardt will be in charge of the Blue shift and as flight engineer will operate and maintain the orbiter while Halsell and Still are asleep as members of the Red shift. He will also back them up on the flight deck during the ascent and re- entry phases of the mission. Gernhardt and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:00 p.m. EST, April 4.

  15. Prison employees not immune from HIV disclosure suit.

    PubMed

    1999-04-30

    The 2nd U.S. Circuit Court of Appeals ruled that people do not lose their right to maintain confidentiality of their HIV status upon being jailed. A case filed by [name removed], an inmate at the Albion Correctional Facility in New York, alleged that a corrections officer gratuitously disclosed her HIV-positive status and transsexual status to a coworker in front of other inmates. The disclosures exposed [name removed] to harassment by guards and prisoners. Although [name removed] died of AIDS-related complications in 1995, her estate continued the suit. Judge Dennis G. Jacobs ruled that while it was permissible to disclose such information for legitimate penological purposes, this revelation was done for gossip with deliberate indifference to the inmate's safety. The judge also found the defendants were entitled to qualified immunity because the right to privacy in a prison setting had not been established at the time of the disclosures. PMID:11366534

  16. STS-100 MS Hadfield suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - STS-100 Mission Specialist Chris A. Hadfield is ready for launch after suiting up in the Operations and Checkout Building. Hadfield is with the Canadian Space Agency. The 11-day mission to the International Space Station will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator system and the UHF Antenna, and the Multi-Purpose Logistics Module Raffaello. The mission includes two planned spacewalks for installation of the SSRMS. The mission is also the inaugural flight of Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  17. STS-104 MS Reilly has suit check during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist James F. Reilly is happy to be going through suit and fit check during Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in Space Shuttle Atlantiss payload bay, and simulated countdown exercises. Other crew members participating are Commander Steven W. Lindsey, Pilot Charles O. Hobaugh and Mission Specialists Janet Lynn Kavandi and Michael L. Gernhardt. The launch of Atlantis on mission STS-104 is scheduled no earlier than July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  18. STS-100 MS Guidoni suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Happy to be suiting up for launch, STS-100 Mission Specialist Umberto Guidoni gives thumbs up. Guidoni is with the European Space Agency. The 11-day mission to the International Space Station will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator system and the UHF Antenna, and the Multi-Purpose Logistics Module Raffaello. The mission includes two planned spacewalks for installation of the SSRMS. The mission is also the inaugural flight of Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  19. STS-104 MS Kavandi has suit check during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-104 Mission Specialist Janet Lynn Kavandi looks at nearby crew members during suit and fit check during Terminal Countdown Demonstration Test (TCDT) activities at KSC. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in Space Shuttle Atlantiss payload bay, and simulated countdown exercises. Other crew members participating are Commander Steven W. Lindsey, Pilot Charles O. Hobaugh and Mission Specialists Michael L. Gernhardt and James F. Reilly. The launch of Atlantis on mission STS-104 is scheduled no earlier than July 12 from Launch Pad 39B. The mission is the 10th flight to the International Space Station and carries the Joint Airlock Module.

  20. STS-100 MS Parazynski suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Smiling, STS-100 Mission Specialist Scott E. Parazynski gives thumbs up for launch as he suits up in the Operations and Checkout Building. The 11-day mission to the International Space Station will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator system and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS, which will be performed by Parazynski and Mission Specialist Chris A. Hadfield. The mission is also the inaugural flight of Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.

  1. STS-103 Crew at Breakfast, Suiting, Departing O&C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Hubble Space Telescope (HST) team is preparing for NASA's third scheduled service call to Hubble. This mission, STS-103, will launch from Kennedy Space Center aboard the Space Shuttle Discovery. The seven flight crew members for STS-103 are: Commander Curtis L. Brown (his sixth flight), Pilot Scott J. Kelly and European Space Agency (ESA) astronaut Jean-Francois Clervoy (his third flight) will join space walkers Steven L. Smith (his third flight), C. Michael Foale (his fifth flight), John M. Grunsfeld (his third flight) and ESA astronaut Claude Nicollier (his fourth flight). This current video presents a live footage of the seven STS-103 crewmembers eating breakfast, suiting, and departing the O&C (Operations and Checkout) before the 6:50 p.m. lift-off.

  2. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  3. fqtools: an efficient software suite for modern FASTQ file manipulation

    PubMed Central

    Droop, Alastair P.

    2016-01-01

    Summary: Many Next Generation Sequencing analyses involve the basic manipulation of input sequence data before downstream processing (e.g. searching for specific sequences, format conversion or basic file statistics). The rapidly increasing data volumes involved in NGS make any dataset manipulation a time-consuming and error-prone process. I have developed fqtools; a fast and reliable FASTQ file manipulation suite that can process the full set of valid FASTQ files, including those with multi-line sequences, whilst identifying invalid files. Fqtools is faster than similar tools, and is designed for use in automatic processing pipelines. Availability and implementation: fqtools is open source and is available at: https://github.com/alastair-droop/fqtools. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: a.p.droop@leeds.ac.uk PMID:27153699

  4. Astronaut Neil Armstrong in Launch Complex 16 trailer during suiting up

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Neil A. Armstrong, command pilot of the Gemini 8 space flight, sits in the Launch Complex 16 trailer during suiting up operations for the Gemini 8 mission. Suit technician Jim Garrepy assists.

  5. STS-26 Pilot Richard O. Covey adjusts LES neck dam during preflight suiting

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey adjusts launch and entry suit (LES) neck dam during preflight suiting activities in the Operations and Checkout (O and C) Building at the Kennedy Space Center (KSC).

  6. The use of anti-gravity suits for the control of critical intra-abdominal hemmorhage

    NASA Technical Reports Server (NTRS)

    Kravik, S.; Landmark, K.

    1980-01-01

    The history and use as well as the physiology of the use of antigravity suits for the control of critical intra-abdominal hemorrhages is reviewed. The use of this suit is highly recommended, especially for first aid.

  7. Development of a Fan for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  8. Comparing apples and oranges: the Community Intercomparison Suite

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip; Pascoe, Stephen

    2014-05-01

    Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col ::" which will resample the simulation data to the spatio-temporal sampling of the observations, contingent on a few user-defined options that specify a resampling kernel. CIS can deal with both gridded and ungridded datasets of 2, 3 or 4 spatio-temporal dimensions. It can handle different spatial coordinates (e.g. longitude or distance, altitude or pressure level). CIS supports both HDF, netCDF and ASCII file formats. The suite is written in Python with entirely publicly available open source dependencies. Plug-ins allow a high degree of user-moddability. A web-based developer hub includes a manual and simple examples. CIS is developed as open source code by a specialist IT company under supervision of scientists from the University of Oxford as part of investment in the JASMIN superdatacluster facility at the Centre of Environmental Data Archival.

  9. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  10. Mafic rocks of the Adirondack Highlands: One suite or many

    SciTech Connect

    Whitney, P.R. . New York State Museum)

    1993-03-01

    Mafic rocks in the granulite facies terrane of the Adirondack Highlands form at least 3 and possibly as many as 6 groups, based on field, petrographic, and geochemical criteria. Most abundant is the olivine metagabbro-amphibolite group (OMA), equivalent to the mafic suite'' of Olson (J. Petrol. 33:471, 1992). OMA occurs in irregular to tabular bodies, locally with intrusive relations, in all major rock types in the E and central Highlands. OMA is strongly olivine normative and forms a continuous differentiation series (Olson, 1992). Plagioclase-two pyroxene-garnet granulites (PGG) form dikes up to several m wide, in anorthositic host rocks. PGG are ferrogabbroic or ferrodioritic and approximately silica saturated. Two subgroups differ sharply in Mg, P, and trace elements. Ferrodiorite and monzodiorite gneisses (FMG), quartz normative and commonly migmatitic, occur in several large bodies in the NE Highlands and as extensive thin sheets in the W and SE Highlands, in association with anorthositic rocks. Three subgroups are distinguishable using Mg/Fe ratios and trace elements. Major element least-squares modeling suggests that both PGG and FMG could be derived by fractionation of gabbroic anorthosite liquids. A differentiation series is not evident, however, and both trace element (Ba, Rb, Sr, Zr and REE) data and normative plagioclase (An [>=] plag. in anorthosite) indicate a more complex origin. One subgroup of FMG may be early cumulates of the mangerite-charnockite suite. The chemistry of OMA, PGG, and FMG reflects their evolved nature and cannot be readily interpreted in terms of magma sources.

  11. An Integrated Suite of Tools to support Human Factors Engineering

    SciTech Connect

    Jacques V Hugo

    2001-08-01

    Human Factors Engineering (HFE) work for the nuclear industry imposes special demands on the practitioner in terms of the scope, complexity and safety requirements for humans in nuclear installations. Unfortunately HFE lags behind other engineering disciplines in the development and use of modern, powerful tools for the full range of analysis and design processes. HFE does not appear to be an attractive market for software and hardware developers and as a result, HFE practitioners usually have to rely on inefficient general-purpose tools like standard office software, or they have to use expensive special-purpose tools that offer only part of the solution they require and which also do not easily integrate with other tools. There have been attempts to develop generic software tools to support the HFE analyst and also to achieve some order and consistency in format and presentation. However, in spite of many years of development, very few tools have emerged that have achieved these goals. This would suggest the need for special tools, but existing commercial products have been found inadequate and to date not a single tool has been developed that adequately supports the special requirements of HFE work for the nuclear industry. This paper describes an integrated suite of generic as well as purpose-built tools that facilitate information solicitation, issues tracking, work domain analysis, functional requirements analysis, function allocation, operational sequence analysis, task analysis and development of HSI design requirements. In combination, this suite of tools supports the analytical as well as the representational aspects of key HFE activities primarily for new NPPs, including capturing information from subject matter experts and various source documents directly into the appropriate tool and then linking, analyzing and extending that information further to represent detailed functional and task information, and ultimately HSI design requirements. The paper

  12. Comparing apples and oranges: the Community Intercomparison Suite

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip; Kershaw, Philip; Pascoe, Stephen

    2015-04-01

    Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col ::" which will resample the simulation data to the spatio-temporal sampling of the observations, contingent on a few user-defined options that specify a resampling kernel. As an example, we apply CIS to a case study of biomass burning aerosol from the Congo. Remote sensing observations, in-situe observations and model data are shown in various plots, with the purpose of either comparing different datasets or integrating them into a single comprehensive picture. CIS can deal with both gridded and ungridded datasets of 2, 3 or 4 spatio-temporal dimensions. It can handle different spatial coordinates (e.g. longitude or distance, altitude or pressure level). CIS supports both HDF, netCDF and ASCII file formats. The suite is written in Python with entirely publicly available open source dependencies. Plug-ins allow a high degree of user-moddability. A web-based developer hub includes a manual and simple examples. CIS is developed as open source code by a specialist IT company under supervision of scientists from the University of Oxford and the Centre of Environmental Data Archival as part of investment in the JASMIN superdatacluster facility.

  13. A suite of RS/1 procedures for chemical laboratory statistical quality control and Shewhart control charting

    SciTech Connect

    Shanahan, K.L.

    1990-09-01

    A suite of RS/1 procedures for Shewhart control charting in chemical laboratories is described. The suite uses the RS series product QCA (Quality Control Analysis) for chart construction and analysis. The suite prompts users for data in a user friendly fashion and adds the data to or creates the control charts. All activities are time stamped. Facilities for generating monthly or contiguous time segment summary charts are included. The suite is currently in use at Westinghouse Savannah River Company.

  14. Two astronauts check mobility of different types of Apollo space suits

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Two astronauts check mobility of two different types of Apollo space suits. Astronaut James B. Irwin (on left) wears the original Block II Apollo pressure suit which the Apollo 204 Review Board recommended by changed. Astronaut John S. Bull (on right) wears the new Apollo pressure suit which incorporates changes recommended by the board. The new suit worn by Bull has an outer layer of Beta Fabric, a non-flammable fiber glass cloth.

  15. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block...

  16. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The... and they can be of either sex. The subjects must be within the ranges of weight and height...

  17. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The... and they can be of either sex. The subjects must be within the ranges of weight and height...

  18. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The... and they can be of either sex. The subjects must be within the ranges of weight and height...

  19. 46 CFR 160.171-19 - Approval testing for child size immersion suit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Approval testing for child size immersion suit. 160.171... Approval testing for child size immersion suit. A child size suit must pass the following tests: (a) The... and they can be of either sex. The subjects must be within the ranges of weight and height...

  20. The Soviet-Russian space suits a historical overview of the 1960's

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar; Abramov, Isaac P.; Stoklitsky, Anatoly Y.; Doodnik, Michail N.

    2002-07-01

    The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era.

  1. 46 CFR 131.875 - Lifejackets, immersion suits, and ring buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifejackets, immersion suits, and ring buoys. 131.875... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.875 Lifejackets, immersion suits, and ring buoys. (a) Each lifejacket, immersion suit, and ring life buoy must be marked in block...

  2. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  3. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results

  4. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  5. Using Piezoelectric Ceramics for Dust Mitigation of Space Suits

    NASA Technical Reports Server (NTRS)

    Angel, Heather K.

    2004-01-01

    The particles that make up moon dust and Mars soil can be hazardous to an astronaut s health if not handled properly. In the near future, while exploring outer space, astronauts plan to wander the surfaces of unknown planets. During these explorations, dust and soil will cling to their space suits and become imbedded in the fabric. The astronauts will track moon dust and mars soil back into their living quarters. This not only will create a mess with millions of tiny air-born particles floating around, but will also be dangerous in the case that the fine particles are breathed in and become trapped in an astronaut s lungs. research center are investigating ways to remove these particles from space suits. This problem is very difficult due to the nature of the particles: They are extremely small and have jagged edges which can easily latch onto the fibers of the fabric. For the past summer, I have been involved in researching the potential problems, investigating ways to remove the particles, and conducting experiments to validate the techniques. The current technique under investigation uses piezoelectric ceramics imbedded in the fabric that vibrate and shake the particles free. The particles will be left on the planet s surface or collected a vacuum to be disposed of later. The ceramics vibrate when connected to an AC voltage supply and create a small scale motion similar to what people use at the beach to shake sand off of a beach towel. Because the particles are so small, similar to volcanic ash, caution must be taken to make sure that this technique does not further inbed them in the fabric and make removal more difficult. Only a very precise range of frequency and voltage will produce a suitable vibration. My summer project involved many experiments to determine the correct range. Analysis involved hands on experience with oscilloscopes, amplifiers, piezoelectrics, a high speed camera, microscopes and computers. perfect this technology. Someday, vibration to

  6. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  7. Plasticity and evolution in correlated suites of traits.

    PubMed

    Fischer, E K; Ghalambor, C K; Hoke, K L

    2016-05-01

    When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high- and low-predation environments that were reared under native and non-native environmental conditions. Both high- and low-predation fish exhibited increased behavioural variance when reared under non-native vs. native environmental conditions, and rearing in the non-native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments. PMID:26849747

  8. Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya

    SciTech Connect

    Abushagur, S.A.

    1986-05-01

    The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon with restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.

  9. STS-105 Commander Horowitz suits up for another launch attempt

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz is helped with his launch and entry suit for the second launch attempt after a 24-hour weather delay. Launch countdown activities for the 12-day mission were called off at about 5:12 p.m. Aug. 9 during the T-9 minute hold due to the high potential for lightning, a thick cloud cover and the potential for showers. Launch is currently scheduled for 5:15 p.m. EDT Aug. 10. Highlighting the mission will be the rotation of the International Space Station crew, the third flight of an Italian-built Multi-Purpose Logistics Module delivering additional scientific racks, equipment and supplies for the Space Station, and two spacewalks. Included in the payload is the Early Ammonia Servicer (EAS) tank, which will be attached to the Station during the spacewalks. The EAS will be installed on the P6 truss, which holds the Station'''s giant U.S. solar arrays, batteries and the cooling radiators. The EAS contains spare ammonia for the Station'''s cooling system. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station.

  10. STS-99 Mission Specialist Mohri suits up during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.), who is with the National Space Development Agency (NASDA) of Japan, suits up in the Operations and Checkout Building, as part of a flight crew equipment fit check, prior to his trip to Launch Pad 39A. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST.

  11. STS-99 Mission Specialist Voss suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Janice Voss (Ph.D.) smiles as she dons her launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  12. STS-99 Mission Specialist Thiele suits up before launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, smiles as he dons his launch and entry suit during final launch preparations. Known as the Shuttle Radar Topography Mission, liftoff is scheduled for 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course, using two antennae and a 200-foot- long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days. Endeavour is expected to land at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  13. Background data collection suite for atmospheric remote sensing applications

    NASA Astrophysics Data System (ADS)

    Lazarevich, A. K.; Oursler, D. A.; Baldwin, K. C.

    2006-05-01

    In developing algorithms for remote sensing of chemical and biological warfare agents, it is imperative to have a good understanding of the background radiance signal and environmental characteristics that influence detection. Factors such as thermal contrast, interferent atmospheric constituents, spatial clutter, and temporal variations should all be investigated for both the development and performance modeling of field sensors. To aid in the investigation of these topics as well as to provide data for current simulation tools, JHU/APL has constructed an automated data collection suite capable of simultaneous radiometric measurements in the longwave IR (8μm - 12μm) and midwave IR (3μm - 5μm) while also measuring a host of relevant atmospheric parameters. The primary radiometric sensor, an ABB Bomem MR304, is mounted on a pan/tilt system that is used to scan regions of interest while periodically generating calibration data. This paper describes the system design requirements, specifications of the individual components, and the overall system performance. In addition, data from field exercises are presented.

  14. Topica: a Virtual Prototyping Suite for Plasma Facing Antennas

    NASA Astrophysics Data System (ADS)

    Lancellotti, Vito; Maggiora, Riccardo; Vecchi, Giuseppe; Kyrytsya, Volodymyr

    2002-11-01

    An innovative tool has been realized for the simulation of 3-dimensional Ion Cyclotron Radio Frequency (ICRF) antennas in a realistic geometry and with an accurate plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on antennas facing a plasma in a slab geometry. The plasma enters the formalism via a surface impedance matrix; for this reason any plasma model can be used (presently the FELICE code has been adopted). A vacuum-term extraction and an analytical evaluation of some integrals are employed that permit to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using sub-domain basis functions on each conductor of the antenna system. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be referred to as a "Virtual Prototyping Laboratory" (VPL). The VPL has been tested against assessed codes and against measurements of mock-up and prototype antennas.

  15. STS-94 Commander James D. Halsell suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Commander James D. Halsell, Jr., puts his left glove on while he is assisted into his launch/entry suit in the Operations and Checkout (O&C) Building. Halsell is on his fourth space flight, having served as commander of STS-83 and pilot of both STS-74 and STS-65. He is a lieutenant colonel in the Air Force and a former SR-71 Blackbird test pilot and holds masters degrees in management and space operations. Halsell will have uresponsibility for the success of the mission and will operate and maintain Columbia during the Red, or second shift. He will also assist with a materials science experiment and a protein crystal growth payload during the 16-day mission. Halsell and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 a.m. EDT, July opportunity to lift off before Florida summer rain showers reached the space center.

  16. Torso sizing ring construction for hard space suit

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    A hard suit for use in space or diving applications having an adjustable length torso covering that will fit a large variety of wearers is described. The torso covering comprises an upper section and a lower section which interconnect so that the covering will fit wearers with short torsos. One or more sizing rings may be inserted between the upper and lower sections to accommodate larger torso sizes as required. Since access of the astronaut to the torso covering is preferably through an opening in the back of the upper section (which is closed off by the backpack), the rings slant upward-forward from the lower edge of the opening. The lower edge of the upper covering section has a coupler which slants upward-forward from the lower edge of the back opening. The lower torso section has a similarly slanted coupler which may interfit with the upper section coupler to accommodate the smallest torso size. One or more sizing rings may be inserted between the coupler sections of the upper and lower torso sections to accommodate larger torsos. Each ring has an upper coupler which may interfit with the upper section coupler and a lower coupler which may interfit with the lower section coupler.

  17. The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite

    SciTech Connect

    Danalis, Antonios; Marin, Gabriel; McCurdy, Collin B; Meredith, Jeremy S; Roth, Philip C; Spafford, Kyle L; Tipparaju, Vinod; Vetter, Jeffrey S

    2010-01-01

    Scalable heterogeneous computing systems, which are composed of a mix of compute devices, such as commodity multicore processors, graphics processors, reconfigurable processors, and others, are gaining attention as one approach to continuing performance improvement while managing the new challenge of energy efficiency. As these systems become more common, it is important to be able to compare and contrast architectural designs and programming systems in a fair and open forum. To this end, we have designed the Scalable HeterOgeneous Computing benchmark suite (SHOC). SHOC's initial focus is on systems containing graphics processing units (GPUs) and multi-core processors, and on the new OpenCL programming standard. SHOC is a spectrum of programs that test the performance and stability of these scalable heterogeneous computing systems. At the lowest level, SHOC uses microbenchmarks to assess architectural features of the system. At higher levels, SHOC uses application kernels to determine system-wide performance including many system features such as intranode and internode communication among devices. SHOC includes benchmark implementations in both OpenCL and CUDA in order to provide a comparison of these programming models.

  18. MEME Suite: tools for motif discovery and searching

    PubMed Central

    Bailey, Timothy L.; Boden, Mikael; Buske, Fabian A.; Frith, Martin; Grant, Charles E.; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W.; Noble, William S.

    2009-01-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net. PMID:19458158

  19. STS-103 Mission Specialist Smith suits up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After donning his launch and entry suit, sts-103 Mission Specialist Steven L. Smith shows a positive attitude over the second launch attempt for Space Shuttle Discovery. The previous launch attempt on Dec. 17 was scrubbed about 8:52 p.m. due to numerous violations of weather launch commit criteria at KSC. Smith and other crew members Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Francois Clervoy of France are scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  20. Interferometric diagnostic suite for ultrafast laser ablation of metals

    SciTech Connect

    Clarke, S. A.; Rodriguez, G.; Taylor, Antoinette J.,; Forsman, A. C.

    2004-01-01

    We report on the development of a suite of novel techniques to measure important characteristics in intense ultrashort laser solid target experiments such as critical surface displacement, ablation depth, and plasma characteristics. Measurement of these important characteristics on an ultrafast ({approx}50 fs) time scale is important in understanding the primary event mechanisms in laser ablation of metal targets. Unlike traditional methods that infer these characteristics from spectral power shifts, phase shifts in frequency domain interferometry (FDI) or laser breakthrough studies of multiple shots on bulk materials, these techniques directly measure these characteristics from a single ultrafast heating pulse. These techniques are based on absolute displacement interferometry and nanotopographic applications of wavefront sensors. By applying all these femtosecond time-resolved techniques to a range of materials (Al, Au, and Au on plastic) over a range of pulse energies (10{sup 11} to 10{sup 16} W/cm{sup 2}) and pulse durations (50 to 700 fs), greater insight into the ablation mechanism and its pulse parameter dependencies can be determined. Comparison of these results with hydrocode software programs also reveals the applicability of hydrocode models.

  1. The JPEG XT suite of standards: status and future plans

    NASA Astrophysics Data System (ADS)

    Richter, Thomas; Bruylants, Tim; Schelkens, Peter; Ebrahimi, Touradj

    2015-09-01

    The JPEG standard has known an enormous market adoption. Daily, billions of pictures are created, stored and exchanged in this format. The JPEG committee acknowledges this success and spends continued efforts in maintaining and expanding the standard specifications. JPEG XT is a standardization effort targeting the extension of the JPEG features by enabling support for high dynamic range imaging, lossless and near-lossless coding, and alpha channel coding, while also guaranteeing backward and forward compatibility with the JPEG legacy format. This paper gives an overview of the current status of the JPEG XT standards suite. It discusses the JPEG legacy specification, and details how higher dynamic range support is facilitated both for integer and floating-point color representations. The paper shows how JPEG XT's support for lossless and near-lossless coding of low and high dynamic range images is achieved in combination with backward compatibility to JPEG legacy. In addition, the extensible boxed-based JPEG XT file format on which all following and future extensions of JPEG will be based is introduced. This paper also details how the lossy and lossless representations of alpha channels are supported to allow coding transparency information and arbitrarily shaped images. Finally, we conclude by giving prospects on upcoming JPEG standardization initiative JPEG Privacy & Security, and a number of other possible extensions in JPEG XT.

  2. A modular suite of hardware enabling spaceflight cell culture research

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Klaus, David M.; Stodieck, Louis S.

    2004-01-01

    BioServe Space Technologies, a NASA Research Partnership Center (RPC), has developed and operated various middeck payloads launched on 23 shuttle missions since 1991 in support of commercial space biotechnology projects. Modular cell culture systems are contained within the Commercial Generic Bioprocessing Apparatus (CGBA) suite of flight-qualified hardware, compatible with Space Shuttle, SPACEHAB, Spacelab and International Space Station (ISS) EXPRESS Rack interfaces. As part of the CGBA family, the Isothermal Containment Module (ICM) incubator provides thermal control, data acquisition and experiment manipulation capabilities, including accelerometer launch detection for automated activation and thermal profiling for culture incubation and sample preservation. The ICM can accommodate up to 8 individually controlled temperature zones. Command and telemetry capabilities allow real-time downlink of data and video permitting remote payload operation and ground control synchronization. Individual cell culture experiments can be accommodated in a variety of devices ranging from 'microgravity test tubes' or standard 100 mm Petri dishes, to complex, fed-batch bioreactors with automated culture feeding, waste removal and multiple sample draws. Up to 3 levels of containment can be achieved for chemical fixative addition, and passive gas exchange can be provided through hydrophobic membranes. Many additional options exist for designing customized hardware depending on specific science requirements.

  3. Cost Analysis of an Office-based Surgical Suite

    PubMed Central

    LaBove, Gabrielle

    2016-01-01

    Introduction: Operating costs are a significant part of delivering surgical care. Having a system to analyze these costs is imperative for decision making and efficiency. We present an analysis of surgical supply, labor and administrative costs, and remuneration of procedures as a means for a practice to analyze their cost effectiveness; this affects the quality of care based on the ability to provide services. The costs of surgical care cannot be estimated blindly as reconstructive and cosmetic procedures have different percentages of overhead. Methods: A detailed financial analysis of office-based surgical suite costs for surgical procedures was determined based on company contract prices and average use of supplies. The average time spent on scheduling, prepping, and doing the surgery was factored using employee rates. Results: The most expensive, minor procedure supplies are suture needles. The 4 most common procedures from the most expensive to the least are abdominoplasty, breast augmentation, facelift, and lipectomy. Conclusions: Reconstructive procedures require a greater portion of collection to cover costs. Without the adjustment of both patient and insurance remuneration in the practice, the ability to provide quality care will be increasingly difficult. PMID:27536482

  4. CORE (Common Operating Response Environment) Software Technology Suite

    SciTech Connect

    Gelston, Gariann; Rohlfing, Kerrie

    2015-05-26

    Agencies that oversee complex, multi-stakeholder programs need efficient, secure ways to link people and knowledge within and across organizations. The Common Operating Response Environment (CORE), a software suite developed by PNNL researchers does just that. The CORE tool—which is customizable for a multitude of uses—facilitates situational awareness by integrating diverse data streams without the need to reformat them, summarizing that information, and providing users with the information they need to rapidly understand and appropriately respond to situations. It is mobile device-ready, has a straightforward interface for ease of use across organizations and skill sets, and is incredibly configurable to the needs of each specific user, whether they require data summaries for high-level decision makers or tactical maps, operational data, or weather information for responders in the field. Information can be input into CORE and queried in a variety of ways—using customized forms, reports, visuals, or other organizational templates—according to the needs of each user’s organization, teams, and business processes. CORE data forms, for instance, could be accessed and used in real-time to capture information about vessels being inspected for nuclear material.

  5. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  6. Shoulder and hip joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    Shoulder and hip joints for hard space suits are disclosed which are comprised of three serially connected truncated spherical sections, the ends of which converge. Ball bearings between the sections permit relative rotation. The proximal end of the first section is connected to the torso covering by a ball bearing and the distal end of the outermost section is connected to the elbow or thigh covering by a ball bearing. The sections are equi-angular and this alleviates lockup, the condition where the distal end of the joint leaves the plane in which the user is attempting to flex. The axes of rotation of the bearings and the bearing mid planes are arranged to intersect in a particular manner that provides the joint with a minimum envelope. In one embodiment, the races of the bearing between the innermost section and the second section is partially within the inner race of the bearing between the torso and the innermost spherical section further to reduce bulk.

  7. VOLCWORKS: A suite for optimization of hazards mapping

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Ramírez Guzmán, R.; Villareal Benítez, J. L.; García Sánchez, T.

    2012-04-01

    Making hazards maps is a process linking basic science, applied science and engineering for the benefit of the society. The methodologies for hazards maps' construction have evolved enormously together with the tools that allow the forecasting of the behavior of the materials produced by different eruptive processes. However, in spite of the development of tools and evolution of methodologies, the utility of hazards maps has not changed: prevention and mitigation of volcanic disasters. Integration of different tools for simulation of different processes for a single volcano is a challenge to be solved using software tools including processing, simulation and visualization techniques, and data structures in order to build up a suit that helps in the construction process starting from the integration of the geological data, simulations and simplification of the output to design a hazards/scenario map. Scientific visualization is a powerful tool to explore and gain insight into complex data from instruments and simulations. The workflow from data collection, quality control and preparation for simulations, to achieve visual and appropriate presentation is a process that is usually disconnected, using in most of the cases different applications for each of the needed processes, because it requires many tools that are not built for the solution of a specific problem, or were developed by research groups to solve particular tasks, but disconnected. In volcanology, due to its complexity, groups typically examine only one aspect of the phenomenon: ash dispersal, laharic flows, pyroclastic flows, lava flows, and ballistic projectile ejection, among others. However, when studying the hazards associated to the activity of a volcano, it is important to analyze all the processes comprehensively, especially for communication of results to the end users: decision makers and planners. In order to solve this problem and connect different parts of a workflow we are developing the

  8. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-01-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  9. Don/Doff support stand for use with rear entry space suits

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Tri, Terry O. (Inventor); Spenny, William E. (Inventor); West, Philip R. (Inventor)

    1989-01-01

    A don/doff support stand for use with rear entry space suits is disclosed. The support stand is designed for use in one-g environments; however, certain features of the stand can be used on future space-craft, lunar or planetary bases. The present invention has a retainer which receives a protruding lug fixed on the torso section of the space suit. When the lug is locked in the retainer, the space suit is held in a generally upright position. In a one-g environment a portable ladder is positioned adjacent to the rear entry of the space suit supported by the stand. The astronaut climbs up the ladder and grasps a hand bar assembly positioned above the rear entry. The astronaut then slips his legs through the open rear entry and down into the abdominal portion of the suit. The astronaut then lowers himself fully into the suit. The portable ladder is then removed and the astronaut can close the rear entry door. The lug is then disengaged from the retainer and the astronaut is free to engage in training exercises in the suit. When suit use is over, the astronaut returns to the stand and inserts the lug into the retainer. A technician repositions the ladder. The astronaut opens the rear entry door, grasps the hand bar assembly and does a chin-up to extricate himself from the suit. The astronaut climbs down the movable ladder while the suit is supported by the stand.

  10. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  11. Bioassay of thermal protection afforded by candidate flight suit fabrics.

    PubMed

    Knox, F S; Wachtel, T L; McCahan, G R

    1979-10-01

    The United States Army Aeromedical Research Laboratory (USAARL) porcine cutaneous bioassay technique was used to determine what mitigating effect four thermally protective flight suit fabrics would have on fire-induced skin damage. The fabrics were 4.8-ox twill weave Nomex aramide, 4.5-oz stabilized twill weave polybenzimidazole, 4.8-oz plain weave experimental high-temperature polymer (HT4), and 4.8-oz plain weave Nomex aramide (New Weave Nomex or NWN). Each fabric sample was assayed 20 times in each of four configurations: as a single layer in contact with the skin; as a single layer with a 6.35 mm (0.25 in) air gap between fabric and skin; in conjuction with a cotton T-shirt with no air gaps; and, finally, in conjuction with a T-shirt with a 6.35 mm air gap between T-shirt and fabric. Bare skin was used as a control. A JP-4 fueled furnace was used as a thermal source and was adjested to deliver a mean heat flux of 3.07 cal/cm2/s. The duration of exposure was 5 s. Four hundred burn sites were graded using clinical observation and microscopic techniques. Used as single layers, none of the fabrics demonstrated superiority in providing clinically significant protection. When used with a cotton T-shirt, protection was improved. Protection improved progressively for all fabrics and configuration when an air gap was introduced. The experimental high-temperature polymer consistently demonstrated lower heat flux transmission in all configurations, but did not significantly reduce clinical burns. PMID:518445

  12. Micro flame-based detector suite for universal gas sensing.

    SciTech Connect

    Hamilton, Thomas Warren; Washburn, Cody M.; Moorman, Matthew Wallace; Manley, Robert George; Lewis, Patrick Raymond; Miller, James Edward; Clem, Paul Gilbert; Shelmidine, Gregory J.; Manginell, Ronald Paul; Okandan, Murat

    2005-11-01

    A microflame-based detector suit has been developed for sensing of a broad range of chemical analytes. This detector combines calorimetry, flame ionization detection (FID), nitrogen-phosphorous detection (NPD) and flame photometric detection (FPD) modes into one convenient platform based on a microcombustor. The microcombustor consists in a micromachined microhotplate with a catalyst or low-work function material added to its surface. For the NPD mode a low work function material selectively ionizes chemical analytes; for all other modes a supported catalyst such as platinum/alumina is used. The microcombustor design permits rapid, efficient heating of the deposited film at low power. To perform calorimetric detection of analytes, the change in power required to maintain the resistive microhotplate heater at a constant temperature is measured. For FID and NPD modes, electrodes are placed around the microcombustor flame zone and an electrometer circuit measures the production of ions. For FPD, the flame zone is optically interrogated to search for light emission indicative of deexcitation of flame-produced analyte compounds. The calorimetric and FID modes respond generally to all hydrocarbons, while sulfur compounds only alarm in the calorimetric mode, providing speciation. The NPD mode provides 10,000:1 selectivity of nitrogen and phosphorous compounds over hydrocarbons. The FPD can distinguish between sulfur and phosphorous compounds. Importantly all detection modes can be established on one convenient microcombustor platform, in fact the calorimetric, FID and FPD modes can be achieved simultaneously on only one microcombustor. Therefore, it is possible to make a very universal chemical detector array with as little as two microcombustor elements. A demonstration of the performance of the microcombustor in each of the detection modes is provided herein.

  13. Developing defensive aids suite technology on a virtual battlefield

    NASA Astrophysics Data System (ADS)

    Rapanotti, John L.; DeMontigny-Leboeuf, Annie; Palmarini, Marc; Cantin, Andre

    2002-07-01

    Modern anti-tank missiles and the requirement of rapid deployment are limiting the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. The integration of various technologies into a Defensive Aids Suite (DAS) can be designed and analyzed by combining field trials and laboratory data with modeling and simulation. MATLAB is used as a quick prototyping tool to model DAS systems and facilitate transfer to other researchers. The DAS model can be transferred from MATLAB or programmed directly in ModSAF (Modular Semi-Automated Forces), which is used to construct the virtual battlefield. Through scripted input files, a fixed battle approach ensures implementation and analysis meeting the requirements of three different interests. These three communities include the scientists and engineers, military and operations research. This approach ensures the modelling of processes known to be important regardless of the level of information available about the system. A system can be modelled phenomenologically until more information is available. Further processing of the simulation can be used to optimize the vehicle for a specific mission. ModSAF will be used to analyze and plan trials and develop DAS technology for future vehicles. Survivability of a DAS-equipped vehicle can be assessed relative to a basic vehicle without a DAS. In later stages, more complete DAS systems will be analyzed to determine the optimum configuration of the DAS components and the effectiveness of a DAS-equipped vehicle for specific missions. These concepts and approach will be discussed in the paper.

  14. Model for Predicting the Performance of Planetary Suit Hip Bearing Designs

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Hharvill, Lauren; Rajulu, Sudhakar

    2012-01-01

    Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance

  15. Comparisons of three anti-G suit configurations during long duration, low onset, +Gz

    NASA Technical Reports Server (NTRS)

    Stegmann, B. J.; Krutz, R. W.; Burton, R. R.; Sawin, C. F.

    1992-01-01

    Little physiologic data exist on the effects of long duration, low onset, hypergravity (+G). Space shuttle crewmembers are subjected to low +G forces (less than +3G) for upwards of 30 minutes during reentry. A similar reentry profile is predicted for the National Aerospace Plane (NASP). The physiologic effects of this acceleration stress are compounded by the loss of body water experienced during microgravity. Currently, a standard 5 bladder anti-G suit is being used during shuttle reentry. There have been complaints of discomfort using this suit, mainly due to the abdominal bladder. This study compared the effectiveness of three anti-G suit configurations in volume depleted subjects during a simulated space shuttle reentry profile. Methods: Seven male subjects were given intravenous Lasix in a dose from 20-40 mg to induce a total body weight loss of 3 plus or minus 1.5 percent. Approximately six hours after the injection, the subjects donned one of three anti-G suits - a standard 5 bladder anti-G suit, an extended coverage anti-G suit (the advanced technology anti-G suit or ATAGS), or an extended coverage anti-G suit without an abdominal bladder (the reentry anti-G suit or REAGS). All subjects were exposed to a simulated space shuttle reentry profile. Non-invasive eye-level blood pressure (ELBP) was monitored throughout the +G exposure. When systolic ELBP dropped below 70 mmHg, the anti-G suit was inflated in 0.5 psig increments to the pressure required to maintain 70 mmHg ELBP. Each subject rode with all three suits. Comparisons were made between the final pressure required in each suit to maintain ELBP and subjective reports of comfort. Results: The mean final suit pressure required to maintain ELBP was 1.1 psi, in both the ATAGS and REAGS versus 1.8 psi in the standard suit. In addition, the subjects rated the REAGS suit highest on the comfort scale, citing the absence of the abdominal bladder as the main reason. Conclusions: Overall, the REAGS suit was the

  16. Characterization of a lower-body exoskeleton for simulation of space-suited locomotion

    NASA Astrophysics Data System (ADS)

    Carr, Christopher E.; Newman, Dava J.

    2008-02-01

    In a previous analysis of suited and unsuited locomotion energetics, we found evidence that space suits act as springs during running. Video images from the lunar surface suggest that knee torques create, in large part, this spring effect. We hypothesized that a lower-body exoskeleton, properly constructed, could be used to simulate the knee torques of a range of space suits. Here we report characterization of a lower-body exoskeleton. Equivalent spring stiffness of each exoskeleton leg varies as a function of exoskeleton knee angle and load, and the exoskeleton joint-torque relationship closely matches the current NASA space suit, or Extravehicular Mobility Unit, knee torques in form and magnitude. We have built an exoskeleton with two physical non-linear springs, which achieve space-suit like joint-torques. Therefore space-suit legs act as springs, with this effect most pronounced when locomotion requires large changes in knee flexion such as during running.

  17. A full-pressure space suit with bailout capabilities for experimental suborbital vehicles

    NASA Astrophysics Data System (ADS)

    de León, Pablo; Williamson, Mark R.

    2007-02-01

    This paper discusses the development of a full-pressure space suit to be used in the Argentine Gauchito suborbital space vehicle. Rationales for providing full-pressure suits with bailout capabilities for both crew and passengers are first discussed. Mishaps during past US and Russian space missions are also presented to show how the hazards of reentry and landing can be mitigated by a robust space suit with bailout capabilities. Results from the testing of the suit's helmet, enclosure mechanisms, gloves, cooling system, thermal garment, and mobility range are presented followed by a description of the suit's emergency operating procedures. Testing of the suit culminated in an altitude chamber and a high-altitude glider flight.

  18. Assessment of Protective Gloves for Use with Airfed Suits.

    PubMed

    Millard, Claire E; Vaughan, Nicholas P

    2015-10-01

    Gloves are often needed for hand protection at work, but they can impair manual dexterity, especially if they are multilayered or ill-fitting. This article describes two studies of gloves to be worn with airfed suits (AFS) for nuclear decommissioning or containment level 4 (CL4) microbiological work. Both sets of workers wear multiple layers of gloves for protection and to accommodate decontamination procedures. Nuclear workers are also often required to wear cut-resistant gloves as an extra layer of protection. A total of 15 subjects volunteered to take part in manual dexterity testing of the different gloving systems. The subjects' hands were measured to ensure that the appropriate sized gloves were used. The gloves were tested with the subjects wearing the complete clothing ensembles appropriate to the work, using a combination of standard dexterity tests: the nine-hole peg test; a pin test adapted from the European Standard for protective gloves, the Purdue Pegboard test, and the Minnesota turning test. Specialized tests such as a hand tool test were used to test nuclear gloves, and laboratory-type manipulation tasks were used to test CL4 gloves. Subjective assessments of temperature sensation and skin wettedness were made before and after the dexterity tests of the nuclear gloves only. During all assessments, we made observations and questioned the subjects about ergonomic issues related to the clothing ensembles. Overall, the results show that the greater the thickness of the gloves and the number of layers the more the levels of manual dexterity performance are degraded. The nuclear cut-resistant gloves with the worst level of dexterity were stiff and inflexible and the subjects experienced problems picking up small items and bending their hands. The work also highlighted other factors that affect manual dexterity performance, including proper sizing, interactions with the other garments worn at the time, and the work equipment in use. In conclusion, when

  19. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar

    2014-01-01

    vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder, to include the torso, knees, ankle, elbows, wrists and neck. Part of this update included adding a representation of 'roll' about an axis, for upper arm and lower leg rotations. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. This visualization method will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development.

  20. Development of an advanced rocket propellant handler's suit.

    PubMed

    Doerr, D F

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an

  1. Assessment of Protective Gloves for Use with Airfed Suits

    PubMed Central

    Millard, Claire E.

    2015-01-01

    Gloves are often needed for hand protection at work, but they can impair manual dexterity, especially if they are multilayered or ill-fitting. This article describes two studies of gloves to be worn with airfed suits (AFS) for nuclear decommissioning or containment level 4 (CL4) microbiological work. Both sets of workers wear multiple layers of gloves for protection and to accommodate decontamination procedures. Nuclear workers are also often required to wear cut-resistant gloves as an extra layer of protection. A total of 15 subjects volunteered to take part in manual dexterity testing of the different gloving systems. The subjects’ hands were measured to ensure that the appropriate sized gloves were used. The gloves were tested with the subjects wearing the complete clothing ensembles appropriate to the work, using a combination of standard dexterity tests: the nine-hole peg test; a pin test adapted from the European Standard for protective gloves, the Purdue Pegboard test, and the Minnesota turning test. Specialized tests such as a hand tool test were used to test nuclear gloves, and laboratory-type manipulation tasks were used to test CL4 gloves. Subjective assessments of temperature sensation and skin wettedness were made before and after the dexterity tests of the nuclear gloves only. During all assessments, we made observations and questioned the subjects about ergonomic issues related to the clothing ensembles. Overall, the results show that the greater the thickness of the gloves and the number of layers the more the levels of manual dexterity performance are degraded. The nuclear cut-resistant gloves with the worst level of dexterity were stiff and inflexible and the subjects experienced problems picking up small items and bending their hands. The work also highlighted other factors that affect manual dexterity performance, including proper sizing, interactions with the other garments worn at the time, and the work equipment in use. In conclusion, when

  2. Development of an advanced rocket propellant handler's suit

    NASA Astrophysics Data System (ADS)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or ˜1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comprobable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in

  3. Designing a suite of measurements to understand the critical zone

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; DiBiase, R.; Russo, T.; Shi, Y.; Lin, H.; Davis, K. J.; Kaye, M.; Hill, L.; Kaye, J.; Neal, A. L.; Eissenstat, D.; Hoagland, B.; Dere, A. L.

    2015-09-01

    Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as a worthy object of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made - and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original study area (0.08 km2, Shale Hills catchment), to a much larger watershed (164 km2, Shavers Creek watershed) and is grappling with the necessity of prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology. Given the small size of the original Shale Hills catchment, the original measurement design resulted in measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modelling based on a geomorphological framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, ground waters or air, and application of a suite of CZ models. In essence, we are hypothesizing that pinpointed measurements of a few important variables at strategic locations will allow

  4. Designing a suite of measurements to understand the critical zone

    NASA Astrophysics Data System (ADS)

    Brantley, Susan L.; DiBiase, Roman A.; Russo, Tess A.; Shi, Yuning; Lin, Henry; Davis, Kenneth J.; Kaye, Margot; Hill, Lillian; Kaye, Jason; Eissenstat, David M.; Hoagland, Beth; Dere, Ashlee L.; Neal, Andrew L.; Brubaker, Kristen M.; Arthur, Dan K.

    2016-03-01

    Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as an integral object worthy of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made - and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original focus area (0.08 km2, Shale Hills catchment), to a larger watershed (164 km2, Shavers Creek watershed) and is grappling with the prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute, and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology. Given the small size of the Shale Hills catchment, the original design incorporated measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modeling based on a geomorphological and land use framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, groundwaters or air, and application of a suite of CZ models. We hypothesize that measurements of a few important variables at strategic locations within a geomorphological framework will allow

  5. Navy-developed life support systems for fully enclosed protective suits

    NASA Technical Reports Server (NTRS)

    Orner, G. M.; Audet, N. F.

    1972-01-01

    The development and performance of an environmental control unit capable of supporting a man in an impermeable suit at ambient temperatures up to 140 F for periods of up to two hrs is reported. The basic suit operation consists of cooling by wet ice contained in a suitcase. The system is designed to circulate and cool the air within the suit, to remove excess moisture and carbon dioxide, and to maintain a safe oxygen level.

  6. The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Traverse in a Planetary Suit

    NASA Technical Reports Server (NTRS)

    Vos, Jessica R.; Gernhardt, Michael L.; Lee, Lesley

    2007-01-01

    As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited EVA crew member exploring the surface of the Moon to "walk-back" to the habitat in the event of a rover breakdown, taking into consideration the planned EVA tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member s safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km Walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the Lunar Walkback Test . The test was designed not only to determine the feasibility of a 10 km excursion, but also to collect human performance, biomedical, and biomechanical data relevant to optimizing space suit design and life support system sizing. These data will also be used to develop follow-on studies to understand interrelationships of such key parameters as suit mass, inertia, suit pressure, and center of gravity (CG), and the respective influences of each on human performance.

  7. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2010-01-01

    In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.

  8. Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases

    NASA Technical Reports Server (NTRS)

    McFarland, Shane M.

    2011-01-01

    In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.

  9. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts-range of motion (ROM) and torque- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits. This is reflected in the fact that torque definitions have been applied to very few types of space suits and with limited success in defining all the joints accurately. This paper discussed the advantages and disadvantages to historical joint torque evaluation methods, describes more recent efforts directed at benchmarking joint torques of prototype space suits, and provides an outline for how NASA intends to address joint torque in design requirements for the Constellation Space Suit System (CSSS).

  10. Current and future issues in USAF full pressure suit research and development

    NASA Technical Reports Server (NTRS)

    Scoggins, Terrell E.

    1994-01-01

    Although the full pressure suits currently in the USAF operational inventory provide acceptable performance and crew protection for these missions, there is considerable room for improvement, especially in the areas of comfort, mobility, glove and helmet performance, and maintenance/supportability. As future aircraft push the envelope towards operations at higher and higher altitudes and transatmospheric flight, advances in full pressure suit technology will be needed. Also, enhanced pressure suit technology will be required to meet NASA's need for protection during future EVA operations for both on-orbit and planetary surface missions. This presentation will review the results of efforts at the Armstrong Laboratory to develop and demonstrate advanced full pressure suit technology for use in future high-altitude reconnaissance aircraft and transatmospheric vehicle operations. For those readers who may not be familiar with this area of life support equipment, a brief review of the important physiological and operational requirements for full pressure suits used in these applications will be addressed first, followed by a summary of the current state-of-the-art in USAF pressure suit technology. Ongoing and recently completed work on enhanced mobility pressure suit joints and improved pressure suit gloves will then be reviewed. The presentation will conclude with discussion of the technical challenges for successful development of an advanced full pressure suit for aerospace operations in the 21st century.

  11. The 2004 knowledge base parametric grid data software suite.

    SciTech Connect

    Wilkening, Lisa K.; Simons, Randall W.; Ballard, Sandy; Jensen, Lee A.; Chang, Marcus C.; Hipp, James Richard

    2004-08-01

    One of the most important types of data in the National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Knowledge Base (KB) is parametric grid (PG) data. PG data can be used to improve signal detection, signal association, and event discrimination, but so far their greatest use has been for improving event location by providing ground-truth-based corrections to travel-time base models. In this presentation we discuss the latest versions of the complete suite of Knowledge Base PG tools developed by NNSA to create, access, manage, and view PG data. The primary PG population tool is the Knowledge Base calibration integration tool (KBCIT). KBCIT is an interactive computer application to produce interpolated calibration-based information that can be used to improve monitoring performance by improving precision of model predictions and by providing proper characterizations of uncertainty. It is used to analyze raw data and produce kriged correction surfaces that can be included in the Knowledge Base. KBCIT not only produces the surfaces but also records all steps in the analysis for later review and possible revision. New features in KBCIT include a new variogram autofit algorithm; the storage of database identifiers with a surface; the ability to merge surfaces; and improved surface-smoothing algorithms. The Parametric Grid Library (PGL) provides the interface to access the data and models stored in a PGL file database. The PGL represents the core software library used by all the GNEM R&E tools that read or write PGL data (e.g., KBCIT and LocOO). The library provides data representations and software models to support accurate and efficient seismic phase association and event location. Recent improvements include conversion of the flat-file database (FDB) to an Oracle database representation; automatic access of station/phase tagged models from the FDB during location; modification of the core

  12. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  13. The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2008-01-01

    The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.

  14. 33 CFR 149.326 - What are the immersion suit requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in 46 CFR 108.580. ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the immersion suit... Equipment Manned Deepwater Port Requirements § 149.326 What are the immersion suit requirements? Each...

  15. 27 CFR 70.91 - Interest on erroneous refund recoverable by suit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... refund recoverable by suit. 70.91 Section 70.91 Alcohol, Tobacco Products and Firearms ALCOHOL AND... erroneous refund recoverable by suit. Any portion of an internal revenue tax (or any interest, assessable penalty, additional amount, or addition to tax) which has been erroneously refunded, and which...

  16. Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Hertig, B. A.

    1972-01-01

    Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.

  17. 33 CFR 149.338 - What are the requirements for immersion suits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment Unmanned Deepwater Port Requirements § 149.338 What are the requirements for immersion suits? (a) Each unmanned deepwater port located north of 32 degrees North latitude must comply with the immersion suit requirements applicable to mobile offshore drilling units under 46 CFR 108.580, and...

  18. 33 CFR 149.338 - What are the requirements for immersion suits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Unmanned Deepwater Port Requirements § 149.338 What are the requirements for immersion suits? (a) Each unmanned deepwater port located north of 32 degrees North latitude must comply with the immersion suit requirements applicable to mobile offshore drilling units under 46 CFR 108.580, and...

  19. 33 CFR 149.338 - What are the requirements for immersion suits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment Unmanned Deepwater Port Requirements § 149.338 What are the requirements for immersion suits? (a) Each unmanned deepwater port located north of 32 degrees North latitude must comply with the immersion suit requirements applicable to mobile offshore drilling units under 46 CFR 108.580, and...

  20. 33 CFR 149.338 - What are the requirements for immersion suits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment Unmanned Deepwater Port Requirements § 149.338 What are the requirements for immersion suits? (a) Each unmanned deepwater port located north of 32 degrees North latitude must comply with the immersion suit requirements applicable to mobile offshore drilling units under 46 CFR 108.580, and...

  1. 33 CFR 149.338 - What are the requirements for immersion suits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Unmanned Deepwater Port Requirements § 149.338 What are the requirements for immersion suits? (a) Each unmanned deepwater port located north of 32 degrees North latitude must comply with the immersion suit requirements applicable to mobile offshore drilling units under 46 CFR 108.580, and...

  2. Information Professionals Stay Free in the MarcEdit Metadata Suite

    ERIC Educational Resources Information Center

    Reese, Terry

    2004-01-01

    This article features MarcEdit, a free, Windows-based, metadata editing software suite that is developed and supported by the author as part of his contribution to the library profession. MarcEdit Suite is a tool that helps one with MARC coding and conversion and to perform database cleanups, to generate temporary electronic journal holdings, or…

  3. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Suit against United States exclusive remedy. 14.57 Section 14.57 Energy NUCLEAR REGULATORY COMMISSION ADMINISTRATIVE CLAIMS UNDER FEDERAL TORT CLAIMS ACT Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United...

  4. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Suit against United States exclusive remedy. 14.57 Section 14.57 Energy NUCLEAR REGULATORY COMMISSION ADMINISTRATIVE CLAIMS UNDER FEDERAL TORT CLAIMS ACT Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United...

  5. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Suit against United States exclusive remedy. 14.57 Section 14.57 Energy NUCLEAR REGULATORY COMMISSION ADMINISTRATIVE CLAIMS UNDER FEDERAL TORT CLAIMS ACT Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United...

  6. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Suit against United States exclusive remedy. 14.57 Section 14.57 Energy NUCLEAR REGULATORY COMMISSION ADMINISTRATIVE CLAIMS UNDER FEDERAL TORT CLAIMS ACT Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United...

  7. 10 CFR 14.57 - Suit against United States exclusive remedy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Suit against United States exclusive remedy. 14.57 Section 14.57 Energy NUCLEAR REGULATORY COMMISSION ADMINISTRATIVE CLAIMS UNDER FEDERAL TORT CLAIMS ACT Employee Drivers § 14.57 Suit against United States exclusive remedy. The remedy against the United...

  8. Evaluation of the Operator Protection Factors Offered by Positive Pressure Air Suits against Airborne Microbiological Challenge

    PubMed Central

    Steward, Jackie A.; Lever, Mark S.

    2012-01-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  9. Saran-Chloropel plastic suit worker dose rates from airborne tritium exposure - first exposure hour

    SciTech Connect

    Edwards, T.

    1993-04-20

    Radiological Engineering was requested to develop Tritium Stay Time Chart dose rates for the 9 mil Saran-Chloropel (CPE) plastic suit for a period of one hour or less. Assumptions utilized in previous calculations were revised to better address the first hour of exposure in the suit for emergency situations.

  10. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Norcross, Jason

    2011-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. The objective of this test was to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) across a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice to allow for comparison between tests. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of approximately 500 to 3000 BTU/hr. Supply airflow was varied at 6, 5 and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was primarily affected by the metabolic rate of the subject, with increased metabolic rate resulting in increased inspired ppCO2. Suit flow rate also affected inspired ppCO2, with decreased flow causing small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates greater than or equal to 2000 BTU/hr. Results were consistent between suits, with

  11. Checkout and Standard Use Procedures for the Mark III Space Suit Assembly

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2012-01-01

    The operational pressure range is the range to which the suit can be nominally operated for manned testing. The top end of the nominal operational pressure range is equivalent to 1/2 the proof pressure. Structural pressure is 1.5 times the specified test pressure for any given test. Proof pressure is the maximum unmanned pressure to which the suit was tested by the vendor prior to delivery. The maximum allowable working pressure (MAWP) is 90% of the proof pressure. The pressure systems RVs are set to keep components below their MAWPs. If the suit is pressurized over its MAWP, the suit will be taken out of service and an in-depth inspection/review of the suit will be performed before the suit is put back in service. The procedures outlined in this document should be followed as written. However, the suit test engineer (STE) may make redline changes real-time, provided those changes are recorded in the anomaly section of the test data sheet. If technicians supporting suit build-up, check-out, and/or test execution believe that a procedure can be improved, they should notify their lead. If procedures are incorrect to the point of potentially causing hardware damage or affecting safety, bring the problem to the technician lead and/or STE s attention and stop work until a solution (temporary or permanent) is authorized. Certain steps in the procedure are marked with a DV , for Designated Verifier. The Designated Verifier for this procedure is an Advanced Space Suit Technology Development Laboratory technician, not directly involved in performing the procedural steps, who will verify that the step was performed as stated. The steps to be verified by the DV were selected based on one or more of the following criteria: the step was deemed significant in ensuring the safe performance of the test, the data recorded in the step is of specific interest in monitoring the suit system operation, or the step has a strong influence on the successful completion of test objectives

  12. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    NASA Astrophysics Data System (ADS)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  13. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  14. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.

    1977-01-01

    Anorthositic-noritic-troctolitic (ANT) rocks are the oldest and most abundant rocks of the lunar surface, and comprise about 90% of the suite of the lunar highlands. Consideration is given to the mineralogy, petrology, bulk chemistry, and origin of ANT-suite rocks. Problems associated in classifying and labeling lunar highland rocks because of textural complexities occurring from impact modifications are discussed. The mineralogy of ANT-suite rocks, dominated by plagioclase, olivine and pyrozene, and containing various minor minerals, is outlined. The petrology of ANT-suite rocks is reviewed along with the major element bulk composition of these rocks, noting that they are extremely depleted in K2O and P2O5. Various models describing the origin of ANT-suite rocks are summarized, and it is suggested that this origin involves a parental liquid of high-alumina basalt with low Fe/Fe+Mg.

  15. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  16. CO2 Washout Testing of the REI and EM-ACES Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.; Norcross, Jason

    2012-01-01

    When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future

  17. Hazard Analysis for the Mark III Space Suit Assembly (SSA) Used in One-g Operations

    NASA Technical Reports Server (NTRS)

    Mitchell, Kate; Ross, Amy; Blanco, Raul; Wood, Art

    2012-01-01

    This Hazard Analysis document encompasses the Mark III Space Suit Assembly (SSA) and associated ancillary equipment. It has been prepared using JSC17773, "Preparing Hazard Analyses for JSC Ground Operation", as a guide. The purpose of this document is to present the potential hazards involved in ground (23 % maximum O2, One-g) operations of the Mark III and associated ancillary support equipment system. The hazards listed in this document are specific to suit operations only; each supporting facility (Bldg. 9, etc.) is responsible for test specific Hazard Analyses. A "hazard" is defined as any condition that has the potential for harming personnel or equipment. This analysis was performed to document the safety aspects associated with manned use of the Mark III for pressurized and unpressurized ambient, ground-based, One-g human testing. The hazards identified herein represent generic hazards inherent to all standard JSC test venues for nominal ground test configurations. Non-standard test venues or test specific configurations may warrant consideration of additional hazards analysis prior to test. The cognizant suit engineer is responsible for the safety of the astronaut/test subject, space suit, and suit support personnel. The test requester, for the test supported by the suit test engineer and suited subject, is responsible for overall safety and any necessary Test Readiness Reviews (TRR).

  18. Imagery test suites and their implication on the testability of computer vision algorithms

    NASA Astrophysics Data System (ADS)

    Segal, Andrew C.; Greene, Richard; Kero, Robert; Steuer, Daniel

    1992-04-01

    A fundamental question in the ability to determine the effectiveness of any computer vision algorithm is the construction and application of proper test data suites. The purpose of this paper is to develop an understanding of the underlying requirements necessary in forming test suites, and the limitations that restricted sample sizes have on determining the testability of computer vision algorithms. With the relatively recent emergence of high performance computing, it is now highly desirable to perform statistically significant testing of algorithms using a test suite containing a full range of data, from simple binary images to textured images and multi-scale images. Additionally, a common database of test suites would enable direct comparisons of competing imagery exploitation algorithms. The initial step necessary in building a test suite is the selection of adequate measures necessary to estimate the subjective attributes of images, similar to the quantitative measures from speech quality. We will discuss image measures, their relation to the construction of test suites and the use of real sensor data or computer generated synthetic images. By using the latest technology in computer graphics, synthetically generated images varying in degrees of distortion both from sensors models and other noise source models can be formed if ground-truth information of the images is known. Our eventual goal is to intelligently construct statistically significant test suites which would allow for A/B comparisons between various computer vision algorithms.

  19. As assessment of habitat pressure, oxygen fraction, and EVA suit design for space operations.

    PubMed

    Morgenthaler, G W; Fester, D A; Cooley, C G

    1994-01-01

    At high cabin pressure [e.g. 1013 hPa (14.7 psi) 21% O2] there are serious issues relative to specification of suit pressure and the need for prebreathing. A high pressure suit will be costly but use of the existing, flexible suit requires up to 6 h of prebreathing. Or one could use a cabin pressure of 700 hPa (10.2 psi) prior to extravehicular activity (EVA) in order to use the existing suit with only 1 h of prebreathing. If these normal cabin pressures and O2 levels are utilized, existing physiological and medical databases apply, providing a known basis for evaluating effects of long duration space missions. If a 345 hPa (5 psi), 70-100% O2 atmosphere is adopted the existing suit can be used with no prebreathing required. However, there is no reference database on physiological effects under the conditions of lower pressure and higher O2 concentration. This paper considers the major issues involved in defining habitat pressure, O2 fraction, and EVA suit design for operations in space. A preliminary model for evaluating habitat/suit pressure and O2% strategies is presented. PMID:11541018

  20. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Bekdash, O.; Norcross, J.; Meginnis, I.

    2016-01-01

    Providing adequate carbon dioxide (CO2) washout is essential to the reduction of risk in performing suited operations. Long term CO2 exposure can lead to symptoms such as headache, lethargy, and dizziness. Thus maintaining adequate CO2 washout in both ground testing and during in flight EVAs is a requirement of current and future suit designs. It is necessary to understand the inspired CO2 of suit wearers such that future requirements for space suits appropriately address the risk of inadequate washout. Testing conducted by the EVA Physiology Laboratory at the NASA Johnson Space Center aimed to characterize a method for noninvasively measuring inspired oronasal CO2 under pressurized suited conditions in order to better inform requirements definition and verification techniques for future CO2 washout limits in space suits. Based on a meta-analysis of those studies it was decided to test a nasal cannula as it is a commercially available device, would not impede suit ventilation delivery, and is placed directly in the breathing path of the user.

  1. Argon used as dry suit insulation gas for cold-water diving

    PubMed Central

    2013-01-01

    Background Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Methods Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13°C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. Results No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. Conclusions In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1 h in water at 13°C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives. PMID:24438580

  2. Helicopter pilot suits for offshore application. A survey of thermal comfort and ergonomic design.

    PubMed

    Gaul, C A; Mekjavic, I B

    1987-06-01

    The objective of this study was to determine the existing problems associated with helicopter pilot survival suits currently in use. A survey was conducted of helicopter pilots from both Canadian commercial and military disciplines. Pilots commented on eight different types of survival suits. Reduced thermal comfort as well as lack of ventilation were the two most common criticisms of the pilot suits. The 'greenhouse' effect, common to helicopter cockpits, results in hot working ambients both in summer and winter. The air cooling mechanisms employed in summer may cause a 'chilling' effect following an on-ground stand-by where cockpit temperatures may reach 40 degrees C. Thermal stress may also be induced with high cockpit temperatures caused by the sun's radiation in winter and summer. Suit design was another area considered. 72% and 86% of military and commercial pilots respectively felt their freedom of movement was hindered by their survival suits. Certain designs were considered more hazardous than others with regard to clips and hooks catching switches on the control panel. Difficulty in donning suits appeared to be a universal problem irrespective of type of suit used. Lack of comfort and movement in addition to thermal stress may lead to reduced time to fatigue and, thus, occurrence of errors and accidents. The results of this survey reflect the inadequacies of the helicopter pilot survival suits presently in use. It is suggested that evaluation of these suits be made on the basis of their ventilation capabilities, ergonomic design and thermal properties in a variety of ambient environments. PMID:15676618

  3. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  4. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  5. Remelting and Remobilization in a Magmatic Arc: the St Peter Suite, South Australia

    NASA Astrophysics Data System (ADS)

    Symington, Neil; Weinberg, Roberto; Hasalová, Pavlina

    2014-05-01

    Thermo-mechanical models of magmatic arcs suggest that intermittent intrusion of magma batches should lead to remelting and remobilization of earlier intrusive rocks as a result of fluctuations in temperature and water content. However, examples of remelting and remobilization of earlier intrusive rocks, formed during arc-building, are surprisingly rare. We investigate the evolution of magmatic rocks of the Palaeoproterozoic St Peter Suite, in the Gawler Craton, South Australia. This suite records multiple intrusions, magma hybridization, and the remelting and remobilization of these intrusions to form migmatites and newly-formed leucocratic magmas. In this paper we detail first how multiple magma batches interact with one another as liquids and mushes during syn-magmatic deformation phases, and then detail the nature of migmatites resulting from anatexis of these same magmatic rocks and the resulting channel ways that allowed for magma remobilization. LA-ICP/MS U/Pb zircon dating yielded crystallization ages of 1647±12 Ma for an early diorite-to-granite suite, and 1604±12 Ma for a later magmatic suite of broadly similar composition. Both these suites underwent anatectic events. Titanite from late-formed leucosomes found within D2 shear zones in the older suite, yielded SHRIMP U/Pb age of 1605±7 Ma, within error of the age of the younger suite. We therefore infer that intrusion, crystallization and remelting/remobilization of this younger suite of rocks occurred within 10-15 M.yr. Thus, the St Peter Suite exposures record many of the key processes expected in arcs, including the prediction that early intrusive arc rocks remelt to form younger more fractionated magmas.

  6. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    SciTech Connect

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measured using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.

  7. Work and Fatigue Characteristics of Unsuited and Suited Humans During Isolated, Isokinetic Joint Motions

    NASA Technical Reports Server (NTRS)

    Gonzalez, L. Javier; Maida, James C.; Miles, Erica H.; Rajulu, S. L.; Pandya, A. K.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-vehicular Mobility Unit (EMU) and is worn by astronauts while working outside of their space craft in low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit) were measured while working at 100% and 80% of their maximum voluntary torque (MVT). It was found that the average decrease in the total amount of work done when the subjects were wearing the EMU was 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. In general the stronger joints took longer to fatigue and did more work than the weaker joints. However, it is not clear which joints are most affected by the EMU suit in terms of the amount of work done. The average amount of total work done increased by 5.2% and 20.4% for the unsuited and suited cases, respectively, when the subject went from working at 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% and 25.6% for the unsuited and suited cases, respectively, when the subjects went from working at 100% to 80% MVT. The EMU also decreased the joint range of motion. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average error in the predictions was found to be 18.3% and 18.9% for the unsuited and suited subject, respectively, working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subject, respectively, working at 80% MVT. These results could be very useful in the design of future EMU suits, and planning of Extra-Vehicular Activit). (EVA) for the upcoming International Space Station assembly operations.

  8. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  9. Overview of the Development for a Suite of Low-Thrust Trajectory Analysis Tools

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara; Hopkins, Randall; Thomas, Dan; Sims, Jon A.

    2006-01-01

    A NASA intercenter team has developed a suite of low-thrust trajectory analysis tools to make a significant improvement in three major facets of low-thrust trajectory and mission analysis. These are: 1) ease of use, 2) ability to more robustly converge to solutions, and 3) higher fidelity modeling and accuracy of results. Due mostly to the short duration of the development, the team concluded that a suite of tools was preferred over having one integrated tool. This tool-suite, their characteristics, and their applicability will be described. Trajectory analysts can read this paper and determine which tool is most appropriate for their problem.

  10. The use of antigravity suits in the treatment of idiopathic orthostatic hypotension

    NASA Technical Reports Server (NTRS)

    Landmark, K.; Kravik, S.

    1980-01-01

    Idiopathic orthostatic hypotension is an uncommon disease characterized by a drop in blood pressure when going from a recumbent to a standing position. Treatment by medication generally produces poor results. Three patients at the Royal Hospital in Oslo were treated with antigravity suits and all were able to maintain adequate blood pressures in the standing position. One patient improved dramatically and was able to take short walks while wearing the suit. The two other patients, however, felt that wearing the suits eventually became uncomfortable. This treatment represents a useful treatment alternative for intractable cases.

  11. Characterization of Carbon Dioxide Washout Measurement Techniques in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Meginnis, I; Norcross, J.; Bekdash, O.

    2016-01-01

    It is essential to provide adequate carbon dioxide (CO2) washout in a space suit to reduce the risks associated with manned operations in space suits. Symptoms of elevated CO2 levels range from reduced cognitive performance and headache to unconsciousness and death at high levels of CO2. Because of this, NASA imposes limits on inspired CO2 levels for space suits when they are used in space and for ground testing. Testing and/or analysis must be performed to verify that a space suit meets CO2 washout requirements. Testing for developmental space suits has traditionally used an oronasal mask that collects CO2 samples at the left and rights sides of the mouth. Testing with this mask resulted in artificially elevated CO2 concentration measurements, which is most likely due to the dead space volume at the front of the mask. The mask also extends outward and into the supply gas stream, which may disrupt the washout effect of the suit supply gas. To mitigate these problems, a nasal cannula was investigated as a method for measuring inspired CO2 based on the assumptions that it is low profile and would not interfere with the designed suit gas flow path, and it has reduced dead space. This test series compared the performance of a nasal cannula to the oronasal mask in the Mark III space suit. Inspired CO2 levels were measured with subjects at rest and at metabolic workloads of 1000, 2000, and 3000 BTU/hr. Workloads were achieved by use of an arm ergometer or treadmill. Test points were conducted at air flow rates of 2, 4, and 6 actual cubic feet per minute, with a suit pressure of 4.3 psid. Results from this test series will evaluate the accuracy and repeatability across subjects of the nasal cannula collection method, which will provide rationale for using a nasal cannula as the new method for measuring inspired CO2 in a space suit. Proper characterization of sampling methods and of suit CO2 washout capability will better inform requirements definition and verification

  12. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  13. Metabolic and Subjective Results Review of the Integrated Suit Test Series

    NASA Technical Reports Server (NTRS)

    Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.

    2009-01-01

    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a

  14. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test is to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III space suit across a range of workload and flow rates. As a secondary objective, results will be compared to the predicted CO2 concentrations and used to refine existing CFD models. These CFD models will then be used to help design an inlet vent configuration for the Z-2 space suit, which maximizes oronasal CO2 washout. This test has not been completed, but is planned for January 2014. The results of this test will be incorporated into this paper. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects will be tested in the Mark-III space suit with each subject performing two test sessions to allow for comparison between tests. Six different helmet inlet vent configurations will be evaluated during each test session. Suit pressure will be maintained at 4.3 psid. Subjects will wear the suit while walking on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) will be tested at each workload. Subjects will wear an oronasal mask with an open port in front of the mouth and will be allowed to

  15. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Realtime metabolic rate measurements were

  16. CO2 Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject and physiological differences between subjects. Computational Fluid Dynamic (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES). Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute (ACFM) were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the total oxygen consumption and CO2 production measured by additional gas analyzers at the air outlet from the suit. Real-time metabolic rate measurements were

  17. Labeled line drawing of launch and entry suit identifies various components

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Line drawings illustrate how a crewmember would be seated during space shuttle launch and entry in the mission specialist seat wearing the launch and entry suit (LES), a partial pressure suit. Front and profile drawings are labeled with numbers. The legend for the views includes: 1) Mission Specialist seat; 2) crewman; 3) helmet; 4) anti-exposure / counter pressure garment; 5) boots; 6) parachute harness; 7) parachute pack; 8) life raft with sea dye marker; 9) suit mounted oxygen (O2) manifold; 10) anti-gravity (anti-g) suit controller; 11) emergency O2 supply; 12) seawars; 13) ventilation fan; 14) orbiter O2 line; 15) headset interface unit (HIU); 16) communication (COMM) line to HIU; 17) flotation device. Crew escape system (CES) and LES was designed for STS-26, the return to flight mission, and subsequent missions.

  18. Requirements and Sizing Investigation for Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn

    2010-01-01

    The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.

  19. [Theoretical analysis of the efficacy of G suits during exposure to continuously increasing gravitational overloads].

    PubMed

    Palets, B L; Tikhonov, M A; Popov, A A; Arkhangel'skiĭ, D Iu; Palets, L D

    1987-01-01

    A mathematical model of human circulation was employed to examine circulation responses to +GZ acceleration the value of which increased linearly at the rate 0.1 G/sec, using subjects having an anti-G suit on and sitting in a relaxed posture. It has been calculated that the anti-G suit can compensate as much as 83% of the increment of hydrostatic pressure in leg vessels and as much as 57% in abdominal vessels. The suit effect on resistance and capacity vessel properties makes an approximately equal contribution to an increase of the acceleration tolerance threshold. However the occlusion effect of the anti-G suit causes a significant increase of afterload. PMID:3586581

  20. Rescue Simulation - NASA White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp

    NASA Video Gallery

    The White Sands Test Facility Totally Encapsulating Suit (TES) Boot Camp prepares students to deal with normal propellant operations, emergency events, and pre-operation planning by engaging studen...