Science.gov

Sample records for geodynamics

  1. Geodynamics

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1984-01-01

    The status of space geodynamics is examined, major scientific questions that need to be addressed are identified, and program activities are recommended for the next decade. Progress made in measuring tectonic plates, polar motion, and coupling of fluid motion of the Earth's core to the mantle is reviewed.

  2. Geodynamics Project

    ERIC Educational Resources Information Center

    Drake, Charles L.

    1977-01-01

    Describes activities of Geodynamics Project of the Federal Council on Science and Technology, such as the application of multichannel seismic-reflection techniques to study the nature of the deep crust and upper mantle. (MLH)

  3. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  4. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  5. Fundamentals studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Research in geodynamics, seismology, and planetary quakes is presented. Terradynamics and plate tectonics are described using dynamic models. The early evolution of the Earth's mantle is also discussed.

  6. Earth rotation and geodynamics

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  7. NASA geodynamics program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The history and development of the geodynamics program are described, in addition to accomplishments and plans for the future years activities. Extramural grant titles are listed for general research, Lageos investigations, and Magsat investigations.

  8. Geodynamics: Introduction and Background

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An overview is given of the field of geodynamics and its major scientific questions. The NASA geodynamics program is described as well as its status and accomplishments projected by 1988. Federal coordination and international cooperation in monitoring tectonic plate motion, polar motion, and Earth rotation are mentioned. The development of a GPS receiver for civilian geodesy and results obtained using satellite laser ranging and very long baseline interferometry in measuring crustal dynamics, global dynamics, and the geopotential field are reported.

  9. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Hager, B. H.; Kanamori, H.

    1981-01-01

    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix.

  10. Geodynamics Branch research report, 1982

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor)

    1983-01-01

    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  11. From Geodynamics to Simplicity

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity, steady-state, equilibrium and uniformity are dropped or modified, as qualifiers of the system,as recommended in Occam's philosophy.

  12. The NASA Geodynamics Program: An overview

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This NASA Geodynamics Program overview collectively examines the history, scientific basis, status, and results of the NASA Program and outlines plans for the next five to eight years. It is intended as an informative nontechnical discussion of geodynamics research.

  13. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1985-01-01

    The current technical objectives for the geodynamics program consist of (1) optimal utilization of laser and Very Long Baseline Interferometry (VLBI) observations for reference frames for geodynamics; (2) utilization of range difference observations in geodynamics; and (3) estimation techniques in crustal deformation analysis.

  14. Geodynamics map of northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M., (compiler); Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2013-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the mineral resources, metallogenesis, and tectonics of northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, northeastern China, South Korea, Japan, and the USA.

  15. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  16. Laser geodynamic satellite (LAGEOS II)

    NASA Technical Reports Server (NTRS)

    Portelli, C.; Ousley, G. W., Sr.

    1991-01-01

    The Laser Geodynamic Satellite 2 (LAGEOS 2) is nearly identical to the LAGEOS 1 satellite, which was launched by NASA in 1976. However, LAGEOS 2 is completely passive, and is equipped with fused silian corner reflectors for ranging with ground-based lasers. The addition of LAGEOS 2 will provide the GSFC laser network with significantly increased satellite tracking opportunities, because LAGEOS 1 is at a 110-degree inclination and LAGEOS 2 will be at a 52-degree inclination. The flight profile is given, and information is presented in tabular form on the following topics: Deep Space Network support, frequency assignments, telemetry, tracking, and tracking support responsibility.

  17. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.

  18. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Some objectives of this geodynamic program are: (1) optimal utilization of laser and VLBI observations as reference frames for geodynamics, (2) utilization of range difference observations in geodynamics, and (3) estimation techniques in crustal deformation analysis. The determination of Earth rotation parameters from different space geodetic systems is studied. Also reported on is the utilization of simultaneous laser range differences for the determination of baseline variation. An algorithm for the analysis of regional or local crustal deformation measurements is proposed along with other techniques and testing procedures. Some results of the reference from comparisons in terms of the pole coordinates from different techniques are presented.

  19. International GPS Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Urban, M. P. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1996-01-01

    This 1995 annual report of the IGS International GPS (Global Positioning System) Service for Geodynamics - describes the second operational year of the service. It provides the many IGS contributing agencies and the rapidly growing user community with essential information on current organizational and technical matters promoting the IGS standards and products (including organizational framework, data processing strategies, and statistics showing the remarkable expansion of the GPS monitoring network, the improvement of IGS performance, and product quality). It also introduces important practical concepts for network densification by integration of regional stations and the combination of station coordinate solutions. There are groups of articles describing general aspects of the IGS, the Associate Analysis Centers (AACs), Data Centers, and IGS stations.

  20. GLOBAL DISASTERS: Geodynamics and Society

    NASA Astrophysics Data System (ADS)

    Vikulina, Marina; Vikulin, Alexander; Semenets, Nikolai

    2013-04-01

    The problem of reducing the damage caused by geodynamic and social disasters is a high priority and urgent task facing the humanity. The vivid examples of the earthquake in Japan in March 2011 that generated a new kind of threat - the radiation pollution, and the events in the Arabic world that began in the same year, are dramatic evidences. By the middle of this century, the damage from such disastrous events is supposed to exceed the combined GDP of all countries of the world. The database of 287 large-scale natural and social disasters and global social phenomena that have occurred in the period of II B.C.E. - XXI A.D. was compiled by the authors for the first time. We have proposed the following phenomenological model: the scale of disasters over the time does not decrease, there is a minimum of accidents in the XV century; the numbers of accidents have cycles lasting until the first thousand years, natural and social disasters in the aggregate are uniformly distributed in time, but separately natural and social disasters are nonuniform. Thus, due to the evaluation, a 500-year cycle of catastrophes and 200-300 and 700-800-year periodicities are identified. It is shown that catastrophes are grouped into natural and social types by forming clusters. The hypothesis of the united geo-bio-social planetary process is founded. A fundamentally new feature of this research is the assumptions about the statistical significance of the biosphere and the impact of society on the geodynamic processes. The results allow to formulate a new understanding of global disaster as an event the damage from which the humanity will be unable to liquidate even by means of the total resource potential and the consequence of which may turn into the irreversible destruction of civilization. The correlation between the natural and social phenomena and the possible action mechanism is suggested.

  1. The NASA Geodynamics Program report, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the NASA Geodynamics Program in 1981 both in achieving improved measurement precision and in establishing the foundation for the acquisition and analysis of scientific data are discussed.

  2. Preliminary northeast Asia geodynamics map

    USGS Publications Warehouse

    Parfenov, Leonid M., (compiler); Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2003-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. This map is the result of extensive geologic mapping and associated tectonic studies in Northeast Asia in the last few decades and is the first collaborative compilation of the geology of the region at a scale of 1:5,000,000 by geologists from Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. The map was compiled by a large group of international geologists using the below concepts and definitions during collaborative workshops over a six-year period. The map is a major new compilation and re-interpretation of pre-existing geologic maps of the region. The map is designed to be used for several purposes, including regional tectonic analyses, mineral resource and metallogenic analysis, petroleum resource analysis, neotectonic analysis, and analysis of seismic hazards and volcanic hazards. The map consists of two sheets. Sheet 1 displays the map at a scale of 1:5,000,000, explanation. Sheet 2 displays the introduction, list of map units, and source references. Detailed descriptions of map units and stratigraphic columns are being published separately. This map is one of a series of publications on the mineral resources, metallogenesis, and geodynamics,of Northeast Asia. Companion studies and other articles and maps , and various detailed reports are: (1) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000; Obolenskiy and others, in press a); (2) a series of metallogenic belt maps (Obolenskiy and others, 2001; in press b); (3) a lode mineral deposits and placer districts location map for Northeast Asia (Ariunbileg and others, in press b); (4) descriptions of metallogenic belts (Rodionov and others, in press); and (5) a database on significant metalliferous and selected nonmetalliferous lode deposits, and selected placer districts (Ariunbileg and others, in press a).

  3. Geodynamic monitoring in real times

    NASA Astrophysics Data System (ADS)

    Outkin, V.; Yurkov, A.; Klimshin, A.; Kozlova, I.

    2011-12-01

    For the decision of problems of the short-term and intermediate term forecast of tectonic earthquakes the technique conditionally named - geodynamic monitoring which does not use the data of seismic monitoring for the operative decision of problems of the forecast is offered. Geodynamic monitoring (GDM) is to studying tensely - deformed conditions of the separate block of rock on change of activity natural radioactive gas is carried out by accommodation in the chosen file of specially designed monitors of radon - devices fixing change in time (VAR). The monitor of radon, (the detector of radon) as the basic measuring device located in the block of rocks, possesses enormous tensosensitivity to relative strain condition of a file. Depending on the enclosed pressure choose three characteristic points: 1) 30-35 % of "background" size VAR - the beginning of accumulation of inelastic energy; 2) 50 % of background VAR - the process of stabilization of an elastic condition of a file; 3) 70-75 % "background" VAR - a critical pressure in the mountain block, an opportunity as spontaneous dump of elastic energy, and under action external "triggerring" forces. If the size of the saved up energy is close to critical dump needs energy at a level of energy of variations of rotation of the Earth. Such significant energy causes "plenty" of earthquakes on all planet simultaneously. This fact confirms an opportunity of the short-term forecast of strong (destructive) earthquakes: dump of elastic pressure of the Earth in this case occurs in 25-30 hours after passage of variations of rotation of the Earth. It is for the notification of the population about coming nearer earthquake. External power functions (mechanical, electromagnetic, etc.), preparations influencing system and occurrence of tectonic earthquakes, are divided on two big classes: 1) "forecasting " functions - processes functionally connected to accumulation of elastic pressure and to dump by its rather small dozes; 2) external mechanical actions which initiate dump of the saved up elastic pressure - "triggirring functions", promoting dump of the elastic pressure resulting in earthquake. The short-term forecast of especially large earthquakes is entirely based on use of monitoring of rotation of the Earth: essential "triggerring functions" (variations of rotation of the Earth) dump(reset) the saved up pressure on all surface of the Earth, causing thus large earthquakes. Therefore the prevention(warning) of large earthquakes should be formed on the basis of monitoring variations of heterogeneity of rotation of the Earth, that usually precedes dump of elastic pressure(voltage) at 25-30 o'clock.

  4. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  5. Geodynamics - Tracking satellites to monitor global change

    NASA Technical Reports Server (NTRS)

    Beutler, Gerhard; Morgan, Peter; Neilan, Ruth E.

    1993-01-01

    The major goals and organizational structure of the International GPS Geodynamics Service (IGS), a new Navstar satellite tracking service, are described. IGS activities are aimed at providing the scientific community with data on GPS orbits accurate enough for performing regional and local GPS analysis and daily earth rotation information.

  6. Research activities of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor)

    1984-01-01

    A broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography are discussed. The NASA programs, include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX), and the Geopotential Research Mission (GRM). The papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  7. Geodynamic environments of ultra-slow spreading

    NASA Astrophysics Data System (ADS)

    Kokhan, Andrey; Dubinin, Evgeny

    2015-04-01

    Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central part of Bransfield rift); 2. During back-arc inter-subduction spreading (Ayu trough, northern Fiji basin), 3. During diffuse back-arc spreading (area on the south-eastern border of Scotia sea), 4. During back-arc spreading under splitting of island arc (northern extremity of Mariana trough). Each of the geodynamic environments is characterized by peculiar topographic, geological and geophysical features forming under the same spreading velocities. Development of ultra-slow spreading in each of these environments results in formation of peculiar extension sedimentary basins.

  8. Application of space technology to geodynamics.

    PubMed

    Flinn, E A

    1981-07-01

    Measurements of the movement and deformation of tectonic plates are needed for many research areas in geodynamics, but observations with adequate accuracy and frequency of measurement are not feasible if classical geodetic methods are used. Long-baseline microwave interferometry and laser ranging to Earth satellites are among the new techniques that have been developed within the past decade to make the required measurements. Fixed and mobile stations using both these methods have been constructed in several countries and are now being used in an internationally coordinated research program. Baseline length accuracy better than 2 to 3 centimeters (1 standard deviation) is expected within the next 5 years. PMID:17741174

  9. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Further development of utility program software for analyzing final results of Earth rotation parameter determination from different space geodetic systems was completed. Main simulation experiments were performed. Results and conclusions were compiled. The utilization of range-difference observations in geodynamics is also examined. A method based on the Bayesian philosophy and entropy measure of information is given for the elucidation of time-dependent models of crustal motions as part of a proposed algorithm. The strategy of model discrimination and design of measurements is illustrated in an example for the case of crustal deformation models.

  10. The role of NASA in geodynamics research - Past and future

    NASA Technical Reports Server (NTRS)

    Flinn, Edward A.; Baltuck, Miriam

    1989-01-01

    NASA participation in geophysics and geodynamics studies is addressed. Recent NASA activities in these areas are reviewed and plans and suggestions for the future are outlined. International cooperative activities in geophysics and geodynamics are briefly examined. New technologies that will be applied are considered.

  11. Geodynamical Evolution and Tectonic Framework of China

    NASA Astrophysics Data System (ADS)

    LIU, Guangding

    In this paper, we show that the tectonic framework of mainland China consists of "three latitudinal strips", namely, Tianshan-Yinshan-Yanshan, Qinling-Dabie, and Nanling; "two longitudinal strips" namely, Daxing'anling Taihangshan Wulingshan, Helanshan-Longmenshan; and "two triangles", Songpan-Ganzi, and Chaidamu. The geodynamic evolution of China can be considered in five-stages, which can be summarised as a kind of "teeterboard-like" process. The evolutionary process is that in the Palaeozoic era, the China mainland had lower elevation in the west and higher in the east, with OrdosSichuan as an axis. After the Mesozoic era, because the blocks of Qiangtang, Gangdese, and India collided and sutured with the Tarim block. During this time closure of the Tethys ocean occurred, and the Qinghai-Tibet Plateau formed. In the Cenozoic subduction of the Pacific plate northwestwards under the Philippine Sea began, and the Philippine Sea block converged towards the Eurasian plate. This was associated with extension and thinning of the crust in East China, which resulted in the uplift of the land in the west and subsidence in the east of China. Finally, we point out that research on the geodynamic evolution of the terranes is of practical significance in prospecting for mineral deposits and hydrocarbon resources.

  12. The evolution of Hadean-Eoarchaean geodynamics

    NASA Astrophysics Data System (ADS)

    O'Neill, C.; Debaille, V.

    2014-11-01

    Geodynamic modelling of Hadean/Eoarchaean tectonics typically requires higher rates of internal heat production, and higher mantle temperatures, in models that possess temperature-dependent viscosity and a yield criterion. In such models under Hadean conditions, for a wide range of geodynamic configurations and modelling approaches, subduction has a propensity to fail. This has led to the suggestion that the predominant tectonic regime in the Hadean was stagnant-lid convection, with intermittent recycling events. Various lines of evidence support this suggestion, from i) the long mixing time of mantle isotopic anomalies or compositional heterogeneities, such as 142Nd, 182W, and platinum group elements, to ii) the long residence time of the Hadean protolith to the Jack Hills zircons, and iii) thermal evolution models, which typically require lower heat flux in the past to avoid the "Archaean thermal catastrophe". The framework provided by stagnant lid, or episodic overturn, convection, iv) provides an explanation for the formation of early Archaean TTGs and greenstones, and v) explains the interleaving arc-plume sequence observed in many Archaean terranes, suggesting subduction initiation events may have been common, increasing their preservation potential. Implications include a low magnetic field strength in the Hadean, which is consistent with emerging paleointensity data from these times.

  13. Geodynamics applications of spaceborne laser ranging

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Degnan, John J.

    1989-01-01

    The Geodynamics Laser Ranging System (GLRS) is a spaceborne laser ranging instrument being developoed by NASA as a facility instrument for the Earth Observing System (EOS). GLRS is to be used to study regional and local crustal movements. It is designed to make highly precise range measurements to retroreflector targets located in geophysically interesting sites. Using a two-color ranging scheme, absolute range accuracies of several mm are expected. Simulations based on this accuracy and the EOS orbital parameters show that length of the intersite baseline between retroreflectors can be determined to several mm accuracy at distances from a few km to several hundred km with several passes of GLRS range data collected over a few-day interval. Short-arc techniques are used to minimize the effects of gravity field and other force model uncertainties. Relative heights can be determined to sub-cm accuracy over comparable distances.

  14. Experimental, Numerical and Observational Models in Geodynamics

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina

    2015-04-01

    Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.

  15. Scientific Data Analysis and Software Support: Geodynamics

    NASA Technical Reports Server (NTRS)

    Klosko, Steven; Sanchez, B. (Technical Monitor)

    2000-01-01

    The support on this contract centers on development of data analysis strategies, geodynamic models, and software codes to study four-dimensional geodynamic and oceanographic processes, as well as studies and mission support for near-Earth and interplanetary satellite missions. SRE had a subcontract to maintain the optical laboratory for the LTP, where instruments such as MOLA and GLAS are developed. NVI performed work on a Raytheon laser altimetry task through a subcontract, providing data analysis and final data production for distribution to users. HBG had a subcontract for specialized digital topography analysis and map generation. Over the course of this contract, Raytheon ITSS staff have supported over 60 individual tasks. Some tasks have remained in place during this entire interval whereas others have been completed and were of shorter duration. Over the course of events, task numbers were changed to reflect changes in the character of the work or new funding sources. The description presented below will detail the technical accomplishments that have been achieved according to their science and technology areas. What will be shown is a brief overview of the progress that has been made in each of these investigative and software development areas. Raytheon ITSS staff members have received many awards for their work on this contract, including GSFC Group Achievement Awards for TOPEX Precision Orbit Determination and the Joint Gravity Model One Team. NASA JPL gave the TOPEX/POSEIDON team a medal commemorating the completion of the primary mission and a Certificate of Appreciation. Raytheon ITSS has also received a Certificate of Appreciation from GSFC for its extensive support of the Shuttle Laser Altimeter Experiment.

  16. On the usage of XML file format in geodynamic calculations

    NASA Astrophysics Data System (ADS)

    Choliy, V.

    2012-12-01

    We recommend the extended usage of XML data format for the representation of geodynamic observations and processing results. A short introduction to the technology and a simple example for a Consolidated Laser Ranging Data Format (CRD) data file are presented.

  17. Modern Geodynamic Model of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, O.; Sobolev, N.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Petrov, E.

    2012-04-01

    In 2011 at VSEGEI (Russia) within the international project "Atlas of Geological Maps of the Circumpolar Arctic", a draft of the structural tectonic map of the Arctic at 1: 5,000,000 scale was prepared. This map is accompanied by a model of deep lithospheric structure of the Russian Arctic, which reflects thickness, types and specific features of crustal structure, and by geodynamic reconstructions. Analysis of the geological and geophysical data enables distinguishing a set of features in the Arctic evolution: - Differences in geological structure and geodynamic evolution of the Western and Eastern Arctic have been spotted no less than since the Early Paleozoic, which was reflected in the formation of caledonides in the West of the Arctic, and ellesmerides in the East. - In the Middle Paleozoic-Mesozoic (Late Devonian-Early Cretaceous), the eastern parts of the Arctic were affected by geodynamic processes taking place in the Paleo-Pacific. The formation of the Canadian basin was a result of the Late Jurassic-Early Cretaceous riftogenesis. A set of features of this basin - such as constrained spreading, considerable depth and topography of the floor, sedimentation specifics - allows us to consider it as a marginal basin of the Paleo-Pacific that moved into an island-arc evolution stage in the Late Jurassic. Collision orogenic activities that widely manifested themselves in the Northern-Eastern part of Asia on the verge of the Early-Late Cretaceous are related to intraplate riftogenic processes in the Central Arctic that were followed by basic magmatism manifestations in Svalbard, Franz Josef Land and New Siberian Islands. Cretaceous stage of the intraplate riftogenesis determined to a great extent the modern-day structure of the Eastern Arctic. - The opening of the Northern Atlantic was accompanied by tectonic compression in the Eastern parts of the Arctic. The formation of the Eurasian basin was preceded by Late Cretaceous-Paleogene period of amplitude differentiated vertical tectonic movements. At that time, the Barents-Kara plate suffered lifting whose amplitude reached as many as 2000-3000 meters. Within the Amerasian basin prevailed descending movement that determined the generation of the cover of Late Cretaceous-Cenozoic formations. - Analysis of seismic data shows that the mid-oceanic Gakkel Ridge takes over older - presumably Early Cretaceous - riftogenic structure. Young oceanic Eurasian spreading basin changes into the riftogenic Laptev Sea basin. The Eastern and Western Eurasian basin passive margins are different. Within the Barents and Kara marginal seas, sedimentary paleobasins are reconstructed with a thick (up to 20 km) Paleozoic and Mesozoic (Triassic-Early Cretaceous) sedimentary cover and a heterogeneous basement. Amerasian basin was formed in the Late Jurassic-Early Cretaceous similar to the marginal basin of Paleo-Pacific. In the Late Cretaceous, it transformed into a residual basin, and beginning from the Neogene it evolved into an intraplate basin of the passive margin of the newly formed Eurasian Oceanic basin.

  18. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  19. Advanced cyberinfrastructure for research in Geodynamics

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad

    2010-05-01

    Today's scientists need access to new information technology capabilities, able to perform high-resolution complex computing simulations in a reasonable time frame. Sophisticated simulation tools allow us to study phenomena that can never be observed or replicated by standard laboratory experiments. Modeling complex natural processes in general, and numerical computation in particular, represents today an essential need of research, and all modern research centers benefit from a computing center of one form or another. The combined power of hardware and sophisticated software, visualization tools, and scientific applications produced and used by interdisciplinary research teams make possible nowadays to advance the frontiers of science and to pose new key scientific questions. Cyberinfrastructure integrates hardware for high speed computing, a collection of highly specialized software and tools, and a powerful visualization tool. A new interdisciplinary research domain is emerging at the interface of geosciences and computing with essential inputs from geology and geophysics. In this study we show how to rapidly deploy a low-cost high-performance computing cluster (HPCC) and a 3D visualization system that can be used both in teaching and research in geosciences. Also, we present several geodynamic simulations performed with such systems.

  20. Eclogites and their geodynamic interpretation: a history

    NASA Astrophysics Data System (ADS)

    Godard, Gaston

    2001-09-01

    Haüy coined the term eclogite, meaning "chosen rock", in 1822, but de Saussure had already observed rocks of this type in the Alps four decades earlier. Throughout the 19th century, the origin of eclogite remained an enigma, in spite of great progress in our knowledge of this rock. The first chemical analyses, carried out around 1870, showed that its bulk composition was the same as gabbro. Therefore, eclogite was thought to be either an igneous rock of gabbroic composition or a metamorphosed gabbro. This second hypothesis became preferred when progressive transitions were observed between gabbros and eclogites. In 1903, simply by comparing the molar volumes of gabbroic and eclogite parageneses, Becke inferred that eclogite was the high-pressure equivalent of gabbro. In 1920, eclogite was involved in the conception of the metamorphic facies by Eskola. However, a few researchers denied the existence of an eclogite facies, and claimed that high stress instead of high lithostatic pressure could generate eclogites. In the 1960s, consideration of the water pressure parameter also favoured the belief that eclogite was simply the anhydrous equivalent of amphibolite. Finally, eclogite was definitely considered as a high-pressure metamorphic rock following the development of experimental petrology and the application of thermodynamics. In recent years, the discovery of ultrahigh-pressure coesite-bearing rocks in the crust has drastically changed geologists' ideas concerning the limits of eclogite-facies crustal metamorphism. Eclogites have been involved in several geodynamic theories. Around 1900, kimberlite studies favoured the idea that eclogite might be abundant in the interior of the Earth. In 1912, Fermor predicted the existence of a dense eclogite-bearing zone in the mantle. This "eclogite layer" hypothesis was still envisaged as late as 1970. The alternative "peridotite" hypothesis became preferred when experimental investigations demonstrated that the gabbro-to-eclogite transition could not coincide with a sharp Mohorovičić discontinuity. Before plate tectonics, high-pressure belts were interpreted as remnants of ophiolite-bearing "geosynclines", metamorphosed by loading during thrust faulting. After the acceptance of plate tectonics, around 1970, the same high-pressure Alpine-type belts came to be considered as former oceanic crust, transformed into eclogite within subduction zones, and subsequently incorporated into mountain belts. Surprisingly, formation of eclogite in "subsidence" zones (i.e. subduction zones) had already been envisaged as early as 1931 by Holmes, the inventor of a convection-current theory. In the 1980s, many authors tried to apply the model of Alpine-type high-pressure belts to eclogites enclosed within the gneisses of ancient orogens, but the question remains obscure nowadays. These eclogites have been involved in the "in situ versus foreign" controversy and in the unresolved enigma of ultrahigh-pressure metamorphism. The latter came under scrutiny in 1984 after the discovery of coesite and diamond in some eclogite-facies rocks. It has been a matter of considerable interest during the last two decades. Currently, the debate is focused on the geodynamic mechanisms responsible for the exhumation of these rocks, a question that will probably remain unresolved for part of the coming century.

  1. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  2. Urey Award: Geodynamics of Icy Bodies

    NASA Astrophysics Data System (ADS)

    Nimmo, Francis

    2007-10-01

    There are at least 37 objects in this solar system with masses greater than 10^20 kg, two thirds of which have surfaces made primarily of water ice. The handful of icy bodies studied by spacecraft have revealed an enormous diversity of bizarre and unanticipated features, from geysers on Triton and Enceladus, to the peculiar shapes of Iapetus and 2003 EL61. I will discuss three aspects of icy body geodynamics. First, just as on silicate bodies, topographic profiles can be used to look for flexure and thus to infer the elastic thickness Te of the near-surface. For thin ice shells (e.g. Europa), estimates of Te place constraints on the shell thickness. For Ganymede the Te values provide estimates of the heat flux evolution through time which are consistent with models of that body's orbital evolution. Second, tidal deformation can drive strike-slip motion and shear heating. On Europa and Triton, this shear heating may be responsible for the double ridges observed at the surface. On Enceladus, shear heating is a plausible cause of the elevated temperatures and vapour plumes seen in the south polar region. Although no such plumes were imaged on Europa, vapour production due to shear heating may also operate on this body. Last, rotating planetary bodies will reorient if their moments of inertia are altered. Reorientation of synchronous satellites is more complicated than that of planets because of the combined tidal and rotational bulges. Enceladus may have undergone reorientation as a result of diapirism, resulting in the "tiger stripes" region moving towards the south pole. Large impact basins on other icy bodies are also likely to have caused reorientation unless basin relaxation times are very rapid. Although for a given basin slow rotators (such as Pluto) undergo more reorientation, the resulting stresses are actually larger for fast rotators.

  3. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  4. Modeling petrological geodynamics in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Tirone, M.; Ganguly, J.; Morgan, J. P.

    2009-04-01

    We have developed an approach that combines principles of fluid dynamics and chemical thermodynamics into a fully coupled scheme to model geodynamic and petrological evolution of the Earth's mantle. Transport equations involving pressure, temperature, velocities, and bulk chemical composition are solved for one or more dynamic phases and interfaced with the thermodynamic solutions for equilibrium mineralogical assemblages and compositions. The mineralogical assemblage and composition are computed on a space-time grid, assuming that local thermodynamic equilibrium is effectively achieved. This approach allows us to simultaneously compute geophysical, geochemical, and petrological properties that can be compared with a large mass of observational data to gain insights into a variety of solid Earth problems and melting phenomena. We describe the salient features of our numerical scheme and the underlying mathematical principles and discuss a few selected applications to petrological and geophysical problems. First, it is shown that during the initial stage of passive spreading of plates, the composition of the melt near Earth's surface is in reasonable agreement with the average major element composition of worldwide flood basalts. Only the silica content from our model is slightly higher that in observational data. The amount of melt produced is somewhat lower than the estimated volumes for extrusive and upper crustal intrusive igneous rocks from large igneous provinces suggesting that an active upwelling of a larger mantle region should be considered in the process. Second, we have modeled a plume upwelling under a moving plate incorporating the effects of mineralogy on the density structure and viscous dissipation on the heat transport equation. The results show how these effects promote mantle instability at the base of the lithosphere. Third, we have considered a mantle convection model with viscosity and density directly related to the local equilibrium mineralogical assemblage. Interesting lateral variations and significant differences in the viscosity structure of the upper and lower mantle are revealed from our model results. The averaged viscosity variations with depth retrieved from our numerical simulations seem to reproduce the main features of the mantle viscosity structure under the Pacific ocean obtained from recent studies based on inversion of seismic data.

  5. Overview and Observational Constraints on Venus' Geodynamics and Tectonics

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.

    2015-05-01

    Today Venus is a single plate, uninhabitable planet. Why doesn’t it have plate tectonics? Did it ever have plate tectonics or a more mobile lid? This paper reviews what is known about Venus’ tectonics and geodynamics, as well as what is debated.

  6. Geodynamic Evolution of the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Kaymakci, N.; Decker, J.; Orange, D.; Teas, P.; Van Heiningen, P.

    2013-12-01

    We've carried out a large on- and offshore study in Eastern Indonesia to characterize the major structures and to provide constraints on the Neogene geodynamic evolution of the Banda Sea region. The onshore portion utilized remote sensing data and published geology. We tied the onshore to the offshore using recently acquired high resolution bathymetric data (16m and 25m bin size) and 2D seismic profiles that extend from Sulawesi in the west to Irian Jaya in the east across the northern part of the Banda Arc. We interpret the northern boundary of the 'Birds Head' (BH) of Papua, the Sorong Fault, to be a sinistral strike-slip fault zone with a minimum of 48 km displacement over the last few million years. The western boundary fault of Cendrawasih Basin defines the eastern boundary of BH and corresponds to the Wandamen Peninsula which comprises high pressure metamorphic rocks, including eclogite and granulite facies rocks, with exhumation ages from 4 to 1 Ma. Earthquake focal mechanism solutions indicate that the eastern boundary of BH is linked with a large scale offshore normal fault which we suggest may be related to the exhumation of the Wandamen Peninsula. The eastern boundary of Cendrawasih Basin is defined by a large transpressive belt along which BH is decoupled from the rest of Papua / Irian Jaya. This interpretation is supported by recent GPS studies. We propose that the BH and the Pacific plate are coupled, and therefore the Birds Head is therefore completely detached from Irian Jaya. Furthermore, Aru Basin, located at the NE corner of Banda Arc, is a Fault-Fault-Transform (FFT) type triple junction. According to available literature information the Banda Sea includes three distinct basins with different geologic histories; the North Banda Sea Basin (NBSB) was opened during 12-7 Ma, Wetar-Damar Basin (WDB) during 7-3.5 Ma and Weber Basin (WB) 3-0 Ma. Our bathymetric and seismic data indicated that the NBSB and Weber Basin lack normal oceanic crust and are probably floored by exhumed mantle, while WDB seems to have normal oceanic crust. These basins thought to be developed sequentially from north to south, possibly due to back arc extension resulting from trench retreat and roll-back of the northwards subducting Indo-Australian oceanic plate below the SE Eurasian margin along the Sunda-Banda subduction zone. We suggest that a trench-perpendicular tear in the subducting slab extends from the southwestern corner of Celebes Sea to the northeastern corner of Seram Island. It defines the southern boundary of the Banggai-Sula and Bird's Head (BH) blocks and northern boundary of Banda Sea micro-plate. The dominant character of this structure is sinistral strike-slip fault zone that eastward gradually become transpressional to ultimately thrusting at the tip of the tear east of Seram Island. Here, deformation results in a large accretionary wedge, the Seram Accretionary Belt (SAB) that is partitioned by intensely sheared strike-slip faults. The deformation mechanisms within the SAB is difficult to interpret due to poor seismic imaging below a shallow (Pliocene?) unconformity and the inferred complexity of the deformation within the belt. However, geometries of faults and fault blocks are very well pronounced on bathymetric data which provide hints for the deformation style of the belt.

  7. Magmatism and Geodynamics of Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, Mehmet; Oyan, Vural; Sharkov, Evgenii V.; Chugaev, Andrey V.; Genç, Ş. Can; Ünal, Esin; Aysal, Namık; Duru, Olgun; Kavak, Orhan

    2013-04-01

    Eastern Turkey has been an active collision zone for the last 15 My between the Arabian Plate and Eurasian continent. The collision initiated after the closure of the southern branch of the Neotethys Ocean by northward subduction beneath E Anatolia at ~15 Ma. The collision-related volcanism started immediately after the closure of the ocean (again at around 15 Ma) in the north of the present day Lake Van with the eruption of mostly intermediate to acid lavas displaying distinct subduction characteristics. Both continental collision and the magmatism are still active, because the Arabian plate still converges to Anatolia with a velocity of ~2.5 cm/y. The overriding Anatolian block experienced a major uplift event around 10 Ma. The region once resided below the sea level merged as a widespread plateau ~2 km above the sea level as part of a regional dome structure with ~1000 km diameter, extending from Central Anatolia in the West to Azerbaijan in the East. The first alkaline lavas derived from a relatively more enriched source erupted to the surface in the N of Lake Van coeval with the initiation of the uplift at around 10 Ma. The underthrusting Arabian platform, on the other hand, was deformed as a result of both crustal-scale east-west folds adjacent to the major thrust zone and extensional deformations perpendicular to the suture zone. Alkaline within-plate lavas with no subduction component erupted through these extension zones. This intraplate volcanism focused on the Karacadaǧ volcanic complex that covers an area of ~10,000 km2. Early Stage volcanism of Karacadaǧ was dominated by magmas derived from a shallower metasomatized (litospheric) mantle source, while magmas of the later stages were derived from deeper (asthenospheric) sources. The Karacadaǧ volcanic area of SE Anatolia was sourced by a garnet bearing, deep asthenospheric mantle which is similar to that of Afar in terms of its Pb isotopic ratios. This brings into question whether the mantle material from the Afar plume reached beneath Eastern Anatolian by a mantle convection cell. We argue that both the uplift and the widespread volcanism across the region share a common reason: a major "slab-steepening and breakoff event beneath the large Eastern Anatolian Accretionary Complex". We argue that the older intermediate calc-alkaline volcanic products displaying a distinct subduction signature were possibly derived from the mantle wedge that opened out due to the steepening of the slab after the continental collision. Being unsupported by the subduction, the slab started to be steepened beneath the region, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly created a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south. The inferred asthenospheric flow perhaps pulled a portion of the asthenosphere that once had resided beneath the Pontide arc. Therefore, the subduction component was inherited from the previous Pontide arc magmatism. The widespread decompressional melting generated voluminous magmas with the aforementioned inherited subduction signature in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. As a result, the subduction-modified E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. We interpret the eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkaline basalts in the N of Lake Van) as the indication of the formation of the slab-window beneath the region due to tearing of the slab. The volcanism in the collision zone continued till the historical times. The region includes some of the largest volcanic centers (e.g. Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) around the Mediterranean region. Our melting models indicate that there is a temporal change in source characteristics across the collision zone from a garnet-dominated deeper mantle-source during the Miocene to a spinel-dominated shallower source during the Quaternary. Our AFC and EC-AFC models reveal that the importance of the AFC process decreased broadly in time while each volcano experienced a unique replenishment and fractionation history. On the basis of the results from our geochemical data and petrologic models, we argue that the temporal and spatial changes in the chemistry of volcanics across the region are the reflections of the geodynamic events that controlled the movement and interaction of mantle domains with contrasting geochemical, isotopic and mineralogical identities. Compositions of some of the primitive magmas were further modified via interactions with the lithospheric mantle and/or crustal material coupled with fractionation en route to the surface.

  8. The evolving role of the U.S. Geodynamics Committee

    NASA Astrophysics Data System (ADS)

    Dickinson, Bill

    The U.S. Geodynamics Committee of the National Research Council (NRC) has a long history of producing reports and organizing symposia that have fostered pacesetting geophysical research. The Committee, which is part of the Board on Earth Sciences and Resources, within the Commission on Geosciences, Environment, and Resources develops and undertakes studies of the dynamic history of the Earth. Upon completion of the Upper Mantle Project, the Committee helped focus the research agenda for much of geophysics with its report, U.S. Program for the Geodynamics Project. In subsequent years, the Committee through its reports was influential in the development of the continental scientific drilling program, the International Lithosphere Program, and the continent-ocean transects program. The Committee recently produced two reports: The National Geomagnetic Initiative (1993) and Mount Rainier Active Cascade Volcano (1994).

  9. Study of a close-grid geodynamic measurement system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Clogeos (Close-Grid Geodynamic Measurement System) concept, a complete range or range-rate measurement terminal installed in a satellite in a near-polar orbit with a network of relatively simple transponders or retro-reflectors on the ground at intervals of 0.1 to 10 km was reviewed. The distortion of the grid was measured in three dimensions to accuracies of + or - 1 cm with important applications to geodynamics, glaciology, and geodesy. User requirements are considered, and a typical grid, designed for earthquake prediction, was laid out along the San Andreas, Hayward, and Calaceras faults in southern California. The sensitivity of both range and range-rate measurements to small grid motions was determined by a simplified model. Variables in the model are satellite altitude and elevation angle plus grid displacements in latitude, and height.

  10. Drilling the solid earth: global geodynamic cycles and earth evolution

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Arndt, Nicholas; Goodenough, Kathryn M.

    2015-09-01

    The physical and chemical evolution of the Earth is driven by geodynamic cycles that are global in scale, operating over 4.57 Ga of Earth's history. Some processes are truly cyclic, e.g., the Wilson Cycle, while others are irreversible (e.g., core formation). Heat and mass transfer between the lowermost mantle (e.g., core-mantle boundary) and the surface drives these global geodynamic processes. Subduction of lithospheric plates transfers cool fractionated material into the lower mantle and leads indirectly to the formation of new oceanic lithosphere, while the rise of thermochemical plumes recycles the remnants of these plates back to the surface, driven by heat transfer across the core-mantle boundary. These global geodynamic cycles are responsible for hotspot volcanism, the formation of continental crust, collisional orogenies, continental rifting, subduction zone processes (arcs, accretionary prisms), and ore deposits. Each of these presents opportunities for investigation by continental scientific drilling. In addition, these cycles affect other processes that are targets of continental scientific drilling: the origin and evolution of life and an oxygenated atmosphere, the impact of large volcanic eruptions on climate, and geological hazards such as earthquakes and volcanic eruptions. In this paper, we present the scientific rationale for continental scientific drilling to study global geodynamic processes, review past successes in this realm that were sponsored in part by ICDP, and suggest potential new targets for drilling campaigns that focus on solid earth evolution. This paper builds on discussions at the 2013 ICDP Science Meeting on the future of continental scientific drilling, held in Potsdam in November 2013.

  11. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  12. Monitoring of global geodynamic processes using satellite observations

    NASA Astrophysics Data System (ADS)

    Tatevian, S. K.; Attia, G. F.; Abou-Aly, N.; Ghoneim, R.; Hegazy, M.

    2014-06-01

    To study mechanisms of destructive geodynamic phenomena including determination of places of possible severe earthquakes, volcano eruptions and some other natural hazards, it is important to have means to evolve areas where maximum changes of the displacement velocities and the terrestrial crust vertical movements are possible. The previous experience has shown that the satellite geodesy techniques including global navigation systems and satellite laser ranging are the most effective for research activities in this field. Permanent control of secular movement of GPS-stations of the international geodynamic network, located in Russia, has allowed improving the reference coordinate frame for North Eurasia since Russian network stations provide representative covering of the largest stable areas (the Siberian and the East European) of the Eurasian plate. Along its southern border, there is a zone consisting of a great number of microplates surrounding the South-Eurasian stable plate. Interaction of these small plates and blocks influences distribution of seismic stresses in internal parts of the continent that is confirmed by the highest seismic activity of the triangle bordered by thrusts of the Himalayas and faults of the Pamirs, the Tien-Shan, the Baikal and the North-Eastern China. One of the active tectonic zones of Egypt located in Aswan, is characterized by regional basement rock uplift and regional faulting. In 1997, the African Regional Geodynamic Network was developed around the northern part of Lake Nasser, consists of 11 points, on both sides of the Lake. Its main goal is to study the geodynamical behavior around the northern part of the lake. The collected data were processed using the Bernese software version 5.0. From the velocity results, including also the African plate motion, it can be noticed that all stations of this network are moved to the northeast direction and it is typically the direction of the African plate motion.

  13. Applications of Geodesy to Geodynamics, an International Symposium

    NASA Technical Reports Server (NTRS)

    Mueller, I. I. (Editor)

    1978-01-01

    Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.

  14. Software for Geodynamical Researches Used in the LSGER IAA

    NASA Astrophysics Data System (ADS)

    Malkin, Z. M.; Voinov, A. V.; Skurikhina, E. A.

    Software used in the Laboratory of Space Geodesy and Earth Rotation (LSGER) of the Institute of Applied Astronomy (IAA) of the Russian Academy of Sciences for computation of geodynamical products: Earth Orientation Parameters (EOP) and station coordinates (TRF) based on observations of space geodesy techniques (VLBI, SLR) is described. The principal software components used for these investigations are GROSS for processing of SLR observations; Bernese for processing of GPS observations; OCCAM for processing of VLBI observations; and software for data exchange.

  15. Automated Testing Infrastructure and Result Comparison for Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Kellogg, L. H.

    2013-12-01

    The geodynamics community uses a wide variety of codes on a wide variety of both software and hardware platforms to simulate geophysical phenomenon. These codes are generally variants of finite difference or finite element calculations involving Stokes flow or wave propagation. A significant problem is that codes of even low complexity will return different results depending on the platform due to slight differences in hardware, software, compiler, and libraries. Furthermore, changes to the codes during development may affect solutions in unexpected ways such that previously validated results are altered. The Computational Infrastructure for Geodynamics (CIG) is funded by the NSF to enhance the capabilities of the geodynamics community through software development. CIG has recently done extensive work in setting up an automated testing and result validation system based on the BaTLab system developed at the University of Wisconsin, Madison. This system uses 16 variants of Linux and Mac platforms on both 32 and 64-bit processors to test several CIG codes, and has also recently been extended to support testing on the XSEDE TACC (Texas Advanced Computing Center) Stampede cluster. In this work we overview the system design and demonstrate how automated testing and validation occurs and results are reported. We also examine several results from the system from different codes and discuss how changes in compilers and libraries affect the results. Finally we detail some result comparison tools for different types of output (scalar fields, velocity fields, seismogram data), and discuss within what margins different results can be considered equivalent.

  16. Time-dependent, irreversible entropy production and geodynamics.

    PubMed

    Regenauer-Lieb, Klaus; Karrech, Ali; Chua, Hui Tong; Horowitz, Franklin G; Yuen, Dave

    2010-01-13

    We present an application of entropy production as an abstraction tool for complex processes in geodynamics. Geodynamic theories are generally based on the principle of maximum dissipation being equivalent to the maximum entropy production. This represents a restriction of the second law of thermodynamics to its upper bound. In this paper, starting from the equation of motion, the first law of thermodynamics and decomposition of the entropy into reversible and irreversible terms,(1) we come up with an entropy balance equation in an integral form. We propose that the extrema of this equation give upper and lower bounds that can be used to constrain geodynamics solutions. This procedure represents an extension of the classical limit analysis theory of continuum mechanics, which considers only stress and strain rates. The new approach, however, extends the analysis to temperature-dependent problems where thermal feedbacks can play a significant role. We apply the proposed procedure to a simple convective/conductive heat transfer problem such as in a planetary system. The results show that it is not necessary to have a detailed knowledge of the material parameters inside the planet to derive upper and lower bounds for self-driven heat transfer processes. The analysis can be refined by considering precise dissipation processes such as plasticity and viscous creep. PMID:19948557

  17. Precambrian geodynamics: models vs. concepts and constrains (Invited)

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Sizova, E.; Brown, M.

    2013-12-01

    In contrast to modern-day plate tectonics, studying Precambrian geodynamics presents a unique challenge as currently there is no agreement upon paradigm concerning the global geodynamics and lithosphere tectonics for the early Earth. Further progress in this direction requires cross-disciplinary efforts with a special emphasis placed upon quantitative testing of existing geodynamic concepts and extrapolating back in geological time, using both global and regional scale thermomechanical numerical models, which have been validated for present day Earth conditions. Here, we focus on discussing results of recent modeling studies in the context of existing concepts and constraints for Precambrian geodynamics. The three key features of Precambrian Earth evolution are outlined based on combining available observations and thermomechanical models (cf. review by Gerya, 2013): (1) Early Archean pre-subduction geodynamics was dominated by plume tectonics and the development of hot accretionary orogens with low topography, three-dimensional deformation and pronounced gravitational tectonics. Mantle downwellings and lithospheric delamination (dripping-off) processes are likely to have played a key role in assembling and stabilizing the hot orogens on a timescale up to hundreds of millions of years. Both oceanic-like and continental-like lithospheres were rheologically weak due to the high Moho temperature (>800 °C) and melt percolation from hot partially molten sublithospheric mantle (Sizova et al., 2010). (2) Wide spread development of modern-style subduction on Earth started during Mesoarchean-Neoarchean at 3.2-2.5 Ga. This is marked by the appearance of paired metamorphic complexes and oldest eclogite ages in subcontinental lithospheric mantle. Numerical models suggest that the transition occurred at mantle temperatures 175-250 °C higher than present day values, and was triggered by stabilization of rheologically strong plates of both continental and oceanic type (Sizova et al., 2010). Due to the hot mantle temperature, slab break-off was more frequent in the Precambrian time causing more episodic subduction compared to present day. (3) Wide spread development of modern-style (cold) collision on Earth started during Neoproterozoic at 600-800 Ma and is thus decoupled from the onset of modern-style subduction. Cold collision created favorable conditions for the generation of ultrahigh-pressure (UHP) metamorphic complexes which become widespread in Phanerozoic orogens. Numerical models suggest that the transition occurred at mantle temperatures 80-150 °C higher than present day values and was associated with stabilization of the continental subduction (Sizova et al., 2013). Frequent shallow slab break-off limited occurrence of UHP rocks in the Precambrian time. References Gerya, T.V. (2013) Precambrian geodynamics: Concepts and models. Gondwana Research, DOI: http://dx.doi.org/10.1016/j.gr.2012.11.008 Sizova, E., Gerya, T., Brown, M., Perchuk, L.L. (2010) Subduction styles in the Precambrian: Insight from numerical experiments, Lithos, 116, 209-229. Sizova, E.V., Gerya, T.V., Brown, M. (2013) Contrasting styles of Phanerozoic and Precambrian continental collision, Gondwana Research, DOI: http://dx.doi.org/10.1016/j.gr.2012.12.011

  18. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  19. Geodynamics of oroclinal bending: Insights from the Mediterranean

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon

    2014-12-01

    The Alpine Orogen in the Mediterranean region exhibits a series of orogenic curvatures (oroclines). The evolution of these oroclines is relatively well constrained by a plethora of geophysical and geological data, and therefore, their origin can inform us on the fundamental processes controlling oroclinal bending. Here, a synthesis of the geometry of Mediterranean oroclines, followed by a discussion on their geodynamic origin is presented. The geometrical synthesis is based on a new classification of Mediterranean oroclines, which defines a first-order orocline (Adriatic Orocline) by the general northward-convex shape of the Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this orocline, are second-, third- and fourth-order oroclines. The major process that led to the formation of the Adriatic Orocline is the indentation of Adria into Europe, whereas second- and third-order oroclines (e.g., Western Mediterranean and Gibraltar oroclines, respectively) were primarily controlled by a combination of trench retreat and slab tearing. It appears, therefore, that the geodynamics of Mediterranean oroclines has been entirely dependent on plate boundary migration and segmentation, as expressed in the interlinked processes of indentation, trench retreat and slab tearing. The relative contribution of specific geodynamic processes, and their maturity, could be inferred from geometrical characteristics, such as the amplitude-to-width ratio, the orientation of the curvature (convex or concave) relative to the convergence vector, and their geometrical relationship with backarc extensional basins (e.g., in the concave side of the orocline). Based on the information from the Mediterranean oroclines, it is concluded that oroclinal bending commonly involves lithospheric-scale processes, and is not restricted to thin-skinned deformation. However, contrary to previous suggestions that assume that the whole lithosphere can buckle, there is no clear evidence that such processes occur in modern tectonic environments.

  20. International GPS (Global Positioning System) Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1995-01-01

    The International GPS (Global Positioning System) Service for Geodynamics (IGS) began formal operation on January 1, 1994. This first annual report is divided into sections, which mirror different aspects of the service. Section (1) contains general information, including the history of the IGS, its organization, and the global network of GPS tracking sites; (2) contains information on the Central Bureau Information System; (3) describes the International Earth Rotation Service (IERS); (4) details collecting and distributing IGS data in Data Center reports; (6) describes how the IGS Analysis Centers generate their products; (7) contains miscellaneous contributions from other organizations that share common interests with the IGS.

  1. On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Ellis, Susan

    2016-01-01

    Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.

  2. Effects of turbulence on the geodynamic laser ranging system

    NASA Technical Reports Server (NTRS)

    Churnside, James H.

    1993-01-01

    The Geodynamic Laser Ranging System (GLRS) is one of several instruments being developed by the National Aeronautics and Space Administration (NASA) for implementation as part of the Earth Observing System in the mid-1990s (Cohen et al., 1987; Bruno et al., 1988). It consists of a laser transmitter and receiver in space and an array of retroreflectors on the ground. The transmitter produces short (100 ps) pulses of light at two harmonics (0.532 and 0.355 microns) of the Nd:YAG laser. These propagate to a retroreflector on the ground and return. The receiver collects the reflected light and measures the round-trip transit time. Ranging from several angles accurately determines the position of the retroreflector, and changes in position caused by geophysical processes can be monitored.

  3. Geomorphology and Geodynamics at Crustal Boundaries within Asia and Africa

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The release of SRTM images by NASA over the past two years year has been greeted by foreign Earth scientist's as "NASA's gift to the World". The goodwill that this has engendered in parts of Africa. India, Pakistan and Bangladesh, as scientists in those countries contemplated what many of them considered an unprovoked and unjustifiable US invasion of Iraq, cannot be underestimated. We have used SRTM images from Africa and India and elsewhere to examine aspects of tectonism, geodynamics and tsunami and earthquake hazards. Highlights of this research are itemized in this final report. One difficulty that has arisen is , of course, that the funding for the science lead the availability of the data by more than a year. and as a result many of the findings are as yet unpublished.

  4. Mantle Plume Dynamics Constrained by Seismic Tomography and Geodynamics

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.

    2012-12-01

    We construct a time-dependent, compressible mantle convection model in three-dimensional spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method [Glisovic et al., Geophys. J. Int. 2012]. We explored the impact of two end-member surface boundary conditions, for a rigid and plate-like surface, along with geodynamically-inferred radial viscosity profiles. In each case we find that deep-mantle hot upwellings are durable and stable features in the mantle-wide convective circulation. These deeply-rooted mantle plumes show remarkable longevity over very long geological time spans (several hundred million years), mainly owing to the high viscosity in the lower mantle. Our very-long time convection simulations suggest that the deep-mantle plumes beneath the following hotspots: Pitcairn, Easter, Galapagos, Crozet, Kerguelen, Caroline and Cape Verde, are most reliably resolved in the present-day tomographic images.

  5. Geodynamics of the Gibraltar Arc and the Alboran Sea region

    NASA Astrophysics Data System (ADS)

    Corsini, M.; Chalouan, A.; Galindo-Zaldivar, J.

    2014-07-01

    Located at the Westernmost tip of the Mediterranean sea, the Gibraltar Arc is a very complex zone. The Betics in Spain and the Rif belt in Morocco surround the Alboran sea characterized by a thinned continental crust. The geodynamic evolution of this region results from the convergence of African and Iberian margins since the Late Cretaceous. It is controlled both by plate convergence and mantle dynamics, which significantly impact on morphology, sedimentary environments, tectonics, metamorphism and magmatism. We present here the contents of the special issue on the Gibraltar Arc and nearby regions, following the workshop organized at the University Abdelmalek Essaadi of Tetouan in Morocco from 27 to 28 October, 2011. The goal of this international workshop was to have an overview of the actual advance in research concerning the Rif and Betics chains, the Alboran basin, and their influence on the Iberian and African forelands.

  6. Geodynamics--where are we and what lies ahead?

    PubMed

    Drake, C L; Maxwell, J C

    1981-07-01

    The introduction and evolution of the plate tectonics hypothesis during the past two decades has sparked the current renaissance of research in the earth sciences. An outgrowth of active geophysical and geological exploration of the oceans, the plate tectonics model has come under intense scrutiny by geologists, geochemists, and geophysicists who have attempted to apply the model to the origin and growth of continents, the generation of oceanic and continental crust, and the nature of the lithosphere, asthenosphere, and underlying mantle with respect to their evolution through time and to the driving mechanism or mechanisms for plate tectonics. The study of other terrestrial planets and moons has been helpful in understanding the earth model. The unequal distribution of geological features, both in the continents and oceans, emphasizes the need for ongoing studies of international scope such as the recently completed International Geodynamics Project and its successor, the International Lithosphere Program, both stressing studies related to the dynamics of the lithosphere. PMID:17741165

  7. Coupling a geodynamic seismic cycling model to rupture dynamic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; van Dinther, Ylona

    2014-05-01

    The relevance and results of dynamic rupture scenarios are implicitly linked to the geometry and pre-existing stress and strength state on a fault. The absolute stresses stored along faults during interseismic periods, are largely unquantifiable. They are, however, pivotal in defining coseismic rupture styles, near-field ground motion, and macroscopic source properties (Gabriel et al., 2012). Obtaining these in a physically consistent manner requires seismic cycling models, which directly couple long-term deformation processes (over 1000 year periods), the self-consistent development of faults, and the resulting dynamic ruptures. One promising approach to study seismic cycling enables both the generation of spontaneous fault geometries and the development of thermo-mechanically consistent fault stresses. This seismo-thermo-mechanical model has been developed using a methodology similar to that employed to study long-term lithospheric deformation (van Dinther et al., 2013a,b, using I2ELVIS of Gerya and Yuen, 2007). We will innovatively include the absolute stress and strength values along physically consistent evolving non-finite fault zones (regions of strain accumulation) from the geodynamic model into dynamic rupture simulations as an initial condition. The dynamic rupture simulations will be performed using SeisSol, an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme (Pelties et al., 2012). The dynamic rupture models are able to incorporate the large degree of fault geometry complexity arising in naturally evolving geodynamic models. We focus on subduction zone settings with and without a splay fault. Due to the novelty of the coupling, we first focus on methodological challenges, e.g. the synchronization of both methods regarding the nucleation of events, the localization of fault planes, and the incorporation of similar frictional constitutive relations. We then study the importance of physically consistent fault stress, strength, and geometry input for dynamic rupture propagation in terms of rupture path and dynamics. On the other hand, it will provide the opportunity to compare slow earthquake akin events developing in quasi-static geodynamic model to fully dynamic ruptures in terms of coseismic displacements and stress changes. Gabriel, A.-A. (2012), J.-P. Ampuero, L. A. Dalguer, and P. M. Mai, The transition of dynamic rupture modes in elastic media, J. Geophys. Res., 117(B9), 01480227. Gerya, T., and D. Yuen (2007), Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet In., 163(1-4), 83-105. Pelties, C. (2012), J. De la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Käser Three-Dimensional Dynamic Rupture, Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, J. Geophys. Res., 117(B2), B02309. van Dinther, Y. (2013a), T.V. Gerya, L.A. Dalguer, F. Corbi, F. Funiciello, and P.M. Mai, The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models, J. Geophys. Res., 118(4), 1502-1525. van Dinther, Y. (2013b), T.V. Gerya, L.A. Dalguer, P.M. Mai, G. Morra, and D. Giardini, The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models, J. Geophys. Res., 118, 6183-6202.

  8. Linking plate reconstructions with deforming lithosphere to geodynamic models

    NASA Astrophysics Data System (ADS)

    Müller, R. D.; Gurnis, M.; Flament, N.; Seton, M.; Spasojevic, S.; Williams, S.; Zahirovic, S.

    2011-12-01

    While global computational models are rapidly advancing in terms of their capabilities, there is an increasing need for assimilating observations into these models and/or ground-truthing model outputs. The open-source and platform independent GPlates software fills this gap. It was originally conceived as a tool to interactively visualize and manipulate classical rigid plate reconstructions and represent them as time-dependent topological networks of editable plate boundaries. The user can export time-dependent plate velocity meshes that can be used either to define initial surface boundary conditions for geodynamic models or alternatively impose plate motions throughout a geodynamic model run. However, tectonic plates are not rigid, and neglecting plate deformation, especially that of the edges of overriding plates, can result in significant misplacing of plate boundaries through time. A new, substantially re-engineered version of GPlates is now being developed that allows an embedding of deforming plates into topological plate boundary networks. We use geophysical and geological data to define the limit between rigid and deforming areas, and the deformation history of non-rigid blocks. The velocity field predicted by these reconstructions can then be used as a time-dependent surface boundary condition in regional or global 3-D geodynamic models, or alternatively as an initial boundary condition for a particular plate configuration at a given time. For time-dependent models with imposed plate motions (e.g. using CitcomS) we incorporate the continental lithosphere by embedding compositionally distinct crust and continental lithosphere within the thermal lithosphere. We define three isostatic columns of different thickness and buoyancy based on the tectonothermal age of the continents: Archean, Proterozoic and Phanerozoic. In the fourth isostatic column, the oceans, the thickness of the thermal lithosphere is assimilated using a half-space cooling model. We also define the thickness of the thermal lithosphere for different continental types, with the exception of the deforming areas that are fully dynamic. Finally, we introduce a "slab assimilation" method in which the thermal structure of the slab, derived analytically, is progressively assimilated into the upper mantle through time. This method not only improves the continuity of slabs in forward models with imposed plate motions, but it also allows us to model flat slab segments that are particularly relevant for understanding dynamic surface topography. When it comes to post-processing and visualisation, GPlates allows the user to import time-dependent model output image stacks to visualise mantle properties (e.g. temperature) at a given depth through time, with plate boundaries and other data attached to plates overlain. This approach provides an avenue to simultaneously investigate the contributions of lithospheric deformation and mantle flow to surface topography. Currently GPlates is being used in conjunction with the codes CitcomS, Terra, BEMEarth and the adaptive mesh refinement code Rhea. A GPlates python plugin infrastructure makes it easy to extend interoperability with other geodynamic modelling codes.

  9. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  10. Geodynamic setting of Izu-Bonin-Mariana boninites

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Deschamps, A.

    2002-12-01

    The Izu-Bonin-Mariana (IBM) forearc is characterized by the occurrence of boninite-like lavas. The study of the Cenozoic setting of the IBM arc boninite genesis in light of modern geodynamic contexts in Tonga and Fiji regions led us to define three tectonic settings that favor the formation of boninitic lavas in back-arc basins in addition to previous settings that involve the presence of a mantle plume: (1) propagation at low angle between a spreading center and the associated volcanic arc ; (2) intersection at high angle between an active spreading center and a transform fault at the termination of an active volcanic arc ; (3) intersection at right-angle between an active spreading center and a newly created subduction zone. In all cases, a mature back-arc spreading center intersects an active volcanic arc, so that thermal and petrologic conditions are satisfied to melt depleted mantle peridotite at relatively shallow levels, together with the occurrence of (C-O-H) volatiles. Most of the Philippine Sea Plate (PSP) boninites erupted contemporaneously with the opening phase of the West Philippine Basin (WPB). Our recent geodynamic model of reconstruction of the WPB shows that boninites in the Bonin islands are related to the second mechanism mentioned above, whereas Mariana forearc boninites are rather relevant to the third mechanism since the transform plate boundary bounding the eastern margin of the PSP in the Early Eocene evolved into a subduction zone that trends perpendicular to the active spreading center of the WPB, somewhere around 47/43 Ma. The presence of a mantle plume in the vicinity of the subduction zone that was bounding the northern part of the IBM arc explains boninites that erupted in the northern IBM arc, but only in the Early Eocene time.

  11. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  12. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    NASA Astrophysics Data System (ADS)

    Herndon, J. Marvin

    2006-12-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial volatile gases from the Earth, which began Earth’s decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c) Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.

  13. Geodynamics of the Eastern Pacific Region, Caribbean and Scotia Arcs. Volume 9

    SciTech Connect

    Cabre, R.

    1983-01-01

    This book analyze the geodynamic phenomena related to the interaction of the eastern Pacific with the Americas between Canada and the Antarctic peninsula. Studies include the Cordilleran arcs and Juan de Fuca plate.

  14. Regional geodynamic monitoring system for ensuring safety in geological and exploratory production of oil and gas

    NASA Astrophysics Data System (ADS)

    Vartanyan, G. S.

    2010-12-01

    Global geodynamic processes have a significant influence on the tempo of human society development and can cause the complete devastation of large areas of the Earth and mass mortality in a number of catastrophic cases. Technogenous factors can sometimes trigger geodynamic events. The potential consequences of natural and technogenous disasters became apparent during the catastrophe on the Deepwater Horizon platform on April 20, 2010. This paper takes a brief look at some aspects of this disaster. The possibilities of preventing the similar events in the future are discussed here. For this purpose, the development of a geodynamics information system (IS-Geodynamics) based on a network of global (subglobal) monitoring of the Earth's hydrogeodeformation (HGD) field, is suggested.

  15. APWPs: Critical Building Steps and Potential for Future Geodynamical Studies.

    NASA Astrophysics Data System (ADS)

    Besse, J.

    2004-12-01

    Among other items, the Apparent Polar Wander Paths (APWP) of individual tectonic blocks contain information on geodynamical events from both shallower lithospheric sources (e.g. continental breakups and collisions) and deeper mantle sources affected by convection. Recent advances in the Earth Sciences, such as provided by global tomography or climate modeling, have emphasized the essential need for accurate reconstructions of the Earth's surface (blocks, plates and their boundaries and topographies), in order for instance to compare the initial positions of downgoing slabs or emerging hot spots with deeper mantle features, or to understand why and how time-varying climates and biomes may be related. A half century after its initial pionneering contributions to the formulation of continental drift and plate tectonics, paleomagnetism remains an invaluable tool which will allow us to solve a very large range of problems concerning both internal and external geodynamics (solid, fluid and bio-spheres). The accurate determination of the APWPs of crustal and lithospheric blocks remains one of the main goals that must be pursued by the paleomagnetic community. Based on two examples, one extending from Permian to Present, the other in the Late Proterozoic to Early Paleozoic, I will discuss various aspects of the construction of APWPs and reconstruction of past plate positions. Critical steps involve: 1) how are original paleomagnetic data selected? 2) how are the kinematic models used to transfer data from one plate to the other determined ? 3) how can poles coming from deformed (e.g. rotated) regions be used ? and 4) how good is the geocentric axial dipole (GAD) assumption, which is fundamental for reliable plate reconstructions ? Particular emphasis will be given to this last topic, since the GAD hypothesis has recently been challenged, with suggestions that significant long-term octupolar contributions might have existed from the Precambrian throughout to the early Tertiary. These might account for the low inclinations observed in central Asia in the Cretaceous and early Tertiary, or for the misfits of Pangea (Pangea A or B?). GAD hypothesis appears to be essentially correct and APWPs still have a bright future.

  16. The geodynamic equation of state: What and how

    NASA Astrophysics Data System (ADS)

    Connolly, J. A. D.

    2009-10-01

    Geodynamic models commonly assume equations of state as a function of pressure and temperature. This form is legitimate for homogenous materials, but it is impossible to formulate a general equation of state for a polyphase aggregate, e.g., a rock, as a function of pressure and temperature because these variables cannot distinguish all possible states of the aggregate. In consequence, the governing equations of a geodynamic model based on a pressure-temperature equation of state are singular at the conditions of low-order phase transformations. An equation of state as a function of specific entropy, specific volume, and chemical composition eliminates this difficulty and, additionally, leads to a robust formulation of the energy and mass conservation equations. In this formulation, energy and mass conservation furnish evolution equations for entropy and volume and the equation of state serves as an update rule for temperature and pressure. Although this formulation is straightforward, the computation of phase equilibria as a function of entropy and volume is challenging because the equations of state for individual phases are usually expressed as a function of temperature and pressure. This challenge can be met by an algorithm in which continuous equations of state are approximated by a series of discrete states: a representation that reduces the phase equilibrium problem to a linear optimization problem that is independent of the functional form used for the equations of state of individual phases. Because the efficiency of the optimization decays as an exponential function of the dimension of the function to be optimized, direct solution of the linearized optimization problem is impractical. Successive linear programming alleviates this difficulty. A pragmatic alternative to optimization as an explicit function of entropy and volume is to calculate phase relations over the range of pressure-temperature conditions of interest. Numerical interpolation can then be used to generate tables for any thermodynamic property as a function of any choice of independent variables. Regardless of the independent variables of the governing equations, a consistent definition of pressure, and the coupling of equilibrium kinetics to deformation, is only possible if the continuity equation accounts for dilational strain.

  17. Present Stage of Slovak Kinematic Reference Frame Skrf 2001 ­ The Base of Regional Geodynamics

    NASA Astrophysics Data System (ADS)

    Leitmannova, K.; Klobusiak, M.; Priam, S.; Ferianc, D.

    Slovak geodynamic reference network (SGRN) creates base for geodynamics determination of Slovakia by means of epoch and permanent GPS observations. Results of repeated measurements are elaborated by Bernese software V4.2 and own software WIGS. On the ground of repeated measurements are global and local velocities of the SGRN points estimated in period 1993 - 2001. Some remarks to local geodynamics projects- SKRF 2001 and TATRY.

  18. Chronological constraints on the Permian geodynamic evolution of eastern Australia

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Rosenbaum, Gideon; Vasconcelos, Paulo

    2014-03-01

    The New England Orogen in eastern Australia developed as a subduction-related orogen in the Late Devonian to Carboniferous, and was modified in the Permian by deformation, magmatism and oroclinal bending. The geodynamics associated with the development of the New England oroclines and the exact timing of major tectonic events is still enigmatic. Here we present new 40Ar/39Ar results from metasedimentary and volcanic rocks from the southern New England Orogen. Eight grains from four metasedimentary samples (Texas beds) that originated in the Late Devonian to Carboniferous accretionary wedge yielded reproducible plateau ages of ~ 293, ~ 280, ~ 270 and ~ 260 Ma. These results suggest a complex thermal history associated with multiple thermal events, possibly due to the proximity to Permian intrusions. Two samples from mafic volcanic rocks in the southernmost New England Orogen (Alum Mountain Volcanics and Werrie Basalt) yielded eruption ages of 271.8 ± 1.8 and 266.4 ± 3.0 Ma. The origin of these rocks was previously attributed to slab breakoff, following a period of widespread extension in the early Permian. We suggest that this phase of volcanism marked the transition from backarc extension assisted by trench retreat to overriding-plate contraction. The main phase of oroclinal bending has likely occurred during backarc extension in the early Permian, and terminated at 271-266 Ma with the processes of slab segmentation and breakoff.

  19. Global Biomass Variation and its Geodynamic Effects, 1982-1998

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.

    2005-01-01

    Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.

  20. Application of VLBI and satellite laser ranging to geodynamics

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1983-01-01

    The NASA Crustal Dynamics Project has developed very-long baseline interferometer (VLBI) systems and satellite laser ranging (SLR) systems for geodynamics measurements. In VLBI, a radio noise signal from a distant quasar is received by two or more radio antennas and coherently recorded. These recordings are cross-correlated to determine the relative signal delays between stations which are used to derive the vector baselines between the stations. The SLR systems accurately determine the range to a retroreflector satellite as a function of time with short laser pulses. These range measurements from several stations to the same satellite are used in orbit analysis programs to determine the position of the stations and the vector baselines between the stations. Measurements with these systems have achieved precisions of a few centimeters in length for distances of several thousand km. These systems are now operating in a global network for measuring the relative motion of the N. American, Pacific, S. American, Nazca, Eurasian and Australian tectonic plates. Highly mobile VLBI and SLR systems are being operated at many sites in the active earthquake areas in western N. America in order to determine the crustal deformation and strain accumulation.

  1. Structural Analysis and Geodynamic Implications of Tessera Terrain, Venus

    NASA Astrophysics Data System (ADS)

    Hansen, V. L.; Willis, J. J.

    1996-03-01

    Understanding processes of tessera formation is fundamental to Venus tectonic and geodynamic models. We examined tessera terrain in Ishtar Terra, crustal plateaus, and as inliers within the plains using high-resolution Magellan SAR imagery. We describe several major types of tesseraeeach found in specific geologic or geomorphic regions. Fold and S-C tessera terrain are found only in Ishtar Terra; lava flow and basin-and-dome terrains reside within the interior of crustal plateaus, whereas folded ribbon terrain and extended folded terrain comprise margins of crustal plateaus; and star terrain lies within central Phoebe. Inliers are divisible into fracture-dominated and graben-dominated tesserae, which may represent ancient flooded coronae-chasmata and crustal plateaus, respectively. Thus tesserae might form in several tectonic environments, including as a result of (1) subsurface flow in Ishtar Terra, (2) as sequences of surface-layer extension and contraction in crustal plateaus, (3) as highly-extended, previously-deformed crustal plateaus which have deflated or sunken, and become flooded and thus preserved as large plains inliers, and (4) as densely-fractured surface layersfractured as a result of corona and chasma formationwhich have since sunken and become flooded, and thus preserved as isolated, scattered, highly-fractured inliers. If these models of formation are correct, tesserae would not form a global onion skin; they would not represent a globally synchronous unit; they would not record a single period of deformation; and it would not infer a single mechanism for tesserae formation.

  2. Rheology and geodynamic modelling: the next step forward

    NASA Astrophysics Data System (ADS)

    Handy, M.; Braun, J.; Brown, M.; Kukowski, N.; Paterson, M.; Schmid, S.; Stöckhert, B.; Stüwe, K.; Thompson, A.; Wosnitza, E.

    2001-05-01

    The application of continuum mechanics and microstructural analysis to geological studies over the past 30 years has spurred earth scientists to reassess fundamental tectonic processes such as subduction, collision and rifting in terms of dynamics. Armed with new analytical methods, geologists have returned to the field to look at rock structures with more mechanistic eyes. The advent of sophisticated computers, programs, and laboratory deformation equipment has facilitated the simulation of geodynamic processes that range in scale from the grain to the lithosphere. The result has been specialization, with the concomitant opening of communication gaps between geodynamicists, field geologists and rock mechanicists. Partly, these gaps reflect differences of perception and approach. In order to bridge these gaps, a workshop was organized after the DRM conference to debate how field and laboratory studies of deformed rocks can improve our understanding of lithospheric rheology, and in turn, how this understanding can be used to refine dynamic models of orogenesis. The workshop hosted participants with backgrounds in structural geology, experimental rock mechanics, metamorphic petrology and both numerical and analogue modelling. This paper summarizes the main controversies and conclusions reached during the workshop. For the sake of brevity, referencing in this summary is restricted to literature referred to during the oral presentations and to comments made by speakers themselves (names italicized).

  3. High Speed Networking and Large-scale Simulation in Geodynamics

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  4. Geodynamics and temporal variations in the gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Wagner, C. A.

    1989-01-01

    Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.

  5. Successes and failures in geodynamics. from past to future

    NASA Astrophysics Data System (ADS)

    Jacoby, Wolfgang R.

    2001-09-01

    The evolution of Earth models is reviewed and the open questions and problems are highlighted. Generally, evolution of science was not linear, but proceeded in "steps" of paradigms; where old ones remained within useful limits. "Geodynamic hypotheses", while embedded into the general concepts of space and time, were often mutually exclusive and competing until the 1900s. Wegener's concept of continental drift was the first successful globally unifying view, but it was discarded by most Earth scientists. The "real" change of paradigms did not come before mid-century through geophysical observations in paleomagnetism, seismology, bathymetry, seafloor geology and dating, leading to the "New Global Tectonics" of seafloor spreading and plate tectonics. Although real-time plate kinematics is now firmly established through direct geodetic observations from radio-astronomy and with the aid of artificial satellites, knowledge is incomplete and must be continually "updated". Quite a number of problems are not yet solved. These may, some day, lead to another change of paradigms, but certainly not back to "fixism". Problems are related to scale, frame of reference, and especially dynamics. However, plate tectonics is presently the most successful theory in the history of geology. Further developments will be driven by discoveries of apparent dilemmas, contradictions and paradoxes.

  6. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  7. Geodynamics of Venice tidal marshes observed by radar interferometry

    NASA Astrophysics Data System (ADS)

    Tosi, L.; Teatini, P.; Strozzi, T.

    2010-12-01

    Inter-tidal environments, such as lagoons and deltas, are naturally dynamic coastal systems that are unique in their close links to both land-based fluvial and coastal sea processes. These landscapes are generally experiencing a destructing phase over the last decades primarily caused by river sediment trapping in the upland drainage basins, sea level rise due to climate changes, and land subsidence. Accurate monitoring of the geodynamics of tidal environments is very difficult because of various concurrent causes: i) the logistical difficulties (or inaccessibility) to reach the areas precluding the use of traditional leveling and differential GPS surveys; b) the limited effectiveness of permanents GPS stations due to the significant small-scale variability of the litho-stratigraphy and the soil hydro-geomechanical properties because of the recent development of these environments, usually occurred over the late Holocene; and c) the lack of permanent natural/anthropogenic structures that reduces the capability of SAR interferometry. Because land subsidence is expected to give an important contribution to the cumulative sediment budget of the Venice Lagoon, Italy, the Venice Water Authority has supported a research aimed at improving the quantification of the present land subsidence by exploring the use of radar interferometry on a number of artificial corner reflectors. A network of 58 trihedral corner reflectors (TCR) was installed in the salt marshes of the Venice Lagoon before the summer 2007. The TCR are characterized by 60 cm long edge, made of aluminium to reduce their weight, placed in areas without any other strong scatterer, and oriented to be visible with ENVISAT ASAR and TerraSAR-X acquisitions of descending orbits. Salt marshes are constantly visible, except when the tide rises. The TCR, usually installed at a height of 1 m above the mean sea level, are therefore constantly outside the water. In order to mitigate atmospheric artifacts and to properly resolve the radar phase ambiguity, the TCR network has been planned to keep to a value of about 1.0-1.5 km the maximum distance between the TCR or between an "artificial" and the adjacent "natural" reflector. Persistent scatterer interferometry has been applied on a number of 65 ENVISAT scenes spanning the time interval form February 2003 to December 2009. Specific procedures have been implemented to improve the accuracy of the interferometric solution on the TCR and to include it into the global interferometric point target analysis on natural targets. For the first time we have so proved the possibility of precisely quantifying the geodynamic evolution of large-scale tidal environments. As expected, a significant variability of the displacement rates has been recorded, ranging between a general stability to subsidence up to 5 mm/yr. Very interesting general and site-specific results have been obtained relating the observed displacements with the morphological evolution of the tidal marshes.

  8. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia)

    NASA Astrophysics Data System (ADS)

    Taboada, Alfredo; Rivera, Luis A.; Fuenzalida, AndréS.; Cisternas, Armando; Philip, Hervé; Bijwaard, Harmen; Olaya, José; Rivera, Clara

    2000-10-01

    New regional seismological data acquired in Colombia during 1993 to 1996 and tectonic field data from the Eastern Cordillera (EC) permit a reexamination of the complex geodynamics of northwestern South America. The effect of the accretion of the Baudó-Panama oceanic arc, which began 12 Myr ago, is highlighted in connection with mountain building in the EC. The Istmina and Ibagué faults in the south and the Santa Marta-Bucaramanga fault to the northeast limit an E-SE moving continental wedge. Progressive indentation of the wedge is absorbed along reverse faults located in the foothills of the Cordilleras (northward of 5°N) and transpressive deformation in the Santander Massif. Crustal seismicity in Colombia is accurately correlated with active faults showing neotectonic morphological evidences. Intermediate seismicity allows to identify a N-NE trending subduction segment beneath the EC, which plunges toward the E-SE. This subduction is interpreted as a remnant of the paleo-Caribbean plateau (PCP) as suggested by geological and tomographic profiles. The PCP shows a low-angle subduction northward of 5.2°N and is limited southward by a major E-W transpressive shear zone. Normal oceanic subduction of the Nazca plate (NP) ends abruptly at the southern limit of the Baudó Range. Northward, the NP subducts beneath the Chocó block, overlapping the southern part of the PCP. Cenozoic shortening in the EC estimated from a balanced section is ˜120 km. Stress analysis of fault slip data in the EC (northward of 4°N), indicates an ˜E-SE orientation of σ1 in agreement with the PCP subduction direction. Northward, near Bucaramanga, two stress solutions were observed: (1) a late Andean N80°E compression and (2) an early Andean NW-SE compression.

  9. Geodynamic setting of the mineral deposits of the Urals

    NASA Astrophysics Data System (ADS)

    Koroteev, V. A.; de Boorder, H.; Necheukhin, V. M.; Sazonov, V. N.

    1997-07-01

    The first-order geodynamic domains of the Uralide orogen constitute a relatively simple pattern across the orogenic belt. Continental rifting along the western margin is expressed by a system of Vendian-early Palaeozoic structures with shale-hosted siderite and magnesite and basalt-hosted base metals. It is superimposed on a Middle Riphean rift system with layered mafic-ultramafic complexes with chromite and ilmenite-titano-magnetite and subordinate ophiolite massifs with gold and magnetite. An oceanic spreading domain, immediately east of the Main Uralian Fault is associated with chromite, titano-magnetite and massive sulphide deposits (Dombarovsky or Cyprus type). Further east, bimodal volcanic associations in island arcs with oceanic crust have formed copper-zinc massive volcanic sulphide deposits (Uralian type). Subsequently, complex volcanic sulphide deposits are associated with belts of andesite-dacite and co-magmatic diorite (Baymak or Kuroko type). The eastern, destructive, margin of the orogen is characterized by magnetite and copper-magnetite skarns and porphyry systems. Relatively small plagiogranite to granodiorite complexes, related to oceanic crust, carry scheelite and gold. Calc-alkaline granitic massifs have formed associations of tungsten, tantalum and beryllium. This pattern was dissected by major thrusts and transcurrent shear zones. Increased fluid activity in the course of deformation, inferred to have been involved in complex multi-phase gold mineralization was most probably controlled by deep-reaching faults and shears. Although the recognition of the first-order domains represents a guideline for exploration, detailed structural geological studies of the kinematics of the major faults and shear zones are required in conjunction with radiometric dating of suitable fault- and ore-associated minerals, in association with on-going deep-reaching geophysical investigations.

  10. Geodynamic modelling of the thinning of cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Wang, H.; van Hunen, J.; Allen, M.; Bai, W.

    2012-04-01

    Cratons are the ancient continental cores, and contain the oldest and thickest(180~250km) lithosphere on Earth. Several mechanism have been proposed to explain the longevity and stability, including the excess buoyancy, a large viscosity contrast with the underlying asthenosphere, and a relatively high brittle yield stress of cratonic lithosphere(Lenardic et al.2003), which can be all attributed to the unique chemical composition and low temperature of cratonic lithosphere. Cratons have highly melt-depleted and dry mantle roots which make them more buoyant and insusceptible than surrounding lithosphere. Even though cratons are often considered stable and indestructible, there are at several examples that underwent significant thinning. Seismic evidence shows that the current thickness of eastern part of North China Craton(NCC) is now at most 80km, while kimberlitic evidence implies the previous existence of a thick(~200km) and refractory mantle lithosphere in the middle Ordovician (Gao et al.2008). Significant thinning is also suggested for the Wyoming Craton (Lee et al.2011). Lithospheric delamination and thermal erosion from the bottom of lithosphere are the two of most discussed mechanisms for the thinning (or destruction)of cratons, with water and water relative processes playing an important role in both mechanisms. Some other cratons may also have experienced different geodynamic thinning processes. For example, a mantle plume may have affected the South Africa craton and contributed to its high topography(Brown, 2006). In this study, we compare numerical results of cratonic lithospheric thinning processes to some of the discussed observations. We show how lithospheric delamination can lead to rapid thinning(about 80km) over a timescale of 5~30 Myrs, and illustrate how it can shed light on the thinning of the NCC or its surrounding lithosphere . In addition, we discuss some preliminary results of spontaneous lithospheric thinning by small-scale convective instabilities.

  11. Geodynamic inversion to quantify the rheological parameters of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Kaus, B.

    2014-12-01

    The dynamics of the crust and lithosphere is to a large extent controlled by its effective viscosity. Typically, rheological parameters are estimated from laboratory experiments and extrapolated over ten orders of magnitude to geological conditions, which has significant uncertainties. In this study, we propose a method to constrain these parameters directly from geophysical observables. The method links lithosphere-dynamics models with geophysical observations (e.g. horizontal and vertical surface (GPS-) velocities, topography and gravity data). A Bayesian inversion strategy is employed to estimate probabilities of model parameters that affect the rheology of the lithosphere. As this requires many forward models (104 - 106), an efficient and parallel implementation is necessary, which we recently showed for 3D models with linear viscous rheologies (Baumann et al. 2014).Here, we examine how well this method is capable of resolving complex rheologies and address a few technical issues such as defining appropriate stopping criteria for models with a free surface. We use synthetic models of intra-oceanic subduction to demonstrate that the rheological parameters of the lithosphere can be recovered successfully even if rheologies are power-law viscous or plastic, provided that the temperature structure is known. A piece-wise linear lithospheric temperature parameterization as part of the inverse approach is shown to give reasonable results as well.Furthermore, we apply the method to cross-sections of the Himalaya where we consider different geological interpretations as end-member cases. For each end-member, we estimate the probabilities of their rheological structure and plasticity parameterisation and also obtain suitable temperature distributions. Our results indicate that the Indian mantle lithosphere has large effective viscosities whereas the Tibetan lower crust has small effective viscosities. This is consistent with many published modelling studies of the region. AcknowledgementsFunding was provided by ERC Grant agreement #258830ReferencesBaumann T.S., Kaus B.J.P., Popov A.A., 2014. Constraining effective rheology through parallel joint geodynamic inversion. Tectonophysics.

  12. Geodynamics of rapid voluminous felsic magmatism through time

    NASA Astrophysics Data System (ADS)

    Pankhurst, M. J.; Schaefer, B. F.; Betts, P. G.

    2011-04-01

    Two end member geodynamic settings produce the observed examples of rapid voluminous felsic (rhyolitic) magmatism through time. The first is driven by mantle plume head arrival underneath a continent and has operated in an identifiable and regular manner since at least 2.45 Ga. This style produces high temperature (≤ 1100 °C), low aspect ratio rheoignimbrites and lavas that exhibit high SiO 2/Al 2O 3 ratios, high K 2O/Na 2O ratios, and where available data exists, high Ga/Al 2O 3 ratios (> 1.5) with high F (in thousands of parts per million) and low water content. F concentration is significant as it depolymerizes the silicate melt, influencing the magmas' physical behavior during development and emplacement. These rhyolites are erupted as part of rapidly emplaced (10-15 Myr) mafic LIPs and are formed primarily by efficient assimilation-fractional crystallization processes from a mafic mantle parent. The second is driven by lithospheric extension during continental rifting or back arc evolution and is exclusive to the Phanerozoic. SLIPs (silicic large igneous provinces) develop over periods < 40 Myr and manifest in elongate zones of magmatism that extend up to 2500 km, contrasting with the mafic LIP style. Some of the voluminous felsic magmas within SLIPs appear to have a very similar geochemistry and petrogenesis to that of the rhyolites within mafic LIPs. Other voluminous felsic magmas within SLIPs are sourced from hydrous lower crust, and contrast with those sourced from the mantle. They exhibit lower temperatures (< 900 °C), explosive ignimbrites with lower SiO 2/Al 2O 3 ratios, and lower K 2O/Na 2O ratios. Rapid voluminous felsic magmatism represents both extreme examples of continental growth since the Archean, and also dramatic periods of crustal recycling and maturation during the Phanerozoic.

  13. ELEFANT: a user-friendly multipurpose geodynamics code

    NASA Astrophysics Data System (ADS)

    Thieulot, C.

    2014-07-01

    A new finite element code for the solution of the Stokes and heat transport equations is presented. It has purposely been designed to address geological flow problems in two and three dimensions at crustal and lithospheric scales. The code relies on the Marker-in-Cell technique and Lagrangian markers are used to track materials in the simulation domain which allows recording of the integrated history of deformation; their (number) density is variable and dynamically adapted. A variety of rheologies has been implemented including nonlinear thermally activated dislocation and diffusion creep and brittle (or plastic) frictional models. The code is built on the Arbitrary Lagrangian Eulerian kinematic description: the computational grid deforms vertically and allows for a true free surface while the computational domain remains of constant width in the horizontal direction. The solution to the large system of algebraic equations resulting from the finite element discretisation and linearisation of the set of coupled partial differential equations to be solved is obtained by means of the efficient parallel direct solver MUMPS whose performance is thoroughly tested, or by means of the WISMP and AGMG iterative solvers. The code accuracy is assessed by means of many geodynamically relevant benchmark experiments which highlight specific features or algorithms, e.g., the implementation of the free surface stabilisation algorithm, the (visco-)plastic rheology implementation, the temperature advection, the capacity of the code to handle large viscosity contrasts. A two-dimensional application to salt tectonics presented as case study illustrates the potential of the code to model large scale high resolution thermo-mechanically coupled free surface flows.

  14. Collision and rifting in the Tethys Ocean: geodynamic implication

    NASA Astrophysics Data System (ADS)

    Kazmin, V. G.

    1991-10-01

    The Tethys Ocean was formed 250 m.y. ago when Gondwana collided with Laurasia. Since then, and up to its closure about 40-50 m.y. ago, the development of the ocean was dominated by repeated jumps of the spreading axes to the passive margin of Gondwana, splitting of microcontinents, their transportation across the ocean and accretion to the active margin of Eurasia. It appears that jumps of the spreading centre and rifting of the passive margin coincided with periods of major collisions on the active margin. Several epochs of collision and rifting are described: the Late Permian, mid-Late Triassic, Late Jurassic-Early Cretaceous, end of the Early Cretaceous, Late Eocene. The simultaneous occurrence of rifting and collision has important geodynamic implications and it cannot be explained, if only the forces applied to plate margins i.e. slab-pull and ridge-push, are considered as the plate-drying forces. Slab-pull did not act in times of collision when the subduction zone was blocked by continental fragments, and the ridge-push creates compression but not extension on the passive margin. It is suggested instead, that the conveyor-belt process of transportation of continental masses from the passive to the active margin of Tethys was governed by north-directed convective flow in the asthenosphere. In times of collision when lithospheric plates were unable to move with the flow the latter created great tensile stresses in the overlying lithosphere that led to formation of rifts, and then to new spreading centres.

  15. Crisis of isotope geodynamics: Sm-Nd aspect

    NASA Astrophysics Data System (ADS)

    Pushkarev, Y. D.; Nikitina, L. P.

    2009-04-01

    Isotope geochemistry for many years contributes to improve our understanding of the Earth's interiors. There are a lot of models of the crust-mantle system evolution based on the isotope data. Indeed, identification of various types of the mantle material on the basis of isotope composition of its magmatic derivatives has opened perspective to fill geophysical models with the geochemical content. Study of the mantle material composition, changing in time and in space, with the same approach originated a new branch of geology, which was named chemical geodynamics or isotope geodynamics. Opportunities of the new approach have been unambiguously admitted more than 30 years ago after DePaolo & D.Wasserburg pioneer works, dedicated to development of Sm-Nd isotope systematics. This systematics became the most considerable component in the basement of isotope geodynamics as a whole. Since then nobody ever discussed the constrains of this siystematics. At the same time there are many contradictions in it. There are numerous mantle xenoliths depleted in main elements (Pearson et al., 2003), for which the whole variation curve normalized to chondrite is plotted below chondrite level. Paradox of the situation is that this mantle material has REE pattern which displays a continuous decrease of their concentration from La to Lu. Accordingly, Sm/Nd ratio in such material is lower than in chondrites. Through some time this material will be able to generate melts with ENd<0, which is considered to be the characteristic of the enriched mantle. At the same time, the material producing such melts in terms of the total REE concentration and the main elements concentration is high depleted. Another example, which demonstrates the independent variations of the main elements concentration, of the total REE contents, of Sm/Nd ratio and of Nd isotope composition in a source of the mantle magmatic derivatives, is connected with tholeiites of the middle ocean ridges and ocean islands. Tholeiites represent perhaps the most widespread terrestrial magmatic rocks. At the same time about 40 % of them are represented by rocks in which REE relative concentration continuously decreases from Eu to La while the total REE content exceeds the chondritic one ten times. Naturally in this case the Sm/Nd ratio in tholeiites is higher than the same ratio in chondritic. As for the concentration of the main and rare-earth elements in tholeiites these rocks are undoubtedly enriched material. They compose a considerable part of an oceanic crust and, apparently, are an essential component of lower crust as a result of underplating. However during melting of the tholeiites, in which Sm/Nd ratio is higher, than in PM, and which had enough time to change Nd isotope composition according to this ratio, the melts will be marked by values of ENd>0. In common Sm-Nd isotope systematics these isotope characteristics correspond to derivatives of the depleted material. So, in terms of the Nd isotope analysis the derivatives of the enriched material of oceanic or even of lower continental crust will be referred to derivatives of the depleted mantle. The same situation is observed in Lu-Hf isotope systematics of tholeiites. Isotope-petrochemical identification of xenoliths corresponding to the material of geochemically closed primitive mantle, has shown that MORB source is not depleted mantle as it was considered to be earlier, but a primitive mantle - PM (Pushkarev, 2006, 2007). It means that deficiency of Nd relative to Sm in PM in comparison with their concentrations in chondrites is caused not by crust formation. This peculiarity is either a primary feature of protoplanetary material, whose composition was different from chondritic one, or it reflects predominant capture of LREE by a component of segregating core, or it is a consequence of both reasons simultaneously. Identity of MORB source to primitive mantle and its discrepancy with the composition of chondrits in Sm-Nd isotope systematics was discovered earlier by J.A.Kostitsyn (2004) on the basis of the representative isotope-geochemical analysis of the mantle volcanic rocks. Recently this discrepancy with chondritic composition has been additionally confirmed (Caro et al., 2008) by studying of rocks of the Earth, the Moon and Mars from position of the coupled 146,147Sm-142,143Nd isotope systematics. It is supposed, that the main cause of decoupled behaviour of the main elements and REE during the mantle material differentiation is the combination of effects of two independent processes: melting and mantle metosomatizm. Thus the Nd isotope composition provides information only about final Sm/Nd ratio which has arisen in the mantle substratum as a result of combination of the processes that influenced distribution of these two elements. So, the classification of the mantle material into enriched and depleted one without mentioning the classification attribute (concentration of the main elements, total concentration of REE or Sm/Nd ratio) is meaningless. It means, that the main postulate of Sm-Nd isotope systematics, according to which Nd isotope composition and Sm/Nd ratio in the mantle source of magmatic melts are connected with its depletion or enrichment by the main and rare earth elements, is invalid. Respectively all isotope-geodynamical models based on the traditional isotope systematics of the mantle material, require serious revision. This study was supported by RFBR 07-05-00527 and 08-05-00861 References Caro G., Bourdon B., Xalliday A.N., Quitte G. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon // Nature, 2008. Vol.452, №20 Kostitsyn Y.A. Sm-Nd and Lu-Hf isotope systems of the Earth: are they corresponding to chondrites? // Petrology, 2004. vol.12. №5, С. 451-466 (in Russian). Pearson D.G., Canil D., Shirey S.B. Mantle samples included in volcanic rocks: xenoliths and diamonds // Treatise on Geochemistry, Elsevier Ltd. 2003. V.2. P.172-275. Pushkarev Yu. The Bulk Silicate Earth as MORB source and isotope geochemical approach to the origin of D"-layer // Abstracts of Goldschmidt Conference, Copenhagen, Denmark, June 5-11, 2004, A559 Pushkarev Y.D. Rare earth elements in the core? // Goldschmidt Conf.Abstr. Isotopic Records of Early Planetary Evolution A397.

  16. Software and Algorithms for Solving Computational Geodynamic Problems using Next Generation Hardware

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Gerya, Taras

    2014-05-01

    Numerical geodynamic modeling is typically based on solving a series of partial differential equations which describe the long-term behavior of the solid visco-elasto-brittle/plastic Earth as a highly viscous incompressible fluid with strongly variable non-Newtonian viscosity. Coding for solving geodynamic equations is catching up with the advance of modern high performance computing. In the past five years, newly developed many-core computing technology, including GPU (Graphics Processing Unit) and MIC (Many Integrated Core), has also been utilized for geodynamic modeling. However, the lack of easy-to-expand or easy-to-use geo-computing toolkits limits the high performance software catching up with the endless updating of high performance hardware. In this presentation, we will firstly show two examples of the implementation of solving geodynamic problems based on Stokes and continuity equations with strongly variable viscosity using many-core hardware, with a specific focus on the GPU. The first example is a geometric multi-grid (GMG) solver, which solves a synthetic sinking cube problem using a staggered grid finite difference discretization. The second example is a preconditioned minimal residual (MINRES) solver for incompressible Stokes flow problem with many viscous inclusions which is discretized using the finite element method. Through these two implementation examples, we will analyze the cost of coding and running advantages and disadvantages of the two kinds of coding methodologies, and in a hope to discuss a potential general coding flowchart for solving geodynamic equations using many-core devices. Finally, a software stack based many-core computing framework oriented to geodynamic modeling is proposed for the future.

  17. Error analysis for the proposed close grid geodynamic satellite measurement system (CLOGEOS)

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Vangelder, B. H. W.; Kumar, M.

    1975-01-01

    The close grid geodynamic measurement system experiment which envisages an active ranging satellite and a grid of retro-reflectors or transponders in the San Andreas fault area is a detailed simulated study for recovering the relative positions in the grid. The close grid geodynamic measurement system for determining the relative motion of two plates in the California region (if feasible) could be used in other areas of the world to delineate and complete the picture of crustal motions over the entire globe and serve as a geodetic survey system. In addition, with less stringent accuracy standards, the system would also find usage in allied geological and marine geodesy fields.

  18. Geodynamics, Seismicity, Minerageny and Ecology of Arctic Regions

    NASA Astrophysics Data System (ADS)

    Kutinov, Y. G.

    The researches of Arctic region is necessary for beginning from delimitation of Arctic. Geographically concept "Arctic" uncertain enough. There is a set of approach to definition of its borders and set the variants of these borders (eternal permafrost, boreal tayga, drifting ice, temperature, etc.). Most correct the point of view of Ecology is realization of Arctic borders on borders of the Arctic geo - depression. Such approach allows to consider in a complex migration of natural substance and polluting substance from orogenes to deep-water hollows of Arctic Ocean. On other hand, it is necessary to take into account natural power flows from zone of Mid-Arctic ridge system at Arctic Ocean to continental land, that is opposition direction process. The certificates of such influence at different levels of Earth's crust already has collected enough (speed of seismic wave on Moho discontinuity; modern vertical movement of Earth's crust; distribution of temperature on depth; structure of basement, etc.). During the last 250 million years the Arctic geo-depression has been developing as an autonomous region with circumpolar zonality, and mass-and-energy transfer in its bowlers as well as shitting of lithospheric plates and expansion of the ocean are caused by rotational forces under conditions of an expanding planet. Four types of geoecological structures have been recorded on the basis of deep structures, position in the over-all structures of regions, place in geological history of its evolution, time of appearance, geodynamic regimes , seismicity, structural-morphological features, specific form of appearance and composition of magmatic and sedimentary formations, compositions of soil, specific metallogenic nature, types of human activity, etc. It is tectonic Segments of Earth, as geoecological global structures; the continental marginal perioceanic zones; the branches of continental marginal perioceanic zones; the mineragenic province. The main criteria of ecological unity of territory under consideration are established to the following: circumpolar position; rigorous climate with short vegetation period and a long winter; extremely wide prevalence of permafrost rocks; multitude of bogs and lake per square unit in basis of many rivers flowing into Arctic Ocean; proximity of the structure and formation of ecosystem; fragility of the Arctic environment; specificity of national economic structure; uniqueness of the raw material base having no equals in the word in its resources and content minerals of certain components; availability of the word's largest Arctic shelf oil-and-gas super basin; common geoecological natural belts; circumpolar belt of earthquakes.

  19. Indian Cretaceous Terrestrial Vertebrates: Cosmopolitanism and Endemism in a Geodynamic Plate Tectonic Framework

    NASA Astrophysics Data System (ADS)

    Sahni, A.

    The Indian stratigraphic record with well documented Mesozoic and Early Tertiary terrestrial biotas is now adequate to shed light on the geodynamic chronology of the subcontinent during the rift, drift and collision phases. The record provides one of the best examples of the response of a biota that is undergoing considerable latitudinal displacement, dispersal, origination, evolution and extinction.

  20. Role of the Earth's rotation in global geodynamics

    NASA Astrophysics Data System (ADS)

    Pavlenkova, N.

    2009-04-01

    Role of the Earth's rotation in the global geodynamics. Pavlenkova N.I., Institute of Physics of the Earth of Russian Academy of Science, B.Grusinskaja 10, 123995, Moscow, ninapav@ifz.ru Geophysical studies show several regularities in Earth's structures which are not explained by the traditional global tectonics conceptions. (1) The surface of the Earth, as well as a surface of other planets, precisely shares on two hemispheres with a different relief and structure of an earth's crust: on the Pacific (oceanic) hemisphere with the lowered relief and a thin oceanic crust, and a continental hemisphere with prevalence of the raised relief and a thick continental crust. (2) There is a regular system of global lineaments and ring structures which are stretched on thousand kilometers, covering continents and oceans. As one of examples it is possible to result system of rift zones (mid-oceanic ridges), forming a ring around of the Antarctica with rift branches from it through everyone of 90 degrees. (3) Asymmetry with a relief of a day time surface when to each raised structure there corresponds the lowered surface on the opposite side of globe is observed. (4) The continental and oceanic mantles have different compositions and deep roots (>300 km) beneath the continents are prominent as regions with relatively high seismic velocities. There are regular connections between geological structures and deep mantle roots. (5) The classical lithosphere-asthenosphere model is not confirmed by seismic data. The asthenosphere can not be traced as a continuous layer, there are disconnected lenses (asthenolenses) even beneath mid-oceanic ridges. Significant horizontal movements of the lithosphere, as proposed by the global plate tectonics, would destroy all these regularities and crust-mantle interaction. To make an agreement between all observed data, the fluids-rotation hypothesis is proposed. The hypothesis supposes two main energy sources of the global tectonics: the degasification of the Earth (the fluids advection) and changes in the Earth rotation. At formation of the core there was the Earth's expansion and was formed system of global lineaments and the Pacific ring. Bipolar convection in the core has created a magnetic field and the increased advection of deep fluids in the southern hemisphere. The last promoted formation of thick continental lithosphere in this hemisphere in Archean-Proterozoi. This thick lithosphere has led to asymmetry of the planet and to relative displacement of the mass centers of the Earth's spheres. It produced high pressure between the spheres (Barkin, 2002) and could have initiated their relative displacements. As a uniform asthenosphere does not exist and the continents have deep roots such displacements were most probable on a surface of a liquid outer core. The marked mass centre dislocation has caused the turning of the mantle around the core with movement of the continental hemisphere from South Pole to the equator. It corresponds to the data on movement of paleomagnetic and paleoclimate poles that took place in Paleozoic era. The rotation of the mantle around the core passed non-uniformly: the tidal forces connected to periodic change of Earth's rotation axis position in system the Earth-Lund-Sun (Avsyuk, 1996) were imposed on the basic moving forces restoring the mass center balance. The periodic displacements of the mantle created conditions for alternation of tectonic activity epochs. Rotation of the mantle around the core created a new nonequilibrium system. Therefore in Mesozoic era a new stage begins: an expansion of the southern hemisphere which radius is now bigger, than the northern one. Such expansion created the regular system of the mid-oceanic ridges forming a ring around Antarctica with the symmetric Mid-Atlantic, Indian and Pacific ridges. Supposedly at the last stage the formation of the continent on South Pole (Antarctica) and destruction of a continental crust on the northern hemisphere (formation of the Arctic ocean) took place to mount on the mass center balance.

  1. A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Manea, V.; Manea, M.; Ferrari, L.

    2013-05-01

    The Middle America subduction zone (MASZ) is one of the world most complex convergent margins as it involves the subduction of the Rivera and Cocos young oceanic plates beneath the North American and Caribbean plates and is bounded by the Gulf of California rift and the Panama slab window. Characterized by contorted and unusual slab geometry, irregularly distributed seismicity and volcanism, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT), this subduction system represents a great natural laboratory for better understanding geodynamic processes at a fundamental level. Based on a solid observational foundation, and incorporating the latest experimental results into a coherent geodynamical framework, we shed light on the main processes controlling the subduction system evolution in this region. The tectonics, volcanism, slab geometry and segmentation along the margin are reviewed from a geodynamical perspective. We proposed and discussed a series of evolutionary scenarios for the Mexican and Central American subduction zones, providing a coherent starting base for future geodynamical modeling studies tailored to this active margin. We discuss comparatively the recently discovered SSEs and NVTs along the MASZ, and try to differentiate among the proposed mechanisms responsible for these observations. Finally we discuss the recent seismic anisotropy observations in a geodynamic context, offering an integrated view of mantle flow pattern along the entire active margin. Although the MASZ as a whole may be considered a fairly complicated region with many unusual features and sometimes controversial interpretations, its complexity and unusual characteristics can improve our knowledge about the linkage between deep and surface processes associated with subduction zone dynamics.

  2. A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca

    2013-04-01

    The Middle America subduction zone (MASZ) is one of the world most complex convergent margins as it involves the subduction of the Rivera and Cocos young oceanic plates beneath the North American and Caribbean plates and is bounded by the Gulf of California rift and the Panama slab window. Characterized by contorted and unusual slab geometry, irregularly distributed seismicity and volcanism, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT), this subduction system represents a great natural laboratory for better understanding geodynamic processes at a fundamental level. Based on a solid observational foundation, and incorporating the latest experimental results into a coherent geodynamical framework, we shed light on the main processes controlling the subduction system evolution in this region. The tectonics, volcanism, slab geometry and segmentation along the margin are reviewed from a geodynamical perspective. We proposed and discussed a series of evolutionary scenarios for the Mexican and Central American subduction zones, providing a coherent starting base for future geodynamical modeling studies tailored to this active margin. We discuss comparatively the recently discovered SSEs and NVTs along the MASZ, and try to differentiate among the proposed mechanisms responsible for these observations. Finally we discuss the recent seismic anisotropy observations in a geodynamic context, offering an integrated view of mantle flow pattern along the entire active margin. Although the MASZ as a whole may be considered a fairly complicated region with many unusual features and sometimes controversial interpretations, its complexity and unusual characteristics can improve our knowledge about the linkage between deep and surface processes associated with subduction zone dynamics.

  3. A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Manea, M.; Ferrari, L.

    2013-12-01

    The Middle America subduction zone (MASZ) is one of the world’ most complex convergent margins as it involves the subduction of the Rivera and Cocos young oceanic plates beneath the North American and Caribbean plates and is bounded by the Gulf of California rift and the Panama slab window. Characterized by contorted and unusual slab geometry, irregularly distributed seismicity and volcanism, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT), this subduction system represents a great natural laboratory for better understanding geodynamic processes at a fundamental level. Based on a solid observational foundation, and incorporating the latest experimental results into a coherent geodynamical framework, we shed light on the main processes controlling the subduction system evolution in this region. The tectonics, volcanism, slab geometry and segmentation along the margin are reviewed from a geodynamical perspective. We proposed and discussed a series of evolutionary scenarios for the Mexican and Central American subduction zones, providing a coherent starting base for future geodynamical modeling studies tailored to this active margin. We discuss comparatively the recently discovered SSEs and NVTs along the MASZ, and try to differentiate among the proposed mechanisms responsible for these observations. Finally we discuss the recent seismic anisotropy observations in a geodynamic context, offering an integrated view of mantle flow pattern along the entire active margin. Although the MASZ as a whole may be considered a fairly complicated region with many unusual features and sometimes controversial interpretations, its complexity and unusual characteristics can improve our knowledge about the linkage between deep and surface processes associated with subduction zone dynamics.

  4. Cenozoic geodynamic evolution of the western Mediterranean domain: A view from the Neogene peri-Tyrrhenian basins

    SciTech Connect

    Roure, F.; Montadert, L.; Mueller, C.

    1988-08-01

    Biostratigraphic and structural studies of synorogenic Neogene deposits in the southern Apennines, Calabria, and Cicily are compared to similar data from Sardinia and the Tyrrhenian Sea to trace the geodynamic evolution of the western Mediterranean domain.

  5. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    NASA Astrophysics Data System (ADS)

    Mullick, N.; Buske, S.; Hrubcova, P.; Ruzek, B.; Shapiro, S.; Wigger, P.; Fischer, T.

    2015-04-01

    The western Eger rift at the Czech-German border in central Europe is an important geodynamically active area within the European Cenzoic rift system (ECRS) in the forelands of the Alps. Along with two other active areas of the ECRS, the French Massif Central and the east and west Eifel volcanic fields, it is characterized by numerous CO2-rich fluid emission points and frequent micro-seismicity. Existence of a plume(s) is indicated in the upper mantle which may be responsible for these observations. Here we reprocess a pre-existing deep seismic reflection profile '9HR' and interpret the subsurface structures as mapped by seismic reflectivity with previous findings, mainly from seismological and geochemical studies, to investigate the geodynamic activity in the subsurface. We find prominent hints of pathways which may allow magmatic fluids originating in the upper mantle to rise through the crust and cause the observed fluid emanations and earthquake activity.

  6. Seismological and Geodynamic Monitoring Network in the "javakheti" Test Zone in the Southern Caucasus

    NASA Astrophysics Data System (ADS)

    Arakelyan, A.; Babayan, H.; Karakhanyan, A.; Durgaryan, R.; Basilaia, G.; Sokhadze, G.; Bidzinashvili, G.

    2012-12-01

    The Javakheti Highland located in the border region between Armenia and Georgia (sharing a border with Turkey) is an area in the Southern Caucasus of young Holocene-Quaternary volcanism and a region with convergence of a number of active faults. Issues related to the geometry, kinematics and slip-rate of these faults and assessment of their seismic hazard remain unclear in part due to the fragmentary nature of the studies carried out soley within the borders of each of the countries as opposed to region wide. In the frame of the ISTC A-1418 Project "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" the Javakheti Highland was selected as a trans-border test-zone. This designation allowed for the expansion and upgrading of the seismological and geodynamic monitoring networks under the auspices of several international projects (ISTC CSP-053 Project "Development of Communication System for seismic hazard situations in the Southern Caucasus and Central Asia", NATO SfP- 983284 Project "Caucasus Seismic Emergency Response") as well as through joint research programs with the National Taiwan University and Institute of Earth Sciences (IES, Taiwan), Universite Montpellier II (France) and Ecole et Observatoire des Sciences de la Terre-Université de Strasbourg (France). Studies of geodynamic processes, and seismicity of the region and their interaction have been carried out utilizing the newly established seismological and geodynamic monitoring networks and have served as a basis for the study of the geologic and tectonic structure . Upgrading and expansion of seismological and geodynamic networks required urgent solutions to the following tasks: Introduction of efficient online systems for information acquisition, accumulation and transmission (including sattelite systems) from permanent and temporary installed stations, Adoption of international standards for organization and management of databases in GIS format, Utilization of data archiving system working in intrnationally adopted formats and data exchange systems for communication with other international and national centers.

  7. Using Zircon Chemistry as a Discriminating Tool for Geodynamical Context of Magma Formation

    NASA Astrophysics Data System (ADS)

    Bussien Grosjean, D.; Chazot, G.; Bollinger, C.; Langlade, J.; Vonlanthen, P.; Guillong, M.; Bachmann, O.; Rouget, M. L.; Liorzou, C.

    2014-12-01

    Zircon, a widespread accessory mineral in rocks of felsic composition, is frequently used in various disciplines of geosciences as a petrogenetic, geochronologic and geothermometric tool. It can survive metamorphism and partial melting, and it is chemically and physically very resistant to erosion. As a consequence, zircon is very common in sedimentary rocks of terrigenous origin. Over the last decades, several studies have focused on detrital zircon grains to track the eroded source of sedimentary rocks. However, despite the fact that zircon chemistry allows its source rock to be dated and characterized in terms of crystallization temperature and composition, the detailed geodynamical context of the source rock is still very difficult to reconstruct. The goal of this study is to infer the geodynamical crystallization environment of zircon from its geochemical signature. Differentiated igneous rocks from several geodynamic environments, including intraplate, active margin, ocean rift, and pre-, syn-, and post-collisional settings, were sampled, and zircon grains were separated, mounted in epoxy, and imaged by cathodoluminescence. The trace element signature of zircon was determined using (in-situ) laser ablation-high-resolution-inductively coupled plasma-mass spectrometry (LA-HR-ICP-MS). Zircons non representative of original magmatic values (LaN(ormalised) > 1, PrN > 10 and SmN/LaN < 10) had been disregarded. Y and Yb seem to behave similarly if we compare zircons from all our samples. But preliminary observation of trace elements such as Nb, Ta, and Th plotted against rare earth elements allows us to characterise and discriminate several geodynamic environments. More particularly, Y/Th ratio and Eu anomaly seem to be significant to distinguish ocean rift and intraplate settings, thus confirming the geochemical control of the zircon crystallisation.

  8. Iberia geodynamics: An integrative approach from the Topo-Iberia framework

    NASA Astrophysics Data System (ADS)

    Gallart, Josep; Azor, Antonio; Fernández, Manel; Pulgar, Javier A.

    2015-11-01

    During the last decade, a major target for several international research teams has been to improve the knowledge on the Geodynamics of the Iberian plate and surrounding domains. The complexity of this area and the scarcity of appropriate constraints had been evidenced by the very different evolutionary models proposed in past decades. Hence, the recent efforts to tackle the key questions and derive new conclusive constraints have been afforded through large-scale research approaches that combine expertise on geology, geophysics and geodesy.

  9. Online Geodynamics: interactive web-applications for graduate students in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Manea, M.; Manea, V. C.

    2009-04-01

    In teaching geosciences classes it is essential to provide students with the possibility of having hands-on experiences, even if sometimes they happen to be only in the virtual world. In the portal created for the Computational Geodynamics Laboratory (http://www.geociencias.unam.mx/geodinamica), we present web-based applications, which will help students to manipulate and visualize not only data but also to understand concepts like mantle convection, plate reconstruction or plate deformation. The "Toolbox" option provides a set of state of the art applications (WebMap, WebPlates, WebFlexure, WebGravity, and WebConvec), in which logged-in users can run on-line various programs, without previous knowledge of advanced programming. WebPlates is used in Plate Tectonics classes, helping students to identify and familiarize themselves with various tectonic plates, different tectonic limits, hotspots, etc. WebFlexure is used to study the mechanical behavior of oceanic plates at trenches. WebConvec comes with four cases, analyzing the thermal and thermo-chemical convection in different conditions. In this way the students can be aware of how variation of various physical parameters can affect the modeling results. The "Models" section presents a collection of dynamic numerical models created in the Computational Geodynamics Laboratory. In this section, the logged-in user can visualize convection and deformation models, tectonic plate reconstructions, or geophysical field data, like geoid, gravity, etc. All these applications are actively used in the Geodynamics classes.

  10. An efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos; Zlotnik, Sergio; Díez, Pedro

    2015-10-01

    We present a flexible, general, and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on Tensor Rank Decomposition methods, which transform the original multidimensional discrete information into a separated representation that contains significantly fewer terms, thus drastically reducing the amount of information to be stored in memory during a numerical simulation or geophysical inversion. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore, it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g., preliminary runs versus full resolution runs). We illustrate the benefits, generality, and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies. MATLAB implementations of the method and examples are provided as supporting information and can be downloaded from the journal's website.

  11. Multi-disciplinary contributions of HartRAO to global geodesy and geodynamics

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (South Africa) supports global initiatives in both geodesy and geodynamics through an active programme of science platform provision in Africa, the Atlantic Ocean, Indian Ocean and Antarctica. Our involvement ranges from the installation of tide gauges, Global Navigation Satellite Systems stations, seismometers and accelerometers on remote islands to the installation of radar reflectors in Antarctica which enable accurate, geo-referenced maps of the Antarctic coast line to be made. Currently we also participate in the African VLBI Network (AVN), with the aim to densify not only astronomical observatories in Africa, but to improve the geometry and distribution of advanced geodetic and geophysical equipment to facilitate development of research platforms in Africa, which can be used for geodynamics and related sciences, supporting international projects such as the WEGENER initiative. We present our multi-disciplinary activities during the last decade and sketch the way forward. Participation of Africa in the global arena of astronomy, geodesy, geodynamics and related fields will receive a major boost during the next decade. This is partially due to the development of a component of the Square Kilometre Array (SKA) in Africa but also due to the Global Geodetic Observing System (GGOS) project and the international objectives of higher geodetic accuracies and more stable reference frames. Consequent spinoffs into many disciplines relying on global reference frames and sub-cm positional accuracies stand to benefit and Africa can play a major role in improving both science and network geometries.

  12. Ocean tide, Baltic Sea and atmospheric loading model tilt comparisons with interferometric geodynamic tilt observation - case study at Lohja2 geodynamic station, southern Finland

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, H.; Nordman, M.; Virtanen, J.; Virtanen, H.

    2015-12-01

    Ocean loading models, Baltic Sea loading and atmospheric loading tilt models are compared with the long interferometric water level tilt meter recordings at the Lohja2 geodynamics laboratory in southern Finland. The tilt meter shows a high response to different loading phenomena, and it can be used to study earth dynamics, earth structure modeling, and 2D surface mass loading model validation. Special attention is paid on the Baltic Sea and atmospheric loading tilt oscillations. The four ocean loading models used show deviating values compared to the measured earth tide tilt parameters. The CSR4.0 ocean loading model fits best to analyzed tidal tilt observations at the site. After reductions of earth tides, ocean, the Baltic Sea and atmospheric loading tilt, the largest residual tilt signals are located in frequency bands below 0.5 cycle/day.

  13. Spectrum monitoring of electromagnetic signals from rocks to control geodynamic processes under working mine conditions

    NASA Astrophysics Data System (ADS)

    Bombizov, A. A.; Bespalko, A. A.

    2015-04-01

    The paper considers the techniques for continuous monitoring of samples and rocks destruction using the parameters of the measured electromagnetic signals which are generated in the destructive processes. The block diagram of the recorder is presented and the methods for processing of the measured electromagnetic signals to monitor and predict the geodynamic processes in rocks or the destruction of dielectric materials under electromagnetic interference. A phase modeling of the method to extract a useful signal from the background noise and electromagnetic interference has been implemented.

  14. Laboratory test results of the high speed optical tracking system for the Spaceborne Geodynamic Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; White, David L.

    1987-01-01

    The high speed, high resolution optical tracking system for the Spaceborne Geodynamic Ranging System employs a two-axis gimbaled pointing device that can operate from a Space Shuttle platform and can track multiple retroreflector ground targets with arcsec accuracy. Laboratory tests of the stepping characteristics of the pointing system for various step sizes and directions has shown arcsec repeatability with little wasted motion, overshoot, or ringing. The worst rms tracking jitter was 1 and 2 arcsec in the roll and pitch axes, respectively, at the maximum tracking rate of 2 deg/sec.

  15. Constraining Mantle Heterogeneities with Joint Inversions of Seismic, Geodynamic, and Mineral Physics Data

    NASA Astrophysics Data System (ADS)

    Lu, C.; Grand, S. P.; Forte, A. M.; Simmons, N. A.

    2014-12-01

    Two outstanding goals of solid earth geophysics are to determine the chemical structure of the Earth and to understand the dynamics of its interior. The dynamics of the mantle are controlled by density variations and combined knowledge of density structure and seismic velocities provide the strongest constraints on chemical heterogeneity. Unfortunately, most of the traditional geophysical methods such as seismic tomography and geodynamic modeling alone cannot adequately resolve the density structure within the mantle. Thus, seismic, geodynamic and mineral physics joint inversion methods have been applied to better understand the dynamics of the mantle in recent years (e.g. Simmons et al. 2010). In these joint inversions, P wave and S wave travel times, as well as four convection-related geodynamic observations (free air gravity, tectonic plate motion, dynamic topography, and the excess ellipticity of the core-mantle boundary) can be used to produce 3-D models of density and seismic velocities simultaneously. The approach initially attempts to find a model that assuming temperature controls lateral variations in mantle properties and then to consider more complicated lateral variations that account for the presence of chemical heterogeneity to further fit data. Here we present new joint inversion results include 50% more new S wave travel time data than in previous work and geodynamic data that extend to larger spherical harmonic degrees. In addition, temperature derivatives of P and S velocity and density have been determined using an updated mineral physics dataset. For the first time we include non-linear anelastic temperature effects on velocities in the joint inversion. The anelastic effects decrease the required high density component within the lower mantle superplumes. The hypothesis that temperature variations explain most observed heterogeneity within the mantle is consistent with our data. Reference: Simmons, N. A., A. M. Forte, L. Boschi, and S. P. Grand (2010), GyPSuM: A joint tomographic model of mantle density and seismic wave speeds, Journal of Geophysical Research: Solid Earth, 115(B12), B12310, doi:10.1029/2010JB007631.

  16. Chapter 4: Regional magnetic domains of the Circum-Arctic: A framework for geodynamic interpretation

    USGS Publications Warehouse

    Saltus, R.W.; Miller, E.L.; Gaina, C.; Brown, P.J.

    2011-01-01

    We identify and discuss 57 magnetic anomaly pattern domains spanning the Circum-Arctic. The domains are based on analysis of a new Circum-Arctic data compilation. The magnetic anomaly patterns can be broadly related to general geodynamic classification of the crust into stable, deformed (magnetic and nonmagnetic), deep magnetic high, oceanic and large igneous province domains. We compare the magnetic domains with topography/bathymetry, regional geology, regional free air gravity anomalies and estimates of the relative magnetic 'thickness' of the crust. Most of the domains and their geodynamic classification assignments are consistent with their topographic/bathymetric and geological expression. A few of the domains are potentially controversial. For example, the extent of the Iceland Faroe large igneous province as identified by magnetic anomalies may disagree with other definitions for this feature. Also the lack of definitive magnetic expression of oceanic crust in Baffin Bay, the Norwegian-Greenland Sea and the Amerasian Basin is at odds with some previous interpretations. The magnetic domains and their boundaries provide clues for tectonic models and boundaries within this poorly understood portion of the globe. ?? 2011 The Geological Society of London.

  17. Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Berrocoso, M.; Fernández-Ros, A.; Prates, G.; García, A.; Kraus, S.

    2016-01-01

    The South Shetland Islands archipelago is dynamically complex due to its tectonic surroundings. Most islands are part of a formerly active volcanic arc, although Deception, Penguin and Bridgeman Islands, as well as several submarine volcanoes, are characterized by active back-arc volcanism. Geodetic benchmarks were deployed and the movement of the lithosphere to which they were fixed measured to provide geodynamic insight for the South Shetland Islands, Bransfield Basin and Antarctic Peninsula area based on surface deformation. These benchmarks' data add spatial and temporal coverage to previous results. The results reveal two different geodynamic patterns, each confined to a distinct part of the South Shetland Islands archipelago. The inferred absolute horizontal velocity vectors for the benchmarks in the northeastern part of the archipelago are consistent with the opening of the Bransfield Basin, while benchmark vectors in the southwestern part of the archipelago are similar to those of the benchmarks on the Antarctic Peninsula. In between, Snow, Deception and Livingston Islands represent a transition zone. In this area, the horizontal velocity vectors relative to the Antarctic plate shift northeastwards from N to NW. Furthermore, the South Shetland Islands benchmarks, except for that at Gibbs (Elephant) Islands, indicate subsidence, which might be a consequence of the slab roll-back at the South Shetland Trench. In contrast, the uplift revealed by the Antarctic Peninsula benchmarks suggests glacial isostatic adjustment after the Larson B ice-shelf breakup.

  18. Detrital provenance of Early Mesozoic basins in the Jiangnan domain, South China: Paleogeographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa

    2016-04-01

    Detrital provenance analysis is an effective way to understand paleogeographic change and geodynamics. In this paper, we present petrological, whole-rock geochemical and detrital zircon U-Pb geochronological analysis of Early and Middle Jurassic terrestrial clastic rocks in the Jingdezhen Basin and the Huangshan Basin in the Jiangnan domain, South China. Petrology and whole-rock geochemistry show that the source rocks are dominated by intermediate to acid component. The Chemical Index of Alteration ranges from 69 to 86, suggesting a moderate weathering history for the source rocks. The Early-Middle Jurassic sediments in the Jingdezhen and Huangshan basins were mostly sourced from magmatogenic greywackes and felsic magmatic rocks, respectively. Detrital zircons have seven age peaks at ~ 240 Ma, ~ 430 Ma, ~ 1390 Ma, ~ 1880 Ma, ~ 2500 Ma, -3200 Ma and 788-999 Ma (a wide peak). Provenance analysis indicates that the source rocks are in the Jiangnan domain, the Northwest Zhejiang Basin and the Wuyishan domain. Combining these with previous results and paleocurrent directions, we infer that the NE-trending Wuyishan and Xuefengshan domains and the nearly E-W-Jiangnan domain and Nanling tectonic belt were orogenic uplifts and watersheds during the Late Triassic to Middle Jurassic. The Early Mesozoic geodynamics in the South China Block was related to the westward subduction of the Paleo-Pacific Plate and the northward continent-continent collision following the closure of the Paleo-Tethys Ocean.

  19. The geodynamical evolution of the Northern Apennines chain (Central Italy): an exploring numerical model

    NASA Astrophysics Data System (ADS)

    Pauselli, Cristina; Federico, Costanzo; Braun, Jean

    2004-04-01

    In this paper, 2D thermo-mechanical models with crustal deformation, driven by subduction, are performed to test the geodynamical scenario of a slab-retreat for the Northern Apennines chain (Central Italy). In the models, the lithosphere is regarded as a non-linear Maxwell visco-elastic body capable of brittle failure at low pressure and temperature and of viscous creep at elevated temperature, in Lagrangian description of deformations. We focus particularly on the time variation of the thermal field across the chain in order to evaluate the influence of temperature on the final crustal-scale deformation. Bearing in mind the difficulty to "frame" the history of an orogen in a simple, unique model and the intrinsic limitations of numerical technique, the performed models were able to give a deeper insight into the evolution of this region. On the basis of the results, we suggest that the presence of roll-back retreat together with the intrusion of an asthenospheric rise on the retreating lithosphere justify particular geological and geophysical features observed today across the chain. The models predict that this geodynamical scenario determines both the collapse of the previously formed Alpine orogen and the observed progradation of the deformation front toward east. The models also predict that the regional uplift that has interested the western sector of the chain (Tuscany), is due to the increase of temperature connected with the asthenospheric rise.

  20. Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni

    2014-12-01

    A recent investigation on the northern margin of the Hyblean Plateau in south-eastern Sicily highlights the occurrence of a clayey diapiric intrusion into the foreland carbonate series. The piercing body, exposed along a ∼270 long and ∼30 m deep NE-SW elongated quarry, consists of serpentinite-bearing clayey material. As suggested by the internal contractional features and by its geometric relations with the adjacent rocks, the clayey body intruded in the foreland series producing on its flanks a set of domino-arranged normal faults which nucleated as a result of gravitative collapse. Taking into account previous petrological studies, which provided information about the origin of the mud, a deep geodynamic model for the northern part of the Hyblean Plateau is here presented. The mud diapirs originated from the uprising of pre-existing serpentinite bodies and others products of alteration probably developed along an ancient ridge-transform intersection where a hydrothermally altered mantle wedge occurred. This interpretation is supported by seismic, magnetic and gravimetric anomalies beneath the analyzed area and has implications on its geodynamic evolution.

  1. Watching structural and geodynamic features of a plate boundary: Peceneaga-Camena Fault

    NASA Astrophysics Data System (ADS)

    Besutiu, L.; Zlagnean, L.

    2009-04-01

    The Peceneaga - Camena Fault represents one of the major lithosphere contacts on the Romanian territory. Its nature and dynamics have been subject to many geological and geophysical researches since the beginning of the 20th century. Based on geophysical evidence some authors consider PCF as a plate boundary, the strike-slip contact between the Moesian Micro-Plate (MoP) and East European Plate (EEP). Deep seismic soundings along the international line II had revealed its trans-crustal nature, with a 10 km step at both Conrad and Moho discontinuities. It is likely that the geodynamic evolution of this major tectonic accident is tightly connected to the opening of the W Black Sea basin. Seismic tomography studies have outlined strong fingerprints of the W Black Sea opening within its NW inland. In depth extension of PCF may be clearly seen within the tomography images down to more than 150 km. It seems that lithosphere expelled by the rifting split MoP into several compartments by creating or reactivating a NW trending major fault system to which the PCF belongs. After the W Black Sea rifting ended its evolution, the geodynamic engine in the area seems to be the active rifting in the SW Arabian Plate (red Sea and Aden Bay) pushing northward the Arabian Plate by about 48 mm/yr, and further on, pushing a MoP segment towards the Carpathians. Under this pushing, the above-mentioned MoP compartments move towards the Carpathians, staying together by friction. However, when tectonic forces overcome the friction, the slivers may relatively slip each other, thus generating earthquakes along their wedges. The presence of some scarce seismicity along PCF seems to confirm the idea. To check up the above mentioned geodynamic scenario, a geodetic experiment has been imagined to monitor PCF flanks displacement. Two Leica TC 1201 total stations were installed on the southern flank of PCF (belonging to MoP) in order to measure the distance to a laser reflector installed on the northern PCF flank (within the neighbouring EEP). Each instrument measures the distance to the reflector every 6 seconds and records minute averages of the observations. This way time series related to movements of the PCF compartments were acquired and stored in a computer database. To diminish the record noise, mainly due to the temperature variation and terrestrial tides, some filtering techniques were applied to data in order to better reveal the existent trends. The analysis made lead to some interesting conclusions: (i) PCF is a geodynamical active contact, which explains earthquakes presence along it; (ii) flanks displacements are irregular in both speed and strike; (iii) according to the records, PCF has behaved both as a right-lateral and / or left-lateral contact. The results are fully consistent with the geodynamic model connected to W Black Sea evolution. When the PCF northern compartment escapes toward Carpathians, PCF appears as a left-lateral fault. On the opposite, if the southern compartment is moving under the action of tectonic forces, then PCF appears as right-lateral fault. These conclusions may provide important constraints for interpreting GPS data obtained during epoch campaigns.

  2. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal mechanism exclusively in the Vrancea seismic zone support the assumption. Recent studies on the Vrancea echoes of 2013 Galati-Izvoarele quake swarm have also confirmed our hypotheses. Based on numerical modelling of the geodynamic process, an estimate of the stretching rate has been obtained, fully consistent with results inferred from studies on the seismic energy released by the Vrancea intermediate earthquakes. Concluding remarks Looking further, the sinking of the Vrancea lithosphere into the upper mantle (and consequent crust stretching, appropriately reflected in the non-tidal gravity change) appears as an ongoing geodynamic process, tightly connected to the intermediate-depth seismicity generated within the lithosphere penetrating the upper mantle by thermo-baric accommodation phenomena. Time series provided by repeated gravity observations conducted on the above-mentioned infrastructure for about ten years have clearly revealed: (i) the persistence of the gravity lowering, and (ii) some apparent connection between the rate of the gravity change, and the amount of seismic energy released by intermediate-depth earthquakes. Acknowledgements. The research has been partly performed through CYBERDYNE project, funded through the EU structural programme (contract #184/2010).

  3. The Lanzarote Geodynamic Laboratory: new capabilities for monitoring of volcanic activity at Canary Islands

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.

    2012-04-01

    The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic manifestations at the surface level, and to compare geodynamic processes associated with an active area of the Earth's crust. In turn, the results obtained can provide new inputs for studying precursor of volcanic activity and also contribute to volcanic hazard mitigation. The LGL aims to be a permanent status of renewal, using new technologies for data recording and real time transmission, as well as for testing new sensors, scientific equipment and observational techniques related to monitoring and observation of volcanic activity. All these capabilities are necessary when high-resolution ground based observations must provide us the basis for studying the sources of volcanic deformation. The laboratory is thus open to support and to enhance the collaboration among scientists, as well as national and international institutions involved in research at active volcanic areas.

  4. Variations of Lod and Primary Geodynamical Parameters Throughout The Earth's History

    NASA Astrophysics Data System (ADS)

    Varga, P.; Denis, C.

    A number of geodynamical processes depend on, or are influenced by, the Earth's ro- tation speed about its polar axis. Thus, palaeovalues of the length of day (LOD) put important constraints on such processes. In this work, we try to determine the palaeo- values of such primary geodynamical parameters as the Earth's surface flattening (f), the dynamic shape factor (J2), and the precessional constant (H) at selected epochs of the geological past, namely (1) in the early Katarchaean, shortly after the Earth had been formed (4.5 Ga ago), (2) at the transition from Archaean (Arch) to Protero- zoic (Ptz), about 2.5 Ga ago, and (3) at the transition from Ptz to the Phanerozoic (Pz), about 500 Ma ago. The determination of ancient LOD data is based on growth patterns of fossil corals and bivalves, and on coloration patterns of fossil stromato- lites and tidalites. The relative errors in LOD-values derived from those fossil clocks are about 2%. It is difficult to put any precise error bounds on the age determina- tions, but typical relative errors should as a rule be less than 10% and reach 20% only very seldomly. P. Varga, C. Denis and T. Varga [J. Geodynamics, 25 (1998), 61­84] have shown that the average despinning rate during the Ptz had been about five times smaller than during the Pz. There are no fossil clocks available for the Archaean and Katarchaean, but extrapolating our data set in a plausible way (taking into account in particular the recent work of K.A. Eriksson and E.L. Simpson [Geology, 28 (2000), 831­834], and using a characteristic tidal despinning time of 4.5×109 years), we con- clude that the original LOD was above 9 hours, and probably comprised between 13.0 and 17.5 hours. Hence, using hydrostatic equilibrium theory [C. Denis, M. Amalvict, Y. Rogister and S. Tomecka-Suchon, Geophys. J. Int., 132 (1998), 603­642] we find ´ the values reported in the Table below. Epoch Time BP LOD (hr) f J2 H Early Katarchaean 4.5 Ga 13.0­17.5 0.00665 0.00222 0.00655 Arch/Ptz border 2.5 Ga 19.0 0.00532 0.00172 0.00517 Ptz/Pz border 0.5 Ga 20.5 0.00457 0.00147 0.00445 Late Caenozoic 0.0 Ga 24.0 0.00298 0.00108 0.00327

  5. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    NASA Astrophysics Data System (ADS)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations are located on the three major plates that interact within the Wide Plate Margin Deformation Zone including existing permanent installations on IGS Galapagos and Malpelo Islands on the Nazca Plate, and San Andres Island on the Caribbean plate. The velocity vectors confirm the oblique subduction of the Nazca Plate and Carnegie aseismic ridge collision processes at the Colombia-Ecuador trench which are assumed to be the mechanism for the transpressional deformation and the "escape" of the North Andes Block (NAB). The northernmost vectors in Colombia are indicative of the ongoing collision of the Panama Arc with northwestern Colombia. Planned for the year 2013 is the installation of 10 additional GNSS continuously operating stations, and construction of 20 GPS campaign sites.

  6. Achievements and Planned Programmes of Activities of The Csg.5/6 "geodynamics of Northern Carpathians"

    NASA Astrophysics Data System (ADS)

    Zablotskyj, F.; Tretyak, K.

    Within the programme of the regional group CSG.5/6 "Geodynamics of Northern Carpathians", the following main lines are carried out. (1) Geodetic and geophysical investigations of the recent crustal movements and geophysical analysis of deep struc- ture on the Carpathian geodynamic test field. (2) Subsequent study of geological struc- tures in the region of Northern Carpathians. On the initiative of the Main Astronomical Observatory, the National Space Agency and the Aerogeodetic Enterprise of Ukraine two permanent GPS stations, UZHL and SULP, were being established during last 1.5 years. The first one is situated in the zone of Transcarpathian flexure (Uzhgorod, University) and the second one - in the west of East-European plate (the Precarpathi- ans, Lviv, Polytechnic University). In addition to the long-term project "Restoration of Ukrainian-Polish complex geophysical station at Pip Ivan Mount in Charnohora (Ukrainian Carpathians)", the following actions are planned for 2002-2004. (1) To carry out the complex geodetic, geophysical, geological and geomorphological in- vestigations in this region, which is less studied in comparison with other areas in Carpathians. The comparison of simultaneous appearance of geophysical processes in these regions will allow detect a degree of influence of endogenic, exogenic, and antro- pogenig factors on present day hydro-geological processes in the whole Carpathian region. (2) To create a network of permanent stations for the complex geophysical and geodynamic monitoring, which will include measurements of intensity of Earth's surface deformation field, remote photogrammetric measurements of intensity of de- structive and shift processes, the determination of parameters of gravity and mag- netic fields, seismic and electrometric measurements, spectral analysis of space im- ages for quality and quantity estimations of technogenic and antropogenic activity, generalization of data on evolution and dynamics of river systems and monitoring of hydro-geological phenomena. On the basis of results of the mentioned observations, a relation will be detected between phenomena and fields of various physical nature, antropogenic factors and hazard hydro-geological phenomena in Carpathian region.

  7. Application of a long-range terrestrial laser scanner in research on lowland geodynamic processes

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Daria; Kramkowski, Mateusz; Tyszkowski, Sebastian

    2015-04-01

    Progress in the LIDAR technology allows collection of data over a longer range and with a higher precision than most of geodetic measurement methods. It is particularly useful in areas that are inaccessible, dangerous, or with a highly variable morphology. These include mountains, steep slopes of river valleys, and edges of water bodies. Because of a high variation in altitude, they are particularly prone to geodynamic processes. In recent years, such areas have been surveyed more and more often with the use of Airborne Laser Scanning, but the high costs and low frequency of surveys make it difficult to trace the dynamics of phenomena and recorded processes. A few years ago, a new method for imaging of land surfaces started to be used: Terrestrial Laser Scanning. The latest scanners make long-distance scanning possible, up to several kilometres), which until recently had been reserved exclusively for Airborne Laser Scanning. The ease and mobility of scanning allows recording of geodynamic processes immediately after their initiation and their constant monitoring, with a high frequency of data collection. The usefulness of long-distance Terrestrial Laser Scanning is presented here on the basis of mass movements on slopes of a large river valley (the lower Vistula valley) and edges of artificial water bodies. These areas were selected because of a high dynamics of geodynamic processes. The scanning was performed at a distance of 2-4 km from the objects, with a resolution of 0.002°. Such parameters of the equipment and the broad scope and long range enable researchers simultaneous scanning of wide belts of the marginal zone. They also allow precise imaging of slopes, including the microforms that cannot be recorded with any other method. Thanks to the characteristics of laser beam reflection, it is also possible to perform analyses that allow identification of landslide initiation, as well as initial stages of erosion of river banks and edges of water bodies. In this study, we used an innovative method, Multi Station Adjustment, enabling easy linking of scans and their georeferencing without the need to establish benchmarks in the field. In practice, this allows further processing of the scans with GIS software. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association

  8. Putting Phase Equilibria into Geodynamic Models: An Equation of State Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2009-12-01

    The use of free energy minimization codes to calculate the proportions and properties of minerals and consequently bulk rock properties is now commonplace in geophysical modeling. In effect such applications imply the existence of an equation of state, which is the optimized free energy as a function of its independent variables, for the rocks of interest. The essential feature of the equation of state is that all thermodynamic properties can be derived from it, a feature that requires that its derivatives are continuous. The equation of state may be calculated dynamically within the larger framework of a geodynamic code or it may be implemented statically via tables that are calculated prior to the solution of the geodynamic application. The virtues of static implementation is its extreme simplicity, computational efficiency, and that the finite resolution of the table assures that the equation of state is numerically differentiable for any choice of independent state variables. However, the memory required to store the requisite multidimensional tables may necessitate dynamic implementations for problems involving multi-component mass transfer, e.g., as in reactive melt transport. Paradoxically, the unlimited accuracy of dynamic solutions creates a potential numerical instability, the Stefan problem, for geodynamic governing equations formulated in terms of pressure and temperature. This instability arises because the derivatives of an equation of state for a polyphase aggregate as a function of pressure and temperature are singular at the conditions of a low order phase transformation. An equation of state as a function of specific entropy, specific volume and chemical composition eliminates this difficulty and, additionally, leads to a robust formulation of the energy and mass conservation equations. In this formulation, energy and mass conservation furnish evolution equations for entropy and volume and the equation of state serves as an update rule for temperature and pressure. Although this formulation is straightforward, the computation of phase equilibria as a function of entropy and volume is challenging because the equations of state for individual phases are usually expressed as a function of temperature and pressure. This challenge can be met by an algorithm in which continuous equations of state are approximated by a series of discrete states; a representation that reduces the phase equilibrium problem to a linear optimization problem that is independent of the functional form used for the equations of state of individual phases and readily solved by successive linear programming. Regardless of the way free energy minimization is implemented and the choice of independent variables, a consistent definition of pressure, and the coupling of equilibrium kinetics to deformation, is only possible if the continuity equation accounts for dilational strain.

  9. Autonomous geodynamics of the Pamir-Tien Shan junction zone from seismology data

    NASA Astrophysics Data System (ADS)

    Lukk, A. A.; Shevchenko, V. I.; Leonova, V. G.

    2015-11-01

    The geodynamics of the Tajik Depression, the junction zone of the Pamirs and Tien Shan, is typically considered in the context of plate tectonic concept, which implies intense subhorizontal compression of the zone resulting from the subduction of the Indian and Eurasian lithospheric plates. This convergence has been reliably confirmed by the GPS measurements. However, the joint analysis of the geological structure, seismicity, and geodimeter measurements conducted during a few years at the Garm geodynamical testing site of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, demonstrates a widening of the Tajik Depression instead of its shortening, as should be expected from the subhorizontal compression predominant in the present-day stress-state of this region. This conclusion, together with the data from the other regions, suggests that, along with the plate tectonic mechanisms, there are also other, local, autonomous drivers that contribute to the tectogenesis of this region. Besides, the probable existence of these autonomous sources within the Tajik Depression directly follows from the seismology data. Among them is the crustal spreading within the depression suggested by the seismotectonic displacements in the focal mechanisms of the earthquakes. These displacements are directed in different azimuths off the axial's most subsided part of the depression at a depth of 20-30 km. Above this region the distribution of seismotectonic deformations (STD) is chaotic. This pattern of deformation is barely accounted for by a simple model of subhorizontal compression of the Earth's crust in the region. In our opinion, these features of the seismotectonic deformation in the crust within the studied part of the Tajik Depression is probably associated with the gain in the volume of the rocks due to the inflow of the additional material, which is supplied from the bottom crust or upper mantle by the deep fluids. This increase in the rock volume produces the state of horizontal compression (or, more exactly, outward all-round pressure). We suggest considering the subvertical pillar-like object, identified as a cluster of the earthquake hypocenters in the northern part of the region with chaotic STD, as one of the probable channels of fluid supply. This structure' plane is isometric and has a diameter of about 20 km. It stretches downwards to a depth of 40 km, where the seismicity ceases. The suggested scenario of generation of the outward all-round pressure (autonomous geodynamics) can be considered as an independent driver of tectogenesis along with the traditional mechanisms relating the emergence of the stressstate of subhorizontal compression to the plate-tectonic convergence of the Eurasian and Indian lithospheric plates.

  10. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran

    NASA Astrophysics Data System (ADS)

    Bröcker, Michael; Fotoohi Rad, Gholamreza; Burgess, Ray; Theunissen, Stephanie; Paderin, Ilya; Rodionov, Nikolay; Salimi, Zohre

    2013-06-01

    The Sistan Suture Zone (SSZ) in eastern Iran extends as a N-S trending belt over more than 700 km along the border area between Iran and Afghanistan. The SSZ formed as a result of eastward-directed subduction of a Neotethyan ocean basin beneath the Afghan block and includes a tectonic mélange consisting of disrupted meta-ophiolitic rocks within a low-grade matrix of ultramafic, mafic and pelitic schists. Some mélange blocks were affected by eclogite-, blueschist- and/or epidote amphibolite-facies P-T conditions. Understanding of the petrological and geochronological record of these rocks plays a key role in unravelling the geodynamic evolution of the SSZ. The main aim of the present study was to assess the geological significance of previously published 40Ar/39Ar ages (c. 116-139 Ma) which have not provided robust age constraints for geodynamic reconstructions on a regional scale. For this purpose, samples were collected within a NNW-SSE trending belt spanning a distance of c. 120 km that exposes the major occurrences of high-pressure/low temperature rocks and epidote amphibolites. Multi-point Rbsbnd Sr mineral isochrons indicate a regional consistent pattern with ages ranging between c. 83 and c. 87 Ma for eight samples representing different metamorphic grade and widely separated locations (weighted mean = 85.7 ± 0.8 Ma). Additional 40Ar/39Ar dating for five of these samples yielded in most cases ages that are identical to the Rbsbnd Sr results within analytical uncertainty. For one sample the 40Ar/39Ar age of 81.3 ± 1.3 Ma is about 3 myr younger than the corresponding Rbsbnd Sr age. A still younger Rbsbnd Sr age of 78.9 ± 0.5 Ma was determined for a retrograde epidote-biotite assemblage in an overprinted domain of an eclogite. Ion probe Usbnd Pb zircon ages for two eclogites and two meta-acidic rocks from the mélange yielded weighted mean 206Pb/238U ages of 87.3 ± 1.4 Ma, 86.1 ± 1.5 Ma, 88.7 ± 1.4 Ma and 87.2 ± 1.2 Ma, respectively. The results of this study do not support previous interpretations suggesting > 125 Ma high-pressure/low-temperature metamorphism and amphibolite-facies overprinting, but instead document the importance of Late Cretaceous subduction zone processes for the geodynamic evolution of the SSZ.

  11. Geophysical Imprints of the Geodynamic Evolution of Moesia Following the Black Sea Opening

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian

    2014-05-01

    Genesis of the two types of the Moesia basement (the so called Walachian, and Dobrogean sectors) along with the complex fault system affecting its cover and basement are still debated issues. Besides, there are two other intriguing aspects raised by the seismicity map of Romania: the sub-crustal events in the bending zone of East Carpathians, and the crust seismicity of the eastern Moesian Plate (MoP). Both the intermediate-depth earthquakes within full intra-continental environment and the intense craton seismicity are unusual aspects, and their apparent association difficult to explain. The paper proposes an integrated geodynamic model of MoP able to justify its current tectonics and both the crustal events in front of Carpathians, and the intermediate-depth earthquakes in the Vrancea zone within the frame of a unique geodynamic process. It starts from the idea that tectonic and geodynamic evolution of the E MoP and the bending zone of East Carpathians has been strongly affected by the opening of the W Black Sea basin, and is currently maintained by active rifting in SW Arabian Plate. The model is supported by geophysical and geodetic evidence. Unlike some previous geology-based models assuming that Black Sea opened during a singular geodynamic event (northward subduction of the Neo-Tethys Ocean floor), the pattern of the gravity and geomagnetic field, along with off-shore seismics bring convincing evidence on the distinct timing of the W and E Black Sea basins opening. Fingerprints of the lithosphere expelled by the W Black Sea rifting in the NW inland may be seen in the distribution of compression (P) wave velocity. In-depth development of NW striking major faults (splitting MoP into numerous vertical compartments) is also well revealed by seismic tomography (e.g. Peceneaga-Camena Fault, as the limit between MoP and East European Plate (EEP), still separates two distinct P wave velocity domains at 150 km depth). A second major fault system was created by the downward bending of MoP pushed towards vertical edge of Intra-Alpine Plate. It seems that W Black Sea opening also created the necessary environment for a FFT unstable triple junction within the bending zone of East Carpathians (VTJ), to which intermediate-depth earthquakes should be associated through thermo-baric accommodation phenomena occurring within the lithosphere sunken into the upper mantle. The triangle-shape and in-depth increase of the lateral extension of the VTJ high velocity seismic body are revealed by the high accuracy P wave tomography performed within Vrancea zone. Current geodetic and geophysical monitoring in the area has suggested a close link between crust and intermediate-depth seismic events. The intensification in tectonic forces may firstly led to the intensification of crust seismicity in the Carpathians foreland (by provoking slips between the MoP vertical compartments), followed, after a time-span depending on the force intensity and upper mantle viscosity, by VTJ sinking and consequent intermediate-depth seismic events in the Vrancea zone.

  12. Nonlinearities and multigrid solvers for geodynamic applications using staggered grid finite differences.

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2014-05-01

    We report on the state of the development of the massively parallel staggered-grid finite difference version of the LaMEM code, parts of which have scaled to over 260'000 cores. In particular we present i) our matrix-free nonlinear solution strategy for visco-elasto-plasticity, ii) updated linear solver that includes a coupled velocity-pressure geometric multigrid preconditioner, and iii) an optimized treatment of the makers with approximate stress-rotation algorithm generalized from 2D to 3D formulation. The capabilities of the solver are demonstrated with a set of geodynamically-relevant benchmarks and example problems on the massively parallel computers. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center.

  13. An attempt to monitor tectonic forces in the Vrancea active geodynamic zone: The Baspunar experiment

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita; Plopeanu, Marin

    2013-04-01

    An alternative model attempting to explain the unusual sub-crustal seismicity occurring in the bending zone of East Carpathians within full intra-continental environment (the so-called Vrancea zone) has assumed the presence of a FFT unstable triple junction between the three lithospheric compartments joining the area: East European Plate (EEP), Intra-Alpine Microplate (IaP) and the Moesian Microplate (MoP). Geophysical imprints (e.g. EM data, potential fields, seismic tomography), and indirect geological evidence (e.g. absence of the volcanism associated to subduction zones, the unusual high Neogene tectonic subsidence, symmetry and normal faulting within compressional environment of Focsani basin) support the hypothesis. The above-mentioned model considers the intermediate-depth seismicity as the result of the thermo-baric-accommodation phenomena generated within the colder lithosphere collapsed into the hotter upper mantle. Therefore, the amount of seismic energy thus released should be related to the volume of the lithosphere brought into thermo-baric disequilibrium by sinking into the upper mantle. Vertical dynamics of the Vrancea unstable triple junction (VTJ) seems to be controlled by the both tangential tectonic forces driving the neighbouring plates and the gravitational pull created by the eclogitization of VTJ lower crust. But, while eclogitization provides a relatively constant force, acceleration of sinking is expected to be provided by changes in the tectonic forces acting on VTJ. As changes in tectonic forces should reflect in changes of the dynamics of lithospheric compartments, geodetic means were considered for helping in their monitoring. The Peceneaga-Camena Fault (PCF) is a major lithospheric contact separating MoP and EEP, starting from the W Black Sea basin to the Vrancea zone. Geological evidence advocate for its variable geodynamic behaviour during the time, both as left-lateral or right-lateral fault. Unfortunately, GPS campaigns, so far (sparsely) run in the area, have provided inconsistent results on the PCF current dynamics. The Baspunar Geodynamic Observatory (BGO) has been designed and implemented by the Solid Earth Dynamics Department in the Institute of Geodynamics of the Romanian Academy in order to reveal and monitor eventual motions along PCF in the attempt to correlate variations in the slip rate with changes in the seismicity released within Vrancea zone. The first BGO records were strongly affected by changes in the atmospheric parameters. Consequently, technical measures and special corrections for the removal or at least mitigation of the effects created by changes in temperature, air pressure and humidity have been applied to the observations. In order to improve the signal to noise ratio, some mathematical filters have been applied too. The paper is aimed at revealing results of the geodetic observations along with preliminary geodynamic considerations. On the overall, after about two years of monitoring, PCF appears as an active tectonic contact. It mainly behaves as a left-lateral fault, but some short episodes with a reverse slip (dextral) were also pointed out. Correlations with crustal and intermediate-depth earthquakes occurring in both cases within the bending zone of East Carpathians are illustrated and discussed.

  14. Plate Tectonics, the Wilson Cycle, and Mantle Plumes: Geodynamics from the Top

    NASA Astrophysics Data System (ADS)

    Burke, Kevin

    2011-05-01

    By 1968, J. Tuzo Wilson had identified three basic elements of geodynamics: plate tectonics, mantle plumes of deep origin, and the Wilson Cycle of ocean opening and closing, which provides evidence of plate tectonic behavior in times before quantifiable plate rotations. My pre-1968 experience disposed me to try to play a part in testing these ideas. Most recently, with colleagues, I have been able to show that deep-seated plumes of the past ˜5.5 × 108 years have risen only from narrow plume generation zones (PGZs) at the core-mantle boundary (CMB) mostly on the edges of two Large Low Shear wave Velocity Provinces (LLSVPs) that have been stable, antipodal, and equatorial in their present positions for hundreds of millions of years and perhaps much longer. A need now is to develop an understanding of Earth that embodies plate tectonics, deeply subducted slabs, and stable LLSVPs with plumes that rise from PGZs on the CMB.

  15. Tectonic and geodynamic setting of oil and gas basins of the Soviet Union

    SciTech Connect

    Khain, V.E.; Sokolov, B.A. ); Kleshchev, K.A.; Shein, V.S. )

    1991-02-01

    Within the territory of the Soviet Union and its off-shore economic zone are about 70 sedimentary basins containing oil and gas. The basins include almost all basin types described in present-day plate-tectonic classifications, namely (1) intracontinental and pericontinental rifts, suprarift syneclises, and zones of pericratonic downwarps; (2) ancient passive margins of continents with adjacent overthrust fold system; (3) modern passive margins of continents; (4) zones of convergence of lithospheric plates (i.e., zones of subduction of oceanic plates below continental plates); and (5) zones of collision of continental lithospheric plates. So, far, the only type of basin not identified within the territory of the Soviet Union is the pull-apart basin. The location and distribution of oil and gas deposits in the section of a basin, prevailing types of traps, and scale of potential resources are all features influenced by the geodynamic type of the basin.

  16. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  17. Strong intracontinental lithospheric deformation in South China: Implications from seismic observations and geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Zhao, Liang; Zheng, Tianyu; Kaus, Boris J. P.

    2014-06-01

    Classical plate tectonics theory predicts concentrated deformation at plate boundaries and weak deformation within plates. Yet, the existence of intracontinental orogens shows that highly deformed regions can occur within continental plates, which is geodynamically incompletely understood. Shear wave splitting measurements in South China show belt-parallel (i.e. NE-SW) fast directions beneath the Wulingshan-Xuefengshan Belts, while no dominant fast direction is found in the cratonic Sichuan Basin. Tomographic studies in the mantle in the same area show that the thickness of lithosphere beneath the intracontinental orogen is larger than that beneath the cratonic Sichuan Basin. In order to better understand these seismic observations, we performed numerical experiments of intracontinental lithospheric deformation with the presence of cratonic basin.

  18. Determining crustal strain rates with a spaceborne geodynamics ranging system. 2: Station coordinate analysis

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Cook, G. R.

    1978-01-01

    The use of a spaceborne geodynamics ranging system for determining crustal strain rates is analyzed. The use of site coordinates rather than intersite baseline distances for the strain rate determinations is emphasized. After discussing the analytical techniques which are to be employed, numerical results are presented which suggest that the use of site coordinates would result in a 20-70% improvement in the precision of the deduced values of straining. Precision of a few parts in 10 to the 9th power would be achievable with simple geometrics and a decade or two of measurements; precisions of a few parts in 10 to the 8th power would be achievable in a few years. A consideration of possible correlations among the derived target site coordinates leads to the conclusion that, with the proper choice of coordinate systems, the correlations can be made small and non-detrimental to the strain rate determinations.

  19. The geodynamics of the Gulf of Mexico and its topographic evolution

    NASA Astrophysics Data System (ADS)

    Bower, D. J.; Gurnis, M.

    2014-12-01

    The Gulf of Mexico formed by subsidence due to continental extension and seafloor spreading that accommodated the motion of the Yucatan block during the Late Jurassic-Early Cretaceous. The Yucatan block rotated approximately 45° counterclockwise about an Euler Pole located offshore Florida. It has been proposed that mainly thermal cooling and sediment loading drove subsequent subsidence of the Gulf. However, back-stripping analysis reveals rapid tectonic subsidence (2.5 km) starting around 66 Ma and ending at 40 Ma that remains unexplained. We test the hypothesis that the rapid subsidence can be explained by dynamic topography associated with the Laramide Orogeny. We develop new kinematic theory to build deforming plate models using a continental stretching factor (or crustal thickness) map and the paleogeographic software GPlates. ``Deforming tectonic blocks'' are defined along small circles about the opening Euler Pole using neighboring stretching-factor contours. These deforming blocks are palinspastically reconstructed assuming constant true strain which means that deformation occurs more rapidly as the crust is increasingly thinned. The deforming plate model is incorporated in a global plate history model. We use the combined plate history model to constrain the thermal evolution of the lithosphere and slabs in the upper mantle and plate motions in geodynamic models. This ensures that our geodynamic models are consistent with geological and geophysical observations and thus enables us to investigate the spatial and temporal evolution of subsidence in the Gulf. We compare dynamic and total topography from the models with tectonic subsidence maps and subsidence curves. In addition, we predict mantle structure, notably the distribution of slabs, to compare with seismic tomography and waveform observations.

  20. The Seismic Cycle at Subduction Thrusts: Implications of Geodynamic Simulations Benchmarked with Laboratory Models

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Gerya, T.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, P. M.

    2012-12-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we benchmark a quasi-static, visco-elasto-plastic numerical model to a new laboratory approach. We demonstrate that our numerical method reproduces seismic cycle behavior and source parameter estimates of the laboratory setup that includes a visco-elastic gelatin wedge underthrusted by a plate with defined velocity-weakening and -strengthening regions. Our innovative geodynamic approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize and limit the rupture, while promoting slip complexity. Spontaneous nucleation by coalescence of neighboring patches mainly occurs at evolving asperities near the seismogenic zone limits, with a preference for the downdip region. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically as the fault slips (Figure 1). Slip produces stress shadows that are relaxed afterwards by postseismic accelerated creep or afterslip. The agreement with laboratory results and the wide range of observed physical phenomena, including back-propagation and repeated slip, demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction represent a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.orizontal displacement of six particles at the surface.

  1. A 3-D Geodynamic Model of Strain Partitioning in Southern California

    NASA Astrophysics Data System (ADS)

    Ye, J.; Liu, M.; Lin, F.

    2012-12-01

    In southern California, strain resulting from the relative motion between the Pacific and the North American plates is partitioned in a complex system of transcurrent, transcompressional, and transtensional faults. High-precision GPS measurements in this region have enabled kinematic modeling of the present-day strain partitioning between major faults in southern California. However, geodynamic models are needed to understand the cause of strain partitioning and to determine strain in regions where faults are blind or diffuse. We have developed a regional-scale geodynamic model of strain partitioning in southern California. This 3-D viscoelasto-plastic finite element model incorporates first-order fault geometry of the major active faults in the region. The model domain includes an elastoplastic upper crust on top of a viscoelastic lower lithospheric layer. Deformation is driven by the relative motion between the Pacific and the North American plates, imposed as a displacement boundary condition. Plastic deformation both within the fault zones and in the unfaulted surrounding crust is calculated. Our results show that the Big Bend of the San Andreas Fault, and other geometric complexity of faults in southern California, plays a major role in strain partitioning. The observed variations of strain portioning in southern California can be explained by the geometric configuration of fault systems relative to the relative plate motion, without appealing to basal traction of a flowing lower lithosphere. The model predicts concentrated plastic strain under the reverse fault systems in the Transverse Ranges and the young and diffuse faults in the Eastern California Shear Zone across the Mojave Desert, where a number damaging earthquakes occurred in the past decades.

  2. Large-scale Geodynamics Controls Secular Trend of the Total Ozone

    NASA Astrophysics Data System (ADS)

    Steblova, R. S.

    2014-12-01

    A steady tendency towards decrease in the observed total ozone cannot be attributed to space sources of energy such as the sun and cosmic galactic rays because the energy of these sources is stable for several decades. The north-south asymmetry of ozone in the global structure of ozonosphere rules out man-made sources as a significant factor of the ozone decrease. Most of the pollutants come to the northern hemisphere; however, there is about 30% more ozone in it than in the southern hemisphere. We jointly analyzed the global distribution of ozone from TOMS satellite data, the surface of the earth's core from seismic tomography, and lithospheric plate movements from GPS and concluded the following: (1) There are sources of energy in the solid earth which contribute to the atmospheric ozone; (2) The large-scale geodynamics should be considered among the mechanisms responsible for the global structure of ozonosphere and its evolution with time. We also note similarities in the pattern of ozone caused by sources in the solid earth ("terrestrial ozone") and the patterns of geomagnetic and gravity fields. The global morphology of terrestrial ozone suggests a "breakup" in the initial ozone distribution at about the same time as a breakup of Pangea and subsequent spreading of the area of higher ozone content. A restored initial breakup is located in the oceanic region and runs northwest to southeast across Africa. We propose a large-scale geodynamic process: a convective flow in the mantle from the earth's core surface provokes the breakup of Pangea and the breakup of ozone distribution

  3. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  4. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both Neotethys and Atlantic oceans.

  5. Numerical modeling of seismicity and geodynamics of the Kachchh rift zone, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Mandal, Prantik; Gorshkov, Alexander

    2014-11-01

    The numerical block-and-fault model of lithosphere dynamics and seismicity (BAFD) is used to understand crustal motion and features of the observed seismicity in the Kachchh rift zone, Gujarat, Western India. The block-model allows simulating seismicity and geodynamics simultaneously unlike other modeling approaches for studying seismicity or geodynamics. The model structure of Kachchh rift zone is composed of seven major crustal blocks separated by fault planes. Based on the orientation of boundary crustal block movements, we develop a set of numerical experiments to analyze the spatial distribution of earthquakes, frequency-to-magnitude relationships, earthquake focal mechanisms, velocity field, and fault slip rates in the model. The main results of our modeling suggest that an NNW-SSE trending compression is a principal driving force in the Kachchh rift zone that explains basic features of the regional seismicity, direction of block motions, and the presence of an extensional stress regime associated with the Cambay rift zone. Large synthetic events occur on the fault segments associated with the Allah-Bund fault, Katrol hill fault and north Wagad fault which have been causative faults for the 1819 Mw7.7 Allah-Bund, 1956 Mw6.0 Anjar and 2001 Mw7.7 Bhuj earthquakes. The frequency-magnitude distribution for both synthetic seismicity and observed seismicity shows a similar slope. The focal mechanisms of the synthetic events are found to be consistent with those of earthquakes in the region. A special attention has been paid to study long-term and post-seismic deformations. Our results are in a qualitative agreement with the GPS post-seismic observations in the Kachchh rift zone. We infer that the observed seismicity and crustal block motions are a consequence of the dynamics of the entire regional fault and block system rather than that of a single causative fault only.

  6. Program of Geodynamic Investigation for the Site of a New Nuclear Power Plant in Hungary

    NASA Astrophysics Data System (ADS)

    Trosits, D.; Horvath, F.; Katona, T.; Gerstenkorn, A.

    2014-12-01

    Preparation of a new nuclear power plant project is going on in Hungary at Paks site. Although there is an operating plant at the site, comprehensive geological, geophysical investigation has to be implemented in accordance with Hungarian nuclear safety regulation and international norms for confirming the site acceptability and providing a neotectonic basis for site seismic hazard assessment. The scope, techniques and methods of investigations have to be adapted to the geotectonic environment of the site and Pannonian Basin as a whole. The poster presents a brief summary of the program and provides a detailed description of the seismic survey focusing on the 3D subsurface imaging that is the most important task of planned geophysical investigations. The 3D geophysical imaging provides essential geodynamic information to assess the capability of near site faults and for the seismic hazard analysis, as well as for the hydrogeological modeling. The planned seismic survey gives a unique dataset for understanding the spatial relationship between individual fault segments. The 3D survey allows predicting and characterization of deformations induced by recent lithospheric stresses that is crucial for assessing the tectonic stability of the area. 3D seismic survey has to be combined with appropriate 2D and 3D shallow seismic profiling. The obtained 3D seismic data are also used for numerical geodynamic modeling. Rheology of rocks fundamentally influences the frequency of seismic activity, i.e. the accumulation and release of seismic energy. Regarding this the Pannonian Basin has specific features: the crust is thin and thermal gradients are high. This implies the whole lithosphere can be considered rheologically weak and its behavior is mostly plastic. It is suspected that most of the fault zones in the Pannonian basin are restricted to the sedimentary fill and the uppermost crust, and rest of the lithosphere experiences aseismic deformation.

  7. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    NASA Astrophysics Data System (ADS)

    Forte, Alessandro M.; Quéré, Sandrine; Moucha, Robert; Simmons, Nathan A.; Grand, Stephen P.; Mitrovica, Jerry X.; Rowley, David B.

    2010-07-01

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep-mantle structure below the African continent. We present a tomography-based model of mantle convection that provides an excellent match to fundamental surface geodynamic constraints on internal density heterogeneity that includes both compositional and thermal contributions, where the latter are constrained by mineral physics. The application of this thermochemical convection model to the problem of African mantle dynamics yields a reconciliation of both surface gravity and topography anomalies to deep-seated mantle flow under the African plate, over a wider range of wavelengths than has been possible to date. On the basis of these results, we predict flow in the African asthenosphere characterised by a clear pattern of focussed upwellings below the major centres of late Cenozoic volcanism, including the Kenya domes, Hoggar massif, Cameroon volcanicline, Cape Verde and Canary Islands. The flow predictions also reveal a deep-seated, large-scale, active hot upwelling below the western margin of Africa under the Cape Verde Islands that extends down to the core-mantle boundary. The scale and dynamical intensity of this 'West African Superplume' is comparable to the 'South African Superplume' that has long been assumed to dominate the large-scale flow dynamics in the deep-mantle under Africa. We evaluate the plausibility of the predicted asthenospheric flow patterns through a comparison with seismic azimuthal anisotropy derived from independent analyses of African shear wave splitting data.

  8. Constraining the rheology of the lithosphere through joint geodynamic and gravity inversion

    NASA Astrophysics Data System (ADS)

    Kaus, Boris; Baumann, Tobias; Popov, Anton

    2013-04-01

    In order to understand the physics of the lithospheric deformation and continental collision we need to have better constraints on its rheology and in particular on the effective viscosity of various parts of the lithosphere. Typically, rheology is determined from laboratory experiments on small rock samples, which are extrapolated to geological conditions - an extrapolation over 10 orders of magnitude in deformation rates. These laboratory experiments generally show that small changes in the composition of the rocks, such as adding a bit of water, can dramatically change its viscosity. Moreover, it is unclear which rocktype gives the best mechanical description of, for example, the upper crust and whether a small sample is even appropriate to describe the large scale mechanical behaviour of the crust (or whether this is rather controlled by heterogeneities such as fault zones and batholiths). So the viscosity of the lithosphere is probably the least constrained parameter in geodynamics and might vary over maybe 10 orders of magnitude. The concept of the effective elastic thickness is often used to make statements about the mechanical strength of the lithosphere. Whereas there is general agreement that the concept of EET works will in oceanic lithospheres, there are huge discrepancies in the EET for active collision belts in continental lithospheres, partly because the (mechanical) lithosphere at those locations is unlikely to be a thin elastic plate floating on a viscous mantle, but is rather multi-layered. Ideally, we thus need a new independent method that allows constraining the effective rheology of the lithosphere directly from geophysical data, which is the aim of this work. Our method uses the fact that geodynamically the controlling parameters of lithospheric deformation are its effective viscosity and density structure (which can both be depth-dependent). By performing a forward simulation with a lithospheric deformation code we can model both the gravity signal as well as the velocity field at the surface and in the mantle. These synthetic models can be compared with observations (GPS surface velocity and gravity anomalies). By appropriately parameterizing the rheology of the lithosphere we can define an inverse problem that is tackled with a Monte Carlo inversion method. For a simple setup we can demonstrate mathematically that this joint geodynamic-gravity inversion approach results in a unique solution (as opposed to inverting for gravity alone which is a well-known non-unique problem). We will show an application of our method to a 2D cross-section of the India-Asia collision system. Moreover, we will show results for salt-tectonics in which we performed full 3D inversions and were able to determine the 'best-fit' parameters with uncertainty bounds. Combining dynamic forward models with observational constraints and inverse models is a promising research direction that will likely teach us more about the physics of the Earth. Acknowledgements Funding was provided by the ERC under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830

  9. Using mineral elasticities to link geodynamics and seismic observations in the lowermost mantle.

    NASA Astrophysics Data System (ADS)

    Wookey, J.; Walker, A. M.; Nowacki, A.; Walpole, J.; Kendall, J.

    2012-12-01

    The base of the mantle is the site of the most significant change in physical parameters in the Earth system: the core-mantle boundary. As the region which mediates core-mantle interactions and acts as the lower boundary for mantle convection understanding its properties is key to understanding the broader dynamics of the mantle. One issue is the participation of material in the lowermost mantle (often referred to as D″) in whole mantle convection. This is exemplified by the questions outstanding about the origin of the large, low shear-velocity provinces observed beneath Africa and the Pacific. While the consensus view is that these are long-term, stable features which are compositionally distinct (lending them higher density than their surroundings), a dominantly thermal origin (whereby they are lower density transitory upwellings, such as clustered plumes) is favoured by a number of very recent studies. Observations of seismic anisotropy (which results from the deformation of mantle minerals) are key to understanding the geodynamic nature of the lowermost mantle. There are a broad set of observations of D″ anisotropy, ranging from tomographic to waveform studies which allow resolution of a more general anisotropy style. These observations show variation at a range of length scales, with some regions apparently very complex. To interpret them robustly in terms of geodynamics requires significant knowledge of lowermost mantle mineralogy. Mineralogical information comes from both laboratory experiments and theoretical calculations. In addition to single-crystal elasticities of relevant mantle phases we also need information about deformation mechanisms in order to calculate the aggregate seismic anisotropy. While candidate determinations of these latter parameters exist there is no consensus as to the dominant mechanism for the mineral likely to be most significant for the lowermost mantle region - post-perovskite. In order to test these candidates we have created integrated models based on static flow fields estimated from seismic tomography. These are used to generate strain histories for a grid of points in the lowermost mantle, which in turn are used in conjunction with predicted elasticities and proposed deformation mechanisms to perform viscoplastic self-consistent modelling to generate models of general anisotropy for the lowermost mantle. We have compared these with both tomographic and local determinations of D″ anisotropy in a variety of regions using raytracing, however more robust comparison requires full waveform modelling. To this end we have modified a spectral finite-element code to allow a fully general anisotropic model, and produced waveforms which can be compared directly to observation. These show the complexity of the effect of anisotropy, and underline the importance of understanding the contributing elasticities to make robust dynamic inferences. Ultimately, properties derived from the complex mineralogy (such as the rheology) also needs to feed back into the geodynamic calculations, as developing texture changes parameters such as viscosity. Our current generation of models (which integrate texture development modelling into 3D mantle convection simulation) are a step toward this.

  10. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  11. Structural Geology of Graciosa Island - a contribution for the geodynamics of the Azores triple junction

    NASA Astrophysics Data System (ADS)

    Hipólito, Ana; Madeira, José; Gaspar, João.; Carmo, Rita

    2010-05-01

    The Azores geodynamic setting, its geological, geochemical and geophysical characteristics, and the frequent seismic and volcanic activity, motivated the development of multidisciplinary studies aiming at the creation of a coherent model explaining the geodynamic and kinematic particularities that characterize the Azores triple junction - the contact between the North American, Eurasian and Nubian lithospheric plates. The tectonic regime determination at any given region, through the identification and characterisation of active faults, is a major contribution to the development of geodynamic models. In this domain the geometric and kinematic characterisation of Graciosa Island active faults was performed and a structural map was produced. The stress fields responsible for the development of the identified tectonic structures were also deduced. Two main fault systems were identified at Graciosa. One system (A) is composed of two sets of conjugated faults, one trending NW-SE and dipping to SW, presenting normal-dextral or dextral-normal oblique slip, and another striking NNE-SSW and dipping to ESE, with oblique normal-left lateral or left lateral-normal slip. The second fault system (B) includes NNE-SSW to NE-SW trending faults, dipping to WNW or NW, presenting normal-dextral or dextral-normal oblique slip. A family of conjugated faults with these structures was not found. The structural data indicate two distinct stress fields acting in Graciosa region that could be separated in time and/or in space. A stress field I, responsible for the occurrence of fault system A, with σ1 (maximum horizontal compressive stress axis) NNW-SSE to N-S, σ3 (maximum horizontal tensile stress axis) trending ENE-WSW to E-W, and an intermediate vertical compressive stress axis (σ2); permutations between σ1 and σ2 may occur according to the alternation between transtensile and tensile tectonic regimes. A second stress field, II, is characterised by horizontal σ1, trending E-W to WSW-ENE, horizontal σ3, trending NNW-SSE to N-S, and vertical σ2. Permutation may also occur between σ2 and σ1 after events of stress drop during transtensile phases. Fault system B is associated to stress field II. The kinematic solutions shown in recent geodetic works and the stress fields determined from neotectonic analysis seem to point out to the presence of two distinct stress fields on the islands located near the margins of the shear zone where the Azorean islands of the central and eastern groups stand. Stress field I agrees with the local stress regime proposed by several authors for the shear zone that constitutes the western segment of the Eurasia - Nubia plate boundary. To explain the existence of stress field II, two hypothesis are proposed: (1) an intermediate region, with a transtensile regime, making the transition between the area subjected to the Mid-Atlantic Ridge tensile stress field and the more distal region with a compressive stress field; or (2) an intermediate region (established when the interplate shear stress is weaker), with a transtensile regime, defining a narrow band between the region of dextral transtension (resulting from the differential motion between the Eurasian and the Nubian plates) and the external compressive stress field established as the sea-floor moves away from the Ridge. Narrowing or widening of the area under influence of local stress field (I) may justify that the margins of the sheared region will become temporarily under the influence of the external stress field (II).

  12. Geodynamic evolution and sedimentary infill of the northern Levant Basin: A source to sink-perspective

    NASA Astrophysics Data System (ADS)

    Hawie, N.

    2013-12-01

    Nicolas Hawie a,b,c (nicolas.hawie@upmc.fr) Didier Granjeon c (didier.granjeon@ifpen.fr) Christian Gorini a,b (christian.gorini@upmc.fr) Remy Deschamps c (remy.deschamps@ifpen.fr) Fadi H. Nader c (fadi-henri.nader@ifpen.fr) Carla Müller Delphine Desmares f (delphine.desmares@upmc.fr) Lucien Montadert e (lucien.montadert@beicip.com) François Baudin a (francois.baudin@upmc.fr) a UMR 7193 Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie/ Univ. Paris 06, case 117. 4, place Jussieu 75252 Paris Cedex 05, France b iSTEP, UMR 7193, CNRS, F-75005, Paris, France c IFP Energies nouvelles, 1-4 avenue du Bois Préau 92852 Rueil Malmaison Cedex, France d UMR 7207, Centre de Recherche sur la Paleobiodiversité et les Paleoenvironnements. Université Pierre et Marie Curie, Tour 46-56 5ème. 4, place Jussieu 75252 Paris Cedex 05, France e Beicip Franlab, 232 Av. Napoléon Bonaparte, 95502 Rueil-Malmaison, France Sedimentological and biostratigraphic investigations onshore Lebanon coupled with 2D offshore reflection seismic data allowed proposing a new Mesozoic-Present tectono-stratigraphic framework for the northern Levant Margin and Basin. The seismic interpretation supported by in-depth facies analysis permitted to depict the potential depositional environments offshore Lebanon as no well has yet been drilled. The Levant region has been affected by successive geodynamic events that modified the architecture of its margin and basin from a Late Triassic to Middle Jurassic rift into a Late Cretaceous subduction followed by collision and Miocene-Present strike slip motion. The interplay between major geodynamic events as well as sea level fluctuations impacted on the sedimentary infill of the basin. During Jurassic and Cretaceous, the Levant Margin is dominated by the aggradation of a carbonate platform while deepwater mixed-systems prevailed in the basin. During the Oligo-Miocene, three major sedimentary pathways are expected to drive important quantities of clastic material into the Levant Basin: (1) the marginal canyons along the Levant Margin, (2) the Latakia region and the Palmyrides Basin (Syria) and (3) the Red Sea area and Nile Delta. Regional drainage system analysis was performed to estimate the contribution to the infill of the basin of the different sediment sources, and in particular, to estimate erosion of Nubian siliciclastic material, granitic Red Sea rift shoulders and Arabian Shield. A numerical stratigraphic forward model, Dionisos, was used to test these source-to-sink assumptions; a sensitivity analysis was then performed to understand better the impact of the different geodynamic and stratigraphic scenarios on the architecture and sedimentary infill of the Levant Basin, and thus on the expected petroleum systems of this frontier basin

  13. Impact of geodynamic development of the Barents Sea deep rift on evolving petroleum systems

    NASA Astrophysics Data System (ADS)

    Balanyuk, I.; Dmitrievsky, A.

    2009-04-01

    All the Barents Sea deposits are situated in the epicenter on active geodynamic development of the Barents Sea rift and, most important, over the zone of listric faults intersection, which consist a knot system over the mantle diapir. This is confirmed by prospecting seismology. Intrusion of hot mantle matter with further cooling down of abnormal lense might be a possible cause of appearance and evolution of ultradeep depressions. A high "seismic stratification" of the lower crust (nearly reaching the basement surface) at time scale about 8 sec. is typical for the inner, the deepest part of the depression. Supposing the "seismic stratified" lower crust correspond to "basalt" layer, this area is nearly upper crust ("granitic-gneiss") free. This fact confurmes conception on development of "granite free gaps" in the depression basement. Thick blocks of "seismically transparent" upper crust corresponding to the "granitic-gneiss" layer are marked out within Kolsk-Kanin monocline. An abrupt thickness decrease and appearance of "stratified" areas takes place at the southern edge of the depression. A filling of the over-rift sag with sediments, revival of the faults and their effect on the filtration processes and gas hydrates formation took place in the South Barents Sea depression. Repeating activation of the fault blocks in the basement, especially during late Jurassic - early Cretaceous period contributed to formation of the structures related to the greatest deposits of the South Barents Sea depression. An extended field acoustic data collected in the Barents Sea led to understanding of general fundamental problems for all Arctic Seas and, first of all, the problem of Quaternary glaciations. An analysis of Eurasian-Arctic continental margin shows correspondence between the rift systems of the shelf with those of the ocean. This relation can be observed by an example of the central Arctic region. All the rift systems underlying the sediment basin are expressed in the sea bed relief as spacious and extensive graben valleys burnished by lobes. The rift structures and the sediment cover are connected by the systems of transversal (or oblique) faults. A study of the regional geologic structure of basins affords believing in the very complicated inner riftogenic structure of the base and the lower part of the sediment cover, which is represented by a combination of grabens and horsts bound by the same tectonic border in the form of high amplitude fault zones, and have a very high density of fault-fractured tectonics. In the same time, a branching of the rift structures related to rounding of large solid blocks of the crust, represented by Archaean or Baikal base prominences, takes place. Their frequent structural connection with the continental paleo-rift structures is ascertained, but the shelf rift system are not their straight prolongation and separated by base thresholds concealed under the sediment cover or by bulkheads expressed even in the modern relief. Filling of over rift flexure by sediments, revival of faults and their impact on flow processes and gas hydrate formation in under sea bed sediments have occurred in the South Barents depression. Geodynamic development of the Barents sea rift not only played a substantial role in formation of as unique fields as Shtokman, Prirazlomnoe and others, but created prerequisites for possible gas outbursts into near-surface sediments of the Barents Sea that could result, in some cases, in gas hydrate formation. Periodic activation of basic fault blocks, especially in late Jurassic - early Cretaceous time significantly contributed to formation of the structures related to the greatest fields of South Barents depression. The information on geodynamic development of the region, thermal convection and modern sedimentation enable assessment of the real potentiality for underwater works in the region, potential gas hydrates resources, and will help to assign a strategy of prospecting work, to range the known fields, to carry out a regional survey for engineering work.

  14. Atmospheric excitation of polar motion during the GIG '91 measurement campaign. [GPS International Earth Rotation Service and Geodynamics experiment

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Lindqwister, Ulf J.

    1992-01-01

    Daily determinations of the earth's pole position from GPS observations obtained during the first GPS IERS and Geodynamics (GIG) experiment are interpreted in terms of atmospheric wind and pressure fluctuations. Evidence is reported for atmospheric excitation of the rapid polar motions observed during the 23-day period from 22 January to 13 February, 1991. It is demonstrated that atmospheric wind and pressure fluctuations are mostly responsible for exciting the rapid polar motions observed during GIG '91.

  15. Stratigraphic and Geologic Constraints on Geodynamic Models of North America Since the Cretaceous

    NASA Astrophysics Data System (ADS)

    Spasojevic, S.; Gurnis, M. C.

    2007-12-01

    Stratigraphic and sea level data along with plate motions and mantle tomographic images are used as constraints on inverse and forward models of mantle convection beneath North America. Using plate reconstruction with continuously closed plate polygons (developed using the GPlates program), we compute forward and inverse models of mantle convection with the finite element method (CitcomS). With plate motions, seismic tomography is used to estimate mantle initial conditions using an adjoint of the energy equation, as described by Liu and Gurnis during this meeting. For North America, we developed a set of forward and inverse regional geodynamic models for last 100 million years, with plate movements consistent with global paleogeographic models. We used sediment isopachs, paleoshorelines, and tectonic subsidence curves as the primary stratigraphic and geologic constraints. Tectonic subsidence history for North America was the main constraint for inverse models. In forward mantle convection models, we used the prediction of dynamic topography, along with published eustatic curves, to model sediment isopachs, paleoshorelines, and tectonic subsidence. Modeling results are than compared to stratigraphic and geologic observations, and models are updated iteratively. In a fixed North American frame of reference, our models indicate that a dynamic topography low moved eastward from 100 million years to the present, due to of the descent of the Farallon slab as the plate moved westward. During the Cretaceous, the dynamic topography low was located in the middle of North American continent. During this period, eustatic sea-level reached its maximum and when combined with a dynamic topography low, caused a substantial inundation of North America, creating the Western Interior Seaway. At the present time, the dynamic topography low is located in the eastern United States, and we argue that this region is experiencing tectonic subsidence. This tectonic subsidence can explain significant departure of regional sea-level curves developed for the eastern United States, in comparison with eustatic sea-level curves. This presentation focuses on the details of the stratigraphic data and their integration with geodynamic models.

  16. Crustal Accretion and Mantle Geodynamics at Microplates: Constraints from Gravity Analysis

    NASA Astrophysics Data System (ADS)

    Ames, K.; Georgen, J. E.; Dordevic, M. M.

    2013-12-01

    Oceanic crustal accretion occurs in a variety of locations, including mid-ocean ridges and back-arc spreading centers, and in unique settings within these systems, such as plate boundary triple junctions, intra-transform spreading centers, and microplates. This study focuses on crustal accretion and mantle geodynamics at microplates. The Easter and Juan Fernandez microplates are located in the South Pacific along the Pacific, Nazca and Antarctic plate boundaries. Both microplates formed 3-5 Ma and they are currently rotating clockwise at 15 deg/Ma and 9 deg/Ma respectively (e.g., Searle et al. J. Geol. Soc. Lond. 1993). The study area also encompasses the Easter/Sala y Gomez mantle plume and the Foundation seamount chain, both of which are located close to spreading centers. We calculate mantle Bouguer anomaly (MBA) from satellite gravity measurements and shipboard soundings in order to gain a better understanding of the thermal structure of these two oceanic microplates and to quantify the effect that melting anomalies may have on their boundaries. We assume a crustal thickness of 6.0 km, a 1.7 g/cm^3 density difference at the water/crust interface, and a 0.6 g/cm^3 density difference at the crust/mantle interface. The west rift of the Easter microplate has an MBA low ranging from approximately -50 to -100 mGal, while the east rift has slightly higher MBA values ranging from roughly 10 to -50 mGal. The west rift of the Juan Fernandez microplate has a maximum MBA low of about -100 mGal with a sharp increase to -20 mGal at -35 deg S. The east rift of the Juan Fernandez microplate is characterized by more variable MBA, ranging from 0 to -140 mGal. The MBA low associated with the Easter/Sala y Gomez mantle plume has a maximum amplitude about 150 mGal. Likewise, the Foundation seamounts show a gravity low of -140 to -150 mGal. These spatial variations in gravity, as well as published isotopic data and exploratory numerical models, are used to constrain upper mantle geodynamics in the complex geological setting of the southern Pacific Ocean. Inferences are made about the three-dimensional distribution of melting anomalies.

  17. Influences of a ridge subduction on seismicity and geodynamics in the central Vanuatu arc.

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2014-12-01

    The central part of the Vanuatu arc is characterized by the subduction of the d'Entrecasteaux ridge under the North Fiji Basin. This ridge influences directly the seismicity and the geodynamics in the proximal region. By analyzing the hypocenters from a local microseismic catalog (2008-2009) and global catalogs we show that the subduction interface, in the first 50 km depth, presents a small dipping angle where the ridge is subducting. This bump highlights the buoyancy of the ridge associated to the excess of fluids present in the seamount. This underplating could explain 20% to 60% of the vertical displacement estimated on the forearc islands from corals datations and that can reach a maximum of 6 mm/yr. The high concentration of hydrous minerals in the subducting ridge might also explain the important activity of intermediate depth earthquakes (half of the total activity in the studied region), we observed a very good correlation between the supposed extension of the ridge in depth and the location of these earthquakes. We propose that they are associated to crust minerals dehydration that causes hydrous fracturation trough preexistent faults. This dehydration process is maintained to a maximum depth of 190 km due to the high thermal parameter of the australian plate.Using the geometry of the Wadati-Benioff plane derived from earthquakes localisations, we established a 2D mechanical model to explain the horizontal interseismic displacement observed by GPS on islands of the upper plate. We show that the subduction interface alone cannot explain the GPS velocities observed, the system of thrust faults located below the back arc islands of Maewo and Pentecost, plays a major role in the region geodynamics and accommodate as much convergence as the subduction interface (between ~16 and 34 mm/yr). Using the model we were also able to explain the closing of the Aoba basin during interseismic phase (~25 mm/an). Finally, the mechanical model suggests the existence of a 23 km wide locked patch that reaches the trench.

  18. Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models

    NASA Astrophysics Data System (ADS)

    Steffen, Holger; Denker, Heiner; Müller, Jürgen

    2008-10-01

    The Earth's gravity field observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. Several institutions, such as the GeoForschungsZentrum (GFZ) Potsdam, the University of Texas at Austin, Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), Pasadena, provide GRACE monthly solutions, which differ slightly due to the application of different reduction models and centre-specific processing schemes. The GRACE data are used to investigate the mass variations in Fennoscandia, an area which is strongly influenced by glacial isostatic adjustment (GIA). Hence the focus is set on the computation of secular trends. Different filters (e.g. isotropic and non-isotropic filters) are discussed for the removal of high frequency noise to permit the extraction of the GIA signal. The resulting GRACE based mass variations are compared to global hydrology models (WGHM, LaDWorld) in order to (a) separate possible hydrological signals and (b) validate the hydrology models with regard to long period and secular components. In addition, a pattern matching algorithm is applied to localise the uplift centre, and finally the GRACE signal is compared with the results from a geodynamical modelling. The GRACE data clearly show temporal gravity variations in Fennoscandia. The secular variations are in good agreement with former studies and other independent data. The uplift centre is located over the Bothnian Bay, and the whole uplift area comprises the Scandinavian Peninsula and Finland. The secular variations derived from the GFZ, CSR and JPL monthly solutions differ up to 20%, which is not statistically significant, and the largest signal of about 1.2 μGal/year is obtained from the GFZ solution. Besides the GIA signal, two peaks with positive trend values of about 0.8 μGal/year exist in central eastern Europe, which are not GIA-induced, and also not explainable by the hydrology models. This may indicate that the recent global hydrology models have to be revised with respect to long period and secular components. Finally, the GRACE uplift signal is also in quite good agreement with the results from a simple geodynamical modelling.

  19. AlpArray Austria - Illuminating the subsurface of Austria and understanding of Alpine geodynamics

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Bokelmann, Götz; Bianchi, Irene; Apoloner, Maria-Theresia; AlpArray Working Group

    2015-04-01

    AlpArray Austria is a research project to study the geodynamics of the Eastern Alps and the subsurface of Austria with a large-scale mobile broadband seismological network. AlpArray Austria is part of the AlpArray project - a unique European transnational research initiative in which 64 research institutes from 17 countries join their expertise to advance our knowledge about the structure and evolution of the lithosphere beneath the entire Alpine area. AlpArray Austria is coordinated by the Department of Meteorology and Geophysics (IMGW) at the University of Vienna and funded by the Austrian Science Fund (FWF). During spring 2015 the deployment of 42 mobile broadband seismometers (and two permanent stations) will commence and by autumn 2015 Austria will be completely covered by a dense seismological network with an average station spacing of about 40 kilometers. The mobile network consisting of 27 Reftek 151 60s sensors (provided by IMGW) and 15 Trillium 120s instruments (provided by the Dublin Institute for Advanced Studies, DIAS, Ireland) will complement the permanent Austrian seismic network operated by the Austrian Zentralanstalt für Meteorologie und Geodynamik (ZAMG) that will also install the two permanent stations. AlpArray Austria will be continuously recording high-quality ground motion data for three years. Seismic data will be distributed through the European Integrated Data Archive (EIDA) and shared with the collaborating AlpArray institutes. AlpArray Austria will shed light on the detailed geological structure and geodynamical evolution of the Eastern Alps and the subsurface of Austria. Utilizing seismic analysis methods such as shear wave splitting, receiver functions and body wave dispersion the AlpArray Austria working group at IMGW will, together with the international partners, focus on seismic anisotropy in the upper mantle, the location of interfaces and tomography, to answer outstanding questions on slab geometry and subduction polarity under the Eastern Alps. While the primary scope of AlpArray Austria is fundamental research the unique dataset will also improve our knowledge about near-surface geologic structures and help to assess the seismic hazard in Austria.

  20. From StGermain to Underworld: Enabling Community-based code Development in Geodynamics

    NASA Astrophysics Data System (ADS)

    Quenette, S. M.; Moresi, L.; Sunter, P. D.; Hodkinson, L.; Lo, A.; Hassan, R.; Appelbe, B.; Turnbull, R.

    2005-12-01

    Each discipline of geophysics has traditionally focused on limited sets of closely related phenomena using methodologies and data sets optimized for its specific area of interest. Why is that? Single discipline, single scale, foundation physics problems are relatively easy to code in Fortran, and hence they eventually become optimized for best performance whilst simultaneously becoming difficult to adapt to new interests. Yet geodynamicists want to break these ``out-of-scope'' barriers, and incorporate signals of interests beyond their immediate phenomena of interest. In turn this often entails a multi physics, multi scale and multi discipline development model. Multi physics is potentially easy to code, but application limited by the choice of numerical technique of the code. Multi scale is a numerical and discretisation issue that is closely related to the fundamental data structures of the code. This is difficult to change, and the ideal is hybrids of optimized solutions at desired scales. Multi discipline is much more focused on people and how they form problem constraints, the language / ontology they use, and their expectation in usability. In summary: facilitating a multi scale, multi physics , multi disciplinary development environment is difficult, complicated and generally not of core interest to a geodynamicist. However, today, with more powerful CPU architectures, we can move away from Fortran style coding with little wall-time cost. We have more powerful numerical techniques and models for constitutive laws, where disciplines beyond those specific to geodynamics such as numerical science, material science and computational science have progressed. Furthermore, more well proven and established libraries are available, when chosen and applied appropriately, lead to less work and for better results. How can we capitalize on this? We propose a multi-level community development model that allows computational scientists, numerical scientists, material scientists and phenomena modelers to develop their core interests and leverage off each other's work. In turn, we aim to produce adaptable code bases where core technologies can be interchanged. That is to provide modelers with the tools to venture beyond their present scope, whilst proving infrastructure builders real problems to test against. Furthermore we aim to match the language to the expectations of the people at those levels. We facilitate this environment through a fundamental framework named StGermain. We demonstrate its application to a spectrum of (long time scale) geodynamics problems encapsulated in the Underworld package. In particular we show three phenomena models from Underworld: mantle convection, roll back, and basin extension modeling. These are all at different scales, incorporate different physics, different work flows and maintained by different people. The methodology and technology is being applied to solve multi scale, multi physics modeling of materials manufacturing problems.

  1. Using Global Plate Velocity Boundary Conditions for Embedded Regional Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Taramon Gomez, Jorge; Morgan, Jason; Perez-Gussinye, Marta

    2015-04-01

    The treatment of far-field boundary conditions is one of the most poorly resolved issues for regional modeling of geodynamic processes. In viscous flow, the choice of far-field boundary conditions often strongly shapes the large-scale structure of a geosimulation. The mantle velocity field along the sidewalls and base of a modeling region is typically much more poorly known than the geometry of past global motions of the surface plates as constrained by global plate motion reconstructions. For regional rifting models it has become routine to apply highly simplified 'plate spreading' or 'uniform rifting' boundary conditions to a 3-D model that limits its ability to simulate the geodynamic evolution of a specific rifted margin. One way researchers are exploring the sensitivity of regional models to uncertain boundary conditions is to use a nested modeling approach in which a global model is used to determine a large-scale flow pattern that is imposed as a constraint along the boundaries of the region to be modeled. Here we explore the utility of a different approach that takes advantage of the ability of finite element models to use unstructured meshes than can embed much higher resolution sub-regions within a spherical global mesh. In our initial project to validate this approach, we create a global spherical mesh in which a higher resolution sub-region is created around the nascent South Atlantic Rifting Margin. Global Plate motion BCs and plate boundaries are applied for the time of the onset of rifting, continuing through several 10s of Ma of rifting. Thermal, compositional, and melt-related buoyancy forces are only non-zero within the high-resolution subregion, elsewhere, motions are constrained by surface plate-motion constraints. The total number of unknowns needed to solve an embedded regional model with this approach is less than 1/3 larger than that needed for a structured-mesh solution on a Cartesian or spherical cap sub-regional mesh. Here we illustrate the initial steps within this workflow for creating time-varying surface boundary conditions (using GPlates), and a time-variable unstructured 3-D spherical mesh.

  2. Fluid and melt weakening along subduction interface defines geodynamic regimes of intra-oceanic subduction

    NASA Astrophysics Data System (ADS)

    Baitsch-Ghirardello, B.; Gerya, T.

    2012-04-01

    The aim of this study is to characterize different geodynamic regimes of intra-oceanic subduction with our 2D coupled petrological-thermomechanical numerical model (I2ELVIS). We investigated systematically influences of fluid and melt weakening effects, which are responsible for the degree of plate coupling/decoupling and the mechanical strength of the overriding plate. Based on results of systematic experiments we distinguish the following three geodynamic regimes of intra-oceanic subduction a) retreating regime with either stable or episodic overriding plate extension, b) stable regime without compression and extension and c) advancing regime with fore-arc subduction. a) Retreating subduction regime is characterized by a strong rheological weakening of the overriding plate mantle by hydration/serpentinization and melt propagation processes. A necking of the (fore) arc triggers initiation of the retreating subduction associated with the arc spreading. A deactivated remnant of the split arc (i.e. paleo-arc) remains on the opposite side of the growing backarc basin. In addition to the subduction related magmatic arc, the decompression melting in the backarc causes formation of large amount of MORB-like crust in the basin. b) Stable subduction regime forms at the moderate degree of fluid and melt related weakening. The volcanic rocks in a stable subduction regime are mainly produced from the subducted oceanic crust and molten hydrated mantle. Some of the stable subduction regimes are characterized by development of a broad area of subduction mélange in which subducted basaltic crust is strongly mechanically mixed with the serpentinized fore-arc mantle. These intense mixing is promoted by increased degree of fluid related weakening. c) Advancing subduction regime develops under condition of notably reduced fluid-related weakening that results in strong coupling between the plates in the fore-arc region. In some experiments we observed fore-arc subduction, which is triggered by its gradual mechanical disintegration resulting from the heterogeneous serpentinization process. Strong coupling between plates produces large stresses that are able to overcome the mechanical resistance of the serpentinized fore-arc mantle that starts to subduct together with the slab. Large amount of new basaltic crust forms at the surface as the result of enhanced fluid-fluxed melting of the mantle wedge that is triggered by dehydration of subducted serpentinized forearc fragments.

  3. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to look at the predicted dynamic pressure fields, particularly if they are being fed back into the rheology. Given a range of well described model problems, we discuss broader issues of what, if any, are appropriate plasticity models and under what circumstances we can expect to obtain accurate solutions from such formulations.

  4. Geodetic GNSS measurements as a basis for geodynamic and glaciological research in Antarctica

    NASA Astrophysics Data System (ADS)

    Scheinert, Mirko; Dietrich, Reinhard; Knöfel, Christoph; Fritsche, Mathias; Rülke, Axel; Schröder, Ludwig; Richter, Andreas; Eberlein, Lutz

    2013-04-01

    For about twenty years our institute has been carrying out geodetic GNSS measurements and has been actively working in international collaboration for Antarctic research. Episodic GPS (and later GNSS) measurements of all contributing nations enter the "Database of the SCAR Epoch Crustal Movement Campaigns" which is being maintained at the institute in the framework of SCAR-GIANT. GNSS measurements form a basis for the realization of the International Terrestrial Reference Frame (ITRF) and its densification in Antarctica. Linked to respective products of an ongoing activity to re-process GNSS data of globally distributed stations a consistent and precise TRF realization can be reached. We will give an overview on the latest developments and the subsequent applications for geodynamic and glaciological investigations in Antarctica. Complementary to continuous GNSS observations episodic GNSS measurements have the potential to provide independent data on vertical deformations, which can be used to investigate the present-day ice-mass balance and to refine models of the glacial-isostatic adjustment. Repeated and properly referenced GNSS measurements at the ice surface yield ice-flow velocities and local ice-surface height changes. We will present latest results, e.g. for the Amundsen Sea sector, the subglacial Lake Vostok region and near-coastal regions of Dronning Maud Land or Enderby Land. Thus, it will be discussed how geodetic GNSS measurements form an important and indispensable basis for geodetic Earth system research with the focus on Antarctica.

  5. A new borehole wire extensometer with high accuracy and stability for observation of local geodynamic processes.

    PubMed

    Mentes, Gy

    2012-01-01

    Very stable and reliable instruments with high accuracy are required in field measurements for continuous monitoring local geodynamic processes, such as tectonic movements, ground motions in landslide prone areas, etc. A sensitive borehole wire extensometer with low energy consumption was developed in the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences to observe very small vertical movements (in the order of a few millimeters) of the upper layer of the soil due to hydrological, meteorological and biological processes. The newly developed instrument eliminates the disadvantages of the borehole wire extensometers which are presently used. Its sensitivity and stability are much higher than these parameters of the previous instruments. The instrument is able to measure distance variations without instrumental drift in a range of 0-4 mm with a resolution of better than 1 μm. Since the effect of the yearly temperature variations can be easily removed from the extensometric data record, the compensation for the short-periodic (daily) thermal effects on the instrument was of high priority during the design of the instrument. This paper describes the construction and calibration of the extensometer. The extensometer was installed for monitoring vertical ground movements due to hydro-meteorological processes on the high loess wall of the Danube River at Dunaföldvár, Hungary. The efficiency of the temperature compensation of the instrument was investigated in detail on the basis of the measured data series. PMID:22299988

  6. Solution of geodynamical Problems from the Point of View of Synergeric

    NASA Astrophysics Data System (ADS)

    Hachay, Olga

    2015-04-01

    It is considered the relation of solution geodynamic problems by geosynergetical approach. A new algorithm of seismological information processing of detailed mines catalogue with use kinematic and dynamical characteristics of deformation waves, which propagate with different velocities in the rock massif under heavy influence of single blasts and technological explosions had been developed. It is estimated that the waves, which propagate with the velocities from 10 to 1 m/hour are primary carrier of the energy in the massif and promote its releasing. Events, which occur in the massive with these waves with releasing energy less than 104 joules promote to the creep rebuilding of the massif. Events, which occur in the massive with these waves with releasing energy more, than 105 joules, can be used as rock burst precursory and it is recommend taking into account by changing of explosions in the indicated part of the massif. The whole absence of such events indicates the growing of the stress massif state in the mine as a whole. The received joined information from the seismic catalogue is very significant for forecasting of dangerous events in the rock mines. It is developed an algorithm for scenario of rock shocks treatment in the rock massif. It can be used for analyze massif natural state on seismological polygons. References 1. Hachay O.A. Geosynergetic: theory, method, experiment. Complex analyze of electromagnetic and other geophysical data. M.: KRASAND, 2011.

  7. Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Komut, Tolga; Gray, Robert; Pysklywec, Russell; Göǧüş, OǧUz H.

    2012-11-01

    The Western Anatolian and Aegean region demonstrates a complex geologic history of horizontal and vertical tectonics. Active normal faulting and exhumation zones indicate that Western Anatolia has experienced significant extension since the Oligocene-Early Miocene (˜30 Ma). Our geophysical analyses demonstrate that the region is also uplifted relative to an elevation that would be expected given an isostatic response to the lithosphere structure. Namely, topography "residuals" indicate a residual uplift of about 1500 m over ˜200 km sections of Western Anatolia and the Aegean. Admittance functions between free-air gravity and topography indicate that the regional topography is isostatically uncompensated and as it approaches ˜50 mGal/km at the longest wavelengths, the uncompensated topography is likely owing to an underlying mantle flow component. Using forward geodynamic modelling we consider an idealized section of Western Anatolian lithosphere based on tomographic inversions and examine the magnitude and pattern of surface topography to reconcile with the geophysical observables. The models consistently show a plateau-type uplift (and horizontal extension) through Western Anatolia with an amplitude and wavelength consistent with the residual topography calculations. Together, the geophysical analyses and modelling provide independent quantitative evidence that the thin Anatolian-Aegean lithosphere is being buoyed upwards by underlying mantle flow. The mantle flow may be associated with active lithosphere delamination beneath the region; a process that would also explain the ongoing crustal extension.

  8. Global adjustment of geodetic and geodynamical parameters in the VLBI software VieVS

    NASA Astrophysics Data System (ADS)

    Spicakova, Hana; Boehm, Johannes; Nilsson, Tobias; Plank, Lucia; Teke, Kamil; Schuh, Harald

    2010-05-01

    The VLBI group at the Institute of Geodesy and Geophysics (TU Wien) has developed and released the first version of a new geodetic VLBI data analysis software called VieVS (Vienna VLBI Software). The software allows analysing the VLBI data with highly sophisticated computational approaches and it is arranged in a easy to handle user-friendly structure (see poster "Vienna VLBI Software VieVS - Version 1 released" by Plank et al.). One of the next upgrades is the implementation of a new module for parameter estimation by a so-called global adjustment, where the connection of the single sessions is done by stacking of the normal equations. The time varying parameters (such as Earth orientation or troposphere parameters) are always modelled by piecewise linear offsets at integer fractions of integer hours which simplifies the connection to the next session and easily allows combination in the sense of GGOS. We focus on the determination of time independent geodynamical parameters like the parameters of the solid Earth tides: Love and Shida numbers. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, VieVS allows to determine frequency dependent values in the diurnal band together with the Free Core Nutation period. In this poster we show first results obtained from the 24-hour IVS R1 and R4 sessions covering 7 years.

  9. Geodynamic movements and deformations of the Sudetic structural unit of the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Schenk, V.; Jechumtlov, Z.; Schenkov, Z.; Kottnauer, P.

    2003-04-01

    The African plate pushes to European orogenic Alpine structures that transfer the compression further to Variscan structural units, including the Bohemian Massif. Central parts of the Bohemian Massif are relatively deep-seated and, therefore, some of marginal parts of the Massif and its border geological structures should be affected intensively and moved distinctly with respect to the central parts. The geodynamical GPS network EAST SUDETEN is located just over the area mentioned above, i.e. it covers both kinetically quasi-effected and quasi-non-effected structural blocks. GPS data observed already for six annual campaigns (1997-2002) were processed and movement vectors of individual network sites were assessed. Applied data processing did not allow errors in the horizontal direction 2 mm and in the vertical direction 5-6 mm to be exceeded. Since time series of coordinate changes for several network sites gave rather pronounce movement trends, preliminary deformations among individual structural blocks were evaluated and compared to other geological, geophysical and geodetic materials. The investigation has been supported by the Grant Agency of the Czech Republic, projects 205/97/0679 and 205/01/0480, and by the research programme of the Ministry of Education, Youth and Sport of the Czech Republic, project LN00A005 "Dynamics of the Earth".

  10. Surveying with the A10-20 Absolute Gravimeter for Geodesy and Geodynamics - first results

    NASA Astrophysics Data System (ADS)

    Krynski, Jan; Sekowski, Marcin

    2010-05-01

    The A10 is the first outdoor absolute gravimeter that allows for the determination of gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-20 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory in September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate high quality of gravity determination with the A10 under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also its usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure including laser and frequency standard are discussed.

  11. Application of the pseudorelief method for the territory of the Bishkek geodynamic polygon

    NASA Astrophysics Data System (ADS)

    Batalev, V. Yu.

    2013-02-01

    Based on 143 magnetotelluric soundings, the Berdichevskii impedance, the Wiese—Parkinson matrix, and the phase tensor component are calculated for the Bishkek geodynamic polygon 50 × 150 km in size. The pseudoreliefs of the apparent resistance Ro brd , phase Fi brd , Wiese-Parkinson matrix norm, and apparent phase Fi k calculated from the phase tensor are constructed. An area of the crustal conductor with elevated conductivity located below the northern part of the Chui depression is distinguished during analysis of pseudoreliefs. Its characteristics will be used for solution of the 3D direct task and creation of the starting model of 2D inversion. The reliability of anomalous objects and estimation of their size during the use of real data is caused by the fact that the anomalies are displayed by different parts of the observation system for the various parameters of the MT-field: the phases vary directly over the anomalous object, and magnetovariational parameters form the rim around it. This allows us more completely and effectively to use the network of real data.

  12. Geodynamic implications for the formation of the Betic-Rif orogen from magnetotelluric studies

    NASA Astrophysics Data System (ADS)

    Martí, A.; Queralt, P.; Roca, E.; Ledo, J.; Galindo-ZaldíVar, J.

    2009-01-01

    Magnetotelluric data from the central Betics mountains (Spain) have been used to determine the electrical resistivity of the crust after a three-dimensional (3D) interpretive approach. At shallow levels (<2 km), the resulting model shows good correlation between the geoelectric structures and the geologic units. At greater depths (>3 km), the most striking and well-resolved feature of the model is an upper-middle crust conductive body, located at the core of the Internal Betics antiform. This approximately 14-km-thick body is interpreted as basic or ultrabasic rocks containing a conducting mineral phase. Its structural location above the sole thrust of the Betic orogen and beneath the Nevado-Filábride complex confirms the presence of a major suture zone between this complex and the autochthonous Iberian plate. This suture may correspond to an ancient oceanic or transitional domain developed between Iberia and the Alboran Domain during the opening of the Tethys Ocean, partially subducted and closed during the development of the Betic orogen. The possible geodynamic scenarios for the Betics have been reconsidered, taking into account this new constraint.

  13. Tracing the origin of Geodynamics: The Alfred Wegener Memorial Expedition 2014

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt

    2015-04-01

    2012 marked the 100st anniversary of the seminal publications on Continental Drift Theory by Alfred Wegener. These publications (and Wegener's book "On the origin of the continents", published three years later) are widely accepted to be the fundamental breakthrough that opened the path to the Theory of Plate Tectoncis and ultimately the path to modern Geodynamics some 50 years later. In the same historic year of the 1912 publications, Alfred Wegener set off for what was to become the most dramatic of his three Greenland expeditions. On this expedition Wegener and Koch crossed the entire northern icecap of Greenland. In honour of the hundreds anniversary of Wegener's publications, the Austrian Academy of Sciences funded an expedition to trace the footsteps of the 1912 expedition in the spirit of Alfred Wegener, while also conducting modern Earth Science. This expedition that was conducted in summer 2014. For the expedition, a 1952 Cessna180 was acquired in Alaska, adapted with bush wheels, wing extensions and extra tanks and was flown by the author and one of the worlds most renown bush pilots from Alaska in a 10 day effort to Greenland. There, the entire NE Greenland Caledonides were covered and photographed. Field work for a masters projects was conducted and samples were collected from a series of some of the most remote locations in the Caledonides ever visited. Most spectacularly, the original sled of Wegeners 1912 expedition was found some 30 kilometers from its expected location in the Dove Bugt Region of northeastern Greenland.

  14. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran)

    NASA Astrophysics Data System (ADS)

    Nasrabady, M.; Rossetti, F.; Theye, T.; Vignaroli, G.

    2011-11-01

    The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry, and the pressure-temperature path of the Early Cretaceous mafic granulites that occur within the Tertiary Sabzevar ophiolitic suture zone of NE Iran. Whole rock geochemistry indicates that the Sabzevar granulites are likely derived from a MORB-type precursor. They are thus considered as remnants of a dismembered dynamo-thermal sole formed during subduction of a back-arc basin (proto-Sabzevar Ocean) formed in the upper-plate of the Neotethyan slab. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop compatible with burial in a hot subduction zone, followed by cooling during exhumation. Transition from a nascent to a mature stage of oceanic subduction is the geodynamic scenario proposed to accomplish for the reconstructed thermobaric evolution. When framed with the regional scenario, results of this study point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing disparity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected to emerge with further investigations.

  15. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics

    NASA Astrophysics Data System (ADS)

    Davies, D. Rhodri; Wilson, Cian R.; Kramer, Stephan C.

    2011-06-01

    We present a new computational modeling framework, Fluidity, for application to a range of two- and three-dimensional geodynamic problems, with the focus here on mantle convection. The approach centers upon a finite element discretization on unstructured simplex meshes, which represent complex geometries in a straightforward manner. Throughout a simulation, the mesh is dynamically adapted to optimize the representation of evolving solution structures. The adaptive algorithm makes use of anisotropic measures of solution complexity, to vary resolution and allow long, thin elements to align with features such as boundary layers. The modeling framework presented differs from the majority of current mantle convection codes, which are typically based upon fixed structured grids. This necessitates a thorough and detailed validation, which is a focus of this paper. Benchmark comparisons are undertaken with a range of two- and three-dimensional, isoviscous and variable viscosity cases. In addition, model predictions are compared to experimental results. Such comparisons highlight not only the robustness and accuracy of Fluidity but also the advantages of anisotropic adaptive unstructured meshes, significantly reducing computational requirements when compared to a fixed mesh simulation.

  16. A New Set of Focal Mechanisms and a Geodynamic Model for the Eastern Tennessee Seismic Zone

    NASA Astrophysics Data System (ADS)

    Cooley, M. T.; Powell, C. A.; Choi, E.

    2014-12-01

    We present a new set of 26 focal mechanisms for the eastern Tennessee seismic zone (ETSZ) and discuss the implications for regional uplift. The mechanisms are for earthquakes with magnitudes 2.5 and greater occurring after 1999. The ETSZ is the second largest seismic zone in the central and eastern US and the seismicity is attributed to reactivation of a major Grenville-age shear zone. P- and S- wave velocity models, the distribution of hypocenters, focal mechanisms, and potential field anomalies suggest the presence of a basement shear zone. The new focal mechanism solutions supplement and are consistent with a previously calculated set of 26 focal mechanisms for the period 1983-1993. Focal mechanisms fall into two groups. The first group shows strike-slip motion on steeply dipping nodal planes striking N-S/E-W and NE-SW/NW-SE. Mechanisms in the second group display primarily dip-slip motion and are constrained geographically to the southern portion of the seismic zone. Events in the second group are among the shallowest in the dataset (8-12 km). We are developing a geodynamic model of the regional structure to examine the stress regime, which may be changing with depth. This model will be used to determine a possible relationship between the localized normal faulting and previously established recent regional uplift.

  17. Large-scale changes of the atmosphere (climate), geodynamics and biosphere due to the galactic shocks

    NASA Astrophysics Data System (ADS)

    Khristoforova, D.

    2009-04-01

    The Solar system periodically passes through spiral arms of the Galaxy, which are stellar density waves. Processes due to the presence of galactic shocks (shock waves) may be responsible for the abrupt atmosphere changes (climate), geodynamics (supercontinental cycle, large tectonic processes, mantle convection, geomagnetic field and others) and biosphere. Galactic shocks (GS) are the narrow region of high gas compression along the inner edge of spiral wave. Shock wave leads to the interstellar dust compression and to the phase transition in the interstellar gas. GS are large-scale trigger mechanism of active star formation. GS ultimately changes temperature, pressure and the radiation balance. It is quite surprisingly that majority of the "data points" of the geochronological and stratigraphic scales are closely related to the time moments when the Solar system has passed through the galactic shocks. This extraterrestrial cause for the change of physical and chemical conditions on the Earth had profound effects on the biologic extinction and explosions. This hypothesis explains the biologic explosion in Cambrian, the Permian - Triassic and Cretaceous-Tertiary extinctions, i.e., the beginning of Paleozoic, Mesozoic and Cenozoic. It is valid in the frame of galactic shock model that any discussion time estimates of these past events and their implications for the future must be quantitative. It will permit an evaluation of age of greater catastrophes and changes in the Earth history, of the future meets with the spiral arms of the Galaxy. It predicts the existence of chronological scales of other planets.

  18. A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces

    NASA Astrophysics Data System (ADS)

    Steinberger, Bernhard; Torsvik, Trond H.

    2012-01-01

    We present geodynamic models featuring mantle plumes that are almost exclusively created at the margins of large thermo-chemical piles in the lowermost mantle. The models are based on subduction locations and fluxes inferred from global plate reconstructions and ocean floor paleo-ages. Sinking subducted slabs not only push a heavy chemical layer ahead, such that dome-shaped structures form, but also push the thermal boundary layer (TBL) toward the chemical domes. At the steep edges it is forced upwards and begins to rise — in the lower part of the mantle as sheets, which then split into individual plumes higher in the mantle. The models explain why Large Igneous Provinces - commonly assumed to be caused by plumes forming in the TBL above the core-mantle boundary (CMB)- and kimberlites during the last few hundred Myr erupted mostly above the margins of the African and Pacific Large Low Shear Velocity Provinces (LLSVPs) of the lowermost mantle, which are probably chemically distinct from and heavier than the overlying mantle. Our models support that mantle plumes are more intimately linked to plate tectonics than commonly believed. Not only can plumes cause continental break-up, but conversely subducted plates may trigger plumes at the margins of LLSVPs near the CMB.

  19. The solution of fundamental problems of geodynamics, geophysics, geology and planetology

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    On the base of geodynamic model of the forced gravitational swing and displacement of shells of a planet under action of a gravitational attraction of surrounding (external) celestial bodies [1], [2] the fundamental problems of geodynamics, geology, planetology, geophysics, etc. have been studied and solved. 1). The mechanism of cyclic variations of activity of natural processes in various time scales. 2). The nature of eccentric positions of the core and the mantle of the Earth. A role of the Moon, the Sun, Neptune and other celestial bodies in activization of the swing of core-mantle system of the Earth. 3). Power of endogenous activity of planetary natural processes on planets and satellites. 4). The nature of correlations of natural processes with features of motion of baricenter of the solar system. 5). An explanation of influence of bodies of solar system on excitation of variations of planetary processes with Milankovitch's periods (in tens and hundred thousand years). 6). A possible explanation of geological cycles as result of excitation of solar system at its motion in a gravitational field of the Galaxy. 7). The phenomenon of polar inversion of natural processes on the Earth, both other planets and satellites. 8). Spasmodic (step-by-step) and catastrophic changes of activity of natural processes. 9). Sawtooth (gear curve) variations of natural processes. 10). The phenomenon of twisting of hemispheres (latitude zones) of celestial bodies. 11). Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 10). Ordered planetary structures in spatial distribution of geological formations. 12). The phenomena of bipolarity of celestial bodies and antipodality of formations. Many fundamental problems of natural sciences have been obtained an explanation on the basis of developed geodynamic model (Barkin, 2002, 2009). The fundamental problems of celestial mechanics and geodynamics, geophysics and the geology, excited of scintific community in current of last decades and even centuries have been solved. The fundamental phenomena in rotation of the Earth: secular drift of a pole of its axis of rotation and non-tidal acceleration of axial rotation of a planet have received an explanation. Observable secular variations of a gravity, variations of a geopotential coefficients, secular drift of the center of mass of the Earth, secular changes of a global level of ocean and change of average levels of ocean in northern and southern hemispheres of the Earth, secular geodetic changes of the Earth in present period have been explained, etc. It is shown, that there is a uniform mechanism for many bodies of solar system of excitation of natural processes in their polar areas. In particular it is shown, that polar regions of many celestial bodies, including their soil layers, are sated by fluids. The last position obtains the precise confirmation in researches of subsoil waters and a water ice on Mars, the Moon, Mercury, etc. bodies of solar system. A wide number of the natural phenomena has been predicted by the author and these predictions have already obtained and obtain confirmations and an explanations in the data of modern observations and space missions. An existence of the seas in polar regions of the Titan, concentration of water ice in polar regions of Mercury, the Moon, Mars and other bodies of solar system has been predicted. The conclusion about fluid consentrations at polar regions of celestial bodies is extremely important for revealing of carbon deposits on the Earth, first of all in regions of Arctic and Antarctic. Work is partially supported by RFBR grants: N 08-02-00367, N-09-02-92113-JF. References 1. Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, M., VINITI, pp. 45-97. In Russian. 2. Barkin Yu.V. (2009) Moons and planets: mechanism of their life. Proceedings of International Conference 'Astronomy and World Heritage: across Time and Continents' (Kazan, 19-24 August 2009). KSU, 2009. pp. 142-161.

  20. Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton

    NASA Astrophysics Data System (ADS)

    Mints, M. V.

    2014-11-01

    The Neoarchean and Paleoproterozoic granulite-gneiss complexes of the northern East European Craton, including their tectonic setting, accompanying igneous and sedimentary rocks, character of metamorphism and deep structure are considered in this paper. A similar approach was applied to the description and interpretation of the granulite-gneiss complexes of the Grenville-Sveconorwegian Orogen localized in the present-day structure of the European and North American continents. One of the most important results of this study is the recognition of a new type of tectonic structures called intracontinental oval orogens. These orogens were formed in the inner domain of the Neoarchean-Proterozoic supercontinent (2.8-0.85 Ga), which is called Lauroscandia. The extensional setting, which was initiated by a series of mantle plumes, locally passing to spreading but did not lead to the eventual breakup of the supercontinent and was followed by intracontinental collisional compression accompanied by closure of short-lived local oceans, subduction, and obduction. The Neoarchean and Proterozoic granulite-gneiss belts and areas of the East European Craton are components of the Karelian-Belomorian, Kola, Volgo-Uralia, Lauro-Russian, and Grenville-Sveconorwegian intracontinental oval orogens formed in the inner domain of Lauroscandia as a result of mantle-plume and plate-tectonic processes initiated by mantle superplumes. The geodynamic settings and tectonic processes in the Neoarchean-Proterozoic supercontinent differed markedly from both the Archean tectonics of miniplates and the Phanerozoic plate tectonics.

  1. GNSS strain rate patterns and their application to investigate geodynamical credibility of the GNSS velocities

    NASA Astrophysics Data System (ADS)

    Araszkiewicz, Andrzej; Figurski, Mariusz

    2015-04-01

    The potential that lies in the use of GNSS measurements for crustal deformation studies have already noticed in the beginning of the first of such a system (GPS). Today thanks to the development of satellite positioning techniques it is possible to detect displacement on the Earth surface with an accuracy less than 1 cm. With long-term observations we can determine the velocities even more accurately. Growing demand in the last years for GNSS applications, both for scientific and civil use, meant that new networks of the reference stations were created. Such a dense GNSS networks allow to conduct research in the field of crust deformation at a higher spatial resolution than before. In Europe most of the research focuses on Mediterranean regions, where we can monitor events resulting from the tectonic plates collision. But even in Central Europe we can see effect of Africa push. In our research we focused on Polish territory, where in the past 5 years a nearly 300 reference stations were established. With minimal movements that have been observed in Poland, a key issue in this type of research is to determine the geodynamic reliability of the estimated stations velocities. While the long-term observations enable us to determine the very accurate velocities, it hard to indicate how reliably they reflect actual tectonic movements is. In this paper we proposed a method for testing the reliability of stations velocities based on the strain rate field analysis. The method is based on the analysis of the distribution of the rate of deformation tensor components obtained for triangular elements built on the basis of assessed station. The paper presents the results of numerical simulations and initial use of the method for the Polish network of reference stations: ASG-EUPOS

  2. Regional geodynamic implications of the May July 1990 earthquake sequence in southern Sudan

    NASA Astrophysics Data System (ADS)

    Gaulon, R.; Chorowicz, J.; Vidal, G.; Romanowicz, B.; Rouit, G.

    1992-08-01

    Several large earthquakes occurred in the south of the Sudan in May and July 1990. The focal mechanism solution of the main shock (May 20, 1990), one of the largest events in Africa ever recorded, shows left-lateral strike-slip faulting. One of the nodal planes is parallel to the Aswa fault zone, a major Proterozoic tectonic feature. A line connecting the epicenters of the main events of May and July also strikes in the same direction. Field observations and satellite imagery also indicate left-lateral horizontal reactivation movement along this large structural feature during Cenozoic times. The fault plane solutions of the Harvard Centroid Moment Tensor catalog for earthquakes between 1977 and 1989 in the East African Rift System show extensional horizontal slip component striking about northwest-southeast. All these facts lead the interpretation of this wide, diffuse fault zone as an active intracontinental transform area linking the two main branches of the rift system. If one considers this displacement and the slip directions obtained from the centroid moment tensors solutions as characterizing the motion between the Nubian and Somalian plates, new constraints on the regional geodynamics can be inferred; the Somalian block appears to be moving southeastwards relative to the African block. The rupture occurred in at least three steps, affecting a zone roughly 50 km long. The large aftershocks of 24th May have significantly different fault plane solutions, indicating the complexity of the rupture process. Nevertheless, the tension axes of the main aftershocks always strike N-S. Thus there is an exchange of the intermediate and pressure axes for the aftershocks on May 24 relative to the main shock.

  3. Geodynamics of synconvergent extension and tectonic mode switching: Constraints from the Sevier-Laramide orogen

    NASA Astrophysics Data System (ADS)

    Wells, Michael L.; Hoisch, Thomas D.; Cruz-Uribe, Alicia M.; Vervoort, Jeffrey D.

    2012-02-01

    Many orogenic belts experience alternations in shortening and extension (tectonic mode switches) during continuous plate convergence. The geodynamics of such alternations are not well understood. We present a record of Late Cretaceous to Eocene alternations of shortening and extension from the interior of the retroarc Sevier-Laramide orogen of the western United States. We integrate new Lu-Hf garnet geochronometry with revised PT paths utilizing differential thermobarometry combined with isochemical G-minimization plots, and monazite Th-Pb inclusion geochronometry to produce a well-constrained "M" shaped PTt path. Two burial events (86 and 65 Ma) are separated by ˜3 kbar of decompression. The first burial episode is Late Cretaceous, records a 2 kbar pressure increase at ˜515-550 °C and is dated by a Lu-Hf garnet isochron age of 85.5 ± 1.9 Ma (2σ); the second burial episode records ˜1 kbar of pressure increase at ˜585-615 °C, and is dated by radially decreasing Th-Pb ages of monazite inclusions in garnet between ˜65 and 45 Ma. We propose a synconvergent lithospheric delamination cycle, superimposed on a dynamic orogenic wedge, as a viable mechanism. Wedge tapers may evolve from critical to subcritical (amplification), to supercritical (separation), and back to subcritical (re-equilibration) owing to elevation changes resulting from isostatic adjustments during the amplification and separation of Rayleigh-Taylor instabilities, and post-separation thermal and rheological re-equilibration. For the Sevier-Laramide hinterland, the sequence of Late Cretaceous delamination, low-angle subduction, and slab rollback/foundering during continued plate convergence explains the burial-exhumation-burial-exhumation record and the "M-shaped" PTt path.

  4. Strike-slip faults on Mars: Observations and implications for global tectonics and geodynamics

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, Jeffrey C.; Zuber, Maria T.; Hauck, Steven A.

    2008-08-01

    The tectonic evolution of Mars has been driven primarily by the interaction of Tharsis-induced loading stresses with a uniform contractional stress field, leading to global assemblages of graben and wrinkle ridges. Until recently, strike-slip faults have appeared to be largely absent from the tectonic record. We here present evidence for a new set of Noachian to Early Hesperian strike-slip faults southwest of Tharsis. The best-preserved fault in the newly mapped set has a length of ~200 km and measured lateral offset of 5-9 km. We use the locations of both previously mapped and newly identified strike-slip faults to investigate the tectonic and geodynamic evolution of Mars. We model the tectonic evolution of the planet in response to the evolving balance between the loading and contractional stresses, finding widespread regions in which strike-slip faulting was favored. The observed tectonic history is consistent with a scenario in which loading-induced stresses peaked early in Mars history, followed by the growth of contractional stresses, leading to a shift in the preferred locus of strike-slip faulting from regions southwest of Tharsis in the Noachian to Early Hesperian, to northwest of Tharsis in the Early Amazonian. The contractional strain history inferred from the ages and locations of the strike-slip faults is consistent with the strains calculated from models of the thermal evolution of Mars in which the gradual secular cooling of the planet over time was augmented by plume-induced contraction during Tharsis formation in the Noachian.

  5. Seismicity and geodynamics in the central part of the Vanuatu Arc

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2013-12-01

    The Vanuatu Arc (VA) in the southwest Pacific ocean (167°E, 13-20°S), is highly seismically active, with more than 35 events of magnitude Mw ≥ 7 since 1973 (USGS catalog). The geodynamics are dominated by the east-dipping subduction of the Australian Plate under the North Fiji Basin microplate. Convergence rates are estimated to be between 130 and 170 mm/yr, except in the central part of the VA where convergence slows to 30-40 mm/yr. This slowing appears to be the result of blockage by the subducting d'Entrecastaux ridge. To quantify the tectonics of this blocked section, we deployed 30 seismometers in 2008-2009 and 8 GPS stations since 2008, in the forearc region of the central VA. The seismometers recorded more than 100 events/day. Detailed analysis of the earthquake catalog reveals: 1) a seismic gap between 40 and 60 km deep under the two largest islands of the VA (Santo and Malekula); 2) subduction plane and intraplate faulting within the down-going plate; and 3) reduced activity beneath Malekula island , perhaps indicating a locked patch on the subduction plane. We infer the geometry of the subduction interface by combining our catalog with unpublished data from the 2000 Santo Mw 6.9 earthquake and aftershocks and the USGS and Global CMT catalogs. The subduction interface appears to be composed of two different panels: a shallow one with a small dip angle and a deeper one with higher dip starting at a depth of ~50 km. We compare finite-element modeling of these panels to the geodetic data to test the connectedness of the two panels and their degree of locking.

  6. Continuously closing plates: A new Paleogeographic concept and application to geodynamic models

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Turner, M.; Spasojevic, S.; Bower, D.; Liu, L.; Manea, V.; Muller, R. D.; Boyden, J.; Sdrolias, M.; Dicaprio, L.

    2007-12-01

    Global plate tectonic reconstructions are inadequate for geodynamics, either as information to be assimilated into a model or as the basis to map a prediction into the geological record. Published reconstructions are often crudely spaced in time, have large swaths of the surface ambiguously defined, and/or have plate margin evolution inconsistent with plate motions. We have overcome these limitations with the formulation and implementation of a new method to represent plate tectonic reconstructions. Referred to as either "continuously closing" or "dynamically closing" plate polygons, the new method has been implemented using the new plate tectonic modeling package GPlates, global reconstruction have been developed with the method, and then reconstructions have been assimilated into forward and adjoint mantle convection models. Essentially, a plate is defined as a polygon that is made up of a finite set of plate boundaries. Each plate boundary is associated with its own set of finite rotations in an absolute reference system. These plate boundaries are continuously rotated and an algorithm finds the intersection of adjacent plate boundaries. Two adjacent plates always share a boundary. Using this method in GPlates, we have developed several global plate reconstructions from 140 Ma to the present. Since plate closure is continuous in time, reconstructions can exist at any granularity of time. Our present model has been output at 1 Myr time intervals. Subduction zones and their polarity are continuously tracked. The present plate reconstructions are self-consistent with a set of oceanic paleo age grids. We will illustrate the use of the new reconstructions in several applications drawn from our recent work: (1) regional subduction models; (2) global models of thermo-chemical convection in the lower mantle; (3) inverse and adjoint models of the descent of the Farallon slab; and (4) instantaneous models of global plate motions.

  7. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation

    NASA Astrophysics Data System (ADS)

    Hu, Jiashun; Liu, Lijun; Hermosillo, Armando; Zhou, Quan

    2016-03-01

    The formation mechanisms of flat slabs in South America remain unclear. To quantitatively evaluate the earlier proposed mechanisms, we simulate the post-100 Ma subduction history below South America using 4-D geodynamic models by progressively incorporating plate kinematics, seafloor ages and key tectonic features including the buoyant oceanic crust, continental cratons, oceanic plateaus (i.e. the inferred Inca plateau, subducting Nazca Ridge and Juan Fernandez Ridge), as well as deformable trench profiles according to recent geological reconstructions. We find that, in the absence of an overriding plate and subducting buoyancy features, the seafloor age affects slab dip angle by controlling the slab's mechanical strength (i.e., the resistance to bending) and negative buoyancy (integrated positive density anomaly that enhances bending). Our models show that slab strength dominates its buoyancy at age >30 Ma and the opposite for younger ages. The existence of a thick overriding plate reduces the slab dip by increasing dynamic suction, and individual cratonic roots further lead to along-trench variations of dip angle reduction. While dynamic suction from the overriding plate generates a permanent reduction of the long-wavelength slab dip angle, it is the final addition of subducting oceanic plateau and aseismic ridges that produces the transient and localized flat-slabs as observed. These results suggest that all mechanisms except the buoyancy features affect the slab dip only at large spatial scales. Our best-fit model with all the above tectonic features included provides a good match to both the upper mantle Benioff zones and the temporal evolution of volcanic arcs since the mid-Miocene. The imperfect match of the Peruvian flat-slab is likely associated with the uncertain 3-D configuration of the Amazonian craton.

  8. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes

    NASA Astrophysics Data System (ADS)

    BräUer, Karin; KäMpf, Horst; Niedermann, Samuel; Strauch, Gerhard; Tesař, JiřI.

    2008-04-01

    Comprehensive studies of CO2-rich fluids close to the swarm earthquake region Nový Kostel at the Czech-German border have been started 15 years ago and have in particular included two extended chemical and isotope monitoring studies lasting for several years each. The regional surface distribution patterns of the fluid signatures including the identification of the origin of fluid components are the focus of the detailed studies. Three degassing centers (Cheb basin, Mariánské Lázně, and Karlovy Vary) with high CO2 flux and the same level of δ13C values, but different levels of 3He/4He ratios, have been identified. The studies have located the CO2 source and have investigated seismically induced changes in fluid characteristics on the basis of unique weekly sampling campaigns at selected locations. A seismically triggered release of crustal helium was confirmed by both monitoring campaigns. Finally, indications for a presently active magmatic process beneath the Cheb basin have been found. In contrast to volcanically active regions, magma accumulation in the study area takes place at the crust-mantle boundary and is not yet accompanied by heat transfer to the surface. Likewise, reactive magma-derived components are absent in the degassing fluids. The area of investigation has the potential to be a natural laboratory for fundamental studies of active geodynamic processes. The results of our fluid monitoring, including the stunning observation of mantle-derived free fluids marked by 3He/4He ratios within the subcontinental mantle range, are supported by geophysical findings from seismic studies and geologic indications.

  9. Geodynamic background of the 2008 Wenchuan earthquake based on 3D visco-elastic numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhu, Bojing; Yang, Xiaolin; Shi, Yaolin

    2016-03-01

    The 2008 Wenchuan earthquake (Mw7.9) occurred in the Longmen Shan fault zone. The stress change and crustal deformation during the accumulation period is computed using 3D finite element modelling assuming visco-elastic rheology. Our results support that the eastward movement of the Tibetan Plateau resulting from the India-Eurasia collision is obstructed at the Longmen Shan fault zone by the strong Yangtze craton. In response, the Tibetan ductile crust thickens and accumulates at the contact between the Tibetan Plateau and the Sichuan Basin. This process implies a strong uplift with the rate of about 1.8 mm/a of the upper crust and induces a stress concentration nearly at the bottom of the Longmen Shan fault zone. We believe that the stress concentration in the Longmen Shan fault zone provides a very important geodynamic background of the 2008 Wenchuan earthquake. Using numerical experiments we find that the key factor controlling this stress concentration process is the large viscosity contrast in the middle and lower crusts between the Tibetan Plateau and the Sichuan Basin. The results show that large viscosity contrast in the middle and lower crusts accelerates the stress concentration in the Longmen Shan fault zone. Fast moving lower crustal flow accelerates this stress accumulation process. During the inter-seismic period, spatially the maximum stress accumulation rate of the eastern margin of the Tibetan Plateau is located nearly at the bottom of the brittle upper crust of the Longmen Shan fault zone. The spatial distribution of the stress accumulation along the strike of the Longmen Shan fault zone is as follows: the normal stress decreases while the shear stress increases from southwest to northeast along the Longmen Shan fault zone. This stress distribution explains the thrust motion in the SW and strike-slip motion in the NE during the 2008 Wenchuan earthquake.

  10. Project MANTIS: A MANTle Induction Simulator for coupling geodynamic and electromagnetic modeling

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.

    2009-12-01

    A key component to testing geodynamic hypotheses resulting from the 3D mantle convection simulations is the ability to easily translate the predicted physiochemical state to the model space relevant for an independent geophysical observation, such as earth's seismic, geodetic or electromagnetic response. In this contribution a new parallel code for simulating low-frequency, global-scale electromagnetic induction phenomena is introduced that has the same Earth discretization as the popular CitcomS mantle convection code. Hence, projection of the CitcomS model into the model space of electrical conductivity is greatly simplified, and focuses solely on the node-to-node, physics-based relationship between these Earth parameters without the need for "upscaling", "downscaling", averaging or harmonizing with some other model basis such as spherical harmonics. Preliminary performance tests of the MANTIS code on shared and distributed memory parallel compute platforms shows favorable scaling (>70% efficiency) for up to 500 processors. As with CitcomS, an OpenDX visualization widget (VISMAN) is also provided for 3D rendering and interactive interrogation of model results. Details of the MANTIS code will be briefly discussed here, focusing on compatibility with CitcomS modeling, as will be preliminary results in which the electromagnetic response of a CitcomS model is evaluated. VISMAN rendering of electrical tomography-derived electrical conductivity model overlain by an a 1x1 deg crustal conductivity map. Grey scale represents the log_10 magnitude of conductivity [S/m]. Arrows are horiztonal components of a hypothetical magnetospheric source field used to electromagnetically excite the conductivity model.

  11. Radiative heat transfer in lithospheric geodynamics: implications for asthenospheric partial melting and basin modelling concepts

    NASA Astrophysics Data System (ADS)

    Vejbæk, Ole Valdemar

    1994-12-01

    In geodynamic models describing basin formation by stretching, the base of the lithosphere is commonly defined by a fixed temperature. An alternative definition is proposed where the base of the lithosphere is determined by the solidus of mantle rocks. Some consequences of this definition are illustrated in a one-dimensional model. The model applies the finite-difference method and approximates the temperature regime in the upper 400 km of the Earth. The model uses temperature-dependent thermal conductivity and includes effects from heat storage by partial melting in the mantle low-velocity layer (MLV). Radiative heat transfer contributes significantly at elevated temperatures giving rise to a steepening of the thermal gradient below the lithosphere. This change in gradient allows the perturbed geotherm to exceed the mantle solidus in a limited depth interval, which accounts for the MLV, and thus defines the base of the lithosphere. In the model, variations in thickness of, and degree of partial melting in the MLV, results from thinning of the overlying lithospheric plate. Thus, the thickness of the MLV is roughly inversely proportional to the thickness of the lithosphere, whereas the base of the MLV is almost flat. Temperature-dependent variations in the carrying capacity of the MLV, where the main isostatic compensation occurs, is proposed as an epeirogenetic agent. This effect may be significant, and is expressed as an enhancement of the initial subsidence if no preexisting MLV is available. A secondary effect occurs as solidification of the MLV ceases a long time (~ 300 Ma) after stretching, and causes slow uplift.

  12. Study of the recent geodynamic processes in the Kopet-Dag region

    NASA Astrophysics Data System (ADS)

    Izyumov, S. F.; Kuzmin, Yu. O.

    2014-11-01

    The time series of the uniquely long geodetic observations of recent geodynamic processes in the Kopet-Dag region are analyzed. The regional observations of contemporary vertical movements cover a 75-year period; the zonal and local systems of leveling measurements, which provide an increased degree of spatiotemporal detail (the distance between the benchmarks is less than 1 km and the measurements are repeated with a frequency of once per month to two times per annum), have been functioning for 50 years. It is shown that during the last 40-50 years, the regional stress field in the forefront of the Main Kopet-Dag thrust and collision zone of the Turanian and Iranian plates is quasi static. The annual average trend rate of strains estimated from a set of the time series of uniquely long geodetic observations is (3-5) × 10-8 yr-1, which is only one to two amplitudes of tidal deformations of the solid Earth. The local deformations in the fault zone reach the rates that are by 1.5-2 orders of magnitude higher than in the block part of the region. It is found that the segments of the Earth's surface within the axial part of the depression experience persistent uplifting, which indicates that they do not follow the scheme of inherited evolution characteristic of the fault-block structures of the region. It is demonstrated that these anomalous uplifts can be caused by the variations in the weak seismicity in the zone of the North Ashgabat Fault.

  13. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    PubMed Central

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2012-01-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on paleomagnetic and 40Ar/39Ar age data. A first phase of basin formation occurred in the late Oligocene. A second phase of basin formation took place between 18 and 13 Ma, concurrent with profound extension in the neighboring Pannonian Basin. Our paleomagnetic results further indicate that the Dinarides have not experienced any significant tectonic rotation since the late Oligocene. This implies that the Dinarides were decoupled from the adjacent Adria and the Tisza–Dacia Mega-Units that both underwent major rotation during the Miocene. The Dinaride orogen must consequently have accommodated significant shortening. This is corroborated by our AMS data that indicate post-Middle Miocene shortening in the frontal zone, wrenching in the central part of the orogen, and compression in the hinterland. A review of paleomagnetic data from the Adria plate, which plays a major role in the evolution of the Dinarides as well as the Alps, constrains rotation since the Early Cretaceous to 48 ± 10° counterclockwise and indicates 20° of this rotation took place since the Miocene. It also shows that Adria behaved as an independent plate from the Late Jurassic to the Eocene. From the Eocene onwards, coupling between Adria and Africa was stronger than between Adria and Europe. Adria continued to behave as an independent plate. The amount of rotation within the Adria-Dinarides collision zone increases with age and proximity of the sampled sediments to undeformed Adria. These results significantly improve our insight in the post-orogenic evolution of the Dinarides and resolve an apparent controversy between structural geological and paleomagnetic rotation estimates for the Dinarides as well as Adria. PMID:27065500

  14. Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey)

    NASA Astrophysics Data System (ADS)

    Hippolyte, J.-C.; Espurt, N.; Kaymakci, N.; Sangu, E.; Müller, C.

    2016-01-01

    Geophysical data allowed the construction of a ~250-km-long lithospheric-scale balanced cross section of the southern Black Sea margin (Espurt et al. in Lithosphere 6:26-34, 2014). In this paper, we combine structural field data, stratigraphic data, and fault kinematics analyses with the 70-km-long onshore part of the section to reconstruct the geodynamic evolution of the Central Pontide orogen. These data reveal new aspects of the structural evolution of the Pontides since the Early Cretaceous. The Central Pontides is a doubly vergent orogenic wedge that results from the inversion of normal faults. Extensional subsidence occurred with an ENE-trend from Aptian to Paleocene. We infer that the Black Sea back-arc basin also opened during this period, which was also the period of subduction of the Tethys Ocean below the Pontides. As in the Western Pontides, the Cretaceous-Paleocene subsidence was interrupted from Latest Albian to Coniacian time by uplift and erosion that was probably related to a block collision and accretion in the subduction zone. The restoration of the section to its pre-shortening state (Paleocene) shows that fault-related subsidence locally reached 3600 m within the forearc basin. Structural inversion occurred from Early Eocene to Mid-Miocene as a result of collision and indentation of the Pontides by the Kırşehir continental block to the south, with 27.5 km (~28 %) shortening along the section studied. The inversion was characterized by NNE-trending shortening that predated the Late Neogene dextral escape of Anatolia along the North Anatolian Fault and the modern stress field characterized by NW-trending compression within the Eocene Boyabat basin.

  15. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints

    NASA Astrophysics Data System (ADS)

    Carminati, Eugenio; Lustrino, Michele; Doglioni, Carlo

    2012-12-01

    We present a geodynamic reconstruction of the Central-Western Mediterranean and neighboring areas during the last 50 Myr, including magmatological and tectonic observations. This area was interested by different styles of evolution and polarity of subduction zones influenced by the fragmented Mesozoic and Early Cenozoic paleogeography between Africa and Eurasia. Both oceanic and continental lithospheric plates were diachronously consumed along plate boundaries. The hinge of subducting slabs converged toward the upper plate in the double-vergent thick-skinned Alps-Betics and Dinarides, characterized by two slowly-subsiding foredeeps. The hinge diverged from the upper plate in the single-vergent thin-skinned Apennines-Maghrebides and Carpathians orogens, characterized by a single fast-subsiding foredeep. The retreating lithosphere deficit was compensated by asthenosphere upwelling and by the opening of several back-arc basins (the Ligurian-Provençal, Valencia Trough, Northern Algerian, Tyrrhenian and Pannonian basins). In our reconstruction, the W-directed Apennines-Maghrebides and Carpathians subductions nucleated along the retro-belt of the Alps and the Dinarides, respectively. The wide chemical composition of the igneous rocks emplaced during this tectonic evolution confirms a strong heterogeneity of the Mediterranean upper mantle and of the subducting plates. In the Apennine-Maghrebide and Carpathian systems the subduction-related igneous activity (mostly medium- to high-K calcalkaline melts) is commonly followed in time by mildly sodic alkaline and tholeiitic melts. The magmatic evolution of the Mediterranean area cannot be easily reconciled with simple magmatological models proposed for the Pacific subductions. This is most probably due to synchronous occurrence of several subduction zones that strongly perturbed the chemical composition of the upper mantle in the Mediterranean region and, above all, to the presence of ancient modifications related to past orogeneses. The classical approach of using the geochemical composition of igneous rocks to infer the coeval tectonic setting characteristics cannot be used in geologically complex systems like the Mediterranean area.

  16. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-André; Spakman, Wim; Bijwaard, Harmen; Engdahl, E. Robert

    2000-10-01

    The cause and geodynamic impact of flat subduction are investigated. First, the 1500 km long Peru flat slab segment is examined. Earthquake hypocenter data image two morphologic highs in the subducting Nazca Plate which correlate with the positions of subducted oceanic plateaus. Travel time tomographic images confirm the three-dimensional slab geometry and suggest a lithospheric tear may bound the NW edge of the flat slab segment, with possible slab detachment occurring down dip as well. Other flat slab regions worldwide are discussed: central Chile, Ecuador, NW Colombia, Costa Rica, Mexico, southern Alaska, SW Japan, and western New Guinea. Flat subduction is shown to be a widespread phenomenon, occuring in 10% of modern convergent margins. In nearly all these cases, as a spatial and temporal correlation is observed between subducting oceanic plateaus and flat subduction, we conclude that flat subduction is caused primarily by (1) the buoyancy of thickened oceanic crust of moderate to young age and (2) a delay in the basalt to eclogite transition due to the cool thermal structure of two overlapping lithospheres. A statistical analysis of seismicity along the entire length of the Andes demonstrates that seismic energy release in the upper plate at a distance of 250-800 km from the trench is on average 3-5 times greater above flat slab segments than for adjacent steep slab segments. We propose this is due to higher interplate coupling and the cold, strong rheology of the overriding lithosphere which thus enables stress and deformation to be transmitted hundreds of kilometers into the heart of the upper plate.

  17. A scalable, parallel matrix-free Stokes solver for geodynamic applications

    NASA Astrophysics Data System (ADS)

    May, D.

    2013-12-01

    Here I describe a numerical method suitable for studying non-linear, large deformation processes in crustal and lithopspheric dynamics. The method utilizes a hybrid spatial discretisation which consists of mixed finite elements for the Stokes flow problem, coupled to a Lagrangian marker based discretisation to represent the material properties (viscosity and density). This approach is akin to the classical Marker-And-Cell (MAC) scheme of Harlow and the subsequently developed Material Point Method (MPM) of Sulsky and co-workers. The geometric flexibility and ease of modelling large deformation processes afforded by such mesh-particle methods has been exploited by the lithospheric dynamics community over the last 20 years. The strength of the Stokes preconditioner fundamentally controls the scientific throughput achievable and represents the largest bottleneck in the development of our understanding of geodynamic processes. The possibility to develop a 'cheap' and efficient preconditioning methodology which is suitable for the mixed Q2-P1 element is explored here. I describe a flexible strategy, which aims to address the Stokes preconditioning issue using an upper block triangular preconditioner, together with a geometric multi-grid preconditioner for the viscous block. The key to the approach is to utilize algorithms and data-structures that exploit current multi-core hardware and avoid the need for excessive global reductions. In order to develop a scalable method, special consideration is given to; the definition of the coarse grid operator, the smoother and the coarse grid solver. The performance characteristics of this hybrid matrix-free / partially assembled multi-level preconditioning strategy is examined. The robustness of the preconditioner with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability is demonstrated.

  18. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  19. Differential Unroofing Across Southeastern Tibet: Geodynamic Links Between Plateau-Scale Tectonics and Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Schmidt, J. L.; Zeitler, P. K.; Tremblay, M. M.; Shuster, D. L.

    2014-12-01

    Detailed documentation of the exhumation history of southeastern Tibet is important for understanding of the coupling of tectonic and geomorphic processes shaping this landscape. We present K-feldspar 40Ar/39Ar multi-diffusion domain model analysis and zircon (U-Th)/He thermochronology along both horizontal and vertical traverses within Gangdese batholith to constrain the spatial and temporal pattern of exhumation in the region. In conjunction with thermokinematic modeling we use these data to interrogate patterns of regional erosion and test mechanical models of plateau evolution such as delamination, lithospheric-scale folding, and rifting. Previously reported zircon and apatite (U-Th)/He data from a vertical transect west of the Nari Yun Chu Rift indicate a prolonged period of exhumation between ~20 Ma and 12 Ma. To the east, K-feldspar modeling of a sample on the Nyang River shows a period of rapid cooling between ~18-15 Ma that is consistent with an extended period of rapid exhumation. However, zircon (U-Th)/He data vary by ~30 Ma across an E-W transect through the region, which indicates that either the period of rapid erosion occurred much earlier in the west than in the east, or erosion was faster in the east, and removed significantly more material. These differences in exhumation between the E and W correlate with a documented increase in the depth of the Moho and general decrease in relief from E to W. These spatial correlations suggest linkages between deep geodynamic processes and the development of mountain topography. Variability in km-scale exhumation despite common mountain summit elevations throughout southeastern Tibet indicates that this region underwent a complex and protracted unroofing history. Additional data and modeling will test whether an erosional front propagated through the region or if pulses of erosion resulted from localized tectonic forcing, such as motion on the Nari Yun Chu Rift.

  20. Grain size evolution in the mantle and its effect on geodynamics and seismic observables

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Dannberg, J.; Eilon, Z.; Gassmoeller, R.; Moulik, P.; Faul, U.; Asimow, P. D.

    2014-12-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth and recrystallisation at phase transitions. Further expressions account for slow growth in multiphase assemblages resulting from pinning. Grain size variations also affect seismic properties of mantle materials. We use several formulations from the literature to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing seismic observables such as body wave travel times, ray paths, and attenuation (t*) as well as mode eigenfrequencies and quality factors at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. This work is based on a project started at the CIDER 2014 summer program. References: Bangerth, W. et al., 2014, ASPECT: Advanced Solver for Problems in Earth's ConvecTion. Computational Infrastructure for Geodynamics, 2014. Stixrude, L. and Lithgow-Bertelloni, C., HeFESTo: Thermodynamics and Elasticity of the Mantle, AGU Fall Meeting 2013.

  1. Late Permian to Late Triassic basin evolution of North Vietnam: geodynamic implications for the South China and Indochina blocks

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise

    2015-04-01

    The core of South East Asia is composed of a mosaic of continental blocks, among which the Indochina and the South China blocks (present day northern Vietnam), amalgamated during the Permian and/or the Triassic. Late Permian to Late Triassic geodynamic evolution of these two blocks remains controversial. The main discussion points concern the existence and the closure of an oceanic domain separating the Indochina and the South China blocks during this period. Especially, the polarity and the timing of the subduction zone that led to the collision between the blocks as well as the present location of the suture delimiting them are a matter of debate. Despite the valuable information they can provide, the sedimentary basins from northern Vietnam have been neglected in the previous studies dealing with the geodynamic evolution of South East Asia. To determine the geodynamic evolution of the area, the basins of Sam Nua and Song Da, presently located in North Vietnam, have been investigated using a combined approach involving sedimentology, geochronology (U-Pb/zircon) and geochemistry (whole-rock major and trace elements composition of both volcanic and volcaniclastic rocks). The palaeoenvironment evolution, the main unconformities, their age and the tectonic affinities of the interbedded volcanic and volcaniclastics series have been characterized for these two basins. Our results demonstrate (i) that the Song Da Basin exhibits a palaeogeographic affinity with the South China block, (ii) the occurrence of extensive calk-alkaline volcanism and associated volcaniclastic deposits in the Sam Nua Basin, related to the existence of an active magmatic arc during the Early and the lower Middle Triassic, (iii) a South dipping (present day coordinate) oceanic lithosphere beneath the Indochina block, deduced from the location of the magmatic arc south of the potential suture zones, (iv) that an angular unconformity postdates the lower Middle Triassic volcaniclastic deposits in the Sam Nua basin. This unconformity, crosscutting the subduction related deposits, is interpreted as the result of the collision between the Indochina and the South China blocks.

  2. On principles, methods and recent advances in studies towards a GPS-based control system for geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Delikaraoglou, Demitris

    1989-01-01

    Although Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) are becoming increasingly important tools for geodynamic studies, their future role may well be fulfilled by using alternative techniques such as those utilizing the signals from the Global Positioning System (GPS). GPS, without the full implementation of the system, already offers a favorable combination of cost and accuracy and has consistently demonstrated the capability to provide high precision densification control in the regional and local areas of the VLBI and SLR networks. This report reviews VLBI and SLR vis-a-vis GPS and outlines the capabilities and limitations of each technique and how their complementary application can be of benefit to geodetic and geodynamic operations. It demonstrates, albeit with a limited data set, that dual-frequency GPS observations and interferometric type analysis techniques make possible the modelling of the GPS orbits for several days with an accuracy of a few meters. The use of VLBI or SLR sites as fiducial stations together with refinements in the orbit determination procedures can greatly reduce the systematic errors in the GPS satellite orbits used to compute the positions of non-fiducial locations. In general, repeatability and comparison with VLBI of the GPS determined locations are of the order of between 2 parts in 10 to the 7th power and 5 parts in 10 to the 8th power for baseline lengths less than 2000 km. This report is mainly a synthesis of problems, assumptions, methods and recent advances in the studies towards the establishment of a GPS-based system for geodesy and geodynamics and is one phase in the continuing effort for the development of such a system. To some, including the author, it seems reasonable to expect within the next few years that more evidence will show GPS to be as a powerful and reliable a tool as mobile VLBI and SLR are today, but largely more economical.

  3. The role of modern geodynamics in the transformation of the local erosion basis in the Arctic river systems

    NASA Astrophysics Data System (ADS)

    Shapovalova, Elizaveta

    2015-04-01

    To assess the impact of modern geodynamic processes in the erosion of river channels in the area of oil and gas field, located in the permafrost region the following studies were made: interpretation of satellite images to identify fault zones in the structure of the landscape oil and gas field, located in the subarctic zone; mathematical modeling of extensive and local subsidence in the found faults areas; field measurements within the territory of the field. These studies led to conclusions about influence of modern geodynamic processes on activization of erosive processes. Dimensions of the studied field is approximately 40*60 km. As a result of extensive sagging modeling on its territory for the period of the end of the development the sag depth of the Earth's surface equal to 90 cm was obtained. In this case, the slope of the Earth's surface with respect to the central part of the study area will be 4.5 * 10-5. This slope is comparable with the values of the average slope of lowland rivers. For example, for the Ob River it is 4 * 10-5. This case shows that the river flowing through the field, due to changes in the local erosion basis may be experiencing channel deformation in its central part. According to the observations and model calculations local subsidence of the Earth's surface in fault zones induced by mining, lead to the Earth's surface inclines order 7 * 10-5 - 1.2 * 10-3. Field observations in 2014 in areas where active faults identified revealed a number of factors of changes in the river channel. There were areas overdeepened channel, tear off and slipped down blocks of rocks, leading to the subsequent transformation of the channel, as well as additional thermal erosion gullies that increase the accumulation of sediments and alter the structure of the river network. The combination of modern geodynamics with thermokarst processes in perennial permafrost layer enhances erosion. This investigations have shown that the factor of modern geodynamics of natural or man-made influences on the transformation of the river system at the present stage of its development. This is a new factor. Previously, it was not taken into account, among other geomorphological factors in the analysis of structure changes of the Earth's surface.

  4. Identification of anomalous radon concentrations due to geodynamic processes by elimination of Rn variations caused by other factors

    NASA Astrophysics Data System (ADS)

    Finkelstein; Brenner; Eppelbaum, L.; Ne'eman, Y.

    1998-05-01

    It has been suggested that temporal variations of radon (Rn) concentrations in various media may be used as a possible predictive indicator of seismic activity. However, observed Rn measurements are a function of a number of different physical processes including seismic activity. This paper describes a generalized approach to removing `noise components' from the observed data to leave a residual component of radon concentration that reflects geodynamic processes at depth. The approach is demonstrated using data gathered in Israel at the time of the 1992 October 12 Giza earthquake in Egypt.

  5. Geodynamic models of intraplate deformation: Applications to Canada's High-Arctic Eurekan Orogeny

    NASA Astrophysics Data System (ADS)

    Gray, R.; Pysklywec, R. N.

    2012-12-01

    The Phanerozoic tectonic history of Canada's High-Arctic represents a complex history of collision, rifting and intra-plate deformation. Beginning in latest Devonian to earliest Carboniferous times, development of the Palaeozoic Franklinian Basin was terminated by the Ellesmerian Orogeny. Development of the Sverdrup Basin followed the Ellesmerian Orogeny. Subsequently, ~200 km of shortening occurred during the Eocene Eurekan Orogeny that affected parts of the Franklinian and Sverdrup Basins. A problem in distinguishing between Ellesmerian and Eurekan structures is that the Eurekan Orogeny overprinted and reactivated structures initially formed during the Ellesmerian Orogeny. Given that many of the Eurekan structures are reactivated Ellesmerian structures, it is often suggested that pre-existing mechanical weakness, such as faults and/or shear zones, and compositional boundaries likely controlled localization of Eurekan tectonism. Less invoked in the context of the Eurekan Orogeny, though arguably just as important in localizing intra-plate deformation, is strain localization resulting from spatial variations in the thermal state of the lithosphere (thermal refraction). We quantitatively investigate both processes and their importance in localizing deformation during the Eurekan Orogeny using a visco-plastic (thermally-activated power-law creep and Mohr-Coulomb rheologies) finite-element code that solves the governing equations of incompressible fluid flow. The tectonic problem is inherently related to the dynamics of the deep lithosphere where lower crust interacts with the mantle lithosphere, so the models are conducted at an upper mantle depth scale (600 km). The collisional models are evolved to the stage of a young orogen; e.g., ~15 Myr, ~200 km of shortening. The experiments demonstrate the thermal, rheologic, and kinematic conditions that control the reactivation of pre-existing structures and their importance during the Eurekan Orogeny. A free surface and prescribed erosional laws make up the top boundary of the model domain and allow topography to develop self consistently with the underlying geodynamics. We interpret the lithosphere structure and model topography in the context of constraints on the geometry of the Eurekan Orogeny, in addition to available geological/geophysical constraints on internal lithospheric structure.

  6. Neoproterozoic/Lower Palaeozoic geodynamic evolution of Dronning Maud Land: integrating geology and geophysics

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Andreas, Läufer; Clark, Chris; Kleinhanns, Ilka; Elburg, Marlina; Ruppel, Antonia; Estrada, Solveig; Damaske, Detlef; Jokat, Wilfried; Riedel, Sven; Lucka, Nicole

    2013-04-01

    East Antarctica probably formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) that dissects Dronning Maud Land (DML). New field-work during the international expeditions Geodynamic Evolution of East Antarctica (GEA) I + II in the austral summers 2010/11 and 2011/12, and first geochronological results from eastern DML reveal a complex tectonic architecture across the belt. In western DML, the EAAO reworks older Mesoproterozoic crust of the Maud Belt; the westernmost boundary of the mobile belt is characterized by a major dextral transpressional shear zone. In central DML, a major magnetic anomaly, the Forster anomaly, was interpreted as a cryptic suture of the EAAO (Riedel et al. 2012). The area where the Forster anomaly crosses the DML mountains is poorly investigated so far, but appears to coincide with a major strike slip shear zone in the southern Kurze Mts. and the occurrence of major Ediacaran granulite bodies. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block is still part of the eastern EAAO, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides four new SHRIMP zircon dates between 990-980 Ma, interpreted as igneous crystallization ages (oceanic arc). The TTG terrane shows limited tectonic overprint and is likely the southeastern foreland of the EAAO. Close to the contact of the two blocks grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt. Riedel, S. et al., 2012, Tectonophysics, doi.org/10.1016/j.tecto.2012.10.011

  7. Geodynamic evolution of eastern Dronning Maud Land: research highlights from an international geological-geophysical approach

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Ehlburg, Marlina; Laeufer, Andreas; Clark, Chris; Kleinhanns, Ilka; Andersen, Tom; Mieth, Matthias; Ruppel, Antonia; Damaske, Detlef; Lucka, Nicole; Estrada, Solveig; Jokat, Wilfried

    2014-05-01

    East Antarctica formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) and the Kuunga Orogen that apparently converge in Dronning Maud Land (DML). In central DML, the major Forster Magnetic Anomaly separates rocks with Grenville-age protolith ages of ca. 1130-1000 Ma to the W, from rocks with Early Neoproterozic protolith ages, c. 1000-930 Ma, to the East. The Forster Magnetic Anomaly is therefore interpreted as a suture. New field-work during two recent international expeditions, Geodynamic Evolution of East Antarctica (GEA) I + II, and first geoscientic results reveal a complex tectonic architecture between Sør Rondane and central DML. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block appears as part of the EAAO or the Kuunga Orogen, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides 12 new zircon crystallistation ages ranging from 1000-930 Ma. The TTG terrane has predominantly oceanic affinities and the wide range of ages might indicate long-lasting accretionary tectonics. The TTG terrane shows in part limited tectonic overprint and could be the southeastern foreland of the EAAO or the Kuunga Orogen. Close to the contact of the two blocks, grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt.

  8. Geodynamic features along the Christianna-Santorini-Kolumbo tectonic line (South Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve; Bejelou, Konstantina; Sakellariou, Dimitris; Kilias, Stefanos; Camilli, Rich; Escartin, Javier; Bell, Kathrine; Parks, Michelle

    2013-04-01

    Numerous oceanographic surveys have been conducted in Santorini Volcanic Group (South Aegean Sea) since 2001, revealing the spectacular morphology of the seafloor (multibeam data) and the sub-seafloor stratigraphic horizons (seismic profiles). Technological advancements in seafloor exploration such as ROVs and a submersible, enabled us to observe products of submarine volcanism that were previously inaccessible. In addition, gravity and box coring, geological and biological samples have been collected from selected areas for further analysis. The offshore geophysical survey in Santorini shows that recent volcanism occurred along a NE-SW tectonic zone named as Christianna-Santorini-Kolumbo (CSK) line. Christiana islets and three newly discovered submarine volcanic domes, with small colonies of yellow, presumably sulfur-reducing hydrothermal bacteria, occur in the southwestern part of the line. The presently active intra caldera volcanic domes of Palea and Nea Kameni islands and the low temperature (17-24°C) vent mounds covered by yellowish bacterial mat occupy the middle part of the line. The Santorini vent field is linked with the Kolumbo normal fault onshore which is likely controlling the pathways of hydrothermal circulation within the caldera. The most prominent feature at the NE part of this zone, is Kolumbo submarine volcanic chain which is extended 20Km with several volcanic domes aligned along this direction. The Kolumbo volcano had an explosive eruption in 1650 that killed 70 people on Santorini. The hydrothermal vent field in the crater floor of Kolumbo consists dominantly of active and inactive sulfide-sulfate structures in the form of vertical spires and pinnacles, mounds and flanges along a NE-SW trend, with temperatures up to 220°C and vigorous CO2 gas emission. For several years, the highest frequency of earthquakes was concentrated mainly in the vicinity of Kolumbo volcano. However, during 2011-2012 both seismic and geodetic unrest began abruptly inside Santorini caldera related to a shallow magmatic intrusion indicated by inflation. Recently, several earthquakes occurred in the region south of Christianna at the SW edge of the CSK line. This CSK line has possibly fed the post-caldera eruptions and is the main path for fluid circulation. In conclusion, the CSK tectonic line displays a special character in terms of morphology, volcanism, hydrothermal activity, seismicity and tectonic structure. It may cause important geohazards to the highly touristic Santorini island. Further seafloor investigations along this active line can provide insights into the overall geodynamic activity and aid the archipelago's hazard preparedness.

  9. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kuzmin, M. I.; Ernst, R. E.

    2014-10-01

    The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes. Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic-Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian-Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai-Sayan rift system); Late Paleozoic-Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic-Cenozoic (origin of continental volcanic areas in Central Asia). Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes practically did not cease to affect crustal growth and transformations in CAOB in relation to the migration of the Siberian continent throughout the whole time span when the belt was formed above a cluster of hotspots, which is compared with the African superplume.

  10. Self-organized geodynamics of karst limestone landscapes and coupled terra rossa/bauxite formation

    NASA Astrophysics Data System (ADS)

    Merino, E.; Wang, Y.; Banerjee, A.

    2012-12-01

    Why do flat limestones overlain by terra rossa or bauxite systematically adopt so-called karst geomorphology, which consists of sets of roughly regularly spaced wormholes, or funnels, or sinkholes, or tower karst? The idea that the funnels and sinkholes are located at the intersections of preexisting sets of subvertical fractures is untenable. New field and petrographic evidence (Merino & Banerjee, J. Geology, 2008) revealed that, rather than 'residual' or 'detrital' (the only options that have been on the table for decades), the terra rossa/bauxite clays and Al- and Fe-oxyhydroxides grow authigenically at the base of the terra rossa, replacing the underlying limestone at a generally downward-moving reaction front several centimeters thick. The clay-for-limestone replacement, which preserves solid volume (because it takes place by clay-growth-driven pressure solution of calcite), releases H+ ions. These dissolve more calcite, generating considerable leached porosity in a narrow zone that travels with the replacement front. We proposed (Merino & Banerjee, J. Geology, 2008) that the moving leached-porosity maximum created at the front could trigger the reactive-infiltration instability (Chadam et al, IMA J. Appl. Math., 1986), causing the replacement-and-leaching reaction front to become regularly fingered, with the fingers jumping in scale to funnels, these to sinks, and these, when deep enough and merged together laterally, to tower karst. This new geodynamics would account both for the world-wide association of terra rossa and bauxite with karst limestones, and for the stunning, self-organized geomorphology of karst itself. We are testing these ideas through linear stability analysis of a simplified reaction-transport system of equations and through numerical solution of the full non-linear system of reaction-transport equations applicable, including aqueous speciation. Preliminary calculations (Banerjee & Merino, J. Geology, 2011) suggest that the replacement-and-leaching front is self-accelerating. The linear stability analysis may help to delineate climatic and hydrologic conditions for the development of spatial patterns of karst landscape and to predict the spacing of the patterns.

  11. Geodynamic evolution of the northern Dinarides and the southern part of the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Tari, Vlasta; Pamić, Jakob

    1998-11-01

    Most of the recent geodynamic interpretations of the Pannonian Basin focus on its relation to the formation of the Carpathians and the Alpine orogeny. However, also the Dinarides were severely affected by Neogene tectonics related to the formation of the Pannonian Basin. Especially in the northernmost Dinarides Neogene deformation played a very important role in the evolution of this mountain chain. Geological records clearly show evidence of two phases of plate convergence along the northern and eastern margins of the present-day Dinarides. At the end of the Jurassic the Dinaridic parts of the Tethys ophiolites were obducted onto the northeastern margins of the Apulian microplate. The second phase is documented in the central part of the northernmost Dinarides. It is genetically related to an ancient volcanic arc, as indicated by Late Cretaceous-Palaeogene trench sediments with blueschist olistolithes which are interlayered by basalt, rhyolites, pyroclastics, medium-pressure metamorphosed trench sediments, and associated synkinematic granitoids. In the northern part of the Dinarides subduction processes terminated with the Eocene compressional event which caused the uplift of the Dinarides. Numerous intramontane basins with shallow-marine, fluviatile and lacustrine deposits were generated during the Oligocene. Penecontemporaneous andesites which are found along the Drava and Sava depressions of the South Pannonian Neogene Basin can be correlated with the easternmost Periadriatic tonalites. However, observations do not indicate strike-slip faulting at that time in this area. The Neogene rift stage initiated the evolution of the Pannonian Basin. It is marked by extruded submarine trachyandesites of Karpathian age, Badenian basalts, andesites, dacites and rhyolites, and Pannonian alkali basalts, which are interlayered by coeval sedimentary rocks. Main evidence for the large-scale tectonic transport of large Dinaridic blocks into the Pannonian Basin area are the Periadriatic-Sava and Zagreb-Zemplen fault systems and subparallel faults. The late Sarmatian global sea-level drop which coincided with a compressional phase is regionally marked by an unconformity throughout the Pannonian Basin, as reported by Horváth (Horváth, F., 1995. Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar. Pet. Geol. 12 (8), 837-844). Due to thermal subsidence during the Pliocene more than 2000 m of lacustrine freshwater sediments were deposited in the South Pannonian Basin. The Pliocene compression phase can be observed in the Transdanubian zone and also south of the Mura and Drava rivers by south- and southwest-dipping reverse fault systems.

  12. AlpArray - an initiative to advance understanding of Alpine geodynamics

    NASA Astrophysics Data System (ADS)

    Hetényi, György; AlpArray Working Group

    2013-04-01

    AlpArray is an initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 57 institutes in 16 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area from the Black Forest and the Bohemian Massif in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with a high-quality broadband seismometer backbone by combining the ca. 220 existing permanent stations with additional 300-340 instruments from mobile pools, all of them to be deployed from 2014-2015 until 2017. In this way, we plan to achieve homogeneous and high resolution coverage (ca. 40 km average station spacing). Furthermore, we also plan to deploy a few densely spaced targeted networks along swaths across - and in regions of - key parts of the Alpine chain on shorter time scales. These efforts on land will be combined with deployments of ca. 40-45 ocean bottom seismometers in the Mediterranean Sea. We also aim to implement the best practice for synchronizing mobile pool operation procedures and data handling: common data centre and data management procedure, free access to data to participants as soon as possible through EIDA. Data will be open to the public 3 years after the experiment ends. The main scientific goal of AlpArray is to investigate the structure and evolution of the lithosphere beneath the Alps. A primary target is the geometry and configuration of subducting slabs and their polarity switch beneath the arc. Numerous regional questions such as seismic hazard will be tackled. Targets will be imaged at several depths (e.g., from near-surface structure down to upper mantle anisotropy), scales (e.g., from local seismicity to mantle transition zone thickness variations), using different methodologies in the sub-regions of interest. An overview of these targets and the methodologies intended to be applied in connection with the seismological measurements will be presented. The geodynamic interpretation of the acquired data will be complemented by other Earth Science disciplines such as state-of-the-art numerical and analogue modelling, gravity and magneto-telluric measurements, as well as structural geology. In conclusion, we hope to turn the strong community interest into a truly interdisciplinary and collaborative project in the key region for seismotectonic activity and dynamics of Europe.

  13. Cenozoic tectono-stratigraphic evolution east of the Lesser Antilles subduction zone: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pichot, T.; Patriat, M.; Westbrook, G. K.; Nalpas, T.; Roest, W. R.; Gutscher, M.

    2011-12-01

    The Barracuda Ridge and the Tiburon Rise, two major oceanic basement ridges, lie at the western end of the diffuse North America-South America plate-boundary zone, where they enter the subduction zone beneath the Lesser Antilles island arc. Numerous Fracture Zones affect the oceanic crust in this area such as Fifteen Twenty FZ, Marathon FZ and Mercurius FZ. Uncertainties in kinematic models and GPS measurements are too high to accurately predict plate motions in the Barracuda Ridge and Tiburon Rise area. From an analysis of geophysical and geological data, including multibeam and seismic reflection profiles acquired in 2007, a detailed tectono-stratigraphic study was performed. We propose an evolutionary model for the geological history, including the timing of the uplift of the Barracuda and Tiburon ridges. Terrigenous turbidites originating from South America were delivered over the entire area, extending as far north as the Barracuda Ridge, since the early Paleogene. The Neogene turbiditic sequence is relatively thin north of the Tiburon Rise, where the Quaternary distal turbidites form a depocenter in the middle of the Tiburon basin. This basin is restricted by the uplift of the Barracuda Ridge and Tiburon Rise to the north and south, respectively, and by the flexural bulge of the subducting lithosphere to the west. Distal turbidites were also deposited in the deep trough north of Barracuda Ridge. The seafloor topography inherited from the crustal accretion at the mid-oceanic ridge, was buried by turbidites at the end of the Paleogene. The sediments were affected by short wavelength (about 3 km) syn-depositional folds and, mostly normal, faults. Later, during the Middle-Late Miocene and then during the Pleistocene, respectively, the Tiburon Rise and Barracuda Ridge were further uplifted and acquired their present elevation. Two lens-like bodies of mass transport deposits, up to 800-m thick, dated as late Early-Pleistocene, occupy an area greater than 20000 km2 from northeast to southeast of the Tiburon Rise. Although their source remains uncertain, their deposition coincides chronologically with the onset of the last major tectonic phase, accompanying the Barracuda Ridge uplift. This deformation is still active, as expressed by folds and faults affecting the seafloor. These structures are rooted in uplifted basement along the WNW-ESE trends of the fracture zones. There was a general northward migration of the zone of deformation and uplift of oceanic crust during the Neogene and Quaternary. This complex geodynamic situation is produced by transpression between the North American and South American plates and by deformation associated with their passage into the Lesser Antilles subduction zone.

  14. ENVIMINE - developing environmental and geodynamical safety related to mine closure in the Barents region

    NASA Astrophysics Data System (ADS)

    Väisänen, Ulpu; Kupila, Juho; Kozyrev, Anatoly; Konukhin, Vladimir; Alakangas, Lena

    2015-04-01

    A project of mining environmental research in the Barents region was carried out in 2012-2014, in cooperation between Geological Survey of Finland, Mining Institute of Kola Science Centre, Russian Academy of Sciences, Russia, and Luleå University of Technology, Sweden. The study areas were the active chrome mine of Kemi in Northern Finland, and the closed mines of Umbozero in Murmansk region, Northwestern Russia, and Laver in Northern Sweden. Umbozero mine, producing rare earth metals, was in operation 1984-2004. Laver mine with iron sulphide ore, producing copper, was in operation 1936-1946. The objectives of the project were to develop a methodology for environmentally safe mine closure by cross border cooperation, and to produce information of the mining environment for target groups. The aim was also to find out solutions for minimizing environmental impacts and to develop multilateral relations between Finnish, Russian and Swedish organizations, responsible for environmental management. The studies were carried out by sampling and analyzing of groundwater and surface water, surficial deposits and organic sediments of streams in the mine sites and reference areas. Composition of deposits in the tailings was carried out by means of geophysical measurements (GPR, XRF). Research data of Kemi mine indicate diminished emissions, especially after open pit mining was finished in 2006. The results in Laver, Sweden, indicate that the oxidation rate in the tailings has decreased over time, which may be due to the increased distance over which oxygen needs to diffuse to reach unoxidised sulphide grains in the tailings. Problems in Umbozero are seismic instability, high pH values of waters (max. 10.4), fluorine and aluminum concentrations in the mine site, due to the rock type. Concentrations were decreasing downstream, also heavy metal concentrations were low. Results of the project are the basis for updated database of environmental condition of the study areas and for assessment of environmental impacts. Database will be used for developing recommendations for providing environmental and geodynamical safety of Umbozero. The project was partly funded by the European Union.

  15. Geophysical and geochemical constraints on the geodynamic origin of the Vrancea Seismogenic Zone Romania

    NASA Astrophysics Data System (ADS)

    Fillerup, Melvin A.

    The Vrancea Seismogenic Zone (VSZ) of Romania is a steeply NW-dipping volume (30 x 70 x 200 km) of intermediate-depth seismicity in the upper mantle beneath the bend zone of the Eastern Carpathians. The majority of tectonic models lean heavily on subduction processes to explain the Vrancea mantle seismicity and the presence of a Miocene age calc-alkaline volcanic arc in the East Carpathian hinterland. However, recent deep seismic reflection data collected over the Eastern Carpathian bend zone image an orogen lacking (1) a crustal root and (2) dipping crustal-scale fabrics routinely imaged in modern and ancient subduction zones. The DRACULA I and DACIA-PLAN deep seismic reflection profiles show that the East Carpathian orogen is supported by crust only 30-33 km thick while the Focsani basin (foreland) and Transylvanian basin (hinterland) crust is 42 km and 46 km thick respectively. Here the VSZ is interpreted as the former Eastern Carpathian orogenic root which was removed as a result of continental lithospheric delamination and is seismically foundering beneath the East Carpathian bend zone. Because large volumes of calc-alkaline volcanism are typically associated with subduction settings existing geochemical analyses from the Calimani, Gurghiu, and Harghita Mountains (CGH) have been reinterpreted in light of the seismic data which does not advocate the subduction of oceanic lithosphere. CGH rocks exhibit a compositional range from basalt to rhyolite, many with high-Mg# (Mg/Mg+Fe > 0.60), high-Sr (>1000 ppm), and elevated delta-O18 values (6-8.7 /) typical of arc lavas, and are consistent with mixing of mantle-derived melts with a crustal component. The 143Nd/144Nd (0.5123-0.5129) and 87Sr/86Sr (0.7040-0.7103) ratios similarly suggest mixing of mantle and crustal end members to obtain the observed isotopic compositions. A new geochemical model is presented whereby delamination initiates a geodynamic process like subduction but with the distinct absence of subducted oceanic lithosphere to produce the CGH lavas. The origin of the VSZ presented here suggests that the delamination of continental lithosphere is a process capable of producing mantle earthquakes and calc-alkaline volcanism without subduction tectonics.

  16. Stratigraphic signatures of crustal shortening and central Andean geodynamics in the Altiplano plateau, southern Peru

    NASA Astrophysics Data System (ADS)

    Perez, Nicholas D.; Horton, Brian K.

    2014-05-01

    The initiation and evolution of hinterland basins along convergent margins has been variably attributed to partitioning of pre-existing flexural foreland basins, drainage closure by uplift of flanking topographic barriers, and/or isolated strike-slip or extensional processes. In the central Andean plateau, the upper Oligocene to middle Miocene basin fill of the northernmost Altiplano in southern Peru preserves a record of orogenesis between the Western Cordillera magmatic arc and the Eastern Cordillera fold-thrust belt. New stratigraphic, provenance, geochronologic and structural datasets from the ~3.7-km-high Ayaviri hinterland basin suggest that upper-crustal shortening was the dominant factor controlling basin evolution. The basin preserves a ~2300 m thick succession (Puno Group and Lower Tinajani Formation) of fluvial sandstone and overbank siltstone capped abruptly by ~400 m of alluvial fan pebble-boulder conglomerate (Upper Tinajani Formation). New U-Pb zircon geochronologic constraints from 8 tuff horizons and the youngest age populations from 10 sandstone horizons constrain the depositional age between 29.6 ± 1.2 Ma and 15.71 ± 0.97 Ma. The resulting ~15 Myr basin record yields sediment accumulation rates between 110 and 660 m/Myr, comparable to those of major lowland foreland basins. A prominent shift in basin provenance is recorded by detrital zircon U-Pb spectra, conglomerate clast compositions, modal sandstone compositions and paleocurrent data. Newly dated growth strata along the two basin-bounding thrust faults highlight the role of Andean shortening on basin evolution. Footwall growth strata along the southwest-directed Ayaviri fault defining the Eastern Cordillera margin suggests deformation at ~28 Ma. Younger footwall growth strata along the northeast-directed Pasani fault defining the Western Cordillera margin demonstrate an episode of out-of-sequence thrusting at ~16.4 Ma. This event is associated with the provenance and depositional shift of the coarse-grained Upper Tinajani Formation. Oligocene to early Miocene basin evolution was controlled by flexural subsidence driven by shortening along the Ayaviri fault and broader Eastern Cordillera. Subsequent basin reorganization was initiated by punctuated out-of-sequence motion along the southwest basin margin (Pasani fault). The record of variable, punctuated shortening and subsidence emphasizes the role of upper-crustal thrusting in driving hinterland tectonics. However, it remains unclear if out-of-sequence thrusting in the northern Altiplano was a localized deformation event indicative of critical wedge dynamics, changing magmatic-arc processes, or a geodynamic response to complex patterns of lithospheric removal and pulses of surface uplift.

  17. Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B.; Ionescu, C.; Hegedüs, E.; Radovanović, S.; Shen, Y.; South Carpathian Project Working Group

    2012-10-01

    The Carpathian-Pannonian system of Eastern and Central Europe represents a unique opportunity to study the interaction between surface tectonic processes involving convergence, extension and convective overturn in the upper mantle. Here, we present high-resolution images of upper mantle structure beneath the region from P-wave finite-frequency teleseismic tomography to help constrain such geodynamical interactions. We have selected earthquakes with magnitude greater than 5.5 in the distance range 30°-95°, which occurred between 2006 and 2011. The data were recorded on 54 temporary stations deployed by the South Carpathian Project (2009-2011), 56 temporary stations deployed by the Carpathian Basins Project (2005-2007), and 131 national network broadband stations. The P-wave relative arrival times are measured in two frequency bands (0.5-2.0 Hz and 0.1-0.5 Hz), and are inverted for Vp perturbation maps in the upper mantle. Our images show a sub-vertical slab of fast material beneath the eastern Alps which extends eastward across the Pannonian basin at depths below ˜300km. The fast material extends down into the mantle transition zone (MTZ), where it spreads out beneath the entire basin. Above ˜300km, the upper mantle below the Pannonian basin is dominated by relatively slow velocities, the largest of which extends down to ˜200km. We suggest that cold mantle lithospheric downwelling occurred below the Pannonian Basin before detaching in the mid-Miocene. In the Vrancea Zone of SE Romania, intermediate-depth (75-180 km) seismicity occurs at the NE end of an upper mantle high velocity structure that extends SW under the Moesian Platform, oblique to the southern edge of the South Carpathians. At greater depths (180-400 km), a sub-circular high velocity anomaly is found directly beneath the seismicity. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the MTZ. No clear evidence of a residual slab is observed above the MTZ beneath the Eastern Carpathians. These observations suggest that intermediate-depth seismicity in Vrancea Zone is unlikely to be due to slab tearing, but rather could be explained by either gravitational instability or delamination of mantle lithosphere.

  18. Tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo-Miocene central Mediterranean geodynamics

    NASA Astrophysics Data System (ADS)

    Maino, Matteo; Decarlis, Alessandro; Felletti, Fabrizio; Seno, Silvio

    2013-06-01

    analyze the tectono-sedimentary and thermochronometric constraints of the Tertiary Piedmont Basin (TPB) and its adjoining orogen, the Ligurian Alps, providing new insights on the basin evolution in response to a changing geodynamic setting. The geometry of the post-metamorphic faults of the Ligurian belt as well as the fault network that controlled the Oligo-Miocene TPB deposition has been characterized through a detailed structural analysis. Three main faulting stages have been distinguished and dated thanks to the relationships among faults and basin stratigraphy and thermochronometric data. The first stage (F1, Rupelian-Early Chattian) is related to the development of extensional NNW-directed faults, which controlled the exhumation of the orogen and the deposition of nearshore clastics. During the Late Chattian, the basin drowning is marked by mudstones and turbidites, which deposition was influenced by the second faulting stage (F2). This phase was mainly characterized by NE- to ENE-striking faults developed within a transtensional zone. Since the Miocene, the whole area was dominated by transpressive tectonics. The sedimentation was represented by a condensed succession followed by a very thick, turbiditic complex. At the regional scale, this succession of events reflects the major geodynamic reorganization in the central Mediterranean region during the Oligo-Miocene times, induced by the late-collisional processes of the Alps, by the eastward migration of the Apennines subduction and by the opening of extensional basins (i. e., the Liguro-Provençal Ocean).

  19. Composition and pre-metamorphic geodynamic setting of the ultrahigh-pressure metabasic rocks from Dabie Shan, E-China

    NASA Astrophysics Data System (ADS)

    Altenberger, U.; Schmid, R.; Oberhänsli, R.

    2008-11-01

    As part of the Yangtze plate, segments of the Dabie Shan terrane of Central China underwent ultra-high pressure metamorphism during Triassic subduction. We studied the geochemistry of the abundant eclogites to evaluate the nature of the protoliths and their geodynamic setting. Although some previous geochemical work exists, the analyses and interpretation herein are based on a new subdivision of the ultra-high pressure sequence into basement and cover units (Changpu and Ganghe Unit), revealing new and important results. In addition, eclogites of the so-called HP Unit south of the UHP units were studied. Whereas the large ion lithophile elements indicate postmagmatic, metasomatic changes of some samples, the high-field strength elements and the rare earth elements display original magmatic trends. The geochemical characteristics of the eclogites of the ultra-high pressure areas display a strong dependence on their “structural” and geographic position. The eclogites of the basement and the Changpu Unit indicate melt intrusion and extrusion in a continental rift system, i.e. during extensional tectonics. In contrast, the Ganghe Unit is characterized by a pronounced chemical homogeneity. The composition of the eclogites indicates generation from a mantle source highly influenced by slab-derived fluids. Those of the HP Unit show similar characteristics. Magmatism of the Ganghe and HP Unit probably occurred in a continental arc setting. A similar age for both units, geographically and/or tectonically separated, is possible. The geodynamic interpretation based on the geochemistry of the four units points to a Neoproterozoic scenario in which the protoliths of the HP and the cover units could have been of similar age and deposited in one evolving geological system. A rift-related larger-scale basin might have formed, e.g. a continental back-arc basin behind a magmatic arc after or simultaneous to sedimentation and magmatism in the magmatic arc. Alternatively, magmatism occurred in independent geodynamic settings, distinct in time and space. The units were juxtaposed during exhumation, after subduction to varying depths.

  20. Eastern Mediterranean geodynamics revised: a new Aegean extension realm in space, time and direction identified in the western Cyclades

    NASA Astrophysics Data System (ADS)

    Grasemann, B.; Edwards, M.; Schneider, D.; Iglseder, C.; Zámolyi, A.; Rambousek, C.; Mueller, M.; Voit, K.; Thoeni, M.; Kloetzli, U.; Exner, U.

    2006-12-01

    The Eastern Mediterranean is renowned for its striking geodynamic features; strong seismicity with distinctive spatial and subsurface distributions, lucid slab tomography and accelerated slab retreat bourne out by some of the globally greatest angular velocities for continental crust displacement. The key questions of historical persistence of or precursor(s) to this setting are addressed by the early blueschist genesis and exhumation during collision and subsequent later-orogenic extension. The extension, in particular, is critical to the geodynamic models; the magnitude, distribution, kinematics, thermal structure and overall timetable are key variables. When and how did extension migrate /switch to the Cretan region and the presently active Gulf of Corinth? Most constraints have hitherto come from the central and western Cyclades (e.g. Naxos, Mykonos, Tinos, Paros) where an overall N-NE directed kinematics of Mid-Late Miocene extension (including any attendant melting) are documented through structural analyses, crystallisation and/or cooling geochronology and geobarometry. The eastern Cyclades meanwhile have lacked such comprehensive study. Project ACCEL (Aegean Core Complexes along an Extended Lithosphere) has obtained equivalent datasets for the eastern Cyclades that identify a realm of opposite kinematic sense (S-SW directed) crustal extension coeval with anatexis and multiple crustal failure that are apparently protracted since Eocene to Late Miocene; much earlier than for the central and western Cyclades. On Serifos island, P/T conditions (from petrology and deformation mechanisms), zircon U-Pb TIMS crystallisation ages, Rb-Sr cooling ages and structural surveying reveal that a major granodiorite intrusion syn- to post-dates a top-to-SSW, mid-upper crustal, mylonitic lithospheric-scale extensional detachment. This entire package further cross-cuts an earlier top-to-SSW, lower-mid crustal, high strain zone that mylonitises an S-type granite whose zircons yield an ion microprobe U-Pb Late Eocene crystallisation age (probably broadening the interval of known Cycladic granitic plutonism to Eocene). A further top-to-SW high-strain detachment fabric discovered on Kea and consistent kinematics from compiled data for Kithnos and Lavrio reveal that the entire W-Cyclades are a hitherto unrecognised, roughly 200x100 km in area, lithospheric extension region (or even a microplate). It appears that this geodynamic element was persistent in space and time since the Eocene and, critically, has opposite sense to the NNE-directed Hellenic nappe stacking and detachment kinematics of the E-Cyclades microplate

  1. The seismic cycle on subduction thrusts: a laboratory validation and implications from large-scale geodynamic simulations

    NASA Astrophysics Data System (ADS)

    van Dinther, Ylona; Gerya, Taras; Dalguer, Luis; Mai, Martin; Corbi, Fabio; Funiciello, Francesca; Morra, Gabriele

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. In this study, we present visco-elasto-plastic continuum numerical simulations as a new tool that may help to shed light onto the interaction of subduction mechanics and associated seismicity. First, we validate that these models, typically used in long-term geodynamic simulations, are able to reproduce seismological observables. Its ability to model cycles of large analogue earthquakes is demonstrated through a validation with innovative laboratory models (van Dinther et al., 2013). This benchmark shows cycles of fast frictional instabilities can be simulated (and matched), if velocity-weakening (and velocity-strengthening) friction are incorporated in the analogue seismogenic zone (and up- and downdip of it). The resulting model captures a wide range of physical phenomena observed in nature, including a) ruptures propagating as cracks or self-healing pulses; b) repeated slip on a single patch; and c) afterslip leading to postseismic surface displacements that complement a qualitative agreement with geodetic observations. In subsequent large-scale simulations, we include slip rate dependent friction into a thermo-mechanical model of a petrologically realistic continental margin to simulate earthquake-like events with recurrence intervals of a thousand years. These events exhibit surface displacements and earthquake source parameters comparable to nature, including the amount of slip, stress drop, and rupture width. However, rupture propagation is much slower than observed. These models reveal interesting geodynamic and seismological implications, including a) a reconciliation of low effective friction expected from geodynamic models (? < 0.1) with high strengths attained in laboratory experiments (static friction of ~0.7); b) a spontaneous downdip seismogenic limit near the Moho due to plastic strength increase and stress decrease as ductile flow becomes dominant; and c) a spontaneous deceleration of the rupture speed in the up-dip direction, though velocity-strengthening friction is needed to prevent the rupture from regularly breaking the trench.

  2. Tracing lithosphere amalgamation through time: chemical geodynamics of sub-continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine

    2014-05-01

    The theory of plate tectonics is a relatively young concept in the Earth Sciences and describes the surface expression of planetary cooling via magmatism and reconciles mantle convection and plate movement with orogenesis, earthquakes and volcanism. Detailed observation of current tectonic plate movement has purported a relatively clear picture of the planet's geodynamics. Modern oceanic basins are the predominant sites of thermal equilibration of Earth interior resulting from decompressional, convective melting of peridotites. This magmatism generates mid-ocean ridge mafic crust and depleted upper mantle and in this model, oceanic crust becomes associated with buoyant mantle to form oceanic lithosphere. Subduction zones return this material together with sediments into the deeper mantle and presumably aid the formation of continental crust via arc magmatism. The mechanisms of continental crust amalgamation with buoyant mantle are less clear, and distinctly more difficult to trace back in time because metamorphism and metasomatism render the processes associating convecting mantle with continental crust elusive. Paramount in assessing these mechanisms is understanding the timing of crust and mantle formation so that the onset of plate tectonics and potential changes in modi operandi with respect to convection, mantle composition and melting pressure and temperature may be traced from the early Hadean to the present day. Typically the formation age of continental crust is more easily determined from felsic samples that contain accessory and relatively robust phases such as zircon and monazite that render a geochronological approach feasible. The lack of equally robust minerals and pervasive and ubiquitous metasomatism afflicting obducted orogenic peridotites and mantle xenoliths obliterates primary mineralogical and geochemical information. Hence it has proven difficult to acquire mantle depletion ages from continental lithospheric mantle, perhaps with the exception of Re-Os isotope dating of cratonic peridotites. Empiric mineralogical and geochemical data of continental and oceanic lithospheric mantle has been examined extensively and metasomatism has been studied in great detail. I will present a numerical modelling approach generating a comprehensive catalogue of variously depleted plagioclase-, spinel- and garnet-peridotite major and trace element compositions. In addition primary Pb, Sr, Nd, Hf and Os isotope data will approximate refractory mantle generated during Earth's major episodes of depletion and continental crust formation (1.2, 1.8, 2.9, 3.8 Ga). These hypothetical compositions will be compared to natural peridotites from on- and off-cratonic xenoliths, abyssal and orogenic peridotites to identify those rare samples least altered by interaction with silicate, hydrous and carbonatitic melts. Extremely depleted mantle has the potential to harbour Pb, Sr, Nd, Hf and Os isotope compositions that would be easily recognized if silicate melts were generated from this type of pristine mantle and the record of volcanic rocks will be examined to identify potential lithospheric melts.

  3. Neoproterozoic geodynamic evolution of SW-Gondwana: a southern African perspective

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.; Basei, M. S.; Gaucher, C.

    2011-04-01

    Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Río de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Río de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today's coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-São Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frío Terrane into the Goiás magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Río de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane—the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Río de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.

  4. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intraoceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem becomes feasible. Results show that the rheological parameters and particularly the effective viscosity structure of the lithosphere can be reconstructed in a probabilistic sense. This also holds, with somewhat larger uncertainties, for the case where the temperature distribution is parametrized. Finally, we apply the method to a cross-section of the India-Asia collision system. In this case, the number of parameters is larger, which requires solving around 1.9 × 106 forward models. The resulting models fit the data within their respective uncertainty bounds, and show that the Indian mantle lithosphere must have a high viscosity. Results for the Tibetan plateau are less clear, and both models with a weak Asian mantle lithosphere and with a weak Asian lower crust fit the data nearly equally well.

  5. Geodynamic evolution and the history of the atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Tackley, P. J.; Lognonne, P.

    2011-12-01

    To investigate in what measure the interactions between the mantle and the atmosphere would have caused the divergent evolutions of the terrestrial planets in our solar system, we propose to model the effects of mantle dynamics on the evolution of CO2, H2O and other species like Argon or Nitrogen in the atmosphere, but also of the surface temperature. We consider several processes that are considered to have a strong influence on the atmosphere of terrestrial planets. First, the main source of volatiles in our model is the degassing from the mantle. We use and adapt the StagYY code developed by Tackley (Tackley, 2008) for the geodynamic part of the study. This modeling gives a realistic and advanced account of the mantle convection processes. When possible, we compare those results to published modeling (Breuer and Spohn, 2006; Grott et al., 2011) and observation. Atmospheric escape is considered as the main volatile loss flux. Early escape is thermal, caused by hydrodynamic escape. Its effects can be modeled, as we did for Venus. After the first few hundred of million years, the main atmospheric escape flux becomes non-thermal. We model the evolution of the present escape flux by comparing recent study on these processes and ASPERA (Analyzer of Space Plasma and EneRgetic Atoms) measurements. Differences in present-day escape depending on solar activity are used to extrapolate early escape. We combine these models to calculate the state of the atmosphere of Venus and Mars. This lets us estimate the surface temperature of those planets either from a Mars Global Circulation Model (e.g. Forget at al., 1999), or with a gray radiative-convective atmosphere model, for Venus. In the case of Mars, Ar appears to be a tracer of volcanic degassing. We also show that the present-day atmosphere of Mars is likely to be constituted by a large part of volcanic gases. Even with a low CO2 concentration in the magma (150 ppm), present-day atmosphere is constructed of 50% of volcanic gases emitted since 4 billion years ago, which corresponds to an age of 1.9 to 2.3 Gyr. The variations of CO2 pressure over this period seem relatively low (50 mbar at most). This seems in line with the assumption that the heavy loss of volatiles occurred before 500 Myr. Surface temperature variations are likely to be small (several Kelvin) and would not be responsible for periods of flowing liquid surface water by themselves. Water is abundant on Mars during the whole 4 billion years evolution (between 30% and 150% of the present day water) but is unlikely to reside in the atmosphere or in liquid form. In the case of Venus, we are able to reproduce a mantle convection behaviour showing what could be interpreted as resurfacing events with times of high activity separated by quieter periods. Atmospheric escape is also different; it is much lower than on Mars. During the last 4 Gyr, CO2 pressure doesn't seem to vary significantly, while water pressure decreased by several millibars, which induced a surface temperature variation of several tens of kelvins and illustrates the dry state of present-day Venus.This is in agreement with calculated isotopic ratios for noble gases such as Neon and Argon.

  6. Daly Lecture: Geochemical Insights into Mantle Geodynamics and Plume Structure (Invited)

    NASA Astrophysics Data System (ADS)

    Weis, D. A.

    2010-12-01

    It is almost 50 years since the first documentation of mantle heterogeneity through the study of ocean island basalts (OIB) [1]. The origin, scale and source of these heterogeneities have been the subject of debate since then. One of the most common approaches in the study of mantle heterogeneities is to analyze the geochemistry of oceanic basalts brought to the surface by mantle plumes. The composition of these ocean island basalts is usually different from those extruded at mid-ocean ridges (MORB), even if some of the post-shield/rejuvenated volcanism of some islands present depleted isotopic signatures. Improved analytical precision for radiogenic isotopes, combined with statistical data treatment, allow for more detailed investigations into the geochemical variations of basalts related to hotspots and mantle plumes and for modeling of the shallow and deep plume structure. Identification of two clear geochemical trends (Loa and Kea) among Hawaiian volcanoes [2, 3] in all isotope systems [4], together with the recurrence of similar isotopic signatures at >350 kyr intervals, have implications for the dynamics and internal structure of the Hawaiian mantle plume conduit [5]. In this lecture, I will present a compilation of recent isotopic data for samples from the shield, post-shield/late shield and rejuvenated stages on Hawaiian volcanoes, focusing specifically on high-precision Pb isotopic data (MC-ICP-MS or DS, TS TIMS) and integrated with Sr, Nd and Hf isotopes. The Hawaiian mantle plume represents >80 Myr of volcanic activity in a pure oceanic setting and corresponds to a high plume flux. All isotopic systems indicate source differences for Loa- and Kea-trend volcanoes that are maintained throughout the ~1 Myr activity of each volcano and that extend back in time on all the Hawaiian Islands (to ~5 Ma). The Loa-trend source is more heterogeneous in all isotopic systems by a factor of ~1.5 than the Kea-trend source. There are also different geochemical trends with time (such as an increase of Pb isotopic ratios). Hawaiian post-shield and rejuvenated lavas have more Kea-like geochemical characteristics than the underlying shield lavas with only two exceptions. Their isotopic compositions are much less variable and extend towards more depleted values that depart from the shield mixing trends and that do not intersect MORB-type compositions. Comparable observations have been made on other oceanic islands [6] and this implies that the depleted component in mantle plumes is distinct from the MORB source, and is most likely unique to each plume. These results from Hawaii will be compared to other hotspots in different tectonic settings, such as Kerguelen, Galapagos, and Iceland, and some implications for mantle geodynamics will be discussed. [1] Gast et al. (1964) Science 145, 1181-1185. [2] Tatsumoto (1978) Earth and Planetary Science Letters 38, 63-87. [3] Abouchami et al. (2005) Nature 434, 3401-3406. [4] Weis et al. (2009) Eos Trans. AGU, 90(52), Abstract V41F-03. [5] Farnetani and Hofmann (2009, 2010) Earth and Planetary Science Letters 282, 314-322; 295, 231-240. [6] White (2010) Annual Review of Earth and Planetary Sciences 38, 133-160.

  7. International Tectonic Map of the Circumpolar Arctic and its Significance for Geodynamic Interpretations

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Shokalsky, S.; Leonov, Y.; Grikurov, G.; Poselov, V.; Pospelov, I.; Kashubin, S.

    2011-12-01

    In 2003 geological surveys of circum-arctic states initiated the international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 000000 scale". The project received active support of the UNESCO Commission for the Geological Map of the World (CGMW) and engaged a number of scientists from national academies of sciences and universities. Magnetic and gravity maps were prepared and printed by the Norwegian Geological Survey, and geological map was produced by the Geological Survey of Canada. Completion of these maps made possible compilation of a new Tectonic Map of the Arctic (TeMAr), and this work is now in progress with Russian Geological Research Institute (VSEGEI) in the lead of joint international activities. The map area (north of 60o N) includes three distinct roughly concentric zones. The outer onshore rim is composed of predominantly mature continental crust whose structure and history are illustrated on the map by the age of consolidation of craton basements and orogenic belts. The zone of offshore shelf basins is unique in dimensions with respect to other continental margins of the world. Its deep structure can in most cases be positively related to thinning and rifting of consolidated crust, sometimes to the extent of disruption of its upper layer, whereas the pre-rift evolution can be inferred from geophysical data and extrapolation of geological evidence from the mainland and island archipelagoes. The central Arctic core is occupied by abyssal deeps and intervening bathymetric highs. The Eurasia basin is commonly recognized as a typical oceanic opening separating the Barents-Kara and Lomonosov Ridge passive margins, but geodynamic evolution of Amerasia basin are subject to much controversy, despite significant intensification of earth science researchin the recent years. A growing support to the concept of predominance in the Amerasia basin of continental crust, particularly in the area concealed under High Arctic Large Igneous Province, is based on two lines of evidence: (1) seismic studies and gravity modeling of deep structure of the Earth's crust suggesting a continuity of its main layers from Central Arctic bathymetric highs to the adjoining shelves, and (2) geochrolology and isotope geochemistry of bottom rocks in the central Arctic Ocean indicating the likely occurrence here of Paleozoic supracrustal bedrock possibly resting on a Precambrian basement. In the process of compilation activities all possible effort will be made to reflect in the new international tectonic map our current understanding of present-day distribution of crust types in the Arctic. It will be illustrated by smaller-scale insets depicting, along with the crust types, additional information used for their recognition (e.g. depth to Moho, total sediment thickness, geotransects, etc. This will help to integrate geological history of Central Arctic Ocean with its continental rim and provide a sound basis for testing various paleogeodynamic models.

  8. Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B.; Ionescu, C.; Hegedus, E.; Radovanovic, S.; South Carpathian Project Working Group

    2012-04-01

    The Carpathian-Pannonian system of Eastern and Central Europe represents a unique opportunity to study the interaction between surface tectonic processes involving convergence and extension and convective processes in the upper mantle. Here, we present high-resolution images of upper mantle structure beneath the region obtained using P- and S-wave finite-frequency teleseismic tomography to help constrain the geodynamical interpretation of the region. We have selected earthquakes with magnitude greater than 5.5 in the distance range 30°-95°, which occurred between 2006 and 2011. The data were recorded on 54 temporary stations deployed in the South Carpathian Project (2009-2011), 56 temporary stations deployed in the Carpathian Basins Project (2005-2007), and 131 permanent broadband stations of national networks. The relative arrival times are measured in high, intermediate and low frequency bands (0.5-2.0 Hz, 0.1-0.5 Hz and 0.03-0.1 Hz for both P-waves, 0.1-0.5 Hz, 0.05-0.1 Hz and 0.02-0.05 Hz for S-waves), and are inverted using a 3-D finite-frequency formulation to produce P- and S-wave velocity maps at depths between 75 and 600 km in the mantle. Our images show a sub-vertical slab of fast material beneath the eastern Alps which extends eastward across the Pannonian basin at depths below ~300 km. The fast material extends down into the mantle transition zone (MTZ), where it spreads out beneath the entire basin. Above ~300 km, the upper mantle below the Pannonian basin is dominated by relatively slow velocities, the most dominant of which extends down to nearly 200 km and underlies the >7km thick sediments of the Mako-Békés rift basins. We suggest that cold mantle lithospheric downwelling occurred below the Pannonian Basin before detaching in the mid-Miocene. In the Vrancea Zone, intermediate depth seismicity occurs at the NE end of a tabular upper mantle high velocity structure that trends SW along the southern edge of the South Carpathians and extends to depths of ~400 km. This sub-vertical high-velocity body is bounded by slow anomalies to the NW and SE, which extend down to the top of the MTZ. The slow anomalies correlate with outcrops of Neogene-Quaternary volcanic activities in the East Carpathians and Apuseni Mountains. No clear evidence of residual slabs is observed in the mid upper mantle beneath Eastern Carpathians; the eastern Carpathians are underlain by slow velocities everywhere above the transition zone. These observations suggest that intermediate depth seismicity in the Vrancea Zone is unlikely to be due to slab tearing, but rather could be explained by either gravitational instability or delamination of mantle lithosphere.

  9. Geodynamic evolution of the Apenninic-Maghrebian orogen based on geological and geophysical data

    NASA Astrophysics Data System (ADS)

    Lentini, F.; Guarnieri, P.; Carbone, S.; di Stefano, A.

    2003-04-01

    The orogenic belt of the central Mediterranean, which extends from northern Africa to the southern Apennines across Sicily and the Calabrian Arc (Apenninic-Maghrebian Orogen), is a orocline located between a new oceanic area, the Tyrrhenian Basin and a foreland structural domain. The latter is represented by an oceanic area, the Ionian Basin, bounded by two continental blocks, the Apulia to the north and the Pelagian Block to the south. Both these blocks have the innermost sectors involved in the orogenic process, after that they were detached giving rise since late Miocene to the deepest structural layer of the orogen: the External Thrust System. The ETS consists of a regional thrust-fold system and tectonically underlies a pile of rootless nappes, that constitute a relevant portion of the orogenic domain. Two major regional structural levels can be distinguished: the Apenninian-Maghrebian Chain and the Kabilo-Calabride Chain. The AMC represents a roof thrust system composed of inner carbonate platform units (Panormide and Inner Apenninic Platforms) and of basinal sequences, ascribed to the innermost Tethyan units or to the deformed sector of an originally outermost Ionian palaeobasin. The AMC is also characterized by the general decoupling of the enormous volumes of Tertiary silicoclastics. The KKC is composed by basement nappes, originated by the delamination of the European margin. Prolongate geological observations, integrated with geophysical data, along the orogen allow to restore a palaeogeographic picture and permit to outline the geodynamic evolution. A wide Tethyan basin, in which the Sicilide and Liguride sequences deposited, can be identified; it originated since late Jurassic and was located between the European margin of the Sardinia Block and the Maghrebian Block, which has been recognized by CROP-Mare seismic lines in the southern Tyrrhenian Sea and interpreted as basement of the carbonate platform sequences of Panormide units. Between the latter and the Afro-Adriatic foreland a basinal area has been identified and ascribed to part of the original Ionian oceanic basin, in which Ionian sequences (Imerese, Sicanian, Lagonegro Units) deposited. After a previous alpine orogenesis, whose evidences occur only in northern Calabria, the convergence resulted in the final closure of the Tethys realm. The subduction of the Tethyan slab became established along with the structural organization of the units of the European margin into a sliced basement chain (Kabylo-Calabride Chain) and emplacement of an accretionary wedge constituted by the Sicilide and Liguride Units. This is evident from: the development of a back-arc basin with oceanic crust (Balearic Basin) with consequent anticlockwise rotation of the Sardo-Corsican Block, by the formation of the calc-alkaline volcanic arc of Sardinia, and by the structural organization of an Africa-vergent accretionary wedge (Sicilide/Liguride mèlange complex). The end of this first phase of convergence is testified by the cessation of calc-alkaline volcanic activity, which coincides with the stop of anticlockwise rotation of the Sardo-Corsican Block at the Burdigalian-Langhian boundary. Geological data show that, during the same time interval, the orogenic areas suffered a tectonic phase which resulted in the wide superposition of units of internal origin (Sicilide and Liguride Units) upon the siliciclastic covers belonging to external sectors. Since Middle Miocene, a second phase led to the structural organization of the inner carbonate platform units (Panormide Units), detached from their basement, represented by the continental Maghrebian crust. The platforms thrust onto the Ionian basinal units (Imerese/Sicanian/M. Judica Units). The involvement of these units in the deformation front of the chain marks the beginning of subduction of the Ionian crust, and the progressive collision of the crustal back-stop of the chain against the Afro-Adriatic margins. On the African foreland, the crustal lineaments inherited from the Mesozoic palaeogeography, show an oblique direction with respect to that of the deformation front of the chain, conditioning its advance and provoking a diachronous collision from west to east. This is expressed in the indentation of the continental margin and the formation of a transcurrent junction (South Tyrrhenian System) oriented about NW-SE, which became active in the late Tortonian in western Sicily and is still active in eastern Sicily. Collision in the west is thus contemporaneous with subduction of the Palaeo-Ionian to the east, a phenomenon to which the progressive opening of the Tyrrhenian back-arc basin has been attributed. The earliest evidence for extension in the Tyrrhenian stems from the Middle Miocene, but oceanization, with the formation of new basaltic (tholeiitic) crust in the Vavilov Basin started only during the Pliocene, contemporaneously with the formation of a calc-alkaline volcanic arc. The Plio-Quaternary evolution of the southern Tyrrhenian margin was linked to the retreat of the Ionian subduction hinge, which lead to the development of a remnant-back-arc basin (Vavilov Basin), of a new back-arc basin with tholeiitic crust (Marsili Basin) and of a new calc-alkaline volcanic arc represented by the Aeolian Islands. Retreat of the Ionian subduction hinge occurred simultaneously with the roll-back of the African and Apulian margins. At the same time a complex system of transcurrent/transtensive structures became active in Sicily, which gave rise to the collapse of the Sicilian margin towards the Tyrrhenian, involving also the internal portion of the chain, that is, the forearc basin, in a geodynamic context located in the framework of the Tyrrhenian transtensional tectonics. The structural elements constituting the forearc basin of the orogenic system Apennines/Calabrian Arc/Sicily are recognizable on land and in the Tyrrhenian offshore. Retreat of the Ionian subduction hinge, coeval with the roll-back of the Africa continental crust, leads to segmentation of the forearc basin and the southeastward shifting of the Calabrian Arc due to its higher grade of freedom compared to Sicily and the Apennines, where, on the contrary, continental collision takes place. The recent trends might represent the response to a further phase of retreat of the subduction hinge, which leads to the structural organization of a new back-stop and a correspondent collapse behind it.

  10. Geodynamic and Magmatic Evolution of the Eastern Anatolian-Arabian Collision Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, Mehmet

    2014-05-01

    The Eastern Anatolian-Arabian Collision Zone represents a crucial site within the Tethyan domain where a subduction system involving a volcanic arc (i.e. Cretaceous to Oligocene Pontide volcanic arc in the north) associated with a large subduction-accretion complex (i.e. Cretaceous to Oligocene Eastern Anatolian Accretionary Complex i.e. "EAAC" in the south) turned later into a major continental collision zone that experienced a series of geodynamic events including lithospheric delamination, slab-steepening & breakoff, regional domal uplift, widespread volcanism and tectonic escape via strike slip fault systems. The region includes some of the largest volcanic centers (e.g. Karacadaǧ, Aǧırkaya caldera, Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) as well as the largest transform fault zones in the Mediterranean region. A recent geodynamic modeling study (Faccenna et al., 2013) has suggested that both the closure of the Tethys Ocean and the resultant collision were driven by a large scale and northerly directed asthenospheric mantle flow named the "Tethyan convection cell". This convection cell initiated around 25 Ma by combined effects of mantle upwelling of the Afar super plume located in the south, around 3,000 km away from the collision zone and the slab-pull of the Tethyan oceanic lithosphere beneath Anatolia in the north. The aforementioned mantle flow dragged Arabia to the north towards Eastern Anatolia with an average velocity of 2 cm/y for the last 20 My, twice as fast as the convergence of the African continent (i.e. 1 cm/y) with western and Central Turkey. This 1 cm/y difference resulted in the formation of the left lateral Dead Sea Strike Slip Fault between the African and Arabian plates. Not only did this mantle flow result in the formation of a positive dynamic topography in the west of Arabian block, but also created a dynamic tilting toward the Persian Gulf (Faccenna et al., 2013). Another remarkable indication of the advance of the mantle flow below Arabia is the northward propagation of within-plate alkaline basaltic volcanism which initiated ~30 Ma around the Afar region to SE Turkey in a time period of ~20 My. The northernmost portion of this alkaline basaltic province is represented by the Karacadaǧ volcanic complex in SE Turkey which covers a footprint area of 10,000 km2 and consists of lavas ranging in age from ~11 Ma to 100 Ky. The Early Stage volcanism of Karacadaǧ was dominated by magmas derived from a shallower metasomatized lithospheric mantle source, in contrast to the Late Stage volcanism which was sourced by a garnet-bearing, deep asthenospheric mantle with Sr, Nd and Pb isotopic composition transitional between Red Sea MORB and Afar plume (Keskin et al., 2012). After the initial contact of the Arabian and Eurasian continents at ~15 Ma, the subducted Tethyan slab steepened beneath the large EAAC, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly caused a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south (Keskin, 2003). A hot and buoyant asthenosphere emplaced beneath the thinned lithosphere, which is represented mostly by a mélange material, and resulted in the formation of a regional domal uplift. Dehydration of the sunken slab accompanied with decompression of the upwelling asthenospheric mantle generated magmas with a subduction signature which was imprinted on a relatively enriched source chemistry across E Anatolia in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched Afar-type asthenospheric mantle to flow to the north through the slab-window. As a result, the subduction-modified (i.e. due to slab dehydration) E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. The eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkaline basalts in the N of Lake Van) can be interpreted as the indication of the formation of the slab-window beneath the region due to tearing of the slab. I also argue that spatial and temporal presence of a variable subduction signature can be linked to the persistent dehydration from the deep lying slab below the region. Melting models indicate that there is a temporal change in source characteristics across the collision zone from a garnet-dominated deeper mantle-source during the Miocene to a spinel-dominated shallower source during the Quaternary. I argue that this notable change can either be linked to the derivation of variable fractions of magmas from a newly formed lithospheric mantle by cooling of the asthenosphere along the contacts with the crust (i.e. reformation of lithospheric mantle), or to the mineral phase transformations in the mantle from garnet to spinel in response to decompression. AFC and EC-AFC models reveal that the importance of the AFC process decreased broadly in time while each volcano experienced a unique replenishment and fractionation history in the crustal magma chambers. REFERENCES Faccenna, C., Becker, T.W., Jolivet, L. and Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback, Earth and Planetary Science Letters, 375, 254-269, doi: 10.1016/j.epsl.2013.05.043 Keskin, M. (2003).Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters, 30(24). 8046, doi:10.1029/2003GL018019 Keskin M., Chugaev A.V., Lebedev V.A., Sharkov E.V., Oyan V. and Kavak O. (2012). The Geochronology and Origin of Mantle Sources for Late Cenozoic Intraplate Volcanism in the Frontal Part of the Arabian Plate in the Karacada Neovolcanic Area of Turkey. Part 2. The Results of Geochemical and Isotope (Sr-Nd-Pb) Studies. Journal of Volcanology and Seismology, 6(6), 361-382, doi: 10.1134/S0742046312060048

  11. Variations in grain size and viscosity based on vacancy diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro M.; Ammann, Michael W.

    2015-08-01

    The effect of grain size on mantle viscosity is comparable to that of temperature and pressure. The current 3-D distribution of grain size in the mantle is, however, unknown. To explore the possible variability of grain size, we use the following: geodynamic inferences of effective viscosity, vacancy diffusion rates in upper mantle minerals and perovskite in the lower mantle, lateral variations in temperature derived from seismic images, and different geotherms. An important outcome of this modeling is a new mapping of lateral viscosity variations throughout the mantle. The corresponding 3-D variations in grain size are characterized by 2 orders of magnitude changes. We find a correlation between grain size variability in the mantle and absolute viscosity changes with depth. Our findings suggest that the traditional assumption of Arrhenius temperature dependence for vacancy diffusion in the lower mantle is not sufficient to constrain the deformation mechanisms that determine its effective bulk viscosity.

  12. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kotler, P. D.; Khromykh, S. V.; Vladimirov, A. G.; Navozov, O. V.; Travin, A. V.; Karavaeva, G. S.; Kruk, N. N.; Murzintsev, N. G.

    2015-06-01

    Geological and new geochronological data are summarized for the Kalba-Narym granitic batholith in eastern Kazakhstan, and their geodynamic interpretation is suggested. In the structure of the batholith, we consider (from late to early) the Kunush plagiogranitic complex, the Kalguta granodiorite-granitic association, and the Kalba granitic, Monastery leucogranitic, and Kainda granitic complexes. The granitic complexes of the Kalba-Narym batholith were formed between the Carboniferous-Permian and the Early-Middle Permian (˜30 Ma). New data indicate that formation of the Kalba-Narym batholith was related to the activity of the Tarim mantle plume. Heating of the lithosphere by the plume coincided with postcollision collapse of the orogenic structure and led to the crust melting and formation of the studied granitic complexes in a relatively short period.

  13. Generations of spreading basins and stages of breakdown of Wegener's Pangea in the geodynamic evolution of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.

    2008-03-01

    Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.

  14. Installation of two high-sensitivity laser strainmeters in a new underground geodynamical observatory (GEODYN) at Canfranc (Spain)

    NASA Astrophysics Data System (ADS)

    Crescentini, L.; Botta, V.; Amoruso, A.; Bettini, A.

    2012-04-01

    High-sensitivity wide-band strain measurements allow an advanced study of different geodynamic phenomena, both local and global, in a spectrum ranging from short period seismic waves to tectonic deformation. Among the latest results produced by the few high-sensitivity wide-band laser interferometers operating allover the world, the analysis of the strain recorded by the Gran Sasso (Italy) laser interferometers before and after the 2009 L'Aquila earthquake allowed putting tight constraints on earthquake nucleation processes and other pre-seismic phenomena, and detecting the slow diffusive propagation of an aseismic rupture during the first hours following the main event.The Gran Sasso interferometers are operating since several years, proving their high reliability. An improved version of the Gran Sasso interferometers have been recently installed in the Canfranc (Spain) underground Laboratory (LSC). The LSC is located at depth in one of the most seismically active areas in Western Europe, at the Pyrenean chain that marks the boundary between the European plate and the Iberian microplate. These features make it particularly suitable and interesting for hosting an advanced integrated geodynamic observatory (GEODYN), of which the interferometers are part. The first tests on strain data evidence a much lower noise level with respect that the Gran Sasso installations, expecially in the frequency band 0.0001 to 0.1 Hz, suggesting the capability of producing clear records of low-frequency seismic waves, Earth free oscillations, and possible local aseismic stress release. We will give a technical description of the installation, show some examples of recordings, and discuss the local distortion of the deformation field, as obtained by comparing Earth tide predictions and observations.

  15. Estimation of Non-Seasonal Oceanic Mass Redistribution and its Geodynamic Effects from the Topex/Poseidon Observation

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ray, Richard D.; Au, A. Y.

    1999-01-01

    Mass redistribution in terms of angular momentum will change the Earth's rotation under the conservation of angular momentum. It also changes the external gravitational field according to Newton's gravitational law. These small geodynamic variations can be measured very accurately by modem space geodetic techniques. We report on new estimates of the oceanic tidal angular momentum and hence the tidal variations in the Earth's rotation rate and polar motion. These are deduced from the new tidal solutions GOT99 and TPXO.3, plus M2 and Mf estimates (with error bars) from TPXO.4a. Comparisons with observed diurnal/semidiurnal tidal variations are generally similar to previous model estimates. Comparisons of models and observations of Mf polar motion are confused, with neither models nor observations agreeing among themselves or with each other. Part of this is caused by differences in Mf currents; model TPXO.4 shows current-intensive Rossby modes along western boundaries of major basins, which are indeed expected on theoretical grounds. Unfortunately, there are no reliable in situ observations of Mf currents useful for comparing models. On non-tidal oceanic mass redistribution we compute the principal components of the multi-year T/P sea surface height (SSH) field using EOF (empirical orthogonal functions) taking into consideration of the latitude-dependent area weighting. Emphasis is placed upon non-seasonal and interannual oscillations on regional scales, including ENSO and the North Atlantic Oscillation. Steric corrections to the observed SSH due to sea surface temperature changes (which has no geodynamic effects) is now under study using POCM ocean model output.

  16. Uzon-Geysernaya volcano-tectonic depression: geodynamics phenomena last years

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia

    2010-05-01

    One of the most active volcanic arcs in the Pacific Rim, Kamchatka is also one with poor geophysical constraints on its shallow magma plumbing systems. Uzon calderas lie within a graben approximately 20 km wide running beneath the eastern Kamchatka volcanic group. Cross sections of the shallow crustal graben show that it steps WNW from its southeasterly bounding fault beneath Kikhpinych volcano, deepening toward Uzon caldera. Uzon Caldera Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia; Kamchatka Peninsula Volcano Number: 1000-17 Volcano Type: Calderas Last Known Eruption: 200 AD +/- 300 years Summit Elevation: 1617 m (5,305 feet) Coordinates: 54.50°N, 159.97°E Kikhpinych volcano Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia, Kamchatka Peninsula Volcano Number: 1000-18 Volcano Type: Stratovolcanoes Last Known Eruption: 1550 (?) Summit Elevation: 1552 m (5,092 feet) Coordinates: 160.253°N, 160.253°E The twin Uzon and Geysernaya calderas, containing Kamchatka's largest geothermal area, from a 7x18 km Uzon-Geysernaya volcano-tectonic depression that originated during multiple eruptions during the mid-Pleistocene. Post-caldera activity was largely Pleistocene in age and consisted of the extrusion of small silicic lava domes and flows, maar formation and several Holocene phreatic eruptions. The extensive high-temperature hydrothermal system includes the many hot springs, mudpots, and geysers of the Valley of the Geysers on the SE margin of the Uzon-Geysernaya depression. Hydrothermal explosions took place in the western part of caldera in 1986 and 1989. The Valley of the Geysers in the far eastern portion of Uzon caldera is considered derived from shallow meteoric water in contact with a heat source associated with Kikhpinych volcano The general structure places a deep aquifer shallower than a depth of about 2 km with the top of a cooling magma chamber at depths greater than 4 km from beneath the eastern side of the caldera complex. Geological observations of extruded lavas and other deposits over the course of Uzon's history show that there have been episodic basalt intrusions into a granitic magma chamber, with the system becoming progressively more crystallized and lower in temperature with time [Belousov et al., 1984; Leonov et al., 1991]. By study of RADARSAT-1 synthetic aperture radar (SAR) data the interferometric SAR (InSAR) images of surface deformation at Uzon caldera was computed [Lundgren and Lu, 2006]. From 2000 to 2003 approximately 0.15 m of inflation occurred at Uzon caldera, extending beneath adjacent Kikhpinych volcano. This contrasts with InSAR data showing no significant deformation during either the 1999 to 2000, or 2003 to 2004, time periods. The preferred source model is an irregularly shaped, pressurized crack, dipping near 20° to the NW, 4 km below the surface. The geometry of this solution is similar to the upper boundary of the geologically inferred magma chamber. In the judgment of the authors, extension of the surface deformation and source to adjacent Kikhpinych volcano, without an eruption, suggests that the deformation is more likely of hydrothermal origin, possibly driven by recharge of the magma chamber. A natural disaster - big landslide with volume estimated 20x106 m3 - occurred on June 3, 2007 in the Valley of the Geysers (Leonov, 2007, Kugaenko, 2008). The results of landslide investigation show that heated rocks were involved in failure. One of the main reasons of landslide is weakening of semi-rock pumice soils due to their steaming during hidden unloading of hydrothermal system. Local field observations were organized in the eastern part of the Uzon-Geysernaya depression in 2008 and 2009. Main results of seismic investigation: - Shallow weak seismicity connected with Kikhpinych volcanic center and eastern part of the Uzon-Geysernaya depression was discovered; - Seismicity has spasmodic (swarm) type. - The majority of earthquakes are connected with areas of hydrothermal activity in western slop of Kikhpinych volcanic massif. - Seismicity is located in part of caldera displacement, discovered by INSAR data. - By our mind, the seismicity and Uzon caldera inflation (as a result of activation of magma chamber or hydrothermal system) effected and destructed the caldera slop by activation of fissures and by change of pore-fracture configuration. Summarizing data about the tectonics, the raising of east slope of depression, the landsliding and local seismicity, we can suppose that all these phenomena are connected with the deep processes under Uzon-Geysernaya depression and Kikhpinuch volcano are the reason of all these events. It is the indication of the renewal of the dynamics within eastern part of the calderas. References: Belousov, V. I., E. N. Grib, and V. L. Leonov (1984), The geological setting of the hydrothermal systems in the Geysers Valley and Uzon caldera, Volcanol. Seismol., 5, 67-81. Kugaenko, Yu. (2008), Geodynamic processes as the risk factor of June 3, 2007 landslide in the Valley of the Geysers (Kamchatka, Russia), Proceedings of the First World Landslide Forum. 18-21 November 2008, Tokio, Japan, 333-336. Leonov, V. L., E. N. Grib, G. A. Karpov, V. M. Sugrobov, N. G. Sugrobova, and Z. I. Zubin (1991). Uzon caldera and Valley of Geysers, in Active Volcanoes of Kamchatka, edited by S. A. Fedotov and Y. P. Masurenkov, Nauka, Moscow, 92- 141. Leonov, V.L. (2007) Valley of the Geysers struck by large destructive landslide and related flood. Bulletin of the Global Volcanism Network (BGVN 32:07). 07/2007. Lundgren, P., Lu, Zh. (2006) Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophysical Research Letters. 33, L06301, doi:10.1029/2005GL025181

  17. About the Relation Between Geodynamics of the Sedimentary Basin and the Properties of Crude Oil

    NASA Astrophysics Data System (ADS)

    Muslimov, R.; Plotnikova, I.

    2012-04-01

    Earlier, we wrote and reported about the modern geodynamic activity of the territory of South-Tatar arch, where the Romashkino oil field. We identified a periodic change in flow rates of oil and oil density at Romashkino and other oil fields of the South Tatar arch. Now we have studied the composition of oils and bitumoids from uneven (in terms of age) deposites of the sedimentary cover and basement rocks in the zones of possible hydrocarbon seepage in the central squares of Romashkinskoye field. The results of the comparative studies allowed us to come to the conclusion that the formation of oil-bearing deposits of Romashkinskoye field owes to the income and mixing of hydrocarbons (HC) fluids from different sources. The analysis of geological and production data (GPD) that was held during the many years of exploitation of the development wells of Romashkinskoye field by TatNIPIneft under the direction of I.F. Glumov suggests contemporary inflow of hydrocarbons in the industrial oil reservoir of the Pashi horizon of Romashkinskoye field and the existence of localized areas of inflow of new portions of HC. A number of criteria was worked out in the analysis of the GPD; that allowed us to identify among the total number of wells those, in which the process of hydrocarbon seepage was recorded with the greatest probability. Such wells were called anomalous. One of the directions of this research was to study the geochemical characteristics of oil from anomalous wells and to determine the degree of similarity and difference between this oil and the oil from both normal wells (in which the signs of deep seepage is not recorded), and bituminoid from the crystalline basement and sedimentary cover. If the hypothesis of a recurrent (also in modern times) influx of deep hydrocarbon is correct, then the oil from the anomalous wells should have specific features in comparison with the wells located outside the areas of the expected inflow. The results of geochemical studies of oil and organic matter in sedimentary cover rocks that were carried out within the last decade gave us new and unexpected conclusions. First, on the basis of pyrolysis it was found that the top agent of domanikits of the upper Devonian (which were traditionally considered to be a source rock for most crudes of the Volga-Ural region) is characterized by a low degree of catagenetic maturity. These rocks were not submerged to the depth of more than 2.5 km and were not included in the main area of oil and gas formation in most parts of its distribution within the Republic of Tatarstan, which corresponds to the main territory of North- and South-Tatar arch with surrounding areas of deflections and depressions. Comprehensive study of oil from the anomalous wells showed that these oils have certain characteristics different from normal oil wells, therefore, the hypothesis of a modern inflow of hydrocarbons is consistent and specific studies of this process should be continued. The estimated (by biomarker parameters) lack of genetic relationship between oil from producing under-domanik horizons (Pashi, Timansky, Ardatovsky and Vorobyevsky) and the top agent in domanikits indicates the need for searching of the sources of oil generation and confirms the viability of the hypothesis of deep origin of HC and their inflow into the sedimentary cover through the crystalline base. The oil from the anomalous wells should be subject to special investigations in the monitoring mode designed to examine the isotopic systematics of Sr and Nd, isotope characteristics of helium, carbon, hydrogen, nitrogen in the dissolved gases. The design of these studies needs to be linked, in the first place, with the seismic events continuing on the territory of Tatarstan, as the relationship between the change of the carbon isotopic composition and the seismic events has previously been established. Also in the condition of a recurrent inflow of new portions of the deep HC, it would be logical to assume the changes in the isotopic composition of elements of the dissolved gas.

  18. What can zircon ages from the Jack Hills detrital zircon suite really tell us about Hadean geodynamics?

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    As the only direct sample of the Hadean Earth, detrital zircon grains from the Jack Hills, Western Australia, have been the subject of intense investigation over the almost three decades since their discovery. A wide variety of geochemical and isotopic analyses of these grains, as well as their mineral inclusions, have been used variously to support two fundamentally different models for Hadean geodynamics: (i) Some form of (not necessarily modern-style) plate recycling generating felsic (continental-type?) crust at the boundaries [1, 2], or conversely (ii) the persistence of a long-lived, stagnant basaltic lid within which magmatism occurred as a result of internal temperature perturbations and/or impacts [3, 4], a model also generally consistent with a wide range of observations from post-Hadean geochemical reservoirs. Despite the considerable time and resources expended, the majority of these studies uncritically accept the individual U-Pb zircon ages, even though their veracity is key to many of the interpretations [5, 6]. We report here the results of an in-depth evaluation of all published (and new) U-Pb ages from the Jack Hills zircon suite in order to define age populations that can be used with a high degree of confidence in geodynamic interpretations. A notable problem in the interpretation of U-Pb data from ancient zircon grains (including those as young as the Neoarchean) is that disturbance of the systematics even several 100 Ma after crystallization causes data to spread along the concordia curve without becoming discernably discordant within the relatively large error bounds associated with U/Pb ages from in situ dating methods (e.g. SIMS). While 207Pb/206Pb ages are typically more precise, individually they provide no means to detect Pb-loss-induced younging. However, if two or preferably more analyses have been made in the same zircon growth zone, a reasonable evaluation of the possibility of Pb-loss can be made. In the available Jack Hills zircon dataset, only 111 grains have been analysed at least twice and of these, only 48 give a consistent internal age, while only 14 have been analysed more than twice and can strictly be considered to yield true ages. Two resulting age peaks at 4.18 - 4.08 Ga and 4.05 - 3.98 Ga potentially represent major magmatic events in the Hadean. In order to explain ages >4.18 Ga, a magmatic event as old as the oldest reliable Jack Hills zircon age of 4.374 Ga is also required. The significance of this limited number of magmatic events for Hadean global geodynamic models will be discussed. References: [1] Harrison, T.M. et al. Geochim Cosmochim Ac 69 (10), A390-A390 (2005), [2] Peck, et al. Geochim Cosmochim Acta 65 (22), 4215-4229 (2001), [3] Kemp, A.I.S. et al. EPSL, 296 (1-2), 45-56 (2010), [4] Kamber, B.S., et al., Contrib Mineral Petr 145 (1), 25-46 (2003), [5] Cavosie, A.J., et al., Precambrian Res 135 (4), 251-279 (2004). [6] Holden P, et al., Int. J. Masspectrometry, 286, 53-63 (2009)

  19. Geodynamical Interpretation of Crustal and Mantle Shear-Wave Velocity Structures Beneath the Carpathian-Pannonian Region

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Stuart, Graham; Houseman, Gregory; Grecu, Bogdan; Ionescu, Constantin; Hegedüs, Endre; Radovanović, Slavica; Shen, Yang; South Carpathian Project working Group

    2013-04-01

    The Carpathian-Pannonian system of Eastern and Central Europe represents a unique opportunity to study the interaction between surface tectonic processes involving convergence and extension, and convective processes in the upper mantle. The South Carpathian Project (SCP), a major temporary deployment (2009-2011) of seismic broadband systems extending across the eastern Pannonian Basin and the South Carpathian Mountains was set up with the purpose of bringing constraints on the geodynamical processes that have shaped the region. Imaging the seismic velocity structure of the crust and the upper mantle helps us to understand the structure and geodynamical evolution of this part of central Europe. Here, we present high-resolution images of both crustal and upper mantle shear-wave velocity structures beneath the Carpathian-Pannonian region using surface waves obtained from ambient noise tomography, and finite-frequency teleseismic tomography using S-wave arrivals, from 54 stations of the South Carpathian Project (SCP, 2009-2011), 56 stations of the Carpathian Basins Project (CBP, 2005-2007) and 131 national network broadband stations. For ambient noise tomography, we computed cross-correlations of vertical component continuous ambient seismic noise recordings for all possible pairs of stations and stacked the correlated waveforms over 1-2 years for the temporary stations and up to 5 years for permanent stations to estimate Rayleigh wave empirical Green's functions. Over 5700 final Rayleigh wave Green's functions were selected for the measurement of group velocity dispersion curves between 4s and 40s using the multiple-filter analysis technique. Group velocity maps are first computed on a grid discretized with 0.2°x0.2° steps from a non-linear 2-D tomographic inversion of measured group velocity dispersion curves. We then inverted the Rayleigh wave group velocity at each location to obtain the 3-D shear-wave velocity structure of the crust and uppermost mantle beneath the Carpathian-Pannonian region. In the finite-frequency teleseismic tomography of S waves, we have selected earthquakes with magnitude greater than 5.5 in the distance range 30°-95°, which occurred between 2006 and 2011. Using multi-channel cross-correlation technique, over 29661 and 41875 relative S arrival times were measured in high and intermediate frequency bands (0.1-0.5 Hz and 0.05-0.1 Hz) respectively. The relative arrival times are inverted for S-wave velocity distribution in the upper mantle according to the 3-D finite frequency kernel formulation. Our shear-wave velocity models provide a uniquely complete and relatively high-resolution view of the crustal and upper mantle structures in the region. We will discuss the interpretations of these velocity variations for the formation and geodynamical evolution of the lithosphere and upper mantle of the Carpathian-Pannonian region.

  20. Digital files for northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps, stratigraphic columns, descriptions of map units, and descriptions of metallogenic belts

    USGS Publications Warehouse

    Nokleberg, Warren J.; Badarch, Gombosuren; Berzin, Nikolai A.; Diggles, Michael F.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Miller, Robert J.; Naumova, Vera V.; Obolensky, Alexander A.; Ogasawara, Masatsugu; Parfenov, Leonid M.; Prokopiev, Andrei V.; Rodionov, Sergey M.; Yan, Hongquan

    2004-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. This publication contains a a series of files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps descriptions of map units and metallogenic belts, and stratigraphic columns. This region includes Eastern Siberia, Russian Far East, Mongolia, Northeast China, South Korea, and Japan. The files include: (1) a geodynamics map at a scale of 1:5,000,000; (2) page-size stratigraphic columns for major terranes; (3) a generalized geodynamics map at a scale of 1:15,000,000; (4) a mineral deposit location map at a scale of 1:7,500,000; (5) metallogenic belt maps at a scale of 1:15,000,000; (6) detailed descriptions of geologic units with references; (7) detailed descriptions of metallogenic belts with references; and (8) summary mineral deposit and metallogenic belt tables. The purpose of this publication is to provide high-quality, digital graphic files for maps and figures, and Word files for explanations, descriptions, and references to customers and users.

  1. Local, regional and global signals in longterm time series of gravity, tilt and strain at the Geodynamic Observatory Moxa/Germany

    NASA Astrophysics Data System (ADS)

    Jahr, T.; Kukowski, N.; Schindler, P.; Weise, A.; Jentzsch, G.

    2012-04-01

    For the past 15 years geodynamic signals in gravity, tilt and strain are recorded continuously at the Observatory Moxa in Thuringia/Germany. In the period range between minutes and years signals of interest are the free modes of the Earth, the tides, the polar motion with the Chandler Wobble up to the very long- and non-periodic effects. These global signals can be overlain or masked by local signals, caused by sources in the nearby surroundings of the observatory. These recorded local signals originate from fluctuations of meteorological and hydrological parameters as well as by anthropogenic effects. Modelling and elimination of the effects of environmental parameters in the time series are a great challenge for geodynamic observatories worldwide. For the past several years, the work at the Observatory Moxa is focusing on the separation of local, regional and global parts of the signals. Here, we present several signals in gravity, tilt and strain, e.g. barometric pressure, preciptation and groundwater level, separated from our time series, showing the broad application in geodynamics.

  2. Numerical investigation of the geodynamic mechanism for the late Jurassic deformation of the Ordos block and surrounding orogenic belts

    NASA Astrophysics Data System (ADS)

    Sun, Yujun; Dong, Shuwen; Zhang, Huai; Shi, Yaolin

    2015-12-01

    Orogenic belts have developed along the edges of the stable Ordos block, in northern China. Three main geodynamic models have been proposed to explain the formation of these orogenic belts. They have included the collision between the North China and South China blocks, subduction of the Pacific plate, and stresses transmitted over long distances from the closure of the Mongolia-Okhotsk ocean. However, these explanations are still controversial and not universally accepted, leaving the mechanisms that formed the orogenic belts poorly understood. To address these fundamental questions, we developed a 3D numerical model using the finite element method to explore the geodynamic mechanism for the late Jurassic deformation of the Ordos block and its surrounding orogenic belts. We investigated the effect of different dynamic regimes on the late Jurassic deformation of this region. Our primary results suggest that strong and stable Ordos block remains undeformed despite its location at the center of a region of deformation. East-west trending fold-and-thrust belts would have developed along the north and south edges of the Ordos block during the closure of the Mongolia-Okhotsk ocean or the collision between the North China and South China blocks. North-south trending fold-and-thrust belts would have developed along the east and west edges of the Ordos block due to subduction of the Pacific plate. However, the paleo-stress field in the late Jurassic indicates that the orientations of the maximum compressive principle stress were nearly perpendicular to the edge of the Ordos block and the compressive deformation around it was coeval. It is difficult to explain the distribution of belts of deformation with a single stress regime. Our numerical model reveals that multi-direction convergence pattern with time during the transformation of these three regimes can be used to interpret the formation and deformation styles of ringed mountains around the Ordos block during the late Jurassic. This proposed mechanism results in many insights into the Mesozoic tectonic deformation and mountain building of this region.

  3. Origin and geodynamic significance of the early Mesozoic Weiya LP and HT granulites from the Chinese Eastern Tianshan

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Juan; He, Zhen-Yu; Zhang, Ze-Ming; Klemd, Reiner; Xiang, Hua; Tian, Zuo-Lin; Zong, Ke-Qing

    2015-12-01

    The Chinese Tianshan in the southwestern part of the Central Asian Orogenic Belt (CAOB) is characterized by a variety of high-grade metamorphic rocks, which provide critical constraints for understanding the geodynamic evolution of the CAOB. In this paper, we present detailed petrological and zircon U-Pb geochronological studies of the Weiya low-pressure and high-temperature (LP-HT) granulites of the Chinese Eastern Tianshan. These granulites were previously considered to be a product of a regional metamorphic orogenic event. Due to different bulk-rock chemistries the Weiya granulites, which occur as lenses within the contact metamorphic aureole of the Weiya granitic ring complex, have a variety of felsic-pelitic and mafic granulites with different textural equilibrium mineral assemblages including garnet-cordierite-sillimanite-bearing granulites, cordierite-sillimanite-bearing granulites, cordierite-orthopyroxene-bearing granulites, and orthopyroxene-clinopyroxene-bearing granulites. Average P-T thermobarometric calculations and conventional geothermobarometry indicates that the Weiya granulites underwent early prograde metamorphism under conditions of 600-650 °C at 3.2-4.2 kbar and peak metamorphism of 750-840 °C at 2.9-6.3 kbar, indicating a rather high geothermal gradient of ca. 60 °C/km. Zircon U-Pb LA-ICP-MS dating revealed metamorphic ages between 244 ± 1 to 237 ± 3 Ma, which are in accordance with the crystallization age of the Weiya granitic ring complex. We suggest that the formation of the Weiya granulites was related to contemporaneous granitic magmatism instead of a regional metamorphic orogenic event. In addition, a Late Devonian metamorphic age of ca. 380 Ma was recorded in zircon mantle domains from two pelitic samples which is consistent with the metamorphic age of the Xingxingxia metamorphic complex in the Chinese Eastern Tianshan. This suggests that the mantle domains of the zircon grains of the Weiya granulites probably formed during the Late Devonian regional metamorphism and were overprinted by the Early Triassic contact metamorphism. Therefore, Early Triassic geodynamic models for the southwestern part of the CAOB, which are based on a previously suggested regional metamorphic orogenic event of the Weiya granulites, need to be viewed with caution.

  4. Research on absolute gravity variations in geodynamic laboratory in Książ in the period of 2007- 2011

    NASA Astrophysics Data System (ADS)

    Kaczorowski, Marek; Olszak, Tomasz; Walo, Janusz; Barlik, Marcin

    2012-12-01

    In 2006 a gravimetric pavilion was installed inside the Geodynamic Laboratory (LG) in Książ. The pavilion was equipped with two pillars intended to serve relative and absolute gravimetric measurements. Installation of measurement platform for absolute gravity measurements inside gravimetric pavilion of LG made it possible to perform four sessions of absolute gravity measurements: two of them in 2007 (June 10-12 and Nov. 21-22), one in 2008 (Apr. 21-22) and one in 2011 (June 19-21). In 2007 the absolute measurements were performed using two FG5 ballistic gravimeters. In April 2007 the measurements were performed by Dr Makinen from Geodetic Institute of Finnish Academy of Science with application of FG5 No. 221 absolute gravimeter. In June 2007 and in the years 2008 and 2011 such gravimetric measurements were performed by the team from Department of Geodesy and Astronomical Geodesy of Warsaw University of Technology using FG5 No. 230 absolute gravimeter. Elaboration of observation sessions from both gravimeters was performed in the Department of Higher Geodesy following the procedures used in constituting of uniform gravimetric system of geodynamic polygons reference. This constituting of gravimetric system comprised inter alia application of identical models of lithospheric tides (global model by Wenzel, 1997) and ocean tides (Schwiderski, 1980) (reduction of absolute measurements with tidal signals). Observations performed during summer of 2007, autumn of 2007, and spring of 2008 and 2011 indicated existence of small changes of absolute gravity of the order of 1 Gal. Maxima of accelerations appear in the spring period, and minima in the autumn period. This effect is connected with the influence of global hydrological factors the annual amplitude of which is ca 1,5 Gal and achieve extreme values in the spring-autumn interval. Very small value of observed amplitude of gravity changes in the period of extreme variability suggests that the observed gravity changes in LG are caused only by global phenomenon. This proves high degree of "independence" of gravimetric measurement base in LG from the local environmental factors such as ground water level variations, ground humidity, impact of snow cover, etc. At this moment the instrumental environment of absolute measurements obtains particular value, especially in the case of the tiltmeters and relative the gravimeter Lacoste& Romberg (LR-648). The relative gravity measurements as performed simultaneously with absolute gravity measurements enable us to determine the local tidal ephemeredes which makes it possible to replace the global tidal modal with ocean tidal model with the more realistic, locally determined tidal parameters (the local tidal ephemeredes).

  5. Neogene tectonics and modern geodynamics and seismicity of Pannonia north-eastern remote area (Ukrainian Transcarpathian yield)

    NASA Astrophysics Data System (ADS)

    Lozynak, Petro; Nazarevych, Andriy; Nazarevych, Lesya

    2010-05-01

    Pannonia north-eastern remote area (Ukrainian Transcarpathian yield) joins to East (Ukrainian) Carpathians and their geodynamic mode is interdependent from the alpine stage until now. Due to the detailed study in the last few years of structures of surface of basement and sedimentary layers of the Transcarpathian yield of postalpine ages (neogene - from early Miocene to Sarmatian and farther) (see Lozynak at al., 2002-2007) we have the possibility to trace the Neogene's tectonics of the region and its connection with modern geodynamics and seismicity of Ukrainian Transcarpathians and adjoining territories of Slovakia, Hungary and Romania. These data indicate that active orogenic processes (dominance of compression caused by a plate-tectonic processes) in this region to beginning of early miocene made off and began the process of formation of the Transcarpathian yield in his modern view (due to an output on the first plan of the plum-tectonic processes caused by Pannonian asthenolite?) (see Nazarevych A. and Nazarevych L., 2000-2007). The process of formation (origin) of yield (and the proper accumulation of sedimentary layers) began in his east part (in the area of border with Romania (Siget - Solotvyno)) at the beginning of early Miocene (about 23 million years ago), continue in north-western direction (in the rear of modern Carpathians) to the border with Slovakia at first as a narrow (10-15 km) bar (roughly during 2-4 million years) and then broadened (during next 2-3 million years) in north-eastern - south-west direction on all modern territory of the Transcarpathian yield. In future (in Sarmatian epoch, approximately from 12-14 to 10-11 million years ago) east part of yield (so-called Solotvyno depression) transgress to the mode of compression and raising with ending of intensive sedimentation, and in western part (so-called Tchop-Mukatcheve depression) the process of sagging was farther displaced westward and at present he is concentrated (by geodesic and extensometric (strainmetric) data (Nazarevych A. and Nazarevych L., 1999-2008) ) in the Tchop - Mukatcheve - Svalava area. The analysis shows that found out by seismological data one of bars of seismic activity in Transcarpathians territorially and genetically just related to the axial area of this yield.

  6. Noble Gases and Siderophile Elements in the Mantle: Unconventional Experimental Results and Their Implications for Chemical Geodynamics

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Hayden, L. A.; Thomas, J. B.; Cherniak, D. J.

    2007-12-01

    Recent and ongoing experimental studies reveal unexpected behavior of noble gases and siderophile elements that may affect future geodynamic interpretations. Ar-uptake experiments on mantle minerals provide insight into Ar compatibility (solubility) and diffusivity in these phases. Contrary to expectation, solubility results suggest that Ar behaves as a compatible element during mantle melting, favoring residence in point defects in minerals over 'escape' to the melt. In terms of diffusion, Ar is sufficiently mobile in olivine and orthopyroxene to ensure effective dispersal from relatively K-rich minerals on a geodynamically short time scale. Solid-liquid equilibration during melting of the MORB source is also likely; however, Ar diffusion is slow enough for disequilibrium to arise during phenocryst growth in a pre-eruption setting. The main implications of these results are that: 1) Ar degassing of the mantle through MORB volcanism may be an inefficient process; and 2) the existence of deeply-sequestered Ar (and other noble gases?) is plausible. New data on the behavior of siderophile elements (Os, Ir, Ru, Rh, Pt, Re, Au, W, Mo, Co, Cu and C) in polycrystalline MgO and synthetic peridotite reveal that these elements are highly mobile in the grain boundaries of mantle assemblages and analogs. W, Au and C have the highest diffusivities (10-8 to 10-7 m2/s); Ir, Ru, Re and Os are at the low end of the range (~10-12 to 10-11 m2/s). There is no discernible correlation between grain-boundary diffusivity and any particular property of the atoms or elements. These new data imply that Earth's outer core may 'leak' siderophile elements into the lower mantle over distances exceeding 100 km in 4 GYr for W, Au and C. Although not significant in itself as a whole-mantle transport process, grain boundary diffusion appears capable of 'contaminating' the lower mantle over a sufficient distance to enable entrainment of a core signature into plume- or convective mantle flow. If the outer core contains C, our data suggest that there may be a significant core-to-mantle flux of this element.

  7. Crust structure, geodynamic and metallogenisis of major metallogenic belts in East China: an introduction to SinoProbe-03 (Invited)

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Chang, Y.

    2010-12-01

    SinoProbe is a new Chinese government-founded scientific Project with the overall aims of exploring the deep structure and geogynamic evolution of the continental crust and lithosphere beneath China. As a third sub-Project, the SinoProbe-03 is focus on two typical metallogenic belts: the South range and the middle and lower Yangtze River of Eastern China. The former is characterized by its world-class tungsten, tin and multimetal (Sb-Bi-Pb-Zn) metallogenisis which was considered to be related to crust-derived magma; whereas, the later is characterized by its iron, cupper and multimetal (Au-S-Pb-Zn) metallogenisis which was thought to be related to mantle-derived magma. The main questions related to two metallogenic belts that SinoProbe-03 plan to address are: (1) the crustal structure and geodynamic processes for generation and migration of magma, what’s the sources characteristics that eventually control the metal types; (2) the fine upper-crust structure(<10km) of the major ore district ( e.g. Luzong, Tongling and Yudu-Ganxian), and how they control the ore-forming process, and the spatial distribution of major ore-bearing strata and ore-controlling structure; (3) the efficiency of integrated geophysical methods ( e.g. AMT, CSAMT, SIP, TEM), especially the seismic reflection method, in direct detection of deep ( 2km) ore-bearing formations or ore-controlling structure. SinoProbe-03 is therefore an multidisciplinary programme, combining surface observations with deep geophysical (near-vertical reflection, wide-angle reflection, broadband seismic array and magnetotellurics) and geochemical probing, applying, adapting and developing the latest technology to obtain an integrated image of the whole crust of the two metallogenic belts. Through this programme, we try to better understanding how the mineral systems (or large deposits) was initiated and evolved under the framework of geodynamic evolution. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418

  8. Functioning analysis of reference station in Hornsund and its possibilities of usage in geodynamic research of Spitsbergen

    NASA Astrophysics Data System (ADS)

    Wezka, K.; Pasnikowski, M.; Walo, J.

    2009-04-01

    Poster presents the analysis of observations collected during the measurements made by two reference stations working in surroundings of the Polish Polar Station in Hornsund. One of them, ASTR station has been working since 2005. Its functioning in the first period indicates significant multipath effect caused by the proximity of facilities of the Polish Polar Station. The effect occurred to be high enough to decide about the change of location of the antenna, which was possible only after completion of the building works of the polar station. During the expedition in 2008 the final location of the reference station, where conditions comply with the requirements, was chosen. So, the second station - HORN - was started, and series of test measurements were conducted, which allowed to determine the position of the station and to analyze GNSS signal quality. The poster presents comparative analysis of the observations collected by the old (ASTR) and new (HORN) localisation of antenna and contains description of the surroundings of the antenna and their influence on the multipath effect. Authors present as well the possibility of usage of the reference station in scientific research conducted nearby the Polish Polar Station in Hornsund. Moreover, the poster presents a concept of establishment of "the system of reference stations around Spitsbergen" and possibilities of participation of the planned system in global environmental and geodynamic research.

  9. Seismoacoustic responses to high-power electric pulses from well logging data at the Bishkek geodynamical test area

    NASA Astrophysics Data System (ADS)

    Zakupin, A. S.; Bogomolov, L. M.; Mubassarova, V. A.; Il'ichev, P. V.

    2014-09-01

    The results of recording seismoacoustic emission (SAE) in the boreholes of the Bishkek geodynamical test area in Tien Shan, Kyrgyzstan, are presented. The spectral structure of SAE signals and the pattern of variations in SAE intensity during electromagnetic (EM) sounding of the Earth's crust by the highpower ERGU-600-2 generator unit are studied. The statistical methods for SAE data processing are adjusted for the problem of revealing the correlations between SAE responses and pulsed electrical impacts (i.e., energy input into the medium). The response of the medium to EM soundings, which are conducted for monitoring the apparent resistivity of the rocks, is revealed. The response of the medium manifests itself as the increase in SAE intensity (the responses to the electric current pulses generated during the soundings). The SAE responses belong to the same group of the effects (the signs of external forcing of rock destruction) as the variations in seismicity during the runs of the geophysical magneto-hydrodynamic (MHD) generators in 1983-1989 or experimental soundings in 2000-2005. The sources of SAE signals are located at shallow depths, near the geophone installation place. This accounts for the difference between the variations in SAE intensity and microseismicity in response to the same impact.

  10. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  11. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  12. Methodical questions and accuracy problems of GPS observations by the example of the geodynamic proving ground in Bishkek

    NASA Astrophysics Data System (ADS)

    Kuzikov, S. I.

    2014-11-01

    The key questions concerning the modern methodical tasks and accuracy of GPS measurements of crustal motion spanning are discussed for a full cycle of the survey from the organization of the field operations to the interpretation of the final results. The presented data rely on the 20-year experience of the geophysicists of the Research Station of the Russian Academy of Sciences in Bishkek (RS RAS) in GPS monitoring at the Geodynamic Proving Ground in Bishkek (GPGB) and in a large part of Central Asia. The comparative characteristics of the constellations of visible GPS and GLONASS satellites are analyzed from the standpoint of their practical application for precise scientific observations of crustal motions. The studies of the contemporary movements of the Earth's crust by the methods of satellite geodesy generally comprise three stages: (1) organization of the measurement networks and acquisition of the data; (2) data processing; and (3) interpretation of the results. Each stage is associated with its own block of the tasks and problems, and neither is guaranteed against uncertainties and errors which may affect the results, conclusions, and reconstructions.

  13. The Sinemurian carbonate mud-mounds from central High Atlas (Morocco): stratigraphy, geometry, sedimentology and geodynamic patterns

    NASA Astrophysics Data System (ADS)

    Chafiki, Driss; Canrot, Joseph; Souhel, Abdellatif; el Hariri, Khadija; Eddine, Kamal Taj

    2004-06-01

    The Moroccan Central High Atlasic mud-mounds correspond to carbonate sponge-algal buildups developed in open marine conditions towards the Lower-Upper Sinemurian boundary. The structures gradually increase in size through time, from the small-sized lenses included in the Idikel coarse-bedded Lower Sinemurian grainstones to the high domes observed in the succeeding Aberdouz and Ouchbis Upper Sinemurian thin-bedded mudstones. The biological communities (mainly algae, sponges, thrombolites, stromatolites, annelids, bryozoans, brachiopods, pelecypods, gastropods, echinoderms, corals and scarce foraminifera) comprise common, well conserved remains in the rising core frameworks and small reworked bioclasts in the surrounding sedimentary depressions. These buildups are closely linked to tectonic processes as they grew on the normal synsedimentary faults which affected the central Atlasic area during the Lower Liassic period, leading to the breakup of the Early Sinemurian carbonate platform and the resultant initiation of the Upper Sinemurian subsiding basin. Silting conditions under hernipelagic sedimentation led to their death. Similar palaeogeographic changes and geodynamic evolution have been described recently from different structures in North Africa, Western Europe and North America.

  14. Advances in three-dimensional, finite-element based marker-in-cell methods applied to geodynamics

    NASA Astrophysics Data System (ADS)

    May, D. A.

    2012-04-01

    The use of a mixed finite element formulation to discretise Stokes equations, coupled with a particle based Lagrangian representation of the material lithology, is a common numerical technique employed within the Earth sciences to study geodynamic processes. The extension of this methodology to study high-resolution, three-dimensional problems, even in 2012, still represents a number of significant computational challenges. Of paramount concern are the high computational memory requirements, and the development of efficient and robust linear and non-linear solvers, which are performant on massively parallel supercomputers. In this presentation, I describe a flexible methodology, which aims to rectify both of these issues. The key to the approach is to 1) always pose the discrete problem in defect-correction form and 2) utilise a mixture of assembled and matrix-free operations to evaluate the non-linear residual, and the operators required to define the multilevel preconditioner for the Jacobian. The performance characteristics of the hybrid matrix-free, partially assembled multilevel preconditioning strategy is demonstrated by considering several variable viscosity Stokes problems employing the mixed element types Q2-P1 and Q1-Q1 (Bochev stabilisation). The robustness of the preconditioner with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability will be discussed.

  15. Two-Dimensional Geothermal Modelling Along the Central Pontides Magmatic Arc: Implications for the Geodynamic Evolution of Northern Turkey

    NASA Astrophysics Data System (ADS)

    Maden, Nafiz

    2012-03-01

    The Pontides, which can be divided tectonically into three main segments as Eastern, Central, and Western Pontides, is one of the most complex geodynamic settings within the Alpine belt. The Central Pontides, where the Eastern and Western Pontides met and formed a tectonic knot, represent an amalgamated tectonic mosaic consisting of remnants of oceanic, continental, and island arc segments. Subduction polarity, which is responsible for the formation of the Pontides, is still under debate because of limited geological, geophysical, and geochemical data. Two-dimensional (2-D) thermal modelling studies along the Central Pontides magmatic arc (Northern Turkey), Sakarya and Kırşehir continents are investigated in order to delineate the crustal thermal structure and subduction polarity. The obtained numerical results indicate that arc and back-arc regions are hot because of the cooling effects of a subducting plate. Moho temperatures in the investigated region are found between 992°C in the south (back-arc) and 415°C in the north (arc). Moreover, mantle heat flow values vary from 57.2 mWm-2 in the south (back-arc) to 34.7 mWm-2 in the north (arc). It is shown from this study that the Eurasia plate had moved from north to south under the Anatolia plate along the south Black Sea coast.

  16. Newly developed paleomagnetic map of the Easternmost Mediterranean joined with tectono-structural analysis unmask geodynamic history of this region

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Katz, Youri

    2015-02-01

    Comprehensive magnetic-paleomagnetic analysis of physical-geological models developed for the Easternmost Mediterranean (northern part of the Sinai plate) accompanied by gravity and seismic data examination enabled the detection of a zone of inverse magnetization of submeridional strike with a total volume exceeding 120,000 km3. Such a large zone must correspond to the prolonged period of inverse polarity in the Earth's magnetic field history. We suggest that this inversely magnetized thick block of the Earth's crust corresponds to the known Kiama hyperzone. A paleomagnetic map constructed on the basis of abovementioned geophysical data analysis combined with detailed examination of structural, radiometric, petrological, facial, paleogeographical and some other data indicates that to the west of the Kiama zone is situated the Jalal zone, and to the east - Illawarra, Omolon and Gissar zones. Discovery of the Kiama paleomagnetic zone combined with tectonogeodynamical analysis and paleobiographical data examination indicates that the Earth's oceanic crust blocks may have been shifted by transform faults from the eastern part of the Tethys Ocean to their modern position in the Easternmost Mediterranean. Analysis of potential geophysical fields and seismological maps integrated with tectonostructural examination show the isolation of the northern part of Sinai plate from other terranes. For the first time formation-paleogeographical maps of Triassic and Jurassic for the Easternmost Mediterranean have been compiled and their tectono-geodynamical explanation has been given. The obtained data create a basis for reconsidering tectonic zonation, paleogeodynamical reconstructions and searching for economic deposits in this region.

  17. High resolution strain observations: Installation and first results of new laser strainmeters at the Geodynamic Observatory Moxa/Germany

    NASA Astrophysics Data System (ADS)

    Schindler, P.; Jahr, T.; Jentzsch, G.; Kukowski, N.

    2012-04-01

    Since 1964 two quartz tube strainmeters (SN & EW) have been operating as long-period seismometers in the gallery of the Geodynamic Observatory Moxa, located approx. 30 km south of Jena (Germany). In the last 15 years, also the longperiodic signals have been recorded and investigated. The mechanical strainmeters were complemented by a third component in 2003, a laser strainmeter which is oriented NW-SE and connects the endpoints of the quartz tube strainmeters. In 2005 a borehole strainmeter was added to the whole arragement. In 2011 parallel to the east-west and north-south oriented quartz tubes, two new laser strainmeters were installed. Comparing the first time series of all strainmeters shows a significantly higher data quality of the new laser systems, especially regarding the long- and aperiodic drift behaviour, the signal to noise ratio of the diurnal and semidiurnal tidal periods as well as the high frequency parts of the signal. As such laser strainmeter systems could also operate with small base lengths of e.g. one meter, it is potentially feasible to construct mobile systems, which can be used, e.g. in connection with monitoring hazard related phenomena, such as cockpits or collapse sinks as well as tectonically highly active regions.

  18. Understanding the geodynamic setting of São Miguel, Azores: A peculiar bit of mantle in the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.

    2012-12-01

    The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (ΔT ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.

  19. Estimates of geodynamic state and structure of the local crust on the base of microseismic noise analysis

    NASA Astrophysics Data System (ADS)

    Loktev, D.; Spivak, A.

    2013-05-01

    A method for obtaining estimates of geodynamic state of the local crust and rock masses on the base of microseismic noise analysis is discussed. Microseismic noise is considered as a superposition of background microvibrations and a discrete component in the form of weak microseismic pulses generated by relaxational processes in the medium [1]. Currently active tectonic faults can be identified as zones with clustered sources of microseismic pulses and more intense amplitude variations of background microvibrations in tidal waves and baric variations in the atmosphere [2,3]. The presence of underground nonheterogeneities (i.e. contrasts in mechanic properties) and their scales are obtained from analysis of spectral characteristics of microseismic noise [4]. In the epicentral zone of an underground inhomogeneity we evidence characteristic quasi-chromatic pulses, stronger spectral density of local noise at high frequencies (more than 10 Hz) as well as maximum of spatial distribution of horizontal to vertical component spectral noise ratio (Nakamura parameter). The size of structural elements (blocks) of the Earth's crust is estimated by peak frequencies of momochromatic components of the spectrum on the base of the elaborated analytical model [1]. Parameters of weak pulses generated by relaxation (such as max velocity of oscillations, dominating (observed) period, etc.) yield estimates of differential movements of structural blocks in the medium as well as max stresses in the latter [5,6]. Examples are given to illustrate application of the proposed method to locating and mapping fault zones and underground nonheterogeneities in the Earth's crust, as well as to estimating scales of active structural blocks and their mobility potential when assessing places for nuclear atomic plants and underground nuclear waste storages. The method has also been successfully used for ranging hillsides of South Alps in terms of their liability to landslides. [1]. A.A. Spivak, S.B. Kishkina. The use of microseismic background for the identification of active geotectonic structure and determination of geodynamic characteristics// Izvestiya, Physics of the Solid Earth. 2004. Vol. 40. No. 7. Pp. 573-586. [2]. V.V. Adushkin, A.A. Spivak. Near-surface geophysics: complex investigations of the lithosphere-atmosphere interactions// Izvestiya, Physics of the Solid Earth. 2012. Vol. 48. No. 3. Pp. 181-198. [3]. A.A. Spivak. The specific features of geophysical fields in the fault zones// Izvestiya, Physics of the Solid Earth. 2010. Vol. 46. No. 4. Pp. 327-338. [4] A.A. Spivak, B.G. Lukishov. Seismoresonance methods of disclosure of the contrast zones in the Earth's crust// Physical fields and dynamics of interactive geospheres. Moscow, GEOS, 2007. Pp. 226-276. (In Russian). [5]. A.A. Spivak. Relaxation processes and mechanical conditions in the local areas of the Earth' crust// Doklady Earth Science. 1998. Vol. 363. No. 8. Pp. 1172-1175. [6]. A.A. Spivak. Structure of the stress state in tectonic faults zones// Doklady Earth Science. 1999. Vol. 364. No. 4. Pp. 544-548.

  20. New insights on the deep geodynamic processes within Vrancea active seismic zone as inferred from non-tidal gravity changes

    NASA Astrophysics Data System (ADS)

    Besutiu, L.

    2012-04-01

    Vrancea experiment Located in the bending zone of East Carpathians, just at the junction of three major lithospheric compartments, the so-called Vrancea zone exhibits unusual intermediate-depth seismicity within full intra-continental environment. The dominant idea is that the upper mantle seismicity is due to a slab relict hanging below the Vrancea crust. However, several aspects, among which the issues of its connection with the crust, are under debate. The presence of the intermediate-depth earthquakes with vertical-extension mechanism advocate for an active attachment of the oceanic lithosphere relict sinking into the upper mantle, but some seismic tomography images seem to point out a completely detached high velocity body. However, the low resolution makes the results questionable. A gravity experiment has been conducted in order to infer the lithosphere dynamics within the Vrancea seismic region from the space-time change of the gravity field in the area. Systematic high accuracy gravity observations have been performed within a dedicated gravity network consisting of 13 epoch-stations regularly spread over the study area and a geo-traverse crossing the epicentre zone. Instruments and methodology Using a Scintrex CG-5 relative meter, absolute gravity values have been transferred on each pillar from the both second order Romanian national gravity reference network and the Central Europe UNIGRACE network. Gravity values on the base stations located along the geo-traverse have been referred to one of the end base-stations, located outside the active geodynamic area in a stable environment. All gravity observations were corrected for tide and drift. Due to the short distance between the stations, corrections for atmospheric pressure change have not been considered. Main results As the second order Romanian national gravity network provides absolute gravity for the 1980's epoch, and the UNIGRACE network offers absolute gravity for 2000's epoch, pairs of absolute gravity values separated by a 20 years time-span have been obtained and compared on each pillar of the gravity network. Overall, a gravity decrease has been revealed in the area. The lowest gravity low has been recorded just within the epicentre area, along with a slight subsidence of topography. This unusual coupling of altitude decrease and gravity lowering looks clearly connected to deep geodynamic processes. 2D and 3D computer models simulating the gravity change have revealed a mass deficit (starting at approx 10 km depth) located in the epicentre area of the intermediate-depth earthquakes. It has been interpreted in terms of volume increase caused by an assumed lithosphere stretching created by the eclogitization of the lower crust penetrating the upper mantle. Sets of gravity values obtained along the geo-traverse from successive yearly campaigns have confirmed the previous assumption revealing the crust stretching as an on-going process. Based on the gravity results and their interpretation along with other kind of observations (e.g. high resolution tomography provided by joint inversion of the seismic and gravity data), some concluding remarks and speculations on the genesis of the intermediate-depth seismicity are finally presented. Acknowledgement. The research has been supported through the grant POS CCE O 2.1.2. ID 593 (contract 182/2010).

  1. Geodynamic models of a Yellowstone plume and its interaction with subduction and large-scale mantle circulation

    NASA Astrophysics Data System (ADS)

    Steinberger, B. M.

    2012-12-01

    Yellowstone is a site of intra-plate volcanism, with many traits of a classical "hotspot" (chain of age-progressive volcanics with active volcanism on one end; associated with flood basalt), yet it is atypical, as it is located near an area of Cenozoic subduction zones. Tomographic images show a tilted plume conduit in the upper mantle beneath Yellowstone; a similar tilt is predicted by simple geodynamic models: In these models, an initially (at the time when the corresponding Large Igneous Province erupted, ~15 Myr ago) vertical conduit gets tilted while it is advected in and buoyantly rising through large-scale flow: Generally eastward flow in the upper mantle in these models yields a predicted eastward tilt (i.e., the conduit is coming up from the west). In these models, mantle flow is derived from density anomalies, which are either inferred from seismic tomography or from subduction history. One drawback of these models is, that the initial plume location is chosen "ad hoc" such that the present-day position of Yellowstone is matched. Therefore, in another set of models, we study how subducted slabs (inferred from 300 Myr of subduction history) shape a basal chemically distinct layer into thermo-chemical piles, and create plumes along its margins. Our results show the formation of a Pacific pile. As subduction approaches this pile, the models frequently show part of the pile being separated off, with a plume rising above this part. This could be an analog to the formation and dynamics of the Yellowstone plume, yet there is a mismatch in location of about 30 degrees. It is therefore a goal to devise a model that combines the advantages of both models, i.e. a fully dynamic plume model, that matches the present-day position of Yellowstone. This will probably require "seeding" a plume through a thermal anomaly at the core-mantle boundary and possibly other modifications. Also, for a realistic model, the present-day density anomaly derived from subduction should match reasonably well with what is inferred from tomography. In recent years, seismic tomography beneath the western U.S. has reached unprecedented detail. Also, geodynamic models with variable grid spacing will allow a much better resolution of slabs and the plume in a global model. We are therefore now in a much better position to conduct this research than even a few years ago. We therefore expect to find out (1) under what condition a plume from the lower mantle can be stable for 15 Myr in that region (2) for what parameters (if any) observed plume conduit shape and age progression along the hotspot track can be matched in the model (3) for what model assumptions (if any) the flood basalt corresponding to the plume head is offset from the end of the hotspot track. Ultimately, answering these questions will help us understanding whether an origin of the Yellowstone plume in the lowermost mantle is feasible.

  2. Simple Lu-Hf isotope patterns resulting from complex Archean geodynamics: example of the Pietersburg block (South Africa)

    NASA Astrophysics Data System (ADS)

    Laurent, Oscar; Zeh, Armin

    2015-04-01

    The combined use of U-Pb and Lu-Hf isotope data from Hadean and Archean zircons is widely used to constrain the mechanisms of continental crust formation and evolution in the early Earth. Such data generally define ɛHf-time arrays, interpreted as reflecting the closed-system, protracted reworking of single crustal reservoirs episodically extracted from depleted mantle (DM) sources. Many models about early Earth evolution and continental growth rely on this interpretation and its consequences (i.e. determination of Hf model ages and crustal residence times). However, this straightforward interpretation is difficult to reconcile with the complex evolution of Archean terranes, involving progressive crustal maturation and a range of crustal and mantle sources to granitoid magmas. Here we present a database of U-Pb and Lu-Hf isotopes measured in situ by LA-(MC-)ICPMS in zircons from >30 samples, representative of the temporal and spatial record of a single segment of Archean crust, the Pietersburg block (Kaapvaal Craton, South Africa). Coupling of age-Hf data with petrological and geochemical constraints shows that >1 Ga-long crustal evolution in the PB is characterized by (i) crustal nucleation in an intra-oceanic setting between 3.4 and 3.1 Ga; (ii) rapid formation of large volumes of juvenile TTG crust in an accretionary orogen at the northern edge of the proto-Kaapvaal craton between 3.1 and 2.9 Ga; (iii) intracrustal reworking and subduction of TTG-derived sediments along an Andean-type continental margin between 2.9 and 2.75 Ga; (iv) continental collision with the Central Zone of the Limpopo Belt at 2.75-2.69 Ga, resulting in magmatism derived from local crust and metasomatized mantle; (v) a discrete anorogenic event at ~2.05 Ga with the emplacement of SCLM-derived alkaline magmas. Despite the diversity of magmas and geodynamic settings depicted by this evolution, all samples emplaced between 3.0 and 2.0 Ga plot along a single, robust array of decreasing ɛHf with time, demonstrating that such arrays do not provide relevant information about Hadean-Archean geodynamics, unless independent constraints are considered. The Hf-time array of the PB is moreover characterized by a notably low 176Lu/177Hf of ~0.003, typical of the ~2.95 Ga-old TTGs that represent the largest volume of juvenile crust in the area. Yet, the petrogenesis of granitoid magmas plotting along the array involve other source components and crust-mantle interactions. This paradox may be solved considering that the bulk crust-mantle system behaved as a closed-system reservoir for Lu/Hf once large volumes of TTG crust and complementary SCLM were formed, enhancing the stability of the lithosphere. Regardless the mechanisms involved in its reworking, the incompatible element budget of this lithosphere is then dominated by the most voluminous, "enriched" crustal component (~2.95 Ga TTGs in that case). Models of early Earth evolution may therefore be reconsidered according to this alternative interpretation of Lu-Hf isotope arrays.

  3. Petrogenesis and Geodynamic Significance of Late Precambrian-Early Paleozoic Metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey

    NASA Astrophysics Data System (ADS)

    Yilmaz Sahin, Sabah; Aysal, Namık; Gungor, Yıldırım; Peytcheva, Irena; Neubauer, Franz

    2014-05-01

    The existence of Cadomian arc magmatism in Istranca Zone within the Western part of the Pontides was determined according to new zircon U-Pb dating and whole-rock geochemical analysis of the Çatalca and İhsaniye metagranites. Magmatic evolution of the Late Precambrian-Early Paleozoic metagranites in Istrandja Zone related to the Cadomian orogeny along the northern Gondwana margin. The Istranca zone is composed of metamorphic basement intruded by large granitic bodies and overlain by a Paleozoic-Mesozoic meta-sedimentary cover. The metamorphic rocks of the Istranca zone extend from Bulgaria, Istranca Mountains to NW Turkey and reach the area near Istanbul (Çatalca region). The Çatalca and İhsaniye metagranites have a subalkaline, high-K calc-alkaline and peraluminous character. Trace element geochemistry displays decreasing normalized concentrations from large-ion lithophile (LIL) elements to high field strength (HFSE) elements and from light (LREE) to heavy rare earth elements (HREE). A negative Eu anomaly is both types of metagranites. On tectonic discrimination diagrams, the samples from both metagranites plot in the subduction-related fields. The SHRIMP-II U-Pb zircon ages of the Çatalca metagranite range from 534.5 ± 4.7 Ma to 546.0 ± 3.9 Ma and LA-ICP-MS U-Pb zircon dating yields 535.5 ± 3.6 Ma age for the İhsaniye metagranite. The new ages together with the geochemical constraints allow a new geodynamic interpretation for the Istranca zone and we compare these metagranites with other Upper Ediacaran to Lower Cambrian granitoids of Turkey and Alpine-Himalayan orogenic belt. We deduce an origin of these elements from the northern Gondwana-Land margin.

  4. Moving-mass gravimeter calibration in the Mátyáshegy Gravity and Geodynamical Observatory (Budapest)

    NASA Astrophysics Data System (ADS)

    Kis, Márta; Koppán, Andras; Kovács, Péter; Merényi, László

    2014-05-01

    A gravimeter calibration facility exists in the Mátyáshegy Gravity and Geodynamical Observatory of Geological and Geophysical Institute in Hungary. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The main target of the calibration device was to reach a relative accuracy of 0.1-0.2% for the calibration of Earth-tide registering gravimeters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. The instrument was out of order for many years and in 2012 and 2013 it was renovated and automatized. The calibration process is aided by intelligent controller electronics. A new PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. As it is well known that variations of the magnetic field can influence the measurements of metal-spring gravimeters, authors carried out magnetic experiments on the pillar of the calibration device as well, in order to analyze the magnetic effect of the moving stainless steel-mass. During the movements of the mass, the observed magnetic field has been changed significantly. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. In this presentation authors show the facility in details and the numerical results of tests carried out by applying LCR G gravimeters.

  5. Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan Basin and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Srivastava, R. P.; Vedanti, N.; Dutta, S.; Dimri, V. P.

    2014-09-01

    Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5-6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic-gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5-8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.

  6. The petrogenesis of Early Eocene non-adakitic volcanism in NE Turkey: Constraints on the geodynamic implications

    NASA Astrophysics Data System (ADS)

    Aydınçakır, Emre

    2014-11-01

    Whole-rock geochemistry, mineral chemistry, the 40Ar-39Ar age, and Sr-Nd isotopic data are presented for the Early Eocene non-adakitic volcanic rocks on the eastern corner of the Eastern Pontides orogenic belt (NE Turkey). The tectonic setting of the Eastern Pontides during the Late Mesozoic to Early Cenozoic remains a topic of debate. Here, for the first time, we describe the Early Eocene non-adakitic volcanic rocks from the Eastern Pontides. These rocks contain plagioclase, hornblende phenocrysts, and magnetite/titanomagnetite and apatite microphenocrysts. Geochronology studies based on the 40Ar-39Ar ratio of the amphibole separates reveal that the non-adakitic porphyritic volcanic rocks have a crystallization age of 50.04 ± 0.10 to 50.47 ± 0.22 Ma (Ypresian). The volcanic rocks show tholeiitic to calc-alkaline affinities and have low-to-medium K contents. They are also enriched in large-ion lithophile elements (LILE), light rare-earth elements (LREE), and depleted in high field strength elements (HFSE), with a no negative Eu anomaly (Eun/Eu* = 1.03-1.08) in mantle-normalized trace element spidergrams. The samples (Lacn/Lucn = 2.60-4.28) show low-to-medium enrichment in LREEs relative to HREEs, in chondrite-normalized REE patterns indicating similar sources for the rock suite. These rocks display a range of ISr (50 Ma) values from 0.70451 to 0.70485, and ƐNd (50 Ma) 2.9 and 3.7. The main solidification processes involved in the evolution of these volcanics consist of fractional crystallization, with minor amounts of crustal contamination. All of our evidence supports the conclusion that the parental magma of the rocks probably derived from an enriched mantle, previously metasomatized by fluids derived from the subducted slab, in a post-collisional, geodynamic setting.

  7. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  8. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux

    NASA Astrophysics Data System (ADS)

    Glišović, P.; Forte, A. M.; Moucha, R.

    2012-08-01

    One of the outstanding problems in modern geodynamics is the development of thermal convection models that are consistent with the present-day flow dynamics in the Earth's mantle, in accord with seismic tomographic images of 3-D Earth structure, and that are also capable of providing a time-dependent evolution of the mantle thermal structure that is as 'realistic' (Earth-like) as possible. A successful realization of this objective would provide a realistic model of 3-D mantle convection that has optimal consistency with a wide suite of seismic, geodynamic and mineral physical constraints on mantle structure and thermodynamic properties. To address this challenge, we have constructed a time-dependent, compressible convection model in 3-D spherical geometry that is consistent with tomography-based instantaneous flow dynamics, using an updated and revised pseudo-spectral numerical method. The novel feature of our numerical solutions is that the equations of conservation of mass and momentum are solved only once in terms of spectral Green's functions. We initially focus on the theory and numerical methods employed to solve the equation of thermal energy conservation using the Green's function solutions for the equation of motion, with special attention placed on the numerical accuracy and stability of the convection solutions. A particular concern is the verification of the global energy balance in the dissipative, compressible-mantle formulation we adopt. Such validation is essential because we then present geodynamically constrained convection solutions over billion-year timescales, starting from present-day seismically constrained thermal images of the mantle. The use of geodynamically constrained spectral Green's functions facilitates the modelling of the dynamic impact on the mantle evolution of: (1) depth-dependent thermal conductivity profiles, (2) extreme variations of viscosity over depth and (3) different surface boundary conditions, in this case mobile surface plates and a rigid surface. The thermal interpretation of seismic tomography models does not provide a radial profile of the horizontally averaged temperature (i.e. the geotherm) in the mantle. One important goal of this study is to obtain a steady-state geotherm with boundary layers which satisfies energy balance of the system and provides the starting point for more realistic numerical simulations of the Earth's evolution. We obtain surface heat flux in the range of Earth-like values : 37 TW for a rigid surface and 44 TW for a surface with tectonic plates coupled to the mantle flow. Also, our convection simulations deliver CMB heat flux that is on the high end of previously estimated values, namely 13 TW and 20 TW, for rigid and plate-like surface boundary conditions, respectively. We finally employ these two end-member surface boundary conditions to explore the very-long-time scale evolution of convection over billion-year time windows. These billion-year-scale simulations will allow us to determine the extent to which a 'memory' of the starting tomography-based thermal structure is preserved and hence to explore the longevity of the structures in the present-day mantle. The two surface boundary conditions, along with the geodynamically inferred radial viscosity profiles, yield steady-state convective flows that are dominated by long wavelengths throughout the lower mantle. The rigid-surface condition yields a spectrum of mantle heterogeneity dominated by spherical harmonic degree 3 and 4, and the plate-like surface condition yields a pattern dominated by degree 1. Our exploration of the time-dependence of the spatial heterogeneity shows that, for both types of surface boundary condition, deep-mantle hot upwellings resolved in the present-day tomography model are durable and stable features. These deeply rooted mantle plumes show remarkable longevity over very long geological time spans, mainly owing to the geodynamically inferred high viscosity in the lower mantle.

  9. Intracontinental accommodation of oceanic transform shear: an alternative geodynamic scenario for explaining seismicity, magmatism, and basin opening in passive margin environments

    NASA Astrophysics Data System (ADS)

    Salvini, F.; Storti, F.

    2003-04-01

    In the last years it has been recognised that one of the basic principles of Plate Tectonics i.e. the localisation of plate interactions at their boundaries whereas internal regions remain virtually undeformed, is an oversimplified assumption. Geological, geophysical and geodetic data indicate that plate interiors are associated to a much higher level of neotectonic activity than hitherto realised. Lithosphere buckle folding and intraplate strike-slip faulting during plate convergence, density imbalances produced by oceanic ridges, continental margins and plateau uplifts, and flexural unloading of the lithosphere, are geodynamic processes commonly used to explain the occurrence of significant deformations far from plate boundaries. In this contribution we propose that important intraplate deformations can be produced in passive margin environments by the post-rift activity of strike-slip deformation belts transferring differential spreading at constructional plate boundaries into the plate interiors. This despite the plate tectonics theory does not predict any strike-slip movement along fracture zones once they pass outboard of their associated ridge segments and away from the plate boundary. We illustrate the Cenozoic geodynamic framework at the northeastern edge of the Antarctic plate, where we believe there is strong evidence for the occurrence of post-rift strike-slip deformation belts including both the intraridge (transform) and out-of-ridge segments of fracture zones, and their collinear onshore strike-slip fault systems. Deep basins originated along the main traces of these impressively long strike-slip belts, where strong earthquakes have been recorded, including the 1998 Balleny event (8.2 Mw), which is one of the larger intraplate earthquake ever detected. The residual horizontal displacement at the tip of these intraplate strike-slip belts is accommodated by a lithosphere-scale horsetail array of transtensional basins, where subcrustal magmatism has been triggered. The intraplate accommodation of oceanic transform shear provides an efficient alternative geodynamic scenario for explaining seismicity, magmatism and basin opening in passive margin environments.

  10. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    NASA Technical Reports Server (NTRS)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.

  11. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    NASA Astrophysics Data System (ADS)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary popula- tion sickness cases in Dnipropetrovsk City (1.2 million persons) are described by the multi-factor predictive SEIS & GIS model of geopathogenic zones that determines the human health risk and hazards. Results and Conclusions. We have created the SEIS system and multi-factor predictive SEIS model for the analysis of phase-metric spatio- 1 temporal nonlinear correlation and variations of rhythms of human health, ecological, genetic, epidemiological risks, demographic, socio-economic, bio-geophysical, bio- geodynamic processes in geopathogenic hazard zones. Cosmophotomaps "CPM" of vegetation index, anthropogenic-landscape and landscape-geophysical human health risk of Dnipropetrovsk City present synthesis-based elements of multi-layer GIS, which include multispectral images SPOT o, maps of different geophysical, geochem- ical, anthropogenic and citogenic risk factors, maps of integral oncologic case rate frequency, general and primary population sickness cases for administrative districts. Results of multi-layer spatio-temporal correlation of geophysical field parameters and variations of population sickness rate rhythms have enabled us to state grounds and to develop medico-biological and bio-geodynamic classification of geopathogenic zones. Bio-geodynamic model has served to define contours of anthropogenic-landscape and landscape-geophysical human health risk in Dnipropetrovsk City. Biorhythmic vari- ations give foundation for understanding physiological mechanisms of organism`s adaptation to extreme helio-geophysical and bio-geodynamic environmental condi- tions, which are dictated by changes in Multi-factor Correlation Stress Field "MCSF" with deformation of 5D SEIS. Interaction between organism and environment results in continuous superpositioning of external (exogenic) Nuclear-Molecular-Cristallic "NMC" MCSF rhythms on internal (endogenic) Nuclear-Molecular-Cellular "NMCl" MCSF rhythms. Their resonance wave (energy-information) integration and disinte- gration are responsible for structural and functional state of different physiological systems. Herewith, complex restructurization of defense functions blocks the adapta- tion process and may turn to be the primary reason for phase shifting, process and biorhythms hindering, appearance of different deseases. Interaction of biorhythms with natural and anthropogenic rhythms specify the peculiar features of environ- mental adaptation of living species. Such interaction results in correlation of sea- sonal rhythms in variations of thermo-baro-geodynamic "TBG" parameters of am- bient air with toxic concentration and human health risk in Dnipropetrovsk City. Bio-geodynamic analysis of medical and demographic situations has provided for search of spatio-temporal correlation between rhythms of general and primary pop- ulation sickness cases and oncologic case rate frequency, other medico-demographic rhythms, natural processes (helio-geophysical, thermodynamic, geodynamic) and an- thropogenic processes (industrial and houschold waste disposal, toxic emissions and their concentration in ambient air). The year of 1986, the year of minimum helio- geophysical activity "2G1dG1" and maximum anthropogenic processes associated with changes in sickness and death rates of the population of Earth were synchronized. With account of quantum character of SEIS rhythms, 5 reference levels of desyn- chronized helio-geophysical and bio-geodynamic processes affecting population sick- ness rate have been specified within bio-geodynamic models. The first reference level 2 of SEIS desynchronization includes rhythms with period of 22,5 years: ... 1958,2; 1980,7; 2003,2; .... The second reference level of SEIS desynchronization includes rhythms with period of 11,25 years: ... 1980,7; 1992; 2003,2;.... The third reference level covers 5,625-years periodic rhythms2:... 1980,7; 1986,3; 1992; 1997,6; 2003,2; .... The fourth quantum reference level includes rhythms 3 with period of 2,8125 years: ... 1980,7; 1983,5; 1986,3; 1989,1; 1992; 1994,8; 1997,6; 2000,4; 2003,2; .... Rhythms with 1,40625-years period fall is fifth reference level of SEIS desynchro- nization: ...1980,7; 1982,1; 1983,5; 1984,9; 1986,3; 1987,7; 1989,1; 1990,5; 1992; 1993,3; 1994,8; 1996,2; 1997,6; 1999; 2000,4; 2001,8; 2003,2;.... Analysis of alternat- ing medical and demographic situation in Ukraine (1981-1992)and in Dnipropetrovsk (1988-1995)has allowed to back up theoretical model of various-level rhythm quan- tum, with non-linear regularities due to phase-metric spatio-temporal deformation be- ing specified. Application of new technologies of Risk Analysis, Sinthesis and SEIS Modeling at the choice of a burial place for dangerous radioactive wastes in the zone of Chernobyl nuclear disaster (Shestopalov V., Bondarenko Y...., 1998) has shown their very high efficiency in comparison with GIS Analysis. IV.Recommendations and Outlook. In order to draw a conclusion regarding bio-geodynamic modeling of spatio-temporal structure of areas where common childhood sickness rate exists, it is necessary to mention that the only thing that can favour to exact predicting of where and when important catastrophes and epidemies will take place is correct and complex bio-geodynamic modeling. Imperfection of present GIS is the result of the lack of interactive facilities for multi-factor modeling of nonlinear natural and an- thropogenic processes. Equations' coefficients calculated for some areas are often irrelevant when applied to others. In this connection there arises a number of prob- lems concerning practical application and reliability of GIS-models that are used to carry out efficient ecological monitoring. References Bondarenko Y., 1997, Drawing up Cosmophotomaps and Multi-factor Forecasting of Hazard of Development of Dan- gerous Geodynamic Processes in Dnipropetrovsk,The Technically-Natural Problems of failures and catastrophes in connection with development of dangerous geological processes, Kiev, Ukraine, 1997. Bondarenko Y., 1997, The Methodology of a State the Value of Quality of the Ground and the House Level them Ecology-Genetic-Toxic of the human health risk based on multi-layer cartographical model", Experience of application GIS - Technologies for creating Cadastral Systems, Yalta, Ukraine, 1997, p. 39-40. Shestopalov V., Bondarenko Y., Zayonts I., Rudenko Y. , Bohuslavsky A., 1998, Complexation of Structural-Geodynamical and Hydrogeological Methods of Studying Areas to Reveal Geological Structural Perspectives for Deep Isolation of Radioactive Wastes, Field Testing and Associated Modeling of Potential High-Level Nuclear Waste Geologic Disposal Sites, Berkeley, USA, 1998, p.81-82. 3

  12. Geodynamics of flat-slab subduction, sedimentary basin development, and hydrocarbon systems along the southern Alaska convergent plate margin

    NASA Astrophysics Data System (ADS)

    Finzel, Emily S.

    Combining field-based geologic studies and numerical modeling provides a robust tool for evaluating the geodynamics of convergent margins. Southern Alaska is arguably the most tectonically active part of the convergent margin of western North America. This conceptual approach has been used to interpret the modern basin dynamics, as well as key stages in the Cenozoic development of this region, including spreading-ridge and flat-slab subduction. New macrofossil, palynological, and lithostratigraphic data for the Bear Lake Formation in the Bristol Bay retroarc basin allow us to construct the first chronostratigraphic framework for this formation, and indicate deposition during Middle and Late Miocene time in a regional transgressive estuarine depositional system. In the Cook Inlet forearc basin, new detrital zircon U-Pb geochronology, rare earth element geochemistry, and clast compositional data from middle Eocene-Pliocene strata demonstrate the importance of sediment sources located in the retroarc region and along strike within the basin. The Yakutat microplate has recently been reinterpreted to represent buoyant crust that is presently subducting at a shallow angle beneath southern Alaska. Integration of stratigraphic, geochronologic, and thermochronologic data indicate that in the flat-slab region, exhumation initiated ca. 43 Ma and migrated inboard, magmatism ceased at ca. 32 Ma, and deposition in sedimentary basins ended by ca. 23 Ma. Sedimentary basins positioned along the western and northern perimeter of the flat-slab region record enhanced subsidence and sediment delivery from the flat-slab region beginning in late Oligocene and middle Miocene time respectively. The discrete contributions of unique driving forces for lithospheric deformation in western Canada and Alaska have not been quantified in detail, so their relative role in influencing deformation has remained unresolved. Using finite element models, we calculate a continuous strain rate and velocity field that provides evidence that a wide zone of diffuse deformation defines the present-day boundaries between the North America, Pacific, and Bering plates in Alaska and western Canada. In southern Alaska, boundary forces related to flat-slab subduction of the Yakutat microplate are the dominant driver for lithospheric deformation, whereas in central and northern Alaska and inboard parts of western Canada, buoyancy forces and basal tractions may be the dominant contributors.

  13. Deformation of the Western Caribbean: Insights from Block and Geodynamic Models of Geodetic, Seismic and Geologic Data

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Geirsson, H.; Kobayashi, D.

    2012-12-01

    Cocos - Caribbean convergence along the Middle America Trench, including subduction of the Cocos Ridge and seamount domain, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex plate boundary zone deformation since Miocene - Pliocene time. Plate boundary evolution and upper plate deformation in the western Caribbean is well studied and indicates, 1) Quaternary migration of the volcanic arc toward the back-arc northwest of the Cocos Ridge; 2) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA); 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Miocene-Pliocene cessation of volcanism and uplift of the Cordillera de Talamanca inboard the ridge; 5) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 6) Quaternary to present outer fore-arc uplift above the seamount domain (Nicoya Peninsula), and above (Osa Peninsula) and flanking (Burica Peninsula) the ridge; and 7) Quaternary to present faulting along the Sona-Azuero and Canal Discontinuity fault systems. We investigate the dynamic effects of Cocos and Nazca convergence along the entire Central American margin, and the implications on western Caribbean plate boundary evolution with a new GPS derived three-dimensional (horizontal and vertical) velocity field and kinematic block and geodynamic models. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation and that there is an independent Panama block. Our model results provide new Euler vectors for the CAFA and Panama block, rates of relative plate and block motions in the region, and constraints on interseismic coupling along the Middle America Trench and other major block bounding fault systems. These results are compared to existing geophysical and geologic data for the region and add insights into the rates of deformation across the regions listed above. We demonstrate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama region. The Panama region is driven into the Caribbean across the NPDB and into the Choco and North Andes blocks of northwestern South America, which are also converging with the Panama region, pushing it toward the west-northwest. Motion of the Panama region can be fit by an Euler vector suggesting that it is a rigid block, however, this is not in agreement with Quaternary faulting across the isthmus.

  14. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gyula; Eper-Pápai, Ildikó

    2015-11-01

    Radon concentration variation has been monitored since 2009 in the artificial gallery of the Sopronbánfalva Geodynamic Observatory, Hungary. In the observatory, the radon concentration is extremely high, 100-600 kBq m(-3) in summer and some kBq m(-3) in winter. The relationships between radon concentration, temperature and barometric pressure were separately investigated in the summer and winter months by Fast Fourier Transform, Principal Component Analysis, Multivariable Regression and Partial Least Square analyses in different frequency bands. It was revealed that the long-period radon concentration variation is mainly governed by the temperature (20 kBq m(-1) °C(-1)) both in summer and winter. The regression coefficients between long-period radon concentration and barometric pressure are -1.5 kBq m(-3) hPa(-1) in the summer and 5 kBq m(-3) hPa(-1) in the winter months. In the 0.072-0.48 cpd (cycles per day) frequency band the effect of the temperature is about -1 kBq m(-3) °C(-1) and that of the barometric pressure is -5 kBq m(-3) hPa(-1) in summer and -0.5 kBq m(-3) hPa(-1) in winter. In the high frequency range (>0.48 cpd) all regression coefficients are one order of magnitude smaller than in the range of 0.072-0.48 cpd. Fast Fourier Transform of the radon concentration, temperature and barometric pressure time series revealed S1, K1, P1, S2, K2, M2 tidal constituents in the data and weak O1 components in the radon concentration and barometric pressure series. A detailed tidal analysis, however, showed that the radon tidal components are not directly driven by the gravitational force but rather by solar radiation and barometric tide. Principal Component Analysis of the raw data was performed to investigate the yearly, summer and winter variability of the radon concentration, temperature and barometric pressure. In the summer and winter periods the variability does not change. The higher variability of the radon concentration compared to the variability of the temperature and the barometric pressure shows that besides the temperature and barometric pressure variations other agents, e.g. natural ventilation of the observatory, wind, etc. also play an important role in the radon concentration variation. PMID:26207821

  15. Miocene shoshonite volcanism in Sardinia: Implications for magma sources and geodynamic evolution of the central-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Beccaluva, Luigi; Bianchini, Gianluca; Mameli, Paola; Natali, Claudio

    2013-11-01

    In this paper we document the existence of a Miocene shoshonite (SHO) volcanism in Northern Sardinia (Anglona). This occurrence completes the spectrum of orogenic magmas related to the subduction process which developed from the Eocene along the Palaeo-European continental margin, in concert with the opening of the Ligurian-Balearic back-arc basin and southeastward drift/rotation of the Sardinia-Corsica continental block. K-Ar ages show that the oldest volcanics of the area are calcalkaline (CA) basalts and andesites (~ 21 Ma), overlain by 19.7-18.4 Ma-old more potassic products such as high-potassium calcalkaline (HK-CA) and SHO lavas. CA, HK-CA and SHO suites include basalts and differentiated lavas of andesite and latite composition, respectively, that (according to the PELE software modelling) represent ~ 40-45% residual liquid fraction after shallow fractional crystallization. Application of the "Arc Magma Simulator" software suggests that the generation of primary melts of the distinct suites may occur at similar degrees of partial melting (5-8%) and melting pressures (2-2.2 GPa, ~ 60-70 km depth) in the mantle wedge. By contrast, the potassic character of parental melts of CA, HK-CA and SHO suites is controlled by 1) the amount of subducted continental components (possibly terrigenous sediments) and 2) the pressure (depth) at which these metasomatic agents are released from the slab. Results suggest that the slab depth beneath the volcanic district increased from ~ 80-100 to 100-120 km for CA and SHO magmas, respectively. Accordingly, the evolution from CA to SHO magmatism in the same plumbing system could be related to slab deepening and increase of the subduction angle of ~ 5-10° in the time span of 2-3 Ma. This tectono-magmatic scenario conforms to the major anticlockwise rotation (~ 30°) event of the Sardinia block (between 20.5 and 18 Ma). This geodynamic evolution preludes the development of the volcanism in the Apennine-Tyrrhenian domains, where the final collisional/post-collisional stages of subduction were characterized by accentuated slab retreat and roll back, inter-arc extension and eruption of highly potassic magmas in the frontal arc (Roman and Aeolian Provinces).

  16. The Early-Cambrian Boho volcano of the El Graara massif, Morocco: Petrology, geodynamic setting and coeval sedimentation

    NASA Astrophysics Data System (ADS)

    Álvaro, J. J.; Ezzouhairi, H.; Vennin, E.; Ribeiro, M. L.; Clausen, S.; Charif, A.; Ayad, N. Ait; Moreira, M. E.

    2006-03-01

    A major volcanic episode is recorded across the Neoproterozoic-Cambrian transition in the Moroccan Anti-Atlas. Several volcanic cones are still preserved in the El Graara massif, laterally correlatable with volcanic flows dated as Early Cambrian (U/Pb date of 534 ± 10 Ma). Volcanic ashes and flows are interbedded with the uppermost part of the Adoudou dolostones, whereas the best-preserved volcano (the Boho Jbel) is onlapped by the overlying Lie-de-vin strata. Available petro-geochemical data from the Boho volcano suggest an alkaline magmatism probably derived from low-grade melting of a garnet-lherzolite mantle source, followed by fractional crystallization. The silica-undersaturated basaltic liquid evolved to form oversaturated rocks: the fractionation of a ferromagnesian phase with high-Ca and low-Al contents is suggested as the main process to cut across the critical plane of silica undersaturation in this geochemical series. Although the Boho geochemical patterns are similar to those of some rift emplacements, more data from other coeval magmatic eruptions are necessary to constrain their geodynamic setting. Erosion of the Boho volcano favoured formation of a slope-apron composed of four sedimentary facies belts: chaotic megabreccia (related to downslope mass movements of rigid blocks), amalgamated breccia sheets (emplaced by viscous debris flows), a heterogeneous terrigenous belt (representing offshore substrates interrupted by channels intersected by cross-bedded shoals), and variegated shales and stromatolitic dolostones (typical of the Lie-de-vin Formation). Sharp changes in sedimentation rate were associated with modifications in paleorelief sloping and transport mechanisms from subaerial (?) rock fall at the foot of the cone escarpment to sheet-like debris flow on the slopes, and the replacement by sedimentation under wave and storm influence. The presence of an active carbonate productivity, recorded in the primary porosities of the Boho slope-apron, is suggested by widespread development of a robust, coelobiontic, microbial carbonate factory resilient to poisoning by terrigenous influx. Diagenesis in these deposits includes marine, meteoric and deep-burial cementation of calcite, dolomite, iron oxides, quartz, feldspar, and celestine, the latter indicating precipitation from hypersaline pore fluids.

  17. Variability in forearc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter; Duarte, Joao

    2015-04-01

    In nature subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that impact the style of subduction and overriding plate deformation. Here we present 3D dynamic analogue models of subduction, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, with a special focus on overriding plate deformation. Our models indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of backarc basins (e.g., Tyrrhenian Sea, Aegean Sea, Scotia Sea) is generally expected to occur at a comparable location (300-500 km from the trench), irrespective of the boundary condition. Furthermore, our models indicate that the style of forearc deformation (shortening or extension) is determined by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed set-up is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature and accretionary wedge configuration. Furthermore, it provides explanation for the natural observations of both backarc extension in the Tyrrhenian Sea and forearc extension in the Calabria region, which have been active since the Miocene. We explain the observations as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting forced subduction to be accommodated almost entirely by slab rollback (not trenchward overriding plate motion), while trench retreat was accommodated almost entirely by backarc and forearc extension (not trenchward overriding plate motion), similarly to our SP-OP-Fixed model. This tectonic setting induced strong trench suction, which caused the forearc extension in Calabria.

  18. Geodynamic evolution of the Salinas de Añana diapir in the Basque-Cantabrian Basin, Western Pyrenees

    NASA Astrophysics Data System (ADS)

    Frankovic, Allen; Eguiluz, Luis; Martínez-Torres, Luis M.

    2016-02-01

    The Salinas de Añana diapir is located in the Basque-Cantabrian basin part of the great evaporite basin, along with the Gulf of Mexico and the Central European basin, when the fragmentation of Pangea started. The evolution of these basins can only be achieved by understanding the control of salt in the sedimentary and tectonic evolution of these basins. Sedimentation began with clastic Buntsandstein sediments and minor Muschelkalk limestones. Subsequent Keuper evaporites are the bottom of sedimentary cover constituted by Jurassic limestones and marls, a clastic Lower Cretaceous and an alternant limestone and marl Upper Cretaceous, whose deposition has been conditioned by salt tectonics. The emplacement of salt extends from the Aptian until now, favored by the duplication of the salt thickness associated with the thrust of Sierra Cantabria, so it is an excellent example to study changes in the regime of intrusion along the time. The geodynamic evolution of the Salinas de Añana diapir was determined through the interpretation of 45 reprocessed seismic lines, along with information from three wells. Migration of the salt in this diapir, conditioned by N120E and N30E pre-Alpine basement lineations, was determined using time isopach maps of the various rock layers. Vertical evolution of the diapir was determined through the reconstruction of a north-south section at various geologic times by flattening the respective seismic horizons. A minimum of salt flow into the diapir coincides with a minimum rate of sedimentation during the Turonian. Similarly, maximum flows of salt into the diapir occurred during the Coniacian and Lower Santonian and again from the end of the Lower Miocene to the present, coinciding with maximum rates of sedimentation during these times. In the Tertiary, probably during the Oligocene, the diapir was displaced to the south by the Sierra Cantabria thrust, maintaining the contact between the evaporites of diapir and the same evaporites of the lower block. Since the Oligocene, the salts of the lower block migrated towards and into the diapir, deforming the trace of the overthrust.

  19. The utilization of Malaysian Active GPS System data for geodynamic applications: a case study in East and West Malaysia

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul

    2010-05-01

    Geodynamic studies of Malaysia have been ventured upon in the South-East Asia region since the first GeodySEA project in 1996. Both East and West Malaysia lies on the Eurasian Plate, and assumed to have no linear distortion between any two joined points relative to one another. However, Malaysia lies at the southern tip of the plate encroached by two frequently ruptured boundaries, the Indian-Australian plate and the Philippines plate, and it is also within the buffer of the Ring of fire. Hence, this paper is essential to determine the relative movement of Malaysia, and with the possibilities to identify the presences of slip-fault formation which might be of threat to the stable platform that we have taken for granted. Availability of uninterrupted GPS observations over the Malaysian Active GPS System known as MASS stations situated across the country established by the Department of Survey and Mapping (DSMM) evidently help provides the data for this study. There are currently eighteen MASS stations mounted with Trimble 4000 dual frequency antenna and data recorded at fine second interval made accessible in hourly files. Satellite data collected continuously over a long period of time are processed by Bernese GPS processing software. Fifteen International GNSS Service (IGS) stations were selected within similar period of observations were gathered, processed, later act as tie points to the MASS stations. Apparently with this Malaysia will form a network to the globe. In this research the author will output the relative MASS stations coordinates and velocity estimates in International terrestrial reference frame (ITRF) 2000 since GPS data used are before the derivation of ITRF2005. At present the measures of quality for GPS derived coordinates given by commercial software packages tend to be unrealistic because unmodelled errors remain unaccounted for. The commercial software packages are either over-optimistic or conversely, therefore, have low fidelity. Thus, Bernese GPS processing software was used here due to its capability to provide high precision result for long baselines observables and able to parameterize the atmosphere, earth rotation, earth and ocean tide from the terrestrial observations. The output of this study showed that the velocity of the relative movement of Malaysia have a magnitude of 3cm per year for the year 2000 till 2002 and towards the South-Eastern direction. For future research, data should be processed with the latest version of Bernese GPS processing software 5.0 which allows for a fully combined processing of data from both GPS and GLONASS receivers with standard ambiguity resolution strategies taking reference to ITRF2005.

  20. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance downward drag of the overriding plate and synchronous strong compressional stress field in the crust. More westerly PHS subduction since middle Pleistocene, suggested by unconformity in the forearc basin deposits and change of sense of fault slip along the active MTL cause stronger horizontal stress in the overriding plate, consistent with increasing geologic slip rate on active structures with this plate configurations. In shorter timescales, during four repetitions of the Nankai subduction zone earthquakes since 17th century, numbers of intraplate large (M>6.5) earthquakes occurred above or near the PHS flat slab are much larger than other surrounding regions. This also may suggest mechanical link between subduction processes and seismicity in the overriding plate.

  1. Nature and distribution of geological domains at the Africa-Eurasia plate boundary off SW Iberia and regional geodynamic implications

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael

    2014-05-01

    We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide-angle seismic transects, one running NW-SE from the Horseshoe to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence of events that occurred during the first stages of opening of the Northern Atlantic.

  2. Geodynamic models of plumes from the margins of large thermo-chemical piles in the Earth's lowermost mantle

    NASA Astrophysics Data System (ADS)

    Steinberger, B. M.; Gassmoeller, R.; Mulyukova, E.

    2012-12-01

    We present geodynamic models featuring mantle plumes that are almost exclusively created at the margins of large thermo-chemical piles in the lowermost mantle. The models are based on global plate reconstructions since 300 Ma. Sinking subducted slabs not only push a heavy chemical layer ahead, such that dome-shaped structures form, but also push the thermal boundary layer (TBL) toward the chemical domes. At the steep edges it is forced upwards and begins to rise — in the lower part of the mantle as sheets, which then split into individual plumes higher in the mantle. The models explain why Large Igneous Provinces - commonly assumed to be caused by plumes forming in the TBL above the core-mantle boundary (CMB) - and kimberlites during the last few hundred Myr erupted mostly above the margins of the African and Pacific Large Low Shear Velocity Provinces (LLSVPs) of the lowermost mantle, which are probably chemically distinct from and heavier than the overlying mantle. Computations are done with two different codes, one based on spherical harmonic expansion, and CITCOM-S. The latter is combined with a self-consistent thermodynamic material model for basalt, harzburgite, and peridotite, which is used to derive a temperature- and presssure dependent database for parameters like density, thermal expansivity and specific heat. In terms of number and distribution of plumes, results are similar in both cases, but in the latter model, plume conduits are narrower, due to consideration of realistic lateral - in addition to radial - viscosity variations. For the latter case, we quantitatively compare the computed plume locations with actual hotspots and find that the good agreement is very unlikely (probability < 0.1 %) to result by chance. We also compare with results obtained without a chemical layer in the lowermost mantle. In addition to the 3-D models with earthlike geometry, we also show results obtained with a 2-D finite element code. These results allow us to assess how much the computed long-term stability of the piles is affected by numerical diffusion. We have also conducted a systematic investigation, which configurations of piles and plumes can exhibit long-term stability, and under what conditions (in particular, amount and location of subduction, thermal expansivity vs. depth) thermo-chemical piles can remain stable, if subduction occurs above or near them. Our models support that mantle plumes are more intimately linked to plate tectonics than commonly believed. Not only can plumes cause continental break-up, but conversely subducted plates may trigger plumes at the margins of LLSVPs near the CMB.

  3. Constraints on the Thermochemical Structure of the Earth's Deep Mantle Using Seismic, Geodynamic and Mineral Physics Data

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Forte, A. M.

    2003-12-01

    The integration of seismic, geodynamic and mineral physics data to constrain the large scale composition and dynamics of the Earth's mantle is a widely stated goal of global geophysics; however, the appropriate methodology for this integration is a matter of debate. In recent work [Forte and Mitrovica, Phil. Trans., 2002] we outlined, atleast for a simple compositional model of the mantle, an approach for combining joint (shear and bulk sound) seismic models, seismic velocity derivatives obtained from results in mineral physics, and convection related observations (plate motions, gravity anomalies and the excess ellipticity of the CMB). Our inversions yielded a mantle viscosity profile characterized by two viscosity maxima within the lower mantle. The deepest of the two, at 2000 km depth, suppresses all but the longest horizontal wavelengths of the present-day flow in the bottom 1000 km of the lower mantle, thereby providing a simple interpretation for the `red' spectrum of seismically-inferred heterogeneity in this region. The integration also suggested that while chemical anomalies in the lower-most mantle are required to explain seismic observations, these anomalies are unable to inhibit the dominant thermal buoyancy of the deep-mantle mega-plumes below the Pacific and Africa. In this talk we describe the results of a large set of new inversions that: (1) extend the viscosity inferences to include a suite of data related to glacial isostatic adjustment (GIA; these data include site-specific post-glacial decay times from Fennoscandia and Hudson Bay, and a relaxation spectrum which provides the decay time versus wavelength of Fennoscandian deformation); and (2) map out, using Monte-Carlo simulations, plausible variations in thermochemical structure (summarized by the so-called buoyancy ratio) associated with uncertainties in the seismic models, mineral physics data and mantle viscosity (including the presence of the lateral variations). The GIA data provide an important, independent constraint on absolute viscosity and significantly improve the resolution of the resulting viscosity inferences, particularly in the transition zone and top half of the lower mantle. However, the viscosity peak at 2000 km depth remains a robust feature of these new inversions, reinforcing our earlier conclusion that this structure plays a pre-eminent role in deep mantle flow dynamics. Furthermore, the Monte-Carlo simulations indicate a positive correlation between density and shear wave velocity in the deep mantle and thus a dominance of thermal buoyancy within that region.

  4. Geographic information systems (GIS) spatial data compilation of geodynamic, tectonic, metallogenic, mineral deposit, and geophysical maps and associated descriptive data for northeast Asia

    USGS Publications Warehouse

    Naumova, Vera V., (compiler); Patuk, Mikhail I.; Kapitanchuk, Marina Yu.; Nokleberg, Warren J.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Rodionov, Sergey M.; Miller, Robert J.; Diggles, Michael F.

    2006-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. The purpose of this publication is to provide a high-quality spatial data compilation (Geographical Information System or GIS) of geodynamic, mineral deposit, and metallogenic belt maps, and descriptive data for Northeast Asia for customers and users. This area consists of Eastern Siberia, Russian Far East, Mongolia, northern China, South Korea, and Japan. The GIS compilation contains integrated spatial data for: (1) a geodynamics map at a scale of 1:5,000,000; (2) a mineral deposit location map; (3) metallogenic belt maps; (4) detailed descriptions of geologic units, including tectonostratigraphic terranes, cratons, major melange zones, and overlap assemblages, with references; (5) detailed descriptions of metallogenic belts with references; (6) detailed mineral deposit descriptions with references; and (7) page-size stratigraphic columns for major terranes.

  5. New evidence of effusive and explosive volcanism in the Lower Carboniferous formations of the Moroccan Central Hercynian Massif: Geochemical data and geodynamic significance

    NASA Astrophysics Data System (ADS)

    Ntarmouchant, A.; Smaili, H.; Bento dos Santos, T.; Dahire, M.; Sabri, K.; Ribeiro, M. L.; Driouch, Y.; Santos, R.; Calvo, R.

    2016-03-01

    The Azrou-Khénifra basin, located in the SE sector of the Moroccan Central Hercynian Massif of the Western Meseta of Morocco comprises volcanic and volcanoclastic rocks where two magmatic sequences can be distinguished: i) the Dhar Lahmar Sequence, composed of Upper Visean basaltic lava flows and pyroclastic deposits; and ii) the Kef Al Asri Sequence, composed of Visean - Serpukhovian intermediate to acid rocks. A continuous spatial and temporal evolution between the two volcano-sedimentary sequences was observed during the detailed geological work performed in the studied area. Petrography and geochemical studies additionally suggest a continuous compositional evolution from the more basic magmatic rocks to the intermediate/acid rocks, which implies a cogenetic magmatic differentiation controlled by crystal fractionation (with minor crustal assimilation) of a calc-alkaline trend magmatic suite. The inferred magmatic evolution is consistent with a geodynamic environment of an orogenic zone within an active continental margin setting. This partly explosive Visean - Serpukhovian volcanism, identified for the first time in the Western Meseta of Morocco, displays very similar petrographic and geochemical characteristics to its Eastern Meseta analogues, which implies that the emplacement of these magmatic rocks must have occurred in similar collisional geodynamic settings for both major geological domains, further constraining the evolution of this major crustal segment within the Carboniferous events that shaped the Hercynian Orogeny.

  6. Geodynamical Processes between Antarctica and India as revealed by very long baselines between the continents estimated from continuous and long-term GPS measurements

    NASA Astrophysics Data System (ADS)

    N, R.; Ec, M.; Akilan, A.

    2006-12-01

    To holistically understand the geodynamical and crustal deformation processes in the south of Indian peninsula between India and Antarctica, two global networks have been chosen that geodetically connect the two continents, the IGS Station at Diego Garcia (DGAR) being the common station between the two networks. 8 years of data from 1997 to 2005 were used. Very long baselines have been estimated from HYDE to other chosen IGS stations in and around India including DGAR. Similarly in the other network, very long baselines have been estimated from Kerguelen to other stations in and around Antarctica again including DGAR. Since the baseline length between HYDE, India and MAITRI, Antarctica is more than 10,000 km, it is mandatory to form these two different networks to improve the accuracy of the baseline measurements by GPS. This is to circumvent the limitation in the estimation of maximum base line length by GPS is of 6,900 km only due to the availability of less number of double difference observables in the GPS data analysis. Our analysis and results show increase of baseline lengths between Kerguelen in Antarctic plate and other stations and shortening of baseline lengths between HYDE in Indian plate and other common stations. By this global network analyses, the stations HYDE and MAITRI are geodetically tied through DGAR. With this geodetic tie up, having got the first geodetic signatures of the geodynamical processes between India and Antarctica, continuous monitoring and estimation would help enhancing the understanding the crustal deformation processes between these two continents despite many plates, micro plates and ridges in this study region.These estimations reveal clearly that the stations in the Australian plate are moving away from the Indian plate conforming to the recent Plate tectonic theory that India and Australia lie in two different plates with a diffuse boundary separating them. GPS derived velocity vectors for the Australian Plate also corroborate the theory that the Australian plate is pivoting counter clock wise around 600km south of the tip of India, pushing into the Indian plate to the east and pulling away from it to the west. Other geodynamical results are Antarctic plate is moving away from the Indian Ocean Basin. Our analyses also indicate and confirm geodynamically the emergence of diffuse plate boundary between India and Australia and relates to the late Miocene Himalayan uplift. The newly emerging platelet Capricorn in the central-western Indian Ocean with a broad, diffuse boundary may be due to the result of frequent plate boundary reorganizations in the past and the geodynamical processes in the present and these boundary forces complicate the kinematic interpretations and may also contribute to the non-rigid behavior of the Indian plate and Indian Ocean Basin. The inter continental networks in our study and the data analysis suggest that the high rate of movement of DGAR at the edge of Capricorn plate and COCO could be the result of excessive strain accumulation due to the Indo-Australian diffuse plate boundary forces acting upon this region. Our results also conform to the genesis that the deformation of equatorial Indian Ocean lithosphere is not ephemeral, but long-lived.

  7. Markers for geodynamic stability of the Variscan basement: case study for the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, David; Franke, Christine; Gómez-Gras, David; Thiry, Médard

    2010-05-01

    The Montseny-Guilleries High is a Miocene horst composed of Variscan basement rocks, situated in the northeastern part of the Catalan Coastal Ranges (NE Iberia). The Montseny-Guilleries High has an asymmetric profile with an abrupt faulted scarp at the southeastern margin and a smooth surface dipping to the Northwest; here Paleocene sediments of the Ebro basin margin are to some extend in onlap. The stratigraphic arrangement of the Mesozoic units in the Catalan Coastal Ranges indicate that the Montseny-Guilleries area was a relief during the Mesozoic, remaining exposed probably from the Permian to the Cretaceous [Anadón et al., 1979; Gómez-Gras, 1993]. The high subsequently has been faulted due to a rifting phase that took place during the Miocene [Anadón et al., 1979]. The geodynamic history (burial-exhumation processes and denudation rate) of the Montseny-Guilleries High can be deciphered from cooling markers, such as for example apatite fission tracks [Juez-Larré & Andriessen, 2006]. However, the cooling history of an area depends on many factors (i.e. denudation rate, variations of the geothermal gradient) that complicate interpretations [Juez-Larré & Ter Voorde, 2009]. Another solution is to search for datable paleoweathering records in order to obtain benchmarks for ancient surfaces of continental exposure. This is the case for the Permian-Triassic paleosurface, at which an extensive albitization-hematisation alteration occurred at shallow depth [Thiry et al., 2009]. Several paleoalterations have been identified in the Montsent-Guilleries High [Gómez-Gras & Ferrer, 1999]. These alterations are coupled to the smooth surface or peneplain of the northwestern margin of the high and form a paleoprofile with less altered rocks on the lower parts of the relief and more altered rocks located at the higher parts of the relief (i.e. on the peneplain). From base to top, the profile starts with week albitization-hematisation of the facies developed mainly in the fractures; the degree of albitization-hematisation progressively increases towards the top affecting the whole rock, which acquires a characteristic pink color. Finally, the top of the profile is formed by strongly altered to hematite and kaolinite rich reddish facies. These uppermost parts of the alteration profile are formed by a relatively soft rock and are therefore usually not preserved, but the intermediate albitized parts are more resistant to surface alteration than unaltered facies and protect the peneplain from weathering and erosion. The albitization-hematisation alterations observed in the Montseny-Guilleries peneplain are very similar to the Permian-Triassic paleoalteration profiles observed in other parts of Europe, affecting the Variscan basement [Ricordel et al., 2007; Parcerisa et al., 2009]. Dating these profiles using paleomagnetic methods will help us to identify the location of the Permian-Triassic surface in the area and deduce its geodynamic history during the Mesozoic and Tertiary periods. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P., Solé-Sugrañes, L., 1979, Evolución tectonostratigráfica de los Catalánides, Acta Geol. Hisp., 14: 242-270. Gómez-Gras, D., 1993, El Permotrias de la Cordillera Costero Catalana: facies y petrologia sedimentaria (Parte I), Bol. Geol. Min., 104 (2): 115-161. Gómez-Gras, D., Ferrer, C., 1999, Caracterización petrológica de perfiles de meteorización antiguos desarrollados en granitos tardihercínicos de la Cordillera Costero Catalana, Rev. Soc. Geol. Esp., 12(2): 281-299. Juez-Larre, J., Andriessen, P.A.M., 2006, Tectonothermal evolution of the northeastern margin of Iberia since the break-up of Pangea to present, revealed by low-temperature fission-track and (U-Th)/He thermochronology: A case history of the Catalan Coastal Ranges, Earth Planet. Sci. Let., 243 (1-2): 159-180. Juez-Larré, J., Ter Voorde, M., 2009, Thermal impact of the break-up of Pangea on the Iberian Peninsula, assessed by thermochronological dating and numerical modeling, Tectonophysics, v. 474, no. 1-2, p. 200-213. Parcerisa, D., Thiry, M., Schmitt, J.M., 2009, Albitisation related to the Triassic unconformity in igneous rocks of the Morvan Massif (France), Int. Jour. Earth Sci., DOI 10.1007/s00531-008-0405-1 Ricordel, C., Parcerisa, D., Thiry, M., Moreau, M.G., Gomez-Gras, D., 2007, Triassic magnetic overprints related to albitization in granites from the Morvan massif (France), Palaeogeogr. Palaeoclimatol. Palaeoecol., 251:268-282. Thiry, M., Parcerisa, D., Ricordel-Prognon, C., Schmitt, J.M., 2009, Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity, EGU General Assembly 2009, Vienna, Austria.

  8. Sulphur geodynamic cycle

    NASA Astrophysics Data System (ADS)

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-02-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle.

  9. Sulphur geodynamic cycle.

    PubMed

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/(3)He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/(3)He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  10. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  11. Yellowstone Hotspot Geodynamics

    NASA Astrophysics Data System (ADS)

    Smith, R. B.; Farrell, J.; Massin, F.; Chang, W.; Puskas, C. M.; Steinberger, B. M.; Husen, S.

    2012-12-01

    The Yellowstone hotspot results from the interaction of a mantle plume with the overriding N. America plate producing a ~300-m high topographic swell centered on the Late Quaternary Yellowstone volcanic field. The Yellowstone area is dominated by earthquake swarms including a deadly M7.3 earthquake, extraordinary high heat flow up to ~40,000 mWm-2, and unprecedented episodes of crustal deformation. Seismic tomography and gravity data reveal a crustal magma reservoir, 6 to 15 km deep beneath the Yellowstone caldera but extending laterally ~20 km NE of the caldera and is ~30% larger than previously hypothesized. Kinematically, deformation of Yellowstone is dominated by regional crustal extension at up to ~0.4 cm/yr but with superimposed decadal-scale uplift and subsidence episodes, averaging ~2 cm/yr from 1923. From 2004 to 2009 Yellowstone experienced an accelerated uplift episode of up to 7 cm/yr whose source is modeled as magmatic recharge of a sill at the top of the crustal magma reservoir at 8-10-km depth. New mantle tomography suggest that Yellowstone volcanism is fed by an upper-mantle plume-shaped low velocity body that is composed of melt "blobs", extending from 80 km to 650 km in depth, tilting 60° NW, but then reversing tilt to ~60° SE to a depth of ~1500 km. Moreover, images of upper mantle conductivity from inversion of MT data reveal a high conductivity annulus around the north side of the plume in the upper mantle to resolved depths of ~300 km. On a larger scale, upper mantle flow beneath the western U.S. is characterized by eastward flow beneath Yellowstone at 5 cm/yr that deflects the plume to the west, and is underlain by a deeper zone of westerly return flow in the lower mantle reversing the deflection of the plume body to the SE. Dynamic modeling of the Yellowstone plume including a +15 m geoid anomaly reveals low excess plume temperatures, up to 150°K, consistent with a weak buoyancy flux of ~0.25 Mg/s. Integrated kinematic modeling of GPS, Quaternary fault slip, and seismic data suggest that the gravitational potential of the Yellowstone swell creates a regional extension affecting much of the western U.S. Overall, the Yellowstone hotspot swell is the vertex of tensional stress axes rotation from E-W in the Basin-Range to NE-SW at the Yellowstone Plateau as well as the cause of edge faulting, nucleating the nearby Teton and Centennial faults. We extrapolate the original location of the Yellowstone mantle-source southwestward 800 km to an initial position at 17 million years ago beneath eastern Oregon and Washington suggesting a common origin for the YSRP and Columbia Plateau volcanism. We propose that the original plume head ascended vertically behind the subducting Juan de Fuca plate, but was entrained ~12 Ma ago in a faster mantle flow beneath the continental lithosphere and tilted into its present configuration.

  12. Rotational waves in geodynamics

    NASA Astrophysics Data System (ADS)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  13. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Progress in modeling instantaneous plate kinematics is reviewed, with emphasis on recently developed models of present day plate motions derived by the systematic inversion of globally distributed data sets. Rivera plate motions, the Caribbean South American boundary, Indian plate deformation, Pacific-North America, seismicity and subduction processes, and the study of slow earthquakes and free oscillations are discussed.

  14. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: insights from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Shi, D.; Liu, Z.; Zhang, Y.; Zhao, J.

    2014-12-01

    A 300 km deep seismic reflection profile across the middle and lower Yangtze River metallogenic belt (YRMB) and its adjacent areas established the architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include the deep complicated geometry of the Tan-Lu fault and Zhangbaling uplift, appears as a subvertical thrust fault with its deep portion dip toward the southeast, and along which the Zhangbaling uplift is squeezed out; complex upper crust deformation structure beneath Chuquan depression, within which there are both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, i.e., the upper crust reflection thrust upward, and the lower crust reflection thrust downward and offsetting the Moho discontinuity, which reflects the decoupled deformation process of the upper and lower crust, and is interpreted as an intracontinental subduction. Further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline. The entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the YRMB is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. Moho offsets could be seen beneath the Ningwu volcanic basin. Overall, the seismic data show evidence for an intracontinental orogeny and imposes constraints on the deep geodynamic model applied to study region. Our interpretation of seismic profile supports the view that the Yanshanian orogeny, due to the northwest subduction of the paleo-Pacific plate during the Middle-Late Jurassic, is the major event that shaped the tectonic framework of the region. A geodynamic model is proposed for the formation of the world-class metallogenic belt, this model includes several key deep processes, e.g., the subduction of intracontinental sublithosphere, the thickening and delamination of crustal roots, the melting of delaminated lower crust and underplating of the melts to the crust-mantle boundary and subsequent MASH processes.

  15. Development of fluid-particle coupled simulation method in the Stokes flow regime: toward 3-D geodynamic simulation including granular media

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nishiura, D.; Nakagawa, T.

    2012-12-01

    A fluid-particle two-phase flow has been widely studied in geodynamics, because particle-saturated fluid layer is important for understanding the dynamics of solidifying and melting process in the magma chamber or magma ocean. In order to deal with such particle-fluid systems as the geodynamical modeling in 3-D geometry, we develop a new coupled simulation code of Finite Difference method (FDM) for fluid flow and Discrete Element method (DEM) for solid particles. Although this type of numerical method has been well developed in the engineering field to investigate the fluidized bed especially for the high Reynolds number in short time scales, the method for the low Reynolds number over long time scales has not yet been fully addressed. In the geodynamic modeling with highly viscous fluid, the fluid motion can be treated as the Stokes flow. We employ empirically derived a coupling term between fluid flow and particle motion providing good fit with experimental data of the creeping flow. When this coupling force is directly introduced to the normal DEM equation of particles, we have to numerically solve dumped oscillation with a small time step dt ~1/η for high fluid viscosity η. Thus the normal DEM does not seem to be suitable solution method for our target problems. We therefore propose to drop off the inertial term from the governing equation of DEM based on the Stokes flow approximation and solve the force balance equation as same as that for the fluid. With this approach, we can employ the large dt~η for the problems with highly viscos fluid. Since our original solution algorithms for both of FDM and DEM are designed for the massively vector parallel architectures with two characteristic numerical techniques, we can solve large size of problems in 3-D geometry. 1. The geometric multi grid method of our robust Stokes flow solver is implemented with agglomeration technique to enhance the parallel efficiency in coarse grid operations. 2. Our DEM utilizes the parallel algorithms for a summation of contact force and search of particle pairs using particle labels sorted by the cell number to improve computational efficiency of the code. In the presentation, we introduce details of our coupled model treatment of the granular medium and demonstrate the validation test with an analogue experiment.

  16. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa)

    NASA Astrophysics Data System (ADS)

    Laurent, Oscar; Zeh, Armin

    2015-11-01

    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became source for high-K granitoids and mafic rocks at 2.68 and 2.05 Ga. Some scatter along the array might have resulted either from significant assimilation of ancient crust, intracrustal Lu/Hf fractionation or melting of heterogeneous mantle sources. Those results show that without any information about the nature and composition of zircon-hosting granitoids, Hf isotope-age data are of limited use to constrain Hadean-Archean magmatogenesis and geodynamics.

  17. Integration of permanent and periodic GPS/GNSS measurements for local and regional geodynamic research in the area of the Polish-Czech Network SUDETEN

    NASA Astrophysics Data System (ADS)

    Kontny, Bernard; Kaplon, Jan; Schenk, Vladimir; Schenkova, Zdenka; Badura, Janusz

    2014-05-01

    Since 1997 all current local geodynamic studies in the area of the Polish and Czech parts of the Sudeten and the Sudetic Foreland have been associated with annual periodic GPS campaigns, epoch measurements. The most epochs consisted of more than twelve observation hours and some of them kept on two or three 24-hour observations. Experience collected by international research teams carrying out geodynamic researches with the GPS technique in seismically active areas (USA, Japan) proved that more information can give permanent measurements. However, the Sudeten area, regarded as an area of the weak tectonic activity, can be hardly covered with the dense network of GNSS stations from economic reasons. Hence rational using of existing permanent GPS stations located in studied area and in its vicinity detects the coordinate changes that cannot be appointed from periodic campaign data and that, on the other hand, have rather regional than local character. Creating the spatial models of irregularities of the continuous signals should improve results of the epoch measurements. From this viewpoint, in this project authors used measurement data of chosen permanent GPS stations located in the area: the EPN stations, ASG-EUPOS stations, GEONAS stations and all epoch observations. These data were gained as part of research projects carried out within 1997-2009 period, as well as during new supplementing campaigns realized in the frame of the project N526278940 in the 2011 and 2012 years. Reprocessing of all the permanent and epoch data performed by the latest version of Bernese GNSS Software (V5.2) was performed using EPN guidelines for the processing, reference frame realization and the usage of physical models (atmosphere, Earth rotation, etc.). Standardized results of processing the aggregated GPS network, including permanent stations and all local networks on the area of research, serve for conducting new geodynamic interpretation. Further parameters that estimate the linear model of position changes of test point coordinates based on results of the permanent and epoch observations had been performed. Then, applying linear site velocities, the surface deformation model for the Sudeten area was compiled. Results of this research constitute the base both for recognizing tectonic impacts to the area and for potential hazard assessments. This research had been granted by the Polish National Science Centre, project No. N526 278940, and accomplished in cooperation of specialists from the Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, the Institute of Rock Structure and Mechanics of the Czech Academy of Sciences in Prague and the Polish State Geological Institute, Lower Silesia Branch in Wroclaw.

  18. Finite-frequency tomography of P and S waves in the Carpathian-Pannonian region: Implications for geodynamics of the continental collision

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Stuart, G. W.; Houseman, G. A.; Dando, B. D.; Ionescu, C.; Hegedus, E.; Radovanovic, S.

    2011-12-01

    The Carpathian-Pannonian system which is the most tectonically active region in Eastern and Central Europe, represents an unique geodynamical case in continental collision zone for studying the interaction between the surface tectonic processes and the deep lithospheric and mantle processes. Particularly, the geodynamical processes involved in the formation of both Pannonian basin and Vrancea seismogenic zone are still debated today. Here, we present high-resolution upper mantle structures beneath the region from finite-frequency tomography using P and S waves in order to bring constraints on geodynamical models. We have selected teleseismic earthquakes with magnitude greater than 5.5, which occurred between 2005 and 2010. The data were recorded on 57 temporary stations deployed in the South Carpathian Project, 56 temporary stations deployed in the earlier Carpathian Basins Project (CBP), and 50 permanent broadband stations. The differential travel times are measured in high, intermediate and low frequencies (0.5-2.0 Hz, 0.1-0.5 Hz and 0.03-0.1 Hz for both P-wave, 0.1-0.5 Hz, 0.05-0.1 Hz and 0.02-0.05 Hz for S-wave), and are inverted according to the 3-D finite-frequency formulation to produce P and S-wave velocity maps at different depths in the mantle. Our images show the presence of a sub-vertical fast material beneath the eastern Alps which extends across the centre of the Pannonian region below ~ 300 km depth. It extends downward into the mantle transition zone and appears to spread outward beneath the entire basin. The upper mantle below the Pannonian basin is dominated by a slow anomaly extending down to ~ 300 km depth. We suggest that a late stage of gravitational instability with detachment of cold mantle lithospheric downwellings is occurring beneath the eastern Alps in the present-day. The same mechanism could also have occurred below the Pannonian basin in the past and though explain the mantle lithospheric extension. In the Vrancea Zone, the seismicity occurs at the NE end of a tabular upper mantle high velocity structure that trends SW along the southern edge of the South Carpathians and extends in depth to ~ 400 km. This sub-vertical high-velocity body is bounded by two slow anomalies to the NW and SE sides. No clear evidence of residual slabs has been observed in the mid upper mantle beneath Eastern Carpathians. These observations suggest that intermediate depth seismicity in Vrancea Zone is unlikely due to slab tearing, but rather could be explained by the gravitational instability or delamination of mantle lithosphere. However, our results cannot discriminate these two mechanisms.

  19. Self-consistent Synthetic Mantle Discontinuities From Joint Modeling of Geodynamics and Mineral Physics and Their Effects on the 3D Global Wave Field

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.; Moder, C.; Oeser, J.

    2007-12-01

    Our current understanding of mantle structure and dynamics is to a large part based on inversion of seismic data resulting in tomographic images and on direct analysis of a wide range of seismic phases such as Pdiff, PcP, ScS SdS etc. For solving inverse problems, forward modeling is needed to obtain a synthetic dataset for a given set of model parameters. In this respect, great progress has been made over the last years in the developement of sophisticated numerical full waveform modeling tools. However, the main limitation in the application of this new class of techniques for the forward problem of seismology is the lack of accurate predictions of mantle heterogeneity that allow us to test hypotheses about Earth's mantle. Such predictive models should be based on geodynamic and mineralogical considerations and derived independently of seismological observations. Here, we demonstrate the feasibility of joining forward simulations from geodynamics, mineral physics and seismology to obtain earth-like seismograms. 3D global wave propagation is simulated for dynamically consistent thermal structures derived from 3D mantle circulation modeling (e.g. Bunge et al. 2002), for which the temperatures are converted to seismic velocities using a recently published, thermodynamically self-consistent mineral physics approach (Piazzoni et al. 2007). Assuming a certain, fixed mantle composition (e.g. pyrolite) our mineralogic modeling algorithm computes the stable phases at mantle pressures for a wide range of temperatures by system Gibbs free energy minimization. Through the same equations of state that model the Gibbs free energy, we compute elastic moduli and density for each stable phase assemblage at the same P-T conditions. One straightforward application of this approach is the study of the seismic signature of synthetic mantle discontinuities arising in such models, as the temperature dependent phase transformations occuring at around 410 Km and 660 Km depth are naturally taken into account. We study these a priori known discontinuities by analysing the synthetic global seismic data obtained from full 3D global wave propagation through our geodynamically derived models using the spectral element method (SPECFEM3D, Komatitsch and Tromp 2002a,b). Classical techniques from global seismology as for example SS precursors or receiver functions are possible candidates for this task.

  20. Unraveling the geodynamic evolution and tectonic history of the Guatemala Suture Zone: a world-class natural laboratory

    NASA Astrophysics Data System (ADS)

    Flores, K. E.; Brocard, G. Y.; Harlow, G. E.

    2013-12-01

    The Guatemala Suture Zone (GSZ) is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. It is bounded by the Maya Block to the north and by the Chortís Block to the south. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schist, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). This modern plate boundary has accommodated at least ~1100 km of left-lateral strike-slip motion over the Cenozoic and brings into contact the geological provinces described above. Classically, the GSZ has been interpreted as the result of a single progressive collision of a Chortís Block-related island arc with the passive margin of the Maya Block. This model was based on geochemical signatures of basaltic rocks in oceanic crust sequences both north and south of the MFS. However, results from our research challenge this single collision hypothesis. Oceanic and continental high-pressure-low-temperature (HP-LT) rocks astride the MFS have recorded multiple tectonic events revealed by their multiple metamorphic ages (Sm-Nd, U-Pb and Ar-Ar) and distinct PT paths. These tectonic events differ in age north and south of the MFS. Moreover, the continental and oceanic sequences across the MFS are geochemically and stratigraphically distinct, suggesting different tectonic origins. The southern margin of the Maya Block and the northern section of the GSZ can be clearly interpreted as a Cretaceous-Paleocene flexural passive margin tectonically overridden by ultramafic rocks and a Cretaceous island arc sequence. In contrast, the southern section of the GSZ is composed of a Carboniferous-Jurassic active margin tectonically imbricated with ultramafic rocks and a circum-Pacific Jurassic MORB and IAT metavolcano-sedimentary sequence. Thus, based on these results, we identify at least three major tectonic events within the GSZ: (i) A Jurassic-Early Cretaceous accretion and/or collision along a circum-Pacific active margin and the subsequent exhumation of oceanic HP-LT rocks now found on the southern section of the GSZ (ii) A Late Cretaceous closure of a back-arc basin that led to island arc-passive margin collision, which triggered exhumation of oceanic and continental HP-LT rocks and succeeding obduction onto the southern margin of the Maya Block (iii) A major Cenozoic left-lateral displacement along the then active margin that restructured the original tectonic arrangement into the present complex scenario. This new tectonic scenario hypothesis integrates all relevant geodynamic constraints reported on the GSZ and satisfactorily explains the occurrence of (i) an older circum-Pacific suture zone probably originated in southern Mexico in contact with (ii) a younger suture zone perhaps related to the closure of the proto Caribbean basin.

  1. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system

    USGS Publications Warehouse

    Lambert, D.D.; Foster, J.G.; Frick, L.R.; Ripley, E.M.; Zientek, M.L.

    1998-01-01

    In this study, we reassess crustal contamination and sulfide ore-forming processes in some of the largest magmatic ore deposits, using published Re-Os isotope data and a modeling methodology that incorporates the R factor, defined as the effective mass of silicate magma with which a given mass of sulfide magma has equilibrated, in an Re-Os isotope mixing equation. We show that there is less disparity between conclusions based on Re-Os isotope data compared to other isotopic systems if the R factor is considered, Komatiite-associated Ni sulfide ore systems typically have high Os concentrations, low Re/Os ratios, and near-chondritic initial Os isotope compositions. For magmatic sulfide ores that are interpreted to have experienced relatively low R factors (2,000). Sulfide saturation in these ore systems may, therefore, have been achieved via changes in intensive parameters of the komatiite lavas (cooling or decompression) or changes in compositional parameters transparent to the Re-Os isotope system (e.g., fo2/fs2/fH2O)- Basalt-gabbro-associated Cu-Ni sulfide ore systems at Duluth, Sudbury, and Stillwater are quite distinct from those at Kambalda by having comparatively low Os concentrations, high Re/Os ratios, and high initial Os isotope compositions, These chemical and isotopic characteristics are indicative of significant interactions between their parental basaltic magmas and old crust because there are no known mantle reservoirs with such extreme geocheinical characteristics. Our modeling suggests that for Cu-Ni sulfide ores at Duluth, Sudbury, and Stillwater to maintain the observed high initial Os isotope compositions inherited from a crustal contaminant, R factors for these systems must have been low (< 10,000), consistent with their low metal concentrations. Thus, we interpret this style of base metal sulfide mineralization to be derived from crustally contaminated but less dynamic magmatic systems that did not permit extensive equilibration of sulfide magma with silicate magma, For basalt-gabbro-associated Cu-Ni-PGE-rich sulfide ore systems that have Re-Os geochemical characteristics more similar to those associated with komatiites, R factors must have been high (??? 10,000 for Noril'sk-Talnakh and the J-M reef, Stillwater Complex). In these very dynamic magmatic ore systems, crustal contamination processes are more difficult to assess using Re-Os isotopes as the effects of contamination are masked by the R factor process in which sulfide magma equilibrates with extensive amounts of asthenospheric mantle-derived magma. Sulfide protore for these systems may, then, have been very radiogenic and of crustal origin prior to R factor processes that occurred during transport in feeder conduits and in upper crustal magma chambers. This study, therefore, highlights the need for caution when interpreting the Re-Os isotope geochemistry of sulfide ores from dynamic magmatic systems. The results of our reinvestigation of these giant ore deposits suggest that geodynamic processes associated with large magmatic systems, including major lithospheric pathways to the surface, changes in flow regime, coupled magma flow-through and magma mixing (providing enhanced R factors), may be critical to our understanding of the emplacement, localization, and quality of magmatic sulfide deposits. Thus, the timing and exact mechanism of sulfide saturation may be subordinate to dynamic magmatic processes in the localization of economic concentrations of magmatic sulfides.

  2. Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon

    NASA Astrophysics Data System (ADS)

    Nkoumbou, C.; Barbey, P.; Yonta-Ngoun, C.; Paquette, J. L.; Villiras, F.

    2014-11-01

    We reassess the geodynamic context close to the Congo craton during the pre-collisional period of the Pan-African orogeny from whole-rock major and trace element compositions and isotopic data obtained in the westward extension of the Yaounde series (Boumnyebel area, Cameroon). The series consists of metasediments (micaschists, minor calc-silicate rocks and marbles) and meta-igneous rocks (hornblende gneisses, amphibolites, metagabbros, pyroxenites and talcschists) recrystallized under high-pressure conditions. Chemically, the micaschists correspond to shales and greywackes similar to the Yaounde high-grade gneisses. 87Sr/86Sr initial ratios (0.7084-0.7134), moderately negative ?Nd(620 Ma) values (-5.75 to -7.81), Nd model ages (1.66 < TDM < 1.74 Ga) and radiometric ages point to the conclusion that the Yaounde basin was filled with siliciclastic sediments derived from both reworked older continental crust (Palaeoproterozoic to Archaean in age) and Neoproterozoic juvenile volcanogenic material. This occurred in the same time span (625-1100 Ma) as the deposition of the Lower Dja, Yokadouma, Nola and Mintom series (Tonian-Cryogenian). Dolomitic marble associated with mafic/ultramafic rocks and characterized by high Cr (854-1371 ppm) and Ni (517-875 ppm) contents, are considered to result from chemical precipitation in relation with submarine magmatic activity. Talcschists (orthopyroxenitic to harzburgitic in composition) show primitive-mantle-normalized multi-element patterns with significant negative Nb-Ta anomalies, and slopes similar to that of average metasomatically altered lithospheric mantle. These rocks could be mantle slices involved in the collision tectonics. Amphibolites show the compositions of island-arc basalts with systematic negative Nb-Ta anomalies, 87Sr/86Sr initial ratios mostly <0.7047 and positive ?Nd(620 Ma) values (+1.41 to +6.58). They are considered to be the expression of incipient oceanisation to the north of the Congo craton during the early Neoproterozoic. Hornblende gneisses show andesitic compositions, with high 87Sr/86Sr initial ratios (0.7105 and 0.7125) and low ?Nd(620) values (-14.0 and -20.7) suggesting that their genesis involved juvenile and recycled older crustal materials. Syn-metamorphic metagabbro (Mamb) and metadiorite (Yaounde) intrusions show negative Nb-Ta negative anomalies but enrichment in light rare-earth and large-ion lithophile elements, suggesting a metasomatized mantle source. Overall, meta-igneous rocks seem to be representative of distinct magmatic events that accompanied the evolution of the Yaounde sedimentary basin, from opening and oceanisation to convergence and closure in relation with the collisional process. These data suggest that the Yaounde basin should not be considered as a back-arc basin, but more likely represents the expression of extensional processes to the north of the Congo craton, which led to rifting, fragmentation and limited oceanisation. In this view, the Adamawa-Yade block may represent a micro-continent detached from the Congo craton during the early Neoproterozoic.

  3. Geodynamic modeling of eclogite-bearing mantle plumes: Ascent dynamics, plume-plate-interaction and surface manifestations

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan

    2014-05-01

    According to widely accepted models, plumes ascend from the deep mantle and cause massive melting when they reach the base of the lithosphere. Classical geodynamic models consider plumes as purely thermal and thus predict a flattening of the plume head to a disk-like structure and thin plume tails. However, geochemical data indicate that plumes have a different composition than the average mantle material and it has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes. In addition, seismic imaging reveals thicker plume tails as well as a more complex plume structure in the upper mantle, including broad low-velocity anomalies up to 400 km depth and elongated low-velocity fingers fed by plumes. While recent numerical models have considered a different chemistry to explain complex plume shapes or zoning within plumes, they either are restricted to only a part of the plume evolution or use simplified material models. However, due to the high density of recycled oceanic crust, thermo-chemical plumes are expected to have much smaller buoyancy than thermal plumes. Therefore it is especially important to incorporate realistic material properties, as they can influence the plume dynamics crucially and determine if a plume reaches the lithosphere or remains in deeper parts of the mantle. We perform numerical experiments in a 3D spherical shell geometry to study the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For that purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure-, and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for the peridotite and eclogite phase, mantle compressibility and a highly temperature- and depth-dependent viscosity. We study under which conditions thermo-chemical plumes ascend through the whole mantle and what structures they form in the upper mantle. Modeling shows that plumes with a buoyancy higher than some critical value directly advance to the base of the lithosphere, while plumes with slightly lower buoyancy pond in a depth of 300-400 km and form pools or a second layer of hot material. These structures become asymmetric and finger-like channels begin to form when the plume gets entrained by a quickly moving overlying plate. Our models also suggest that thermo-chemical plumes ascend in the mantle much slower compared to thermal plumes and have thicker plume tails. The conversion of plume excess temperatures to anomalies in seismic velocity shows that thermo-chemical low-buoyancy plumes can explain a variety of features observed by seismic tomography much better than purely thermal plumes.

  4. Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2013-04-01

    An assembly of igneous (TTG-granitoids and S-type leucogranites and calc-alkaline-, tholeiite-, kometiite-, boninite- and adakite-series metavolcanics) and metamorphic (eclogite-, moderate-pressure (MP) granulite- and MP amphibolite-facies rocks) complexes, strikingly complete for Archaean structures, is preserved in the Belomorian province of the Fennoscandian Shield. At least four Meso-Neoarchaean different-aged (2.88-2.82; 2.81-2.78; ca. 2.75 and 2.735-2.72 Ga) calc-alkaline and adakitic subduction-type volcanics were identified as part of greenstone belts in the Belomorian province (Slabunov, 2008). 2.88-2.82 and ca. 2.78 Ga fore-arc type graywacke units were identified in this province too (Bibikova et al., 2001; Mil'kevich et al., 2007). Ca.2.7 Ga volcanics were generated in extension structures which arose upon the collapse of an orogen. The occurrence of basalt-komatiite complexes, formed in most greenstone belts in oceanic plateau settings under the influence of mantle plumes, shows the abundance of these rocks in subducting oceanic slabs. Multiple (2.82-2.79; 2.78-2.76; 2.73-2.72; 2.69-2.64 Ga) granulite-facies moderate-pressure metamorphic events were identified in the Belomorian province (Volodichev, 1990; Slabunov et al., 2006). The earliest (2.82-2.79 Ga) event is presumably associated with accretionary processes upon the formation of an old continental crust block. Two other events (2.78-2.76; 2.73-2.72 Ga) are understood as metamorphic processes in suprasubduction setting. Late locally active metamorphism is attributed to the emplacement of mafic intrusions upon orogen collapse. Three groups of crustal eclogites with different age were identified in the Belomorian province: Mesoarchaean (2.88-2.86 and 2.82-2.80 Ga) eclogites formed from MORB and oceanic plateau type basalts and oceanic high-Mg rocks (Mints et al., 2011; Shchipansky at al., 2012); Neoarchaean (2.72 Ga) eclogites formed from MORB and oceanic plateau type basalts. The formation of eclogites is attributed to processes in a subducting slab. Correlation of the above complexes has revealed four alternating subduction systems: 2.88-2.82 Ga which comprises both suprasubduction (island-arc volcanics, graywackes) complexes and those from a subduction slab (eclogites), 2.81-2.78 Ga - island-arc volcanics, graywackes, granulites and eclogites; 2.75 Ga - island-arc volcanics only; 2.73-2.72 Ga - island-arc volcanics, granulites and eclogites. The duration of functioning of Meso-Neoarchaean subduction systems varies from 60 (or probably 30) to 15 Ma, which is consistent with the results of the numerical modelling (van Hunen, 2001) of subduction at mantle temperatures 125-150 degrees higher than the present temperature. This is a contribution to RFBR Project 11-05-00168 a References: Bibikova, E.V., Glebovitskii, V.A., Claesson, S. et al., 2001. Geochemistry International, 39(1) Mil'kevich, R.I., Myskova, T.A., Glebovitsky, V.A. et al. 2007. Geochemistry International, 45 Mints, M.V., Belousova, E.A., Konilov, A.N. et al., 2011. Geology, 38 Shchipansky, A.A., Khodorevskaya, L.I., Konilov, A.N., Slabunov, A.I., 2012. Russian Geology and Geophysics 53 Slabunov, A.I., Lobach-Zhuchenko, S.B., Bibikova, E.V. et al., 2006. European Lithosphere Dynamics, Memoir 32 Slabunov, A.I., 2008. Geology and geodynamics of Archean mobile belts (example from the Belomorian province of the Fennoscandian Shield van Hunen, J., 2001. Shallow and buoyant lithospheric subduction: couses and implications from thrmo-chemical numerical modelling. Theses PhD Volodichev, O.I., 1990. The Belomorian complex of Karelia: geology and petrology

  5. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Zhou, Mei-Fu; Sun, Min; Zhao, Yongjiu; Wilde, Simon; Long, Xiaoping; Yan, Danping

    2010-02-01

    The Songpan Ganzi Fold Belt (SGFB), SW China, was developed from a passive continental margin into an orogenic belt with the consumption of the Paleo-Tethys. During the evolution of the SGFB, numerous Late Triassic granitic plutons formed and exhibited a progressive development from adakite/I-type granite, high Ba-Sr granite, A-type granite and monzonite. Representative Late Triassic plutons were studied to unravel the bewildering evolution of the eastern SGFB. The Menggu Pluton (224 3 Ma) consists of granites with high alkali (K 2O+Na 2O = 7.85-10.4 wt.%) and adakitic characteristics (Sr/Y = 19-38). The ?Nd T values (- 2.77 to - 5.03), initial 87Sr/ 86Sr ratios (0.7050-0.7063) and low Nb/Ta ratios (8-10) are indicative of an origin by partial melting of amphibolitic lower crust. Rocks from the Niuxingou Pluton (215 3 Ma) are richer in K than Na (K 2O/Na 2O = 1.1-1.5) and contain high Sr (1006-1662 ppm) and Ba (1277-2009 ppm), typical of shoshonite and high Ba-Sr granite. They have less enriched ?Nd T values (+ 0.08 to - 2.04) and less radiogenic 87Sr/ 86Sr i ratios (0.7047-0.7048), and formed from a mixed melt derived from upwelling asthenosphere and the overlying metasomatised lithospheric mantle. The Taiyanghe Pluton (205 3 Ma) consists of monzonites, with high Al 2O 3 (> 20 wt.%), but low MgO (0.94-1.39 wt.%). The rocks are richer in Na than K (K 2O/Na 2O < 0.7), contain high large ion lithophile element (LILE) (681-834 ppm Sr and 2142-9453 ppm Ba) and display strongly fractionated REE patterns ((La/Yb) N = 35-63). These features, together with their enriched Nd-Sr isotopic compositions (?Nd T = - 4.78 to - 6.50; 87Sr/ 86Sr i = 0.7074-0.7090), suggest that the monzonite probably formed from low degrees of partial melting of metasomatised lithospheric mantle. Although a continuous compressional regime during the Mid- and Late Triassic has been invoked for the SGFB, the generation of crustally derived adakitic and shoshonitic plutons reflect thickening in response to an arc-continental collision accompanied by fracturing of the lithosphere and an extensional regime in the deep lithosphere in the Late Triassic. The 205 Ma Taiyanghe Pluton was emplaced simultaneously with a rapid uplift of the lithosphere, when surface deposits changed from deep-water turbidite to tidal flat sediments. It was therefore generated during decompression, probably related to the rapid removal of the overthickened lithospheric mantle. The Triassic magmatism in the eastern SGFB is therefore important for probing geodynamic processes in the deep lithosphere.

  6. Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: Potential parental melts and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Ketenci, Murat; Uysal, İbrahim; Dokuz, Abdurrahman; Aydin, Faruk; Chen, Bin; Kandemir, Raif; Wijbrans, Jan

    2011-11-01

    The tectonic setting of the Eastern Pontides during the late Mesozoic to early Cenozoic remains a subject of debate. Petrogenesis of adakite-like granitoid porphyries plays a critical role in determining the nature of the lower continental crust and mantle dynamics during orogenic processes in the region. Here we describe, for the first time, the late Paleocene to early Eocene adakite-like granitoid porphyries from the northern part of the Eastern Pontides although their counterparts in the southern part have recently been found. The adakitic porphyries, which emplaced into the subduction-related Turonian-Santonian volcanics from northern part of the region, consist of I-type calc-alkaline quartz monzonite-tonalite (SiO2 = 62.89-65.07 wt.%) and high-K calc-alkaline granodiorite-granite associations (SiO2 = 69.06-70.43 wt.%). The former displays peraluminous to metaluminous signatures, whereas the latter shows peraluminous geochemical character. The granite-granodiorite porphyries have high K2O (3.32-3.84 wt.%), and low Na2O (3.48-4.61 wt.%) and MgO (0.91-1.04 wt.%) relative to the quartz monzonite-tonalite association (K2O = 1.50-1.92 wt.%; Na2O = 4.08-6.45 wt.%; MgO = 1.44-2.07 wt.%). Ar-Ar geochronology studies on the amphibole separates reveal that the adakite-like porphyries have a crystallization ages of 51.34 ± 0.27 to 53.55 ± 0.34 Ma. Here, we contend that these rocks were formed by partial fusion of a mafic lower continental crust in a collisional phase but not in a subduction setting. All the samples exhibit the typical geochemical characteristics of adakite, that is, high Sr (250-1141 ppm), high Sr/Y ratios (16-147), low Y (6.8-14.8 ppm) and low HREE concentrations; they are similar to adakites formed by slab melting associated with the subduction zone. However, the rocks exhibit heterogeneity in isotopic composition, with ISr ranging from 0.70554 to 0.70986, εNd (51 Ma) from -8.5 to -0.9 and Nd model ages from 0.72 to 1.26 Ga. The samples are characterized by relatively high Th, Th/U and no significant Eu anomalies, implying that garnet was stable in their source during partial melting. The compositional diversity between rock groups is probably related to partial melting of heterogeneous lower crustal source. All of the features are inconsistent with a slab-melting origin and slab-related petrogenetic model, but instead, they favor an origin by melting of heterogeneous lower continental crust due to a thermal anomaly that was induced by the upwelling of the asthenosphere through a slab break-off in a collisional setting. These interpretations argue against the evidence for the presence of an early Cenozoic arc setting in the Eastern Pontides. Instead, the early Cenozoic time in the region may be attributed to a geodynamic response to a post-collisional uplift phase that occurred along the continent-continent collision between the Pontide and the Anatolide-Tauride blocks.

  7. Bowen Lecture: Physical and Chemical Properties of Melts Under Deep Earth Conditions and Their Importance in Geodynamics

    NASA Astrophysics Data System (ADS)

    Ohtani, E.

    2007-12-01

    Physical and chemical properties of melts at high pressure are the essential factors controlling geodynamics. One of the major subjects on the melt properties is the partitioning behavior, i.e., element partitioning among silicate melts, metallic melts, and minerals, which played crucial roles in fractionation in the magma ocean and core formation stages, and determined the chemical compositions of the mantle and core. Our recent studies on element partitioning between metallic liquid and lower mantle minerals revealed that the terrestrial magma ocean was extended to the deep lower mantle [1, 2]. The density crossover between magma and crystals in the deep mantle is also an interesting phenomenon which played an essential role in solidification of the primordial magma ocean and the deep seated magma generation processes [3,4] since magmas are extremely compressible associated with their structural change compared to crystals. The density crossover between peridotite magmas and equilibrium olivine was observed at around 9.5 GPa in Martian mantle [5] and at 13 GPa [6] in the Earth's mantle. Thus, neutral buoyancy of olivine occurs in the primordial magma ocean in the early planets and effective separation of olivine could not occur in the magma oceans producing an olivine enriched upper mantle in the magma ocean stage. The deep mantle melt is also important in the present Earth both at the bottoms of the upper and lower mantles. Seismological studies revealed that there is a low velocity and low Q zone at the base of the upper mantle suggesting existence of a partial molten region at this depth [7,8]. Existence of the ultra-low velocity zone at the base of the lower mantle has also been established seismologically [9]. We determined the density of hydrous magma and carbonated magma by the sink-float method using diamond as a density marker, and determined the partial molar volumes of H2O and CO2 in magmas up to 20 GPa [10,11]. The result implies that a density crossover exists between the mantle and hydrous or carbonated magmas containing H2O or CO2 up to about 2-5 wt percent. The volatile rich magmas could be gravitationally stable at the base of the upper mantle, and can explain the low seismic velocity and low Q regions observed at this depth (e.g., [7]). The base of the lower mantle is also a possible region of accumulation of dense magmas. The origin of the ultra-low velocity zone has been interpreted as existence of dense magmas [4, 8]. We showed closure of the liquid immiscibility gaps in the FeO- Fe and FeO-FeS-Fe systems at high pressure [12]. Thus we may expect dissolution of metallic Fe component into magmas at the core-mantle boundary, producing dense magmas at the base of the lower mantle. References: [1] Kawazoe T and Ohtani E, Phys. Chem. Minerals, DOI 10.1007/s00269-006-0071-4. [2] Sakai T et al. GRL, 33, doi: 10.1029/2006GL026868. [3] Stolper EM et al., JGR, 86, 6261, 1982. [4] Ohtani E, PEPI, 33, 12-25, 1983. [5] Ohtani E et al., Proc. of Jpn Acad, 96, ser. B, 23-28, 1993. [6] Suzuki A and E. Ohtani E, Phys. Chem. Minerals., 30: 449-456 , 2003. [7] Song TR et al. Nature, 427, 530-533, 2004. [8] Bercovici G and Karato S, Nature, 425, 39-44, 2003. [9] Garnero EJ, Science, 304, 834, 2004. [10] Sakamaki T et al., Nature, Vol.439, 192-194,2006. [11] Ghosh S et al., GRL., in review 2007. [12] Tsuno Q et al., PEPI, 160, 75-85, 2006.

  8. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Lobkovsky, L. I.; Kononov, M. V.; Dobretsov, N. L.; Vernikovsky, V. A.; Sokolov, S. D.; Shipilov, E. V.

    2013-01-01

    The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.

  9. Geomorphology and geodynamics of the Cook-Austral island-seamount chain in the South Pacific Ocean: Implications for hotspots and plumes

    SciTech Connect

    Dickinson, W.R.

    1998-12-01

    Among Pacific hotspot tracks, the Cook-Austral island-seamount chain is distinctly anomalous in geodynamic behavior, exhibiting repetitive episodes of volcanism at multiple sites, uplift of selected islands long after initial immersion by subsidence, and multiple alignments of volcanic edifices. Cook-Austral islands include a variety of disparate geomorphic types: volcanic islands without reefs, with fringing reefs, and with barrier reefs enclosing shallow lagoons, low-lying atolls; and makatea islands composted of volcanic cores surrounded by annular limestone tablelands. The distribution of subsided and uplifted islands along the Cook-Austral chain reflects multiple hotspot activity, probably related to multiple mantle diapirs of local character rather than to deep-seated plumes. Rapid Pacific plate motion can generate elongate hotspot tracks from transient hotspot activity unrelated to columnar advective plumes.

  10. On information-provided monitoring of geodynamic processes in the Kuznetsk Coal Basin in the conditions of highly intensive sub-soil usage

    SciTech Connect

    Oparin, V.N.; Potapov, V.P.; Tanaino, A.S.

    2006-09-15

    It is shown that formation of underground hollows of the Kuznetsk Coal Basin (Kuzbass), induced by opencut and underground mining has reached an intensity of 1.3-1.5 million m{sup 3}/day. In the conditions of high concentration of mines and open-cuts in small areas, a regional monitoring network is required in view of a generated geomechanical space, hazardous in geodynamic manifestations. A developed information support of this network is presented, including information models of a geological environment and database obtained from instrumental observations on geomechanical processes. The equations of connection between structural and strength characteristics of rocks, their metamorphization grade and occurrence depth are given for five geological-tectonic zones of the Kuzbass as a way of prediction of their properties.

  11. Characteristics of mantle sources in Jurassic to Quaternary magmatic history of the territory of Armenia, as a guide to diverse geodynamic settings

    NASA Astrophysics Data System (ADS)

    Nikoghosyan, Igor; Meliksetian, Khachatur; van Bergen, Manfred; Mason, Paul; Jrbashyan, Ruben; Navasardyan, Gevorg; Ghukasyan, Yura; Melkonyan, Rafael; Karapetyan, Sergey

    2014-05-01

    Complex geological mosaic of the territory of Armenia is presented by units consisting by fragments of continental blocks of Gondwanaland origin, Mesozoic Tethian island arc and Mesozoic ophiolitic complexes. Extensive magmatic activity traced from Early Jurassic to Holocene developed in diverse geological settings, such as Jurassic Tethyian MORB lavas, Upper Cretaceous and Eocene rift-related magmas and post-collisional Pliocene-Quaternary volcanic series. Despite the remarkable existence of subduction, obduction and collisional orogenic processes, accompanied by extensional and compressional tectonics, little is known about the relation between geodynamics and magma generation conditions, as mantles sources types and primary melts characteristics during the evolution of the region. Current study is intended to get new information that help to fill the gaps between the geodynamical puzzle and conditions of the mantle sources melting within the selected key areas of the territory of Armenia and Lesser Caucasus in general. In this contribution we focus on discussion of results of detailed geochemical and petrological studies of representative, highest-MgO samples of Jurassic picrites within Vedi ophiolites, picrite dyke of Alaverdi cutting Mesozoic Tethian island arc complexes, Upper Cretaceous rift-related sub-alkaline/alkaline basaltic series of Idjevan and Gochas, Late Eocene alkaline basaltic dyke of Jajur cutting Eocene volcanic and sedimentary complexes and Pliocene - Quaternary post-collisional volcanism, presented by 1) rifting-related flood basalts (dolerites); 2) HKCA basaltic series of Aragats stratovolcano and Gegham monogenetic volcanic upland and 3) high-alkaline, silica-undersaturated basaltic series of Syunik and Kapan. Geochemical signatures of most studied samples are characterised by enrichments in LILE and LREE, but depleted in HFSE, reflecting to OIB/MORB-type mantle source that may have been modified by subduction-related processes. Exceptions are the Jurasic Vedi and Alaverdi picrites reflecting the typical Tethyan MORB-type mantle, as well the Late Cretaceous Gochas, Martuni and Idjevan and Late Eocene Djajur showing absence of pronounced subduction-related modification of OIB-type mantle sources. Detail mineralogical study of early liquidus assemblages demonstrates that most studied samples consist high-Fo (>88) olivine that are considered to have crystallized from primary mantle-derived melts. Exceptions are low-Fo olivines characterized for Quaternary Aragats, Gegham and partially volcanoes of Syunik upland, those probably crystallized from crust contaminated AFC melts and/or melt resulting from the mixture of primary and crust-melted (adakite-type) melts. Spinel inclusions trapped in high-Fo olivine contain variable amounts of Ti, Al, and Cr, pointing to involvement of heterogeneous (MORB-type, OIB-type and subduction-type) mantle sources, that well agree with differ mantle-lithosphere domains and geodynamic controls during magma generations within the region from Jurassic to Quaternary time. Geochemical signature of melts, those could be maximally close to the primary or parental magmas, we obtained from LA-ICP-MS analyses of melt inclusions trapped in high-Fo olivines from all studied samples. Wide heterogeneity of melts within the individual and between differ magmatic systems, as well the link with geodynamical control and mantle sources melting scenarios will be discussed.

  12. The Early Miocene "Bisciaro volcaniclastic event" (northern Apennines, Italy): a key study for the geodynamic evolution of the central-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Guerrera, Francesco; Martín-Martín, Manuel; Raffaelli, Giuliana; Tramontana, Mario

    2015-06-01

    The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria-Romagna-Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a "marker" for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the "Raffaello" bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian-Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo- vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30-90 %) including the sub-petrofacies 2A, High- density volcanogenic turbidites; 2B, Low- density volcanogenic turbidites; 2C, Crystal- rich volcanogenic deposits; and 2D, Glauconitic- rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5-30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical-geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.

  13. Evidence for Late Devonian vertical movements and extensional deformation in northern Africa and Arabia: Integration in the geodynamics of the Devonian world

    NASA Astrophysics Data System (ADS)

    Frizon de Lamotte, Dominique; Tavakoli-Shirazi, Saeid; Leturmy, Pascale; Averbuch, Olivier; Mouchot, Nicolas; Raulin, Camille; Leparmentier, FrançOis; Blanpied, Christian; Ringenbach, Jean-Claude

    2013-03-01

    The Upper Paleozoic geodynamic evolution is discussed at the scale of a wide part of Gondwana from North Africa to Arabia. With the aim of giving an integrated tectonic scenario for the study domain, we revisit six key areas, namely, the Anti-Atlas Belt (Morocco), the Bechar Basin (west Algeria), the Hassi R'Mel High (central Algeria), the Talemezane Arch (south Tunisia), the Western Desert (Egypt), and, finally, the High Zagros Belt (Iran). Below the so-called "Hercynian unconformity," which is in reality a highly composite discontinuity, surface and subsurface data display a well-known arch-and-basin geometry, with basement highs and intervening Paleozoic basins. We show that this major feature results mainly from a Late Devonian event and can no longer be interpreted as a far effect of the Variscan Orogeny. This event is characterized by a more or less diffuse extensional deformation and accompanied either by subsidence, in the western part of the system, or by an important uplift of probable thermal origin followed by erosion and peneplanation. By the end of the Devonian, the whole region suffered a general subsidence governed by the progressive cooling of the lithosphere. Such a primary configuration is preserved in Arabia with typical sag geometry of the Carboniferous and Permian deposits but strongly disturbed elsewhere by the conjugated effects of the Variscan Orogeny during the Carboniferous and/or by subsequent uplifts linked to the central Atlantic and Neo-Tethys rifting episodes. In conclusion, we try to integrate this new understanding in the geodynamics of the Late Devonian, which at world scale is characterized by the onset of the Variscan Orogeny on the one hand and by magmatism, rifting, and basement uplift on the other hand.

  14. Tectonic setting of the Late Triassic volcaniclastic series of the Luang Prabang Basin, Laos, and geodynamic implications from the Triassic to Jurassic in SE Asia

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Dabard, Marie-Pierre; Hallot, Erwan; Poujol, Marc; Nalpas, Thierry

    2014-05-01

    The Luang Prabang Basin, located on the eastern margin of the Indochina block, is mainly composed of volcaniclastic continental deposits. The interpretation of U-Pb zircon geochronological dates shows that volcanism is contemporaneous with the sedimentation during the Late Triassic (c.a. 225 to 215 Ma; Blanchard et al., 2013, J. Asian Earth Sci., 70-71; 8-26). At the same time, volcanism is also known along the Eastern margin of the Indochina block (present day Thailand). There are currently two main contrasting interpretations concerning the tectonic setting related to these volcanic events: are they arc-related (e.g. Barr et al., 2006, J. Geol. Soc. London, 163; 1037-1046) or post collisional (e.g. Srichan et al., 2009, Island Arc, 18; 32-51)? We have performed geochemical analysis on both sedimentary and volcanic rocks of the Luang Prabang Basin in order to evaluate the relationships between the volcanic events and to propose a geodynamic interpretation. The geochemical characteristics of the Luang Prabang Late Triassic volcaniclastic and volcanic rocks are compatible with a volcanic arc setting. The confrontation of these results with the stratigraphic evolution of the eastern margin of the Indochina block leads to reconsider the Late Triassic to Jurassic geodynamic evolution of this area. Arc-related volcanism seems to occur during nearly the whole Triassic, implying a subduction of the Paleotethys beneath the Indochina block. As the stratigraphic record of north-eastern Thailand and western Myanmar shows an important stratigraphic gap spanning from the Early to the Middle Jurassic, the collision between the Indochina and the Sibumasu blocks likely occurred at that period.

  15. Rheological and geodynamic controls on the mechanisms of subduction, HP/UHP exhumation and PT conditions within crustal rocks during continental collision: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni

    2014-05-01

    Mechanisms of continental convergence are so versatile that it is impossible to elucidate them from conventional set of observations. Additional discriminatory data are needed such as those derived from petrology data, since burial/exhumation dynamics inferred from metamorphic P-T-t paths potentially provides independent constraints on the collision mechanism. While subduction of crustal rocks is increasingly accepted as common phenomenon inherent to convergent processes involving continental plates and micro-continents, the conditions of their formation and mechanisms of their exhumation in the form of high- and ultra-high-pressure (HP/UHP) units remain a subject of controversy. In particular, deep burial and exhumation of continental crust occur in various settings, including subduction of micro-continental terrains carried down with the subducting oceanic lithosphere and transition between the oceanic and continental subduction. Geodynamic inferences from P-T data can be made only after providing a consistent approach to decryption of both pressure and temperature in terms of depth or at least in terms of characteristic geodynamic conditions. Thermo-mechanical thermodynamically coupled numerical models of continental collision provide some elements of solution to this problem through testing various geodynamic scenarios within relatively unconstrained framework which allows for account of non-lithostatic pressure variations and for deviations of temperature from commonly inferred thermal models. We here explore several possible scenarios of subduction and exhumation of continental crust, and their relation to PT conditions and mechanisms of HP/UHP exhumation inferred from conceptual and thermo-mechanical numerical models accounting for thermo-rheological complexity and diversity of the continental lithosphere. Numerical experiments suggest that in most cases both exhumation and continental subduction are transient processes, so that long-lasting (> 10-15 Myr) continental subduction occurs in very specific cases of cold strong lithospheres while in general this process takes less than 5 Myr. During the active subduction phase (simple shear accommodation of convergence) we do not detect significant deviations (+-20%) of total pressure in the subduction channel from lithostatic values , that can be rather lower than the lithostatic pressure, while intra-channel temperatures vary in quite large limits. Hence, large volumes of HP/UHP metamorphic rocks generated and brought to the surface during subduction phase would not record significant deviations from the lithostatic pressure conditions. At the same time, strong non-lithostatic pressures (extensional and compressional) are predicted for some internal parts of the colliding plates that, however, are not prone to yield "extractable" metamorphic material. The experiments also show that high non-lithostatic pressures develop in the former subduction channel at its lock-up , during and after the transition from subduction to pure shear collision or folding, while the metamorphic material generated at this stage appears to be blocked at depth and does not return to the surface (at least if the channel is not unlocked due some external conditions). We suggest that most continental orogenic belts could have started their formation from continental subduction. This process has been generally limited in time while pressures recorded in the HP and UHP material generated at this stage can be largely treated in terms of the lithostatic approximation. In case of subduction of continental terrains embedded in the oceanic lithosphere, it can be shown that their exhumation, resulting in formation of metaphoric belts and domes, may initiate series of slab roll-back and exhumation events associated with remarkably complex and spatially variable P-T-t paths.

  16. Geodynamic interpretation of the 40Ar/39Ar dating of ophiolitic and arc-related mafics and metamafics of the northern part of the Anadyr-Koryak region

    USGS Publications Warehouse

    Palandzhyan, S.A.; Layer, P.W.; Patton, W.W., Jr.; Khanchuk, A.I.

    2011-01-01

    Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El'gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120-129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El'gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early Jurassic that confirmed their assignment to the El'gevayam volcanic-plutonic assemblage. These data are consistent with geological concepts and make more precise the available age dates. Neocomian-Aptian 40Ar/39Ar age of amphibolites from the Pekulnei and Tamvatnei gabbroids make evident that mafics of these terranes (varying in geodynamic formation settings and in petrogenesis) were generated in later stages of the development of the West Pekulnei and Mainits-Algan Middle-Late Jurassic-Early Cretaceous island arc systems, presumably due to breakup of island arcs in the Neocomian. ?? 2011 Pleiades Publishing, Ltd.

  17. What can hafnium isotope ratios arrays tell us about orogenic processes? An insight into geodynamic processes operating in the Alpine/Mediterranean region

    NASA Astrophysics Data System (ADS)

    Henderson, B.; Murphy, J.; Collins, W. J.; Hand, M. P.

    2013-12-01

    Over the last decade, technological advances in laser-ablation sampling techniques have resulted in an increase in the number of combined U-Pb-Hf zircon isotope studies used to investigate crustal evolution on a local, regional and global scale. Hafnium isotope arrays over large time scales (>500 myr) have been interpreted to track evolving plate tectonic configurations, and the geological outputs associated with changing plate boundaries. We use the Alpine-Mediterranean region as an example of how hafnium isotope arrays record the geodynamic processes associated with the complex geological evolution of a region. The geology of Alpine-Mediterranean region preserves a complex, semi-continuous tectonic history that extends from the Neoproterozoic to the present day. Major components of the Variscan and Alpine orogens are microcontinental ribbons derived from the northern Gondwanan margin, which were transferred to the Eurasian plate during the opening and closing of the Rheic and Paleo-Tethys Oceans. Convergence of the Eurasian and African plates commenced in the Mid-Late Cretaceous, following the destruction of the Alpine-Tethys Ocean during the terminal breakup of Pangea. In general, convergence occurred slowly and is characterised by northward accretion of Gondwanan fragments, interspersed with subduction of African lithosphere and intermittent roll-back events. A consequence of this geodynamic scenario was periods of granite-dominated magmatism in an arc-backarc setting. New Hf isotope data from the peri-Gondwanan terranes (Iberia, Meguma and Avalonia) and a compilation of existing Phanerozoic data from the Alpine-Mediterranean region, indicate ~500 myr (Cambrian-Recent) of reworking of peri-Gondwanan crust. The eHf array follows a typical crustal evolution pattern (Lu/Hf=0.015) and is considered to reflect reworking of juvenile peri-Gondwanan (Neoproterozoic) crust variably mixed with an older (~1.8-2.0 Ga) source component, probably Eburnian crust from the West Africa Craton. The Phanerozoic Hf isotopic data from Variscan and Alpine Europe suggest that slow translation of continental fragments from one continent to another produces a characteristic, long-term crustal reworking eHf array, which strongly contrasts with the Hf array defined by Phanerozoic circum-Pacific orogens.

  18. U-Pb SHRIMP zircon dating of high-grade rocks from the Upper Allochthonous Terrane of Bragança and Morais Massifs (NE Portugal); geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Mateus, A.; Munhá, J.; Ribeiro, A.; Tassinari, C. C. G.; Sato, K.; Pereira, E.; Santos, J. F.

    2016-04-01

    Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U-Pb zircon ages at 399 ± 7 Ma, dating the Variscan emplacement of UAT. In contrast, U-Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500-480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈ 500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500-480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the Variscan Wilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flow regime, possibly related to the Palaeotethys back-arc basin development (ca. 450-420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400-390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.

  19. Geodynamic and Geochemical Modeling of Mantle Processes along the Southwest Indian Ridge at 35°-40°E: A Hotspot-Mid-Ocean Ridge Interaction Region

    NASA Astrophysics Data System (ADS)

    Larson, M. O.; Okino, K.; Montesi, L.

    2014-12-01

    Mantle convection can be regarded as the superposition of two convective models: aplate mode and a plume mode. Geodynamic modeling of these regimes has grantedinsight into surface features, and tells us about the mantle processes in a system largelydevoid of observables. Our study of the 35°-40°E segment of the Southwest Indian Ridge(SWIR) seeks to link geochemical and geological observations with the underlying mantleprocesses.Both plate and plume modes interact and combine at the SWIR 35°-40°E segment. Themid-ocean ridge itself is a manifestation of the plate tectonics mode of mantle convection.The slow opening rate and obliquity of this segment should lead to low volcanic activityalong this segment. However, this segment is the point along the SWIR closest to theMarion hotspot, a manifestation of the plume mode of mantle convection. When interactingwith the mid-ocean ridges, hotspots like the Azores, Iceland, Galápagos, and Rodriguezproduce distinctive patterns, such as propagating rifts, triple junctions, and enriched MORBsignatures. The Marion hotspot does not have a similar effect on the SWIR even thoughit is associated with a bathymetric high and residual mantle Bouguer anomaly low. Anotable feature along the ridge is a V-shaped bathymetric anomaly around one of the non-transform discontinuities (NTD).As for the SWIR 10°-16°E area (Montési et al., 2011) geodynamics modeling predictsmagma focusing to highly segmented non-transform oblique segments (NTOS) along theridge. However, geophysical observations show a thinning crust at these regions. Modelingwithout the segmentation along the oblique segments shows much better agreement withthe observations. So either the NTOS are a crustal structure that does not influence mantleupwelling, melt extraction parameters vary along the ridge, or the density of the crust isanomalous in NTOS due to a different fractionation history.We will incorporate whole rock chemistry (including trace element, & REEs) constraintsto the evaluation of our hypotheses by modeling melt evolution and crystallization underdifferent conditions and comparing model predictions with collected samples.

  20. Geological setting and geochemical signatures of the mafic rocks from the Intra-Pontide Suture Zone: implications for the geodynamic reconstruction of the Mesozoic Neotethys

    NASA Astrophysics Data System (ADS)

    Sayit, Kaan; Marroni, Michele; Göncüoglu, M. Cemal; Pandolfi, Luca; Ellero, Alessandro; Ottria, Giuseppe; Frassi, Chiara

    2016-01-01

    A number of suture zones exist in Turkey, which is believed to represent the closure of Paleo and NeoTethyan oceanic basins. Regarding the development of the latter oceanic entity, namely Neotethys, the geodynamic evolution of the Intra-Pontide branch, the northernmost one of a number of oceanic basins remains enigmatic. The Intra-Pontide Suture Zone in Northwest Turkey includes several tectonic units most of which are characterized by the occurrence of mafic rocks with distinct geochemical signatures. In this paper, the mafic rocks collected from four of these units (the Domuz Dağ Unit, the Saka Unit, the Daday Unit and the Arkot Dağ Mèlange) have been studied in detail along two selected transects. The Domuz Dağ Unit is characterized by amphibolites, micaschists and marbles, which have been overprinted by low-grade metamorphism.The Saka Unit is in turn represented by an assemblage of slices of amphibolites, marbles and micaschists metamorphosed under upper amphibolite facies metamorphic conditions in the Late Jurassic time. In these units, the amphibolites and their retrograded counterparts display E-MORB-, OIB- BABB- and IAT-type signatures. The Daday Unit is characterized by metasedimentary and metamafic rocks metamorphosed under blueschist to sub-greenschist facies conditions. The metamafic rocks comprise actinolite-bearing schists and Na-amphibole-bearing varieties possibly derived from basaltic and gabbroic protoliths. They have a wide range of chemical compositions, displaying N-MORB-, E-MORB-, OIB- BABB- and IAT-type signatures. The Arkot Dağ Mèlange consists of a Late Santonian assemblage of slide-blocks mainly represented by basaltic lithologies showing affinities ranging from N-MORB- and IAT- to BABB-type magmas. The geochemical signature of the studied mafic rocks indicates that the tectonic units documented along the two studied transects of the Intra-Pontide Suture Zone have been derived from a supra-subduction zone. This hypothesis corroborates the available data collected from the Aylı Dağ Ophiolite Unit cropping out in the westernmost studied transect. This finding can provide new insights for the reconstruction of the geodynamic history of the Intra-Pontide domain.

  1. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew

    2016-01-01

    Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three-way immiscibility (carbonate-sulphide-phosphate) indicates carbonatitic metasomatism is responsible for Pt-enrichment in this (marginal) cratonic setting. These Co and Pt-enrichments may fundamentally reflect the geodynamic setting of cratonic vs. non-cratonic lithospheric terranes and offer potential tools to facilitate geochemical mapping of the lithospheric mantle.

  2. 3-D geodynamic models of the India-Eurasia collision zone: investigating the role of lithospheric strength variation Sarah Bischoff and Lucy Flesch EAPS, Purdue University

    NASA Astrophysics Data System (ADS)

    Bischoff, S. H.; Flesch, L. M.

    2013-12-01

    The India-Eurasia collision zone is the largest zone of continental deformation on the Earth's surface. A proliferation of geodetic, seismic, and geologic data across the zone provides a unique opportunity for constraining geodynamic models and increasing our understanding of mountain building and plateau growth. We present a 3-D, spherical, Stokes flow, finite volume, geodynamic model of the India-Eurasia collision. Lithospheric volume is constrained by seismic data. Continuous surface velocities, inferred from GPS and Quaternary fault slip data, are used to approximate velocity boundary conditions. We assume a stress-free surface, and free-slip along the model base. Model viscosity varies with depth and is calculated assuming the laterally-varying, depth-averaged viscosities of Flesch et al. (2001) and a cratonic Indian plate. Laterally the model extends from the southern tip of India northward to the Tian Shan, and from the Pamir Mountains eastward to the South China block. Vertically the model volume extends to a depth of 100 km, and is divided into three layers: upper crust, lower crust, and upper-lithospheric mantle. We use COMSOL Multiphysics (www.comsol.com) to investigate the role of vertical viscosity variation on surface deformation by holding the dynamics constant, adjusting the viscosity substructure, and determining the resultant stress and velocity fields. Solved model surface velocities are compared to the observed surface velocities inferred from GPS and Quaternary fault slip rates. A two-layer model employing laterally-variant viscosity estimates throughout the crust and mantle is ineffective at replicating the observed force balance. The weak crustal viscosities necessary for attaining the observed clockwise rotation around the eastern Himalayan syntaxis also result in erroneous southward velocities in southern Tibet, driven by excessive gravitational collapse. Strengthening crustal viscosities balances the boundary/body forces and allows for accommodation of Indian plate motion across Tibet, but no longer produces clockwise rotation around the eastern syntaxis. The best-fit velocity magnitude and rotation solution is achieved by a full three-layer model incorporating an upper crust of intermediate strength, a weaker lower crust, and a stronger upper mantle. Our three-layer model achieves rotation around the indenter without excessive gravitational collapse. Model and observed velocities diverge slightly in the Tarim Basin, the southern Gobi, and the northern South China block. Model velocities in the Tarim Basin are shifted in an easterly direction; possibly indicating a weaker than previously assumed Altyn Tagh fault, while Gobi and South China model velocities are shifted to the north; suggesting the presence of an additional level of complexity.

  3. Testing geodynamic models for surface uplift of the central Andean plateau through volcanic glass paleoaltimetry and basin analysis in southern Peru

    NASA Astrophysics Data System (ADS)

    Sundell, K. E., II; Saylor, J. E.; Villarreal, D. P.; Horton, B. K.

    2014-12-01

    Differentiating between geodynamic models describing the formation mechanism(s) of the central Andean plateau (CAP) requires information concerning the timing and location of basin formation, crustal deformation, and surface uplift. All models involve the removal of lithospheric mantle, and typically fall into one of two end-members: 1) slow, continuous uplift (km over 10s of Myr) involving protracted removal of mantle lithosphere through ablative subduction or thermal weakening that is predicted to be coincident with crustal shortening, or 2) punctuated uplift (km over Myr) driven by rapid wholesale or piecemeal foundering of a dense lithospheric root, likely post-dating major crustal shortening. However, these models are not mutually exclusive, nor must any one geodynamic mechanism describe the entire history of the formation of the CAP, an area spanning ~1800 km N-S by up to 500 km E-W, comprised of multiple physiographic regions of differing compositional and geophysical characteristics resulting from protracted orogenesis. We present new stratigraphic, stable isotopic, and geochronologic data for temporally overlapping yet spatially separate Cenozoic intermontane basins in the northern CAP to evaluate the contribution of these end-member scenarios to the formation of the CAP. Data span multiple physiographic regions of the CAP, including basins near Puquio (Western Cordillera), the Huacochullo basin (western Altiplano margin), and the Macusani and Crucero basins of the Cordillera de Carabaya (Eastern Cordillera). The magnitude of paleoelevation changes is reconstructed from δD values of volcanic glass, while timing is constrained by zircon U-Pb geochronology. Initial results indicate early, rapid, high-magnitude surface uplift from initially low elevations in the Western Cordillera but a later, lower-magnitude pulse of uplift from initially moderate elevations in the Eastern Cordillera. This diachronous uplift history, together with published reports of crustal deformation, suggests contrasting uplift mechanisms potentially explained by early Miocene foundering of a dense lithospheric root in the Western Cordillera, and a combination of continued Cenozoic crustal shortening and late Miocene lithospheric removal in the Eastern Cordillera.

  4. A late Tortonian paleotectonic restoration of the Gibraltar Arc System (GAS) based on the restoration of block rotations. Consequences on the GAS geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos

    2014-05-01

    The Gibraltar Arc System (GAS) closes the Alpine-Mediterranean orogenic system to the west and includes the Betic-Rif orogenic belt, the Alboran and Argelian-Balearic basins and the accretionary prism present in the Cadiz Gulf. Previous investigations on this orogenic system, both onshore and offshore have permit to establish the first order milestones of its Miocene to Recent geodynamic evolution. In most of the models of the geodynamic evolution of the GAS, the external boundary of the Betic-Rif orogenic wedge, initially N-S directed, sweeps from east to west the Gibraltar Arc area, acquiring his arcuate geometry during this westward movement. Nevertheless, most of these models are generally at scale equivalent to 1:10.000.000 or even smaller, and frequently based on 2D schematic cross-sections from which a model for the whole arc is deduced. This fact under evaluates not only the mass movements oblique to the selected cross-section plane, but also the diachronism of the deformation, in turn expected in a so closed arc. In this communication, we want to zoom on the Gibraltar Arc area, to draw a detailed Late Tortonian paleotectonic restoration and to highlight the consequence of this reconstruction on the final evolution of the westernmost Mediterranean. Our approach is based on: 1) the identification and characterization of structural domains of the Gibraltar Arc orogenic system and the transfer fault zones that separate them, 2) an accurate dating of the superposed events of deformations for each one of these domains, 3) the restoration of vertical axis-rotations of some of these structural domains (evidenced by paleomagnetic data previously published), and 4) the quantification of Miocene shortening in the External zones. This exercise makes us to put all together the results of twenty years of research of our teams on this natural case-study, mainly with field and marine geology techniques, and to test it through the revision of an extensive bibliography. It will be shown that the proposed reconstruction permit to simplify most the kinematics models proposed at the moment. Although some key points are still problematic, this paleotectonic restoration may solve more problems than arise them. Acknowledgements: This study was supported by grants RNM-3713, RNM-215, CGL2008-03474 E/BTE, CTM2009-07715/MAR and CGL2009-11384.

  5. Coupled DEM and FEM Models: an Approach to Bridge the gap Between Large-Scale Geodynamic and High-Resolution Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Seyferth, M.; Andreas, H.

    2002-12-01

    During the past decade, improved modeling techniques have heralded an era of visualization and quantification in tectonophysics. However, there is still a broad gap between lithosphere-scale geodynamic models mainly addressing ductile deformation and high-resolution models of distinct tectonic structures picturing the brittle domain. Since the first is best managed by numerical continuum methods and the second is a figurehead of analogue (sand-box) modeling, an interconnection of both domains is difficult to handle. Therefore, a numerical approach suited to simulate brittle fracturing and, thus, to act as a ?virtual sand-box?, represents an essential tool to study the interplay of shallow tectonics and deeper-seated geodynamic processes. This can be achieved using PFC2D, a special implementation of the discrete-element method (DEM) based on circular particles. High-resolution DE models offer a number of advantages over sand-box models: material properties can be determined more adequately; lithostatic pressure influences frictional sliding at different crustal levels; the evolution of stress and strain through time can be monitored at any point of the model. Additionally, DE models can easily be coupled with computer simulations of exogenic processes. However, the principal advantage of high-resolution DE models is their capability to be coupled with continuum models describing the lower, ductile part of the lithosphere. Thermomechanically coupled finite-element models (FEM, ANSYS) allow to consider temperature- and strain rate-dependent material behavior. Therefore, they are well suited to simulate ductile kinematics and, thus, to determine boundary conditions, that can applied to the base of the DE model. Vice versa, current reaction forces of the DE model can be used as input data for the FE model. Half-grabens forming above detachment faults are used as an example to illustrate the capabilities of high-resolution DE models. A lot of analogue modeling has been done on this topic, providing the chance to compare the results and to validate the new method. Thereby, special focus is laid on the fault pattern which evolves in the pre- and syn-rift strata of the hanging wall block. As a second step, the mechanically limited boundary conditions of sand-box models can be left behind by using the coupled DEM-FEM technique. Thereby, the asymmetry induced by the upper crustal detachment results in an asymmetric distribution of strain in the lower part of the lithosphere, which, in turn, leads to vertical movements along the detachment plane.

  6. The use of caves as observatories for recent geodynamic activity and radon gas concentrations in the Western Carpathians and Bohemian Massif.

    PubMed

    Briestensky, M; Thinova, L; Stemberk, J; Rowberry, M D

    2011-05-01

    In recent years, many underground spaces such as caves and deep mines have been used to monitor geodynamic activity in the Western Carpathians and Bohemian Massif. In addition, long-term radon gas monitoring has also being undertaken in three of the caves. The observed radon concentrations have shown diurnal, seasonal and yearly variations. A significant correlation with external temperature has been registered. This pattern is considered to result from the movement of air caused by the contrast between the broadly constant internal and fluctuating external temperatures. The same seasonal effects have been observed in the record of active fault displacements at sites close to the surface. These seasonal effects lead to peak-to-peak massif dilation amplitude that affects the overall trend of fault displacement. It is also noted that a significant decrease in this amplitude occurs with increasing depth beneath the surface. However, high variability has also been observed in both the radon concentration and fault displacement activity recorded. Many events have been registered that link these two geofactors. PMID:21478172

  7. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate

    NASA Astrophysics Data System (ADS)

    Li, J.-Y.

    2006-03-01

    Northeast China and adjacent regions are located in the central East Asian continent and consist tectonically of both the Paleo-Asian and Paleo-Pacific orogens between the Siberian platform and Sino-Korean (North China) block. This paper discusses some hotly-debated issues concerning the Permian geodynamic setting of these regions, based on a comprehensive analysis of available geological, geochemical, paleobiogeographical and paleomagnetic data. Spatial and temporal distribution of ophiolites and associated continental marginal sequences, Permian sedimentary sequences, spatial distribution and geochemistry of Permian magmatic rocks, and the evolution of paleobiogeographical realms imply: (1) that the Permian marine basins in northeast China and adjacent regions include remnants of the Paleo-Asian Ocean in southeastern Inner Mongolia and central Jilin Province, and active continental margins of the Paleo-Pacific Ocean; (2) that the suture between the Siberian and Sino-Korean paleoplates was finally emplaced in the Permian and is located in areas from Suolunshan (Solonker) eastwards through regions north to the Xar Moron river in southeastern Inner Mongolia, and then central Jilin province to the Yanji area; and (3) that the Permian crustal evolution of northeast China and adjacent regions, as well as parts of the Siberian paleoplate, was influenced by subduction of the Paleo-Pacific oceanic plate. Finally, the Permian tectonic framework and paleogeography of northeast China and adjacent regions in central East Asia are discussed briefly, and Early and Late Permian palinspastic reconstruction maps are provided.

  8. The model of the Uzon-Geizernaya volcano-tectonic depression and Kikhpinych volcano, Kamchatka, from the joint analysis of microseismic sounding data and local geodynamic activity

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorbatikov, A. V.; Stepanova, M. Yu.

    2015-05-01

    The model of the magmatic system beneath the Uzon-Geizernaya volcano-tectonic depression and adjacent Kikhpinych volcano in Kamchatka is constructed to a depth of 30 km based on the microseismic sounding data. For doing this, measurements of the natural microseismic field by the Guralp CMG-6TD portable broadband seismometer were carried out at 60 points along three profiles with a total length of about 28 km. The revealed structural heterogeneities were interpreted in the common context with the previous geological, geological-morphological, and petrological results. The area of a shallow crystallized magmatic reservoir is identified and spatially localized below the depression. The zones of the presumed concentration of the basaltic melts probably responsible for the local geodynamic activation of the region during the past 15 years are revealed as the peripheral magmatic chamber of the Kikhpinych volcano at a depth of 5-12 km and a deeper (15-20 km) magma storage. The geometry of the identified deep structures is consistent with the local microseismicity and the model of the contemporary magmatic intrusion into the upper crustal layers, which is based on the data of satellite interferometry.

  9. Palaeoproterozoic (1.83 Ga) zircons in a Bajocian (169 Ma) granite within a Middle Jurassic ophiolite (Rubiku, central Albania): a challenge for geodynamic models

    NASA Astrophysics Data System (ADS)

    Kryza, Ryszard; Beqiraj, Arjan

    2014-04-01

    Two distinct zircon populations, 1,827 ± 17 and 169 ± 2 Ma in age, have been found in the Rubiku granite dyke in the Middle Jurassic Mirdita ophiolite in central Albania. The old inherited zircons represent a homogeneous population formed during a discrete Palaeoproterozoic, likely magmatic, zircon crystallization event. These older zircons were likely incorporated, in large part, into the granite magma that crystallized broadly at the time of the ophiolite emplacement (around 169 Ma). The limited data available do not allow for the construction of an unequivocal petrogenetic model, though several palaeotectonic scenarios are discussed as possible settings for the granite formation. The models refer to recent findings of old inherited zircons in rocks at recent mid-ocean ridge settings, but also consider likely contributions of crustal materials to primary basic ophiolitic magmas within supra-subduction settings and subsequent accretion/collision circumstances. The presence of old zircons in much younger rocks within ophiolite successions runs counter to geodynamic models of interaction between the oceanic lithosphere and continental crust, but constraining their genesis would require further systematic studies on these old inherited zircons, both in mafic (if present) and in felsic rocks of the ophiolites.

  10. The Surface of Venus and Implications for its Geological and Geodynamical Evolution: The View Before Venus Express and Outstanding Questions for the Future

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Ivanov, M. A.; Basilevsky, A. T.

    2008-12-01

    Prior to the Venera 15/16 and the Magellan missions to Venus, a wide range of ideas existed concerning the nature of the surface of Venus, the geological processes currently operating there, their link to interior processes, the implied geological and geodynamical history of the planet, and how all this compared with the nature and history of other terrestrial planetary bodies. The history of exploration of the surface of Venus represents the acquisition of data with increasing spatial and areal coverage, culminating in the near-global high-resolution image, altimetry, physical property and gravity data obtained by the Magellan mission. Among the most fundamental findings of the global Magellan image data are: 1) that volcanism and tectonism represent the most abundant geological processes operating on the observed surface, 2) that the styles and abundance of volcanism and tectonism combine attributes of both the Earth (e.g., very heavily tectonically deformed regions such as tessera) and the smaller terrestrial planetary bodies (e.g., vast volcanic plains deformed by wrinkle ridges), 3) that the distribution and nature of impact craters precludes active plate tectonics despite many Earth-like tectonic features (e.g., folded mountain belts), 4) that some features (e.g., coronae) are somewhat unique to Venus and may provide important information on mantle convection and lithospheric evolution processes, 5) that the number of impact craters is very small, indicating that the surface geological record is very young, less than 20% of the history of the planet itself, 6) that 80% of the geological record of Venus is no longer obviously preserved in the surface morphology, but may be preserved in the surface rocks, 7) that the distribution and state of preservation of existing impact craters may be consistent with a range of catastrophic resurfacing models, and 8) that the geological record and sequence of events can be correlated with geophysical data to assess crustal thickness variations and mantle convection patterns. The relationships of major elements of global topography and the sequence of events in the observed geological history (as recorded by major geologic units and structures) suggest that much of the current long-wavelength topography of Venus (tessera highlands and lowlands with regional plains) may have formed prior to emplacement of regional plains and been preserved since that time. These observations may favor evolutionary geodynamic models that are characterized by changes in geological style and rates, and may involve non-linear heat loss mechanisms that could have profound influence on the atmosphere. Although the observed surface of Venus dates from relatively recent planetary history, comparative planetology permits inferences to be made about the major stages in the earlier history of Venus. The evolution of the understanding of the surface from early speculations to present observations and interpretations provides an important context for: 1) establishing the relationships of the surface of Venus to the nature of the atmosphere and its evolution as assessed by Venus Express, 2) the comparison of the geological features and history of Venus relative to the Moon, Mars, Mercury and the Earth, and 3) defining the major outstanding problems and questions to be addressed by future experiments and missions to Venus.

  11. Gravity sliding in basinal setting, a surficial record of tectonic and geodynamic evolution; examples from the southern W. Alps and their foreland

    NASA Astrophysics Data System (ADS)

    Dumont, T.; Franzi, V.; Matthews, S. J.

    2012-04-01

    The occurrence of large-scale submarine landslides, although commonly observed in the present basins, is only exceptionally mentioned in the Alpine orogen and foreland. The southern part of the Western Alpine arc and the SE basin of France provide examples of such features which could be related with particular geodynamic events, in relation with the motion of the Iberian and Adriatic microplates : - A >50km2 slump scar formed in Aptian times at the northwestern edge of the SE France (so-called Vocontian) basin, giving a low-angle detachment surface which was onlapped by Albian hemipelagic marls (Ferry & Flandrin, 1979). The latter mark the maximum deepening stage of the basin, and the head of the scar is located over a deep-seated fault bounding the platform, which strongly suggest that sliding was caused by differential subsidence due to Middle Cretaceous extension, as a consequence of Iberia-Europe divergence. - Later on, a deep-marine erosion surface developed further down the basin over a >100km2 area (Dévoluy massif; Michard et al., 2010), which had been previously affected by Mid-Cretaceous extension. Typical inversion structures are found beneath the surface, which indicate that NS shortening overprinted the extensional pattern. The removal of up to 400m of Mesozoic sediments was controlled by gravity processes, probably triggered by the deformation of the basin floor following tectonic inversion. The overlying pelagic carbonates indicate that shortening occurred before the Campanian, which is closely comparable with the earliest stages of tectonic inversion in the Pyrenees. - The transition slope between the Paleogene Alpine flexural basin and the NW-ward propagating accretionary prism provides examples of basin floor degradation and of gravity-driven emplacement of large-scale blocks, generally regarded as thrust-sheets in the Alps. These features allow to reconstruct the early stages of the Adria-Europe collision, which strongly differ from the Oligo-Miocene dynamics and which are overprinted or crosscut by the modern orogen (Dumont et al., 2011). Theses examples show that, in different structural and geodynamic settings, detailed analysis of basin floor morphology, (re)sediments transport directions, syndepositional deformations and provenance of exotic blocks can provide useful information about the regional kinematics, which can be integrated with other datasets, i.e. tectonic, metamorphic, thermochronologic, etc. Dumont T., Schwartz S., Guillot S., Simon-Labric T., Tricart P. & Jourdan S. (2011), Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. Jour. Geodyn., in press. Ferry S. & Flandrin J. (1979), Mégabrèches de resédimentation, lacunes mécaniques et pseudo-« hard-grounds » sur la marge vocontienne au Barrémien et à l'Aptien inférieur (SE France). Géologie Alpine, 55, p. 75-92. Michard A., Dumont T., Andreani L. & Loget N. (2010), Structural and sedimentary records of the Oligocene revolution in the Western Alpine arc. Bull. Soc. Géol. Fr., 181, p. 565-581.

  12. Kinematic analysis of recent and active faults of the southern Umbria-Marche domain, Northern Apennines, Italy: geological constraints to geodynamic models

    NASA Astrophysics Data System (ADS)

    Pasqui, Valeria; Viti, Marcello; Mantovani, Enzo

    2013-04-01

    The recent and active deformation that affects the crest zone of the Umbria-Marche belt (Northern Apennines, Italy) displays a remarkable extensional character, outlined by development of normal fault sets that overprint pre-existing folds and thrusts of Late Miocene-Early Pliocene age. The main extensional fault systems often bound intermontane depressions hosting recent, mainly continental, i.e. fluvial or lacustrine deposits, separating the latter from Triassic-Miocene, mainly carbonatic and siliciclastic marine rocks that belong to the Romagna-Umbria-Marche stratigraphic succession. Stratigraphic data indicate that the extensional strain responsible for the development of normal fault-bounded continental basins in the outer zones of the Northern Apennines was active until Middle Pleistocene time. Since Middle Pleistocene time onwards a major geodynamic change has affected the Central Mediterranean region, with local reorganization of the kinematics in the Adria domain and adjacent Apennine belt. A wide literature illustrates that the overall deformation field of the Central Mediterranean area is presently governed by the relative movements between the Eurasia and Africa plates. The complex interaction of the Africa-Adria and the Anatolian-Aegean-Balkan domains has led the Adria microplate to migrate NW-ward and to collide against Eurasia along the Eastern Southern Alps. As a consequence Adria is presently moving with a general left-lateral displacement with respect to the Apennine mountain belt. The sinistral component of active deformations is also supported by analysis of earthquake focal mechanisms. A comparison between geophysical and geological evidence outlines an apparent discrepancy: most recognized recent and active faults display a remarkable extensional character, as shown by the geometry of continental basin-bounding structutes, whereas geodetic and seismologic evidence indicates the persistency of an active strike-slip, left-lateral dominated strain field. The coexistence of extensional and strike-slip regimes, in principle difficult to achieve, may be explained in the framework of a transtensional deformation model where extensional components, normal to the main NW-directed structural trends, are associated to left-lateral strike-slip movements parallel to the main NW-directed structural trends. Critical for the evaluation of the internal consistency of a deformation model for the brittle upper crustal levels is the definition of the kinematics of active faults. In this study we illustrate the preliminary results of a kinematic analysis carried out along 20, exceptionally well exposed, recent and active fault surfaces cropping out in the southernmost portion of the Umbria-Marche belt adjacent to its termination against the the Latium-Abruzzi domain to the East. The collected data indicate that the investigated faults reflect a kinematically oblique character, and that development of these structures may be explained in the framework of a left-dominated transtensional strain field. More important, the data indicate that fault kinematic analysis is an effective tool in testing geodynamic models for actively deforming crustal domains.

  13. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    NASA Astrophysics Data System (ADS)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2σ))), obtained for the Late Oligocene (∼23 Ma) to Late Miocene (∼9 Ma) magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (∼6 Ma) volcanic rocks present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter part of the Cenozoic.

  14. GOCE observations and geophysical constraints to better understand the lithosphere and geodynamical processes under the Paraná-Etendeka region: preliminary results of PERLA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizia; Braitenberg, Carla

    2014-05-01

    In the light of the considerable progress made by the modern geodetic satellite mission GOCE, one of the challenges of the European Space Agency (ESA) is to improve knowledge of physical properties and geodynamic processes of the lithosphere and the Earth deep interior, and their relationship to Earth-surface changes. In this context we propose a study that aims to understand the two pieces of lithosphere underlying the Paraná-Etendeka conjugate margins (Brazil, and Angola-Namibia). It is essential to collect the geological and geophysical information about the thickness and the density of sedimentary layers, crustal thickness and mantle inhomogeneities. Our methodology integrates the geophysical database with the GOCE data, product of the innovative gravity satellite mission, that was concluded November 2013. Crustal thickness was obtained from all available seismological datasets. The density-depth relation of the shallow layers is modeled by geophysical data collected from literature and from the on-shore and off-shore drilling programs. Several compaction laws are used to estimate the density of each layer. This information is necessary to reduce the observations considering the gravity effect of all intracrustal known layers, to resolve the deep crustal structures (e.g. Moho and intracrustal bodies). A positive gravity anomaly is expected due to the magmatic activity of the Paraná-Etendeka province. The smaller-scale and shallow gravity anomaly should be due to the occurrence of the volcanic activity close to the alkaline-carbonatite complexes, while the large-scale anomaly is expected from the underplating of a wide denser body at the depth of the crustal mantle boundary. In the present work some preliminary results of the inversion of the residual gravity anomaly in terms of densities in the middle and shallow lithosphere under the Paraná-Etendeka region will be presented and interpreted.

  15. Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block

    NASA Astrophysics Data System (ADS)

    de Wall, Helga; Pandit, Manoj K.; Dotzler, Ramona; Just, Jana

    2012-07-01

    The Mt. Abu batholith in NW India comprises variably deformed porphyritic, granophyric to medium-grained granites and granite gneisses. They are intruded by rhyolitic and mafic dykes; the latter also mark the terminal magmatic phase in this batholith. Granitoids and rhyolitic dykes form a coherent group; petrographic and geochemical characteristics indicate high level intrusion of felsic magma generated from high temperature melting of a lower crustal source. Geochemical similarity, spatial contiguity and coeval emplacement (766 to 763 Ma) of Mt. Abu granitoids with the Neoproterozoic (770 to 750 Ma) Malani Igneous Suite (MIS) underline that both are related to the same thermal event with Mt. Abu batholith as southeastern continuity of the MIS. Anisotropy of magnetic susceptibility data shows parallel fabric orientation in all granitoid types (NE trend, steep SW dip) as well as in a prominent shear zone (Delwara Shear Zone) along the western margin of the batholith with continued deformation during and after the emplacement of granitic magma as inferred from deformation of late-stage mafic dykes. Including coeval shear zones and associated melting in the region NE of Mt. Abu shear-controlled magma generation and ascent along a > 50 km NE trending corridor (Mt. Abu-Sirohi fault zone) is inferred. Structural elements and microstructural criteria (steep foliations, vertical lineations, dextral displacement) indicate a transpressional setting for this Cryogenian event. In regional geodynamic context the Mt. Abu-MIS can be regarded as northeastern continuation of the Neoproterozoic (800-700 Ma) magmatic belt extending from northern Madagascar, the Seychelles into NW India. This magmatic belt, located along the western margin of supercontinent Rodinia, was formed during eastward subduction of the Mozambique Ocean. Transpressional forces responsible for shaping the structural architecture in the Mt. Abu-Sirohi region were most likely induced during closure of the Mozambique Ocean and related translation of the Marwar craton.

  16. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lü, Qingtian; Shi, Danian; Liu, Zhendong; Zhang, Yongqian; Dong, Shuwen; Zhao, Jinhua

    2015-12-01

    A 300 km long seismic reflection profile was acquired across the Middle and Lower Reaches of the Yangtze River (MLY) metallogenic belt and its adjacent areas. The objective of the survey was to establish the deep architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include (1) Tan-Lu fault appears as a subvertical thrust fault or transpression fault with its deep portion dipping toward the southeast; (2) the Zhangbaling uplift is squeezed out along this fault; (3) complex upper crustal deformation structures beneath the Chuquan depression include both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; (4) the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, which represents the decoupled deformation process of the upper and lower crust associated with intra-continental subduction; (5) further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline; (6) the entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the Middle and Lower Reaches of Yangtze River metallogenic belt is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. The Moho offsets could be seen beneath the Ningwu volcanic basin. The seismic reflection data suggest that lithosphere delamination and asthenosphere upwelling that may result from the Mesozoic intra-continental orogenesis is responsible for the formation of large scale magmatism and mineralization in the MLY metallogenic belt.

  17. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  18. Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Macheyeki, A. S.; Temu, E. B.

    2012-04-01

    The Tanganyika-Rukwa-Malawi (TRM) rift segment in western Tanzania is a key sector for understanding the opening dynamics of the East African rift system (EARS). In an oblique opening model, it is considered as a dextral transfer fault zone that accommodates the general opening of the EARS in an NW-SE direction. In an orthogonal opening model, it accommodates pure dip-slip normal faulting with extension orthogonal to the rift segments and a general E-W extension for the entire EARS. The central part of the TRM rift segment is well exposed in the Ufipa plateau and Rukwa basin, within the Paleoproterozoic Ubende belt. It is also one of the most seismically active regions of the EARS. We investigated the active tectonic architecture and paleostress evolution of the Ufipa plateau and adjacent Rukwa basin and in order to define their geodynamic role in the development of the EARS and highlight their pre-rift brittle tectonic history. The active fault architecture, fault-kinematic analysis and paleostress reconstruction show that the recent to active fault systems that control the rift structure develop in a pure extensional setting with extension direction orthogonal to the trend of the TRM segment. Two pre-rift brittle events are evidenced. An older brittle thrusting is related to the interaction between the Bangweulu block and the Tanzanian craton during the late Pan-African (early Paleozoic). It was followed by a transpressional inversion during the early Mesozoic. This inversion stage is the best expressed in the field and caused dextral strike-slip faulting along the fault systems that now control the major rift structures. It has been erroneously interpreted as related to the late Cenozoic EARS which instead is characterized by pure normal faulting (our third and last stress stage).

  19. The lithosphere architecture and geodynamic of the Middle and Lower Yangtze metallogenic belt in eastern China: constraints from integrated geophysical data

    NASA Astrophysics Data System (ADS)

    Lü, Qingtian; Shi, Danian; Jiang, Guoming; Dong, Shuwen

    2014-05-01

    The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe has conducted an integrated deep exploration across middle and lower reaches of Yangtze Metallogenic Belt (YMB) in Eastern China, these included broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, geodynamic, deformation and heat and mass transportation that lead to the formation of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism; (6) The lower crust below Luzong Volcanics shows obvious reflective anisotropy both at the crust-mantle transition and the brittle-ductile transition in the crust. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of this Mesozoic metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural Science Foundation of China under Grant 40930418

  20. A regional-scale discontinuity in western Sicily revealed by a multidisciplinary approach: A new piece for understanding the geodynamic puzzle of the southern Mediterranean

    NASA Astrophysics Data System (ADS)

    Di Stefano, Pietro; Favara, Rocco; Luzio, Dario; Renda, Pietro; Cacciatore, Maria Simona; Calò, Marco; Napoli, Giuseppe; Parisi, Laura; Todaro, Simona; Zarcone, Giuseppe

    2015-10-01

    The results of an integrated stratigraphic, structural, geophysical, and geochemical study reveal the presence of a crustal discontinuity in western Sicily that, at present, runs roughly N-S along a band from San Vito Lo Capo to Sciacca. The boundary between the two zones of this discontinuity is nearly orthogonal to the main thrust propagation of the Sicilian thrust-and-fold belt. The different Permian to Tertiary sedimentary evolution recorded by the two zones appears related to this discontinuity, with thick carbonate platforms in the western sector facing deepwater successions in the eastern one. The presence of Upper Triassic reefs, huge megabreccia bodies, and widespread submarine volcanisms along the transition zone suggests the presence of a long-lasting weakness zone. This zone has been reactivated episodically as transpressional and/or transtensional faults in relation to the different geodynamic stress acting in central Mediterranean area in different epochs. We speculate that this transition zone has represented a segment of the passive margin of the Ionian Tethys. During the Maghrebian convergence a different style of deformation has affected the two sectors floored by different sedimentary multilayers. The orthogonal-to-oblique differential convergence between the two sectors has resulted in right-lateral transpressional motions, leading to oblique thrusting of deepwater-derived thrusts onto platform-derived thrusts associated with clockwise rotations. The oblique convergence is still ongoing as demonstrated by the seismicity of the area, by the geothermal field with high mantle-derived helium fluxes and by the GPS measurements collected by different authors.

  1. Seismic and gravity constraints on the nature of the basement in the Africa-Eurasia plate boundary: New insights for the geodynamic evolution of the SW Iberian margin

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael; Dañobeitia, Juan José; Zitellini, Nevio

    2014-01-01

    We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along a new transect running from the Horseshoe to the Seine abyssal plains, which is combined with previously available geophysical models from the region. The basement velocity structure at the Seine Abyssal Plain indicates the presence of a highly heterogeneous, thin oceanic crust with local high-velocity anomalies possibly representing zones related to the presence of ultramafic rocks. The integration of this model with previous ones reveals the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental breakup (Late Jurassic); and (3) the Gorringe Bank domain, made of exhumed mantle rocks, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain.

  2. Geochemistry and zircon U-Pb-Hf isotopes of the granitoids of Baolidao and Halatu plutons in Sonidzuoqi area, Inner Mongolia: Implications for petrogenesis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Hu, Chuansheng; Li, Wenbo; Xu, Cheng; Zhong, Richen; Zhu, Feng

    2015-01-01

    The Baolidao and Halatu plutons are located in the Northern Orogenic Belt (NOB) in Sonidzuoqi area of Inner Mongolia, which has an important significance for the tectonic evolution of Xing-Meng Orogenic Belt (XMOB). The two plutons have been intensively studied but the conclusions are still controversial. Combined with the previous study, this paper gives new geological data about the two correlative plutons for gaining a better understanding of their petrogenesis and the geodynamic setting. The Baolidao granitoids contain two different series, calc-alkaline series mainly formed in the Ordovician and high K calc-alkaline series mainly formed in the Carboniferous. The Halatu granites are formed in the Triassic and belong to high-K calc-alkaline series. This study got the zircon U-Pb ages of 316-322 Ma for the Baolidao granitoids and 233 ± 2 Ma for the Halatu syenogranites, respectively. In the tectonic discrimination diagrams, they mainly fall into the area of post-orogenic granites (POG). Hf isotopic analyses for the Baolidao granitoids (Sample BLD-1 and 3) shows εHf (t) = 3.0-14.0, with two-stage Hf model age (TDM2) of 436-1138 Ma. The Halatu syenogranite (Sample HLT-1) also shows a depleted εHf (t) = 3.8-8.2, with TDM2 of 741-1024 Ma, suggesting the major involvement of juvenile crustal components. The various εHf values of the Carboniferous Baolidao and Triassic Halatu granitoids indicates a hybrid magma source of juvenile material with old crustal component, and the εHf (t) values decrease from the Carboniferous to Triassic, suggesting the increasing proportion of old continental material during this period. Combined with the regional geology, the Carboniferous Baolidao granitoids are possibly not arc rocks, but originated from the post-collisional setting. The Triassic Halatu granites were formed in the subsequently extensional environment.

  3. Stacking with superconducting gravimeters of the GGP (Global Geodynamics Project) network in the quest for the 2S1 and 1S1 modes

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Hinderer, J.; Rivera, L.

    2003-04-01

    Superconducting Gravimeters (SGs) of the Global Geodynamics Project (GGP) have proved to be well suited for the study of long-period seismic and subseismic modes. They can contribute successfully to the observation of the splitting of the gravest normal modes; a clear example is the recovery of the 5 individual singlets of the fundamental degree 2 mode 0S2 at some GGP stations (in particular Strasbourg) after the 2001 Mw = 8.4 Peru earthquake. Spectra of synthetic seismograms derived from this earthquake show the weak excitation of the degree 1 elastic mode 2S1 and the much weaker amplitude of the 1S1 mode, the so-called Slichter mode where the solid inner core exhibits a translational motion; on the contrary to 2S1, this mode involves in addition to elasticity a restoring force of Archimedian type strongly depending on the density contrast between the inner and outer core regions. A stack of the available datasets after the Peru event is performed in order to attempt to confirm the detection of the 2S1 mode according to the well-known splitting law; this means that we search for the presence of correctly split triplets following a method first introduced by Smylie et al. (1993). Since the Slichter mode is by no way detectable in the records after the 2001 Peru event because of its extremely small amplitude, a similar stacking detection method is then applied to several year long SG records assuming that alternative mechanisms (e.g. turbulent flow in the core) might randomly excite this mode; since the exact splitting law for the Slichter mode is still controversial, we will scan the data with triplets having various separation frequencies. In addition to the splitting method, we also apply to the same data sets the multi-station analysis technique proposed by Courtier et al. (2000) which takes into account the temporal and spatial character of the degree 1 Slichter mode.

  4. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gy

    2010-07-01

    In May 1990, a quartz tube extensometer was installed in the Sopronbánfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093+/-0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters. PMID:20687746

  5. Potential geodynamic relationships between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana

    NASA Astrophysics Data System (ADS)

    Murphy, J. Brendan; Pisarevsky, Sergei; Nance, R. Damian

    2013-10-01

    The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640-540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760-670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/So Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/So Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.

  6. Configuration of geological domains and geodynamic evolution of the Africa-Eurasia plate boundary off SW Iberia revisited based on seismic velocity and density models

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael; Ranero, César

    2015-04-01

    We present a new classification of geological (basement) domains at the Africa-Eurasia plate boundary offshore SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide-angle seismic transects, one running NW-SE from the Tagus to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains off SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE segment of the Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening (Early Cretaceous). Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain, which coincides with the seismicity cluster nucleated in the middle of the plain that shows moment tensor solutions of reverse faulting at depths of 40-60 km. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence of events that occurred during the first stages of opening of the Northern Atlantic and its connection and interplay with the Western Mediterranean basin.

  7. New insights in the geodynamics of the Lipari-Vulcano area (Aeolian Archipelago, southern Italy) from geological, geodetic and seismological data

    NASA Astrophysics Data System (ADS)

    Barreca, G.; Bruno, V.; Cultrera, F.; Mattia, M.; Monaco, C.; Scarfì, L.

    2014-12-01

    Geological, geodetic and seismological data have been analyzed in order to frame the Lipari-Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW-SSE trending right-lateral strike-slip fault system named "Aeolian-Tindari-Letojanni" which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW-SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N-S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW-SSE trending Aeolian-Tindari-Letojanni fault system and to the WNW-ESE oriented Sisifo-Alicudi fault system. GPS data analysis displays ∼3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10-13 s-1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10-13 s-1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about -15 to -7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari-Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo-Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.

  8. Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia)

    USGS Publications Warehouse

    Pamic, J.; Belak, M.; Bullen, T.D.; Lanphere, M.A.; McKee, E.H.

    2000-01-01

    In this paper we present petrological and geochemical information on a bimodal basaltrhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8-9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkalifeldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with recent back-arc basins. The difference in geological and isotope ages between the bimodal basalt-rhyolite volcanism with A-type granite plutonism (72 Ma) and the final synkinematic S-type granite plutonism (48 Ma) can be taken as a lifetime of the presumed BARB system of the Dinaridic Tethys. Remnants of this presumed subduction zone can be traced for 300 km along the surrounding northernmost Dinarides.

  9. Integrated studies of the recent evolution of Deception Island in the geodynamic setting of the Bransfield Basin opening (Antarctica): GEOMAGDEC Project

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; Gil-Imaz, Andrés.; Gil-Peña, Inmaculada; Galindo-Zaldívar, Jesús; Rey, Jorge; Soto, Ruth; López-Martínez, Jerónimo; Llave, Estefanía.; Bohoyo, Fernando; Rull, Fernando; Martínez-Frías, Jesús; Galán, Luis; Casas, David; Lunar, Rosario; Ercilla, Gemma; Somoza, Luis

    2010-05-01

    Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969, and 1970 at the western end of the volcanic ridge of the Bransfield Trough, between the South Shetland Islands and the Antarctic Peninsula. The recent tectonic activity of the Bransfield Trough is not well defined, and it presents a controversial origin. It is currently explained by two different models: (1) Opening of the basin may be related to passive subduction of the former Phoenix Plate and subsequent rollback of the South Shetland Trench; or (2) an oblique extension along the Antarctic Peninsula continental margin generated by the sinistral movement between the Antarctic and Scotia plates. This extension develops the Bransfield Trough and spread away the South Shetland tectonic block. The GEOMAGDEC project involves a multidisciplinary and integrated research of the Deception Island based on geophysical and geological methods. The purpose of this project, funded by the Spanish research agency, is the understanding of the main processes that govern the evolution of the Deception Island into the development of Bransfield Basin during recent times. Main aims are: (1) Study of the anisotropy of the magnetic susceptibility of volcanic deposits of emerged area of Deception Island to determine the relationship between magmatism (intrusive and extrusive) with the recent tectonic activity. This task allows the reconstruction of igneous flow directions of the different volcanic units established in the island, dikes emplacement modelling in active tectonic regime, and the integration of the results obtained in a kinematic and dynamic emplacement model of the different volcanic units of the Deception Island into recent geodynamic setting of Bransfield Basin opening. (2) Lito- and crono-stratigraphy analysis of the quaternary sedimentary units that filled Port Foster (inner bay of Deception Island) on the basis of the ultra-high seismic profiles and gravity cores data acquired during oceanographic campaigns carried out using the RV. BIO/HESPERIDES. (3) Recovery of the Hydrothermal Precipitation Cells (HPCs) emplaced in Port Foster during 2001 austral summer and the mineralogical and geochemical analysis of the precipitate deposits located in the inner walls of the HPCs. The analysis of these samples will provide important information about the recent volcanic activity.

  10. The heat flow constraint on mantle tomography-based convection models: Towards a geodynamically self-consistent inference of mantle viscosity

    NASA Astrophysics Data System (ADS)

    Pari, Giovanni; Peltier, W. Richard

    1995-07-01

    We present a detailed study of the advective contribution to the radial flow of heat in the mantle as deduced using a compressible internal loading theory in which the flow is assumed to be driven by the density heterogeneities implied by recent global seismic tomographic models. We calculate the radial flow velocity response of a viscous mantle and find that for reasonable values of the parameters which enter the theory, the heat flow correlation integral delivers the correct area-integrated value of the heat flow observed at Earth's surface. This result is unlikely to be significantly affected by the low-degree truncation of the tomographic models we employ as in both the upper mantle and lower part of the lower mantle, heat is primarily transported by the degree 2 components of the flow. We propose that the radial profile of heat advection is a particularly useful diagnostic with which to "prospect" for the existence of thermal boundary layers in the mantle. For split mantle tomographic models, we find a sharp drop in advected heat at a depth of 670 km. We investigate in detail the rheological consequences of a circulation that is layered at this depth by the action of the endothermic phase transformation of spinel to a mixture of perovskite and magnesiowustite. On physical grounds this is expected to lead to the development of a dipolar viscosity structure centered on the internal thermal boundary layer. We investigate the impact that such a structure has on the predicted aspherical geoid. A sequence of forward modeling calculations of this geophysical observable demonstrates that a viscosity profile which includes a dipolar structure centered at 670 km depth and a significant increase of viscosity below mantle depths of 1200-1500 km optimally reconciles the long-wavelength GEM-T2 observations. The increase in viscosity in the lower part of the lower mantle is also required by the heat flow data whereas the introduction of the dipolar structure in the viscosity profile allows the upper mantle value of the viscosity which is close to that inferred by Haskell of 1021 Pa s to be continued to a depth of 1200-1500 km in accord with the requirements of recent postglacial rebound inferences. In the context of a whole mantle model of the circulation, we are also able to accommodate the constraints imposed by the data by introducing only a low-viscosity notch at 670 km depth rather than the dipolar structure. The viscosity models derived herein therefore provide a fully self-consistent reconciliation of these distinctly different geodynamic data and would appear to resolve a previously unresolved conflict between them.

  11. Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.

    2015-10-01

    In nature, subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that influence the style of subduction and overriding plate deformation. Here we present dynamic laboratory models of progressive subduction in three-dimensional space, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed, and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, particularly focusing on overriding plate deformation. The results indicate that the variation in far-field boundary conditions has an influence on the slab geometry, subduction partitioning, and trench migration partitioning. Our models also indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of back-arc basins (e.g., Tyrrhenian Sea, Aegean Sea, and Scotia Sea) is generally expected to occur at a comparable location (250-700 km from the trench), irrespective of the boundary condition. In addition, our models indicate that the style of fore-arc deformation (shortening or extension) is influenced by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed setup is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature, and accretionary configuration. Furthermore, the model can explain back-arc and fore-arc extension at the Calabria subduction zone since the latest middle Miocene as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting induced strong trench suction, driving fore-arc extension, and forced subduction to be accommodated almost entirely by slab rollback (not trenchward subducting plate motion), while trench retreat was accommodated almost entirely by back-arc and fore-arc extension (not trenchward overriding plate motion), comparable to our SP-OP-Fixed model.

  12. Divergence between Antarctic and South American marine invertebrates: What molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Poulin, Elie; González-Wevar, Claudio; Díaz, Angie; Gérard, Karin; Hüne, Mathias

    2014-12-01

    Continental drift processes such as major gateway openings have been historically advocated to explain the distribution of marine benthic taxa in the Southern Ocean (SO). The separation between Antarctic Peninsula and the southern tip of South America together with the onset of the Antarctic Circumpolar Current (ACC) represent the final step for the complete isolation of the Antarctic region. However, there is still controversy concerning the timing and mode of this process, and especially about the role of the Scotia Arc geodynamics in the development of a fully deep and intensified ACC circulation. Based on mitochondrial Cytochrome c Oxidase Subunit I (COI) sequences obtained from different taxa, we performed molecular comparisons between Antarctic and South American relatives to provide independent time estimations of Antarctica's isolation. We include in the analyses congeneric Antarctic and Patagonian near-shore marine benthic invertebrates including indirect developers (Nacella, Yoldia, Sterechinus, and Parbolasia) and brooders (Xymenopsis and Trophonella). Considering the levels of genetic differentiation between relatives from both regions and assuming the molecular clock hypothesis, we estimated the onset of their respective divergence. On one hand, similar levels of genetic distance in broadcast-spawners (7%-8.3%) support the hypothesis that the development of an effective barrier between Antarctica and South America occurred almost simultaneously for these groups. Divergence time estimations based on specific substitution rates indicate that the separation occurred near the Mio-Pliocene transition, long after the physical separation of both continents. Genetic distance and divergence time estimation in direct developers indicate an older separation time, close to the mid-Miocene. Even when the analyzed groups included both broadcast-spawners and brooder organisms, the divergence between Antarctic and South America lineages rather than being related to processes of continental drift, seems to be associated more to major changes in the Southern Ocean such as the evolution of the Scotia Arc and the deepening of the Drake Passage. Accordingly, these results support a genetic continuity between Antarctica and South America, probably along the Scotia Ridge, until the middle Miocene and a late ACC intensification at the Mio-Pliocene boundary.

  13. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener; Santosh, M.; Yi, Keewook; Bektaş, Osman; Kwon, Sanghoon

    2012-08-01

    The Cenozoic magmatic record within the ca. 500 km long eastern Pontides orogen, located within the Alpine metallogenic belt, is critical to evaluate the tectonic history and geodynamic evolution of the eastern Mediterranean region. In this paper we report for the first time late Miocene adakitic rocks from the southeastern part of the eastern Pontides belt and present results from geochemical and Sr-Nd isotopic studies as well as zircon U-Pb geochronology. The Tavdagi dacite that we investigate in this study is exposed as round or ellipsoidal shaped bodies, sills, and dikes in the southeastern part of the belt. Zircons in the dacite show euhedral crystal morphology with oscillatory zoning and high Th/U values (up to 1.69) typical of magmatic origin. Zircon LA-ICPMS analysis yielded a weighted mean 206Pb/238U age of 7.86 ± 0.15 Ma. SHRIMP analyses of zircons with typical magmatic zoning from another sample yielded a weighted mean 206Pb/238U age of 8.79 ± 0.19 Ma. Both ages are identical and constrain the timing of dacitic magmatism as late Miocene. The Miocene Tavdagi dacite shows adakitic affinity with high SiO2 (68.95-71.41 wt.%), Al2O3 (14.88-16.02 wt.%), Na2O (3.27-4.12 wt.%), Sr (331.4-462.1 ppm), Sr/Y (85-103.7), LaN/YbN (34.3-50.9) and low Y (3.2-5 ppm) values. Their initial 143Nd/144Nd (0.512723-0.512736) and 87Sr/86Sr (0.70484-0.70494) ratios are, respectively, lower and higher than those of normal oceanic crust. The geological, geochemical and isotopic data suggest that the adakitic magmatism was generated by partial melting of the mafic lower crust in the southeastern part of the eastern Pontide belt during the late Miocene. Based on the results presented in this study and a synthesis of the geological and tectonic information on the region, we propose that the entire northern edge of the eastern Pontides-Lesser Caucasus-Elbruz magmatic arc was an active continental margin during the Cenozoic. We identify a migration of the Cenozoic magmatism towards north over time resulting from the roll-back of the southward subducted Tethys oceanic lithosphere. Slab break-off during Pliocene is proposed to have triggered asthenospheric upwelling and partial melting of the subduction-modified mantle wedge which generated the alkaline magmatic rocks exposed in the northern part of the magmatic arc.

  14. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  15. Evolution of the Cretaceous magmatism in the Apuseni-Timok-Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Frank, M.; Cvetkovic, V.

    2003-04-01

    Most major Cu-Au (-PGE) deposits in the Carpathian Balkan orogen are related to a 1500 km long belt of Upper Cretaceous magmatism extending from southern Romania through Yugoslavia to Bulgaria, with a likely continuation southeast of the Black Sea into Turkey, known as the Apuseni Banat Timok Srednogorie (ABTS) belt (Popov et al., 2000). In the frame of ABTS belt a new investigation was started to reveal the relation between Cretaceous magmatism and the Cu-Au-PGE deposits across the belt in East Serbia (Yugoslavia) and the Panagyurishte district (Bulgaria). The Late Cretaceous (Palaeogene?) magmatism of East Serbia developed along the Timok Magmatic Complex (TMC) in the east and the Ridanj Krepoljin Zone (RKZ) in the west. High precision U-Pb single zircon dating and a combination of isotope tracing, geochronological data as well as petrological data were used to provide additional data for the geodynamic evolution. A maximum life span of 2.5 Ma could be calculated for the first phase of volcanic activity in TMC, starting with the Amf-andesites of Veliki Kravelj (86.29 ± 0.32 Ma) and finishing with the Timozites (84.66 ± 0.5 Ma). Ore bearing magmatism in a single deposit (Veliki Kravelj) extended a maximum of 0.6 Ma ("pre-ore": 86.29 ± 0.32 Ma, "post-ore": 86.17 ± 0.15 Ma). Preliminary data for the dacites (70.3 ± 3.5 Ma) outcropping near Krepoljin give evidence for a shifting of the volcanic activity from TMC to RKZ together with changing the ore-deposit type from Cu-Au-PGE (TMC) to Pb-Zn-Cu (RKZ). Isotope tracing give evidence for mantle dominated source with increasing of crustal contamination in the same direction: (87Sr/86Sr ratios: 0.70388 to 0.706050, e-Hf-zircon data: +12 in TMC to +4.5 in RKZ). The Panagyurishte district (Bulgaria) show a duration time of the magmatic activity of 14 Ma, starting in the north at 92 Ma and finishing in the south at 78 Ma. Ore-related magmatism becomes younger in the same direction but finishes with 86 Ma. Multiple short magmatic pulses (< 1.Ma) led to several important Cu-Au-PGE ore deposits within the Central Srednogorie zone. Sr-, Nd-, Pb- and Hf-isotope tracing on whole rocks and minerals provides evidence for mixed crust-mantle origin of the magma with specific trends in the single deposits. Presented data suggest subduction related magmatism in the Upper Cretaceous with subduction rollback.

  16. Geodynamical evolution of Central Andes at 24°S as inferred by magma composition along the Calama-Olacapato-El Toro transversal volcanic belt

    NASA Astrophysics Data System (ADS)

    Matteini, M.; Mazzuoli, R.; Omarini, R.; Cas, R.; Maas, R.

    2002-11-01

    Miocene to Recent volcanism on the Puna plateau (Central Andes) developed in three geological settings: (a) volcanic arc in the Western Cordillera (Miocene-Recent); (b) trans-arc along the main NW-SE transverse fault systems (Miocene); and (c) back-arc, mainly monogenic volcanic centres (Pliocene-Quaternary). We have studied the evolution of the arc-trans-arc volcanism along one of the most extensive transverse structures of Central Andes, the Calama-Olacapato-El Toro, at 24°S. Compositional variations from arc to trans-arc volcanism provide insights into petrogenesis and magma source regions. Puntas Negras and Rincon volcanic centres are arc-type and have typical calc-alkaline geochemical and Sr-Nd-Pb isotopic characteristics. East of the arc, lavas of the Tul-Tul, Del Medio and Pocitos complexes (TUMEPO) are heavy rare earth element-depleted and could be derived from 20-30% of partial melting of a lower crustal garnet-bearing metabasite. These liquids could be variably mixed with arc magmas at the base of the crust (MASH). This suggests important contributions from lower crustal sources to TUMEPO centres. Products at the Quevar and Aguas Calientes volcanic complexes to the east of TUMEPO show a prominent upper crustal signature (high 86Sr/ 87Sr, low 143Nd/ 144Nd) and could represent mixtures of 20-30% TUMEPO-type liquids with up to 70-80% of upper crustal melts. We propose a geodynamic model to explain geochemical variations for the arc-trans-arc transverse volcanism from the Upper Miocene to Recent. In our model, arc volcanism is linked to dehydration of the subducting Nazca plate, which produces typical calc-alkaline compositions. During the Upper Miocene (10-5 Ma), lithospheric evolution in the Puna plateau was dominated by thickening of ductile lower crust and thinning of the lithosphere. Lower crustal melting was promoted by concomitant asthenospheric upwelling and water release from the amphibolite-eclogite transformation, yielding TUMEPO magmas with lower crustal signatures. At the same time, the eastern sector of the Puna plateau experienced westward underthrusting of the Brazilian shield and upper crustal brittle deformation. Partial melts from underthrust upper crustal wedges mixed with lower crustal magmas to produce lavas at Aguas Calientes and Quevar. During Pliocene to Quaternary, delamination of the lithosphere and lowermost crust promoted a widespread monogenetic ocean island basalt-type and shoshonitic volcanism.

  17. 207Pb- 206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust, Turkey

    NASA Astrophysics Data System (ADS)

    Boztuğ, Durmuş; Tichomirowa, Marion; Bombach, Klaus

    2007-08-01

    207Pb- 206Pb single-zircon evaporation age determinations carried out on nine different granitoid units of central Anatolia, Turkey have yielded three distinct granitoid groups with different emplacement ages. These are (1) Cenomanian-Turonian granitoids, with a weighted mean age (wma) of 94.9 ± 3.4 Ma; (2) Turonian-Santonian granitoids, with a wma of 85.5 ± 5.5 Ma; and (3) Campanian granitoids, with a wma of 74.9 ± 3.8 Ma. The spatial and temporal relationships between the formation of the metamorphic sole of the supra-subduction zone-type Central Anatolian Ophiolite (SSZ-type CAO), crustal metamorphism of the Central Anatolian Crystalline Complex (CACC), and the emplacement of Cenomanian-Turonian to Turonian-Santonian granitoids indicate a geodynamic setting in which all these geological events occurred quasi-simultaneously in central Anatolia. Such a geodynamic setting is thought to be related to the Cenomanian-Turonian collision of the Tauride-Anatolide Platform (TAP) and an oceanic island arc, including the SSZ-type CAO. The Campanian granitoids appear to be the continuation of this collision-related protracted magmatism in central Anatolia.

  18. Geodynamics: Go with the flow

    NASA Astrophysics Data System (ADS)

    Currie, Claire A.

    2015-12-01

    Plate tectonics is the surface expression of mantle convection. Seismic observations at the Cascadia subduction zone show that coupling between tectonic plate motion and mantle flow may depend on the size of the plate.

  19. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothesis passes the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale range. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small-scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magnetogeostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as a barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  20. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other planets may differ; however, if a transition to non-conductmg fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  1. Magnectic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  2. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran

    NASA Astrophysics Data System (ADS)

    Mirnejad, H.; Lalonde, A. E.; Obeid, M.; Hassanzadeh, J.

    2013-06-01

    Mashhad granitoids in northeast Iran are part of the so-called Silk Road arc that extended for 8300 km along the entire southern margin of Eurasia from North China to Europe and formed as the result of a north-dipping subduction of the Paleo-Tethys. The exact timing of the final coalescence of the Iran and Turan plates in the Silk Road arc is poorly constrained and thus the study of the Mashhad granitoids provides valuable information on the geodynamic history of the Paleo-Tethys. Three distinct granitoid suites are developed in space and time (ca. 217-200 Ma) during evolution of the Paleo-Tethys in the Mashhad area. They are: 1) the quartz diorite-tonalite-granodiorite, 2) the granodiorite, and 3) the monzogranite. Quartz diorite-tonalite-granodiorite stock from Dehnow-Vakilabad (217 ± 4-215 ± 4 Ma) intruded the pre-Late Triassic metamorphosed rocks. Large granodiorite and monzogranite intrusions, comprising the Mashhad batholith, were emplaced at 212 ± 5.2 Ma and 199.8 ± 3.7 Ma, respectively. The high initial 87Sr/86Sr ratios (0.708042-0.708368), low initial 143Nd/144Nd ratios (0.512044-0.51078) and low ɛNd(t) values (- 5.5 to - 6.1) of quartz diorite-tonalite-granodiorite stock along with its metaluminous to mildly peraluminous character (Al2O3/(CaO + Na2O + K2O) Mol. = 0.94-1.15) is consistent with geochemical features of I-type granitoid magma. This magma was derived from a mafic mantle source that was enriched by subducted slab materials. The granodiorite suite has low contents of Y (≤ 18 ppm) and heavy REE (HREE) (Yb < 1.53 ppm) and high contents of Sr (> 594 ppm) and high ratio of Sr/Y (> 35) that resemble geochemical characteristics of adakite intrusions. The metaluminous to mildly peraluminous nature of granodiorite from Mashhad batholiths as well as its initial 87Sr/86Sr ratios (0.705469-0.706356), initial 143Nd/144Nd ratios (0.512204-0.512225) and ɛNd(t) values (- 2.7 to - 3.2) are typical of adakitic magmas generated by partial melting of a subducted slab. These magmas were then hybridized in the mantle wedge with peridotite melt. The quartz diorite-tonalite-granodiorite stock and granodiorite batholith could be considered as arc-related granitoid intrusions, which were emplaced during the northward subduction of Paleo-Tethys Ocean crust beneath the Turan micro-continent. The monzogranite is strongly peraluminous (Al2O3/(CaO + Na2O + K2O) Mol. = 1.07-1.17), alkali-rich with normative corundum ranging between 1.19% and 2.37%, has high initial 87Sr/86Sr ratios (0.707457-0.709710) and low initial 143Nd/144Nd ratios (0.512042-0.512111) and ɛNd(t) values (- 5.3 to - 6.6) that substantiate with geochemical attributes of S-type granites formed by dehydration-melting of heterogeneous metasedimentary assemblages in thickened lower continental crust. The monzogranite was emplaced as a consequence of high-temperature metamorphism during the final integration of Turan and Iran plates. The ages found in the Mashhad granites show that the subduction of Paleo-Tethys under the Turan plate that led to the generation of arc-related Mashhad granites in late-Triassic, finally ceased due to the collision of Iran and Turan micro-plates in early Jurassic.

  3. Structural and geodynamic study in central Tunisia using field and geophysical data: new structural interpretation of the N-S axis and associated Atlassic structures

    NASA Astrophysics Data System (ADS)

    Dhahri, Ferid; Tanfous, Dorra; Gabtni, Hakim; Boukadi, Noureddine

    2015-10-01

    A structural and geodynamic evolution of central Tunisia is constructed from field studies and geophysical data within the Tunisian Atlassic domain. Bouguer gravity and horizontal gradient magnitude (HGM) maps indicate that computed anomalies are related to subsurface structures and are in accordance with the general structural trends of central Tunisia. Near Cherichira fault, the strike is ENE-WSW, whereas it is N-S along the N-S axis, a major discontinuity between the Pelagian shelf to the east and Central Atlas Mountains to the west. E-W-oriented HGM profiles on the north side of the Cherichira fault show moderate HGM variations, which correspond to the NE-SW fault system of the Ousselet-Bou Dabbous. This trend is also expressed by the second-order vertical derivative map of this area. However, on the south side of the fault, a dominant peak is indicated rather than the anomalies characteristic of the north side of the fault. This anomaly is associated with the N-S axis discontinuity. Seismic reflection data are also used to elucidate the structural configuration and style north and south of the Cherichira fault. The seismic lines demonstrate that faulting and associate halokinesis in Ousselet-Bou Dabbous area are not comparable to the paleogeographic fault system of the N-S axis southward. To the south of Cherichira fault, the seismic lines show massive Triassic evaporates piercing along the major paleogeographic faults associated with thickness variations of Mesozoic and Cenozoic stratigraphic units and a reverse slip of western structural elements. It seems that the N-S axis corresponds to a steeply dipping major zone of weakness in the Tunisian Atlassic Mountains and indicates evidence of several stages of activity, including the rise of Triassic evaporates rise up which outcrop at several localities such as Rheouis and Mezzouna. The loading and upward rise of Triassic evaporites along this weak zone are a key factor in the thinning of the Mesozoic-Cenozoic sedimentary cover along this paleogeographic discontinuity. These new data indicate the northeast extrapolation of fold and grabens of the Central Atlas of Tunisia to the northeast of Kairouan, whereas the northern extent of the N-S axis is limited to south of the Cherichira fault. The Cherichira fault is NE-SW oriented and parallels the Ballouta-Zaghouan fault system, which reflects the regional strike of the Tellian orogeny and the associated nappes to the north. The geometry and kinematics of these Tellian features are linked to the tectonic evolution of the northern African margin, including Mesozoic extension separating the African and European plates to the inversion of these structures since the Late Cretaceous. The N-S axis is correlated in its direction and tectonic framework to the strike-slip fault system of the African craton, which is present to the south in the Algerian Saharan domain of Hoggar.

  4. Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame

    NASA Astrophysics Data System (ADS)

    Bianchi Fasani, G.; Di Luzio, E.; Esposito, C.; Evans, S. G.; Scarascia Mugnozza, G.

    2014-04-01

    Five cases of Quaternary rock avalanches detached from carbonate mountain ridges in the Central Apennines are presented. Due to the large amount of rock masses involved, the width of accumulation and detachment areas and the damming in the host environment, the analysed rock avalanches can be considered as catastrophic rock slope failures, sporadic events in a mountain region characterized by low elevation but where mountain ridges can have a relative elevation of up to 1 km above the lowermost valley floors. The geological setting of tectonic structures that originated during the Apennine orogenesis influenced rock avalanche characteristics, determining the location and shape of detachment areas, the kind of rock mass involved, and the failure mechanisms. Two main types have been identified: i) forelimb rock-slide avalanches (FRSA) such as the Lettopalena and Mt. Arezzo rock avalanche which involved Cenozoic, heterogeneous sequences of carbonate ramp deposits detached from box-shaped source areas according to a rock sliding mechanism; and ii) backlimb slide-wedge rock avalanches (BSWRA) such as the Campo di Giove, Scanno and Celano rock avalanches that detached from sub-circular source areas carved on fault-bounded ridges and involving Meso-Cenozoic carbonate rocks with a combined sliding and rock wedge failure mechanism. The Campo di Giove, Lettopalena and Scanno rock avalanches originated from mountain ridges bounded by inactive fault zones and undergoing deep-seated gravitational slope deformations (DSGSDs) at the mountain scale. These three rock slope failures are considered as isolated events of long-lasting deformative processes featuring creep deformation. Gravity-driven deformations firstly generated as a response to stacking processes and synchronous normal faulting during the Neogene-Early Pleistocene Apennine tectonics. In particular, the Caramanico Fault System (CFS) and the Genzana Fault (GF), bordering the carbonate ridges from which the Campo di Giove and Scanno rock avalanches originated respectively, are here considered as backlimb collapse structures accommodating the passive uplift and deformation of positive tectonic structures. Gravity-driven deformations persisted during the post-Early Pleistocene dome-like uplift of the whole Apennine region. The regional uplift created the first-order (200 km) topographic wave-length of the belt, i.e. a periodic loading which has been balanced by the deflection of the Apennine crust and lithosphere. On the contrary, shorter topographic wave-lengths inherited from former thrusting and synchronous normal faulting determined local isostatic imbalances bearing a large potential for the mature development of DSGSDs on mountain ridges, favoured also by lateral unloading due to linear erosion and increase of topographic stress. Thus, a cause-effect relationship is hypothesized between the geodynamic evolution of the belt and mountain-sized gravity-driven deformations including large rock slope failures.

  5. Mantle sources and magma genesis in the Albanide-Hellenide ophiolites: Implications for the Triassic-Jurassic geodynamic evolution of the Eastern Tethyan branch

    NASA Astrophysics Data System (ADS)

    Saccani, Emilio; Beccaluva, Luigi; Photiades, Adonis; Zeda, Ottavia

    2010-05-01

    The Albanide-Hellenide ophiolites and related ophiolitic mélanges include eight different types of volcanic and subvolcanic rocks. They are: 1) Triassic alkaline rocks generated in within-plate settings (WPB); 2) Triassic high-Ti mid-ocean ridge basalts showing enriched compositions (E-MORB); 3) Triassic-Jurassic high-Ti mid-ocean ridge basalts showing normal compositions (N-MORB); 4) Jurassic basalts with geochemical features intermediate between MORB and island arc tholeiites; hereafter defined as medium-Ti basalts (MTB); 5) Jurassic low-Ti, island arc tholeiitic (IAT) rocks; 6) Jurassic very low-Ti (boninitic) rocks; 7) Jurassic backarc basin basalts and basaltic andesites (BABB); 8) Triassic and Jurassic calc-alkaline (CAB). It can be assumed that these different rock-types have formed from distinct mantle sources that are associated in turn to distinct tectonic settings within an oceanic environment (and surrounding areas), and that they record the fundamental stages of ocean basin development: continental break-up, sea-floor spreading, subduction initiation, and supra-subduction zone (SSZ) lithospheric accretion. The main aim of this work is therefore to identify the possible petrogenetic mechanisms (associated to mantle evolution) for the distinct lava groups and their related tectonic settings of formation, in order to propose a reconstruction of the geodynamic evolution of the Mesozoic Tethys in the Dinaride sector. The results of this study are mainly based on REE modelling of mantle sources, primary melt generation, and mantle residua and can be synthesised as follows: 1) From the Late Paleozoic - Early Triassic, extensional tectonics affecting the Gondwana trigged the rifting of the continental lithosphere. The associated magmatic activity included: (a) the formation of calc-alkaline rocks from a sub-continental mantle modified by geochemical components inherited from Hercynian subduction below Gondwana; (b) the eruption of alkaline basalts deriving from an OIB-type mantle source associated, in turn, with plume-type components. 2) During Mid-Late Triassic, the uprising of primitive asthenosphere led to the generation of the Tethyan oceanic lithosphere. This stage is associated with the formation of: (a) N-MORB magmatism derived from ~10-20% partial melting of primitive asthenosphere; (b) the persistence of alkaline WPBs; (c) generation of E-MORBs due to ~12% partial melting of primitive asthenosphere influenced by the OIB-type component. Residual MORB mantle is represented by depleted lherzolites. 3) During the Early Jurassic, the oceanic spreading involved only primitive asthenospheric mantle sources and their partial melt derivatives (N-MORBs). 4) From the Early-Mid Jurassic, the tectonic regime was dominated by intra-oceanic convergence associated with the development of MTB and IAT magmatisms, which derived respectively from ~10% and 10-20% partial melting of the MORB residual mantle with variable addition of subduction components. Afterwards, the progressive slab roll-back led to mantle diapirism toward the forearc and incipient arc spreading associated either with 10-20% partial melting of previously depleted mantle sources (harzburgites) or with ~30% partial melting of the MORB residual mantle (depleted lherzolites), both enriched in LREE by subduction-derived fluids. These partial-melting events produced the boninitic magmas in both forearc and inner arc and left depleted extremely depleted harzburgites and dunites as the residual mantle. 5) During the Late Jurassic, a magmatic arc developed onto the Eurasia continental realm, leading to the formation of CAB rocks by ~15-20% partial melting of depleted peridotite mantle significantly enriched in Th and LREE by subduction-derived fluids. Soon after, extension in the backarc region (most likely favoured by strike-slip tectonics) led to the uprising of primitive asthenosphere, which was enriched in Th and LREE by the nearby subduction. 10-20% partial melting of this source produced the BABBs, which crop out (with CAB intercalations) in the Guevgueli Complex.

  6. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; εNd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204Pb. The distribution of Sr-Nd isotopic compositions in the late Cretaceous igneous rocks from different locations of the Eastern Pontides Orogenic Belt is consistent with two-component mixing between depleted mantle and crust. However, the Pb isotopic data are not compatible with two-component mixing and require at least a third component. Considering all of the new data and also previous data such as southward migration and increasing potassium content of the late Cretaceous arc volcanism, the northward migration of Cenozoic igneous activity, northward drift of the belt since the late Cretaceous and the existence of south-dipping reverse fault systems in the whole region, the Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt can be best explained by southward subduction of Tethys oceanic lithosphere, rather than northward subduction.

  7. Comment on "207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the Central Anatolian crust, Turkey" - Boztug, D., Tichomirowa, M. & Bombach, K., 2007, JAES 31, 71-86

    NASA Astrophysics Data System (ADS)

    Göncüoglu, M. Cemal

    A continent-oceanic island arc collision model was proposed as a new geodynamic scenario for the evolution of the Cretaceous Central Anatolian granitoids in the Central Anatolian crystalline complex (CACC) by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust, Turkey. Journal of Asian Earth Sciences 31, 71-86]. The key aspects of this model include an intra-oceanic subduction in the Neotethyan Izmir-Ankara Ocean, formation of an island arc and its subsequent collision with the northern margin of the Tauride-Anatolide Platform. The identical scenario was initially proposed by Göncüoglu et al. (1992) [Göncüoglu, M.C., Erler, A., Toprak, V., Yalınız, K., Olgun, E., Rojay, B., 1992. Geology of the western Central Anatolian Massif, Part II: Central Areas. TPAO Report No: 3155, 76 p] . Moreover, the weighted mean values of the reported 207Pb-206Pb single-zircon evaporation ages by Boztug et al. (2007b) [Boztug, D., Tichomirowa, M., Bombach, K., 2007b. 207Pb-206Pb single-zircon evaporation ages of some granitoid rocks reveal continent-oceanic island arc collision during the Cretaceous geodynamic evolution of the central Anatolian crust: Turkey. Journal of Asian Earth Sciences 31, 71-86] from A-type granitoids in the CACC seem to be miscalculated and contrast with the field data.

  8. Géodynamique et évolution thermique de la matière organique: exemple du bassin de Qasbat-Tadla, Maroc centralBasin geodynamics and thermal evolution of organic material: example from the Qasbat-Tadla Basin, central Morocco

    NASA Astrophysics Data System (ADS)

    Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.

    2001-05-01

    Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).

  9. Sr-Nd constraints and trace-elements geochemistry of selected Paleo and Mesoproterozoic mafic dikes and related intrusions from the South American Platform: Insights into their mantle sources and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Girardi, V. A. V.; Teixeira, W.; Mazzucchelli, M.; Corra da Costa, P. C.

    2013-01-01

    The study of selected mafic intrusions from cratonic areas of the South American Platform shows considerable differences among their mantle sources and geodynamic features, particularly regarding the dikes from the SW Amazonian and So Francisco Cratons. The tholeiites from the SW Amazonian Craton, which belong to the Serra da Providncia Intrusive Suite (1.55 Ga), the Nova Lacerda swarm (1.44 Ga), the Colorado Complex (1.35 Ga), and the Nova Brasilndia Group (1.10 Ga), originated from a mantle source composed mainly of a N-MORB end-member, with a variable addition of slab fluids (up to 30%, according to the adopted model) from oceanic lithosphere due to episodic subductions during the Mesoproterozoic. Mafic intrusions from Nova Lacerda swarm and Colorado Complex are related to arc settings formed during the 1.47-1.35 Ga closure of the oceanic domain separating the Amazonian Craton and the Paragu Terrane, whereas the tholeiites from the Serra da Providncia Intrusive Suite and the Nova Brasilndia Group are considered intracratonic. The dike swarms of the So Francisco Craton are associated with intra-plate events. The inferred composition of the mantle source of the Lavras swarm (1.9 Ga) has a predominant E-MORB signature, and a modest contribution of up to 10% of an OIB component. The mantle composition underwent considerable changes during the Proterozoic, as indicated by the sources of the younger dikes, represented by the Diamantina (0.93 Ga) and the Salvador-Olivena swarms (0.92 Ga), to which considerable amount of slab derived fluids, probably from recycled crustal material, and OIB component were added. Changes in mantle composition and dikes intrusions could be related to the initial disruption of the Rodinia Supercontinent. The Florida (1.79 Ga) and Tandil (2.0 Ga) dikes are associated with extensional events of the Rio de La Plata Craton. In spite of the similarities between the tectonic framework of these swarms and that of Lavras (1.9 Ga), the composition of the Paleoproterozoic mantle of both cratons is very different. The parent mantle of the Florida dikes is more enriched and more heterogeneous than the others, probably due to the recycling of old crusts and OIB metasomatism. Isotopic data from the Tandil dikes also suggest an enriched original source, which could be a characteristic feature of the mantle of the Rio de La Plata Craton in Paleoproterozoic times. The Crixs-Gois (2.49 Ga) swarm originated from a very heterogeneous mantle source, probably contaminated by OIB metasomatic fluids and crustal addition, suggesting that crustal recycling has occurred since Archean times.

  10. Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India

    NASA Astrophysics Data System (ADS)

    Rao, N. V. Chalapathi; Atiullah; Burgess, R.; Nanda, Purnendu; Choudhary, A. K.; Sahoo, Samarendra; Lehmann, B.; Chahong, Ngazipmi

    2015-09-01

    We report the mineralogy, bulk-rock geochemistry, 40Ar/39Ar (whole-rock) age and radiogenic (Sr and Nd) isotope composition of an ultrapotassic dyke from Sakri (Nuapada lamproite field) located at the tectonic contact between the easternmost margin of the Bastar craton and Eastern Ghats Mobile Belt, India. The Sakri dyke has a mineralogy which strongly resembles a lamproite sensu stricto (viz.,Ti-rich phlogopite, Na-poor diopside, Fe-rich sanidine, ulvospinel trend and Sr-rich apatite). However, its bulk-rock major element geochemical characteristics (viz., extreme silica-undersaturated nature) resemble sensu lato kamafugite from Toro Ankole, Uganda, East African Rift, and Alto Paranaiba Province, Brazil. The Sakri dyke also displays certain compositional peculiarities (viz., high degree of evolution of mica composition from phlogopite to biotite, elevated titanium and aluminum in clinopyroxene and significantly lower bulk Mg#) when compared to the ultrapotassic rocks from various Indian cratons. 40Ar/39Ar dating gave a plateau age of 1045 ± 9 Ma which is broadly similar to that of other Mesoproterozoic (i) lamproites from the Bastar and Bundelkhand cratons, and (ii) kimberlites from the Eastern Dharwar craton. Initial bulk-rock Sr (0.705865-0.709024) and Nd (0.511063-0.511154) isotopic ratios reveal involvement of an `enriched' source region with long-term incompatible element enrichment and a depleted mantle (TDM) Nd model age of 2.56 Ga straddling the Archaean-Proterozoic chronostratigraphic boundary. The bulk-rock incompatible trace element ratios (Ta/Yb, Th/Yb, Rb/Ba and Ce/Y) of the Sakri ultrapotassic dyke negate any significant influence of crustal contamination. Small-degree melting (1 to 1.5 %) of a mixed garnet-facies and spinel-facies phlogopite lherzolite can account for its observed REE concentrations. Whereas the emplacement of the Sakri ultrapotassic dyke is related to the amalgamation of the supercontinent of Rodinia, its overlapping geochemical characteristics of lamproite and kamafugite (also displayed by two other lamproites of the Nuapada field at Amlidadar and Parkom) are linked to the emplacement in a unique geological setting at the craton-mobile belt contact and hence of geodynamic significance.

  11. Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India

    NASA Astrophysics Data System (ADS)

    Rao, N. V. Chalapathi; Atiullah; Burgess, R.; Nanda, Purnendu; Choudhary, A. K.; Sahoo, Samarendra; Lehmann, B.; Chahong, Ngazipmi

    2016-04-01

    We report the mineralogy, bulk-rock geochemistry, 40Ar/39Ar (whole-rock) age and radiogenic (Sr and Nd) isotope composition of an ultrapotassic dyke from Sakri (Nuapada lamproite field) located at the tectonic contact between the easternmost margin of the Bastar craton and Eastern Ghats Mobile Belt, India. The Sakri dyke has a mineralogy which strongly resembles a lamproite sensu stricto (viz.,Ti-rich phlogopite, Na-poor diopside, Fe-rich sanidine, ulvospinel trend and Sr-rich apatite). However, its bulk-rock major element geochemical characteristics (viz., extreme silica-undersaturated nature) resemble sensu lato kamafugite from Toro Ankole, Uganda, East African Rift, and Alto Paranaiba Province, Brazil. The Sakri dyke also displays certain compositional peculiarities (viz., high degree of evolution of mica composition from phlogopite to biotite, elevated titanium and aluminum in clinopyroxene and significantly lower bulk Mg#) when compared to the ultrapotassic rocks from various Indian cratons. 40Ar/39Ar dating gave a plateau age of 1045 ± 9 Ma which is broadly similar to that of other Mesoproterozoic (i) lamproites from the Bastar and Bundelkhand cratons, and (ii) kimberlites from the Eastern Dharwar craton. Initial bulk-rock Sr (0.705865-0.709024) and Nd (0.511063-0.511154) isotopic ratios reveal involvement of an `enriched' source region with long-term incompatible element enrichment and a depleted mantle (TDM) Nd model age of 2.56 Ga straddling the Archaean-Proterozoic chronostratigraphic boundary. The bulk-rock incompatible trace element ratios (Ta/Yb, Th/Yb, Rb/Ba and Ce/Y) of the Sakri ultrapotassic dyke negate any significant influence of crustal contamination. Small-degree melting (1 to 1.5 %) of a mixed garnet-facies and spinel-facies phlogopite lherzolite can account for its observed REE concentrations. Whereas the emplacement of the Sakri ultrapotassic dyke is related to the amalgamation of the supercontinent of Rodinia, its overlapping geochemical characteristics of lamproite and kamafugite (also displayed by two other lamproites of the Nuapada field at Amlidadar and Parkom) are linked to the emplacement in a unique geological setting at the craton-mobile belt contact and hence of geodynamic significance.

  12. On the geodynamic setting of kimberlite genesis

    NASA Technical Reports Server (NTRS)

    England, P.; Houseman, G.

    1984-01-01

    The emplacement of kimberlites in the North American and African continents since the early Palaeozoic appears to have occurred during periods of relatively slow motion of these continents. The distribution of kimberlites in time may reflect the global pattern of convection, which forces individual plates to move faster or slower at different times. Two-dimensional numerical experiments on a convecting layer with a moving upper boundary show two different regimes: in the first, when the upper boundary velocity is high, heat is transferred by the large-scale circulation and in the second, when the upper boundary velocity is lower, heat is predominantly transferred by thermal plumes rising from the lower boundary layer. For a reasonable mantle solidus, this second regime can give rise to partial melting beneath the moving plate, far from the plate boundaries. The transition between these modes takes place over a small range of plate velocities; for a Rayleigh number of 1,000,000 it occurs around 20 mm/yr. It is suggested that the generation of kimberlite magmas may result from thermal plumes incident on the base of a slowly moving plate.

  13. Basic research for the geodynamics program

    NASA Astrophysics Data System (ADS)

    Mueller, Ivan I.

    1988-07-01

    Additional results are presented concerning a study that considers improvements over present Earth Rotation Parameter (ERP) determination methods by directly combining observations from various space geodetic systems in one adjustment. Earlier results are extended, showing that in addition to slight improvements in accuracy, substantial (a factor of three or more) improvements in precision and significant reductions in correlations between various parameters can be obtained (by combining Lunar Laser Ranging - LLR, Satellite Laser Ranging - SLR to Lageos, and Very Long Baseline Interferometry - VLBI data in one adjustment) as compared to results from individual systems. Smaller improvements are also seen over the weighted means of the individual system results. Although data transmission would not be significantly reduced, negligible additional computer time would be required if (standardized) normal equations were available from individual solutions. Suggestions for future work and implications for the New Earth Rotation Service (IERS) are also presented.

  14. Projection for Space Geodynamics, 1988-1998

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Premises defining the technical and operational environment of the next decade are listed. Observational programs required to satisfy scientific objectives in the study of geopotential fields, global dynamics, tectonics, and regional tectonics/crustal hazards are defined. Capabilities and applications of the Geopotential Research Mission to be launched in the early 1990's are explored and the benefits of more detailed measurements of the Moon and planets are indicated. Earthquake prediction in the western part of the U.S. is discussed. The use of decimeter, centimeter, and millimeter systems for very long baseline interferometry, satellite laser ranging, and lunar ranging techniques are discussed. Geographic regions of particular interest are identified.

  15. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Laser systems deployed in satellite tracking were upgraded to accuracy levels where biases from systematic unmodelled effects constitute the basic factor that prohibits extraction of the full amount of information contained in the observations. Taking into consideration that the quality of the instrument advances at a faster pace compared to the understanding and modeling of the physical processes involved, one can foresee that in the near future when all lasers are replaced with third generation ones the limiting factor for the estimated accuracies will be the aforementioned biases. Therefore, for the reduction of the observations, methods should be deployed in such a way that the effect of the biases will be kept well below the noise level. Such a method was proposed and studied. This method consists of using the observed part of the satellite pass and converting the laser ranges into range differences in hopes that they will be less affected by biases in the orbital models, the reference system, and the observations themselves.

  16. A climate model with cryodynamics and geodynamics

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Le Treut, H.

    1981-01-01

    A simplified, zero-dimensional model of the climatic system is presented which attempts to incorporate mechanisms important on the time scale of glaciation cycles: 10,000 to 100,000 years. The ocean-atmosphere radiation balance, continental ice sheet plastic flow, and upper mantle viscous flow are taken into account, with stress on the interaction between the ice sheets and the upper mantle. The model exhibits free, self-sustained oscillations of an amplitude and period comparable to those found in the paleoclimatic record of glaciations, offering mild support for the idea that unforced oscillations can actually exist in the real climatic system itself. The careful study of the interplay between internal mechanisms and external forcing is held to represent an interesting challenge to the theory of ice ages.

  17. Geodynamics of Cenozoic deformation in central Asia

    NASA Astrophysics Data System (ADS)

    Liu, H.-S.

    1981-04-01

    This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.

  18. The geodynamics of the Levant margin

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Z.

    2006-12-01

    The Levant continental margin, offshore Israel, Lebanon and Syria, is usually defined as a passive margin that was formed through rifting processes. During the formation two major continental fragments are assumed to separate from the northern edge of the Afro-Arabian plate to form the Levant basin: the Tauride and Eratosthenes blocks. Today an oceanic crust and, in places, a very thin continental crust are present between the Levant margin and Eratosthenes seamount. The margin can be divided into two distinct provinces that are separated by the Carmel Structure, which extends from seawards to the northwest across the continental shelf and slope. The preservation of segmentation, both in the shallow and in the deep structure, insinuates that the two segments were formed through different continental breakup processes, which continue to dictate the style of sediment accumulation. The nature and development of the continental margin offshore Israel were the subject of numerous studies, which suggest that the southern Levant segment (south of the Carmel Structure) was formed through continental rifting processes. In contrast, the northern segment, from the Carmel structure northwards and offshore southern Lebanon, was hardly studied before. Recent studies however indicate that the northern segment shows a strong similarity to classical transform margins in the world. In view of the new classification of the northern Levant margin a modified scenario is suggested for: (a) the initial stages in which the Levant margin was formed; and (b) the present day structural differences between the two segments of the margin. At present, the northern Levant continental margin is being reactivated by transpressional faulting of the marine continuation of the Carmel fault which bends northward at the base of the continental slope due to the rheological discontinuity in this region. This fault system coincides with the sharp continental-oceanic crustal transition, and acts as an isolator between the Levant basin and its land counterpart. To the north, this feature may initiate the formation of a new triple junction, with the Latakia ridge (part of the eastern Cyprian arc) and the East Anatolian fault.

  19. Precise leveling, space geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Reilinger, R.

    1981-01-01

    The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.

  20. Geodynamics of Cenozoic deformation in central Asia

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1981-01-01

    This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.

  1. Geodynamics: Layer cake or plum pudding?

    NASA Astrophysics Data System (ADS)

    Tackley, Paul J.

    2008-03-01

    Whether convection in the Earth's mantle extends through its entire depth or if the mantle is layered has long been debated. Recent research suggests that spatially and temporally intermittent or partial layering is the most likely solution.

  2. South Aegean Geodynamic And Tsunami Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Anastasiou, Demitris; Alatza, Stauroula; Zacharis, Vangelis; Papanikolaou, Xanthos; Melis, Nicolaos; Kalogeras, Ioannis; Chouliaras, Gerasimos; Evangelidis, Christos; Makropoulos, Konstantinos

    2015-04-01

    The Aegean Sea is one of the most tectonically and seismically active areas in the world, thus constituting a Natural Laboratory. For the first time, a permanent multiparametric platform of networks that combine different (both terrestrial and space oriented) techniques, is established, in order to monitor the tectonic and volcanic activity in the area and produce an on-line database available both to the scientific community and the public. This platform includes continuous GNSS networks, tide-gauge sensors, accelerometers and seismographs. All the available existing infrastructure has been upgraded, enlarged and modernized resulting in a collaborative operation. New instrumentation has been installed in carefully selected sites. All the available data are analysed using state of the art processing software. Raw data and products will be available through a project dedicated portal. The multiparametric data and results gathered will be integrated and combined with the existing archive owned by the participating institutes to produce a thoroughgoing view of the underlying geophysical processes. The island of Santorini will serve as a focused study case for the project, due to the special tectono-volcanic interest and because of the already existing dense multiparametric network. Our goal is to provide permanent infrastructure and knowledge both to enlighten ambiguous scientific hypothesis and serve as a focal point for further scientific research.

  3. Geodynamics of Sundaland since the Eocene

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gurnis, M.

    2014-12-01

    Sundaland is the continental core of southeast Asia bounded by subduction zones since early Mesozoic. Many Sundaland basins, extensional in origin, have formed since Late Eocene. These rift basins experienced extensive inversion since early Miocene. The basins and the adjacent continental crust subsided with a regional sea level rise during a period of basin inversion and falling global sea level, suggesting control beyond eustasy and lithospheric deformation. The mechanism of this large-scale synchronous inversion and subsidence is not well understood. We use four dimensional dynamic models that explicitly assimilate the plate tectonic history and additional geological and geophysical data to investigate the underlying causes for the enigmatic evolution of Cenozoic Sundaland basins. The assimilation method honors both empirical data at the surface (including the seafloor age, plate motion velocity, subduction history) and mantle dynamics at depth and predicts mantle structure, surface topography and intraplate stress. These later expressions are compared against independent observations. With continuously closing plates, we embed deforming plates into the conventional rigid plate models in GPlates, thus enabling us to model continental deformation and