Science.gov

Sample records for geodynamics

  1. Geodynamics

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1984-01-01

    The status of space geodynamics is examined, major scientific questions that need to be addressed are identified, and program activities are recommended for the next decade. Progress made in measuring tectonic plates, polar motion, and coupling of fluid motion of the Earth's core to the mantle is reviewed.

  2. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  3. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  4. Fundamentals studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Research in geodynamics, seismology, and planetary quakes is presented. Terradynamics and plate tectonics are described using dynamic models. The early evolution of the Earth's mantle is also discussed.

  5. NASA geodynamics program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The history and development of the geodynamics program are described, in addition to accomplishments and plans for the future years activities. Extramural grant titles are listed for general research, Lageos investigations, and Magsat investigations.

  6. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Hager, B. H.; Kanamori, H.

    1981-01-01

    Research in fundamental studies in geodynamics continued in a number of fields including seismic observations and analysis, synthesis of geochemical data, theoretical investigation of geoid anomalies, extensive numerical experiments in a number of geodynamical contexts, and a new field seismic volcanology. Summaries of work in progress or completed during this report period are given. Abstracts of publications submitted from work in progress during this report period are attached as an appendix.

  7. Geodynamic basin classification

    SciTech Connect

    Klein, G.

    1987-05-01

    Four criteria (continental margin type, basin position within a plate, crustal type, geodynamic models and processes of basin formation) are used to classify sedimentary basins. Within plate interiors, cratonic margin basins and interior cratonic basins are distinguished by position on a tectonic plate. In passive margins, rift basins, aulacogens, and flexure basins are distinguished by orientation with respect to margins (rifts parallel and aulacogens normal to margins) and geodynamic process (rifts and aulacogens form by stretching, flexure basins by elastic or viscoelastic flexure). Basins associated with active continental margins are distinguished by position with respect to margin, crustal type, and stress regimen. Trench-slope basins involve compressional-extensional regimens, whereas trench basins, forearc basins and retroarc basins form in compressional regimes (retroarc basins on continental crust; forearc and trench basins occupy different positions on margin boundaries). Extensional intra-arc basins form on continental crust whereas backarc basins form by rifting oceanic crust and rapid thermal subsidence. Both pull-apart and transform basins form in transform margins by rifting and thermal subsidence with different translational stress regimens. In collision margins, foreland basins occur within continental plates, and superposed (or collage) basins occur along suture zones. Polyhistory basins include successor basins involving changing tectonic styles, and resurgent basins involving repeated tectonic styles. Many mapped basins show polyhistory. Thus the cratonic Illinois basin evolved through stages of a rift basin, followed by thermal subsidence akin to passive margins, followed by viscoelastic basin formation akin to a foreland basin.

  8. Geodynamics Branch research report, 1982

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (editor); Cohen, S. C. (editor)

    1983-01-01

    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  9. The NASA Geodynamics Program: An overview

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This NASA Geodynamics Program overview collectively examines the history, scientific basis, status, and results of the NASA Program and outlines plans for the next five to eight years. It is intended as an informative nontechnical discussion of geodynamics research.

  10. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1985-01-01

    The current technical objectives for the geodynamics program consist of (1) optimal utilization of laser and Very Long Baseline Interferometry (VLBI) observations for reference frames for geodynamics; (2) utilization of range difference observations in geodynamics; and (3) estimation techniques in crustal deformation analysis.

  11. From Geodynamics to Simplicity

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Mantle convection and plate tectonics are often thought as synonymous. Convection is sometimes treated as the driver or plate tectonics is viewed as simply a manifestation of mantle convection. Mantle plumes are regarded as supplying some of the elements missing in the plate tectonic and mantle convection paradigms, such as island chains, swells and large igneous provinces. An alternate view is motivated by Prigogine's concept of far-from-equilibrium self-organization ( SOFFE), not to be confused with Bak's self-organized criticality ( SOC) . In a SOFFE system the components interact, and the system is small compared to the outside world to which it is open. There must be multiple possible states and dissipation is important. Such a system is sensitive to small changes. Rayleigh-Benard convection in a container with isothermal walls is such a self-organizing system ; the driving bouyancy and the dissipation ( viscosity ) are in the fluid. In Marangoni convection the driving forces ( surface tension ) and dissipation are in the surface film and this organizes the surface and the underlying fluid. The mantle provides energy and matter to the interacting plate system but forces in the plates drive and dissipate the energy. Thus, plate tectonics may be a SOFFEE system that drives convection,as are systems cooled from above, in general. If so, plates will reorganize as boundary conditions change ; incipient plate boundaries will emerge as volcanic chains at tensile regions. Plates are defined as regions of lateral compression ( force chains ), rather than strength, and they are ephemeral. The plate system, rather than mantle viscosity, will modulate mantle cooling. The supercontinent cycle, with episodes of reorganization and massive magmatism, may be a manifestation of this far-from-equilibrium, driven from above, system. Geodynamics may be simpler than we think. Plate tectonics is certainly a more powerful concept once the concepts of rididity, elasticity, homogeneity, steady-state, equilibrium and uniformity are dropped or modified, as qualifiers of the system,as recommended in Occam's philosophy.

  12. Exochemical Geodynamics and Potamochemistry

    NASA Astrophysics Data System (ADS)

    Allègre, C. J.; Dupré, B.; Gaillardet, J.

    2001-05-01

    The processes which operate at the surface of the earth to weather the rocks and to erode the relief can be studied with the same methodology as we have used to study the geodynamics of internal processes (isotope tracers, trace element systematics, budget modeling by inverse approach). The rivers are like the basalts. They are messengers of erosion processes integrating a large number of microphenomena in all. We have applied to the river materials (both soluble and particulate) the same approach as we have done for basalts. What are the results? 1) We can determine accurately what are the contributors to the river chemistry. Case by case, but also at the whole earth level we can obtain the proportions of rain, carbonates, evaporites, silicates, and granitoids, which determine the composition of river water. 2) The complementary study of the particulates as well as the dissolved load permit us to measure the degree of weathering case by case, as well as the proportion of shales/granitoids. 3) Isotopic ratios of Sr, Pb, Nd, Os measured as particulates, and Sr, Os, Nd in the dissolved load permit us to obtain a reliable average continental crust for today. 4) For the "insoluble" elements, we can also obtain average reliable ratios representative of the bulk continental crust. 5) Systematic relationships can be established between chemical/physical erosion rates, chemical/physical erosion rates with temperature, with runoff, with pH. These scaling laws permit one to describe quantitatively the erosion process and a model can be built on such relationships. 6) The uses of various complementary techniques, including Pb isotopes, tracer element ratios, uranium disequilibrium series, permits one to establish the different regime of erosion: equilibrium, soil development, soil destruction. These cases can be quantitatively described. 7) With reference to the ocean, these results permit one to propose a new scale of residence time and a test of the Whitfield global equilibrium theory of the hydrosphere-lithosphere systems.

  13. GS of CAS Geodesy & Geodynamics Beijing June 20041 Geodesy and Geodynamics

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 Geodesy and Geodynamics By Christophe Vigny://www.geologie.ens.fr/~vigny #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20042 Addressed topics Geodesy and Earth remote surface deformation and plate tectonics Measuring the Earth deformation : terrestrial and spatial geodesy

  14. On The Geodynamics In Latvia

    NASA Astrophysics Data System (ADS)

    Balodis, Janis; Haritonova, Diana; Janpaule, Inese; Normand, Madara; Silabiedis, Gunars; Zarinjsh, Ansis; Rubans, Agusts; Kalinka, Maris; Jumare, Izolde; Lasmane, Ieva

    2013-12-01

    This paper discusses the research work done in Institute of Geodesy and Geoinformation, University of Latvia, and Department of Geomatics, Riga Technical Univesity, devoted to the geodynamics in Latvia: national geoid model computation, using different methods and data sets, in order to improve its precision; analysis of LatPos and EUPOS®-Riga GNSS permanent station observation data time series for time period of 5 years; development of digital zenith camera for vertical deflection determination.

  15. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.

  16. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Some objectives of this geodynamic program are: (1) optimal utilization of laser and VLBI observations as reference frames for geodynamics, (2) utilization of range difference observations in geodynamics, and (3) estimation techniques in crustal deformation analysis. The determination of Earth rotation parameters from different space geodetic systems is studied. Also reported on is the utilization of simultaneous laser range differences for the determination of baseline variation. An algorithm for the analysis of regional or local crustal deformation measurements is proposed along with other techniques and testing procedures. Some results of the reference from comparisons in terms of the pole coordinates from different techniques are presented.

  17. International GPS Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Urban, M. P. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1996-01-01

    This 1995 annual report of the IGS International GPS (Global Positioning System) Service for Geodynamics - describes the second operational year of the service. It provides the many IGS contributing agencies and the rapidly growing user community with essential information on current organizational and technical matters promoting the IGS standards and products (including organizational framework, data processing strategies, and statistics showing the remarkable expansion of the GPS monitoring network, the improvement of IGS performance, and product quality). It also introduces important practical concepts for network densification by integration of regional stations and the combination of station coordinate solutions. There are groups of articles describing general aspects of the IGS, the Associate Analysis Centers (AACs), Data Centers, and IGS stations.

  18. GLOBAL DISASTERS: Geodynamics and Society

    NASA Astrophysics Data System (ADS)

    Vikulina, Marina; Vikulin, Alexander; Semenets, Nikolai

    2013-04-01

    The problem of reducing the damage caused by geodynamic and social disasters is a high priority and urgent task facing the humanity. The vivid examples of the earthquake in Japan in March 2011 that generated a new kind of threat - the radiation pollution, and the events in the Arabic world that began in the same year, are dramatic evidences. By the middle of this century, the damage from such disastrous events is supposed to exceed the combined GDP of all countries of the world. The database of 287 large-scale natural and social disasters and global social phenomena that have occurred in the period of II B.C.E. - XXI A.D. was compiled by the authors for the first time. We have proposed the following phenomenological model: the scale of disasters over the time does not decrease, there is a minimum of accidents in the XV century; the numbers of accidents have cycles lasting until the first thousand years, natural and social disasters in the aggregate are uniformly distributed in time, but separately natural and social disasters are nonuniform. Thus, due to the evaluation, a 500-year cycle of catastrophes and 200-300 and 700-800-year periodicities are identified. It is shown that catastrophes are grouped into natural and social types by forming clusters. The hypothesis of the united geo-bio-social planetary process is founded. A fundamentally new feature of this research is the assumptions about the statistical significance of the biosphere and the impact of society on the geodynamic processes. The results allow to formulate a new understanding of global disaster as an event the damage from which the humanity will be unable to liquidate even by means of the total resource potential and the consequence of which may turn into the irreversible destruction of civilization. The correlation between the natural and social phenomena and the possible action mechanism is suggested.

  19. The NASA Geodynamics Program report, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the NASA Geodynamics Program in 1981 both in achieving improved measurement precision and in establishing the foundation for the acquisition and analysis of scientific data are discussed.

  20. Nimmo and Manga: Geodynamics of Europa's Ice Shell 381 Geodynamics of Europa's Icy Shell

    E-print Network

    Nimmo, Francis

    Nimmo and Manga: Geodynamics of Europa's Ice Shell 381 381 Geodynamics of Europa's Icy Shell Processes that operate within Europa's floating icy shell and leave their signature on the surface the large amplitude of topography on Europa, the icy shell is probably more than several kilometers thick

  1. Geodynamic monitoring in real times

    NASA Astrophysics Data System (ADS)

    Outkin, V.; Yurkov, A.; Klimshin, A.; Kozlova, I.

    2011-12-01

    For the decision of problems of the short-term and intermediate term forecast of tectonic earthquakes the technique conditionally named - geodynamic monitoring which does not use the data of seismic monitoring for the operative decision of problems of the forecast is offered. Geodynamic monitoring (GDM) is to studying tensely - deformed conditions of the separate block of rock on change of activity natural radioactive gas is carried out by accommodation in the chosen file of specially designed monitors of radon - devices fixing change in time (VAR). The monitor of radon, (the detector of radon) as the basic measuring device located in the block of rocks, possesses enormous tensosensitivity to relative strain condition of a file. Depending on the enclosed pressure choose three characteristic points: 1) 30-35 % of "background" size VAR - the beginning of accumulation of inelastic energy; 2) 50 % of background VAR - the process of stabilization of an elastic condition of a file; 3) 70-75 % "background" VAR - a critical pressure in the mountain block, an opportunity as spontaneous dump of elastic energy, and under action external "triggerring" forces. If the size of the saved up energy is close to critical dump needs energy at a level of energy of variations of rotation of the Earth. Such significant energy causes "plenty" of earthquakes on all planet simultaneously. This fact confirms an opportunity of the short-term forecast of strong (destructive) earthquakes: dump of elastic pressure of the Earth in this case occurs in 25-30 hours after passage of variations of rotation of the Earth. It is for the notification of the population about coming nearer earthquake. External power functions (mechanical, electromagnetic, etc.), preparations influencing system and occurrence of tectonic earthquakes, are divided on two big classes: 1) "forecasting " functions - processes functionally connected to accumulation of elastic pressure and to dump by its rather small dozes; 2) external mechanical actions which initiate dump of the saved up elastic pressure - "triggirring functions", promoting dump of the elastic pressure resulting in earthquake. The short-term forecast of especially large earthquakes is entirely based on use of monitoring of rotation of the Earth: essential "triggerring functions" (variations of rotation of the Earth) dump(reset) the saved up pressure on all surface of the Earth, causing thus large earthquakes. Therefore the prevention(warning) of large earthquakes should be formed on the basis of monitoring variations of heterogeneity of rotation of the Earth, that usually precedes dump of elastic pressure(voltage) at 25-30 o'clock.

  2. GS of CAS Geodesy & Geodynamics Beijing June 20041 SEISMIC CYCLE

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 SEISMIC CYCLE · Elastic accumulation-seismic motions · Triggering of earthquake · Precursors ? #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20042 Arctang profiles Uy = 2.V0 / arctang (x/h) #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June

  3. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (editor); Cohen, S. C. (editor); Boccucci, B. S. (editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  4. Geodynamics - Tracking satellites to monitor global change

    NASA Technical Reports Server (NTRS)

    Beutler, Gerhard; Morgan, Peter; Neilan, Ruth E.

    1993-01-01

    The major goals and organizational structure of the International GPS Geodynamics Service (IGS), a new Navstar satellite tracking service, are described. IGS activities are aimed at providing the scientific community with data on GPS orbits accurate enough for performing regional and local GPS analysis and daily earth rotation information.

  5. Research activities of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (editor); Cohen, S. C. (editor)

    1984-01-01

    A broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography are discussed. The NASA programs, include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX), and the Geopotential Research Mission (GRM). The papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.

  6. Geodynamic laser ranging system laser transmitter

    NASA Technical Reports Server (NTRS)

    Dallas, J. L.; Czechanski, J. P.; Coyle, D. B.; Zukowski, B. J.; Seery, B. D.

    1991-01-01

    A description is given of the requirements and design options in the development of a spaceborne laser transmitter for NASA's Geodynamic Laser Ranging System. Three different oscillators are considered. The first is an injection-seeded ring oscillator yielding 1 mJ of energy within a 120-ps pulse. The second is a frequency-modulated mode-locked oscillator emitting 0.30 nJ in a 20-ps pulse. The third is a self-starting, additive pulse mode-locked laser. Detailed design considerations and preliminary results of these lasers are reported as well as the design of a unique multipass amplifier.

  7. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Further development of utility program software for analyzing final results of Earth rotation parameter determination from different space geodetic systems was completed. Main simulation experiments were performed. Results and conclusions were compiled. The utilization of range-difference observations in geodynamics is also examined. A method based on the Bayesian philosophy and entropy measure of information is given for the elucidation of time-dependent models of crustal motions as part of a proposed algorithm. The strategy of model discrimination and design of measurements is illustrated in an example for the case of crustal deformation models.

  8. Iranian Permanent GPS Network for Geodynamics (IPGN)

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Nankali, H. R.; Sedighi, M.; Djamour, Y.; Mosavi, Z.

    2009-04-01

    Iran is one of the most tectonically active zone in Alpine-Himalayan seismic belt where has been shaken by largely destroying historical and instrumental earthquakes. Iran is located in the convergence zone between Arabia and Eurasia with a velocity of 22 mm/yr nearly to the North. The shortening between Arabian and Eurasian plates in Iran is mainly distributed on Zagros and Alborz belts. Despite the historical and scientific awareness of seismic hazard in Iran, unfortunately this country lacked a Continuous GPS network to study geodynamic and tectonic movements. Such geodetic measurement can play an important role to understand the tectonic deformation then to evaluate the seismic hazard on Iran. Since early 2005 National Cartographic Center of Iran (NCC) is establishing a continuous GPS network named Iranian Permanent GPS Network for Geodynamics (IPGN). Taking into account the number of provided GPS receivers, (108) we made a priority based on two factors of seismicity and population. At the first, in order to study general tectonic behavior in Iran 41 stations, globally distributed in whole of Iran, were been considered. Three other areas in the priority list were: Centeral Alborz, North-West of Iran and North-East of Iran. The rest of receivers, i.e. ~60, were considered for these areas as local networks. These four networks are daily processed and give us a continuous monitoring of any surface deformation. In this paper we try to present the results obtained from the network

  9. Geodynamical Evolution and Tectonic Framework of China

    NASA Astrophysics Data System (ADS)

    LIU, Guangding

    In this paper, we show that the tectonic framework of mainland China consists of "three latitudinal strips", namely, Tianshan-Yinshan-Yanshan, Qinling-Dabie, and Nanling; "two longitudinal strips" namely, Daxing'anling Taihangshan Wulingshan, Helanshan-Longmenshan; and "two triangles", Songpan-Ganzi, and Chaidamu. The geodynamic evolution of China can be considered in five-stages, which can be summarised as a kind of "teeterboard-like" process. The evolutionary process is that in the Palaeozoic era, the China mainland had lower elevation in the west and higher in the east, with OrdosSichuan as an axis. After the Mesozoic era, because the blocks of Qiangtang, Gangdese, and India collided and sutured with the Tarim block. During this time closure of the Tethys ocean occurred, and the Qinghai-Tibet Plateau formed. In the Cenozoic subduction of the Pacific plate northwestwards under the Philippine Sea began, and the Philippine Sea block converged towards the Eurasian plate. This was associated with extension and thinning of the crust in East China, which resulted in the uplift of the land in the west and subsidence in the east of China. Finally, we point out that research on the geodynamic evolution of the terranes is of practical significance in prospecting for mineral deposits and hydrocarbon resources.

  10. The evolution of Hadean-Eoarchaean geodynamics

    NASA Astrophysics Data System (ADS)

    O'Neill, C.; Debaille, V.

    2014-11-01

    Geodynamic modelling of Hadean/Eoarchaean tectonics typically requires higher rates of internal heat production, and higher mantle temperatures, in models that possess temperature-dependent viscosity and a yield criterion. In such models under Hadean conditions, for a wide range of geodynamic configurations and modelling approaches, subduction has a propensity to fail. This has led to the suggestion that the predominant tectonic regime in the Hadean was stagnant-lid convection, with intermittent recycling events. Various lines of evidence support this suggestion, from i) the long mixing time of mantle isotopic anomalies or compositional heterogeneities, such as 142Nd, 182W, and platinum group elements, to ii) the long residence time of the Hadean protolith to the Jack Hills zircons, and iii) thermal evolution models, which typically require lower heat flux in the past to avoid the "Archaean thermal catastrophe". The framework provided by stagnant lid, or episodic overturn, convection, iv) provides an explanation for the formation of early Archaean TTGs and greenstones, and v) explains the interleaving arc-plume sequence observed in many Archaean terranes, suggesting subduction initiation events may have been common, increasing their preservation potential. Implications include a low magnetic field strength in the Hadean, which is consistent with emerging paleointensity data from these times.

  11. Geodynamics applications of spaceborne laser ranging

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Degnan, John J.

    1989-01-01

    The Geodynamics Laser Ranging System (GLRS) is a spaceborne laser ranging instrument being developoed by NASA as a facility instrument for the Earth Observing System (EOS). GLRS is to be used to study regional and local crustal movements. It is designed to make highly precise range measurements to retroreflector targets located in geophysically interesting sites. Using a two-color ranging scheme, absolute range accuracies of several mm are expected. Simulations based on this accuracy and the EOS orbital parameters show that length of the intersite baseline between retroreflectors can be determined to several mm accuracy at distances from a few km to several hundred km with several passes of GLRS range data collected over a few-day interval. Short-arc techniques are used to minimize the effects of gravity field and other force model uncertainties. Relative heights can be determined to sub-cm accuracy over comparable distances.

  12. Scientific Data Analysis and Software Support: Geodynamics

    NASA Technical Reports Server (NTRS)

    Klosko, Steven; Sanchez, B. (Technical Monitor)

    2000-01-01

    The support on this contract centers on development of data analysis strategies, geodynamic models, and software codes to study four-dimensional geodynamic and oceanographic processes, as well as studies and mission support for near-Earth and interplanetary satellite missions. SRE had a subcontract to maintain the optical laboratory for the LTP, where instruments such as MOLA and GLAS are developed. NVI performed work on a Raytheon laser altimetry task through a subcontract, providing data analysis and final data production for distribution to users. HBG had a subcontract for specialized digital topography analysis and map generation. Over the course of this contract, Raytheon ITSS staff have supported over 60 individual tasks. Some tasks have remained in place during this entire interval whereas others have been completed and were of shorter duration. Over the course of events, task numbers were changed to reflect changes in the character of the work or new funding sources. The description presented below will detail the technical accomplishments that have been achieved according to their science and technology areas. What will be shown is a brief overview of the progress that has been made in each of these investigative and software development areas. Raytheon ITSS staff members have received many awards for their work on this contract, including GSFC Group Achievement Awards for TOPEX Precision Orbit Determination and the Joint Gravity Model One Team. NASA JPL gave the TOPEX/POSEIDON team a medal commemorating the completion of the primary mission and a Certificate of Appreciation. Raytheon ITSS has also received a Certificate of Appreciation from GSFC for its extensive support of the Shuttle Laser Altimeter Experiment.

  13. Experimental, Numerical and Observational Models in Geodynamics

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina

    2015-04-01

    Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.

  14. Modern Geodynamic Model of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, O.; Sobolev, N.; Morozov, A.; Grikurov, G.; Shokalsky, S.; Kashubin, S.; Petrov, E.

    2012-04-01

    In 2011 at VSEGEI (Russia) within the international project "Atlas of Geological Maps of the Circumpolar Arctic", a draft of the structural tectonic map of the Arctic at 1: 5,000,000 scale was prepared. This map is accompanied by a model of deep lithospheric structure of the Russian Arctic, which reflects thickness, types and specific features of crustal structure, and by geodynamic reconstructions. Analysis of the geological and geophysical data enables distinguishing a set of features in the Arctic evolution: - Differences in geological structure and geodynamic evolution of the Western and Eastern Arctic have been spotted no less than since the Early Paleozoic, which was reflected in the formation of caledonides in the West of the Arctic, and ellesmerides in the East. - In the Middle Paleozoic-Mesozoic (Late Devonian-Early Cretaceous), the eastern parts of the Arctic were affected by geodynamic processes taking place in the Paleo-Pacific. The formation of the Canadian basin was a result of the Late Jurassic-Early Cretaceous riftogenesis. A set of features of this basin - such as constrained spreading, considerable depth and topography of the floor, sedimentation specifics - allows us to consider it as a marginal basin of the Paleo-Pacific that moved into an island-arc evolution stage in the Late Jurassic. Collision orogenic activities that widely manifested themselves in the Northern-Eastern part of Asia on the verge of the Early-Late Cretaceous are related to intraplate riftogenic processes in the Central Arctic that were followed by basic magmatism manifestations in Svalbard, Franz Josef Land and New Siberian Islands. Cretaceous stage of the intraplate riftogenesis determined to a great extent the modern-day structure of the Eastern Arctic. - The opening of the Northern Atlantic was accompanied by tectonic compression in the Eastern parts of the Arctic. The formation of the Eurasian basin was preceded by Late Cretaceous-Paleogene period of amplitude differentiated vertical tectonic movements. At that time, the Barents-Kara plate suffered lifting whose amplitude reached as many as 2000-3000 meters. Within the Amerasian basin prevailed descending movement that determined the generation of the cover of Late Cretaceous-Cenozoic formations. - Analysis of seismic data shows that the mid-oceanic Gakkel Ridge takes over older - presumably Early Cretaceous - riftogenic structure. Young oceanic Eurasian spreading basin changes into the riftogenic Laptev Sea basin. The Eastern and Western Eurasian basin passive margins are different. Within the Barents and Kara marginal seas, sedimentary paleobasins are reconstructed with a thick (up to 20 km) Paleozoic and Mesozoic (Triassic-Early Cretaceous) sedimentary cover and a heterogeneous basement. Amerasian basin was formed in the Late Jurassic-Early Cretaceous similar to the marginal basin of Paleo-Pacific. In the Late Cretaceous, it transformed into a residual basin, and beginning from the Neogene it evolved into an intraplate basin of the passive margin of the newly formed Eurasian Oceanic basin.

  15. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  16. GS of CAS Geodesy & Geodynamics Beijing June 20041 Fundamentals of GPS

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 Fundamentals of GPS #12;GS of CAS ­ Geodesy of CAS ­ Geodesy & Geodynamics ­ Beijing June 20043 Phase measurement precision The precision-cycles) representing phase ambiguity #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20044 Double differences One

  17. GS of CAS Geodesy & Geodynamics Beijing June 20041 RIGID PLATE TECTONICS

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 RIGID PLATE TECTONICS · Plate definition · Plate deformation : strain and rotation tensors #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June.e. plates. #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20043 Plate geometry and plate tecctonics

  18. GS of CAS Geodesy & Geodynamics Beijing June 20041 DEFORMATION PATTERN IN ELASTIC CRUST

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 DEFORMATION PATTERN IN ELASTIC CRUST ­ Geodesy & Geodynamics ­ Beijing June 20042 Stress () in 2D - Force = x surface - no rotation => xy = yx of CAS ­ Geodesy & Geodynamics ­ Beijing June 20043 Applied forces Normal forces on x axis : = xx(x). y

  19. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  20. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  1. Exploring the asthenophere via geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Fahy, E. H.; Hall, P.; Faul, U. H.

    2009-12-01

    The rheologically weak (i.e. low viscosity) layer known as the asthenosphere was first proposed to provide a mechanism for isostatic compensation [Barrell, 1914], and its existence has since been validated by studies of post-glacial rebound. Further evidence has come recently from geodynamic models that demonstrate a need for a weak rheological layer to facilitate a plate-like mode of mantle convection. Independent of these rheological considerations, magneto-telluric and seismic surveys have shown that the Earth’s oceanic upper mantle has relatively low seismic velocities, high seismic attenuation, and high electrical conductivity at depths of ~80-200km. Since these geophysical anomalies correlate well spatially with the low viscosity of the asthenosphere, it follows that there is likely a single mechanism responsible. Three competing hypotheses have been proffered: 1. the presence of volatiles, namely water [Hirth and Kohlstedt, 1996; Karato and Jung, 1998; Yang et al., 2007]; 2. the presence of small-degree partial melt [Anderson and Sammis, 1970; Shankland and Waff, 1977; Yoshino et al., 2005; Hirano et al., 2006; Mierdel et al., 2007]; 3. natural variations in the physical properties of dry, melt-free peridotite with temperature and pressure [Faul and Jackson, 2005; Stixrude and Lithgow-Bertelloni, 2005; Priestly and McKenzie, 2006]; Each of these mechanisms requires a unique distribution of volatiles and melt in the upper mantle, leading to corresponding spatial variations in viscosity and density. Each scenario will thus lead to a characteristic onset time and scale of dense thermal instabilities at the base of the overriding lithosphere, and thereby heat flow, bathymetry, and seismic structure. In an attempt to differentiate between these three hypotheses, we employ the CitcomCU finite element package to model the upper mantle beneath an oceanic plate. We explicitly include melting due to decompression beneath a mid-ocean ridge in the model using Lagrangian particles. These particles are used to track melting and volatiles within the model domain. The effects of melting [Cooper and Kohlstedt, 1986; Hirth and Kohlstedt, 1995] and volatiles [Hirth and Kohlstedt, 1996] on rheology, based on laboratory studies of olivine deformation, are included. We systematically vary plate velocity, mantle potential temperature, residual porosity, and water content to match the conditions of each hypothesis with the model output from each scenario then compared to geophysical observations. Specifically, heat flow and bathymetry can then be compared directly with field measurements in ocean basins. Likewise model output of temperature, composition and porosity can be used to infer seismic velocities and attenuation, which can in turn be compared to regional seismic models.

  2. Contributions to the geodynamics of western Canada

    NASA Astrophysics Data System (ADS)

    Fluck, Paul

    Western Canada exhibits a large variation in continental lithosphere from very old rocks in the Canadian Shield across the younger Cordillera to the current accretion of the Yakutat Terrane in the Gulf of Alaska. The geodynamics are driven by the Pacific-North America plate motion resulting in deformation, seismicity, and mountain building across the Canadian Cordillera. The way the lithosphere reacts to deformation or loading depends on its thickness and strength. The effective elastic thickness of the lithosphere, Te , has been estimated in this thesis study using a coherence analysis of Bouguer gravity and topography. There is very thick and strong lithosphere in the old Canadian Shield (Te > 100 km) and thin and weak lithosphere in the Cordillera (Te = 20--30 km). Lithospheric temperature, derived from surface heat flow and upper crust radioactive heat generation, is the most important control on the strength of the lithosphere. Calculated temperatures at the base of the crust are high in the young and hot Cordillera (˜900--1000°C) and very low in the old and cold Craton (˜400--450°C). The depths to the thermally controlled brittle-ductile transition are in general agreement with the Te estimates. The high temperatures in the lower crust and upper mantle of the Cordillera reduce the density by thermal expansion. This thermal isostasy explains the surprising observation of high topography over thin crust. The estimated lithospheric temperatures are used to calculate lithospheric strength profiles. In agreement with the Te estimates, the Cordillera has a weak zone in the lower crust facilitating detachment of the upper crust. Analysis of GPS continuous and campaign data show that the Northern Cordillera is moving at ˜5--10 mm/y in a northward direction driven by the collision of the Yakutat Block in the Gulf of Alaska and is overthrusting the strong lithosphere of the Canadian Shield.* *This dissertation is multimedia (contains text and other applications not available in printed format). The CD requires the following system applications: Internet Browser; Adobe Acrobat; Microsoft Office.

  3. Overview and Observational Constraints on Venus' Geodynamics and Tectonics

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.

    2015-05-01

    Today Venus is a single plate, uninhabitable planet. Why doesn’t it have plate tectonics? Did it ever have plate tectonics or a more mobile lid? This paper reviews what is known about Venus’ tectonics and geodynamics, as well as what is debated.

  4. Geodynamic Evolution of the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Kaymakci, N.; Decker, J.; Orange, D.; Teas, P.; Van Heiningen, P.

    2013-12-01

    We've carried out a large on- and offshore study in Eastern Indonesia to characterize the major structures and to provide constraints on the Neogene geodynamic evolution of the Banda Sea region. The onshore portion utilized remote sensing data and published geology. We tied the onshore to the offshore using recently acquired high resolution bathymetric data (16m and 25m bin size) and 2D seismic profiles that extend from Sulawesi in the west to Irian Jaya in the east across the northern part of the Banda Arc. We interpret the northern boundary of the 'Birds Head' (BH) of Papua, the Sorong Fault, to be a sinistral strike-slip fault zone with a minimum of 48 km displacement over the last few million years. The western boundary fault of Cendrawasih Basin defines the eastern boundary of BH and corresponds to the Wandamen Peninsula which comprises high pressure metamorphic rocks, including eclogite and granulite facies rocks, with exhumation ages from 4 to 1 Ma. Earthquake focal mechanism solutions indicate that the eastern boundary of BH is linked with a large scale offshore normal fault which we suggest may be related to the exhumation of the Wandamen Peninsula. The eastern boundary of Cendrawasih Basin is defined by a large transpressive belt along which BH is decoupled from the rest of Papua / Irian Jaya. This interpretation is supported by recent GPS studies. We propose that the BH and the Pacific plate are coupled, and therefore the Birds Head is therefore completely detached from Irian Jaya. Furthermore, Aru Basin, located at the NE corner of Banda Arc, is a Fault-Fault-Transform (FFT) type triple junction. According to available literature information the Banda Sea includes three distinct basins with different geologic histories; the North Banda Sea Basin (NBSB) was opened during 12-7 Ma, Wetar-Damar Basin (WDB) during 7-3.5 Ma and Weber Basin (WB) 3-0 Ma. Our bathymetric and seismic data indicated that the NBSB and Weber Basin lack normal oceanic crust and are probably floored by exhumed mantle, while WDB seems to have normal oceanic crust. These basins thought to be developed sequentially from north to south, possibly due to back arc extension resulting from trench retreat and roll-back of the northwards subducting Indo-Australian oceanic plate below the SE Eurasian margin along the Sunda-Banda subduction zone. We suggest that a trench-perpendicular tear in the subducting slab extends from the southwestern corner of Celebes Sea to the northeastern corner of Seram Island. It defines the southern boundary of the Banggai-Sula and Bird's Head (BH) blocks and northern boundary of Banda Sea micro-plate. The dominant character of this structure is sinistral strike-slip fault zone that eastward gradually become transpressional to ultimately thrusting at the tip of the tear east of Seram Island. Here, deformation results in a large accretionary wedge, the Seram Accretionary Belt (SAB) that is partitioned by intensely sheared strike-slip faults. The deformation mechanisms within the SAB is difficult to interpret due to poor seismic imaging below a shallow (Pliocene?) unconformity and the inferred complexity of the deformation within the belt. However, geometries of faults and fault blocks are very well pronounced on bathymetric data which provide hints for the deformation style of the belt.

  5. Study of a close-grid geodynamic measurement system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Clogeos (Close-Grid Geodynamic Measurement System) concept, a complete range or range-rate measurement terminal installed in a satellite in a near-polar orbit with a network of relatively simple transponders or retro-reflectors on the ground at intervals of 0.1 to 10 km was reviewed. The distortion of the grid was measured in three dimensions to accuracies of + or - 1 cm with important applications to geodynamics, glaciology, and geodesy. User requirements are considered, and a typical grid, designed for earthquake prediction, was laid out along the San Andreas, Hayward, and Calaceras faults in southern California. The sensitivity of both range and range-rate measurements to small grid motions was determined by a simplified model. Variables in the model are satellite altitude and elevation angle plus grid displacements in latitude, and height.

  6. Monitoring of global geodynamic processes using satellite observations

    NASA Astrophysics Data System (ADS)

    Tatevian, S. K.; Attia, G. F.; Abou-Aly, N.; Ghoneim, R.; Hegazy, M.

    2014-06-01

    To study mechanisms of destructive geodynamic phenomena including determination of places of possible severe earthquakes, volcano eruptions and some other natural hazards, it is important to have means to evolve areas where maximum changes of the displacement velocities and the terrestrial crust vertical movements are possible. The previous experience has shown that the satellite geodesy techniques including global navigation systems and satellite laser ranging are the most effective for research activities in this field. Permanent control of secular movement of GPS-stations of the international geodynamic network, located in Russia, has allowed improving the reference coordinate frame for North Eurasia since Russian network stations provide representative covering of the largest stable areas (the Siberian and the East European) of the Eurasian plate. Along its southern border, there is a zone consisting of a great number of microplates surrounding the South-Eurasian stable plate. Interaction of these small plates and blocks influences distribution of seismic stresses in internal parts of the continent that is confirmed by the highest seismic activity of the triangle bordered by thrusts of the Himalayas and faults of the Pamirs, the Tien-Shan, the Baikal and the North-Eastern China. One of the active tectonic zones of Egypt located in Aswan, is characterized by regional basement rock uplift and regional faulting. In 1997, the African Regional Geodynamic Network was developed around the northern part of Lake Nasser, consists of 11 points, on both sides of the Lake. Its main goal is to study the geodynamical behavior around the northern part of the lake. The collected data were processed using the Bernese software version 5.0. From the velocity results, including also the African plate motion, it can be noticed that all stations of this network are moved to the northeast direction and it is typically the direction of the African plate motion.

  7. Drilling the solid earth: global geodynamic cycles and earth evolution

    NASA Astrophysics Data System (ADS)

    Shervais, John W.; Arndt, Nicholas; Goodenough, Kathryn M.

    2015-09-01

    The physical and chemical evolution of the Earth is driven by geodynamic cycles that are global in scale, operating over 4.57 Ga of Earth's history. Some processes are truly cyclic, e.g., the Wilson Cycle, while others are irreversible (e.g., core formation). Heat and mass transfer between the lowermost mantle (e.g., core-mantle boundary) and the surface drives these global geodynamic processes. Subduction of lithospheric plates transfers cool fractionated material into the lower mantle and leads indirectly to the formation of new oceanic lithosphere, while the rise of thermochemical plumes recycles the remnants of these plates back to the surface, driven by heat transfer across the core-mantle boundary. These global geodynamic cycles are responsible for hotspot volcanism, the formation of continental crust, collisional orogenies, continental rifting, subduction zone processes (arcs, accretionary prisms), and ore deposits. Each of these presents opportunities for investigation by continental scientific drilling. In addition, these cycles affect other processes that are targets of continental scientific drilling: the origin and evolution of life and an oxygenated atmosphere, the impact of large volcanic eruptions on climate, and geological hazards such as earthquakes and volcanic eruptions. In this paper, we present the scientific rationale for continental scientific drilling to study global geodynamic processes, review past successes in this realm that were sponsored in part by ICDP, and suggest potential new targets for drilling campaigns that focus on solid earth evolution. This paper builds on discussions at the 2013 ICDP Science Meeting on the future of continental scientific drilling, held in Potsdam in November 2013.

  8. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  9. Applications of Geodesy to Geodynamics, an International Symposium

    NASA Technical Reports Server (NTRS)

    Mueller, I. I. (editor)

    1978-01-01

    Geodetic techniques in detecting and monitoring geodynamic phenomena are reviewed. Specific areas covered include: rotation of the earth and polar motion; tectonic plate movements and crustal deformations (space techniques); horizontal crustal movements (terrestrial techniques); vertical crustal movements (terrestrial techniques); gravity field, geoid, and ocean surface by space techniques; surface gravity and new techniques for the geophysical interpretation of gravity and geoid undulation; and earth tides and geodesy.

  10. Fluidity: A New Adaptive, Unstructured Mesh Geodynamics Model

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Wilson, C. R.; Kramer, S. C.; Piggott, M. D.; Le Voci, G.; Collins, G. S.

    2010-05-01

    Fluidity is a sophisticated fluid dynamics package, which has been developed by the Applied Modelling and Computation Group (AMCG) at Imperial College London. It has many environmental applications, from nuclear reactor safety to simulations of ocean circulation. Fluidity has state-of-the-art features that place it at the forefront of computational fluid dynamics. The code: Dynamically optimizes the mesh, providing increased resolution in areas of dynamic importance, thus allowing for accurate simulations across a range of length scales, within a single model. Uses an unstructured mesh, which enables the representation of complex geometries. It also enhances mesh optimization using anisotropic elements, which are particularly useful for resolving one-dimensional flow features and material interfaces. Uses implicit solvers thus allowing for large time-steps with minimal loss of accuracy. PETSc provides some of these, though multigrid preconditioning methods have been developed in-house. Is optimized to run on parallel processors and has the ability to perform parallel mesh adaptivity - the subdomains used in parallel computing automatically adjust themselves to balance the computational load on each processor, as the mesh evolves. Has a novel interface-preserving advection scheme for maintaining sharp interfaces between multiple materials / components. Has an automated test-bed for verification of model developments. Such attributes provide an extremely powerful base on which to build a new geodynamical model. Incorporating into Fluidity the necessary physics and numerical technology for geodynamical flows is an ongoing task, though progress, to date, includes: Development and implementation of parallel, scalable solvers for Stokes flow, which can handle sharp, orders of magnitude variations in viscosity and, significantly, an anisotropic viscosity tensor. Modification of the multi-material interface-preserving scheme to allow for tracking of chemical heterogeneities in mantle convection models. Incorporation of a suite of geodynamic benchmarks into the automated test-bed. These recent advances, which all work in combination with the parallel mesh-optimization technology, enable Fluidity to simulate geodynamical flows accurately and efficiently. Initial results will be presented from: (i) a range of 2-D and 3-D thermal convection benchmarks; kinematic and dynamic subduction zone simulations; (iii) Comparisons between model predictions and laboratory experiments of plume dynamics. These results all clearly demonstrate the benefits of adaptive, unstructured meshes for geodynamical flows.

  11. Strike-slip faults on Mars: Observations and implications for global tectonics and geodynamics

    E-print Network

    Hauck II, Steven A.

    Strike-slip faults on Mars: Observations and implications for global tectonics and geodynamics January 2008; accepted 1 May 2008; published 5 August 2008. [1] The tectonic evolution of Mars has been and geodynamic evolution of Mars. We model the tectonic evolution of the planet in response to the evolving

  12. GS of CAS Geodesy & Geodynamics Beijing June 20041 Monitoring the Earth Surface from space

    E-print Network

    Vigny, Christophe

    GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20041 Monitoring the Earth Surface from space bandwith. Shape of the surface from radar imagery Surface deformation from satellite geodesy : SLR, VLBI, DORIS, GPS #12;GS of CAS ­ Geodesy & Geodynamics ­ Beijing June 20042 Optical Imagery : basic principles

  13. Geodynamics of oroclinal bending: Insights from the Mediterranean

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Gideon

    2014-12-01

    The Alpine Orogen in the Mediterranean region exhibits a series of orogenic curvatures (oroclines). The evolution of these oroclines is relatively well constrained by a plethora of geophysical and geological data, and therefore, their origin can inform us on the fundamental processes controlling oroclinal bending. Here, a synthesis of the geometry of Mediterranean oroclines, followed by a discussion on their geodynamic origin is presented. The geometrical synthesis is based on a new classification of Mediterranean oroclines, which defines a first-order orocline (Adriatic Orocline) by the general northward-convex shape of the Alpine Orogen from Cyprus to Gibraltar. Superimposed on the limbs of this orocline, are second-, third- and fourth-order oroclines. The major process that led to the formation of the Adriatic Orocline is the indentation of Adria into Europe, whereas second- and third-order oroclines (e.g., Western Mediterranean and Gibraltar oroclines, respectively) were primarily controlled by a combination of trench retreat and slab tearing. It appears, therefore, that the geodynamics of Mediterranean oroclines has been entirely dependent on plate boundary migration and segmentation, as expressed in the interlinked processes of indentation, trench retreat and slab tearing. The relative contribution of specific geodynamic processes, and their maturity, could be inferred from geometrical characteristics, such as the amplitude-to-width ratio, the orientation of the curvature (convex or concave) relative to the convergence vector, and their geometrical relationship with backarc extensional basins (e.g., in the concave side of the orocline). Based on the information from the Mediterranean oroclines, it is concluded that oroclinal bending commonly involves lithospheric-scale processes, and is not restricted to thin-skinned deformation. However, contrary to previous suggestions that assume that the whole lithosphere can buckle, there is no clear evidence that such processes occur in modern tectonic environments.

  14. International GPS (Global Positioning System) Service for Geodynamics

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F. (Editor); Liu, R. (Editor); Neilan, R. E. (Editor)

    1995-01-01

    The International GPS (Global Positioning System) Service for Geodynamics (IGS) began formal operation on January 1, 1994. This first annual report is divided into sections, which mirror different aspects of the service. Section (1) contains general information, including the history of the IGS, its organization, and the global network of GPS tracking sites; (2) contains information on the Central Bureau Information System; (3) describes the International Earth Rotation Service (IERS); (4) details collecting and distributing IGS data in Data Center reports; (6) describes how the IGS Analysis Centers generate their products; (7) contains miscellaneous contributions from other organizations that share common interests with the IGS.

  15. Structure and geodynamics of the Verkhoyansk Fold-Thrust Belt

    NASA Astrophysics Data System (ADS)

    Konstantinovsky, A. A.

    2007-09-01

    The structure and geodynamics of the Verkhoyansk Fold-Thrust Belt and its eastern and southeastern frameworks are considered on the basis of original field observations and a survey of the literature data and more than 150 published sheets of the State Geological Map on a scale of 1 : 200 000. The important role of large-scale and long-lived strike-slip faults and associated pull-apart structures and the role of postcollision superimposed fault zones related to the reactivation of the buried Devonian Vilyui Rift and the Late Cretaceous-Cenozoic rifting are shown. The metallogenic implications of these tectonic elements are considered.

  16. Geodynamic evolution of early Mesozoic sedimentary basins in eastern Australia

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Babaahmadi, A.; Esterle, J.

    2014-12-01

    Eastern Australia is covered by a series of continental sedimentary basins deposited during the Triassic and Jurassic, but the geodynamic context of these basins is not fully understood. Using gridded aeromagnetic data, seismic reflection data, geological maps, digital elevation models, and field observations, we conducted a structural synthesis aimed at characterizing major structures and deformation style in the Triassic-Jurassic sedimentary basins of eastern Australia. Our results show evidence for four alternating episodes of rifting and contractional events during the Triassic. Two major episodes of rifting, characterized by syn-sedimentary steep normal faults and bimodal volcanism, resulted in the development of the Early-Middle Triassic Esk-Nymboida Rift System and the early Late Triassic Ipswich Basin. Faults in the Esk-Nymboida Rift System have been controlled by a pre-existing oroclinal structure. Each phase of rifting was followed by a contractional event, which produced folds, reverse faults and unconformities in the basins. Since the latest Late Triassic, thermal subsidence led to the deposition of continental sediments in the Clarence-Moreton Basin, which continued until the Early Cretaceous. We suggest that the geodynamic control on the alternating episodes of rifting and contraction during the Triassic in eastern Australia was ultimately related to plate boundary migration and switches between trench retreat and advance.

  17. On the Coupling of Geodynamic and Resistivity Models: A Progress Report and the Way Forward

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Ellis, Susan

    2015-08-01

    Magnetotelluric (MT) studies represent the structure of crust and mantle in terms of conductivity anomalies, while geodynamic modelling predicts the deformation and evolution of crust and mantle subject to plate tectonic processes. Here, we review the first attempts to link MT models with geodynamic models. An integration of MT with geodynamic modelling requires the use of relationships between conductivity and rheological parameters such as viscosity and melt fraction, which are provided by laboratory measurements of rock properties. Owing to present limitations in our understanding of these relationships, and in interpreting the trade-off between scale and magnitude of conductivity anomalies from MT inversions, most studies linking MT and geodynamic models are qualitative rather than providing hard constraints. Some recent examples attempt a more quantitative comparison, such as a study from the Himalayan continental collision zone, where rheological parameters have been calculated from a resistivity model and compared to predictions from geodynamic modelling. We conclude by demonstrating the potential in combining MT results and geodynamic modelling with examples that directly use MT results as constraints within geodynamic models of ore bodies and studies of an active volcano-tectonic rift.

  18. Geodynamic setting of recent volcanism in North Eurasia

    NASA Astrophysics Data System (ADS)

    Kovalenko, V. I.; Yarmolyuk, V. V.; Bogatikov, O. A.

    2009-09-01

    A GIS layout of the map of recent volcanism in North Eurasia is used to estimate the geodynamic setting of this volcanism. The fields of recent volcanic activity surround the Russian and Siberian platforms—the largest ancient tectonic blocks of Eurasia—from the arctic part of North Eurasia to the Russian Northeast and Far East and then via Central Asia to the Caucasus and West Europe. Asymmetry in the spatial distribution of recent volcanics of North Eurasia is emphasized by compositional variations and corresponding geodynamic settings. Recent volcanic rocks in the arctic part of North Eurasia comprise the within-plate alkaline and subalkaline basic rocks on the islands of the Arctic Ocean and tholeiitic basalts of the mid-ocean Gakkel Ridge. The southern, eastern, and western volcanic fields are characterized by a combination of within-plate alkaline and subalkaline basic rocks, including carbonatites in Afghanistan, and island-arc or collision basalt-andesite-rhyolite associations. The spatial distribution of recent volcanism is controlled by the thermal state of the mantle beneath North Eurasia. The enormous mass of the oceanic lithosphere was subducted during the formation of the Pangea supercontinent primarily beneath Eurasia (cold superplume) and cooled its mantle, having retained the North Pangea supercontinent almost unchanged for 200 Ma. Volcanic activity was related to the development of various shallow-seated geodynamic settings and deep-seated within-plate processes. Within-plate volcanism in eastern and southern North Eurasia is controlled, as a rule, by upper mantle plumes, which appeared in zones of convergence of lithospheric plates in connection with ascending hot flows compensating submergence of cold lithospheric slabs. After the breakdown of Pangea, which affected the northern hemisphere of the Earth insignificantly, marine basins with oceanic crust started to form in the Cretaceous and Cenozoic in response to the subsequent breakdown of the supercontinent in the northern hemisphere. In our opinion, the young Arctic Ocean that arose before the growth of the Gakkel Ridge and, probably, the oceanic portion of the Amerasia Basin should be regarded as a typical intracontinental basin within the supercontinent [48]. Most likely, this basin was formed under the effect of mantle plumes in the course of their propagation (expansion, after Yu.M. Pushcharovsky) to the north of the Central Atlantic, including an inferred plume of the North Pole (HALIP).

  19. Geodynamic Study In The Region of Southwest Bulgaria

    NASA Astrophysics Data System (ADS)

    Georgiev, I.; Pashova, L.; Nikolov, G.; Dimitrov, D.; Botev, E.

    Southwestern (SW) Bulgaria is a region of the most expressed tectonic and seismic activity in the whole territory of Bulgaria. The area belongs to the zone of recent ex- tension of the earth crust with the complex interference the horizontal and vertical movements of geological structures. The tectonic activity is confirmed with the re- cent high seismicity in the region. The largest earthquake in Europe in the last two centuries had happened near the Krupnik-Kresna area in 04.04.1904 with magnitude M = 7.8 (Karnik, 1969). A complex geodynamic study of recent deformations in the SW Bulgaria is of particular importance because of the possibility the seismogenic faults to provoke strong earthquakes. Since 1970 the Central Laboratory of Geodesy has carried out a geodetic monitoring of the vertical movements in the local seismic active zone of Krupnik-Kresna. We present the results of this monitoring along with the analysis of the precise spirit levelling from tree epochs - 1978, 1986 and 2000 of the 1st class state levelling line crossing the Krupnik fault. They show significant ver- tical crustal movements in the neighbourhood of the main Krupnik normal fault and confirm its recent tectonic activity. In 2001 the Central Laboratory of Geodesy, the Ge- ological Institute and the Geophysical Institute at the Bulgarian Academy of Sciences in cooperation with the Geodetic Department of the University of Architecture, Civil Engineering and Geodesy initiated a research project: "Multidisciplinary study on the active geodynamic setting of the Southwest Bulgaria". A regional GPS geodynamic network for long term monitoring of the recent crustal movements in this region was established. The GPS site locations were chosen after a detail study of the available seismotectonic and geologic data. The first GPS campaign was performed in the late summer of the last year. Some main seismotectonic features of the SW Bulgaria re- gion are discussed based on the new geological data and the recently recorded seismic activity in the period 1990 - 2001. We expect that the results obtained in the frame- work of this project could be a valuable contribution to assess the stress accumulation and to make a reliable evaluation of the seismic risk in the region.

  20. Geodynamic reconstructions of the South America-Antarctica plate system

    NASA Astrophysics Data System (ADS)

    Vérard, Christian; Flores, Kennet; Stampfli, Gérard

    2012-01-01

    The South America-Antarctica plate system shows many oceanic accretionary systems and subduction zones that initiated and then stopped. To better apprehend the evolution of the system, geodynamic reconstructions (global) have been created from Jurassic (165 Ma) to present, following the techniques used at the University of Lausanne. However, additional synthetic magnetic anomalies were used to refine the geodynamics between 33 Ma and present. The reconstructions show the break up of Gondwana with oceanisation between South America (SAM) and Antarctica (ANT), together with the break off of 'Andean' geodynamical units (GDUs). We propose that oceanisation occurs also east and south of the Scotian GDUs. Andean GDUs collide with other GDUs crossing the Pacific. The west coast of SAM and ANT undergo a subsequent collision with all those GDUs between 103 Ma and 84 Ma, and the Antarctic Peninsula also collides with Tierra del Fuego. The SAM-ANT plate boundary experienced a series of extension and shortening with large strike-slip component, culminating with intra-oceanic subduction leading to the presence of the 'V-' and 'T-' anomalies in the Weddell Sea. From 84 Ma, a transpressive collision takes place in the Scotia region, with active margin to the east. As subduction propagates northwards into an old and dense oceanic crust, slab roll-back initiates, giving rise to the western Scotia Sea and the Powell Basin opening. The Drake Passage opens. As the Scotian GDUs migrate eastwards, there is enough space for them to spread and allow a north-south divergence with a spreading axis acting simultaneously with the western Scotia ridge. Discovery Bank stops the migration of South Orkney and 'collides with' the SAM-ANT spreading axis, while the northern Scotian GDUs are blocked against the Falkland Plateau and the North-East Georgia Rise. The western and central Scotia and the Powell Basin spreading axes must cease, and the ridge jumps to create the South Sandwich Islands Sea. The Tierra del Fuego-Patagonia region has always experienced mid-oceanic ridge subduction since 84 Ma. Slab window location is also presented (57-0 Ma), because of its important implication for heat flux and magmatism.

  1. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    E-print Network

    Herndon, J M

    2006-01-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound imp...

  2. Geodynamics--where are we and what lies ahead?

    PubMed

    Drake, C L; Maxwell, J C

    1981-07-01

    The introduction and evolution of the plate tectonics hypothesis during the past two decades has sparked the current renaissance of research in the earth sciences. An outgrowth of active geophysical and geological exploration of the oceans, the plate tectonics model has come under intense scrutiny by geologists, geochemists, and geophysicists who have attempted to apply the model to the origin and growth of continents, the generation of oceanic and continental crust, and the nature of the lithosphere, asthenosphere, and underlying mantle with respect to their evolution through time and to the driving mechanism or mechanisms for plate tectonics. The study of other terrestrial planets and moons has been helpful in understanding the earth model. The unequal distribution of geological features, both in the continents and oceans, emphasizes the need for ongoing studies of international scope such as the recently completed International Geodynamics Project and its successor, the International Lithosphere Program, both stressing studies related to the dynamics of the lithosphere. PMID:17741165

  3. Effects of turbulence on the geodynamic laser ranging system

    NASA Technical Reports Server (NTRS)

    Churnside, James H.

    1993-01-01

    The Geodynamic Laser Ranging System (GLRS) is one of several instruments being developed by the National Aeronautics and Space Administration (NASA) for implementation as part of the Earth Observing System in the mid-1990s (Cohen et al., 1987; Bruno et al., 1988). It consists of a laser transmitter and receiver in space and an array of retroreflectors on the ground. The transmitter produces short (100 ps) pulses of light at two harmonics (0.532 and 0.355 microns) of the Nd:YAG laser. These propagate to a retroreflector on the ground and return. The receiver collects the reflected light and measures the round-trip transit time. Ranging from several angles accurately determines the position of the retroreflector, and changes in position caused by geophysical processes can be monitored.

  4. Coupling a geodynamic seismic cycling model to rupture dynamic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; van Dinther, Ylona

    2014-05-01

    The relevance and results of dynamic rupture scenarios are implicitly linked to the geometry and pre-existing stress and strength state on a fault. The absolute stresses stored along faults during interseismic periods, are largely unquantifiable. They are, however, pivotal in defining coseismic rupture styles, near-field ground motion, and macroscopic source properties (Gabriel et al., 2012). Obtaining these in a physically consistent manner requires seismic cycling models, which directly couple long-term deformation processes (over 1000 year periods), the self-consistent development of faults, and the resulting dynamic ruptures. One promising approach to study seismic cycling enables both the generation of spontaneous fault geometries and the development of thermo-mechanically consistent fault stresses. This seismo-thermo-mechanical model has been developed using a methodology similar to that employed to study long-term lithospheric deformation (van Dinther et al., 2013a,b, using I2ELVIS of Gerya and Yuen, 2007). We will innovatively include the absolute stress and strength values along physically consistent evolving non-finite fault zones (regions of strain accumulation) from the geodynamic model into dynamic rupture simulations as an initial condition. The dynamic rupture simulations will be performed using SeisSol, an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme (Pelties et al., 2012). The dynamic rupture models are able to incorporate the large degree of fault geometry complexity arising in naturally evolving geodynamic models. We focus on subduction zone settings with and without a splay fault. Due to the novelty of the coupling, we first focus on methodological challenges, e.g. the synchronization of both methods regarding the nucleation of events, the localization of fault planes, and the incorporation of similar frictional constitutive relations. We then study the importance of physically consistent fault stress, strength, and geometry input for dynamic rupture propagation in terms of rupture path and dynamics. On the other hand, it will provide the opportunity to compare slow earthquake akin events developing in quasi-static geodynamic model to fully dynamic ruptures in terms of coseismic displacements and stress changes. Gabriel, A.-A. (2012), J.-P. Ampuero, L. A. Dalguer, and P. M. Mai, The transition of dynamic rupture modes in elastic media, J. Geophys. Res., 117(B9), 01480227. Gerya, T., and D. Yuen (2007), Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet In., 163(1-4), 83-105. Pelties, C. (2012), J. De la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Käser Three-Dimensional Dynamic Rupture, Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, J. Geophys. Res., 117(B2), B02309. van Dinther, Y. (2013a), T.V. Gerya, L.A. Dalguer, F. Corbi, F. Funiciello, and P.M. Mai, The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models, J. Geophys. Res., 118(4), 1502-1525. van Dinther, Y. (2013b), T.V. Gerya, L.A. Dalguer, P.M. Mai, G. Morra, and D. Giardini, The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models, J. Geophys. Res., 118, 6183-6202.

  5. Geomorphology and Geodynamics at Crustal Boundaries within Asia and Africa

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The release of SRTM images by NASA over the past two years year has been greeted by foreign Earth scientist's as "NASA's gift to the World". The goodwill that this has engendered in parts of Africa. India, Pakistan and Bangladesh, as scientists in those countries contemplated what many of them considered an unprovoked and unjustifiable US invasion of Iraq, cannot be underestimated. We have used SRTM images from Africa and India and elsewhere to examine aspects of tectonism, geodynamics and tsunami and earthquake hazards. Highlights of this research are itemized in this final report. One difficulty that has arisen is , of course, that the funding for the science lead the availability of the data by more than a year. and as a result many of the findings are as yet unpublished.

  6. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  7. Geodynamic Evolution of the Eurekan Orogen of Ellesmere Island

    NASA Astrophysics Data System (ADS)

    Heron, P. J.; Pysklywec, R. N.; Stephenson, R.

    2014-12-01

    The Eurekan Orogeny, which created much of the high topography of Ellesmere Island and adjacent Greenland, occurred as a result of mountain-building processes the dynamics of which are not well understood. It is generally considered that the rotation of Greenland in the Eocene (related to sedimentary basin formation in Baffin Bay) produced compressional tectonics between Greenland and Ellesmere Island. As part of this process, the Eurekan Orogeny formed away from a traditional convergent ocean-closure plate boundary, and represents a style of "intraplate" deformation. In this work, the geodynamic evolution of the Eurekan Orogeny and its relationship to the tectonics of the Canadian polar margin and northern Baffin Basin is explored using high-resolution thermal-mechanical numerical experiments with the modelling code SOPALE. The modelling of the High Arctic is constrained by the first-order crustal structure of the region (deduced by local gravity field and passive seismological data). Presented are suites of numerical experiments that investigate how the pre-existing lithospheric structures (both crustal and sub-crustal) control the evolution of the resulting intraplate orogen. The influence of other primary modelling parameters, such as plate convergence velocity and assumed rheology, are also explored. To highlight the role of surface processes on plate and lithosphere deformation, the importance of climate-controlled erosion and deposition in influencing the tectonics of High Arctic orogenesis is considered. As the tectonic evolution of the region is poorly resolved, we present some of the first interpretations of the development of Ellesmerian and northern Baffin lithosphere from the Earth's surface down to the base of the lithosphere. The numerical experiments evaluate and refine the geodynamical interpretations for enigmatic intraplate tectonics—applicable to this Arctic region and other instances globally.

  8. Lithosphere-scale geodynamics in the Rhodope: assumptions and implications

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Burg, Jean-Pierre; Kostopoulos, Dimitrios; Schenker, Filippo

    2014-05-01

    The Rhodope Metamorphic Complex (RMC) is a synmetamorphic nappe stack located in the hinterland of the Hellenide orogen which is part of the Alpine-Himalayan chain. Advances in analytical instrumentation in petrology over the last 10 years made possible the documentation of high-to ultrahigh-pressure conditions in this complex. Despite the wealth of petrologic P-T-t data and the multitude of generic models on the evolution of the RMC, only few geodynamic restorations project long enough back in time to cover the entire life span of the orogen since the Jurassic. There are many reasons for the different (and often contrasting) models proposed for the RMC that deserve to be mentioned. Here, we present the different reconstructions published together with the assumptions on which they were built and their geodynamic implications. We then proceed to carefully assess those implications individually from the mineral to the lithosphere scale. Our assessment poses important constrains on the pressure, temperature and deformation history of the complex on a regional scale that cannot be satisfied by all reconstructions. Such constrains involve the length of the subducting plate, the thermal histories of the metamorphic rocks, the age response of the isotopic systems and last, but not least, the structural record of km-scale movements that can be identified in the field. In addition, the presence of ultrahigh-pressure rocks is restricted to shear zones all across the RMC and this requires an explanation. We examine the possibility of non-lithostatic pressure variations within crustal-scale ductile shear zones.

  9. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  10. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    NASA Astrophysics Data System (ADS)

    Herndon, J. Marvin

    2006-12-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial volatile gases from the Earth, which began Earth’s decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c) Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.

  11. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    E-print Network

    J. Marvin Herndon

    2007-01-02

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.

  12. Present-day geodynamics of the northern North American Cordillera

    NASA Astrophysics Data System (ADS)

    Finzel, Emily S.; Flesch, Lucy M.; Ridgway, Kenneth D.

    2014-10-01

    Diffuse continental deformation results from interactions at plate boundaries, buoyancy forces generated by gradients in gravitational potential energy, and loads applied to the base of the lithosphere. Using finite element models, we calculate a deviatoric stress field associated with buoyancy forces, and then perform an iterative inversion to calculate deviatoric stress fields associated with boundary forces in the northern North American Cordillera. Our results reveal the presence of two distinct geodynamic domains. In the outboard domain, approximately equal magnitudes of boundary and buoyancy forces can account for the observed deformation along the Aleutian megathrust. In contrast, large boundary forces related to subduction of the Pacific and Yakutat slabs dominate the force-balance in south-central Alaska and combine with relatively small buoyancy forces to reproduce the observed kinematic indicators. In the inboard domain, encompassed by interior and northern Alaska and western Canada, boundary and buoyancy forces alone cannot reproduce the observed deformation. Therefore, we infer that deviatoric stresses due to basal tractions from a deeper mantle convection cell contribute to surface deformation in the inboard domain. Low effective lithospheric viscosity in south-central Alaska and the balancing effect of an independent geodynamic system driven by basal tractions in northern Alaska combine to confine the anomalously large Yakutat-related boundary deviatoric stresses to south-central Alaska. Deviatoric stresses associated with flat-slab subduction of the Yakutat microplate are a factor of two greater than boundary force estimates for the Andean and Indian-Eurasian convergent margins, where buoyancy and boundary forces are roughly equal in magnitude and dominate the force-balance.

  13. Geodynamics of the Eastern Pacific Region, Caribbean and Scotia Arcs. Volume 9

    SciTech Connect

    Cabre, R.

    1983-01-01

    This book analyze the geodynamic phenomena related to the interaction of the eastern Pacific with the Americas between Canada and the Antarctic peninsula. Studies include the Cordilleran arcs and Juan de Fuca plate.

  14. The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling

    E-print Network

    Gregg, Patricia Michelle Marie

    2008-01-01

    Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...

  15. Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling

    E-print Network

    Georgen, Jennifer E

    2001-01-01

    This thesis studies interactions between mid-ocean ridges and mantle plumes using geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow ...

  16. Anisotropy and deformation in the Earth's mantle : seismological observations, geodynamical models, and laboratory experiments

    E-print Network

    Long, Maureen Devaney

    2006-01-01

    In this thesis I report the results of several studies of elastic anisotropy and deformation in the Earth's mantle, using shear wave splitting measurements, numerical models of geodynamical processes, and laboratory ...

  17. Chronological constraints on the Permian geodynamic evolution of eastern Australia

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Rosenbaum, Gideon; Vasconcelos, Paulo

    2014-03-01

    The New England Orogen in eastern Australia developed as a subduction-related orogen in the Late Devonian to Carboniferous, and was modified in the Permian by deformation, magmatism and oroclinal bending. The geodynamics associated with the development of the New England oroclines and the exact timing of major tectonic events is still enigmatic. Here we present new 40Ar/39Ar results from metasedimentary and volcanic rocks from the southern New England Orogen. Eight grains from four metasedimentary samples (Texas beds) that originated in the Late Devonian to Carboniferous accretionary wedge yielded reproducible plateau ages of ~ 293, ~ 280, ~ 270 and ~ 260 Ma. These results suggest a complex thermal history associated with multiple thermal events, possibly due to the proximity to Permian intrusions. Two samples from mafic volcanic rocks in the southernmost New England Orogen (Alum Mountain Volcanics and Werrie Basalt) yielded eruption ages of 271.8 ± 1.8 and 266.4 ± 3.0 Ma. The origin of these rocks was previously attributed to slab breakoff, following a period of widespread extension in the early Permian. We suggest that this phase of volcanism marked the transition from backarc extension assisted by trench retreat to overriding-plate contraction. The main phase of oroclinal bending has likely occurred during backarc extension in the early Permian, and terminated at 271-266 Ma with the processes of slab segmentation and breakoff.

  18. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  19. Global Biomass Variation and its Geodynamic Effects, 1982-1998

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.

    2005-01-01

    Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.

  20. Application of VLBI and satellite laser ranging to geodynamics

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1983-01-01

    The NASA Crustal Dynamics Project has developed very-long baseline interferometer (VLBI) systems and satellite laser ranging (SLR) systems for geodynamics measurements. In VLBI, a radio noise signal from a distant quasar is received by two or more radio antennas and coherently recorded. These recordings are cross-correlated to determine the relative signal delays between stations which are used to derive the vector baselines between the stations. The SLR systems accurately determine the range to a retroreflector satellite as a function of time with short laser pulses. These range measurements from several stations to the same satellite are used in orbit analysis programs to determine the position of the stations and the vector baselines between the stations. Measurements with these systems have achieved precisions of a few centimeters in length for distances of several thousand km. These systems are now operating in a global network for measuring the relative motion of the N. American, Pacific, S. American, Nazca, Eurasian and Australian tectonic plates. Highly mobile VLBI and SLR systems are being operated at many sites in the active earthquake areas in western N. America in order to determine the crustal deformation and strain accumulation.

  1. Deep geodynamics and uranium giants of southeastern Russia

    NASA Astrophysics Data System (ADS)

    Khomich, V. G.; Boriskina, N. G.

    2014-10-01

    The southeast of Russia with hydrothermal and hydrogenic U deposits is one of the largest provinces in the world with the unique U-bearing El'kon (South Yakutia) and Urulyungui (Transbaikalia) regions with similar geological, magmatic, petrological-geochemical characteristics and resources and commonly accepted formation from mantle derivatives. The seismotomographic data of the region indicate the presence of an oceanic slab that stagnated in its transit zone (410-670 km). The Pt-bearing alkaline-ultramafic massifs of the Inagli-Konder-Feklistovskii belt and the superlarge U-bearing regions are located along the east-northeastern flank and western frontal zone of the slab, respectively. The formation of the U-bearing regions, as well as the Pt-bearing massifs with dunitic core, is caused by involvement of derivatives of the lower mantle into the upper mantle plumes that was accompanied by the melting of the lithosphere. The acceptance of the influence of the deep geodynamics of the southeast of Russia on formation of the U-bearing regions allows us to outline the areas of further detailed studies along the frontal zone of the slab.

  2. Rheology and geodynamic modelling: the next step forward

    NASA Astrophysics Data System (ADS)

    Handy, M.; Braun, J.; Brown, M.; Kukowski, N.; Paterson, M.; Schmid, S.; Stöckhert, B.; Stüwe, K.; Thompson, A.; Wosnitza, E.

    2001-05-01

    The application of continuum mechanics and microstructural analysis to geological studies over the past 30 years has spurred earth scientists to reassess fundamental tectonic processes such as subduction, collision and rifting in terms of dynamics. Armed with new analytical methods, geologists have returned to the field to look at rock structures with more mechanistic eyes. The advent of sophisticated computers, programs, and laboratory deformation equipment has facilitated the simulation of geodynamic processes that range in scale from the grain to the lithosphere. The result has been specialization, with the concomitant opening of communication gaps between geodynamicists, field geologists and rock mechanicists. Partly, these gaps reflect differences of perception and approach. In order to bridge these gaps, a workshop was organized after the DRM conference to debate how field and laboratory studies of deformed rocks can improve our understanding of lithospheric rheology, and in turn, how this understanding can be used to refine dynamic models of orogenesis. The workshop hosted participants with backgrounds in structural geology, experimental rock mechanics, metamorphic petrology and both numerical and analogue modelling. This paper summarizes the main controversies and conclusions reached during the workshop. For the sake of brevity, referencing in this summary is restricted to literature referred to during the oral presentations and to comments made by speakers themselves (names italicized).

  3. Software and Algorithms for Solving Computational Geodynamic Problems using Next Generation Hardware

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Gerya, Taras

    2014-05-01

    Numerical geodynamic modeling is typically based on solving a series of partial differential equations which describe the long-term behavior of the solid visco-elasto-brittle/plastic Earth as a highly viscous incompressible fluid with strongly variable non-Newtonian viscosity. Coding for solving geodynamic equations is catching up with the advance of modern high performance computing. In the past five years, newly developed many-core computing technology, including GPU (Graphics Processing Unit) and MIC (Many Integrated Core), has also been utilized for geodynamic modeling. However, the lack of easy-to-expand or easy-to-use geo-computing toolkits limits the high performance software catching up with the endless updating of high performance hardware. In this presentation, we will firstly show two examples of the implementation of solving geodynamic problems based on Stokes and continuity equations with strongly variable viscosity using many-core hardware, with a specific focus on the GPU. The first example is a geometric multi-grid (GMG) solver, which solves a synthetic sinking cube problem using a staggered grid finite difference discretization. The second example is a preconditioned minimal residual (MINRES) solver for incompressible Stokes flow problem with many viscous inclusions which is discretized using the finite element method. Through these two implementation examples, we will analyze the cost of coding and running advantages and disadvantages of the two kinds of coding methodologies, and in a hope to discuss a potential general coding flowchart for solving geodynamic equations using many-core devices. Finally, a software stack based many-core computing framework oriented to geodynamic modeling is proposed for the future.

  4. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia)

    NASA Astrophysics Data System (ADS)

    Taboada, Alfredo; Rivera, Luis A.; Fuenzalida, AndréS.; Cisternas, Armando; Philip, Hervé; Bijwaard, Harmen; Olaya, José; Rivera, Clara

    2000-10-01

    New regional seismological data acquired in Colombia during 1993 to 1996 and tectonic field data from the Eastern Cordillera (EC) permit a reexamination of the complex geodynamics of northwestern South America. The effect of the accretion of the Baudó-Panama oceanic arc, which began 12 Myr ago, is highlighted in connection with mountain building in the EC. The Istmina and Ibagué faults in the south and the Santa Marta-Bucaramanga fault to the northeast limit an E-SE moving continental wedge. Progressive indentation of the wedge is absorbed along reverse faults located in the foothills of the Cordilleras (northward of 5°N) and transpressive deformation in the Santander Massif. Crustal seismicity in Colombia is accurately correlated with active faults showing neotectonic morphological evidences. Intermediate seismicity allows to identify a N-NE trending subduction segment beneath the EC, which plunges toward the E-SE. This subduction is interpreted as a remnant of the paleo-Caribbean plateau (PCP) as suggested by geological and tomographic profiles. The PCP shows a low-angle subduction northward of 5.2°N and is limited southward by a major E-W transpressive shear zone. Normal oceanic subduction of the Nazca plate (NP) ends abruptly at the southern limit of the Baudó Range. Northward, the NP subducts beneath the Chocó block, overlapping the southern part of the PCP. Cenozoic shortening in the EC estimated from a balanced section is ˜120 km. Stress analysis of fault slip data in the EC (northward of 4°N), indicates an ˜E-SE orientation of ?1 in agreement with the PCP subduction direction. Northward, near Bucaramanga, two stress solutions were observed: (1) a late Andean N80°E compression and (2) an early Andean NW-SE compression.

  5. Geodynamics of rapid voluminous felsic magmatism through time

    NASA Astrophysics Data System (ADS)

    Pankhurst, M. J.; Schaefer, B. F.; Betts, P. G.

    2011-04-01

    Two end member geodynamic settings produce the observed examples of rapid voluminous felsic (rhyolitic) magmatism through time. The first is driven by mantle plume head arrival underneath a continent and has operated in an identifiable and regular manner since at least 2.45 Ga. This style produces high temperature (? 1100 °C), low aspect ratio rheoignimbrites and lavas that exhibit high SiO 2/Al 2O 3 ratios, high K 2O/Na 2O ratios, and where available data exists, high Ga/Al 2O 3 ratios (> 1.5) with high F (in thousands of parts per million) and low water content. F concentration is significant as it depolymerizes the silicate melt, influencing the magmas' physical behavior during development and emplacement. These rhyolites are erupted as part of rapidly emplaced (10-15 Myr) mafic LIPs and are formed primarily by efficient assimilation-fractional crystallization processes from a mafic mantle parent. The second is driven by lithospheric extension during continental rifting or back arc evolution and is exclusive to the Phanerozoic. SLIPs (silicic large igneous provinces) develop over periods < 40 Myr and manifest in elongate zones of magmatism that extend up to 2500 km, contrasting with the mafic LIP style. Some of the voluminous felsic magmas within SLIPs appear to have a very similar geochemistry and petrogenesis to that of the rhyolites within mafic LIPs. Other voluminous felsic magmas within SLIPs are sourced from hydrous lower crust, and contrast with those sourced from the mantle. They exhibit lower temperatures (< 900 °C), explosive ignimbrites with lower SiO 2/Al 2O 3 ratios, and lower K 2O/Na 2O ratios. Rapid voluminous felsic magmatism represents both extreme examples of continental growth since the Archean, and also dramatic periods of crustal recycling and maturation during the Phanerozoic.

  6. Geodynamic inversion to quantify the rheological parameters of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Kaus, B.

    2014-12-01

    The dynamics of the crust and lithosphere is to a large extent controlled by its effective viscosity. Typically, rheological parameters are estimated from laboratory experiments and extrapolated over ten orders of magnitude to geological conditions, which has significant uncertainties. In this study, we propose a method to constrain these parameters directly from geophysical observables. The method links lithosphere-dynamics models with geophysical observations (e.g. horizontal and vertical surface (GPS-) velocities, topography and gravity data). A Bayesian inversion strategy is employed to estimate probabilities of model parameters that affect the rheology of the lithosphere. As this requires many forward models (104 - 106), an efficient and parallel implementation is necessary, which we recently showed for 3D models with linear viscous rheologies (Baumann et al. 2014).Here, we examine how well this method is capable of resolving complex rheologies and address a few technical issues such as defining appropriate stopping criteria for models with a free surface. We use synthetic models of intra-oceanic subduction to demonstrate that the rheological parameters of the lithosphere can be recovered successfully even if rheologies are power-law viscous or plastic, provided that the temperature structure is known. A piece-wise linear lithospheric temperature parameterization as part of the inverse approach is shown to give reasonable results as well.Furthermore, we apply the method to cross-sections of the Himalaya where we consider different geological interpretations as end-member cases. For each end-member, we estimate the probabilities of their rheological structure and plasticity parameterisation and also obtain suitable temperature distributions. Our results indicate that the Indian mantle lithosphere has large effective viscosities whereas the Tibetan lower crust has small effective viscosities. This is consistent with many published modelling studies of the region. AcknowledgementsFunding was provided by ERC Grant agreement #258830ReferencesBaumann T.S., Kaus B.J.P., Popov A.A., 2014. Constraining effective rheology through parallel joint geodynamic inversion. Tectonophysics.

  7. Crisis of isotope geodynamics: Sm-Nd aspect

    NASA Astrophysics Data System (ADS)

    Pushkarev, Y. D.; Nikitina, L. P.

    2009-04-01

    Isotope geochemistry for many years contributes to improve our understanding of the Earth's interiors. There are a lot of models of the crust-mantle system evolution based on the isotope data. Indeed, identification of various types of the mantle material on the basis of isotope composition of its magmatic derivatives has opened perspective to fill geophysical models with the geochemical content. Study of the mantle material composition, changing in time and in space, with the same approach originated a new branch of geology, which was named chemical geodynamics or isotope geodynamics. Opportunities of the new approach have been unambiguously admitted more than 30 years ago after DePaolo & D.Wasserburg pioneer works, dedicated to development of Sm-Nd isotope systematics. This systematics became the most considerable component in the basement of isotope geodynamics as a whole. Since then nobody ever discussed the constrains of this siystematics. At the same time there are many contradictions in it. There are numerous mantle xenoliths depleted in main elements (Pearson et al., 2003), for which the whole variation curve normalized to chondrite is plotted below chondrite level. Paradox of the situation is that this mantle material has REE pattern which displays a continuous decrease of their concentration from La to Lu. Accordingly, Sm/Nd ratio in such material is lower than in chondrites. Through some time this material will be able to generate melts with ENd<0, which is considered to be the characteristic of the enriched mantle. At the same time, the material producing such melts in terms of the total REE concentration and the main elements concentration is high depleted. Another example, which demonstrates the independent variations of the main elements concentration, of the total REE contents, of Sm/Nd ratio and of Nd isotope composition in a source of the mantle magmatic derivatives, is connected with tholeiites of the middle ocean ridges and ocean islands. Tholeiites represent perhaps the most widespread terrestrial magmatic rocks. At the same time about 40 % of them are represented by rocks in which REE relative concentration continuously decreases from Eu to La while the total REE content exceeds the chondritic one ten times. Naturally in this case the Sm/Nd ratio in tholeiites is higher than the same ratio in chondritic. As for the concentration of the main and rare-earth elements in tholeiites these rocks are undoubtedly enriched material. They compose a considerable part of an oceanic crust and, apparently, are an essential component of lower crust as a result of underplating. However during melting of the tholeiites, in which Sm/Nd ratio is higher, than in PM, and which had enough time to change Nd isotope composition according to this ratio, the melts will be marked by values of ENd>0. In common Sm-Nd isotope systematics these isotope characteristics correspond to derivatives of the depleted material. So, in terms of the Nd isotope analysis the derivatives of the enriched material of oceanic or even of lower continental crust will be referred to derivatives of the depleted mantle. The same situation is observed in Lu-Hf isotope systematics of tholeiites. Isotope-petrochemical identification of xenoliths corresponding to the material of geochemically closed primitive mantle, has shown that MORB source is not depleted mantle as it was considered to be earlier, but a primitive mantle - PM (Pushkarev, 2006, 2007). It means that deficiency of Nd relative to Sm in PM in comparison with their concentrations in chondrites is caused not by crust formation. This peculiarity is either a primary feature of protoplanetary material, whose composition was different from chondritic one, or it reflects predominant capture of LREE by a component of segregating core, or it is a consequence of both reasons simultaneously. Identity of MORB source to primitive mantle and its discrepancy with the composition of chondrits in Sm-Nd isotope systematics was discovered earlier by J.A.Kostitsyn (2004) on the basis of the represe

  8. Geodynamic Evolution of the Southern Flank of the Corinth Rift

    NASA Astrophysics Data System (ADS)

    Jousselin, D.; Bourlange, S.; Ford, M.; Le Carlier, C.; Rohais, S.

    2005-12-01

    The Gulf of Corinth is the most seismically active area of Europe extending in a N-S direction at a rate of 12mm/yr. Many studies have focused on currently active normal faults, which bound the southern flank of the Corinth rift. However, many prominent faults, that are considered no longer active, outcrop over a broader area along with their syn-rift sedimentary sequence. The normal fault network and related synrift succession have been mapped and studied at a scale of 1:25,000. The geometry of the fault network in 3D has been reconstructed in the gOcad 3D geomodelling package. Based on these detailed field data we propose a geodynamic model for the evolution of the region in three steps over the last two million years. From 2 to 1 Ma, extension affected a broad area at least twenty kilometers wide. Alluvial conglomerates and sandstones, deposited in grabens and half grabens, were derived from erosion of the pre-existing (Hellenic) high relief to the south in the Peloponnese massif. Around 1Ma, a regional uplift led to the migration of the depocenter to the north. New faults are activated closer to the coast, in places generating forced folds that tilted synrift fluvial formations northward over a 2-3 kilometers wide area. Considerable accommodation space was generated by these faults and, with an increased sediment supply from the south, a series of giant marine Gilbert deltas developed in their hangingwalls. Finally, from 0.5 Ma to present, the activation of a series of major new faults further to the north (near the current coastline) coincided with regional uplift of the south coastal belt, and initiated the formation of a second generation of Gilbert delta, currently building out into the gulf. The faults can be divided into three families. The main one (74 data) is oriented N110, dipping 45 to 60° to the north. It includes 5 major faults spaced 3 to 5 km from south to north, with a throw larger than 1000m. A secondary set (41 data) strikes N60, dipping to the NW, it includes only one fault with a throw larger than 500m; the other secondary set (43 data) is antithetic to the two first ones as it strikes N60 to N110, dipping to the south, the largest fault it includes has a throw of about 400m. Most faults are planar and the importance of listric faults seems minor in the rift history.

  9. Geodynamics, Seismicity, Minerageny and Ecology of Arctic Regions

    NASA Astrophysics Data System (ADS)

    Kutinov, Y. G.

    The researches of Arctic region is necessary for beginning from delimitation of Arctic. Geographically concept "Arctic" uncertain enough. There is a set of approach to definition of its borders and set the variants of these borders (eternal permafrost, boreal tayga, drifting ice, temperature, etc.). Most correct the point of view of Ecology is realization of Arctic borders on borders of the Arctic geo - depression. Such approach allows to consider in a complex migration of natural substance and polluting substance from orogenes to deep-water hollows of Arctic Ocean. On other hand, it is necessary to take into account natural power flows from zone of Mid-Arctic ridge system at Arctic Ocean to continental land, that is opposition direction process. The certificates of such influence at different levels of Earth's crust already has collected enough (speed of seismic wave on Moho discontinuity; modern vertical movement of Earth's crust; distribution of temperature on depth; structure of basement, etc.). During the last 250 million years the Arctic geo-depression has been developing as an autonomous region with circumpolar zonality, and mass-and-energy transfer in its bowlers as well as shitting of lithospheric plates and expansion of the ocean are caused by rotational forces under conditions of an expanding planet. Four types of geoecological structures have been recorded on the basis of deep structures, position in the over-all structures of regions, place in geological history of its evolution, time of appearance, geodynamic regimes , seismicity, structural-morphological features, specific form of appearance and composition of magmatic and sedimentary formations, compositions of soil, specific metallogenic nature, types of human activity, etc. It is tectonic Segments of Earth, as geoecological global structures; the continental marginal perioceanic zones; the branches of continental marginal perioceanic zones; the mineragenic province. The main criteria of ecological unity of territory under consideration are established to the following: circumpolar position; rigorous climate with short vegetation period and a long winter; extremely wide prevalence of permafrost rocks; multitude of bogs and lake per square unit in basis of many rivers flowing into Arctic Ocean; proximity of the structure and formation of ecosystem; fragility of the Arctic environment; specificity of national economic structure; uniqueness of the raw material base having no equals in the word in its resources and content minerals of certain components; availability of the word's largest Arctic shelf oil-and-gas super basin; common geoecological natural belts; circumpolar belt of earthquakes.

  10. Heat flow and geodynamics in the Tyrrhenian Sea F. Mongelli,1

    E-print Network

    Heat flow and geodynamics in the Tyrrhenian Sea G. Zito,1 F. Mongelli,1 S. de Lorenzo1 and C della Terra, Universita` La Sapienza, Roma, Italy Introduction The Tyrrhenian Sea is the Neogene- to), and obtained a value of b ¼ 8. Mongelli and Zito (1994) compiled a heat flow map of the Tyrrhenian Sea

  11. Journal of Geodynamics 41 (2006) 128132 Advances in Southern Ocean tide modeling

    E-print Network

    2006-01-01

    Journal of Geodynamics 41 (2006) 128­132 Advances in Southern Ocean tide modeling Yuchan Yia,, Koji Kingdom Accepted 30 August 2005 Abstract Tides in the polar region play a major role in the dynamics of sea ice and floating glacial ice shelves. Existing ocean tide models are much less accurate in coastal

  12. Chapter 8: Understanding How the Earth Works: A Geodynamic Revolution Based on Linux Computing INTRODUCTION

    E-print Network

    Müller, Dietmar

    Chapter 8: Understanding How the Earth Works: A Geodynamic Revolution Based on Linux Computing-caps, or are there other mechanisms that may result in major fluctuations of relative sea-level? LINUX BEOWULF PARALLEL LINUX operating system that is intended for clusters of PCs linked together to operate as a single

  13. Advances in Global Positioning System Technology for Geodynamics Investigations: 1978-1992

    E-print Network

    Faulds, James E.

    Advances in Global Positioning System Technology for Geodynamics Investigations: 1978 of the Global Positioning System (GPS) have developed the technology capable of meeting the stringent class of technical development. The last decade has witnessed the rise of the Global Positioning System

  14. Journal of Geodynamics 73 (2014) 113 Contents lists available at ScienceDirect

    E-print Network

    Müller, Dietmar

    2014-01-01

    tomography and volumetrically derived subduction history. Geodynamic modeling suggests paleo, whereas the hybrid reference frame models do not, suggesting regional paleo-longitudinal corrections. Setona , H.-P. Bungeb , B.S.A. Schuberthb , G.E. Shepharda , C. Heinea a EarthByte Group, School

  15. Global paleo-lithospheric models for geodynamical analysis of plate reconstructions L. Quevedo a,

    E-print Network

    Müller, Dietmar

    Global paleo-lithospheric models for geodynamical analysis of plate reconstructions L. Quevedo a, , G. Morra a,b , R.D. Müller a a EarthByte Group, School of Geosciences, University of Sydney, New South Wales, Australia b School of Earth and Environmental Sciences, Seoul National University, Seoul

  16. Geodynamic setting of Izu-Bonin-Mariana boninites ANNE DESCHAMPS 1 & SERGE LALLEMAND 2

    E-print Network

    Demouchy, Sylvie

    at low angle between a spreading centre and the associated volcanic arc; (2) intersection at a high angle of an active spreading centre and a transform fault at the termination of an active volcanic arc; and (3. A geodynamic model of the Philippine Sea Plate shows that boninites in the Bonin Islands are related

  17. Role of the Earth's rotation in global geodynamics

    NASA Astrophysics Data System (ADS)

    Pavlenkova, N.

    2009-04-01

    Role of the Earth's rotation in the global geodynamics. Pavlenkova N.I., Institute of Physics of the Earth of Russian Academy of Science, B.Grusinskaja 10, 123995, Moscow, ninapav@ifz.ru Geophysical studies show several regularities in Earth's structures which are not explained by the traditional global tectonics conceptions. (1) The surface of the Earth, as well as a surface of other planets, precisely shares on two hemispheres with a different relief and structure of an earth's crust: on the Pacific (oceanic) hemisphere with the lowered relief and a thin oceanic crust, and a continental hemisphere with prevalence of the raised relief and a thick continental crust. (2) There is a regular system of global lineaments and ring structures which are stretched on thousand kilometers, covering continents and oceans. As one of examples it is possible to result system of rift zones (mid-oceanic ridges), forming a ring around of the Antarctica with rift branches from it through everyone of 90 degrees. (3) Asymmetry with a relief of a day time surface when to each raised structure there corresponds the lowered surface on the opposite side of globe is observed. (4) The continental and oceanic mantles have different compositions and deep roots (>300 km) beneath the continents are prominent as regions with relatively high seismic velocities. There are regular connections between geological structures and deep mantle roots. (5) The classical lithosphere-asthenosphere model is not confirmed by seismic data. The asthenosphere can not be traced as a continuous layer, there are disconnected lenses (asthenolenses) even beneath mid-oceanic ridges. Significant horizontal movements of the lithosphere, as proposed by the global plate tectonics, would destroy all these regularities and crust-mantle interaction. To make an agreement between all observed data, the fluids-rotation hypothesis is proposed. The hypothesis supposes two main energy sources of the global tectonics: the degasification of the Earth (the fluids advection) and changes in the Earth rotation. At formation of the core there was the Earth's expansion and was formed system of global lineaments and the Pacific ring. Bipolar convection in the core has created a magnetic field and the increased advection of deep fluids in the southern hemisphere. The last promoted formation of thick continental lithosphere in this hemisphere in Archean-Proterozoi. This thick lithosphere has led to asymmetry of the planet and to relative displacement of the mass centers of the Earth's spheres. It produced high pressure between the spheres (Barkin, 2002) and could have initiated their relative displacements. As a uniform asthenosphere does not exist and the continents have deep roots such displacements were most probable on a surface of a liquid outer core. The marked mass centre dislocation has caused the turning of the mantle around the core with movement of the continental hemisphere from South Pole to the equator. It corresponds to the data on movement of paleomagnetic and paleoclimate poles that took place in Paleozoic era. The rotation of the mantle around the core passed non-uniformly: the tidal forces connected to periodic change of Earth's rotation axis position in system the Earth-Lund-Sun (Avsyuk, 1996) were imposed on the basic moving forces restoring the mass center balance. The periodic displacements of the mantle created conditions for alternation of tectonic activity epochs. Rotation of the mantle around the core created a new nonequilibrium system. Therefore in Mesozoic era a new stage begins: an expansion of the southern hemisphere which radius is now bigger, than the northern one. Such expansion created the regular system of the mid-oceanic ridges forming a ring around Antarctica with the symmetric Mid-Atlantic, Indian and Pacific ridges. Supposedly at the last stage the formation of the continent on South Pole (Antarctica) and destruction of a continental crust on the northern hemisphere (formation of the Arctic ocean) took place to mount on the mass center balance.

  18. Miocene to Recent Magmatism and Geodynamics of Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, M.; Sharkov, E. V.; Lebedev, V. A.; Chugaev, A. V.; Oyan, V.; Genc, S. C.; Unal, E.; Aysal, N.

    2012-04-01

    Eastern Turkey has been an active continental collision zone for the last 15 My between the African and Eurasian continents. The collision started at around 15 Ma after the total consumption of oceanic lithosphere of the southern branch of the Neotethys Ocean beneath E Anatolia and is still going on, as Africa still converges to E Anatolia with a velocity of ~2.5 cm/y. The overriding Anatolian plate, resided below the sea level till the collision, was subjected to a major block uplift event around 10 Ma, emerging as a widespread plateau ~2 km above the sea level, which has been roughened by later erosion and volcanic activities. The aforementioned plateau is considered as part of a regional dome structure with ~1000 km diameter extending from E Anatolia up to Azerbaijan. Immediately after the collision, a widespread volcanism emerged on the Eastern Anatolian Plateau, whose products covered almost over half of the region. Characteristically, all these products contain a distinct subduction component. The volcanism in the collision zone continued to the historical times and is considered to be still active. The region includes some of the largest volcanic centers (e.g. Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) around the circum-Mediterranean region. The collision-related volcanic province is not only confined into Anatolia but also continues into the neighboring countries through Georgia, Armenia, Iran and up to Russia, spanning ~1000 km. In contrast, the underthrusting Arabian platform was subjected to both crustal-scale east-west folding close to the thrust front and extensional deformations perpendicular to the suture zone. Along these extensional fractures, within-plate lavas with no subduction component erupted. This intraplate volcanism focused on the Karacada? volcanic complex, covering an area ~10,000 km2. Early Stage volcanism of Karacada? was dominated by magmas derived from a shallower (litospheric) mantle source, while magmas of the later stages were derived from deeper (asthenospheric) sources. Based on the results of seismic tomography, tectonics and geochemical/isotopic studies of the volcanic successions, it has now been well established that both uplift and widespread volcanism across the region have a common reason: a major "slab-steepening and breakoff event beneath a large accretionary complex". After the collision, being unsupported by the subduction, the slab started to be steepened beneath the region. This possibly resulted in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex, followed by a widespread decompressional melting, generating voluminous magmas with an inherited subduction signature. The subducted slab broke off beneath the Bitlis-Pötürge massif ~10 Ma, causing the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. This resulted in mixing between the subduction-modified E Anatolian and the Arabian asthenospheres. On the basis of the results from our geochemical/ geochronologic/isotopic data and petrologic models, we argue that the temporal and spatial changes in the chemistry of volcanics across the region are the artifacts of these geodynamic events that controlled the movement and interaction of mantle domains with contrasting geochemical, isotopic and mineralogical identities. Compositions of some of the primitive magmas were further modified via interactions with the lithospheric mantle and/or crustal material coupled with fractionation en route to the surface.

  19. Cenozoic geodynamic evolution of the western Mediterranean domain: A view from the Neogene peri-Tyrrhenian basins

    SciTech Connect

    Roure, F.; Montadert, L.; Mueller, C.

    1988-08-01

    Biostratigraphic and structural studies of synorogenic Neogene deposits in the southern Apennines, Calabria, and Cicily are compared to similar data from Sardinia and the Tyrrhenian Sea to trace the geodynamic evolution of the western Mediterranean domain.

  20. On the Utility of High-Resolution InSAR Data for Geodynamic Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Amelung, F.

    2014-12-01

    High-spatial and high-temporal resolution InSAR data acquired by the TerraSAR-X and Cosmo-Skymed satellites is becoming increasingly available for geodynamic applications, including volcanic crises, the arctic ice sheets and land subsidence problems. The advantage of these second-generation SAR systems is that processes can be resolved that were not visible by the low-resolution first-generation systems, such as pre-eruptive deformation of a volcanic dome and uplift or subsidence of the bedrock in response to a glacial surge. The drawback is the limited temporal coherence because these satellites operate at X-Band, which makes them suitable only for particular environments. In this poster we present a variety of applications. Our purpose is to better define the potential of these systems for geodynamic applications.

  1. Geodynamic model for the development of the Cameroon Hot Line (Equatorial Africa)

    NASA Astrophysics Data System (ADS)

    Nkono, Collin; Féménias, Olivier; Demaiffe, Daniel

    2014-12-01

    This work proposes a new geodynamic model for the development of the Cameroon Hot Line (CHL) in Equatorial Africa. It is based on the analysis of the distribution of lineaments and of magmatic bodies (Paleogene anorogenic ring-complexes and Neogene volcanic centres). Two successive geodynamic models are proposed to explain the distribution of the Cainozoic to recent magmatic activity. They are both sinistral. The first one, during the Paleogene, developed around the N ? 70°E direction while the second one (Neogene) is oriented around the N ? 130°E direction. The two periods are separated by a short transition. The emplacement follows the local reactivation of pre-existing (Pan-African) faults in relation to the collision between the Afro-Arabian and Eurasian plates, during the Alpine history.

  2. Is the geodynamic process in preparation of strong earthquakes reflected in the geomagnetic field?

    NASA Astrophysics Data System (ADS)

    Finkelstein, M.; Price, C.; Eppelbaum, L.

    2012-10-01

    A methodology of detecting geomagnetic variations caused by dangerous geodynamic processes at depth has been developed. This methodology was tested using data from three Japanese observatories within the network of the International project ‘Intermagnet’ (www.intermagnet.org 2011). Anomalous behaviour of the geomagnetic field was detected during the period of the great Tohoku-oki earthquake on 11 March 2011. Theoretical evaluation of the possible mechanisms of these anomalous geomagnetic variations (AGV) has been examined. The possibility of the emergence of an AGV in the vicinity of earthquake epicentres in Japan and their rapid monitoring (online or with a delay of one day) is demonstrated. The main tool of the developed methodology is delineation of the geodynamic magnetic effect by the use of a differential function.

  3. Rapid Plate Motion Variations Through Geological Time: Observations Serving Geodynamic Interpretation

    NASA Astrophysics Data System (ADS)

    Iaffaldano, Giampiero; Bunge, Hans-Peter

    2015-05-01

    Past and current plate motions are increasingly well mapped from high-temporal-resolution paleomagnetic and geodetic studies, revealing rapid variations that occur on short timescales relative to the time it takes for the large-scale structure associated with mantle buoyancy to evolve. The rates of change of plate velocities hold key information on the geodynamic, tectonic, and Earth's surface processes that may have caused them. Rapid plate motion changes thus provide us with a unique opportunity to quantify the forcing associated with these processes. Important mechanisms capable of inducing such rapid changes include evolving plate boundary forces, for example, those associated with slab sinking or orogeny along convergent margins, as well as temporal variations in pressure-driven flow within the asthenosphere that link plate velocity variations explicitly to changes in dynamic topography. Here, we focus on (a) findings from recent kinematic observations and (b) the quantitative framework that allows their geodynamic interpretation.

  4. Geodynamics of Central Europe Based On Observations of The GPS Euref Stations

    NASA Astrophysics Data System (ADS)

    Schenk, V.

    When azimuths of the horizontal movement vectors processed from GPS data mon- itored during several campaigns on regional networks situated in the Central Europe (the East Sudeten, the West Alps, the Trans-Alpen area) were compared, they dis- played remarkable changed in their values evaluated from two sequential campaigns with respect to next ones. As adopted, the GPS data processed of one campaign are ordinarily linked to a close EUREF station (or stations) to be joined to an Interna- tional Terrestrial Reference Frame (ITRF). Even though the interconnection to the ITRF, the vector azimuths for one site evaluated from different campaigns can still show changes. To eliminate this effect, available movements of the Central European EUREF stations were analysed with respect to geological structural units in that rela- tively coincident character of geodynamic movements are expected. Several "geody- namic" units were identified and delineated for an area of the Central Europe. Then, directions of the horizontal vector azimuths of network sites were incorporated into the unit scheme above mentioned. The paper will present data analysis of the EU- REF stations, the geodynamic unit scheme for the Central Europe and comparisons of geodynamic horizontal movements of the EUREF stations and the network sites. Fur- ther, an assessment of interrelated movements among the individual structural units was estimated. The geodynamic pattern of Central European unit movements brings more transparent understanding of mutual relations between EUREF stations and the regional GPS networks observations. The data analyse of GPS observations were sup- ported by the program of Ministry of Education, Youth and Sport 'Research Centre', No. LN00A005, and by the project of the Grant Agency of the Czech Republic, No. 205/01/0480.

  5. Seismological and Geodynamic Monitoring Network in the "javakheti" Test Zone in the Southern Caucasus

    NASA Astrophysics Data System (ADS)

    Arakelyan, A.; Babayan, H.; Karakhanyan, A.; Durgaryan, R.; Basilaia, G.; Sokhadze, G.; Bidzinashvili, G.

    2012-12-01

    The Javakheti Highland located in the border region between Armenia and Georgia (sharing a border with Turkey) is an area in the Southern Caucasus of young Holocene-Quaternary volcanism and a region with convergence of a number of active faults. Issues related to the geometry, kinematics and slip-rate of these faults and assessment of their seismic hazard remain unclear in part due to the fragmentary nature of the studies carried out soley within the borders of each of the countries as opposed to region wide. In the frame of the ISTC A-1418 Project "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" the Javakheti Highland was selected as a trans-border test-zone. This designation allowed for the expansion and upgrading of the seismological and geodynamic monitoring networks under the auspices of several international projects (ISTC CSP-053 Project "Development of Communication System for seismic hazard situations in the Southern Caucasus and Central Asia", NATO SfP- 983284 Project "Caucasus Seismic Emergency Response") as well as through joint research programs with the National Taiwan University and Institute of Earth Sciences (IES, Taiwan), Universite Montpellier II (France) and Ecole et Observatoire des Sciences de la Terre-Université de Strasbourg (France). Studies of geodynamic processes, and seismicity of the region and their interaction have been carried out utilizing the newly established seismological and geodynamic monitoring networks and have served as a basis for the study of the geologic and tectonic structure . Upgrading and expansion of seismological and geodynamic networks required urgent solutions to the following tasks: Introduction of efficient online systems for information acquisition, accumulation and transmission (including sattelite systems) from permanent and temporary installed stations, Adoption of international standards for organization and management of databases in GIS format, Utilization of data archiving system working in intrnationally adopted formats and data exchange systems for communication with other international and national centers.

  6. Geodynamic evolution of the Earth over 600 Ma: implications for palaeo-climatic indicators

    NASA Astrophysics Data System (ADS)

    Hochard, C.; Vérard, C.

    2011-12-01

    During the last decades numerous local reconstructions were developed by the Geodynamic School of Lausanne. They participated to the elaboration of a 600Ma to present global plate tectonics model* based on field geology and controlled by geometric and kinematic constraints. Plate tectonics principles and lithospheric behaviour were applied to the model that drastically differs from the continental drift approach (i.e. based on palaeomagnetic data). Step after step lithospheric plates were reconstructed by adding or removing oceanic material (symbolized by synthetic isochrones) to major continents. The geodynamic evolution obtained is thus physically coherent and covers the whole surface of the Earth for the Phanerozoic. In the present contribution, we detail the basic tectonic features making up the model and the way they can be tested against the main palaeoclimatic indicators. Using synthetic isochrones, we developed a series of ocean lithosphere age maps. Based on plate rotation poles we computed velocity maps showing accretion and convergence rates. Converting ages into lithosphere thicknesses we quantified the volume of subducting material. Such tectonic parameters can be compared with the evolution of chemical proxies (e.g. CO2, ?18O, 87Sr/86Sr, Mg/Ca, SO4) offering a different way to decipher long-term climate changes. * This work was carried out as part of work done within the research program of the University of Lausanne on the Stampfli geodynamic model, model which is now owned by Neftex Petroleum Consultants Ltd. and is now attached to the "Neftex Earth Model ".

  7. Mantle Flow Around the Iceland Plume: Preliminary Results From Geodynamic and Seismic Anisotropy Models

    NASA Astrophysics Data System (ADS)

    Georgen, J.; Shen, Y.

    2002-12-01

    The nature of mantle flow around an oceanic hotspot is a long-standing question in ridge-hotspot interaction studies. Plume flow channeled along the ridge axis in the shallow mantle is one end-member possibility; the other is broad, radial dispersion away from the plume conduit at greater mantle depths, without any preferential direction imparted by the strike of the mid-ocean ridge. Insight into plume dispersion patterns can come from observations of mantle anisotropy, which reveal patterns in mantle fabric and the history of mantle deformation. Measurements of shear-wave splitting [Bjarnason et al., 2002; Li and Detrick, 2002] show that fast polarization directions are generally NNW-SSE in eastern Iceland, and N-S in western Iceland. The fast directions of azimuthal anisotropy of Rayleigh waves sensitive to the shallowest upper mantle and crust are parallel to the spreading center [Li and Detrick, 2002]. While the contribution to shear-wave splitting and azimuthal anisotropy of non-plume factors (i.e., plate motion and N-S asthenospheric flow) vs plume-related factors (i.e., radial and along-axis flow) have been speculated on, geodynamic models have yet to incorporate these new observational constraints. This study uses a combination of geodynamical and seismic modeling to predict the contribution of non-plume factors to the observed mantle anisotropy beneath Iceland. We compute a series of simple, finite element flow models, using plate motions or inferred asthenospheric flow as boundary conditions. As a first approximation, we use finite strain to estimate the spatial distribution of lattice preferred orientation (LPO) of olivine and resultant shear-wave splitting. A comparison of predictions to observations quantifies the relative importance of the contribution of various factors and isolates the classes of geodynamic models that satisfy the observed seismic anisotropy beneath Iceland. References Bjarnason, I. Th., P. G. Silver, G. Rumpker, S. Solomon, J. Geophys. Res., in press. Li, A., R. S. Detrick, submitted to Science.

  8. A numerical approach to test lithospheric cross-sections for geodynamic consistency

    NASA Astrophysics Data System (ADS)

    Thielmann, M.; Kaus, B. J. P.; Wenzel, F.

    2009-04-01

    Cross sections though active mountainbelts are usually constrained by a range of geophysical and geological data, but the resulting interpretations are not necessarily geodynamically consistent. To better understand the thermomechanical behaviour of such collision zones it is of major importance to combine knowledge about the geometrical, the density and the inferred viscosity structure of those zones. Constraints on the geometry can be obtained by reflection seismics, refraction seismics or seismic tomography. Constraints on the density come from gravimetrical methods. Effective rheological parameters of the lithosphere, however, are much less known. Laboratory experiments on creep of rocks, extrapolated to natural conditions, yield several orders of magnitude variation in the effective viscosity. Better constraining the effective viscosity of the lithosphere is however crucial, since variations in these parameters might result in drastically different lithospheric dynamics. For this reason, we here develop and test an approach that employs 2D thermomechanical viscoplastic geodynamics codes. Rather than studying the long-term deformation of the lithosphere, as is typically done with such codes, we here focus on the present-day structure of the lithosphere. The main assumptions are: 1) the present day geometry of the lithosphere (in particular surface topography and Moho depth) is reasonably well known. 2) Far-field plate velocities are known (from plate models or GPS measurements). The lithosphere is then divided into several layers. By varying the effective viscosity and density of each of the layers, we can study the effects of changing these parameters on gravity, surface velocity, stress-distribution, and mantle flow. A comparison of modelled data with observations would thus -in principle- give geodynamic constraints on the rheology of the lithosphere. Before applying it to real data, however, it is necessary to study the theoretical power of the methodology. For this reason we here apply the method to snapshots obtained from synthetic (million-year timescale) forward runs.

  9. Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Talsma, A. S.; Müller, R. D.; Seton, M.; Bunge, H.-P.; Schuberth, B. S. A.; Shephard, G. E.; Heine, C.

    2014-01-01

    We use geodynamic models with imposed plate velocities to test the forward-modeled history of subduction based on a particular plate motion model against alternative seismic tomography models. We utilize three alternative published reference frames: a hybrid moving hotspot-palaeomagnetic, a hybrid moving hotspot-true polar wander corrected-palaeomagnetic, and a Subduction Reference Frame, a plate model including longitudinal shifts of subduction zones by matching subduction volumes imaged by P-wave tomography, to assess which model best predicts present day mantle structure compared with seismic tomography and volumetrically derived subduction history. Geodynamic modeling suggests paleo-longitudinal corrections applied to the Subduction Reference Frame result in lower mantle slab material beneath North America and East Asia accumulating up to 10-15° westward of that imaged by tomography, whereas the hybrid models develop material offset by 2-9°. However, the Subduction Reference Frame geodynamic model produces slab material beneath the Tethyan Domain coinciding with slab volumes imaged by tomography, whereas the hybrid reference frame models do not, suggesting regional paleo-longitudinal corrections are required to constrain slab locations. We use our models to test inferred slab sinking rates in the mantle focusing on well-constrained regions. We derive a globally averaged slab-sinking rate of 13 ± 3 mm/yr by combining the ages of onset and cessation of subduction from geological data and kinematic reconstructions with images of subducted slabs in the mantle. Our global average slab-sinking rate overlaps with the 15-20 mm/yr rate implied by mantle convection models using a lower mantle viscosity 100 times higher than the upper mantle.

  10. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.; Rawlinson, N.

    2010-03-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide. Convergent plate margins are arguably the most complicated and dynamic plate boundaries on Earth and have been the subject of many investigations and discussions since the advent of plate tectonic theory. This paper provides a historical background and a review of the development of geological and geodynamic theories on convergent plate margins. Furthermore, it discusses some of the recent advances that have been made in the fields of structural geology, geophysics and geodynamics, which are fundamental to our understanding of this phenomenon. These include: (1) the finding that plates and plate boundaries move at comparable velocities across the globe; (2) the emerging consensus that subducted slabs are between two to three orders of magnitude stronger than the ambient upper mantle; (3) the importance of lateral slab edges, slab tearing and toroidal mantle flow patterns for the evolution of subduction zones; and (4) clear evidence from mantle tomography that slabs can penetrate into the lower mantle. Still, many first-order problems regarding the geodynamic processes that operate at convergent margins remain to be solved. These include subduction zone initiation and the time of inception of plate tectonics, and with it convergent plate margins, on Earth. Fundamental problems in orogenesis include the mechanism that initiated Andean mountain building at the South American subduction zone, the potential episodicity of mountain building with multiple cycles of shortening and extension, and the principal driving force behind the construction of massive mountain belts such as the Himalayas-Tibet and the Andes. Fundamental questions in subduction dynamics regard the partitioning of subduction into a trench and plate component, and the distribution of energy dissipation in the system. In seismic imaging, challenges include improving resolution at mid to lower mantle depth in order to properly understand the fate of slabs, and better constraining the 3-D flow-related anisotropic structure in the surrounding mantle. Future insights into such fundamental problems and into the regional and global dynamics of convergent plate margins will likely be obtained from integrating spatio-temporal data, structural geological data, geophysical data and plate kinematic data into plate tectonic reconstructions and three-dimensional geodynamic models of progressive deformation.

  11. Geodynamics laser ranging system: Performance simulations and development of the EOS facility. [Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1988-01-01

    The NASA Geodynamics Laser Ranging System is a spaceborne multicolor laser ranger to be used for studying regional and local scale crustal movements and will provide a capability for height profiling of ice-sheets, land terrains, cloud-tops, and other surfaces. Ranging measurements to retroreflector targets will produce intersite distances and relative heights with subcentimeter accuracy over baselines up to several hundred kilometers long. Arrays containing up to a few hundred targets can be surveyed nearly simultaneously. Altimetric profiling can be performed with spatial resolution of 80m and vertical accuracy of 10cm with the latter depending on the roughness and slope of the terrain.

  12. Chapter 4: Regional magnetic domains of the Circum-Arctic: A framework for geodynamic interpretation

    USGS Publications Warehouse

    Saltus, R.W.; Miller, E.L.; Gaina, C.; Brown, P.J.

    2011-01-01

    We identify and discuss 57 magnetic anomaly pattern domains spanning the Circum-Arctic. The domains are based on analysis of a new Circum-Arctic data compilation. The magnetic anomaly patterns can be broadly related to general geodynamic classification of the crust into stable, deformed (magnetic and nonmagnetic), deep magnetic high, oceanic and large igneous province domains. We compare the magnetic domains with topography/bathymetry, regional geology, regional free air gravity anomalies and estimates of the relative magnetic 'thickness' of the crust. Most of the domains and their geodynamic classification assignments are consistent with their topographic/bathymetric and geological expression. A few of the domains are potentially controversial. For example, the extent of the Iceland Faroe large igneous province as identified by magnetic anomalies may disagree with other definitions for this feature. Also the lack of definitive magnetic expression of oceanic crust in Baffin Bay, the Norwegian-Greenland Sea and the Amerasian Basin is at odds with some previous interpretations. The magnetic domains and their boundaries provide clues for tectonic models and boundaries within this poorly understood portion of the globe. ?? 2011 The Geological Society of London.

  13. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal mechanism exclusively in the Vrancea seismic zone support the assumption. Recent studies on the Vrancea echoes of 2013 Galati-Izvoarele quake swarm have also confirmed our hypotheses. Based on numerical modelling of the geodynamic process, an estimate of the stretching rate has been obtained, fully consistent with results inferred from studies on the seismic energy released by the Vrancea intermediate earthquakes. Concluding remarks Looking further, the sinking of the Vrancea lithosphere into the upper mantle (and consequent crust stretching, appropriately reflected in the non-tidal gravity change) appears as an ongoing geodynamic process, tightly connected to the intermediate-depth seismicity generated within the lithosphere penetrating the upper mantle by thermo-baric accommodation phenomena. Time series provided by repeated gravity observations conducted on the above-mentioned infrastructure for about ten years have clearly revealed: (i) the persistence of the gravity lowering, and (ii) some apparent connection between the rate of the gravity change, and the amount of seismic energy released by intermediate-depth earthquakes. Acknowledgements. The research has been partly performed through CYBERDYNE project, funded through the EU structural programme (contract #184/2010).

  14. Investigation some algorithms for solving problems of local geodynamics with using base GlonassGps stations. (Russian Title: ???????????? ????????? ?????????? ??????? ????? ????????? ??????????? ? ?????????????? ??????? ???????/Gps ???????)

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E. V.; Bordovitsyna, T. V.; Chernitsov, A. M.

    2011-07-01

    In this paper mathematical modeling results of some algorithms for solving problems of local geodynamics by using base GLONASSGPS stations are presented. The statistical algorithm for trend discovering in coordinates of the point and ways of reduction of influencing random errors on results of coordinate determination with using third differences of measured distances are discussed.

  15. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    NASA Astrophysics Data System (ADS)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations are located on the three major plates that interact within the Wide Plate Margin Deformation Zone including existing permanent installations on IGS Galapagos and Malpelo Islands on the Nazca Plate, and San Andres Island on the Caribbean plate. The velocity vectors confirm the oblique subduction of the Nazca Plate and Carnegie aseismic ridge collision processes at the Colombia-Ecuador trench which are assumed to be the mechanism for the transpressional deformation and the "escape" of the North Andes Block (NAB). The northernmost vectors in Colombia are indicative of the ongoing collision of the Panama Arc with northwestern Colombia. Planned for the year 2013 is the installation of 10 additional GNSS continuously operating stations, and construction of 20 GPS campaign sites.

  16. New age constraints for the geodynamic evolution of the Sistan Suture Zone, eastern Iran

    NASA Astrophysics Data System (ADS)

    Bröcker, Michael; Fotoohi Rad, Gholamreza; Burgess, Ray; Theunissen, Stephanie; Paderin, Ilya; Rodionov, Nikolay; Salimi, Zohre

    2013-06-01

    The Sistan Suture Zone (SSZ) in eastern Iran extends as a N-S trending belt over more than 700 km along the border area between Iran and Afghanistan. The SSZ formed as a result of eastward-directed subduction of a Neotethyan ocean basin beneath the Afghan block and includes a tectonic mélange consisting of disrupted meta-ophiolitic rocks within a low-grade matrix of ultramafic, mafic and pelitic schists. Some mélange blocks were affected by eclogite-, blueschist- and/or epidote amphibolite-facies P-T conditions. Understanding of the petrological and geochronological record of these rocks plays a key role in unravelling the geodynamic evolution of the SSZ. The main aim of the present study was to assess the geological significance of previously published 40Ar/39Ar ages (c. 116-139 Ma) which have not provided robust age constraints for geodynamic reconstructions on a regional scale. For this purpose, samples were collected within a NNW-SSE trending belt spanning a distance of c. 120 km that exposes the major occurrences of high-pressure/low temperature rocks and epidote amphibolites. Multi-point Rbsbnd Sr mineral isochrons indicate a regional consistent pattern with ages ranging between c. 83 and c. 87 Ma for eight samples representing different metamorphic grade and widely separated locations (weighted mean = 85.7 ± 0.8 Ma). Additional 40Ar/39Ar dating for five of these samples yielded in most cases ages that are identical to the Rbsbnd Sr results within analytical uncertainty. For one sample the 40Ar/39Ar age of 81.3 ± 1.3 Ma is about 3 myr younger than the corresponding Rbsbnd Sr age. A still younger Rbsbnd Sr age of 78.9 ± 0.5 Ma was determined for a retrograde epidote-biotite assemblage in an overprinted domain of an eclogite. Ion probe Usbnd Pb zircon ages for two eclogites and two meta-acidic rocks from the mélange yielded weighted mean 206Pb/238U ages of 87.3 ± 1.4 Ma, 86.1 ± 1.5 Ma, 88.7 ± 1.4 Ma and 87.2 ± 1.2 Ma, respectively. The results of this study do not support previous interpretations suggesting > 125 Ma high-pressure/low-temperature metamorphism and amphibolite-facies overprinting, but instead document the importance of Late Cretaceous subduction zone processes for the geodynamic evolution of the SSZ.

  17. Fluidity: a fully-unstructured adaptive mesh computational framework for geodynamics

    NASA Astrophysics Data System (ADS)

    Kramer, S. C.; Davies, D.; Wilson, C. R.

    2010-12-01

    Fluidity is a finite element, finite volume fluid dynamics model developed by the Applied Modelling and Computation Group at Imperial College London. Several features of the model make it attractive for use in geodynamics. A core finite element library enables the rapid implementation and investigation of new numerical schemes. For example, the function spaces used for each variable can be changed allowing properties of the discretisation, such as stability, conservation and balance, to be easily varied and investigated. Furthermore, unstructured, simplex meshes allow the underlying resolution to vary rapidly across the computational domain. Combined with dynamic mesh adaptivity, where the mesh is periodically optimised to the current conditions, this allows significant savings in computational cost over traditional chessboard-like structured mesh simulations [1]. In this study we extend Fluidity (using the Portable, Extensible Toolkit for Scientific Computation [PETSc, 2]) to Stokes flow problems relevant to geodynamics. However, due to the assumptions inherent in all models, it is necessary to properly verify and validate the code before applying it to any large-scale problems. In recent years this has been made easier by the publication of a series of ‘community benchmarks’ for geodynamic modelling. We discuss the use of several of these to help validate Fluidity [e.g. 3, 4]. The experimental results of Vatteville et al. [5] are then used to validate Fluidity against laboratory measurements. This test case is also used to highlight the computational advantages of using adaptive, unstructured meshes - significantly reducing the number of nodes and total CPU time required to match a fixed mesh simulation. References: 1. C. C. Pain et al. Comput. Meth. Appl. M, 190:3771-3796, 2001. doi:10.1016/S0045-7825(00)00294-2. 2. B. Satish et al. http://www.mcs.anl.gov/petsc/petsc-2/, 2001. 3. Blankenbach et al. Geophys. J. Int., 98:23-28, 1989. 4. Busse et al. Geophys. Astrophys. Fluid 75:39-59, 1994. 5. J. Vatteville et al. Geochem. Geophy. Geosy., 10, 2009. doi:200910.1029/2009GC002739. Numerical simulation of a thermal plume showing contours of temperature and the dynamically optimised unstructured mesh.

  18. Geodynamic Mechanisms of plateau uplift and strain distribution in Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Caner Memi?, Ömer; Hakan Gö?ü?, O?uz; Pysklywec, Russell N.; Karabulut, Hayrullah; Keskin, Mehmet

    2015-04-01

    The Eastern Anatolia region (with an average ~2 km elevation) is dominated by N-S shortening and it represents one of the best examples for active/young continental collision between the Arabian and Eurasian plates. Studies suggest that the entire plateau began to rise since the plate collision (about 13 Ma) along the Bitlis-Zagros suture zone and this collision follows the accretion of the units of the Neotethyan ocean where oceanic lithosphere fragments (e.g., ophiolites) underlies the younger units across most of the plateau at present. Seismic imaging of the deep lithosphere in the region suggests that most of the plateau is underlain by 65 km thick total lithosphere and 45 km thick crust. Corroborating the seismological work, petrological interpretations of younger volcanic rocks from the central part of the plateau (e.g., Erzurum-Kars plateau) suggest an asthenospheric source, therefore the mantle lithosphere most likely have been removed form beneath the plateau in the last 10-13 Myr. Proposed geodynamic models that accounts for the observed tectonic anomalies and inferred lithospheric removal in the east Anatolia include: (1) slab steepening/ and break off under the subduction-accretion complex in the south; and (2) mantle lithosphere delamination in the north. A series of numerical geodynamic experiments are carried out to explain the near-surface characteristics (crustal thickness, surface strain rate and heat flow) of the each hypothesis, including combined styles of break-off and delamination. We investigate the role of various controlling parameters in these experiments (e.g., plate convergence velocity, mantle lithosphere density, and crustal density) and relate the model predictions against observed geological, geophysical, and petrological anomalies for Eastern Anatolia. Model results are also considered in the context of the last 30 Myrs geodynamic evolution of the Tibetan plateau (with an elevation average of 5 km), where both Eastern Anatolia and Tibet share several common geologic histories. Our preliminary results suggest the large-scale mantle lithosphere removal under the plateaus can drive significant thermal and topographic perturpations which may be due to the delamination type rather than the localized break-off tectonics.

  19. Gravitational Influence of the Sun and Moon on the Earth and Possible Geodynamic Consequences

    NASA Astrophysics Data System (ADS)

    Maslov, L. A.; Avsyuk, Y. N.

    2009-12-01

    The goal of current research is to reconsider the role of tidal stresses and deformations in a planet’s life and to show the mechanisms that transform tidal deformations into geodynamic and other processes. 1. Tidal stress and strain oscillations have been acting on the Earth, uniformly and monotonously, for hundreds of millions of years. As such, these small tidal effects accumulate during geological time and can result in the following tectonic and geodynamic phenomenae: dilatation of the Earth’s material and separation of its components: solid, liquid, and gas; transformation of low-amplitude tidal deformations into lateral differential motion of the Earth’s layers, internal heating, and magnetic field generation. The “complex loading of a granular substance” (Revuzhenko, 2003) was considered as a possible mechanism that transforms radial tidal deformations into lateral displacements of the Earth’s layers. The governing equations were written. The Figure below shows the trajectory of a particle in the liquid core. A and B represent the initial and final (when calculation was terminated) positions of a particle; the Coriolis force was taken into account. It was shown that similar trajectories can be obtained also by solving the Navier-Stokes equations for a low-viscosity liquid and tidal force (see section 2) acting on a liquid. 2. The barycenter of the Earth and Moon binary planet system is 4670 km from the center of the Earth. The center of the Earth is orbiting around the Sun on a non-Keplerian, perturbed orbit. This requires a more careful consideration of inertial and tidal forces acting on the Earth and its structures. The formula for a tidal force is Fn=?i=1,nf Mi/?i3 ?i - a0, a0 = aK + ap, aK is Keplerian, and ap is the non-Keplerian (of the same order as a Keplerian one) acceleration of the center of mass of the Earth. The formula for the tidal force acting on the Earth from the Sun and the Moon was first obtained and studied by Yu. Avsyuk (1996, 2001, 2007). The shortest period of the tidal force according to this formula is 13.6 (not 27.5!) days. This formula was used for interpreting different geodynamic phenomenae, from Moon seismisity through the Chandler wobble. This work was supported by RFBR grant No 09-05-00426-a

  20. Arctic geodynamics: Continental shelf and deep ocean geophysics. ERS-1 satellite altimetry: A first look

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.; Marquart, Gabriele; Scherneck, Hans-Georg

    1993-01-01

    An overall review of the Arctic Geodynamics project is presented. A composite gravity field model of the region based upon altimetry data from ERS-1, Geosat, and Seasat is made. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 deg. Both areas contain large continental shelf areas, passive margins, as well as recently formed deep ocean areas. Until ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents sea, portions of the Arctic ocean, and the Norwegian sea north of Iceland are shown. The gravity anomalies around Svalbard (Spitsbergen) and Bear island are particularly large, indicating large isostatic anomalies which remain from the recent breakup of Greenland from Scandinavian. Recently released gravity data from the Armed Forces Topographic Service of Russia cover a portion of the Barents and Kara seas. A comparison of this data with the ERS-1 produced gravity field is shown.

  1. Constraining the rheology of the lithosphere through joint geodynamic and gravity inversion

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Kaus, B.; Popov, A.

    2013-12-01

    Understanding the physics of lithospheric deformation and continental collision requires good constraints on lithospheric rheology. Typically, rheology is determined from laboratory experiments on small rock samples, which are extrapolated to geological conditions - an extrapolation over 10 orders of magnitude in deformation rates. These laboratory experiments generally show that small changes in the composition of the rocks, such as adding a bit of water, can dramatically change its viscosity. Moreover, it is unclear which rock type gives the best mechanical description of, for example, the upper crust and whether a small sample is even appropriate to describe the large scale mechanical behavior of the crust. So the viscosity of the lithosphere is probably the least constrained parameter in geodynamics. Ideally, we thus need a new independent method that allows constraining the effective rheology of the lithosphere directly from geophysical data, which is the aim of this work. Our method uses the fact that the geodynamically controlling parameters of lithospheric deformation are its effective viscosity and density structure. By appropriately parameterising the rheological structure of the lithosphere we perform instantaneous forward simulations of present-day lithospheric deformation scenarios with a finite element method to compute the gravity field and surface velocities. The forward modelling results can be compared with observations such as Bouguer anomalies and GPS-derived surface velocities. More precisely, we automatize the forward modelling procedure with a Monte Carlo method, and in fact solve a joint geodynamic and gravity inverse problem. The resulting misfit can be illustrated as a function of rheological model parameters and a more detailed analysis allows constraining probabilistic parameter ranges. For a simplified setup with linear viscous rheologies we can demonstrate mathematically that a joint geodynamic-gravity inversion approach results in a unique solution as opposed to inverting for gravity alone. This is shown to work as well in combination with 3D forward models of salt tectonics on an upper crustal scale. Yet, the lithosphere has nonlinear rheologies that can be plastic or temperature-dependent powerlaw creep depending on stresses. As the thermal structure of the lithosphere is in general poorly constrained, and only affects the dynamics of the lithosphere in an indirect manner, we developed a parameterized rheology that does not include temperature but includes other nonlinearities (such as stress-dependent viscosity). To test the accuracy of this method we perform lithospheric-scale collision forward models that incorporate a temperature-dependent viscoelastic-plastic rheology to create synthetic gravity and surface velocities data. In a second step, we deploy these synthetic data sets to perform the joint inversion, using our simplified parameterized rheology. Results show that we can recover the rheology of the lithosphere reasonably well, provided that lithospheric layers contribute to the large-scale dynamics. In addition, we will show an application of our method to 2D cross-sections of the India-Asia collision system. Acknowledgements Funding was provided by the ERC under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830

  2. Determining crustal strain rates with a spaceborne geodynamics ranging system. 2: Station coordinate analysis

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Cook, G. R.

    1978-01-01

    The use of a spaceborne geodynamics ranging system for determining crustal strain rates is analyzed. The use of site coordinates rather than intersite baseline distances for the strain rate determinations is emphasized. After discussing the analytical techniques which are to be employed, numerical results are presented which suggest that the use of site coordinates would result in a 20-70% improvement in the precision of the deduced values of straining. Precision of a few parts in 10 to the 9th power would be achievable with simple geometrics and a decade or two of measurements; precisions of a few parts in 10 to the 8th power would be achievable in a few years. A consideration of possible correlations among the derived target site coordinates leads to the conclusion that, with the proper choice of coordinate systems, the correlations can be made small and non-detrimental to the strain rate determinations.

  3. Geophysical Imprints of the Geodynamic Evolution of Moesia Following the Black Sea Opening

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian

    2014-05-01

    Genesis of the two types of the Moesia basement (the so called Walachian, and Dobrogean sectors) along with the complex fault system affecting its cover and basement are still debated issues. Besides, there are two other intriguing aspects raised by the seismicity map of Romania: the sub-crustal events in the bending zone of East Carpathians, and the crust seismicity of the eastern Moesian Plate (MoP). Both the intermediate-depth earthquakes within full intra-continental environment and the intense craton seismicity are unusual aspects, and their apparent association difficult to explain. The paper proposes an integrated geodynamic model of MoP able to justify its current tectonics and both the crustal events in front of Carpathians, and the intermediate-depth earthquakes in the Vrancea zone within the frame of a unique geodynamic process. It starts from the idea that tectonic and geodynamic evolution of the E MoP and the bending zone of East Carpathians has been strongly affected by the opening of the W Black Sea basin, and is currently maintained by active rifting in SW Arabian Plate. The model is supported by geophysical and geodetic evidence. Unlike some previous geology-based models assuming that Black Sea opened during a singular geodynamic event (northward subduction of the Neo-Tethys Ocean floor), the pattern of the gravity and geomagnetic field, along with off-shore seismics bring convincing evidence on the distinct timing of the W and E Black Sea basins opening. Fingerprints of the lithosphere expelled by the W Black Sea rifting in the NW inland may be seen in the distribution of compression (P) wave velocity. In-depth development of NW striking major faults (splitting MoP into numerous vertical compartments) is also well revealed by seismic tomography (e.g. Peceneaga-Camena Fault, as the limit between MoP and East European Plate (EEP), still separates two distinct P wave velocity domains at 150 km depth). A second major fault system was created by the downward bending of MoP pushed towards vertical edge of Intra-Alpine Plate. It seems that W Black Sea opening also created the necessary environment for a FFT unstable triple junction within the bending zone of East Carpathians (VTJ), to which intermediate-depth earthquakes should be associated through thermo-baric accommodation phenomena occurring within the lithosphere sunken into the upper mantle. The triangle-shape and in-depth increase of the lateral extension of the VTJ high velocity seismic body are revealed by the high accuracy P wave tomography performed within Vrancea zone. Current geodetic and geophysical monitoring in the area has suggested a close link between crust and intermediate-depth seismic events. The intensification in tectonic forces may firstly led to the intensification of crust seismicity in the Carpathians foreland (by provoking slips between the MoP vertical compartments), followed, after a time-span depending on the force intensity and upper mantle viscosity, by VTJ sinking and consequent intermediate-depth seismic events in the Vrancea zone.

  4. Upper mantle and crustal structure of the East Greenland Caledonides: New geophysical evidence and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Balling, N.; Jacobsen, B. H.; Hejrani, B.; Nielsen, S. B.

    2013-12-01

    The East Greenland and Scandinavian Caledonides once formed a major coherent mountain range, as a consequence of the collision of the continents of Laurentia and Baltica. The crustal and upper mantle structure was furthermore influenced by several geodynamic processes leading to the formation of the North Atlantic passive margins, including the gravitational collapse, extension, rifting and a possible influence by volcanism related to the Iceland hot spot. The landscape and topography were finally shaped by extensive erosion, finding its peak in the quaternary glaciations. Seismological data were acquired in the East Greenland Caledonides by the Ella-Ø-array for a period of two years (2009-2011). The array containing 11 broadband seismometers was situated at approximately 73 °N covering a distance of 270 km from the Greenland Ice Sheet to the Atlantic coast, north of the Iceland Ridge. A Receiver Function study based on an average of 36 events per station reveals a clear eastward dipping high-velocity structure underneath the study area. The geophysical character, supported by synthetic modelling, is consistent with a 10 km thick subducted slab of eclogitized oceanic crust. This might be the key for unravelling of a complex geodynamic setting and development leading to the formation of the Caledonides. The distinct preservation of structures in the upper mantle to depths of 100 km or more, limits the impact of subsequent collision and extension related deformation. In support of this interpretation, we present selected results from on-going detailed studies of the crustal and upper mantle, including a Receiver Function inversion, seismic P-wave travel time tomography and gravity modelling.

  5. A 3-D Geodynamic Model of Strain Partitioning in Southern California

    NASA Astrophysics Data System (ADS)

    Ye, J.; Liu, M.; Lin, F.

    2012-12-01

    In southern California, strain resulting from the relative motion between the Pacific and the North American plates is partitioned in a complex system of transcurrent, transcompressional, and transtensional faults. High-precision GPS measurements in this region have enabled kinematic modeling of the present-day strain partitioning between major faults in southern California. However, geodynamic models are needed to understand the cause of strain partitioning and to determine strain in regions where faults are blind or diffuse. We have developed a regional-scale geodynamic model of strain partitioning in southern California. This 3-D viscoelasto-plastic finite element model incorporates first-order fault geometry of the major active faults in the region. The model domain includes an elastoplastic upper crust on top of a viscoelastic lower lithospheric layer. Deformation is driven by the relative motion between the Pacific and the North American plates, imposed as a displacement boundary condition. Plastic deformation both within the fault zones and in the unfaulted surrounding crust is calculated. Our results show that the Big Bend of the San Andreas Fault, and other geometric complexity of faults in southern California, plays a major role in strain partitioning. The observed variations of strain portioning in southern California can be explained by the geometric configuration of fault systems relative to the relative plate motion, without appealing to basal traction of a flowing lower lithosphere. The model predicts concentrated plastic strain under the reverse fault systems in the Transverse Ranges and the young and diffuse faults in the Eastern California Shear Zone across the Mojave Desert, where a number damaging earthquakes occurred in the past decades.

  6. Testing Absolute Plate Reference Frames and the Implications for the Generation of Geodynamic Mantle Heterogeneity Structure

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Bunge, H.; Schuberth, B. S.; Müller, D.; Talsma, A.; Moder, C.

    2010-12-01

    Several absolute reference frames for Cretaceous-Tertiary plate tectonic reconstructions have been proposed over the last decade. They include reference frames based on hotspot tracks displaying age progression, and assuming either fixed or moving hotspots, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid reference frames. All these alternative reference frames imply a particular history of the location of subduction zones through time, the associated subduction history, and the evolution of mantle heterogeneity via the mixing of subducted slab material with the mantle. Therefore it is possible to evaluate the observed distribution of subducted slab material in the mantle versus that predicted by a forward geodynamic model in which the plate kinematic history given by a particular absolute plate is coupled with a mantle convection model. We present a comparison of five alternative absolute plate motion models in terms of their consequences for global deep mantle structure by utilizing the 3-D spherical finite element mantle convection code TERRA, coupled with the global plate tectonic reconstruction software GPlates. We impose global palaeo-plate boundaries and plate velocities back to 140 Ma as surface boundary conditions for each absolute rotation model and forward model the associated subduction history. The correlation of seismic tomography with the predicted present-day mantle structure from each of plate models is then assessed using well-imaged slabs. We will present and discuss a comparison of geodynamically predicted mantle heterogeneity and seismic tomography to infer the robustness of each absolute reference frame through time, thus providing additional constraints for the integration of plate tectonics and mantle dynamics.

  7. Program of Geodynamic Investigation for the Site of a New Nuclear Power Plant in Hungary

    NASA Astrophysics Data System (ADS)

    Trosits, D.; Horvath, F.; Katona, T.; Gerstenkorn, A.

    2014-12-01

    Preparation of a new nuclear power plant project is going on in Hungary at Paks site. Although there is an operating plant at the site, comprehensive geological, geophysical investigation has to be implemented in accordance with Hungarian nuclear safety regulation and international norms for confirming the site acceptability and providing a neotectonic basis for site seismic hazard assessment. The scope, techniques and methods of investigations have to be adapted to the geotectonic environment of the site and Pannonian Basin as a whole. The poster presents a brief summary of the program and provides a detailed description of the seismic survey focusing on the 3D subsurface imaging that is the most important task of planned geophysical investigations. The 3D geophysical imaging provides essential geodynamic information to assess the capability of near site faults and for the seismic hazard analysis, as well as for the hydrogeological modeling. The planned seismic survey gives a unique dataset for understanding the spatial relationship between individual fault segments. The 3D survey allows predicting and characterization of deformations induced by recent lithospheric stresses that is crucial for assessing the tectonic stability of the area. 3D seismic survey has to be combined with appropriate 2D and 3D shallow seismic profiling. The obtained 3D seismic data are also used for numerical geodynamic modeling. Rheology of rocks fundamentally influences the frequency of seismic activity, i.e. the accumulation and release of seismic energy. Regarding this the Pannonian Basin has specific features: the crust is thin and thermal gradients are high. This implies the whole lithosphere can be considered rheologically weak and its behavior is mostly plastic. It is suspected that most of the fault zones in the Pannonian basin are restricted to the sedimentary fill and the uppermost crust, and rest of the lithosphere experiences aseismic deformation.

  8. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  9. The geodynamics of the Gulf of Mexico and its topographic evolution

    NASA Astrophysics Data System (ADS)

    Bower, D. J.; Gurnis, M.

    2014-12-01

    The Gulf of Mexico formed by subsidence due to continental extension and seafloor spreading that accommodated the motion of the Yucatan block during the Late Jurassic-Early Cretaceous. The Yucatan block rotated approximately 45° counterclockwise about an Euler Pole located offshore Florida. It has been proposed that mainly thermal cooling and sediment loading drove subsequent subsidence of the Gulf. However, back-stripping analysis reveals rapid tectonic subsidence (2.5 km) starting around 66 Ma and ending at 40 Ma that remains unexplained. We test the hypothesis that the rapid subsidence can be explained by dynamic topography associated with the Laramide Orogeny. We develop new kinematic theory to build deforming plate models using a continental stretching factor (or crustal thickness) map and the paleogeographic software GPlates. ``Deforming tectonic blocks'' are defined along small circles about the opening Euler Pole using neighboring stretching-factor contours. These deforming blocks are palinspastically reconstructed assuming constant true strain which means that deformation occurs more rapidly as the crust is increasingly thinned. The deforming plate model is incorporated in a global plate history model. We use the combined plate history model to constrain the thermal evolution of the lithosphere and slabs in the upper mantle and plate motions in geodynamic models. This ensures that our geodynamic models are consistent with geological and geophysical observations and thus enables us to investigate the spatial and temporal evolution of subsidence in the Gulf. We compare dynamic and total topography from the models with tectonic subsidence maps and subsidence curves. In addition, we predict mantle structure, notably the distribution of slabs, to compare with seismic tomography and waveform observations.

  10. Numerical modeling of seismicity and geodynamics of the Kachchh rift zone, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Vorobieva, Inessa; Mandal, Prantik; Gorshkov, Alexander

    2014-11-01

    The numerical block-and-fault model of lithosphere dynamics and seismicity (BAFD) is used to understand crustal motion and features of the observed seismicity in the Kachchh rift zone, Gujarat, Western India. The block-model allows simulating seismicity and geodynamics simultaneously unlike other modeling approaches for studying seismicity or geodynamics. The model structure of Kachchh rift zone is composed of seven major crustal blocks separated by fault planes. Based on the orientation of boundary crustal block movements, we develop a set of numerical experiments to analyze the spatial distribution of earthquakes, frequency-to-magnitude relationships, earthquake focal mechanisms, velocity field, and fault slip rates in the model. The main results of our modeling suggest that an NNW-SSE trending compression is a principal driving force in the Kachchh rift zone that explains basic features of the regional seismicity, direction of block motions, and the presence of an extensional stress regime associated with the Cambay rift zone. Large synthetic events occur on the fault segments associated with the Allah-Bund fault, Katrol hill fault and north Wagad fault which have been causative faults for the 1819 Mw7.7 Allah-Bund, 1956 Mw6.0 Anjar and 2001 Mw7.7 Bhuj earthquakes. The frequency-magnitude distribution for both synthetic seismicity and observed seismicity shows a similar slope. The focal mechanisms of the synthetic events are found to be consistent with those of earthquakes in the region. A special attention has been paid to study long-term and post-seismic deformations. Our results are in a qualitative agreement with the GPS post-seismic observations in the Kachchh rift zone. We infer that the observed seismicity and crustal block motions are a consequence of the dynamics of the entire regional fault and block system rather than that of a single causative fault only.

  11. Geodynamic models of convergent margin tectonics: transition from rifted margin to overthrust belt and consequences for foreland-basin development

    SciTech Connect

    Stockmal, G.S.; Beaumont, C.; Boutilier, R.

    1986-02-01

    A quantitative geodynamic model for overthrusting of a passive continental margin during attempted continental subduction demonstrates the mechanical and thermal coupling between overthrust loads, the lithosphere, and the associated foreland basin. The model treated the lithosphere as a two-dimensional nonuniform elastic plate whose strength is controlled thermally. The thermal and flexural evolution of a margin is followed from initial rifting and passive-margin development, through overthrusting and foreland-basin deposition, to postdeformational erosion.

  12. Impact of geodynamic development of the Barents Sea deep rift on evolving petroleum systems

    NASA Astrophysics Data System (ADS)

    Balanyuk, I.; Dmitrievsky, A.

    2009-04-01

    All the Barents Sea deposits are situated in the epicenter on active geodynamic development of the Barents Sea rift and, most important, over the zone of listric faults intersection, which consist a knot system over the mantle diapir. This is confirmed by prospecting seismology. Intrusion of hot mantle matter with further cooling down of abnormal lense might be a possible cause of appearance and evolution of ultradeep depressions. A high "seismic stratification" of the lower crust (nearly reaching the basement surface) at time scale about 8 sec. is typical for the inner, the deepest part of the depression. Supposing the "seismic stratified" lower crust correspond to "basalt" layer, this area is nearly upper crust ("granitic-gneiss") free. This fact confurmes conception on development of "granite free gaps" in the depression basement. Thick blocks of "seismically transparent" upper crust corresponding to the "granitic-gneiss" layer are marked out within Kolsk-Kanin monocline. An abrupt thickness decrease and appearance of "stratified" areas takes place at the southern edge of the depression. A filling of the over-rift sag with sediments, revival of the faults and their effect on the filtration processes and gas hydrates formation took place in the South Barents Sea depression. Repeating activation of the fault blocks in the basement, especially during late Jurassic - early Cretaceous period contributed to formation of the structures related to the greatest deposits of the South Barents Sea depression. An extended field acoustic data collected in the Barents Sea led to understanding of general fundamental problems for all Arctic Seas and, first of all, the problem of Quaternary glaciations. An analysis of Eurasian-Arctic continental margin shows correspondence between the rift systems of the shelf with those of the ocean. This relation can be observed by an example of the central Arctic region. All the rift systems underlying the sediment basin are expressed in the sea bed relief as spacious and extensive graben valleys burnished by lobes. The rift structures and the sediment cover are connected by the systems of transversal (or oblique) faults. A study of the regional geologic structure of basins affords believing in the very complicated inner riftogenic structure of the base and the lower part of the sediment cover, which is represented by a combination of grabens and horsts bound by the same tectonic border in the form of high amplitude fault zones, and have a very high density of fault-fractured tectonics. In the same time, a branching of the rift structures related to rounding of large solid blocks of the crust, represented by Archaean or Baikal base prominences, takes place. Their frequent structural connection with the continental paleo-rift structures is ascertained, but the shelf rift system are not their straight prolongation and separated by base thresholds concealed under the sediment cover or by bulkheads expressed even in the modern relief. Filling of over rift flexure by sediments, revival of faults and their impact on flow processes and gas hydrate formation in under sea bed sediments have occurred in the South Barents depression. Geodynamic development of the Barents sea rift not only played a substantial role in formation of as unique fields as Shtokman, Prirazlomnoe and others, but created prerequisites for possible gas outbursts into near-surface sediments of the Barents Sea that could result, in some cases, in gas hydrate formation. Periodic activation of basic fault blocks, especially in late Jurassic - early Cretaceous time significantly contributed to formation of the structures related to the greatest fields of South Barents depression. The information on geodynamic development of the region, thermal convection and modern sedimentation enable assessment of the real potentiality for underwater works in the region, potential gas hydrates resources, and will help to assign a strategy of prospecting work, to range the known

  13. Geodynamic evolution and sedimentary infill of the northern Levant Basin: A source to sink-perspective

    NASA Astrophysics Data System (ADS)

    Hawie, N.

    2013-12-01

    Nicolas Hawie a,b,c (nicolas.hawie@upmc.fr) Didier Granjeon c (didier.granjeon@ifpen.fr) Christian Gorini a,b (christian.gorini@upmc.fr) Remy Deschamps c (remy.deschamps@ifpen.fr) Fadi H. Nader c (fadi-henri.nader@ifpen.fr) Carla Müller Delphine Desmares f (delphine.desmares@upmc.fr) Lucien Montadert e (lucien.montadert@beicip.com) François Baudin a (francois.baudin@upmc.fr) a UMR 7193 Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie/ Univ. Paris 06, case 117. 4, place Jussieu 75252 Paris Cedex 05, France b iSTEP, UMR 7193, CNRS, F-75005, Paris, France c IFP Energies nouvelles, 1-4 avenue du Bois Préau 92852 Rueil Malmaison Cedex, France d UMR 7207, Centre de Recherche sur la Paleobiodiversité et les Paleoenvironnements. Université Pierre et Marie Curie, Tour 46-56 5ème. 4, place Jussieu 75252 Paris Cedex 05, France e Beicip Franlab, 232 Av. Napoléon Bonaparte, 95502 Rueil-Malmaison, France Sedimentological and biostratigraphic investigations onshore Lebanon coupled with 2D offshore reflection seismic data allowed proposing a new Mesozoic-Present tectono-stratigraphic framework for the northern Levant Margin and Basin. The seismic interpretation supported by in-depth facies analysis permitted to depict the potential depositional environments offshore Lebanon as no well has yet been drilled. The Levant region has been affected by successive geodynamic events that modified the architecture of its margin and basin from a Late Triassic to Middle Jurassic rift into a Late Cretaceous subduction followed by collision and Miocene-Present strike slip motion. The interplay between major geodynamic events as well as sea level fluctuations impacted on the sedimentary infill of the basin. During Jurassic and Cretaceous, the Levant Margin is dominated by the aggradation of a carbonate platform while deepwater mixed-systems prevailed in the basin. During the Oligo-Miocene, three major sedimentary pathways are expected to drive important quantities of clastic material into the Levant Basin: (1) the marginal canyons along the Levant Margin, (2) the Latakia region and the Palmyrides Basin (Syria) and (3) the Red Sea area and Nile Delta. Regional drainage system analysis was performed to estimate the contribution to the infill of the basin of the different sediment sources, and in particular, to estimate erosion of Nubian siliciclastic material, granitic Red Sea rift shoulders and Arabian Shield. A numerical stratigraphic forward model, Dionisos, was used to test these source-to-sink assumptions; a sensitivity analysis was then performed to understand better the impact of the different geodynamic and stratigraphic scenarios on the architecture and sedimentary infill of the Levant Basin, and thus on the expected petroleum systems of this frontier basin

  14. The wave-like geodynamic reorganizations revealed by the change in orientation of the paleostress axes

    NASA Astrophysics Data System (ADS)

    Mukhamediev, Shamil; Belousov, Tomas

    2014-05-01

    Sedimentary rock fracturing is a reliable stress indicator when properly measured, processed and interpreted. Our long-term field observations and theoretical considerations show that the primary joint sets are formed at the stage of diagenesis of sediments at horizontal bedding. Most likely, it happens due to internal instability of sediments manifested in localised form, which leads to formation of two conjugate systems of shear discontinuities. This model allows us to reconstruct the orientation of the axis of the maximum horizontal paleo-compression SH,max and to determine the period of its existence up to the scale of geological time. During more than 30 years of our field observations, we collected about 400,000 individual joint measurements in many regions of Eurasia. These data were applied to paleostress reconstruction by using interpretation of primary jointing formation mentioned above. Both spatial distributions of paleostress axes and the evolution of these distributions in time determined by our techniques are in reasonably good agreement with paleogeodynamic reconstructions obtained by other approaches. A distinctive feature of the paleostress evolution is that at certain times orientation of the SH,max axes changes abruptly, turning at an angle up to 90° . Sometimes these changes are gradually spreading to neighboring regions. We attribute this phenomenon to the geodynamic reorganization which spreads over the space at a certain speed. Such wave-like spreading was observed in the East-European platform, the Tien-Shan, along the arc Pamirs-Tibet-Vietnam and in other regions. From the perspective of this phenomenon, the Caucasus-Zagros region is of particular interest. Here from the end of the Early Cretaceous to the present time the SH,max axis with small spatial variations was NE oriented. However, we identified a relatively short period in the Miocene characterized by geodynamic reorganization. In the early middle Miocene in the south-east of the region (the south-eastern part of the Zagros) the SH,max axis changed orientation from NE to NW. At this time in the north of the region (Central Pre-Caucasus) the SH,max axis was still directed towards NE. But in the middle Sarmatian, when the southern part of the region already had NE orientation of compression, in the northern part the SH,max axis reoriented in NNW direction. As in the south of the region, this reorientation was short and in late Sarmatian the SH,max axis regained his usual NE orientation. The identified short-term restructuring that began in the south-east of the region in the early middle Miocene and which reached the northern part of the region in the early Late Miocene can be interpreted as the process of the south to north moving of the solitary wave of geodynamic perturbation. The velocity of the wave is estimated as 0.1-1.0 m/year.

  15. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  16. Crustal Accretion and Mantle Geodynamics at Microplates: Constraints from Gravity Analysis

    NASA Astrophysics Data System (ADS)

    Ames, K.; Georgen, J. E.; Dordevic, M. M.

    2013-12-01

    Oceanic crustal accretion occurs in a variety of locations, including mid-ocean ridges and back-arc spreading centers, and in unique settings within these systems, such as plate boundary triple junctions, intra-transform spreading centers, and microplates. This study focuses on crustal accretion and mantle geodynamics at microplates. The Easter and Juan Fernandez microplates are located in the South Pacific along the Pacific, Nazca and Antarctic plate boundaries. Both microplates formed 3-5 Ma and they are currently rotating clockwise at 15 deg/Ma and 9 deg/Ma respectively (e.g., Searle et al. J. Geol. Soc. Lond. 1993). The study area also encompasses the Easter/Sala y Gomez mantle plume and the Foundation seamount chain, both of which are located close to spreading centers. We calculate mantle Bouguer anomaly (MBA) from satellite gravity measurements and shipboard soundings in order to gain a better understanding of the thermal structure of these two oceanic microplates and to quantify the effect that melting anomalies may have on their boundaries. We assume a crustal thickness of 6.0 km, a 1.7 g/cm^3 density difference at the water/crust interface, and a 0.6 g/cm^3 density difference at the crust/mantle interface. The west rift of the Easter microplate has an MBA low ranging from approximately -50 to -100 mGal, while the east rift has slightly higher MBA values ranging from roughly 10 to -50 mGal. The west rift of the Juan Fernandez microplate has a maximum MBA low of about -100 mGal with a sharp increase to -20 mGal at -35 deg S. The east rift of the Juan Fernandez microplate is characterized by more variable MBA, ranging from 0 to -140 mGal. The MBA low associated with the Easter/Sala y Gomez mantle plume has a maximum amplitude about 150 mGal. Likewise, the Foundation seamounts show a gravity low of -140 to -150 mGal. These spatial variations in gravity, as well as published isotopic data and exploratory numerical models, are used to constrain upper mantle geodynamics in the complex geological setting of the southern Pacific Ocean. Inferences are made about the three-dimensional distribution of melting anomalies.

  17. Geodynamic modeling of the Mid-Continental Rift System: Is a mantle plume required?

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Rooney, T. O.; Stein, S. A.; Brown, E.

    2013-12-01

    The Mid-Continent Rift System (MCRS) is a 2000-km long trace of a massive igneous event that nearly split North America 1.1 billion years ago. The MCRS offers a snapshot of continental rifting and rift failure. The rift started, evolved, and terminated via a complex and not-yet-understood interplay of mantle dynamics, magmatism, and extension. In particular, details of the processes surrounding melt formation and the associated depletion of the lithospheric mantle, and re-thickening of the extended crust remain poorly constrained. To help unravel the complex history of the MCRS, we present a new geodynamic model for late Proterozoic rifting and compare a number of different extension scenarios in an effort to answer the following question: can the volume of magmas preserved in the MCRS be explained by extensional processes in the absence of a thermo-chemical mantle plume anomaly? In the late Proterozoic, inherently higher mantle potential temperatures may have permitted rifting at lower stress levels and favored more melt formation. Therefore, the inferred volume of magma in the MCRS may not have required a plume. To explore this idea, we compare models for the evolution of a rift under different ambient mantle temperatures and radiogenic heating conditions, i.e. Phanerozoic vs. Proterozoic, and in the absence or presence of a thermal-chemical plume. Our geodynamic model of the MCRS includes a temperature dependent visco-elasto-plastic rheology in the presence of partial melt that is dynamically determined according to given rock-type, pressure and temperature. The models include a 'sticky air' layer to mimic a free surface that is coupled to a surface processes model to account for erosion and sedimentation. The numerical method we use is based on the primitive variable particle-in-cell finite-difference method developed by Taras Gerya and others (e.g. Gerya, 2010). The advantage of this approach is that specific material properties are inherently traced through time negating the need for numerous high-resolution grids. Moreover, melt-extraction and the formation of a crust along with depletion and fertilization are also easily tracked.

  18. Research on absolute gravity variations in geodynamic laboratory in Ksi?? in the period of 2007- 2011

    NASA Astrophysics Data System (ADS)

    Kaczorowski, Marek; Olszak, Tomasz; Walo, Janusz; Barlik, Marcin

    2012-12-01

    In 2006 a gravimetric pavilion was installed inside the Geodynamic Laboratory (LG) in Ksi??. The pavilion was equipped with two pillars intended to serve relative and absolute gravimetric measurements. Installation of measurement platform for absolute gravity measurements inside gravimetric pavilion of LG made it possible to perform four sessions of absolute gravity measurements: two of them in 2007 (June 10-12 and Nov. 21-22), one in 2008 (Apr. 21-22) and one in 2011 (June 19-21). In 2007 the absolute measurements were performed using two FG5 ballistic gravimeters. In April 2007 the measurements were performed by Dr Makinen from Geodetic Institute of Finnish Academy of Science with application of FG5 No. 221 absolute gravimeter. In June 2007 and in the years 2008 and 2011 such gravimetric measurements were performed by the team from Department of Geodesy and Astronomical Geodesy of Warsaw University of Technology using FG5 No. 230 absolute gravimeter. Elaboration of observation sessions from both gravimeters was performed in the Department of Higher Geodesy following the procedures used in constituting of uniform gravimetric system of geodynamic polygons reference. This constituting of gravimetric system comprised inter alia application of identical models of lithospheric tides (global model by Wenzel, 1997) and ocean tides (Schwiderski, 1980) (reduction of absolute measurements with tidal signals). Observations performed during summer of 2007, autumn of 2007, and spring of 2008 and 2011 indicated existence of small changes of absolute gravity of the order of 1 Gal. Maxima of accelerations appear in the spring period, and minima in the autumn period. This effect is connected with the influence of global hydrological factors the annual amplitude of which is ca 1,5 Gal and achieve extreme values in the spring-autumn interval. Very small value of observed amplitude of gravity changes in the period of extreme variability suggests that the observed gravity changes in LG are caused only by global phenomenon. This proves high degree of "independence" of gravimetric measurement base in LG from the local environmental factors such as ground water level variations, ground humidity, impact of snow cover, etc. At this moment the instrumental environment of absolute measurements obtains particular value, especially in the case of the tiltmeters and relative the gravimeter Lacoste& Romberg (LR-648). The relative gravity measurements as performed simultaneously with absolute gravity measurements enable us to determine the local tidal ephemeredes which makes it possible to replace the global tidal modal with ocean tidal model with the more realistic, locally determined tidal parameters (the local tidal ephemeredes).

  19. Brittle Solvers: Lessons and insights into effective solvers for visco-plasticity in geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; May, D.; Wilson, C. R.

    2014-12-01

    Plasticity/Fracture and rock failure are essential ingredients in geodynamic models as terrestrial rocks do not possess an infinite yield strength. Numerous physical mechanisms have been proposed to limit the strength of rocks, including low temperature plasticity and brittle fracture. While ductile and creep behavior of rocks at depth is largely accepted, the constitutive relations associated with brittle failure, or shear localisation, are more controversial. Nevertheless, there are really only a few macroscopic constitutive laws for visco-plasticity that are regularly used in geodynamics models. Independent of derivation, all of these can be cast as simple effective viscosities which act as stress limiters with different choices for yield surfaces; the most common being a von Mises (constant yield stress) or Drucker-Prager (pressure dependent yield-stress) criterion. The choice of plasticity model, however, can have significant consequences for the degree of non-linearity in a problem and the choice and efficiency of non-linear solvers. Here we describe a series of simplified 2 and 3-D model problems to elucidate several issues associated with obtaining accurate description and solution of visco-plastic problems. We demonstrate that1) Picard/Successive substitution schemes for solution of the non-linear problems can often stall at large values of the non-linear residual, thus producing spurious solutions2) Combined Picard/Newton schemes can be effective for a range of plasticity models, however, they can produce serious convergence problems for strongly pressure dependent plasticity models such as Drucker-Prager.3) Nevertheless, full Drucker-Prager may not be the plasticity model of choice for strong materials as the dynamic pressures produced in these layers can develop pathological behavior with Drucker-Prager, leading to stress strengthening rather than stress weakening behavior.4) In general, for any incompressible Stoke's problem, it is highly advisable to look at the predicted dynamic pressure fields, particularly if they are being fed back into the rheology. Given a range of well described model problems, we discuss broader issues of what, if any, are appropriate plasticity models and under what circumstances we can expect to obtain accurate solutions from such formulations.

  20. AlpArray Austria - Illuminating the subsurface of Austria and understanding of Alpine geodynamics

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Bokelmann, Götz; Bianchi, Irene; Apoloner, Maria-Theresia; AlpArray Working Group

    2015-04-01

    AlpArray Austria is a research project to study the geodynamics of the Eastern Alps and the subsurface of Austria with a large-scale mobile broadband seismological network. AlpArray Austria is part of the AlpArray project - a unique European transnational research initiative in which 64 research institutes from 17 countries join their expertise to advance our knowledge about the structure and evolution of the lithosphere beneath the entire Alpine area. AlpArray Austria is coordinated by the Department of Meteorology and Geophysics (IMGW) at the University of Vienna and funded by the Austrian Science Fund (FWF). During spring 2015 the deployment of 42 mobile broadband seismometers (and two permanent stations) will commence and by autumn 2015 Austria will be completely covered by a dense seismological network with an average station spacing of about 40 kilometers. The mobile network consisting of 27 Reftek 151 60s sensors (provided by IMGW) and 15 Trillium 120s instruments (provided by the Dublin Institute for Advanced Studies, DIAS, Ireland) will complement the permanent Austrian seismic network operated by the Austrian Zentralanstalt für Meteorologie und Geodynamik (ZAMG) that will also install the two permanent stations. AlpArray Austria will be continuously recording high-quality ground motion data for three years. Seismic data will be distributed through the European Integrated Data Archive (EIDA) and shared with the collaborating AlpArray institutes. AlpArray Austria will shed light on the detailed geological structure and geodynamical evolution of the Eastern Alps and the subsurface of Austria. Utilizing seismic analysis methods such as shear wave splitting, receiver functions and body wave dispersion the AlpArray Austria working group at IMGW will, together with the international partners, focus on seismic anisotropy in the upper mantle, the location of interfaces and tomography, to answer outstanding questions on slab geometry and subduction polarity under the Eastern Alps. While the primary scope of AlpArray Austria is fundamental research the unique dataset will also improve our knowledge about near-surface geologic structures and help to assess the seismic hazard in Austria.

  1. The solution of fundamental problems of geodynamics, geophysics, geology and planetology

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    On the base of geodynamic model of the forced gravitational swing and displacement of shells of a planet under action of a gravitational attraction of surrounding (external) celestial bodies [1], [2] the fundamental problems of geodynamics, geology, planetology, geophysics, etc. have been studied and solved. 1). The mechanism of cyclic variations of activity of natural processes in various time scales. 2). The nature of eccentric positions of the core and the mantle of the Earth. A role of the Moon, the Sun, Neptune and other celestial bodies in activization of the swing of core-mantle system of the Earth. 3). Power of endogenous activity of planetary natural processes on planets and satellites. 4). The nature of correlations of natural processes with features of motion of baricenter of the solar system. 5). An explanation of influence of bodies of solar system on excitation of variations of planetary processes with Milankovitch's periods (in tens and hundred thousand years). 6). A possible explanation of geological cycles as result of excitation of solar system at its motion in a gravitational field of the Galaxy. 7). The phenomenon of polar inversion of natural processes on the Earth, both other planets and satellites. 8). Spasmodic (step-by-step) and catastrophic changes of activity of natural processes. 9). Sawtooth (gear curve) variations of natural processes. 10). The phenomenon of twisting of hemispheres (latitude zones) of celestial bodies. 11). Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 10). Ordered planetary structures in spatial distribution of geological formations. 12). The phenomena of bipolarity of celestial bodies and antipodality of formations. Many fundamental problems of natural sciences have been obtained an explanation on the basis of developed geodynamic model (Barkin, 2002, 2009). The fundamental problems of celestial mechanics and geodynamics, geophysics and the geology, excited of scintific community in current of last decades and even centuries have been solved. The fundamental phenomena in rotation of the Earth: secular drift of a pole of its axis of rotation and non-tidal acceleration of axial rotation of a planet have received an explanation. Observable secular variations of a gravity, variations of a geopotential coefficients, secular drift of the center of mass of the Earth, secular changes of a global level of ocean and change of average levels of ocean in northern and southern hemispheres of the Earth, secular geodetic changes of the Earth in present period have been explained, etc. It is shown, that there is a uniform mechanism for many bodies of solar system of excitation of natural processes in their polar areas. In particular it is shown, that polar regions of many celestial bodies, including their soil layers, are sated by fluids. The last position obtains the precise confirmation in researches of subsoil waters and a water ice on Mars, the Moon, Mercury, etc. bodies of solar system. A wide number of the natural phenomena has been predicted by the author and these predictions have already obtained and obtain confirmations and an explanations in the data of modern observations and space missions. An existence of the seas in polar regions of the Titan, concentration of water ice in polar regions of Mercury, the Moon, Mars and other bodies of solar system has been predicted. The conclusion about fluid consentrations at polar regions of celestial bodies is extremely important for revealing of carbon deposits on the Earth, first of all in regions of Arctic and Antarctic. Work is partially supported by RFBR grants: N 08-02-00367, N-09-02-92113-JF. References 1. Barkin Yu.V. (2002) An explanation of endogenous activity of planets and satellites and its cyclisity. Isvestia sekcii nauk o Zemle Rossiiskoi akademii ectestvennykh nauk. Vyp. 9, M., VINITI, pp. 45-97. In Russian. 2. Barkin Yu.V. (2009) Moons and planets: mechanism of their life. Proceedings of International Conference 'Astronomy and World Heritage: across Time and Continents' (Kazan, 19-

  2. Geodynamic Inferences from Integrated Ocean Drilling Program Expedition 330 to the Louisville Seamount Trail

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Yamazaki, T.; Geldmacher, J.; Scientific Party, E. 3; IODP Expedition 330 Scientific Party

    2011-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 330 drilled five different guyots in the Louisville Seamount Trail ranging in age between 80 and 50 Ma. The primary goals of this expedition were to drill a sufficiently large number of in situ lava flows at each seamount for high-quality estimates of their paleolatitudes using paleomagnetic measurements, for improving the overall age progression using high-precision 40Ar/39Ar geochronology, and for detailed geochemical studies of the volcanic evolution of these seamounts. With these data we can provide the unique record of the paleolatitude shift (or lack thereof) of the Louisville mantle plume and compare it with the ~15° paleolatitude shift observed for seamounts in the Hawaiian-Emperor Seamount Trail over the same time period. These comparisons are of fundamental importance to determine whether these two primary hotspots have moved coherently or not, to understand the nature of hotspots and convection in the Earth's mantle, and to evaluate the possibility of true polar wander. We will present new 40Ar/39Ar age data for Sites U1372, U1373, U1374 and U1376 in conjunction with Expedition 330 shipboard paleomagnetic inclination data to discuss the geodynamic inferences from the resulting paleolatitude history of the Louisville hotspot between 80 and 65 Ma.

  3. Tracing the origin of Geodynamics: The Alfred Wegener Memorial Expedition 2014

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt

    2015-04-01

    2012 marked the 100st anniversary of the seminal publications on Continental Drift Theory by Alfred Wegener. These publications (and Wegener's book "On the origin of the continents", published three years later) are widely accepted to be the fundamental breakthrough that opened the path to the Theory of Plate Tectoncis and ultimately the path to modern Geodynamics some 50 years later. In the same historic year of the 1912 publications, Alfred Wegener set off for what was to become the most dramatic of his three Greenland expeditions. On this expedition Wegener and Koch crossed the entire northern icecap of Greenland. In honour of the hundreds anniversary of Wegener's publications, the Austrian Academy of Sciences funded an expedition to trace the footsteps of the 1912 expedition in the spirit of Alfred Wegener, while also conducting modern Earth Science. This expedition that was conducted in summer 2014. For the expedition, a 1952 Cessna180 was acquired in Alaska, adapted with bush wheels, wing extensions and extra tanks and was flown by the author and one of the worlds most renown bush pilots from Alaska in a 10 day effort to Greenland. There, the entire NE Greenland Caledonides were covered and photographed. Field work for a masters projects was conducted and samples were collected from a series of some of the most remote locations in the Caledonides ever visited. Most spectacularly, the original sled of Wegeners 1912 expedition was found some 30 kilometers from its expected location in the Dove Bugt Region of northeastern Greenland.

  4. Solution of geodynamical Problems from the Point of View of Synergeric

    NASA Astrophysics Data System (ADS)

    Hachay, Olga

    2015-04-01

    It is considered the relation of solution geodynamic problems by geosynergetical approach. A new algorithm of seismological information processing of detailed mines catalogue with use kinematic and dynamical characteristics of deformation waves, which propagate with different velocities in the rock massif under heavy influence of single blasts and technological explosions had been developed. It is estimated that the waves, which propagate with the velocities from 10 to 1 m/hour are primary carrier of the energy in the massif and promote its releasing. Events, which occur in the massive with these waves with releasing energy less than 104 joules promote to the creep rebuilding of the massif. Events, which occur in the massive with these waves with releasing energy more, than 105 joules, can be used as rock burst precursory and it is recommend taking into account by changing of explosions in the indicated part of the massif. The whole absence of such events indicates the growing of the stress massif state in the mine as a whole. The received joined information from the seismic catalogue is very significant for forecasting of dangerous events in the rock mines. It is developed an algorithm for scenario of rock shocks treatment in the rock massif. It can be used for analyze massif natural state on seismological polygons. References 1. Hachay O.A. Geosynergetic: theory, method, experiment. Complex analyze of electromagnetic and other geophysical data. M.: KRASAND, 2011.

  5. Orogenic curvatures in the New England Orogen (eastern Australia): structural constraints and geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Li, P.; Rubatto, D.

    2011-12-01

    The late Paleozoic to early Mesozoic New England Orogen in eastern Australia is characterized by a series of sharp bends (oroclines). New zircon U-Pb ages shed new light on the oroclinal structure, showing that the lateral continuation of Early Permian (296-288 Ma) granitoids follows the structural grain of the orogen, and together with other orogenic components, define four bends. The existence of these bends is supported by the curved geometry of sub-vertical structural fabrics, the rotations of forearc basin terranes and the curvature of a serpentinite belt around the oroclines. A subsequent phase of younger magmatism (<260 Ma) cuts across this structure thus providing a minimum age constraint for its formation. The geodynamic setting responsible for oroclinal bending remains speculative. However, we recognize a link between the timing of oroclinal bending and the formation of widespread back-arc extensional basins in eastern Australia, possibly during subduction rollback. We therefore believe that, similarly to modern examples from eastern Indonesia and the Mediterranean regions, subduction rollback played a major role in controlling the progressive curvature of the subduction zones, possibly in response to local along-strike heterogeneities within the subducting plate (e.g. aseismic ridge subduction or arc-continent collisions).

  6. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics

    NASA Astrophysics Data System (ADS)

    Davies, D. Rhodri; Wilson, Cian R.; Kramer, Stephan C.

    2011-06-01

    We present a new computational modeling framework, Fluidity, for application to a range of two- and three-dimensional geodynamic problems, with the focus here on mantle convection. The approach centers upon a finite element discretization on unstructured simplex meshes, which represent complex geometries in a straightforward manner. Throughout a simulation, the mesh is dynamically adapted to optimize the representation of evolving solution structures. The adaptive algorithm makes use of anisotropic measures of solution complexity, to vary resolution and allow long, thin elements to align with features such as boundary layers. The modeling framework presented differs from the majority of current mantle convection codes, which are typically based upon fixed structured grids. This necessitates a thorough and detailed validation, which is a focus of this paper. Benchmark comparisons are undertaken with a range of two- and three-dimensional, isoviscous and variable viscosity cases. In addition, model predictions are compared to experimental results. Such comparisons highlight not only the robustness and accuracy of Fluidity but also the advantages of anisotropic adaptive unstructured meshes, significantly reducing computational requirements when compared to a fixed mesh simulation.

  7. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift, East European Platform

    NASA Astrophysics Data System (ADS)

    Wilson, Marjorie; Lyashkevich, Zoya M.

    1996-12-01

    The distribution of volcanism in the Late Devonian Pripyat-Dnieper-Donets rift within the East European Platform, based upon the results of deep drilling, indicates that pre-existing basement structures and the major rift-bounding faults played an important role in channelling the magmas towards the surface. Major- and trace-element and Sr sbnd Nd isotopic studies of the most primitive basic and ultrabasic magmas, combined with estimates of the amount of extension (? = 1.1 to 1.3), strongly suggest that magmatism was triggered by the upwelling of a thermally and geochemically anomalous mantle plume from the deep mantle during the Late Frasnian. The peak of the magmatism occurred in the Famennian, coincident with the maximum amount of lithospheric extension. Magmatism, rifting and domal basement uplife were contemporaneous at several localities within the EEP, suggesting that the thermal and geodynamic evolution of the platform could have been influenced by a cluster of mantle plumes during the Late Devonian.

  8. Application of the pseudorelief method for the territory of the Bishkek geodynamic polygon

    NASA Astrophysics Data System (ADS)

    Batalev, V. Yu.

    2013-02-01

    Based on 143 magnetotelluric soundings, the Berdichevskii impedance, the Wiese—Parkinson matrix, and the phase tensor component are calculated for the Bishkek geodynamic polygon 50 × 150 km in size. The pseudoreliefs of the apparent resistance Ro brd , phase Fi brd , Wiese-Parkinson matrix norm, and apparent phase Fi k calculated from the phase tensor are constructed. An area of the crustal conductor with elevated conductivity located below the northern part of the Chui depression is distinguished during analysis of pseudoreliefs. Its characteristics will be used for solution of the 3D direct task and creation of the starting model of 2D inversion. The reliability of anomalous objects and estimation of their size during the use of real data is caused by the fact that the anomalies are displayed by different parts of the observation system for the various parameters of the MT-field: the phases vary directly over the anomalous object, and magnetovariational parameters form the rim around it. This allows us more completely and effectively to use the network of real data.

  9. Surveying with the A10-20 Absolute Gravimeter for Geodesy and Geodynamics - first results

    NASA Astrophysics Data System (ADS)

    Krynski, Jan; Sekowski, Marcin

    2010-05-01

    The A10 is the first outdoor absolute gravimeter that allows for the determination of gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-20 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory in September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate high quality of gravity determination with the A10 under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also its usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure including laser and frequency standard are discussed.

  10. Late Permian to Late Triassic basin evolution of North Vietnam: geodynamic implications for the South China and Indochina blocks

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Hallot, Erwan; Poujol, Marc; Roger, Françoise

    2015-04-01

    The core of South East Asia is composed of a mosaic of continental blocks, among which the Indochina and the South China blocks (present day northern Vietnam), amalgamated during the Permian and/or the Triassic. Late Permian to Late Triassic geodynamic evolution of these two blocks remains controversial. The main discussion points concern the existence and the closure of an oceanic domain separating the Indochina and the South China blocks during this period. Especially, the polarity and the timing of the subduction zone that led to the collision between the blocks as well as the present location of the suture delimiting them are a matter of debate. Despite the valuable information they can provide, the sedimentary basins from northern Vietnam have been neglected in the previous studies dealing with the geodynamic evolution of South East Asia. To determine the geodynamic evolution of the area, the basins of Sam Nua and Song Da, presently located in North Vietnam, have been investigated using a combined approach involving sedimentology, geochronology (U-Pb/zircon) and geochemistry (whole-rock major and trace elements composition of both volcanic and volcaniclastic rocks). The palaeoenvironment evolution, the main unconformities, their age and the tectonic affinities of the interbedded volcanic and volcaniclastics series have been characterized for these two basins. Our results demonstrate (i) that the Song Da Basin exhibits a palaeogeographic affinity with the South China block, (ii) the occurrence of extensive calk-alkaline volcanism and associated volcaniclastic deposits in the Sam Nua Basin, related to the existence of an active magmatic arc during the Early and the lower Middle Triassic, (iii) a South dipping (present day coordinate) oceanic lithosphere beneath the Indochina block, deduced from the location of the magmatic arc south of the potential suture zones, (iv) that an angular unconformity postdates the lower Middle Triassic volcaniclastic deposits in the Sam Nua basin. This unconformity, crosscutting the subduction related deposits, is interpreted as the result of the collision between the Indochina and the South China blocks.

  11. On principles, methods and recent advances in studies towards a GPS-based control system for geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Delikaraoglou, Demitris

    1989-01-01

    Although Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) are becoming increasingly important tools for geodynamic studies, their future role may well be fulfilled by using alternative techniques such as those utilizing the signals from the Global Positioning System (GPS). GPS, without the full implementation of the system, already offers a favorable combination of cost and accuracy and has consistently demonstrated the capability to provide high precision densification control in the regional and local areas of the VLBI and SLR networks. This report reviews VLBI and SLR vis-a-vis GPS and outlines the capabilities and limitations of each technique and how their complementary application can be of benefit to geodetic and geodynamic operations. It demonstrates, albeit with a limited data set, that dual-frequency GPS observations and interferometric type analysis techniques make possible the modelling of the GPS orbits for several days with an accuracy of a few meters. The use of VLBI or SLR sites as fiducial stations together with refinements in the orbit determination procedures can greatly reduce the systematic errors in the GPS satellite orbits used to compute the positions of non-fiducial locations. In general, repeatability and comparison with VLBI of the GPS determined locations are of the order of between 2 parts in 10 to the 7th power and 5 parts in 10 to the 8th power for baseline lengths less than 2000 km. This report is mainly a synthesis of problems, assumptions, methods and recent advances in the studies towards the establishment of a GPS-based system for geodesy and geodynamics and is one phase in the continuing effort for the development of such a system. To some, including the author, it seems reasonable to expect within the next few years that more evidence will show GPS to be as a powerful and reliable a tool as mobile VLBI and SLR are today, but largely more economical.

  12. GIS-project: geodynamic globe for global monitoring of geological processes

    NASA Astrophysics Data System (ADS)

    Ryakhovsky, V.; Rundquist, D.; Gatinsky, Yu.; Chesalova, E.

    2003-04-01

    A multilayer geodynamic globe at the scale 1:10,000,000 was created at the end of the nineties in the GIS Center of the Vernadsky Museum. A special soft-and-hardware complex was elaborated for its visualization with a set of multitarget object directed databases. The globe includes separate thematic covers represented by digital sets of spatial geological, geochemical, and geophysical information (maps, schemes, profiles, stratigraphic columns, arranged databases etc.). At present the largest databases included in the globe program are connected with petrochemical and isotopic data on magmatic rocks of the World Ocean and with the large and supperlarge mineral deposits. Software by the Environmental Scientific Research Institute (ESRI), USA as well as ArcScan vectrorizator were used for covers digitizing and database adaptation (ARC/INFO 7.0, 8.0). All layers of the geoinformational project were obtained by scanning of separate objects and their transfer to the real geographic co-ordinates of an equiintermediate conic projection. Then the covers were projected on plane degree-system geographic co-ordinates. Some attributive databases were formed for each thematic layer, and in the last stage all covers were combined into the single information system. Separate digital covers represent mathematical descriptions of geological objects and relations between them, such as Earth's altimetry, active fault systems, seismicity etc. Some grounds of the cartographic generalization were taken into consideration in time of covers compilation with projection and co-ordinate systems precisely answered a given scale. The globe allows us to carry out in the interactive regime the formation of coordinated with each other object-oriented databases and thematic covers directly connected with them. They can be spread for all the Earth and the near-Earth space, and for the most well known parts of divergent and convergent boundaries of the lithosphere plates. Such covers and time series reflect in diagram form a total combination and dynamics of data on the geological structure, geophysical fields, seismicity, geomagnetism, composition of rock complexes, and metalloge-ny of different areas on the Earth's surface. They give us possibility to scale, detail, and develop 3D spatial visualization. Information filling the covers could be replenished as in the existing so in newly formed databases with new data. The integrated analyses of the data allows us more precisely to define our ideas on regularities in development of lithosphere and mantle unhomogeneities using some original technologies. It also enables us to work out 3D digital models for geodynamic development of tectonic zones in convergent and divergent plate boundaries with the purpose of integrated monitoring of mineral resources and establishing correlation between seismicity, magmatic activity, and metallogeny in time-spatial co-ordinates. The created multifold geoinformation system gives a chance to execute an integral analyses of geoinformation flows in the interactive regime and, in particular, to establish some regularities in the time-spatial distribution and dynamics of main structural units in the lithosphere, as well as illuminate the connection between stages of their development and epochs of large and supperlarge mineral deposit formation. Now we try to use the system for prediction of large oil and gas concentration in the main sedimentary basins. The work was supported by RFBR, (grants 93-07-14680, 96-07-89499, 99-07-90030, 00-15-98535, 02-07-90140) and MTC.

  13. The contemporary North Pangea supercontinent and the geodynamic causes of its formation

    NASA Astrophysics Data System (ADS)

    Kovalenko, V. I.; Yarmolyuk, V. V.; Bogatikov, O. A.

    2010-11-01

    The supercontinental status of the contemporary aggregation of continents called North Pangea is substantiated. This supercontinent comprises all continents with the probable exception of Antarctica. In addition to the spatial contiguity of continents, the supercontinent is characterized by the prevalence of the continental crust that combines North America and Eurasia, Eurasia and Africa, and Eurasia and Australia. Over the course of the 300-250-Ma evolution from Wegener's Pangea to contemporary North Pangea, the aggregation of continents has not lost its supercontinental status, despite modification of the supercontinent shape and opening and closure of the newly formed Paleotethys, Tethys, Atlantic, and Indian oceans. Over the last 250-300 Ma, all movements of the lithospheric plates have most likely occurred within the Indo-Atlantic segment of the Earth, whereas the Pacific segment has remained oceanic. In short, the formation of the North Pangea supercontinent can be outlined in the following terms. The long and deep subduction of the lithospheric plates beneath Eurasia and North America gave rise to the stabilization of the continents and accumulation of huge bodies of the cold lithosphere commensurable in volume with the upper mantle at the deeper mantle levels. This brought about compensation ascent of hot mantle (mantle plumes) near the convergent plate boundaries and far from them. A special geodynamic setting develops beneath the supercontinent. Due to encircling subduction of the lithospheric plates and related squeezing of the hot mantle, an ascending flow, or plume (superplume) formed beneath the central part of the supercontinent. In our view, the African superplume broke up Wegener's Pangea in the Atlantic region, caused the opening of the Atlantic and Indian oceans, and migrated to the Arctic Region 53 Ma ago.

  14. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes

    NASA Astrophysics Data System (ADS)

    BräUer, Karin; KäMpf, Horst; Niedermann, Samuel; Strauch, Gerhard; Tesa?, Ji?I.

    2008-04-01

    Comprehensive studies of CO2-rich fluids close to the swarm earthquake region Nový Kostel at the Czech-German border have been started 15 years ago and have in particular included two extended chemical and isotope monitoring studies lasting for several years each. The regional surface distribution patterns of the fluid signatures including the identification of the origin of fluid components are the focus of the detailed studies. Three degassing centers (Cheb basin, Mariánské Lázn?, and Karlovy Vary) with high CO2 flux and the same level of ?13C values, but different levels of 3He/4He ratios, have been identified. The studies have located the CO2 source and have investigated seismically induced changes in fluid characteristics on the basis of unique weekly sampling campaigns at selected locations. A seismically triggered release of crustal helium was confirmed by both monitoring campaigns. Finally, indications for a presently active magmatic process beneath the Cheb basin have been found. In contrast to volcanically active regions, magma accumulation in the study area takes place at the crust-mantle boundary and is not yet accompanied by heat transfer to the surface. Likewise, reactive magma-derived components are absent in the degassing fluids. The area of investigation has the potential to be a natural laboratory for fundamental studies of active geodynamic processes. The results of our fluid monitoring, including the stunning observation of mantle-derived free fluids marked by 3He/4He ratios within the subcontinental mantle range, are supported by geophysical findings from seismic studies and geologic indications.

  15. 3D Geodynamic Modelling Reveals Stress and Strain Partitioning within Continental Rifting

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Mondy, L. S.; Duclaux, G.; Moresi, L. N.

    2014-12-01

    The relative movement between two divergent rigid plates on a sphere can be described using a Euler pole and an angular velocity. On Earth, this typically results in extensional velocities increasing linearly as a function of the distance from the pole (for example in the South Atlantic, North Atlantic, Woodlark Basin, Red Sea Basin, etc.). This property has strong implications for continental rifting and the formation of passive margins, given the role that extensional velocity plays on both rift style (wide or narrow), fault pattern, subsidence histories, and magmatism. Until now, this scissor-style opening has been approached via suites of 2D numerical models of contrasting extensional velocities, complimenting field geology and geophysics. New advances in numerical modelling tools and computational hardware have enabled us to investigate the geodynamics of this problem in a 3D self-consistent high-resolution context. Using Underworld at a grid resolution of 2 km over a domain of 500 km x 500 km x 180 km, we have explored the role of the velocity gradient on the strain pattern, style of rifting, and decompression melting, along the margin. We find that the three dimensionality of this problem is important. The rise of the asthenosphere is enhanced in 2D models compared to 3D numerical solutions, due to the limited volume of material available in 2D. This leads to oceanisation occurring significantly sooner in 2D models. The 3D model shows that there is a significant time and space dependent flows parallel to the rift-axis. A similar picture emerges from the stress field, showing time and space partitioning, including regions of compression separating areas dominated by extension. The strain pattern shows strong zonation along the rift axis, with increasingly localised deformation with extension velocity and though time.

  16. Tectonosedimentary evolution of the Crotone basin, Italy: Implications for Calabrian Arc geodynamics

    SciTech Connect

    Smale, J.L. ); Rio, D. ); Thunell, R.C. )

    1990-05-01

    Analysis of outcrop, well, and offshore seismic data has allowed the Neogene tectonosedimentary evolution of an Ionian Sea satellite basin to be outlined. The Crotone basin contains a series of postorogenic sediments deposited since Serravallian time atop a complex nappe system emplaced in the early Miocene. The basin's evolution can be considered predominantly one of distension in a fore-arc setting punctuated by compressional events. The earliest sediments (middle-late Miocene) consist of conglomerates, marls, and evaporites infilling a rapidly subsiding basin. A basin-wide Messinian unconformity and associated intraformational folding mark the close of this sedimentary cycle. Reestablishment of marine conditions in the early Pliocene is documented by sediments which show a distinct color banding and apparent rhythmicity, which may represent the basin margin to lowermost Pliocene marl/limestone rhythmic couplets present in southern Calabria. A bounding unconformity surface of middle Pliocene age (3.0 Ma), which corresponds to a major northwest-southeast compressional event, closes this depositional sequence. The basin depocenter shifted markedly toward the southeast, and both chaotic and strong subparallel reflector seismic facies of wide-ranging thicknesses fill the depositional topography created during this tectonic episode. Basin subsidence decreases dramatically in the late Pliocene and cessates in response to basin margin uplift in the early Pleistocene. The chronostratigraphic hierarchy of these depositional sequences allows them to constrain the deformational history of the basin. In addition, similar depositional hierarchies in adjacent basins (i.e., Paola, Cefalu, and Tyrrhenian Sea) allow them to tie the stratigraphy and evolution of the Crotone basin to the geodynamic evolution of the Calabrian arc system.

  17. The Tertiary dike magmatism in the Southern Alps: geochronological data and geodynamic significance

    NASA Astrophysics Data System (ADS)

    Bergomi, Maria Aldina; Zanchetta, Stefano; Tunesi, Annalisa

    2015-03-01

    The relationships between tectonics and magmatic activity in the Alps are still debated. Despite an active subduction since the Late Cretaceous, no arc-related magmatism is recorded prior of the Middle Eocene. The emplacement of plutons along the Insubric Fault in a short time span (~34-28 Ma) has been generally interpreted in terms of the slab break-off model. The Tertiary magmatism, however, is also characterized by the occurrence of widespread calcalkaline dikes not necessarily intruded along the Insubric Fault. The geochemical features of dikes vary along the Alps belt and are interpreted in terms of mantle source heterogeneity and degree of crustal contamination. U-Pb zircon dating of studied dikes indicates intrusion ages in the 42- to 34-Ma time interval. These data provide evidence for a pre-Oligocene magmatic activity that was not solely limited to the Adamello batholith. Moreover, it appears that dikes rejuvenate from SE to NW, in an opposite direction with respect to the Alpine subduction polarity. Thus, a more complex geodynamic scenario than the slab break-off model must be envisaged. The absence of arc magmatism prior to the Middle Eocene can be explained by the low-angle subduction of the Tethyan slab that confined the mantle partial melting zone away from the orogenic wedge. The onset of the Apennines subduction at 55-50 Ma caused the Alpine slab to retreat. The partial melting zone progressively migrated beneath the orogenic wedge and finally reached the axial belt in the Late Eocene, when the Alpine collision was completed. Only at this stage, slab break-off occurred and promoted the intrusion of the Periadriatic plutons.

  18. Continental Flood Basalts of Bennett Island, East Siberian Sea: High Arctic Geodynamics

    NASA Astrophysics Data System (ADS)

    Tegner, Christian; Pease, Victoria

    2014-05-01

    Volcanism provides a means of tracing mantle melting events and crustal evolution. The High Arctic includes a rich portfolio of volcanic rocks outcropping in the Circum-Arctic borderlands and imaged geophysically beneath the Alpha-Mendeleev Ridge that have been lumped together as a High-Arctic Large Igneous Province (HALIP). However, the ages (c. 440-60 Ma) and compositions (tholeiitic-alkaline-calc-alkaline) reported varies considerably and geological correlations remain elusive. One of the possible correlative events is the formation of continental flood basalts and sills in the Canadian Arctic Islands, Svalbard, Franz Josef Land and Bennett Island. These flood basalts have previously been linked to mantle plume melting and may represent a short-lived LIP event at c. 124-122 Ma. We present new data for a 350 m thick continental flood basalt succession at Bennett Island examined during fieldwork in Septemer 2013 on a joint Russian (VSEGEI) - Swedish (SWEDARCTIC) expedition to the De Long Archipelago. This volcanic succession is composed of 20 near-horisontal, undeformed flow units overlying a thin sedimentary succession of Cretaceous age (?) including coal seams and possibly volcaniclastic material that, in turn, unconformably overlies a more steeply dipping succession of Cambrian and Ordovician sediments. The flows are thinnest (c. 2-10 m) and aphyric to very-sparsely olivine-phyric in the lower portion. In contrast, the flows in the upper portion are thicker (>20 m) and aphyric to sparsely plagioclase-phyric. We will discuss new petrographic and compositional data for the Bennett Island flood basalts, possibly including new U-Pb age data. The aim is to evaluate their petrogenesis, to discuss their possible correlation to the flood basalt and sill successions of the Canadian Arctic Islands, Svalbard and Franz Josef Land and evaluate the geodynamic evolution of the High Arctic.

  19. Moving-mass gravimeter calibration in the Mátyáshegy Gravity and Geodynamical Observatory (Budapest)

    NASA Astrophysics Data System (ADS)

    Kis, Márta; Koppán, Andras; Kovács, Péter; Merényi, László

    2014-05-01

    A gravimeter calibration facility exists in the Mátyáshegy Gravity and Geodynamical Observatory of Geological and Geophysical Institute in Hungary. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The main target of the calibration device was to reach a relative accuracy of 0.1-0.2% for the calibration of Earth-tide registering gravimeters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. The instrument was out of order for many years and in 2012 and 2013 it was renovated and automatized. The calibration process is aided by intelligent controller electronics. A new PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. As it is well known that variations of the magnetic field can influence the measurements of metal-spring gravimeters, authors carried out magnetic experiments on the pillar of the calibration device as well, in order to analyze the magnetic effect of the moving stainless steel-mass. During the movements of the mass, the observed magnetic field has been changed significantly. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. In this presentation authors show the facility in details and the numerical results of tests carried out by applying LCR G gravimeters.

  20. Flexural Rigidity Around Ross Island, Antarctica Based On Geodynamic Modeling And Seismic Stratigraphy

    NASA Astrophysics Data System (ADS)

    Jha, S.; Witt, D. R.; Harry, D. L.

    2013-12-01

    Quantifying the flexural subsidence history around Mt. Erebus, located on Ross Island in the southern Ross Sea of West Antarctica, is essential to separating the tectonic, volcanic, and climatic signals in the stratigraphic record contained in regional seismic reflection and borehole data. Toward this end, we analyze both broken and continuous plate models of flexural subsidence due to volcanic loading around Mt. Erebus. Seismic reflection data from the IT90AR71, NBP0401-118m and NBP0401-126m seismic surveys are used to identify stratigraphic horizons associated with loading during different eruptive events. Based on results obtained by ANTOSTRAT, we have identified 5 seismic horizons RSb1 (early Oligocene), RSb2 (late Oligocene to early Miocene), RSb3 (early Miocene), RSb4(early to middle Miocene) and RSb5 (middle Miocene), which are correlated with the CIROS-1 drill hole, in the Eastern Ross Sea to identify 5 episodes of flexural subsidence related to Ross Island volcanic loading. The seismic data indicate that the flexural bulge associated with all 5 volcanic loading events is located at an average distance of 250 km from Mt. Erebus. We use the position of the flexural bulge and the dip of strata within the basin to constrain geodynamic models of flexural subsidence due to volcanic loading. We assume a mantle density of 3200 kg/m^3 and density of sedimentary basin infill of 2700 kg/m^3. Our preliminary results suggest that a broken plate, point load model is the most ideal case for Ross Island. The flexural rigidity is approximately 10^22.5 N-m, and the cumulative load of all volcanic episodes of Mt. Erebus is 9x10^11 N.

  1. Grain size evolution in the mantle and its effect on geodynamics and seismic observables

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Dannberg, J.; Eilon, Z.; Gassmoeller, R.; Moulik, P.; Faul, U.; Asimow, P. D.

    2014-12-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth and recrystallisation at phase transitions. Further expressions account for slow growth in multiphase assemblages resulting from pinning. Grain size variations also affect seismic properties of mantle materials. We use several formulations from the literature to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing seismic observables such as body wave travel times, ray paths, and attenuation (t*) as well as mode eigenfrequencies and quality factors at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. This work is based on a project started at the CIDER 2014 summer program. References: Bangerth, W. et al., 2014, ASPECT: Advanced Solver for Problems in Earth's ConvecTion. Computational Infrastructure for Geodynamics, 2014. Stixrude, L. and Lithgow-Bertelloni, C., HeFESTo: Thermodynamics and Elasticity of the Mantle, AGU Fall Meeting 2013.

  2. Differential Unroofing Across Southeastern Tibet: Geodynamic Links Between Plateau-Scale Tectonics and Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Schmidt, J. L.; Zeitler, P. K.; Tremblay, M. M.; Shuster, D. L.

    2014-12-01

    Detailed documentation of the exhumation history of southeastern Tibet is important for understanding of the coupling of tectonic and geomorphic processes shaping this landscape. We present K-feldspar 40Ar/39Ar multi-diffusion domain model analysis and zircon (U-Th)/He thermochronology along both horizontal and vertical traverses within Gangdese batholith to constrain the spatial and temporal pattern of exhumation in the region. In conjunction with thermokinematic modeling we use these data to interrogate patterns of regional erosion and test mechanical models of plateau evolution such as delamination, lithospheric-scale folding, and rifting. Previously reported zircon and apatite (U-Th)/He data from a vertical transect west of the Nari Yun Chu Rift indicate a prolonged period of exhumation between ~20 Ma and 12 Ma. To the east, K-feldspar modeling of a sample on the Nyang River shows a period of rapid cooling between ~18-15 Ma that is consistent with an extended period of rapid exhumation. However, zircon (U-Th)/He data vary by ~30 Ma across an E-W transect through the region, which indicates that either the period of rapid erosion occurred much earlier in the west than in the east, or erosion was faster in the east, and removed significantly more material. These differences in exhumation between the E and W correlate with a documented increase in the depth of the Moho and general decrease in relief from E to W. These spatial correlations suggest linkages between deep geodynamic processes and the development of mountain topography. Variability in km-scale exhumation despite common mountain summit elevations throughout southeastern Tibet indicates that this region underwent a complex and protracted unroofing history. Additional data and modeling will test whether an erosional front propagated through the region or if pulses of erosion resulted from localized tectonic forcing, such as motion on the Nari Yun Chu Rift.

  3. Geodynamic model of upper mantle convection and transformations of the arctic lithosphere in the Mesozoic and Cenozoic

    NASA Astrophysics Data System (ADS)

    Lobkovsky, L. I.; Shipilov, E. V.; Kononov, M. V.

    2013-11-01

    By interpretation of the complex geological and geophysical data and paleotectonic reconstructions based on the results of deep seismic tomography, a new deep geodynamic mechanism is developed to describe the formation and evolution of Amerasian and Eurasian basins, together with their adjacent geological structures of the Arctic region. The Mesozoic and Cenozoic transformations of the lithosphere in a number of regions of the Arctic Ocean are considered. The role and place of the upper-mantle convection is explored, and the chronology of the key structure-forming events is analyzed.

  4. The role of modern geodynamics in the transformation of the local erosion basis in the Arctic river systems

    NASA Astrophysics Data System (ADS)

    Shapovalova, Elizaveta

    2015-04-01

    To assess the impact of modern geodynamic processes in the erosion of river channels in the area of oil and gas field, located in the permafrost region the following studies were made: interpretation of satellite images to identify fault zones in the structure of the landscape oil and gas field, located in the subarctic zone; mathematical modeling of extensive and local subsidence in the found faults areas; field measurements within the territory of the field. These studies led to conclusions about influence of modern geodynamic processes on activization of erosive processes. Dimensions of the studied field is approximately 40*60 km. As a result of extensive sagging modeling on its territory for the period of the end of the development the sag depth of the Earth's surface equal to 90 cm was obtained. In this case, the slope of the Earth's surface with respect to the central part of the study area will be 4.5 * 10-5. This slope is comparable with the values of the average slope of lowland rivers. For example, for the Ob River it is 4 * 10-5. This case shows that the river flowing through the field, due to changes in the local erosion basis may be experiencing channel deformation in its central part. According to the observations and model calculations local subsidence of the Earth's surface in fault zones induced by mining, lead to the Earth's surface inclines order 7 * 10-5 - 1.2 * 10-3. Field observations in 2014 in areas where active faults identified revealed a number of factors of changes in the river channel. There were areas overdeepened channel, tear off and slipped down blocks of rocks, leading to the subsequent transformation of the channel, as well as additional thermal erosion gullies that increase the accumulation of sediments and alter the structure of the river network. The combination of modern geodynamics with thermokarst processes in perennial permafrost layer enhances erosion. This investigations have shown that the factor of modern geodynamics of natural or man-made influences on the transformation of the river system at the present stage of its development. This is a new factor. Previously, it was not taken into account, among other geomorphological factors in the analysis of structure changes of the Earth's surface.

  5. Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell methods with application in geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Agrusta, Roberto; Hunen, Jeroen

    2015-06-01

    The particle-in-cell method is generally considered a flexible and robust method to model the geodynamic problems with chemical heterogeneity. However, velocity interpolation from grid points to particle locations is often performed without considering the divergence of the velocity field, which can lead to significant particle dispersion or clustering if those particles move through regions of strong velocity gradients. This may ultimately result in cells void of particles, which, if left untreated, may, in turn, lead to numerical inaccuracies. Here we apply a two-dimensional conservative velocity interpolation (CVI) scheme to steady state and time-dependent flow fields with strong velocity gradients (e.g., due to large local viscosity variation) and derive and apply the three-dimensional equivalent. We show that the introduction of CVI significantly reduces the dispersion and clustering of particles in both steady state and time-dependent flow problems and maintains a locally steady number of particles, without the need for ad hoc remedies such as very high initial particle densities or reseeding during the calculation. We illustrate that this method provides a significant improvement to particle distributions in common geodynamic modeling problems such as subduction zones or lithosphere-asthenosphere boundary dynamics.

  6. Geodynamic models of intraplate deformation: Applications to Canada's High-Arctic Eurekan Orogeny

    NASA Astrophysics Data System (ADS)

    Gray, R.; Pysklywec, R. N.

    2012-12-01

    The Phanerozoic tectonic history of Canada's High-Arctic represents a complex history of collision, rifting and intra-plate deformation. Beginning in latest Devonian to earliest Carboniferous times, development of the Palaeozoic Franklinian Basin was terminated by the Ellesmerian Orogeny. Development of the Sverdrup Basin followed the Ellesmerian Orogeny. Subsequently, ~200 km of shortening occurred during the Eocene Eurekan Orogeny that affected parts of the Franklinian and Sverdrup Basins. A problem in distinguishing between Ellesmerian and Eurekan structures is that the Eurekan Orogeny overprinted and reactivated structures initially formed during the Ellesmerian Orogeny. Given that many of the Eurekan structures are reactivated Ellesmerian structures, it is often suggested that pre-existing mechanical weakness, such as faults and/or shear zones, and compositional boundaries likely controlled localization of Eurekan tectonism. Less invoked in the context of the Eurekan Orogeny, though arguably just as important in localizing intra-plate deformation, is strain localization resulting from spatial variations in the thermal state of the lithosphere (thermal refraction). We quantitatively investigate both processes and their importance in localizing deformation during the Eurekan Orogeny using a visco-plastic (thermally-activated power-law creep and Mohr-Coulomb rheologies) finite-element code that solves the governing equations of incompressible fluid flow. The tectonic problem is inherently related to the dynamics of the deep lithosphere where lower crust interacts with the mantle lithosphere, so the models are conducted at an upper mantle depth scale (600 km). The collisional models are evolved to the stage of a young orogen; e.g., ~15 Myr, ~200 km of shortening. The experiments demonstrate the thermal, rheologic, and kinematic conditions that control the reactivation of pre-existing structures and their importance during the Eurekan Orogeny. A free surface and prescribed erosional laws make up the top boundary of the model domain and allow topography to develop self consistently with the underlying geodynamics. We interpret the lithosphere structure and model topography in the context of constraints on the geometry of the Eurekan Orogeny, in addition to available geological/geophysical constraints on internal lithospheric structure.

  7. ENVIMINE - developing environmental and geodynamical safety related to mine closure in the Barents region

    NASA Astrophysics Data System (ADS)

    Väisänen, Ulpu; Kupila, Juho; Kozyrev, Anatoly; Konukhin, Vladimir; Alakangas, Lena

    2015-04-01

    A project of mining environmental research in the Barents region was carried out in 2012-2014, in cooperation between Geological Survey of Finland, Mining Institute of Kola Science Centre, Russian Academy of Sciences, Russia, and Luleå University of Technology, Sweden. The study areas were the active chrome mine of Kemi in Northern Finland, and the closed mines of Umbozero in Murmansk region, Northwestern Russia, and Laver in Northern Sweden. Umbozero mine, producing rare earth metals, was in operation 1984-2004. Laver mine with iron sulphide ore, producing copper, was in operation 1936-1946. The objectives of the project were to develop a methodology for environmentally safe mine closure by cross border cooperation, and to produce information of the mining environment for target groups. The aim was also to find out solutions for minimizing environmental impacts and to develop multilateral relations between Finnish, Russian and Swedish organizations, responsible for environmental management. The studies were carried out by sampling and analyzing of groundwater and surface water, surficial deposits and organic sediments of streams in the mine sites and reference areas. Composition of deposits in the tailings was carried out by means of geophysical measurements (GPR, XRF). Research data of Kemi mine indicate diminished emissions, especially after open pit mining was finished in 2006. The results in Laver, Sweden, indicate that the oxidation rate in the tailings has decreased over time, which may be due to the increased distance over which oxygen needs to diffuse to reach unoxidised sulphide grains in the tailings. Problems in Umbozero are seismic instability, high pH values of waters (max. 10.4), fluorine and aluminum concentrations in the mine site, due to the rock type. Concentrations were decreasing downstream, also heavy metal concentrations were low. Results of the project are the basis for updated database of environmental condition of the study areas and for assessment of environmental impacts. Database will be used for developing recommendations for providing environmental and geodynamical safety of Umbozero. The project was partly funded by the European Union.

  8. Stratigraphic signatures of crustal shortening and central Andean geodynamics in the Altiplano plateau, southern Peru

    NASA Astrophysics Data System (ADS)

    Perez, Nicholas D.; Horton, Brian K.

    2014-05-01

    The initiation and evolution of hinterland basins along convergent margins has been variably attributed to partitioning of pre-existing flexural foreland basins, drainage closure by uplift of flanking topographic barriers, and/or isolated strike-slip or extensional processes. In the central Andean plateau, the upper Oligocene to middle Miocene basin fill of the northernmost Altiplano in southern Peru preserves a record of orogenesis between the Western Cordillera magmatic arc and the Eastern Cordillera fold-thrust belt. New stratigraphic, provenance, geochronologic and structural datasets from the ~3.7-km-high Ayaviri hinterland basin suggest that upper-crustal shortening was the dominant factor controlling basin evolution. The basin preserves a ~2300 m thick succession (Puno Group and Lower Tinajani Formation) of fluvial sandstone and overbank siltstone capped abruptly by ~400 m of alluvial fan pebble-boulder conglomerate (Upper Tinajani Formation). New U-Pb zircon geochronologic constraints from 8 tuff horizons and the youngest age populations from 10 sandstone horizons constrain the depositional age between 29.6 ± 1.2 Ma and 15.71 ± 0.97 Ma. The resulting ~15 Myr basin record yields sediment accumulation rates between 110 and 660 m/Myr, comparable to those of major lowland foreland basins. A prominent shift in basin provenance is recorded by detrital zircon U-Pb spectra, conglomerate clast compositions, modal sandstone compositions and paleocurrent data. Newly dated growth strata along the two basin-bounding thrust faults highlight the role of Andean shortening on basin evolution. Footwall growth strata along the southwest-directed Ayaviri fault defining the Eastern Cordillera margin suggests deformation at ~28 Ma. Younger footwall growth strata along the northeast-directed Pasani fault defining the Western Cordillera margin demonstrate an episode of out-of-sequence thrusting at ~16.4 Ma. This event is associated with the provenance and depositional shift of the coarse-grained Upper Tinajani Formation. Oligocene to early Miocene basin evolution was controlled by flexural subsidence driven by shortening along the Ayaviri fault and broader Eastern Cordillera. Subsequent basin reorganization was initiated by punctuated out-of-sequence motion along the southwest basin margin (Pasani fault). The record of variable, punctuated shortening and subsidence emphasizes the role of upper-crustal thrusting in driving hinterland tectonics. However, it remains unclear if out-of-sequence thrusting in the northern Altiplano was a localized deformation event indicative of critical wedge dynamics, changing magmatic-arc processes, or a geodynamic response to complex patterns of lithospheric removal and pulses of surface uplift.

  9. Geodynamic evolution of eastern Dronning Maud Land: research highlights from an international geological-geophysical approach

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Ehlburg, Marlina; Laeufer, Andreas; Clark, Chris; Kleinhanns, Ilka; Andersen, Tom; Mieth, Matthias; Ruppel, Antonia; Damaske, Detlef; Lucka, Nicole; Estrada, Solveig; Jokat, Wilfried

    2014-05-01

    East Antarctica formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) and the Kuunga Orogen that apparently converge in Dronning Maud Land (DML). In central DML, the major Forster Magnetic Anomaly separates rocks with Grenville-age protolith ages of ca. 1130-1000 Ma to the W, from rocks with Early Neoproterozic protolith ages, c. 1000-930 Ma, to the East. The Forster Magnetic Anomaly is therefore interpreted as a suture. New field-work during two recent international expeditions, Geodynamic Evolution of East Antarctica (GEA) I + II, and first geoscientic results reveal a complex tectonic architecture between Sør Rondane and central DML. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block appears as part of the EAAO or the Kuunga Orogen, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides 12 new zircon crystallistation ages ranging from 1000-930 Ma. The TTG terrane has predominantly oceanic affinities and the wide range of ages might indicate long-lasting accretionary tectonics. The TTG terrane shows in part limited tectonic overprint and could be the southeastern foreland of the EAAO or the Kuunga Orogen. Close to the contact of the two blocks, grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt.

  10. Neoproterozoic/Lower Palaeozoic geodynamic evolution of Dronning Maud Land: integrating geology and geophysics

    NASA Astrophysics Data System (ADS)

    Jacobs, Joachim; Andreas, Läufer; Clark, Chris; Kleinhanns, Ilka; Elburg, Marlina; Ruppel, Antonia; Estrada, Solveig; Damaske, Detlef; Jokat, Wilfried; Riedel, Sven; Lucka, Nicole

    2013-04-01

    East Antarctica probably formed by amalgamation of a number of cratons along distinct Ediacaran mobile belts, including the ca. 600-500 Ma East African-Antarctic Orogen (EAAO) that dissects Dronning Maud Land (DML). New field-work during the international expeditions Geodynamic Evolution of East Antarctica (GEA) I + II in the austral summers 2010/11 and 2011/12, and first geochronological results from eastern DML reveal a complex tectonic architecture across the belt. In western DML, the EAAO reworks older Mesoproterozoic crust of the Maud Belt; the westernmost boundary of the mobile belt is characterized by a major dextral transpressional shear zone. In central DML, a major magnetic anomaly, the Forster anomaly, was interpreted as a cryptic suture of the EAAO (Riedel et al. 2012). The area where the Forster anomaly crosses the DML mountains is poorly investigated so far, but appears to coincide with a major strike slip shear zone in the southern Kurze Mts. and the occurrence of major Ediacaran granulite bodies. East of the Forster anomaly, the magnetic anomaly pattern changes significantly and typical Maud type crust is not present any longer. GEA II targeted a range of nunataks between Sør Rondane and central DML that had never been visited previously (from Blåklettane and Bergekongen in the E to Urna and Sørsteinen in the W). These nunataks are dominated by medium- to high-grade metasedimentary and metavolcanic rocks of possibly Neoproterozoic age, including abundant marble and graphite schists. Sør Rondane in eastern DML, is dominated by two distinct blocks separated by the dextral Main Shear Zone. The northwestern block is still part of the eastern EAAO, where new SHRIMP zircon data from metamorphic rims provide ages of ca. 560 Ma. The southeastern block is made up of a TTG terrane, which provides four new SHRIMP zircon dates between 990-980 Ma, interpreted as igneous crystallization ages (oceanic arc). The TTG terrane shows limited tectonic overprint and is likely the southeastern foreland of the EAAO. Close to the contact of the two blocks grey geisses and augen-gneisses gave zircon crystallization ages of ca. 750 Ma, ages which were previously unknown from the EAAO. The Forster anomaly therefore separates distinctly different parts of the EAAO: a) a reworked, mainly Grenville-age crust to the W (the overprinted margin of the Kalahari Craton) and b) a part of the orogen dominated by Neoproterozoic accretionary tectonics to the E. This difference is also reflected in the geochemistry of voluminous late-tectonics granitoids across the belt. Riedel, S. et al., 2012, Tectonophysics, doi.org/10.1016/j.tecto.2012.10.011

  11. The Three-dimensional Geodynamic Model of The Pechenga Ore District (baltic Shield, Russia)

    NASA Astrophysics Data System (ADS)

    Lobanov, K.; Kazansky, V.

    The drilling and investigation of the Kola superdeep borehole SG-3 for the first time provided direct data on the structure and composition of the ancient continental crust at previously inaccessible depths. They stimulated the elaboration of alternative three- dimensional models of the Pechenga ore district equally. These models consider the Pechenga structure that hosts large sulfide copper-nickel deposits as a graben-syncline, asymmetrical syncline, explosive volcanic center, and two-continent collision suture zone. The paper comprises the reappraisal of the alternative models and the charac- teristics of an integrated three-dimensional geodynamic model of the Pechenga ore district. Rock density and their anisotropy in elastic properties were used as the main parameters for the formalized description of the borehole SG-3 section and the refer- ence profile on the day surface. The first parameter reflects the rocks' lithology, the second accounts for the intensity of synmetamorphic tectonic deformations. In addi- tion, new age datings and morphology of the gravity field of the Pechenga district were considered. The computer-based technology insured reappraisal of the alterna- tive models by comparison of observed and calculated gravity profiles going through the borehole SG-3. The constraints of the proposed integrated model are based both on the investigations of the borehole SG-3 and on the additional surface studies. The model regards the Pechenga ore district as a horizontal section of a mantle-derived volcano-plutonic ore-forming system of the central type. The model defines the north- ern limb of the Pechenga structure as an imbricated fragment of a volcanic caldera and describes its southern limb as a combination of a sheeted monocline in a jux- taposition with rheomorphic granitoid domes. Development of the system was pre- ceded by rifting of the consolidated sialic crust. The model implies a co-genetic re- lationship between the Early Proterozoic basaltoid volcanism and the nickel-bearing basic-ultramafic plutonism. The basic and younger intermediate volcanic rocks filled two volcano-tectonic depressions associated with a thick zone of northwestern faults. Later on, the volcano-tectonic depressions experienced intense compression and meta- morphism that influenced the basement rocks, too. Finally, steep-dipping zones of cataclasis and retrograde metamorphism originated in an extension environment. The integrated model entails a new interpretation of localization conditions of the sulfide copper-nickel deposits and helps to understand the position of the Pechenga ore dis- 1 trict in the Pechenga-Imandra-Varzuga suture zone. This study was supported by the RFBR (projects nos. 01-05-64294, 01-05-64295). 2

  12. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Bunge, H.-P.; Schuberth, B. S. A.; Müller, R. D.; Talsma, A. S.; Moder, C.; Landgrebe, T. C. W.

    2012-02-01

    Absolute reference frames are a means of describing the motion of plates on the surface of the Earth over time, relative to a fixed point or "frame." Multiple models of absolute plate motion have been proposed for the Cretaceous-Tertiary period, however, estimating the robustness and limitations of each model remains a significant limitation for refining both regional and global models of plate motion as well as fully integrated and time dependent geodynamic models. Here, we use a novel approach to compare five models of absolute plate motion in terms of their consequences for forward modelled deep mantle structure since at least 140 Ma. We show that the use of hotspots, either fixed or moving, or palaeomagnetics, with or without corrections for true-polar wander, leads to significant differences in palaeo-plate velocities of over 10 cm/yr as well as differences in the location of palaeo-plate boundaries of up to 30° in longitude and latitude. Furthermore, we suggest that first order differences in forward predicted mantle structure between the models are due mostly to differences in palaeo-plate velocities, whereas variation in the location of plate boundaries may contribute to smaller wavelength offsets. We present a global comparison of the absolute reference frames in terms of mantle structure, which we have tomographically filtered to reflect the resolution of the seismic tomography model S20RTS. At very long wavelengths hotspot models best reproduce the mantle structure. However, when geometry and the match of smaller-scale subducted slab volumes are compared, a hybrid model based on moving hotspots after 100 Ma and palaeomagnetic data before (with no corrections for true-polar wander), best reproduces the overall mantle structure of slab burial grounds, even though no single model fits best at all mantle depths. We find also that the published subduction reference frame tested here results in a modelled mantle structure that agrees well with S20RTS for depths > 2500 km, equivalent to subduction before the Cretaceous, but not for shallower depths. This indicates that a careful assimilation of hotspot, palaeomagnetic and seismic tomography data into future absolute plate motion models is required to derive a more robust subduction reference frame.

  13. Red Sea Rift-Related Quseir Basalts, Central Eastern Desert, Egypt: Petrogenetic and Geodynamic Evolution

    NASA Astrophysics Data System (ADS)

    Farahat, Esam; Ali, Shehata; Hauzenberger, Christoph

    2015-04-01

    Mineral and whole rock chemistry of Tertiary Red Sea rift-related basalts occurred in south Quseir city, Central Eastern Desert, Egypt has been presented to investigate their petrogenetic and geodynamic evolution. The South Quseir basalts (SQB) have been classified as high-Ti tholeiitic lava (TiO2 >2 wt. %) emplaced in anorogenic tectonic setting. Their Mg# varies from 48 to 53. Pearce element ratios (PER) suggest that the SQB magmas have evolved through fractional crystallization of olivine + clinopyroxene ± plagioclase assemblages, however, the absence of Eu-anomaly argues against plagioclase fractionation. The clinopyroxene compositions provide evidence for polybaric fractionation of the parental mafic magma. Estimated temperatures of crystallization range from 1143 to 1323 oC for olivines, 1031 to 1207 oC for clinopyroxenes, 600 to 900 oC for feldspars, and 638 to 787 oC for Fe-Ti oxides. Oxygen fugacity (ƒO2) values range from -15.16 to -19.5. The incompatible trace element signatures of the SQB (La/Ba = 0.08-0.10 and La/Nb = 0.89-1.04) are similar to those of ocean island basalts (OIB) generated from asthenospheric mantle source unaffected by subduction components. Modelling calculations indicate that the SQB primary magmas were derived from 4-5% partial melting of a garnet-bearing lherzolite mantle source which had a potential temperature (Tp= 1334-1432 °C; based on olivine liquid equilibria) corresponding to ambient temperature of MORB (i.e. passive rifting). This ambient mantle would have to rise to shallower depths (< 100 km) in the upper mantle to cross the dry mantle solidus and stimulate adiabatic partial melting. These estimates along with absence of HIMU (high ? refers to high 238U/204Pb) components (based on trace element data) show that the SQB volcanism isn't associated with thermally driven mantle plumes. Thus, the SQB magma generation is related to extensional regime through passive upwelling and adiabatic decompression melting of an asthenospheric mantle source associated with Red Sea rifting.

  14. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kuzmin, M. I.; Ernst, R. E.

    2014-10-01

    The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes. Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic-Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian-Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai-Sayan rift system); Late Paleozoic-Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic-Cenozoic (origin of continental volcanic areas in Central Asia). Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes practically did not cease to affect crustal growth and transformations in CAOB in relation to the migration of the Siberian continent throughout the whole time span when the belt was formed above a cluster of hotspots, which is compared with the African superplume.

  15. 3D lithospheric structure beneath the eastern Tien-Shan and its geodynamic implication

    NASA Astrophysics Data System (ADS)

    Li, Z.; Wang, H.; Huang, G.; Levin, V. L.; Roecker, S. W.; Li, Z.

    2010-12-01

    The Tien-Shan mountains straddle the border between Kyrgyztan and northwestern China. The geodynamics of this orogeny is a subject of an ongoing debate (e.g., crustal shortening vs. subduction). Most of the recent investigations focused on the western part of the mountain range (west of 80 deg. E). That leaves the dynamics of the eastern part of the orogeny less clear. We perform tomographic inversion using local and regional seismic data for the eastern part of the Tien-Shan, and provide more observations to this argument. We use seismic data from the Xinjiang Earthquake Administration which has operated a regional seismic network in northwestern China since 1988, with 54 sites in the region between 80 and 93 deg. E. Since that time nearly 35,000 earthquakes with ML larger than 2 have been recorded. P and S waves were picked from records of these earthquakes, making up a database of over 521,000 picks. We use a finite-difference tomographic inversion code that performs both earthquake relocation and wavespeed inversion. We carry out inversions for 3D distribution of P wavespeed and also for Vp/Vs values, using seismic events with 8 or more phases and travel time residuals under 3 seconds. This selection leaves 24308 earthquakes, resulting in 231098 P wave picks and 194251 S wave picks. After 8 iterations the variation of travel time residual become insignificant, suggesting that our inversion has converged. We present results of the final (8th) iteration, in which the RMS travel time residual has been reduced from 1.12 s to 0.51 s (more then 50% reduction). A checkerboard test suggests the resolution of the P wavespeed is better than that of the Vp/Vs structure, which likely reflects the larger number of P wave picks yielding excellent ray coverage. The upper crust is well resolved, while the resolution decreases with depth. We see evidence for layering of the crust in our study area. Vertical changes in the wavespeed reveal at least three layers beneath the eastern Tien-Shan: upper, middle and lower crust. Inspection of the 3D distribution of wavespeed suggests crustal thickening due to lateral compression in our study area: a sudden change of the geometry of wavespeed contours (VP= 7.9-8.1km/sec) beneath the northern edge of the Tien-Shan, implying that the crustal thickness increases abruptly beneath the Tien-Shan.

  16. AlpArray - an initiative to advance understanding of Alpine geodynamics

    NASA Astrophysics Data System (ADS)

    Hetényi, György; AlpArray Working Group

    2013-04-01

    AlpArray is an initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 57 institutes in 16 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area from the Black Forest and the Bohemian Massif in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with a high-quality broadband seismometer backbone by combining the ca. 220 existing permanent stations with additional 300-340 instruments from mobile pools, all of them to be deployed from 2014-2015 until 2017. In this way, we plan to achieve homogeneous and high resolution coverage (ca. 40 km average station spacing). Furthermore, we also plan to deploy a few densely spaced targeted networks along swaths across - and in regions of - key parts of the Alpine chain on shorter time scales. These efforts on land will be combined with deployments of ca. 40-45 ocean bottom seismometers in the Mediterranean Sea. We also aim to implement the best practice for synchronizing mobile pool operation procedures and data handling: common data centre and data management procedure, free access to data to participants as soon as possible through EIDA. Data will be open to the public 3 years after the experiment ends. The main scientific goal of AlpArray is to investigate the structure and evolution of the lithosphere beneath the Alps. A primary target is the geometry and configuration of subducting slabs and their polarity switch beneath the arc. Numerous regional questions such as seismic hazard will be tackled. Targets will be imaged at several depths (e.g., from near-surface structure down to upper mantle anisotropy), scales (e.g., from local seismicity to mantle transition zone thickness variations), using different methodologies in the sub-regions of interest. An overview of these targets and the methodologies intended to be applied in connection with the seismological measurements will be presented. The geodynamic interpretation of the acquired data will be complemented by other Earth Science disciplines such as state-of-the-art numerical and analogue modelling, gravity and magneto-telluric measurements, as well as structural geology. In conclusion, we hope to turn the strong community interest into a truly interdisciplinary and collaborative project in the key region for seismotectonic activity and dynamics of Europe.

  17. Geodynamic features along the Christianna-Santorini-Kolumbo tectonic line (South Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve; Bejelou, Konstantina; Sakellariou, Dimitris; Kilias, Stefanos; Camilli, Rich; Escartin, Javier; Bell, Kathrine; Parks, Michelle

    2013-04-01

    Numerous oceanographic surveys have been conducted in Santorini Volcanic Group (South Aegean Sea) since 2001, revealing the spectacular morphology of the seafloor (multibeam data) and the sub-seafloor stratigraphic horizons (seismic profiles). Technological advancements in seafloor exploration such as ROVs and a submersible, enabled us to observe products of submarine volcanism that were previously inaccessible. In addition, gravity and box coring, geological and biological samples have been collected from selected areas for further analysis. The offshore geophysical survey in Santorini shows that recent volcanism occurred along a NE-SW tectonic zone named as Christianna-Santorini-Kolumbo (CSK) line. Christiana islets and three newly discovered submarine volcanic domes, with small colonies of yellow, presumably sulfur-reducing hydrothermal bacteria, occur in the southwestern part of the line. The presently active intra caldera volcanic domes of Palea and Nea Kameni islands and the low temperature (17-24°C) vent mounds covered by yellowish bacterial mat occupy the middle part of the line. The Santorini vent field is linked with the Kolumbo normal fault onshore which is likely controlling the pathways of hydrothermal circulation within the caldera. The most prominent feature at the NE part of this zone, is Kolumbo submarine volcanic chain which is extended 20Km with several volcanic domes aligned along this direction. The Kolumbo volcano had an explosive eruption in 1650 that killed 70 people on Santorini. The hydrothermal vent field in the crater floor of Kolumbo consists dominantly of active and inactive sulfide-sulfate structures in the form of vertical spires and pinnacles, mounds and flanges along a NE-SW trend, with temperatures up to 220°C and vigorous CO2 gas emission. For several years, the highest frequency of earthquakes was concentrated mainly in the vicinity of Kolumbo volcano. However, during 2011-2012 both seismic and geodetic unrest began abruptly inside Santorini caldera related to a shallow magmatic intrusion indicated by inflation. Recently, several earthquakes occurred in the region south of Christianna at the SW edge of the CSK line. This CSK line has possibly fed the post-caldera eruptions and is the main path for fluid circulation. In conclusion, the CSK tectonic line displays a special character in terms of morphology, volcanism, hydrothermal activity, seismicity and tectonic structure. It may cause important geohazards to the highly touristic Santorini island. Further seafloor investigations along this active line can provide insights into the overall geodynamic activity and aid the archipelago's hazard preparedness.

  18. Geodynamic and Magmatic Evolution of the Eastern Anatolian-Arabian Collision Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, Mehmet

    2014-05-01

    The Eastern Anatolian-Arabian Collision Zone represents a crucial site within the Tethyan domain where a subduction system involving a volcanic arc (i.e. Cretaceous to Oligocene Pontide volcanic arc in the north) associated with a large subduction-accretion complex (i.e. Cretaceous to Oligocene Eastern Anatolian Accretionary Complex i.e. "EAAC" in the south) turned later into a major continental collision zone that experienced a series of geodynamic events including lithospheric delamination, slab-steepening & breakoff, regional domal uplift, widespread volcanism and tectonic escape via strike slip fault systems. The region includes some of the largest volcanic centers (e.g. Karacada?, A??rkaya caldera, Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) as well as the largest transform fault zones in the Mediterranean region. A recent geodynamic modeling study (Faccenna et al., 2013) has suggested that both the closure of the Tethys Ocean and the resultant collision were driven by a large scale and northerly directed asthenospheric mantle flow named the "Tethyan convection cell". This convection cell initiated around 25 Ma by combined effects of mantle upwelling of the Afar super plume located in the south, around 3,000 km away from the collision zone and the slab-pull of the Tethyan oceanic lithosphere beneath Anatolia in the north. The aforementioned mantle flow dragged Arabia to the north towards Eastern Anatolia with an average velocity of 2 cm/y for the last 20 My, twice as fast as the convergence of the African continent (i.e. 1 cm/y) with western and Central Turkey. This 1 cm/y difference resulted in the formation of the left lateral Dead Sea Strike Slip Fault between the African and Arabian plates. Not only did this mantle flow result in the formation of a positive dynamic topography in the west of Arabian block, but also created a dynamic tilting toward the Persian Gulf (Faccenna et al., 2013). Another remarkable indication of the advance of the mantle flow below Arabia is the northward propagation of within-plate alkaline basaltic volcanism which initiated ~30 Ma around the Afar region to SE Turkey in a time period of ~20 My. The northernmost portion of this alkaline basaltic province is represented by the Karacada? volcanic complex in SE Turkey which covers a footprint area of 10,000 km2 and consists of lavas ranging in age from ~11 Ma to 100 Ky. The Early Stage volcanism of Karacada? was dominated by magmas derived from a shallower metasomatized lithospheric mantle source, in contrast to the Late Stage volcanism which was sourced by a garnet-bearing, deep asthenospheric mantle with Sr, Nd and Pb isotopic composition transitional between Red Sea MORB and Afar plume (Keskin et al., 2012). After the initial contact of the Arabian and Eurasian continents at ~15 Ma, the subducted Tethyan slab steepened beneath the large EAAC, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly caused a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south (Keskin, 2003). A hot and buoyant asthenosphere emplaced beneath the thinned lithosphere, which is represented mostly by a mélange material, and resulted in the formation of a regional domal uplift. Dehydration of the sunken slab accompanied with decompression of the upwelling asthenospheric mantle generated magmas with a subduction signature which was imprinted on a relatively enriched source chemistry across E Anatolia in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched Afar-type asthenospheric mantle to flow to the north through the slab-window. As a result, the subduction-modified (i.e. due to slab dehydration) E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. The eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkali

  19. Geodynamic modeling of passive margin systems from tectonic reconstructions with deforming plate boundaries

    NASA Astrophysics Data System (ADS)

    Williams, S.; Flament, N.; Heine, C.; Hosseinpour Vazifehshenas, M.; Seton, M.; Gurnis, M.; Müller, R. D.

    2012-04-01

    The effect of mantle flow on surface topography has been the subject of considerable interest over the last few years. A common approach to the problem is to link plate tectonic reconstructions and global geodynamic models. An important limitation of this approach is that traditional plate tectonic reconstructions do not take the deformation of the lithosphere into account. We introduce quantitative models of surface plate kinematics that include areas of deforming continental crust. We present a series of global reconstructions including deforming plates in key areas, derived using tools developed within the open source plate modeling software GPlates. In traditional plate reconstructions, the continents are represented as rigid blocks that overlap in full-fit reconstructions. Models that use topological polygons avoid continental overlaps, but plate velocities are still derived on the basis of Euler poles for rigid blocks. To resolve these issues, we use a methodology that requires at minimum two inputs; (1) the relative motions of the rigid blocks within continents; (2) a definition of the regions in which continental crust deformed between these blocks. We use geological and geophysical data to interpret the landward limit of significant extension and crustal thinning along conjugate passive margins. These boundaries are used to construct polygons along both margins that define the extent of the stretched continental crust on either side of the rift. We derive individual motion histories for each point on the conjugate continent/ocean boundaries (COBs). Joined together, these COB points form the topological boundaries of deforming domains in which each vertex moves independently. The deforming domains represented by topological meshes extend forward in time as the major rigid plates drift apart. In our tectonic reconstruction with deforming plates, the timing and the intensity of continental extension is imposed by the progressive, diachronous breakup and initiation of seafloor spreading for each major margin system. The velocity field derived from the plate reconstructions is used as a time-dependent surface boundary condition in mantle convection models that include compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. In deforming areas, the velocity field is obtained by linearly interpolating velocities from adjacent non-deforming areas within GPlates. We computed forward global mantle flow models using 3D-spherical finite-element code CitcomS to simultaneously quantify the relative contributions of lithospheric stretching, thermal subsidence, and deep mantle flow to the subsidence of passive margins. Applied to the South Atlantic, the method reproduces the first-order asymmetry of the margins. In particular, the large subsidence of the Argentinian margin is due to the dynamic topography induced by ongoing subduction along the narrow southern portion of South America. This result illustrates the importance of dynamic topography to the total subsidence at passive margins.

  20. International Tectonic Map of the Circumpolar Arctic and its Significance for Geodynamic Interpretations

    NASA Astrophysics Data System (ADS)

    Petrov, O. V.; Morozov, A.; Shokalsky, S.; Leonov, Y.; Grikurov, G.; Poselov, V.; Pospelov, I.; Kashubin, S.

    2011-12-01

    In 2003 geological surveys of circum-arctic states initiated the international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 000000 scale". The project received active support of the UNESCO Commission for the Geological Map of the World (CGMW) and engaged a number of scientists from national academies of sciences and universities. Magnetic and gravity maps were prepared and printed by the Norwegian Geological Survey, and geological map was produced by the Geological Survey of Canada. Completion of these maps made possible compilation of a new Tectonic Map of the Arctic (TeMAr), and this work is now in progress with Russian Geological Research Institute (VSEGEI) in the lead of joint international activities. The map area (north of 60o N) includes three distinct roughly concentric zones. The outer onshore rim is composed of predominantly mature continental crust whose structure and history are illustrated on the map by the age of consolidation of craton basements and orogenic belts. The zone of offshore shelf basins is unique in dimensions with respect to other continental margins of the world. Its deep structure can in most cases be positively related to thinning and rifting of consolidated crust, sometimes to the extent of disruption of its upper layer, whereas the pre-rift evolution can be inferred from geophysical data and extrapolation of geological evidence from the mainland and island archipelagoes. The central Arctic core is occupied by abyssal deeps and intervening bathymetric highs. The Eurasia basin is commonly recognized as a typical oceanic opening separating the Barents-Kara and Lomonosov Ridge passive margins, but geodynamic evolution of Amerasia basin are subject to much controversy, despite significant intensification of earth science researchin the recent years. A growing support to the concept of predominance in the Amerasia basin of continental crust, particularly in the area concealed under High Arctic Large Igneous Province, is based on two lines of evidence: (1) seismic studies and gravity modeling of deep structure of the Earth's crust suggesting a continuity of its main layers from Central Arctic bathymetric highs to the adjoining shelves, and (2) geochrolology and isotope geochemistry of bottom rocks in the central Arctic Ocean indicating the likely occurrence here of Paleozoic supracrustal bedrock possibly resting on a Precambrian basement. In the process of compilation activities all possible effort will be made to reflect in the new international tectonic map our current understanding of present-day distribution of crust types in the Arctic. It will be illustrated by smaller-scale insets depicting, along with the crust types, additional information used for their recognition (e.g. depth to Moho, total sediment thickness, geotransects, etc. This will help to integrate geological history of Central Arctic Ocean with its continental rim and provide a sound basis for testing various paleogeodynamic models.

  1. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intraoceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem becomes feasible. Results show that the rheological parameters and particularly the effective viscosity structure of the lithosphere can be reconstructed in a probabilistic sense. This also holds, with somewhat larger uncertainties, for the case where the temperature distribution is parametrized. Finally, we apply the method to a cross-section of the India-Asia collision system. In this case, the number of parameters is larger, which requires solving around 1.9 × 106 forward models. The resulting models fit the data within their respective uncertainty bounds, and show that the Indian mantle lithosphere must have a high viscosity. Results for the Tibetan plateau are less clear, and both models with a weak Asian mantle lithosphere and with a weak Asian lower crust fit the data nearly equally well.

  2. Generations of spreading basins and stages of breakdown of Wegener's Pangea in the geodynamic evolution of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.

    2008-03-01

    Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.

  3. Composition and geodynamic setting of the volcanic rocks from ophiolites of the Ust'-Belaya Mountains, Chukchi Peninsula

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Sokolov, S. D.; Hyasaka, Y.

    2011-03-01

    In addition to ophiolites in the structure of the Otrozhnaya sheet, the igneous rocks were established within the Middle Devonian-Lower Carboniferous tuffaceous-terrigenous complex earlier considered to be the cover of the ophiolite association. In order to establish their geodynamic formation setting, the geochemical study of igneous rocks was conducted. The volcanic rocks from the ophiolite complex are similar to MORB; subvolcanic rocks of tuffaceous-terrigenous complex have a suprasubduction origin. An abundance of pyroclastic rocks and the type of sediments allow us to conclude about their formation in an island arc setting. The existence of the Middle Devonian-Lower Carboniferous island arc complex within the Ust'-Belaya Mountains gives rise to continue the Koni-Taigonos arc inside the region and testifies to its subsistence in the Devonian.

  4. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kotler, P. D.; Khromykh, S. V.; Vladimirov, A. G.; Navozov, O. V.; Travin, A. V.; Karavaeva, G. S.; Kruk, N. N.; Murzintsev, N. G.

    2015-06-01

    Geological and new geochronological data are summarized for the Kalba-Narym granitic batholith in eastern Kazakhstan, and their geodynamic interpretation is suggested. In the structure of the batholith, we consider (from late to early) the Kunush plagiogranitic complex, the Kalguta granodiorite-granitic association, and the Kalba granitic, Monastery leucogranitic, and Kainda granitic complexes. The granitic complexes of the Kalba-Narym batholith were formed between the Carboniferous-Permian and the Early-Middle Permian (˜30 Ma). New data indicate that formation of the Kalba-Narym batholith was related to the activity of the Tarim mantle plume. Heating of the lithosphere by the plume coincided with postcollision collapse of the orogenic structure and led to the crust melting and formation of the studied granitic complexes in a relatively short period.

  5. Variations in grain size and viscosity based on vacancy diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology

    NASA Astrophysics Data System (ADS)

    Glišovi?, Petar; Forte, Alessandro M.; Ammann, Michael W.

    2015-08-01

    The effect of grain size on mantle viscosity is comparable to that of temperature and pressure. The current 3-D distribution of grain size in the mantle is, however, unknown. To explore the possible variability of grain size, we use the following: geodynamic inferences of effective viscosity, vacancy diffusion rates in upper mantle minerals and perovskite in the lower mantle, lateral variations in temperature derived from seismic images, and different geotherms. An important outcome of this modeling is a new mapping of lateral viscosity variations throughout the mantle. The corresponding 3-D variations in grain size are characterized by 2 orders of magnitude changes. We find a correlation between grain size variability in the mantle and absolute viscosity changes with depth. Our findings suggest that the traditional assumption of Arrhenius temperature dependence for vacancy diffusion in the lower mantle is not sufficient to constrain the deformation mechanisms that determine its effective bulk viscosity.

  6. A study on parameters for implicit penalizing-load algorithms for stabilization of free surfaces in geodynamic models

    NASA Astrophysics Data System (ADS)

    Andres-Martinez, Miguel; Phipps Morgan, Jason; Perez-Gussinye, Marta; Ruepke, Lars H.

    2014-05-01

    Earth surface in geodynamic codes has been typically modeled as a free-stress surface, which means that the total stresses applied to the surface are considered zero value. Free surface allows topography to be generated in response to the inner forces of geodynamic models. Surficial processes, such as erosion and sedimentation, reshape topography and, therefore, change the loads to be considered in the geodynamic processes. Therefore, a free surface is also needed to couple modeling of surficial processes together with mantle dynamics. Real free surface models also allow to study relaxation of topography, such as isostatic post-glacial rebound, in a geodynamic setting. However, free surfaces have typically confronted stability problems when the time step chosen to run the model is bigger than the viscous relaxation time. Time steps small enough to avoid free-surface instabilities usually result in computationally expensive models. We have developed a free-surface stabilization algorithm (FSSA) to avoid instabilities for bigger time steps (>10 Kyr), which penalizes the system with a load calculated implicitly from a portion of the difference between the topography for an initial time step, and the future topography in the next time step. The penalization load is formulated based on the velocities at the nodes for the beginning of the time step, and applied to the nodes at the beginning of the same time step. Additionally, we have coded the FSSA described in Kaus, Mühlhaus and May (2010), for comparison. Their algorithm also penalizes the system with a load which is calculated deriving the surface traction terms from the time discretization of the momentum equation. The penalizing terms in both our and Kaus' FSSAs are controlled by a factor which value ranges between 0 and 1. Several simplistic viscous tests have been run in order to find the optimal (more accurate and more stable) control factor for both algorithms. These tests showed that both methods produce very similar and accurate results (error ~<0.01), and that 2/3 is the optimal control factor for together stability and accuracy, for both FSSAs. The penalizing terms account for a vertical component and an horizontal component, which are symmetric and asymmetric in Stiffness-shape form, respectively. Consequently, the horizontal component of the penalization makes the Stiffness matrix to be asymmetric, so Cholesky factorization cannot be applied, which results into a slower solution of the system. We have developed a scheme to apply Cholesky factorization to the symmetric terms, and use Uzawa-like iterations to include the asymmetric terms in the system. This should intuitively give more stable results than FSSAs that omit the horizontal penalization terms, especially for topographies with steep slopes, where the horizontal component of the velocities is an important term for the surface displacement.

  7. Estimation of Non-Seasonal Oceanic Mass Redistribution and its Geodynamic Effects from the Topex/Poseidon Observation

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ray, Richard D.; Au, A. Y.

    1999-01-01

    Mass redistribution in terms of angular momentum will change the Earth's rotation under the conservation of angular momentum. It also changes the external gravitational field according to Newton's gravitational law. These small geodynamic variations can be measured very accurately by modem space geodetic techniques. We report on new estimates of the oceanic tidal angular momentum and hence the tidal variations in the Earth's rotation rate and polar motion. These are deduced from the new tidal solutions GOT99 and TPXO.3, plus M2 and Mf estimates (with error bars) from TPXO.4a. Comparisons with observed diurnal/semidiurnal tidal variations are generally similar to previous model estimates. Comparisons of models and observations of Mf polar motion are confused, with neither models nor observations agreeing among themselves or with each other. Part of this is caused by differences in Mf currents; model TPXO.4 shows current-intensive Rossby modes along western boundaries of major basins, which are indeed expected on theoretical grounds. Unfortunately, there are no reliable in situ observations of Mf currents useful for comparing models. On non-tidal oceanic mass redistribution we compute the principal components of the multi-year T/P sea surface height (SSH) field using EOF (empirical orthogonal functions) taking into consideration of the latitude-dependent area weighting. Emphasis is placed upon non-seasonal and interannual oscillations on regional scales, including ENSO and the North Atlantic Oscillation. Steric corrections to the observed SSH due to sea surface temperature changes (which has no geodynamic effects) is now under study using POCM ocean model output.

  8. About the Relation Between Geodynamics of the Sedimentary Basin and the Properties of Crude Oil

    NASA Astrophysics Data System (ADS)

    Muslimov, R.; Plotnikova, I.

    2012-04-01

    Earlier, we wrote and reported about the modern geodynamic activity of the territory of South-Tatar arch, where the Romashkino oil field. We identified a periodic change in flow rates of oil and oil density at Romashkino and other oil fields of the South Tatar arch. Now we have studied the composition of oils and bitumoids from uneven (in terms of age) deposites of the sedimentary cover and basement rocks in the zones of possible hydrocarbon seepage in the central squares of Romashkinskoye field. The results of the comparative studies allowed us to come to the conclusion that the formation of oil-bearing deposits of Romashkinskoye field owes to the income and mixing of hydrocarbons (HC) fluids from different sources. The analysis of geological and production data (GPD) that was held during the many years of exploitation of the development wells of Romashkinskoye field by TatNIPIneft under the direction of I.F. Glumov suggests contemporary inflow of hydrocarbons in the industrial oil reservoir of the Pashi horizon of Romashkinskoye field and the existence of localized areas of inflow of new portions of HC. A number of criteria was worked out in the analysis of the GPD; that allowed us to identify among the total number of wells those, in which the process of hydrocarbon seepage was recorded with the greatest probability. Such wells were called anomalous. One of the directions of this research was to study the geochemical characteristics of oil from anomalous wells and to determine the degree of similarity and difference between this oil and the oil from both normal wells (in which the signs of deep seepage is not recorded), and bituminoid from the crystalline basement and sedimentary cover. If the hypothesis of a recurrent (also in modern times) influx of deep hydrocarbon is correct, then the oil from the anomalous wells should have specific features in comparison with the wells located outside the areas of the expected inflow. The results of geochemical studies of oil and organic matter in sedimentary cover rocks that were carried out within the last decade gave us new and unexpected conclusions. First, on the basis of pyrolysis it was found that the top agent of domanikits of the upper Devonian (which were traditionally considered to be a source rock for most crudes of the Volga-Ural region) is characterized by a low degree of catagenetic maturity. These rocks were not submerged to the depth of more than 2.5 km and were not included in the main area of oil and gas formation in most parts of its distribution within the Republic of Tatarstan, which corresponds to the main territory of North- and South-Tatar arch with surrounding areas of deflections and depressions. Comprehensive study of oil from the anomalous wells showed that these oils have certain characteristics different from normal oil wells, therefore, the hypothesis of a modern inflow of hydrocarbons is consistent and specific studies of this process should be continued. The estimated (by biomarker parameters) lack of genetic relationship between oil from producing under-domanik horizons (Pashi, Timansky, Ardatovsky and Vorobyevsky) and the top agent in domanikits indicates the need for searching of the sources of oil generation and confirms the viability of the hypothesis of deep origin of HC and their inflow into the sedimentary cover through the crystalline base. The oil from the anomalous wells should be subject to special investigations in the monitoring mode designed to examine the isotopic systematics of Sr and Nd, isotope characteristics of helium, carbon, hydrogen, nitrogen in the dissolved gases. The design of these studies needs to be linked, in the first place, with the seismic events continuing on the territory of Tatarstan, as the relationship between the change of the carbon isotopic composition and the seismic events has previously been established. Also in the condition of a recurrent inflow of new portions of the deep HC, it would be logical to assume the changes in the isotopic composition of elements of the dissolved gas.

  9. Digital files for northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps, stratigraphic columns, descriptions of map units, and descriptions of metallogenic belts

    USGS Publications Warehouse

    Nokleberg, Warren J.; Badarch, Gombosuren; Berzin, Nikolai A.; Diggles, Michael F.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Miller, Robert J.; Naumova, Vera V.; Obolensky, Alexander A.; Ogasawara, Masatsugu; Parfenov, Leonid M.; Prokopiev, Andrei V.; Rodionov, Sergey M.; Yan, Hongquan

    2004-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. This publication contains a a series of files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps descriptions of map units and metallogenic belts, and stratigraphic columns. This region includes Eastern Siberia, Russian Far East, Mongolia, Northeast China, South Korea, and Japan. The files include: (1) a geodynamics map at a scale of 1:5,000,000; (2) page-size stratigraphic columns for major terranes; (3) a generalized geodynamics map at a scale of 1:15,000,000; (4) a mineral deposit location map at a scale of 1:7,500,000; (5) metallogenic belt maps at a scale of 1:15,000,000; (6) detailed descriptions of geologic units with references; (7) detailed descriptions of metallogenic belts with references; and (8) summary mineral deposit and metallogenic belt tables. The purpose of this publication is to provide high-quality, digital graphic files for maps and figures, and Word files for explanations, descriptions, and references to customers and users.

  10. Comparative analysis of geodynamic activity of the Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan convergence zone

    NASA Astrophysics Data System (ADS)

    Chelidze, Tamaz; Eppelbaum, Lev

    2013-04-01

    The Alpine-Himalayan convergence zone (AHCZ) underwent recent transverse shortening under the effect of collisional compression. The process was accompanied by rotation of separate microplates. The Caucasian and Eastern Mediterranean regions are segments of the of the AHCZ and are characterized by intensive endogenous and exogenous geodynamic processes, which manifest themselves in occurrence of powerful (with magnitude of 8-9) earthquakes accompanied by development of secondary catastrophic processes. Large landslides, rock falls, avalanches, mud flows, etc. cause human deaths and great material losses. The development of the aforesaid endogenous processes is set forth by peculiarities of the deep structure of the region and an impact of deep geological processes. The Caucasus is divided into several main tectonic terranes: platform (sub-platform, quasi-platform) and fold-thrust units. Existing data enable to perform a division of the Caucasian region into two large-scale geological provinces: southern Tethyan and northern Tethyan located to the south of and to the north of the Lesser Caucasian ophiolite suture, respectively. The recent investigations show that the assessments of the seismic hazard in these regions are not quite correct - for example in the West Caucasus the seismic hazard can be significantly underestimated, which affects the corresponding risk assessments. Integrated analysis of gravity, magnetic, seismic and thermal data enables to refine the assessment of the seismic hazard of the region, taking into account real rates of the geodynamic movements. Important role play the last rheological constructions. According to Reilinger et al. (2006) tectonic scheme, the West flanking of the Arabian Plate manifests strike-slip motion, when the East Caucasian block is converging and shortening. The Eastern Mediterranean is a tectonically complex region located in the midst of the progressive Afro-Eurasian collision. The recent increasing geotectonic activity in this region highlights the need for combined analysis of seismo-neotectonic signatures. For this purpose, this article presents the key features of the tectonic zonation of the Eastern Mediterranean. Map of derivatives of the gravity field retracked from the Geosat satellite and novel map of the Moho discontinuity illustrate the most important tectonic features of the region. The Post-Jurassic map of the deformation of surface leveling reflects the modern tectonic stage of Eastern Mediterranean evolution. The developed tectono-geophysical zonation map integrates the potential geophysical field analysis and seismic section utilization, as well as tectonic-structural, paleogeographical and facial analyses. Tectonically the map agrees with the earlier model of continental accretion (Ben-Avraham and Ginzburg, 1990). Overlaying the seismicity map of the Eastern Mediterranean tectonic region (for the period between 1900 and 2012) on the tectonic zonation chart reveals the key features of the seismo-neotectonic pattern of the Eastern Mediterranean. The results have important implications for tectonic-seismological analysis in this region (Eppelbaum and Katz, 2012). A difference in the geotectonic patterns makes interesting comparison of geodynamic activity and seismic hazard of the Caucasian and Eastern Mediterranean segments of the AHCZ.

  11. What can zircon ages from the Jack Hills detrital zircon suite really tell us about Hadean geodynamics?

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    As the only direct sample of the Hadean Earth, detrital zircon grains from the Jack Hills, Western Australia, have been the subject of intense investigation over the almost three decades since their discovery. A wide variety of geochemical and isotopic analyses of these grains, as well as their mineral inclusions, have been used variously to support two fundamentally different models for Hadean geodynamics: (i) Some form of (not necessarily modern-style) plate recycling generating felsic (continental-type?) crust at the boundaries [1, 2], or conversely (ii) the persistence of a long-lived, stagnant basaltic lid within which magmatism occurred as a result of internal temperature perturbations and/or impacts [3, 4], a model also generally consistent with a wide range of observations from post-Hadean geochemical reservoirs. Despite the considerable time and resources expended, the majority of these studies uncritically accept the individual U-Pb zircon ages, even though their veracity is key to many of the interpretations [5, 6]. We report here the results of an in-depth evaluation of all published (and new) U-Pb ages from the Jack Hills zircon suite in order to define age populations that can be used with a high degree of confidence in geodynamic interpretations. A notable problem in the interpretation of U-Pb data from ancient zircon grains (including those as young as the Neoarchean) is that disturbance of the systematics even several 100 Ma after crystallization causes data to spread along the concordia curve without becoming discernably discordant within the relatively large error bounds associated with U/Pb ages from in situ dating methods (e.g. SIMS). While 207Pb/206Pb ages are typically more precise, individually they provide no means to detect Pb-loss-induced younging. However, if two or preferably more analyses have been made in the same zircon growth zone, a reasonable evaluation of the possibility of Pb-loss can be made. In the available Jack Hills zircon dataset, only 111 grains have been analysed at least twice and of these, only 48 give a consistent internal age, while only 14 have been analysed more than twice and can strictly be considered to yield true ages. Two resulting age peaks at 4.18 - 4.08 Ga and 4.05 - 3.98 Ga potentially represent major magmatic events in the Hadean. In order to explain ages >4.18 Ga, a magmatic event as old as the oldest reliable Jack Hills zircon age of 4.374 Ga is also required. The significance of this limited number of magmatic events for Hadean global geodynamic models will be discussed. References: [1] Harrison, T.M. et al. Geochim Cosmochim Ac 69 (10), A390-A390 (2005), [2] Peck, et al. Geochim Cosmochim Acta 65 (22), 4215-4229 (2001), [3] Kemp, A.I.S. et al. EPSL, 296 (1-2), 45-56 (2010), [4] Kamber, B.S., et al., Contrib Mineral Petr 145 (1), 25-46 (2003), [5] Cavosie, A.J., et al., Precambrian Res 135 (4), 251-279 (2004). [6] Holden P, et al., Int. J. Masspectrometry, 286, 53-63 (2009)

  12. Origin and geodynamic significance of the early Mesozoic Weiya LP and HT granulites from the Chinese Eastern Tianshan

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Juan; He, Zhen-Yu; Zhang, Ze-Ming; Klemd, Reiner; Xiang, Hua; Tian, Zuo-Lin; Zong, Ke-Qing

    2015-12-01

    The Chinese Tianshan in the southwestern part of the Central Asian Orogenic Belt (CAOB) is characterized by a variety of high-grade metamorphic rocks, which provide critical constraints for understanding the geodynamic evolution of the CAOB. In this paper, we present detailed petrological and zircon U-Pb geochronological studies of the Weiya low-pressure and high-temperature (LP-HT) granulites of the Chinese Eastern Tianshan. These granulites were previously considered to be a product of a regional metamorphic orogenic event. Due to different bulk-rock chemistries the Weiya granulites, which occur as lenses within the contact metamorphic aureole of the Weiya granitic ring complex, have a variety of felsic-pelitic and mafic granulites with different textural equilibrium mineral assemblages including garnet-cordierite-sillimanite-bearing granulites, cordierite-sillimanite-bearing granulites, cordierite-orthopyroxene-bearing granulites, and orthopyroxene-clinopyroxene-bearing granulites. Average P-T thermobarometric calculations and conventional geothermobarometry indicates that the Weiya granulites underwent early prograde metamorphism under conditions of 600-650 °C at 3.2-4.2 kbar and peak metamorphism of 750-840 °C at 2.9-6.3 kbar, indicating a rather high geothermal gradient of ca. 60 °C/km. Zircon U-Pb LA-ICP-MS dating revealed metamorphic ages between 244 ± 1 to 237 ± 3 Ma, which are in accordance with the crystallization age of the Weiya granitic ring complex. We suggest that the formation of the Weiya granulites was related to contemporaneous granitic magmatism instead of a regional metamorphic orogenic event. In addition, a Late Devonian metamorphic age of ca. 380 Ma was recorded in zircon mantle domains from two pelitic samples which is consistent with the metamorphic age of the Xingxingxia metamorphic complex in the Chinese Eastern Tianshan. This suggests that the mantle domains of the zircon grains of the Weiya granulites probably formed during the Late Devonian regional metamorphism and were overprinted by the Early Triassic contact metamorphism. Therefore, Early Triassic geodynamic models for the southwestern part of the CAOB, which are based on a previously suggested regional metamorphic orogenic event of the Weiya granulites, need to be viewed with caution.

  13. Comparison of a parallel installation of laser and quartz tube strainmeters at the Geodynamic Observatory Moxa in Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kobe, Martin; Jahr, Thomas; Kukowski, Nina; Methe, Pascal; Goepel, Andreas

    2015-04-01

    High-resolution continuous deformation measurements provide an important data base for studies on deformation of the solid Earth (e.g. due to tides or hydrologically-induced deformation) that has strain amplitudes from ?m to nm. Time series can be obtained by different strainmeters that measure relative changes in length between two fixed points on the Earth's surface with a resolution up to 10-10 m. In order to improve the signal-to-noise ratio strainmeters are installed in galleries or caves with a thick mountain overburden. The Geodynamic Observatory Moxa operates beside seismological and gravimetrical sensor systems an extensive strainmeter array. It consists of a borehole extensometer, two quartz tubes at right angles and one diagonally-installed laser strainmeter. In 2011, two new laser strainmeters were added in cooperation with the company SIOS/Ilmenau. They are installed parallel to the quartz tubes and fixed to the bedrock by the same pylon. This kind of parallel installation is unique in the world and allows the direct comparison of measurements of horizontal length changes with different types of strainmeters for the first time. For the comparison of the data we used mainly the tidal analysis of three-years long time series, as well as the signal from a research borehole on the observatory's perimeter. The first results show a decrease of the long lasting device-specific drift by a factor of 2.3 - 2.5 × 10 of the laser strainmeters (LS) with respect to the quartz systems (QS). Furthermore, the signal-to-noise ratio of the LS is significantly higher than for the QS, as can be seen, for example, in the tidal amplitude factors (AF). In the north-south direction we determined AF ˜ 1.0 (LS) and AF ˜ 0.6 (QS) that yields LS- QS ˜ 1.66. In the east-west direction we found AF ˜ 0.67 (LS), AF ˜ 0.16 (QS), and therefore -LS QS ˜ 4.3. The tidal parameters are used to evaluate the new laser strainmeter system. Furthermore the determination of LS- QS provides a method to calibrate the quartz tubes for the first time. The comparison of other deformation signals in the time series reveals that LS- QS changes with the considered signal period. A transfer function is required to calibrate QS using LS. The new laser strainmeter array is a significant step towards the measurement of subsurface deformation at the Geodynamic Observatory Moxa. Furthermore it is presently being used to develop a transportable laser strainmeter system for areal applications, for example, across fault zones.

  14. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    NASA Astrophysics Data System (ADS)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary popula- tion sickness cases in Dnipropetrovsk City (1.2 million persons) are described by the multi-factor predictive SEIS & GIS model of geopathogenic zones that determines the human health risk and hazards. Results and Conclusions. We have created the SEIS system and multi-factor predictive SEIS model for the analysis of phase-metric spatio- 1 temporal nonlinear correlation and variations of rhythms of human health, ecological, genetic, epidemiological risks, demographic, socio-economic, bio-geophysical, bio- geodynamic processes in geopathogenic hazard zones. Cosmophotomaps "CPM" of vegetation index, anthropogenic-landscape and landscape-geophysical human health risk of Dnipropetrovsk City present synthesis-based elements of multi-layer GIS, which include multispectral images SPOT o, maps of different geophysical, geochem- ical, anthropogenic and citogenic risk factors, maps of integral oncologic case rate frequency, general and primary population sickness cases for administrative districts. Results of multi-layer spatio-temporal correlation of geophysical field parameters and variations of population sickness rate rhythms have enabled us to state grounds and to develop medico-biological and bio-geodynamic classification of geopathogenic zones. Bio-geodynamic model has served to define contours of anthropogenic-landscape and landscape-geophysical human health risk in Dnipropetrovsk City. Biorhythmic vari- ations give foundation for understanding physiological mechanisms of organism`s adaptation to extreme helio-geophysical and bio-geodynamic environmental condi- tions, which are dictated by changes in Multi-factor Correlation Stress Field "MCSF" with deformation of 5D SEIS. Interaction between organism and environment results in continuous superpositioning of external (exogenic) Nuclear-Molecular-Cristallic "NMC" MCSF rhythms on internal (endogenic) Nuclear-Molecular-Cellular "NMCl" MCSF rhythms. Their resonance wave (energy-information) integration and disinte- gration are responsible for struc

  15. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  16. Pressure-temperature history of the Brooks Range and Seward Peninsula, Alaska HP-LT units and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Lemonnier, N.; Labrousse, L.; Agard, P.; Till, A. B.

    2013-12-01

    Metamorphic rocks in the inner zones of mountain belts constitute a marker of vertical movements within orogenic wedges, themselves controled by balance between boundary conditions and volume forces. They provide key evidence for paleogeographic and tectonic reconstruction of convergence zones. In the Arctic, the Amerasian basin opened in cretaceous time and evolved in the upper plate of the Pacific subduction system. The tectonic evolution of the Brooks Range, northern Alaska, is a key issue for understanding possible coupling between these two dynamics. HP-LT metamorphic rocks, now exposed in the Schist belt, Brooks Range, and the Nome Complex, Seward Peninsula, were brought to the surface during Early Cretaceous to Paleocene time. The processes responsible for their exhumation (syn-collisional nappe-stacking or post-collisional extensional detachment) are still a matter of debate, and have direct implications in terms of orogenic boundary conditions and coupling between subduction processes (to the south) and basin response (to the north; the North Slope). Systematic thermometry via Raman Spectrometry (RSCM) on carbonaceous material from regional transects in the Schist Belt and the Seward Peninsula as well as pseudosections calculations allow the determination of units with contrasting pressure-temperature histories and a comparison of thermal evolution of the two areas. Geodynamic implications of their exhumation is then discussed.

  17. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  18. Newly developed paleomagnetic map of the Easternmost Mediterranean joined with tectono-structural analysis unmask geodynamic history of this region

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Katz, Youri

    2015-02-01

    Comprehensive magnetic-paleomagnetic analysis of physical-geological models developed for the Easternmost Mediterranean (northern part of the Sinai plate) accompanied by gravity and seismic data examination enabled the detection of a zone of inverse magnetization of submeridional strike with a total volume exceeding 120,000 km3. Such a large zone must correspond to the prolonged period of inverse polarity in the Earth's magnetic field history. We suggest that this inversely magnetized thick block of the Earth's crust corresponds to the known Kiama hyperzone. A paleomagnetic map constructed on the basis of abovementioned geophysical data analysis combined with detailed examination of structural, radiometric, petrological, facial, paleogeographical and some other data indicates that to the west of the Kiama zone is situated the Jalal zone, and to the east - Illawarra, Omolon and Gissar zones. Discovery of the Kiama paleomagnetic zone combined with tectonogeodynamical analysis and paleobiographical data examination indicates that the Earth's oceanic crust blocks may have been shifted by transform faults from the eastern part of the Tethys Ocean to their modern position in the Easternmost Mediterranean. Analysis of potential geophysical fields and seismological maps integrated with tectonostructural examination show the isolation of the northern part of Sinai plate from other terranes. For the first time formation-paleogeographical maps of Triassic and Jurassic for the Easternmost Mediterranean have been compiled and their tectono-geodynamical explanation has been given. The obtained data create a basis for reconsidering tectonic zonation, paleogeodynamical reconstructions and searching for economic deposits in this region.

  19. Recent surface deformation and its geodynamic insights for the Ilan Plain: an extensional basin in northern Taiwan orogenic belt

    NASA Astrophysics Data System (ADS)

    Kang, C.-C.; Chang, C.-C.; Siame, L. L.; Lee, J.-C.

    2012-04-01

    The Ilan Plain (Northeastern Taiwan) is a triangular, deltaic plain characterized by a flat topography close to the sea level, and surrounded by the high mountains of the Hsüehshan Range to the north-west, and the Central Range to the south-east. Its eastern coast faces the western tip of the Okinawa Trough, the back-arc basin of the Ryukyu subduction zone. In this study, we analyzed the present-day surface deformation of the Ilan Plain, aiming at deciphering its relationships with the regional geodynamic setting. Our approach is mainly based on surface vertical displacements revealed by Persistent Scatterers InSAR (PSI). When combined with the previous geodetic measurements, and existing geophysical data such as seismic activity, our PSI-derived rates of surface displacement indicate that there is convincing subsidence area, located in the southern part of Ilan Plain and characterized by a rate of about 18 mm/yr. In our seismotectonic model, the Choshui Fault is related the opening of the Ilan Basin and presently borders the area of active subsidence associated with the opening of the Okinawa Trough. Within this context, the reactivation of the Lishan Fault may be seen as a zipper-liked opening process that thus play a major role in the collapse of the northern tip of the Taiwan orogen.

  20. Understanding the geodynamic setting of São Miguel, Azores: A peculiar bit of mantle in the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Houlie, N.; Khan, A.; Lithgow-Bertelloni, C. R.

    2012-12-01

    The Azores Plateau and Archipelago in the Central Atlantic Ocean has traditionally been considered as the surface expression of a deep mantle plume or hotspot that has interacted with a mid-ocean ridge. It is geodynamically associated with the triple junction between the North American, African and Eurasian plates. (Yang et al., 2006) used finite frequency seismic tomography to demonstrate the presence of a zone of low P-wave velocities (peak magnitude -1.5%) in the uppermost 200km of the mantle beneath the plateau. The tomographic model is consistent with SW deflection of a mantle plume by regional upper mantle shear flow driven by absolute plate motions. The volcanic island of Sao Miguel is located within the Terceira Rift, believed to represent the boundary between the African and Eurasian plates; magmatic activity has been characterised by abundant basaltic eruptions in the past 30,000 years. The basalts are distinctive within the spectrum of global ocean island basalts for their wide range in isotopic composition, particularly in 87Sr/86Sr. Their Sr-Nd-Pb isotopic compositions show systematic variations from west to east across the island which can be interpreted in terms of melting of a two-component mantle source. The low melting point (enriched) component in the source has been attributed to recycled ancient (~3 Ga) oceanic crust(Elliott et al., 2007). Using the thermo-barometry approach of (Lee et al., 2009) we demonstrate that the pressure and temperature of magma generation below Sao Miguel increase from west (2 GPa, 1425 °C) to east (3.8 GPa, 1575 °C), consistent with partial melting along a mantle geotherm with a potential temperature of ~ 1500 °C. This is consistent with the magnitude of the thermal anomaly beneath the Azores Plateau (?T ~ 150-200 °C) inferred on the basis of the seismic tomography study. The site of primary magma generation extends from the base of the local lithosphere (~ 50 km) to ~ 125 km depth. To understand the geodynamic setting of the Sao Miguel magmatism we combine GPS data and mantle convection models with our interpretation of the geochemistry of the basalts. We demonstrate strong south-westerly and downward flow in the asthenospheric mantle above the Transition Zone (410 km seismic discontinuity), consistent with a zone of upper mantle shearing below the base of the lithosphere. The maximum flow velocity is broadly consistent with the depth of magma generation. The advection of the mantle with respect to the oceanic plate "moves" an isotopically distinct mantle source component beneath the active volcanoes of Sao Miguel and carries its previous melting residues to the south-west. We discuss the nature of this mantle source and its contribution to the mantle velocity anomalies determined by seismic tomography. This study opens-up new perspectives for seismic tomography and potentially new connections between the fields of geophysics and geochemistry in oceanic domains.

  1. Jurassic-Cretaceous clastic sequences of Chukotka: sedimentation, structural style and geodynamic implications for Russian East Arctic shelf.

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S. D.; Verzhbitsky, V. E.

    2009-04-01

    Jurassic-Lower Cretaceous sedimentary sequence, exposed on the Chukotka continental margin is critical for understanding the timing, dynamics and sedimentary setting evolution of Chukotka-Eurasia collisional process (e.g., Sokolov et al., 2002) and so, represents one of the key regional stratigraphic units (Til'man,1973, Tibilov,1982; Miller et al., 2002, 2007). From the other hand, this research may shed the light on the widely discussing problem of the Canadian and Makarov basins opening (e.g., Miller, Verzhbitsky, in press). Jurassic-Lower Cretaceous sedimentary complexes of the Chukotka microcontinent are composed of terrigeneous deposites. Those sedimentary complexes are enriched by organic matter, and fresh clastic materials. Fragments of shales, sometimes laminated or cleaved are their indicator constituents. Sandstones are arkosic. The percentage of types of rocks fragments is different in Jurassic and Cretaceous deposits. Chemical composition of the Jurassic-Cretaceous rocks is not uniform too: Upper Jurassic sandstones form one group depleted in Na2O+K2O, Cretaceous sandstones, enriched in Na2O+K2O. Thus, our investigations indicate that Jurassic-Cretaceous sedimentary basins were related to different source provenance. We believe, that the stratigraphy and composition of Jurassic-Lower Cretaceous onshore sequences are crucial for prediction of the geological structure of East Siberian and Chukchi Sea shelf (1), understanding the evolution of Mesozoic sedimentary basins of East Arctic (2) and testifying the existing geodynamic models of Amerasian Basin opening (3). The work is supported by the Russian Foundation for Basic Research (grant 08-05-00547), program of ONZ RAS 14, and NSH-3172.2008.5.

  2. The petrogenesis of Early Eocene non-adakitic volcanism in NE Turkey: Constraints on the geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ayd?nçak?r, Emre

    2014-11-01

    Whole-rock geochemistry, mineral chemistry, the 40Ar-39Ar age, and Sr-Nd isotopic data are presented for the Early Eocene non-adakitic volcanic rocks on the eastern corner of the Eastern Pontides orogenic belt (NE Turkey). The tectonic setting of the Eastern Pontides during the Late Mesozoic to Early Cenozoic remains a topic of debate. Here, for the first time, we describe the Early Eocene non-adakitic volcanic rocks from the Eastern Pontides. These rocks contain plagioclase, hornblende phenocrysts, and magnetite/titanomagnetite and apatite microphenocrysts. Geochronology studies based on the 40Ar-39Ar ratio of the amphibole separates reveal that the non-adakitic porphyritic volcanic rocks have a crystallization age of 50.04 ± 0.10 to 50.47 ± 0.22 Ma (Ypresian). The volcanic rocks show tholeiitic to calc-alkaline affinities and have low-to-medium K contents. They are also enriched in large-ion lithophile elements (LILE), light rare-earth elements (LREE), and depleted in high field strength elements (HFSE), with a no negative Eu anomaly (Eun/Eu* = 1.03-1.08) in mantle-normalized trace element spidergrams. The samples (Lacn/Lucn = 2.60-4.28) show low-to-medium enrichment in LREEs relative to HREEs, in chondrite-normalized REE patterns indicating similar sources for the rock suite. These rocks display a range of ISr (50 Ma) values from 0.70451 to 0.70485, and ?Nd (50 Ma) 2.9 and 3.7. The main solidification processes involved in the evolution of these volcanics consist of fractional crystallization, with minor amounts of crustal contamination. All of our evidence supports the conclusion that the parental magma of the rocks probably derived from an enriched mantle, previously metasomatized by fluids derived from the subducted slab, in a post-collisional, geodynamic setting.

  3. Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan Basin and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Srivastava, R. P.; Vedanti, N.; Dutta, S.; Dimri, V. P.

    2014-09-01

    Tectonically active Vindhyan intracratonic basin situated in central India, forms one of the largest Proterozoic sedimentary basins of the world. Possibility of hydrocarbon occurrences in thick sediments of the southern part of this basin, has led to surge in geological and geophysical investigations by various agencies. An attempt to synthesize such multiparametric data in an integrated manner, has provided a new understanding to the prevailing crustal configuration, thermal regime and nature of its geodynamic evolution. Apparently, this region has been subjected to sustained uplift, erosion and magmatism followed by crustal extension, rifting and subsidence due to episodic thermal interaction of the crust with the hot underlying mantle. Almost 5-6 km thick sedimentation took place in the deep faulted Jabera Basin, either directly over the Bijawar/Mahakoshal group of mafic rocks or high velocity-high density exhumed middle part of the crust. Detailed gravity observations indicate further extension of the basin probably beyond NSL rift in the south. A high heat flow of about 78 mW/m2 has also been estimated for this basin, which is characterized by extremely high Moho temperatures (exceeding 1000 °C) and mantle heat flow (56 mW/m2) besides a very thin lithospheric lid of only about 50 km. Many areas of this terrain are thickly underplated by infused magmas and from some segments, granitic-gneissic upper crust has either been completely eroded or now only a thin veneer of such rocks exists due to sustained exhumation of deep seated rocks. A 5-8 km thick retrogressed metasomatized zone, with significantly reduced velocities, has also been identified around mid to lower crustal transition.

  4. Quartz tube extensometer for observation of Earth tides and local tectonic deformations at the Sopronbanfalva Geodynamic Observatory, Hungary

    SciTech Connect

    Mentes, Gy.

    2010-07-15

    In May 1990, a quartz tube extensometer was installed in the Sopronbanfalva Geodynamic Observatory of the Geodetic and Geophysical Research Institute (GGRI) of the Hungarian Academy of Sciences for recording Earth tides and recent tectonic movements. The paper describes the construction of the extensometer and a portable calibrator used for the in situ calibration of the instrument. The extensometer is very sensitive. Its scale factor is 2.093{+-}0.032 nm/mV according to the highly precise calibration method developed at the GGRI. Since the stability of extensometers is strongly influenced by the geological structure and properties of the rocks in the vicinity of the recording site, the observatory instrument system was tested by coherence analysis between theoretical (as the input signal) and measured tidal data series (as the output signal). In the semidiurnal tidal frequency band the coherence is better than 0.95, while in the diurnal band it is about 0.8. Probably this is due to the fact that the noise is higher in the diurnal band (0.4-0.5 nstr) than in the semidiurnal band (0.19-0.22 nstr). Coherence analysis between theoretical and measured data corrected for barometric changes yielded a small improvement of coherence in both frequency bands, while using temperature data correction, no observable improvement was obtained. Results of the tidal analysis also show that the observatory instrument system is suitable for recording very small tectonic movements. The 18 years of continuous data series measured by the extensometer prove the high quality of the extensometer. On the basis of investigations, it was pointed out that further efforts should be done to improve the barometric correction method and that correction for ocean load, as well as considering topographic and cavity effects are necessary to increase the accuracy of determining tidal parameters.

  5. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    NASA Technical Reports Server (NTRS)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.

  6. Geographic information systems (GIS) spatial data compilation of geodynamic, tectonic, metallogenic, mineral deposit, and geophysical maps and associated descriptive data for northeast Asia

    USGS Publications Warehouse

    Naumova, Vera V., (compiler); Patuk, Mikhail I.; Kapitanchuk, Marina Yu.; Nokleberg, Warren J.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Rodionov, Sergey M.; Miller, Robert J.; Diggles, Michael F.

    2006-01-01

    This is the online version of a CD-ROM publication. It contains all of the data that are on the disc but extra files have been removed: index files, software installers, and Windows autolaunch files. The purpose of this publication is to provide a high-quality spatial data compilation (Geographical Information System or GIS) of geodynamic, mineral deposit, and metallogenic belt maps, and descriptive data for Northeast Asia for customers and users. This area consists of Eastern Siberia, Russian Far East, Mongolia, northern China, South Korea, and Japan. The GIS compilation contains integrated spatial data for: (1) a geodynamics map at a scale of 1:5,000,000; (2) a mineral deposit location map; (3) metallogenic belt maps; (4) detailed descriptions of geologic units, including tectonostratigraphic terranes, cratons, major melange zones, and overlap assemblages, with references; (5) detailed descriptions of metallogenic belts with references; (6) detailed mineral deposit descriptions with references; and (7) page-size stratigraphic columns for major terranes.

  7. Reconstitution of the local tectonic and geodynamic history to study the fluid transfers in a carbo-gaseous aquifer (Quezac-Southern Massif Central France)

    NASA Astrophysics Data System (ADS)

    Durand, V.; Léonardi, V.; Deffontaines, B.; Macquar, J.-C.

    2009-04-01

    A multidisciplinary approach taking into account remote sensing, geological, and hydrogeological analyses was developed to reveal the water percolations history through time in the Quezac aquifer (Southern Massif Central - France). Detailed field measurements of the various tectonic joints, water and gas transfers were done in the study site. Microtectonic measurements confirmed the local tectonic history and the structural map was completed by a morphostructural approach, using detailed photointerpretation of both Digital Elevation Model and aerial photographs. The past fluid transfers were discussed from mineralization, the sediment deposits and the deduced tectonic history. To resume, the present fluid transfers observed in the field were related to four main tectonic joints groups, noticed by the tectonic and morphostructural approach. The history of tectonic constraints, geodynamical context and fluid transfers was finally reconstituted. It shows the major role of the N-S tectonic joints for water flows, followed by E-W ones, due to their longest karstification history. The NW-SE and NE-SW orientations, more recently karstified, appeared to have less influence on water transfers. The weak gas production at the surface of N-S faults is probably due to its dispersion linked to their intense karstification. This innovative multidisciplinary approach leads to propose a model for the present water and gas preferential flow paths, taking precisely the local tectonic and geodynamic context into account.

  8. Geodynamical Processes between Antarctica and India as revealed by very long baselines between the continents estimated from continuous and long-term GPS measurements

    NASA Astrophysics Data System (ADS)

    N, R.; Ec, M.; Akilan, A.

    2006-12-01

    To holistically understand the geodynamical and crustal deformation processes in the south of Indian peninsula between India and Antarctica, two global networks have been chosen that geodetically connect the two continents, the IGS Station at Diego Garcia (DGAR) being the common station between the two networks. 8 years of data from 1997 to 2005 were used. Very long baselines have been estimated from HYDE to other chosen IGS stations in and around India including DGAR. Similarly in the other network, very long baselines have been estimated from Kerguelen to other stations in and around Antarctica again including DGAR. Since the baseline length between HYDE, India and MAITRI, Antarctica is more than 10,000 km, it is mandatory to form these two different networks to improve the accuracy of the baseline measurements by GPS. This is to circumvent the limitation in the estimation of maximum base line length by GPS is of 6,900 km only due to the availability of less number of double difference observables in the GPS data analysis. Our analysis and results show increase of baseline lengths between Kerguelen in Antarctic plate and other stations and shortening of baseline lengths between HYDE in Indian plate and other common stations. By this global network analyses, the stations HYDE and MAITRI are geodetically tied through DGAR. With this geodetic tie up, having got the first geodetic signatures of the geodynamical processes between India and Antarctica, continuous monitoring and estimation would help enhancing the understanding the crustal deformation processes between these two continents despite many plates, micro plates and ridges in this study region.These estimations reveal clearly that the stations in the Australian plate are moving away from the Indian plate conforming to the recent Plate tectonic theory that India and Australia lie in two different plates with a diffuse boundary separating them. GPS derived velocity vectors for the Australian Plate also corroborate the theory that the Australian plate is pivoting counter clock wise around 600km south of the tip of India, pushing into the Indian plate to the east and pulling away from it to the west. Other geodynamical results are Antarctic plate is moving away from the Indian Ocean Basin. Our analyses also indicate and confirm geodynamically the emergence of diffuse plate boundary between India and Australia and relates to the late Miocene Himalayan uplift. The newly emerging platelet Capricorn in the central-western Indian Ocean with a broad, diffuse boundary may be due to the result of frequent plate boundary reorganizations in the past and the geodynamical processes in the present and these boundary forces complicate the kinematic interpretations and may also contribute to the non-rigid behavior of the Indian plate and Indian Ocean Basin. The inter continental networks in our study and the data analysis suggest that the high rate of movement of DGAR at the edge of Capricorn plate and COCO could be the result of excessive strain accumulation due to the Indo-Australian diffuse plate boundary forces acting upon this region. Our results also conform to the genesis that the deformation of equatorial Indian Ocean lithosphere is not ephemeral, but long-lived.

  9. Lower crustal rocks in the Norwegian Caledonides: field analogues for understanding the geodynamics of continental subduction and UHP exhumation

    NASA Astrophysics Data System (ADS)

    Andersen, Torgeir B.

    2010-05-01

    The Scandinavian Caledonides and their counterparts in East-Greenland represent the best ancient example of a Himalayan-type continental collision orogen on the Earth. The mountain- and plateau areas that formed in response to the Scandian continental collision and the extensional tectonics in the Late Silurian to Devonian were comparable in size to the present-day Himalayas and the Tibetan plateau, with a strike length close to 2000 km and a width of more than 500 km. The collision also affected areas within the overriding continent far behind the collision zone, which gave rise to intra-continental mountains in Arctic Canada. The Iapetus ocean intervening Baltica-Avalonia and Laurentia was consumed by rapid subduction (>12 cm/yr) and closed by the Middle Silurian (~430 Ma). The rapid convergence resulted in deep burial of continental lithosphere to (ultra) high-pressure [(U)HP] conditions. Syn-convergent thrust-stacking and upper crust-extension in the late Silurian to early Devonian was succeeded by buoyant eduction of the deeply buried, but still mostly coherent slab of continental rocks and some included lenses of mantle peridotite. These exhumed lower crustal rocks record a pressure-temperature gradient from amphibolite facies immediately below the Caledonian nappes via a wide belt of eclogite facies rocks (600C; 1.8-2 GPa) to coesite eclogites (700-800C; 2.7-2.8 GPa) across the ca 250 km wide Western Gneiss Region. Although the superstructure of the Scandian mountain belt is only rudimentarily preserved restoration of the SE-NW cross-sections can be used to constrain crustal thicknesses during the collision. These restored cross-sections allow explanation of burial and exhumation of coesite eclogite without direct conversion of pressure to burial. The exhumation of the very local and extreme UHP conditions recorded by micro-diamonds, majorite in peridotite garnet and ortho-pyroxene eclogite barometry cannot, however, be adequately explained by the available structures. The global importance of the Caledonides to understand collision geodynamics is primarily related to the structural and metamorphic evolution of the deep parts of orogenic belts, i.e. how UHP rocks are formed and exhumed.

  10. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an upwelling component induced by a mantle anomaly is also required to support the Atlas, suggesting that the timing of uplift is contemporaneous with recent volcanism in the Middle Atlas.

  11. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary.

    PubMed

    Mentes, Gyula; Eper-Pápai, Ildikó

    2015-11-01

    Radon concentration variation has been monitored since 2009 in the artificial gallery of the Sopronbánfalva Geodynamic Observatory, Hungary. In the observatory, the radon concentration is extremely high, 100-600 kBq m(-3) in summer and some kBq m(-3) in winter. The relationships between radon concentration, temperature and barometric pressure were separately investigated in the summer and winter months by Fast Fourier Transform, Principal Component Analysis, Multivariable Regression and Partial Least Square analyses in different frequency bands. It was revealed that the long-period radon concentration variation is mainly governed by the temperature (20 kBq m(-1) °C(-1)) both in summer and winter. The regression coefficients between long-period radon concentration and barometric pressure are -1.5 kBq m(-3) hPa(-1) in the summer and 5 kBq m(-3) hPa(-1) in the winter months. In the 0.072-0.48 cpd (cycles per day) frequency band the effect of the temperature is about -1 kBq m(-3) °C(-1) and that of the barometric pressure is -5 kBq m(-3) hPa(-1) in summer and -0.5 kBq m(-3) hPa(-1) in winter. In the high frequency range (>0.48 cpd) all regression coefficients are one order of magnitude smaller than in the range of 0.072-0.48 cpd. Fast Fourier Transform of the radon concentration, temperature and barometric pressure time series revealed S1, K1, P1, S2, K2, M2 tidal constituents in the data and weak O1 components in the radon concentration and barometric pressure series. A detailed tidal analysis, however, showed that the radon tidal components are not directly driven by the gravitational force but rather by solar radiation and barometric tide. Principal Component Analysis of the raw data was performed to investigate the yearly, summer and winter variability of the radon concentration, temperature and barometric pressure. In the summer and winter periods the variability does not change. The higher variability of the radon concentration compared to the variability of the temperature and the barometric pressure shows that besides the temperature and barometric pressure variations other agents, e.g. natural ventilation of the observatory, wind, etc. also play an important role in the radon concentration variation. PMID:26207821

  12. Towards an Ontology for the Global Geodynamics Project: Automated Extraction of Resource Descriptions from an XML-Based Data Model

    NASA Astrophysics Data System (ADS)

    Lumb, L. I.; Aldridge, K. D.

    2005-12-01

    Using the Earth Science Markup Language (ESML), an XML-based data model for the Global Geodynamics Project (GGP) was recently introduced [Lumb & Aldridge, Proc. HPCS 2005, Kotsireas & Stacey, eds., IEEE, 2005, 216-222]. This data model possesses several key attributes -i.e., it: makes use of XML schema; supports semi-structured ASCII format files; includes Earth Science affinities; and is on track for compliance with emerging Grid computing standards (e.g., the Global Grid Forum's Data Format Description Language, DFDL). Favorable attributes notwithstanding, metadata (i.e., data about data) was identified [Lumb & Aldridge, 2005] as a key challenge for progress in enabling the GGP for Grid computing. Even in projects of small-to-medium scale like the GGP, the manual introduction of metadata has the potential to be the rate-determining metric for progress. Fortunately, an automated approach for metadata introduction has recently emerged. Based on Gleaning Resource Descriptions from Dialects of Languages (GRDDL, http://www.w3.org/2004/01/rdxh/spec), this bottom-up approach allows for the extraction of Resource Description Format (RDF) representations from the XML-based data model (i.e., the ESML representation of GGP data) subject to rules of transformation articulated via eXtensible Stylesheet Language Transformations (XSLT). In addition to introducing relationships into the GGP data model, and thereby addressing the metadata requirement, the syntax and semantics of RDF comprise a requisite for a GGP ontology - i.e., ``the common words and concepts (the meaning) used to describe and represent an area of knowledge'' [Daconta et al., The Semantic Web, Wiley, 2003]. After briefly reviewing the XML-based model for the GGP, attention focuses on the automated extraction of an RDF representation via GRDDL with XSLT-delineated templates. This bottom-up approach, in tandem with a top-down approach based on the Protege integrated development environment for ontologies (http://protege.stanford.edu/), allows for initial scoping of an ontology for the GGP. Such ontological approaches are key to enabling the use of formerly specific-purpose GGP data into broader systems and frameworks such as those demanded by current challenges in tsunami research following the devastating 26 December 2004 Sumatra-Andaman event.

  13. Variability in forearc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter; Duarte, Joao

    2015-04-01

    In nature subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that impact the style of subduction and overriding plate deformation. Here we present 3D dynamic analogue models of subduction, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, with a special focus on overriding plate deformation. Our models indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of backarc basins (e.g., Tyrrhenian Sea, Aegean Sea, Scotia Sea) is generally expected to occur at a comparable location (300-500 km from the trench), irrespective of the boundary condition. Furthermore, our models indicate that the style of forearc deformation (shortening or extension) is determined by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed set-up is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature and accretionary wedge configuration. Furthermore, it provides explanation for the natural observations of both backarc extension in the Tyrrhenian Sea and forearc extension in the Calabria region, which have been active since the Miocene. We explain the observations as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting forced subduction to be accommodated almost entirely by slab rollback (not trenchward overriding plate motion), while trench retreat was accommodated almost entirely by backarc and forearc extension (not trenchward overriding plate motion), similarly to our SP-OP-Fixed model. This tectonic setting induced strong trench suction, which caused the forearc extension in Calabria.

  14. Active intraplate deformation as geodynamic responses to oblique shallow subduction of a flat slab: example from central and southwest Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi

    2015-04-01

    Subduction of a flat slab has been recognized as one of the primary driving mechanism of wide intracontinental subsidence farther away from the subduction leading edge in many subduction margins. In most cases, however, quantitative and qualitative limitations on chronological constraints prevent comprehensive understanding of these geodynamic linkages. In this study, we show distinct, geologic and seismic evidence for spatial and temporal correlation between plate subduction and intercontinental deformation, mainly driven by dynamic interaction between subducting Philippine Sea (PHS) plate and overriding continental crusts of central and southwest Japan (Eurasian plate) along the Nankai-Tonankai subduction zone since Pliocene. Based on analyses of Pliocene to Pleistocene tectonic histories by use of rich dataset of Neogene stratigraphy, drainage network evolution, and shallow to deep seismic reflection profiles, depocenters of wide sedimentary basins and active thrusting have migrated northward since ca. 5 Ma to present from forearc to backarc of the southwest Japan arc. Median tectonic line, active dextral strike-slip fault as a forearc sliver along the Nankai, is located north of the upward extension of the downdip limit of the interseismic locked zone. Southwest Japan north of the MTL, underlain by the subducting slab with steady state slip (Nakanishi et al., 2002; Kodaira et al., 2004), appears tectonically less inactive than central Japan and has behaved as a less deformed rigid block. Contrastingly, Quaternary active intraplate deformation has been prominent north of the inactive MTL above a shallow flat segment of the PHS plate along the Tonankai. Deep seismic reflection profile images upward corrugated very shallow PHS slab being contact with continental lower crust beneath actively deforming area. We interpreted temporal and spatial correlation of oblique subduction of the shallow and flat, corrugated PHS slab as an essential mechanical role to enhance downward drag of the overriding plate and synchronous strong compressional stress field in the crust. More westerly PHS subduction since middle Pleistocene, suggested by unconformity in the forearc basin deposits and change of sense of fault slip along the active MTL cause stronger horizontal stress in the overriding plate, consistent with increasing geologic slip rate on active structures with this plate configurations. In shorter timescales, during four repetitions of the Nankai subduction zone earthquakes since 17th century, numbers of intraplate large (M>6.5) earthquakes occurred above or near the PHS flat slab are much larger than other surrounding regions. This also may suggest mechanical link between subduction processes and seismicity in the overriding plate.

  15. Liu, M., Yang, Y., Shen, Z., Wang, S., Wang, M., and Wan, Y., 2007, Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics, in Stein, S., and Mazzotti, S., ed., Continental Intraplate Earthquakes: Science, Hazard, and P

    E-print Network

    Liu, Mian

    Paper 425 2007 Active tectonics and intracontinental earthquakes in China: The kinematics299 Liu, M., Yang, Y., Shen, Z., Wang, S., Wang, M., and Wan, Y., 2007, Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics, in Stein, S., and Mazzotti, S., ed

  16. Integration of permanent and periodic GPS/GNSS measurements for local and regional geodynamic research in the area of the Polish-Czech Network SUDETEN

    NASA Astrophysics Data System (ADS)

    Kontny, Bernard; Kaplon, Jan; Schenk, Vladimir; Schenkova, Zdenka; Badura, Janusz

    2014-05-01

    Since 1997 all current local geodynamic studies in the area of the Polish and Czech parts of the Sudeten and the Sudetic Foreland have been associated with annual periodic GPS campaigns, epoch measurements. The most epochs consisted of more than twelve observation hours and some of them kept on two or three 24-hour observations. Experience collected by international research teams carrying out geodynamic researches with the GPS technique in seismically active areas (USA, Japan) proved that more information can give permanent measurements. However, the Sudeten area, regarded as an area of the weak tectonic activity, can be hardly covered with the dense network of GNSS stations from economic reasons. Hence rational using of existing permanent GPS stations located in studied area and in its vicinity detects the coordinate changes that cannot be appointed from periodic campaign data and that, on the other hand, have rather regional than local character. Creating the spatial models of irregularities of the continuous signals should improve results of the epoch measurements. From this viewpoint, in this project authors used measurement data of chosen permanent GPS stations located in the area: the EPN stations, ASG-EUPOS stations, GEONAS stations and all epoch observations. These data were gained as part of research projects carried out within 1997-2009 period, as well as during new supplementing campaigns realized in the frame of the project N526278940 in the 2011 and 2012 years. Reprocessing of all the permanent and epoch data performed by the latest version of Bernese GNSS Software (V5.2) was performed using EPN guidelines for the processing, reference frame realization and the usage of physical models (atmosphere, Earth rotation, etc.). Standardized results of processing the aggregated GPS network, including permanent stations and all local networks on the area of research, serve for conducting new geodynamic interpretation. Further parameters that estimate the linear model of position changes of test point coordinates based on results of the permanent and epoch observations had been performed. Then, applying linear site velocities, the surface deformation model for the Sudeten area was compiled. Results of this research constitute the base both for recognizing tectonic impacts to the area and for potential hazard assessments. This research had been granted by the Polish National Science Centre, project No. N526 278940, and accomplished in cooperation of specialists from the Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, the Institute of Rock Structure and Mechanics of the Czech Academy of Sciences in Prague and the Polish State Geological Institute, Lower Silesia Branch in Wroclaw.

  17. A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: Example from the Pietersburg block (South Africa)

    NASA Astrophysics Data System (ADS)

    Laurent, Oscar; Zeh, Armin

    2015-11-01

    Combined U-Pb and Lu-Hf isotope data from zircon populations are widely used to constrain Hadean-Archean crustal evolution. Linear Hf isotope-age arrays are interpreted to reflect the protracted, internal reworking of crust derived from the (depleted) mantle during a short-lived magmatic event, and related 176Lu/177Hf ratios are used to constrain the composition of the reworked crustal reservoir. Results of this study, however, indicate that Hf isotope-age arrays can also result from complex geodynamic processes and crust-mantle interactions, as shown by U-Pb and Lu-Hf isotope analyses of zircons from well characterized granitoids of the Pietersburg Block (PB), northern Kaapvaal Craton (South Africa). Apart from scarce remnants of Paleoarchean crust, most granitoids of the PB with ages between 2.94 and 2.05 Ga (n = 32) define a straight Hf isotope-age array with low 176Lu/177Hf of 0.0022, although they show a wide compositional range, were derived from various sources and emplaced successively in different geodynamic settings. The crustal evolution occurred in five stages: (I) predominately mafic crust formation in an intra-oceanic environment (3.4-3.0 Ga); (II) voluminous TTG crust formation in an early accretionary orogen (3.0-2.92 Ga); (III) internal TTG crust reworking and subduction of TTG-derived sediments in an Andean-type setting (2.89-2.75 Ga); (IV) (post-)collisional high-K magmatism from both mantle and crustal sources (2.71-2.67 Ga); and (V) alkaline magmatism in an intra-cratonic environment (2.05-2.03 Ga). The inferred array results from voluminous TTG crust formation during stage II, and involvement of this crust during all subsequent stages by two different processes: (i) internal crust reworking through both partial melting and assimilation at 2.89-2.75 Ga, leading to the formation of biotite granites coeval with minor TTGs, and (ii) subduction of TTG-derived sediments underneath the PB, causing enrichment of the mantle that subsequently became source for high-K granitoids and mafic rocks at 2.68 and 2.05 Ga. Some scatter along the array might have resulted either from significant assimilation of ancient crust, intracrustal Lu/Hf fractionation or melting of heterogeneous mantle sources. Those results show that without any information about the nature and composition of zircon-hosting granitoids, Hf isotope-age data are of limited use to constrain Hadean-Archean magmatogenesis and geodynamics.

  18. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: insights from deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Shi, D.; Liu, Z.; Zhang, Y.; Zhao, J.

    2014-12-01

    A 300 km deep seismic reflection profile across the middle and lower Yangtze River metallogenic belt (YRMB) and its adjacent areas established the architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include the deep complicated geometry of the Tan-Lu fault and Zhangbaling uplift, appears as a subvertical thrust fault with its deep portion dip toward the southeast, and along which the Zhangbaling uplift is squeezed out; complex upper crust deformation structure beneath Chuquan depression, within which there are both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, i.e., the upper crust reflection thrust upward, and the lower crust reflection thrust downward and offsetting the Moho discontinuity, which reflects the decoupled deformation process of the upper and lower crust, and is interpreted as an intracontinental subduction. Further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline. The entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the YRMB is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. Moho offsets could be seen beneath the Ningwu volcanic basin. Overall, the seismic data show evidence for an intracontinental orogeny and imposes constraints on the deep geodynamic model applied to study region. Our interpretation of seismic profile supports the view that the Yanshanian orogeny, due to the northwest subduction of the paleo-Pacific plate during the Middle-Late Jurassic, is the major event that shaped the tectonic framework of the region. A geodynamic model is proposed for the formation of the world-class metallogenic belt, this model includes several key deep processes, e.g., the subduction of intracontinental sublithosphere, the thickening and delamination of crustal roots, the melting of delaminated lower crust and underplating of the melts to the crust-mantle boundary and subsequent MASH processes.

  19. Sulphur geodynamic cycle.

    PubMed

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/(3)He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100 Gmol/y at MOR. The S/(3)He ratios of high-temperature volcanic gases show sulphur flux of 720 Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21 Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  20. Sulphur geodynamic cycle

    PubMed Central

    Kagoshima, Takanori; Sano, Yuji; Takahata, Naoto; Maruoka, Teruyuki; Fischer, Tobias P.; Hattori, Keiko

    2015-01-01

    Evaluation of volcanic and hydrothermal fluxes to the surface environments is important to elucidate the geochemical cycle of sulphur and the evolution of ocean chemistry. This paper presents S/3He ratios of vesicles in mid-ocean ridge (MOR) basalt glass together with the ratios of high-temperature hydrothermal fluids to calculate the sulphur flux of 100?Gmol/y at MOR. The S/3He ratios of high-temperature volcanic gases show sulphur flux of 720?Gmol/y at arc volcanoes (ARC) with a contribution from the mantle of 2.9%, which is calculated as 21?Gmol/y. The C/S flux ratio of 12 from the mantle at MOR and ARC is comparable to the C/S ratio in the surface inventory, which suggests that these elements in the surface environments originated from the upper mantle. PMID:25660256

  1. Fundamental studies in geodynamics

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1980-01-01

    Progress in modeling instantaneous plate kinematics is reviewed, with emphasis on recently developed models of present day plate motions derived by the systematic inversion of globally distributed data sets. Rivera plate motions, the Caribbean South American boundary, Indian plate deformation, Pacific-North America, seismicity and subduction processes, and the study of slow earthquakes and free oscillations are discussed.

  2. Geodynamic modeling of eclogite-bearing mantle plumes: Ascent dynamics, plume-plate-interaction and surface manifestations

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan

    2014-05-01

    According to widely accepted models, plumes ascend from the deep mantle and cause massive melting when they reach the base of the lithosphere. Classical geodynamic models consider plumes as purely thermal and thus predict a flattening of the plume head to a disk-like structure and thin plume tails. However, geochemical data indicate that plumes have a different composition than the average mantle material and it has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes. In addition, seismic imaging reveals thicker plume tails as well as a more complex plume structure in the upper mantle, including broad low-velocity anomalies up to 400 km depth and elongated low-velocity fingers fed by plumes. While recent numerical models have considered a different chemistry to explain complex plume shapes or zoning within plumes, they either are restricted to only a part of the plume evolution or use simplified material models. However, due to the high density of recycled oceanic crust, thermo-chemical plumes are expected to have much smaller buoyancy than thermal plumes. Therefore it is especially important to incorporate realistic material properties, as they can influence the plume dynamics crucially and determine if a plume reaches the lithosphere or remains in deeper parts of the mantle. We perform numerical experiments in a 3D spherical shell geometry to study the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For that purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure-, and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for the peridotite and eclogite phase, mantle compressibility and a highly temperature- and depth-dependent viscosity. We study under which conditions thermo-chemical plumes ascend through the whole mantle and what structures they form in the upper mantle. Modeling shows that plumes with a buoyancy higher than some critical value directly advance to the base of the lithosphere, while plumes with slightly lower buoyancy pond in a depth of 300-400 km and form pools or a second layer of hot material. These structures become asymmetric and finger-like channels begin to form when the plume gets entrained by a quickly moving overlying plate. Our models also suggest that thermo-chemical plumes ascend in the mantle much slower compared to thermal plumes and have thicker plume tails. The conversion of plume excess temperatures to anomalies in seismic velocity shows that thermo-chemical low-buoyancy plumes can explain a variety of features observed by seismic tomography much better than purely thermal plumes.

  3. Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon

    NASA Astrophysics Data System (ADS)

    Nkoumbou, C.; Barbey, P.; Yonta-Ngouné, C.; Paquette, J. L.; Villiéras, F.

    2014-11-01

    We reassess the geodynamic context close to the Congo craton during the pre-collisional period of the Pan-African orogeny from whole-rock major and trace element compositions and isotopic data obtained in the westward extension of the Yaounde series (Boumnyebel area, Cameroon). The series consists of metasediments (micaschists, minor calc-silicate rocks and marbles) and meta-igneous rocks (hornblende gneisses, amphibolites, metagabbros, pyroxenites and talcschists) recrystallized under high-pressure conditions. Chemically, the micaschists correspond to shales and greywackes similar to the Yaounde high-grade gneisses. 87Sr/86Sr initial ratios (0.7084-0.7134), moderately negative ?Nd(620 Ma) values (-5.75 to -7.81), Nd model ages (1.66 < TDM < 1.74 Ga) and radiometric ages point to the conclusion that the Yaounde basin was filled with siliciclastic sediments derived from both reworked older continental crust (Palaeoproterozoic to Archaean in age) and Neoproterozoic juvenile volcanogenic material. This occurred in the same time span (625-1100 Ma) as the deposition of the Lower Dja, Yokadouma, Nola and Mintom series (Tonian-Cryogenian). Dolomitic marble associated with mafic/ultramafic rocks and characterized by high Cr (854-1371 ppm) and Ni (517-875 ppm) contents, are considered to result from chemical precipitation in relation with submarine magmatic activity. Talcschists (orthopyroxenitic to harzburgitic in composition) show primitive-mantle-normalized multi-element patterns with significant negative Nb-Ta anomalies, and slopes similar to that of average metasomatically altered lithospheric mantle. These rocks could be mantle slices involved in the collision tectonics. Amphibolites show the compositions of island-arc basalts with systematic negative Nb-Ta anomalies, 87Sr/86Sr initial ratios mostly <0.7047 and positive ?Nd(620 Ma) values (+1.41 to +6.58). They are considered to be the expression of incipient oceanisation to the north of the Congo craton during the early Neoproterozoic. Hornblende gneisses show andesitic compositions, with high 87Sr/86Sr initial ratios (0.7105 and 0.7125) and low ?Nd(620) values (-14.0 and -20.7) suggesting that their genesis involved juvenile and recycled older crustal materials. Syn-metamorphic metagabbro (Mamb) and metadiorite (Yaounde) intrusions show negative Nb-Ta negative anomalies but enrichment in light rare-earth and large-ion lithophile elements, suggesting a metasomatized mantle source. Overall, meta-igneous rocks seem to be representative of distinct magmatic events that accompanied the evolution of the Yaounde sedimentary basin, from opening and oceanisation to convergence and closure in relation with the collisional process. These data suggest that the Yaounde basin should not be considered as a back-arc basin, but more likely represents the expression of extensional processes to the north of the Congo craton, which led to rifting, fragmentation and limited oceanisation. In this view, the Adamawa-Yade block may represent a micro-continent detached from the Congo craton during the early Neoproterozoic.

  4. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system

    USGS Publications Warehouse

    Lambert, D.D.; Foster, J.G.; Frick, L.R.; Ripley, E.M.; Zientek, M.L.

    1998-01-01

    In this study, we reassess crustal contamination and sulfide ore-forming processes in some of the largest magmatic ore deposits, using published Re-Os isotope data and a modeling methodology that incorporates the R factor, defined as the effective mass of silicate magma with which a given mass of sulfide magma has equilibrated, in an Re-Os isotope mixing equation. We show that there is less disparity between conclusions based on Re-Os isotope data compared to other isotopic systems if the R factor is considered, Komatiite-associated Ni sulfide ore systems typically have high Os concentrations, low Re/Os ratios, and near-chondritic initial Os isotope compositions. For magmatic sulfide ores that are interpreted to have experienced relatively low R factors (2,000). Sulfide saturation in these ore systems may, therefore, have been achieved via changes in intensive parameters of the komatiite lavas (cooling or decompression) or changes in compositional parameters transparent to the Re-Os isotope system (e.g., fo2/fs2/fH2O)- Basalt-gabbro-associated Cu-Ni sulfide ore systems at Duluth, Sudbury, and Stillwater are quite distinct from those at Kambalda by having comparatively low Os concentrations, high Re/Os ratios, and high initial Os isotope compositions, These chemical and isotopic characteristics are indicative of significant interactions between their parental basaltic magmas and old crust because there are no known mantle reservoirs with such extreme geocheinical characteristics. Our modeling suggests that for Cu-Ni sulfide ores at Duluth, Sudbury, and Stillwater to maintain the observed high initial Os isotope compositions inherited from a crustal contaminant, R factors for these systems must have been low (< 10,000), consistent with their low metal concentrations. Thus, we interpret this style of base metal sulfide mineralization to be derived from crustally contaminated but less dynamic magmatic systems that did not permit extensive equilibration of sulfide magma with silicate magma, For basalt-gabbro-associated Cu-Ni-PGE-rich sulfide ore systems that have Re-Os geochemical characteristics more similar to those associated with komatiites, R factors must have been high (??? 10,000 for Noril'sk-Talnakh and the J-M reef, Stillwater Complex). In these very dynamic magmatic ore systems, crustal contamination processes are more difficult to assess using Re-Os isotopes as the effects of contamination are masked by the R factor process in which sulfide magma equilibrates with extensive amounts of asthenospheric mantle-derived magma. Sulfide protore for these systems may, then, have been very radiogenic and of crustal origin prior to R factor processes that occurred during transport in feeder conduits and in upper crustal magma chambers. This study, therefore, highlights the need for caution when interpreting the Re-Os isotope geochemistry of sulfide ores from dynamic magmatic systems. The results of our reinvestigation of these giant ore deposits suggest that geodynamic processes associated with large magmatic systems, including major lithospheric pathways to the surface, changes in flow regime, coupled magma flow-through and magma mixing (providing enhanced R factors), may be critical to our understanding of the emplacement, localization, and quality of magmatic sulfide deposits. Thus, the timing and exact mechanism of sulfide saturation may be subordinate to dynamic magmatic processes in the localization of economic concentrations of magmatic sulfides.

  5. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings

    NASA Astrophysics Data System (ADS)

    Jingwen, Mao; Yanbo, Cheng; Maohong, Chen; Pirajno, Franco

    2013-03-01

    The ore deposits of the Mesozoic age in South China can be divided into three groups, each with different metal associations and spatial distributions and each related to major magmatic events. The first event occurred in the Late Triassic (230-210 Ma), the second in the Mid-Late Jurassic (170-150 Ma), and the third in the Early-Mid Cretaceous (120-80 Ma). The Late Triassic magmatic event and associated mineralization is characterized by peraluminous granite-related W-Sn-Nb-Ta mineral deposits. The Triassic ore deposits are considerably disturbed or overprinted by the later Jurassic and Cretaceous tectono-thermal episodes. The Mid-Late Jurassic magmatic and mineralization events consist of 170-160 Ma porphyry-skarn Cu and Pb-Zn-Ag vein deposits associated with I-type granites and 160-150 Ma metaluminous granite-related polymetallic W-Sn deposits. The Late Jurassic metaluminous granite-related W-Sn deposits occur in a NE-trending cluster in the interior of South China, such as in the Nanling area. In the Early-Mid Cretaceous, from about 120 to 80 Ma, but peaking at 100-90 Ma, subvolcanic-related Fe deposits developed and I-type calc-alkaline granitic intrusions formed porphyry Cu-Mo and porphyry-epithermal Cu-Au-Ag mineral systems, whereas S-type peraluminous and/or metaluminous granitic intrusions formed polymetallic Sn deposits. These Cretaceous mineral deposits cluster in distinct areas and are controlled by pull-apart basins along the South China continental margin. Based on mineral assemblage, age, and space-time distribution of these mineral systems, integrated with regional geological data and field observations, we suggest that the three magmatic-mineralization episodes are the result of distinct geodynamic regimes. The Triassic peraluminous granites and associated W-Sn-Nb-Ta mineralization formed during post-collisional processes involving the South China Block, the North China Craton, and the Indo-China Block, mostly along the Dabie-Sulu and Songma sutures. Jurassic events were initially related to the shallow oblique subduction of the Izanagi plate beneath the Eurasian continent at about 175 Ma, but I-type granitoids with porphyry Cu and vein-type Pb-Zn-Ag deposits only began to form as a result of the breakup of the subducted plate at 170-160 Ma, along the NNE-trending Qinzhou-Hangzhou belt (also referred to as Qin-Hang or Shi-Hang belt), which is the Neoproterozoic suture that amalgamates the Yangtze Craton and Cathaysia Block. A large subduction slab window is assumed to have formed in the Nanling and adjacent areas in the interior of South China, triggering the uprise of asthenospheric mantle into the upper crust and leading to the emplacement of metaluminous granitic magma and associated polymetallic W-Sn mineralization. A relatively tectonically quiet period followed between 150 and 135 Ma in South China. From 135 Ma onward, the angle of convergence of the Izanagi plate changed from oblique to parallel to the coastline, resulting in continental extensional tectonics and reactivation of regional-scale NE-trending faults, such as the Tan-Lu fault. This widespread extension also promoted the development of NE-trending pull-apart basins and metamorphic core complexes, accompanied by volcanism and the formation of epithermal Cu-Au deposits, granite-related polymetallic Sn-(W) deposits and hydrothermal U deposits between 120 and 80 Ma (with a peak activity at 100-90 Ma).

  6. Unraveling the geodynamic evolution and tectonic history of the Guatemala Suture Zone: a world-class natural laboratory

    NASA Astrophysics Data System (ADS)

    Flores, K. E.; Brocard, G. Y.; Harlow, G. E.

    2013-12-01

    The Guatemala Suture Zone (GSZ) is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. It is bounded by the Maya Block to the north and by the Chortís Block to the south. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schist, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). This modern plate boundary has accommodated at least ~1100 km of left-lateral strike-slip motion over the Cenozoic and brings into contact the geological provinces described above. Classically, the GSZ has been interpreted as the result of a single progressive collision of a Chortís Block-related island arc with the passive margin of the Maya Block. This model was based on geochemical signatures of basaltic rocks in oceanic crust sequences both north and south of the MFS. However, results from our research challenge this single collision hypothesis. Oceanic and continental high-pressure-low-temperature (HP-LT) rocks astride the MFS have recorded multiple tectonic events revealed by their multiple metamorphic ages (Sm-Nd, U-Pb and Ar-Ar) and distinct PT paths. These tectonic events differ in age north and south of the MFS. Moreover, the continental and oceanic sequences across the MFS are geochemically and stratigraphically distinct, suggesting different tectonic origins. The southern margin of the Maya Block and the northern section of the GSZ can be clearly interpreted as a Cretaceous-Paleocene flexural passive margin tectonically overridden by ultramafic rocks and a Cretaceous island arc sequence. In contrast, the southern section of the GSZ is composed of a Carboniferous-Jurassic active margin tectonically imbricated with ultramafic rocks and a circum-Pacific Jurassic MORB and IAT metavolcano-sedimentary sequence. Thus, based on these results, we identify at least three major tectonic events within the GSZ: (i) A Jurassic-Early Cretaceous accretion and/or collision along a circum-Pacific active margin and the subsequent exhumation of oceanic HP-LT rocks now found on the southern section of the GSZ (ii) A Late Cretaceous closure of a back-arc basin that led to island arc-passive margin collision, which triggered exhumation of oceanic and continental HP-LT rocks and succeeding obduction onto the southern margin of the Maya Block (iii) A major Cenozoic left-lateral displacement along the then active margin that restructured the original tectonic arrangement into the present complex scenario. This new tectonic scenario hypothesis integrates all relevant geodynamic constraints reported on the GSZ and satisfactorily explains the occurrence of (i) an older circum-Pacific suture zone probably originated in southern Mexico in contact with (ii) a younger suture zone perhaps related to the closure of the proto Caribbean basin.

  7. Age and Geochemistry of Central American Forearc Basement Rocks (DSDP Leg 67 and 84) Reveal a Complex Geodynamic History

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hoernle, K. A.; Hauff, F.; Kluegel, A.; Bogaard, P. V.

    2006-12-01

    The wide shelf between Costa Rica and southern Mexico hosts an unusually broad forearc basin. Geophysical investigations imply that the entire forearc basement is composed of ophiolitic rocks similar to exposed terranes of the widespread Caribbean Large Igneous Province (CLIP). Various geodynamic models have been suggested for the origin of the CLIP including its formation above the Galápagos plume head. Besides it's origin, the spatial extent and duration of CLIP volcanism are controversial. During DSDP Leg 67 and 84 the forearc basement was drilled and various igneous rocks including basalts, dolerites, gabbros and serpentinized peridotites were recovered. We present 40Ar/39Ar laser age and geochemical data (including major- and trace elements and Sr, Nd, Pb and Hf isotope ratios) of the drilled samples in order to determine if the igneous forearc basement represents old Pacific ocean crust, ancient arc volcanism, and/or accreted intraplate volcanic rocks possibly related to the CLIP? The igneous forearc basement can be subdivided into two groups: a geochemically strongly depleted group and an underlying geochemically enriched group. Mafic rocks of the depleted group have tholeiitic to basaltic andesitic compositions and display a strong depletion in incompatible elements but distinct enrichments of fluid-mobile elements such as Rb, Ba, U, K, Pb and Sr characteristic of arc volcanism. In contrast, alkali basaltic to hawaiitic rocks of the enriched group exhibit enriched incompatible element signatures with marked depletions in K, Pb and heavy rare earth elements similar to Ocean Island Basalt (OIB). Consistent with the trace element division, both groups form two separate fields in Sr, Nd, Pb, and Hf isotopic space with the depleted group showing isotopically depleted initial compositions (low 206Pb/204Pb=17.93-18.48 and 207Pb/204Pb=15.49-15.53 but elevated ^{143}Nd/^{144}Nd= 0.51294-0.51318 and ^{176}Hf/^{177}Hf= 0.28304-0.28316) and the enriched group having distinctly more enriched initial isotope ratios (e.g. high 206Pb/204Pb=19.42-20.34 and 207Pb/204Pb=15.65-15.70 but low ^{143}Nd/^{144}Nd=0.51272-0.51297, ^{176}Hf/^{177}Hf= 0.28281-0.28292). Preliminary results of step-heating 40Ar/39Ar age determinations of mineral separates range from ~100-143 Ma for the depleted group and 104-219 Ma for the enriched group. Because of a different mode and larger degree of isotopic enrichment it is highly questionable whether the enriched group samples are related to the CLIP or were derived from the Galápagos plume. Instead, these rocks most likely represent accreted Mesozoic intraplate seamounts/ocean islands of central Pacific origin. The depleted group can be interpreted as a submerged upper Cretaceous island arc, accreted to the Chortis Block subduction zone. Rocks of similar age and geochemistry to both groups can be found on the Santa Elena Peninsula in Costa Rica, which probably represents the subaerial exposed southern termination of the forarc basement.

  8. Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2013-04-01

    An assembly of igneous (TTG-granitoids and S-type leucogranites and calc-alkaline-, tholeiite-, kometiite-, boninite- and adakite-series metavolcanics) and metamorphic (eclogite-, moderate-pressure (MP) granulite- and MP amphibolite-facies rocks) complexes, strikingly complete for Archaean structures, is preserved in the Belomorian province of the Fennoscandian Shield. At least four Meso-Neoarchaean different-aged (2.88-2.82; 2.81-2.78; ca. 2.75 and 2.735-2.72 Ga) calc-alkaline and adakitic subduction-type volcanics were identified as part of greenstone belts in the Belomorian province (Slabunov, 2008). 2.88-2.82 and ca. 2.78 Ga fore-arc type graywacke units were identified in this province too (Bibikova et al., 2001; Mil'kevich et al., 2007). Ca.2.7 Ga volcanics were generated in extension structures which arose upon the collapse of an orogen. The occurrence of basalt-komatiite complexes, formed in most greenstone belts in oceanic plateau settings under the influence of mantle plumes, shows the abundance of these rocks in subducting oceanic slabs. Multiple (2.82-2.79; 2.78-2.76; 2.73-2.72; 2.69-2.64 Ga) granulite-facies moderate-pressure metamorphic events were identified in the Belomorian province (Volodichev, 1990; Slabunov et al., 2006). The earliest (2.82-2.79 Ga) event is presumably associated with accretionary processes upon the formation of an old continental crust block. Two other events (2.78-2.76; 2.73-2.72 Ga) are understood as metamorphic processes in suprasubduction setting. Late locally active metamorphism is attributed to the emplacement of mafic intrusions upon orogen collapse. Three groups of crustal eclogites with different age were identified in the Belomorian province: Mesoarchaean (2.88-2.86 and 2.82-2.80 Ga) eclogites formed from MORB and oceanic plateau type basalts and oceanic high-Mg rocks (Mints et al., 2011; Shchipansky at al., 2012); Neoarchaean (2.72 Ga) eclogites formed from MORB and oceanic plateau type basalts. The formation of eclogites is attributed to processes in a subducting slab. Correlation of the above complexes has revealed four alternating subduction systems: 2.88-2.82 Ga which comprises both suprasubduction (island-arc volcanics, graywackes) complexes and those from a subduction slab (eclogites), 2.81-2.78 Ga - island-arc volcanics, graywackes, granulites and eclogites; 2.75 Ga - island-arc volcanics only; 2.73-2.72 Ga - island-arc volcanics, granulites and eclogites. The duration of functioning of Meso-Neoarchaean subduction systems varies from 60 (or probably 30) to 15 Ma, which is consistent with the results of the numerical modelling (van Hunen, 2001) of subduction at mantle temperatures 125-150 degrees higher than the present temperature. This is a contribution to RFBR Project 11-05-00168 a References: Bibikova, E.V., Glebovitskii, V.A., Claesson, S. et al., 2001. Geochemistry International, 39(1) Mil'kevich, R.I., Myskova, T.A., Glebovitsky, V.A. et al. 2007. Geochemistry International, 45 Mints, M.V., Belousova, E.A., Konilov, A.N. et al., 2011. Geology, 38 Shchipansky, A.A., Khodorevskaya, L.I., Konilov, A.N., Slabunov, A.I., 2012. Russian Geology and Geophysics 53 Slabunov, A.I., Lobach-Zhuchenko, S.B., Bibikova, E.V. et al., 2006. European Lithosphere Dynamics, Memoir 32 Slabunov, A.I., 2008. Geology and geodynamics of Archean mobile belts (example from the Belomorian province of the Fennoscandian Shield van Hunen, J., 2001. Shallow and buoyant lithospheric subduction: couses and implications from thrmo-chemical numerical modelling. Theses PhD Volodichev, O.I., 1990. The Belomorian complex of Karelia: geology and petrology

  9. A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Lobkovsky, L. I.; Kononov, M. V.; Dobretsov, N. L.; Vernikovsky, V. A.; Sokolov, S. D.; Shipilov, E. V.

    2013-01-01

    The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.

  10. Geomorphology and geodynamics of the Cook-Austral island-seamount chain in the South Pacific Ocean: Implications for hotspots and plumes

    SciTech Connect

    Dickinson, W.R.

    1998-12-01

    Among Pacific hotspot tracks, the Cook-Austral island-seamount chain is distinctly anomalous in geodynamic behavior, exhibiting repetitive episodes of volcanism at multiple sites, uplift of selected islands long after initial immersion by subsidence, and multiple alignments of volcanic edifices. Cook-Austral islands include a variety of disparate geomorphic types: volcanic islands without reefs, with fringing reefs, and with barrier reefs enclosing shallow lagoons, low-lying atolls; and makatea islands composted of volcanic cores surrounded by annular limestone tablelands. The distribution of subsided and uplifted islands along the Cook-Austral chain reflects multiple hotspot activity, probably related to multiple mantle diapirs of local character rather than to deep-seated plumes. Rapid Pacific plate motion can generate elongate hotspot tracks from transient hotspot activity unrelated to columnar advective plumes.

  11. On information-provided monitoring of geodynamic processes in the Kuznetsk Coal Basin in the conditions of highly intensive sub-soil usage

    SciTech Connect

    Oparin, V.N.; Potapov, V.P.; Tanaino, A.S.

    2006-09-15

    It is shown that formation of underground hollows of the Kuznetsk Coal Basin (Kuzbass), induced by opencut and underground mining has reached an intensity of 1.3-1.5 million m{sup 3}/day. In the conditions of high concentration of mines and open-cuts in small areas, a regional monitoring network is required in view of a generated geomechanical space, hazardous in geodynamic manifestations. A developed information support of this network is presented, including information models of a geological environment and database obtained from instrumental observations on geomechanical processes. The equations of connection between structural and strength characteristics of rocks, their metamorphization grade and occurrence depth are given for five geological-tectonic zones of the Kuzbass as a way of prediction of their properties.

  12. The Early Miocene "Bisciaro volcaniclastic event" (northern Apennines, Italy): a key study for the geodynamic evolution of the central-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Guerrera, Francesco; Martín-Martín, Manuel; Raffaelli, Giuliana; Tramontana, Mario

    2015-06-01

    The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria-Romagna-Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a "marker" for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the "Raffaello" bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian-Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo- vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30-90 %) including the sub-petrofacies 2A, High- density volcanogenic turbidites; 2B, Low- density volcanogenic turbidites; 2C, Crystal- rich volcanogenic deposits; and 2D, Glauconitic- rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5-30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical-geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.

  13. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.

  14. Tectonic setting of the Late Triassic volcaniclastic series of the Luang Prabang Basin, Laos, and geodynamic implications from the Triassic to Jurassic in SE Asia

    NASA Astrophysics Data System (ADS)

    Rossignol, Camille; Bourquin, Sylvie; Dabard, Marie-Pierre; Hallot, Erwan; Poujol, Marc; Nalpas, Thierry

    2014-05-01

    The Luang Prabang Basin, located on the eastern margin of the Indochina block, is mainly composed of volcaniclastic continental deposits. The interpretation of U-Pb zircon geochronological dates shows that volcanism is contemporaneous with the sedimentation during the Late Triassic (c.a. 225 to 215 Ma; Blanchard et al., 2013, J. Asian Earth Sci., 70-71; 8-26). At the same time, volcanism is also known along the Eastern margin of the Indochina block (present day Thailand). There are currently two main contrasting interpretations concerning the tectonic setting related to these volcanic events: are they arc-related (e.g. Barr et al., 2006, J. Geol. Soc. London, 163; 1037-1046) or post collisional (e.g. Srichan et al., 2009, Island Arc, 18; 32-51)? We have performed geochemical analysis on both sedimentary and volcanic rocks of the Luang Prabang Basin in order to evaluate the relationships between the volcanic events and to propose a geodynamic interpretation. The geochemical characteristics of the Luang Prabang Late Triassic volcaniclastic and volcanic rocks are compatible with a volcanic arc setting. The confrontation of these results with the stratigraphic evolution of the eastern margin of the Indochina block leads to reconsider the Late Triassic to Jurassic geodynamic evolution of this area. Arc-related volcanism seems to occur during nearly the whole Triassic, implying a subduction of the Paleotethys beneath the Indochina block. As the stratigraphic record of north-eastern Thailand and western Myanmar shows an important stratigraphic gap spanning from the Early to the Middle Jurassic, the collision between the Indochina and the Sibumasu blocks likely occurred at that period.

  15. Relating geodynamic setting to periods of crustal growth and reworking as illustrated by the Phanerozoic granitoids of the Eastern Cordillera of South Peru

    NASA Astrophysics Data System (ADS)

    Reitsma, M.; Schaltegger, U.; Spikings, R.; Ulianov, A.; Gerdes, A.; Chiaradia, M.

    2012-04-01

    The granitoids that form the backbone of the Eastern Cordillera of Peru between 12 and 14°S, are the ideal material for a case study to relate geodynamic setting to crustal growth over the period of a Wilson cycle. Extension related plutons were emplaced in the back-arc region of the Western Gondwana margin during the Ordovician, Permo-Carboniferous, Triassic and Early Jurassic. With the onset of the Andean cycle in the Middle Jurassic the South American margin was under compression, the plutonic record of this period is in the study area restricted to the Eocene and Miocene. The Ordovician to Triassic back-arc related plutons share many geochemical characteristics that point to dominant crustal reworking as the main process during their formation. These are 1) their mainly felsic and peraluminous nature; 2) the similarity of whole rock REE and trace element compositions compared to those of average continental crust; 3) the presence of negative Nb-Ta anomalies only in the more evolved samples which indicates that these excursions have been obtained by crustal melting rather than from a slab fluid and 4) the presence of significant amounts of xenocrystic cores in zircon. According to the literature the last major episode of juvenile crust formation was during the Grenvillian age Sunsas event (1.2 - 0.9 Ga) related to the collision of Laurentia and south-western Amazonia during the assembly of Rodinia. Hf-isotopes on zircons from the Ordovician, Permo-Carboniferous and Triassic plutons confirm their origin as mainly crustal melts generated by reworking of Sunsas-age crust. Under these geodynamic conditions it is mainly the crust that melts due to an elevated geothermal gradient as the result of crustal thinning. However, data from Jurassic nepheline bearing syenite and Eocene hornblende diorite and monzonite have epsilon Hfi values well above those of Sunsas crust, indicating an important mantle component in the melts. The Jurassic geodynamic setting is interpreted as extreme back-arc extension at the verge of spreading, peralkaline, SiO2-undersaturated syenites formed by small degrees of partial melting of the shallowest asthenospheric mantle but constitute only a volumetrically subordinate magmatic pulse, hence it did not contribute significantly to crustal growth. On the other hand, the Eocene Andahuaylas-Yauri batholith also has an important mantle component in its melt and at the same time is volumetrically the largest magmatic episode in the study area. Therefore we conclude that most Phanerozoic crustal growth took place during this compressional regime related to flat slab subduction. In other words, Eocene melting of the mantle assisted by slab derived fluids was much more efficient than Jurassic decompression melting of a relatively dry mantle during back-arc extension.

  16. Rheological and geodynamic controls on the mechanisms of subduction, HP/UHP exhumation and PT conditions within crustal rocks during continental collision: insights from numerical models

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni

    2014-05-01

    Mechanisms of continental convergence are so versatile that it is impossible to elucidate them from conventional set of observations. Additional discriminatory data are needed such as those derived from petrology data, since burial/exhumation dynamics inferred from metamorphic P-T-t paths potentially provides independent constraints on the collision mechanism. While subduction of crustal rocks is increasingly accepted as common phenomenon inherent to convergent processes involving continental plates and micro-continents, the conditions of their formation and mechanisms of their exhumation in the form of high- and ultra-high-pressure (HP/UHP) units remain a subject of controversy. In particular, deep burial and exhumation of continental crust occur in various settings, including subduction of micro-continental terrains carried down with the subducting oceanic lithosphere and transition between the oceanic and continental subduction. Geodynamic inferences from P-T data can be made only after providing a consistent approach to decryption of both pressure and temperature in terms of depth or at least in terms of characteristic geodynamic conditions. Thermo-mechanical thermodynamically coupled numerical models of continental collision provide some elements of solution to this problem through testing various geodynamic scenarios within relatively unconstrained framework which allows for account of non-lithostatic pressure variations and for deviations of temperature from commonly inferred thermal models. We here explore several possible scenarios of subduction and exhumation of continental crust, and their relation to PT conditions and mechanisms of HP/UHP exhumation inferred from conceptual and thermo-mechanical numerical models accounting for thermo-rheological complexity and diversity of the continental lithosphere. Numerical experiments suggest that in most cases both exhumation and continental subduction are transient processes, so that long-lasting (> 10-15 Myr) continental subduction occurs in very specific cases of cold strong lithospheres while in general this process takes less than 5 Myr. During the active subduction phase (simple shear accommodation of convergence) we do not detect significant deviations (+-20%) of total pressure in the subduction channel from lithostatic values , that can be rather lower than the lithostatic pressure, while intra-channel temperatures vary in quite large limits. Hence, large volumes of HP/UHP metamorphic rocks generated and brought to the surface during subduction phase would not record significant deviations from the lithostatic pressure conditions. At the same time, strong non-lithostatic pressures (extensional and compressional) are predicted for some internal parts of the colliding plates that, however, are not prone to yield "extractable" metamorphic material. The experiments also show that high non-lithostatic pressures develop in the former subduction channel at its lock-up , during and after the transition from subduction to pure shear collision or folding, while the metamorphic material generated at this stage appears to be blocked at depth and does not return to the surface (at least if the channel is not unlocked due some external conditions). We suggest that most continental orogenic belts could have started their formation from continental subduction. This process has been generally limited in time while pressures recorded in the HP and UHP material generated at this stage can be largely treated in terms of the lithostatic approximation. In case of subduction of continental terrains embedded in the oceanic lithosphere, it can be shown that their exhumation, resulting in formation of metaphoric belts and domes, may initiate series of slab roll-back and exhumation events associated with remarkably complex and spatially variable P-T-t paths.

  17. What can hafnium isotope ratios arrays tell us about orogenic processes? An insight into geodynamic processes operating in the Alpine/Mediterranean region

    NASA Astrophysics Data System (ADS)

    Henderson, B.; Murphy, J.; Collins, W. J.; Hand, M. P.

    2013-12-01

    Over the last decade, technological advances in laser-ablation sampling techniques have resulted in an increase in the number of combined U-Pb-Hf zircon isotope studies used to investigate crustal evolution on a local, regional and global scale. Hafnium isotope arrays over large time scales (>500 myr) have been interpreted to track evolving plate tectonic configurations, and the geological outputs associated with changing plate boundaries. We use the Alpine-Mediterranean region as an example of how hafnium isotope arrays record the geodynamic processes associated with the complex geological evolution of a region. The geology of Alpine-Mediterranean region preserves a complex, semi-continuous tectonic history that extends from the Neoproterozoic to the present day. Major components of the Variscan and Alpine orogens are microcontinental ribbons derived from the northern Gondwanan margin, which were transferred to the Eurasian plate during the opening and closing of the Rheic and Paleo-Tethys Oceans. Convergence of the Eurasian and African plates commenced in the Mid-Late Cretaceous, following the destruction of the Alpine-Tethys Ocean during the terminal breakup of Pangea. In general, convergence occurred slowly and is characterised by northward accretion of Gondwanan fragments, interspersed with subduction of African lithosphere and intermittent roll-back events. A consequence of this geodynamic scenario was periods of granite-dominated magmatism in an arc-backarc setting. New Hf isotope data from the peri-Gondwanan terranes (Iberia, Meguma and Avalonia) and a compilation of existing Phanerozoic data from the Alpine-Mediterranean region, indicate ~500 myr (Cambrian-Recent) of reworking of peri-Gondwanan crust. The eHf array follows a typical crustal evolution pattern (Lu/Hf=0.015) and is considered to reflect reworking of juvenile peri-Gondwanan (Neoproterozoic) crust variably mixed with an older (~1.8-2.0 Ga) source component, probably Eburnian crust from the West Africa Craton. The Phanerozoic Hf isotopic data from Variscan and Alpine Europe suggest that slow translation of continental fragments from one continent to another produces a characteristic, long-term crustal reworking eHf array, which strongly contrasts with the Hf array defined by Phanerozoic circum-Pacific orogens.

  18. The Arkot Da? Mélange in Araç area, central Turkey: Evidence of its origin within the geodynamic evolution of the Intra-Pontide suture zone

    NASA Astrophysics Data System (ADS)

    Göncüoglu, M. Cemal; Marroni, Michele; Pandolfi, Luca; Ellero, Alessandro; Ottria, Giuseppe; Catanzariti, Rita; Tekin, U. Kagan; Sayit, Kaan

    2014-05-01

    In northern Turkey, the Intra-Pontide suture zone is represented by an east-west trending belt of deformed and/or metamorphic units located at the boundary between the Istanbul-Zonguldak terrane to the north and the Sakarya terrane to the south. These units can be regarded as issued from the Intra-Pontide domain, whose geodynamic history is still a matter of debate. Along the Akpinar-Araç-Bayramoren geotraverse, located in central Turkey, an ophiolite-bearing mélange known as the Arkot Da? Mélange, is well-exposed along the Intra-Pontide suture zone. The Arkot Da? Mélange plays a key role in the interpretation of the geodynamic history of the Intra-Pontide domain and can be described as a Late Santonian chaotic sedimentary deposit consisting of an up to 1000-m-thick succession of slide-blocks of different sizes and lithologies enclosed in a sedimentary matrix consisting of shales, coarse-grained arenites, pebbly mudstones and pebbly sandstones. The slide-blocks, from a few meters to hectometers in size, are represented by metamorphic rocks (mainly micaschists and gneisses), by ophiolites (peridotites, gabbros, IAT and BABB basalts and cherts) and by sedimentary rocks (cherts, neritic and pelagic limestone, marly limestone and ophiolite-bearing turbidites). The youngest age among the slide-blocks has been provided by the ophiolite-bearing turbidites where a late Coniacian nannofossil assemblage has been found. The cherts have provided a wide range of ages from the Middle Triassic to Late Cretaceous, whereas the fossils found in the limestone indicate Late Jurassic to Early Cretaceous ages. The matrix of the Arkot Da? Mélange, even if unaffected by metamorphism, shows deformations represented by multiple meters-thick cataclastic shear zones at the boundaries of the mélange slices or inside of them. According to its features, the source area of the Arkot Da? Mélange was most likely a continental and oceanic thrust sheet emplaced in the Late Cretaceous onto a continental margin. The data collected from the different slide-blocks suggest that the Intra-Pontide domain was characterised by an oceanic basin opened at the latest in the Early Jurassic. The opening of the Intra-Pontide oceanic basin was followed by the development of a subduction zone with a subsequent opening of suprasubduction oceanic basin in the Middle Jurassic-Early Cretaceous. The convergence in this suprasubduction oceanic basin started at the Early/Late Cretaceous boundary by an obduction process, whereas its final closure can be regarded as Late Paleocene in age.

  19. Geodynamic and Geochemical Modeling of Mantle Processes along the Southwest Indian Ridge at 35°-40°E: A Hotspot-Mid-Ocean Ridge Interaction Region

    NASA Astrophysics Data System (ADS)

    Larson, M. O.; Okino, K.; Montesi, L.

    2014-12-01

    Mantle convection can be regarded as the superposition of two convective models: aplate mode and a plume mode. Geodynamic modeling of these regimes has grantedinsight into surface features, and tells us about the mantle processes in a system largelydevoid of observables. Our study of the 35°-40°E segment of the Southwest Indian Ridge(SWIR) seeks to link geochemical and geological observations with the underlying mantleprocesses.Both plate and plume modes interact and combine at the SWIR 35°-40°E segment. Themid-ocean ridge itself is a manifestation of the plate tectonics mode of mantle convection.The slow opening rate and obliquity of this segment should lead to low volcanic activityalong this segment. However, this segment is the point along the SWIR closest to theMarion hotspot, a manifestation of the plume mode of mantle convection. When interactingwith the mid-ocean ridges, hotspots like the Azores, Iceland, Galápagos, and Rodriguezproduce distinctive patterns, such as propagating rifts, triple junctions, and enriched MORBsignatures. The Marion hotspot does not have a similar effect on the SWIR even thoughit is associated with a bathymetric high and residual mantle Bouguer anomaly low. Anotable feature along the ridge is a V-shaped bathymetric anomaly around one of the non-transform discontinuities (NTD).As for the SWIR 10°-16°E area (Montési et al., 2011) geodynamics modeling predictsmagma focusing to highly segmented non-transform oblique segments (NTOS) along theridge. However, geophysical observations show a thinning crust at these regions. Modelingwithout the segmentation along the oblique segments shows much better agreement withthe observations. So either the NTOS are a crustal structure that does not influence mantleupwelling, melt extraction parameters vary along the ridge, or the density of the crust isanomalous in NTOS due to a different fractionation history.We will incorporate whole rock chemistry (including trace element, & REEs) constraintsto the evaluation of our hypotheses by modeling melt evolution and crystallization underdifferent conditions and comparing model predictions with collected samples.

  20. Geodynamic interpretation of the 40Ar/39Ar dating of ophiolitic and arc-related mafics and metamafics of the northern part of the Anadyr-Koryak region

    USGS Publications Warehouse

    Palandzhyan, S.A.; Layer, P.W.; Patton, W.W., Jr.; Khanchuk, A.I.

    2011-01-01

    Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El'gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120-129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El'gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early Jurassic that confirmed their assignment to the El'gevayam volcanic-plutonic assemblage. These data are consistent with geological concepts and make more precise the available age dates. Neocomian-Aptian 40Ar/39Ar age of amphibolites from the Pekulnei and Tamvatnei gabbroids make evident that mafics of these terranes (varying in geodynamic formation settings and in petrogenesis) were generated in later stages of the development of the West Pekulnei and Mainits-Algan Middle-Late Jurassic-Early Cretaceous island arc systems, presumably due to breakup of island arcs in the Neocomian. ?? 2011 Pleiades Publishing, Ltd.

  1. A new numerical method to calculate inhomogeneous and time-dependent large deformation of two-dimensional geodynamic flows with application to diapirism

    NASA Astrophysics Data System (ADS)

    Fuchs, L.; Schmeling, H.

    2013-08-01

    A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille-Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh-Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and 4, and the early, intermediate and late stages of diapirism, respectively. Furthermore, we find that the overall strain of a RTI is concentrated in the less viscous regions. Thus, spatial distributions and magnitudes of finite deformation may be used to identify stages and viscosity ratios of natural cases.

  2. Geological setting and geochemical signatures of the mafic rocks from the Intra-Pontide Suture Zone: implications for the geodynamic reconstruction of the Mesozoic Neotethys

    NASA Astrophysics Data System (ADS)

    Sayit, Kaan; Marroni, Michele; Göncüoglu, M. Cemal; Pandolfi, Luca; Ellero, Alessandro; Ottria, Giuseppe; Frassi, Chiara

    2015-06-01

    A number of suture zones exist in Turkey, which is believed to represent the closure of Paleo and NeoTethyan oceanic basins. Regarding the development of the latter oceanic entity, namely Neotethys, the geodynamic evolution of the Intra-Pontide branch, the northernmost one of a number of oceanic basins remains enigmatic. The Intra-Pontide Suture Zone in Northwest Turkey includes several tectonic units most of which are characterized by the occurrence of mafic rocks with distinct geochemical signatures. In this paper, the mafic rocks collected from four of these units (the Domuz Da? Unit, the Saka Unit, the Daday Unit and the Arkot Da? Mèlange) have been studied in detail along two selected transects. The Domuz Da? Unit is characterized by amphibolites, micaschists and marbles, which have been overprinted by low-grade metamorphism.The Saka Unit is in turn represented by an assemblage of slices of amphibolites, marbles and micaschists metamorphosed under upper amphibolite facies metamorphic conditions in the Late Jurassic time. In these units, the amphibolites and their retrograded counterparts display E-MORB-, OIB- BABB- and IAT-type signatures. The Daday Unit is characterized by metasedimentary and metamafic rocks metamorphosed under blueschist to sub-greenschist facies conditions. The metamafic rocks comprise actinolite-bearing schists and Na-amphibole-bearing varieties possibly derived from basaltic and gabbroic protoliths. They have a wide range of chemical compositions, displaying N-MORB-, E-MORB-, OIB- BABB- and IAT-type signatures. The Arkot Da? Mèlange consists of a Late Santonian assemblage of slide-blocks mainly represented by basaltic lithologies showing affinities ranging from N-MORB- and IAT- to BABB-type magmas. The geochemical signature of the studied mafic rocks indicates that the tectonic units documented along the two studied transects of the Intra-Pontide Suture Zone have been derived from a supra-subduction zone. This hypothesis corroborates the available data collected from the Ayl? Da? Ophiolite Unit cropping out in the westernmost studied transect. This finding can provide new insights for the reconstruction of the geodynamic history of the Intra-Pontide domain.

  3. The use of caves as observatories for recent geodynamic activity and radon gas concentrations in the Western Carpathians and Bohemian Massif.

    PubMed

    Briestensky, M; Thinova, L; Stemberk, J; Rowberry, M D

    2011-05-01

    In recent years, many underground spaces such as caves and deep mines have been used to monitor geodynamic activity in the Western Carpathians and Bohemian Massif. In addition, long-term radon gas monitoring has also being undertaken in three of the caves. The observed radon concentrations have shown diurnal, seasonal and yearly variations. A significant correlation with external temperature has been registered. This pattern is considered to result from the movement of air caused by the contrast between the broadly constant internal and fluctuating external temperatures. The same seasonal effects have been observed in the record of active fault displacements at sites close to the surface. These seasonal effects lead to peak-to-peak massif dilation amplitude that affects the overall trend of fault displacement. It is also noted that a significant decrease in this amplitude occurs with increasing depth beneath the surface. However, high variability has also been observed in both the radon concentration and fault displacement activity recorded. Many events have been registered that link these two geofactors. PMID:21478172

  4. Palaeoproterozoic (1.83 Ga) zircons in a Bajocian (169 Ma) granite within a Middle Jurassic ophiolite (Rubiku, central Albania): a challenge for geodynamic models

    NASA Astrophysics Data System (ADS)

    Kryza, Ryszard; Beqiraj, Arjan

    2014-04-01

    Two distinct zircon populations, 1,827 ± 17 and 169 ± 2 Ma in age, have been found in the Rubiku granite dyke in the Middle Jurassic Mirdita ophiolite in central Albania. The old inherited zircons represent a homogeneous population formed during a discrete Palaeoproterozoic, likely magmatic, zircon crystallization event. These older zircons were likely incorporated, in large part, into the granite magma that crystallized broadly at the time of the ophiolite emplacement (around 169 Ma). The limited data available do not allow for the construction of an unequivocal petrogenetic model, though several palaeotectonic scenarios are discussed as possible settings for the granite formation. The models refer to recent findings of old inherited zircons in rocks at recent mid-ocean ridge settings, but also consider likely contributions of crustal materials to primary basic ophiolitic magmas within supra-subduction settings and subsequent accretion/collision circumstances. The presence of old zircons in much younger rocks within ophiolite successions runs counter to geodynamic models of interaction between the oceanic lithosphere and continental crust, but constraining their genesis would require further systematic studies on these old inherited zircons, both in mafic (if present) and in felsic rocks of the ophiolites.

  5. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    NASA Astrophysics Data System (ADS)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like ?18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2?))) and juvenile initial ?Hf(zircon) values (+8.3 (±0.8 (2?)) to +10.0 (±0.9 (2?))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (?73 Ma) to Eocene (?39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (?36 Ma) to Early Miocene (?17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' ?18O(zircon) values (+4.8‰ (±0.2 (2?) to +5.8‰ (±0.5 (2?))), but less radiogenic initial ?Hf(zircon) values (+1.0 (±1.1 (2?)) to +4.0 (±0.6 (2?))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ?20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' ?18O(zircon) values (+5.5‰ (±0.6 (2?) to +7.2‰ (±0.4 (2?))) and unradiogenic, initial ?Hf(zircon) values (-3.9 (±1.0 (2?)) to +1.6 (±4.4 (2?))), obtained for the Late Oligocene (?23 Ma) to Late Miocene (?9 Ma) magmatic rocks located in the Argentinean Precordillera, and the Late Miocene (?6 Ma) volcanic rocks present in the Frontal Cordillera. The observed isotopic variability demonstrates that the assimilation of pre-existing continental crust, which varies in both age and composition over the Andean Cordillera, plays a dominant role in modifying the isotopic composition of Late Eocene to Late Miocene mantle-derived magmas, implying significant crustal recycling. The interaction of arc magmas with distinct basement terranes is controlled by the migration of the magmatic arc due to the changing geodynamic setting, as well as by the tectonic shortening and thickening of the Central Andean crust over the latter part of the Cenozoic.

  6. Kinematic analysis of recent and active faults of the southern Umbria-Marche domain, Northern Apennines, Italy: geological constraints to geodynamic models

    NASA Astrophysics Data System (ADS)

    Pasqui, Valeria; Viti, Marcello; Mantovani, Enzo

    2013-04-01

    The recent and active deformation that affects the crest zone of the Umbria-Marche belt (Northern Apennines, Italy) displays a remarkable extensional character, outlined by development of normal fault sets that overprint pre-existing folds and thrusts of Late Miocene-Early Pliocene age. The main extensional fault systems often bound intermontane depressions hosting recent, mainly continental, i.e. fluvial or lacustrine deposits, separating the latter from Triassic-Miocene, mainly carbonatic and siliciclastic marine rocks that belong to the Romagna-Umbria-Marche stratigraphic succession. Stratigraphic data indicate that the extensional strain responsible for the development of normal fault-bounded continental basins in the outer zones of the Northern Apennines was active until Middle Pleistocene time. Since Middle Pleistocene time onwards a major geodynamic change has affected the Central Mediterranean region, with local reorganization of the kinematics in the Adria domain and adjacent Apennine belt. A wide literature illustrates that the overall deformation field of the Central Mediterranean area is presently governed by the relative movements between the Eurasia and Africa plates. The complex interaction of the Africa-Adria and the Anatolian-Aegean-Balkan domains has led the Adria microplate to migrate NW-ward and to collide against Eurasia along the Eastern Southern Alps. As a consequence Adria is presently moving with a general left-lateral displacement with respect to the Apennine mountain belt. The sinistral component of active deformations is also supported by analysis of earthquake focal mechanisms. A comparison between geophysical and geological evidence outlines an apparent discrepancy: most recognized recent and active faults display a remarkable extensional character, as shown by the geometry of continental basin-bounding structutes, whereas geodetic and seismologic evidence indicates the persistency of an active strike-slip, left-lateral dominated strain field. The coexistence of extensional and strike-slip regimes, in principle difficult to achieve, may be explained in the framework of a transtensional deformation model where extensional components, normal to the main NW-directed structural trends, are associated to left-lateral strike-slip movements parallel to the main NW-directed structural trends. Critical for the evaluation of the internal consistency of a deformation model for the brittle upper crustal levels is the definition of the kinematics of active faults. In this study we illustrate the preliminary results of a kinematic analysis carried out along 20, exceptionally well exposed, recent and active fault surfaces cropping out in the southernmost portion of the Umbria-Marche belt adjacent to its termination against the the Latium-Abruzzi domain to the East. The collected data indicate that the investigated faults reflect a kinematically oblique character, and that development of these structures may be explained in the framework of a left-dominated transtensional strain field. More important, the data indicate that fault kinematic analysis is an effective tool in testing geodynamic models for actively deforming crustal domains.

  7. The Permian volcanism of Sardinia revisited: new geochronological and geochemical data as a key for geodynamic evolution of the western Peri-Tethian sector

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Gretter, Nicola; Lago, Marceliano; Langone, Antonio; Oggiano, Giacomo; Ronchi, Ausonio

    2014-05-01

    Recent studies have confirmed the important role played by magmatism affecting Sardinian basins during the latest Carboniferous and Permian age (Cortesogno et al. 1998; Buzzi et al., 2008; Casini et al., 2012). To-date, most of the geochronological analysis performed on the Permian volcanic events in the island are methodologically overcome and frequently not in tune with the stratigraphy. In the north-western and central-southeastern Sardinian basins (Nurra, Perdasdefogu, Seui-Seulo and Escalaplano), the late-post Variscan tectonic collapse favored the emplacement of a calc-alkaline products not only in the form of generally shallow intrusions but also volcanism within intramontane strike-slip basins. This magmatism is expressed both as pyroclastic rocks-lava flows filling small half-graben basins and hypabyssal intrusions (lava-domes and dykes). These volcano-sedimentary troughs generally include both external and internal igneous eruptions as well as the detrital products eroded from the surrounding structural highs. Rhyolites, andesites and dacites are the main rock types while trachydacites and trachyandesites are less represented. Our goal is to couple the petrographic and geochemical features of 17 selected samples stratigraphically constrained and new U-Pb ages data on zircons from the post-Variscan effusive rocks in Sardinia. The whole-rock and REE geochemical features confirm a progressive evolution in the post-Variscan extensional, trans-tensile regime in with and fits an origin in a stacking of nappes associated with thermal re-equilibration of lithospheric mantle and telescopic partial melting of the thickened crust. The process is dominated by AFC. As far as the geochronological analysis is concerned, a preliminary cathodoluminescence study has been performed on all mounted crystals in order to select the precise location of the shot points. Each crystal has been analyzed for U, Th and Pb in the epoxy mount by laser-ablation inductively coupled plasma mass spectrometry (LA ICP-MS) at the Institute of Geosciences and Earth Resources IGG-CNR of Pavia. The time lag of Permian ages recorded along the Sardinia cross section is significant in the modeling of the post- Variscan tectonic, sedimentary evolution and in the perspective of the geodynamic evolution of Southern Variscides. REFERENCES Casini L., Cuccuru S., Maino M., Oggiano G., Tiepolo M 2012. Emplacement of the Arzachena Pluton (Corsica-Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 544-545 (2012) 31-49. Buzzi L., Gaggero L., Oggiano G. 2008. The Santa Giusta ignimbrite (NW Sardinia): a clue for the magmatic, structural and sedimentary evolution of a Variscan segment between Early Permian and Triassic. Italian Journal of Geoscience 127(3), 683-695. Cortesogno L., Cassinis G., Dallagiovanna G., Gaggero L., Oggiano G., Ronchi A., Seno S., Vanossi M. 1998. The Variscan post-collisional volcanism in Late Carboniferous-Permian sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): a synthesis. Lithos 45, 305-328.

  8. Geochemistry and zircon U-Pb-Hf isotopes of the granitoids of Baolidao and Halatu plutons in Sonidzuoqi area, Inner Mongolia: Implications for petrogenesis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Hu, Chuansheng; Li, Wenbo; Xu, Cheng; Zhong, Richen; Zhu, Feng

    2015-01-01

    The Baolidao and Halatu plutons are located in the Northern Orogenic Belt (NOB) in Sonidzuoqi area of Inner Mongolia, which has an important significance for the tectonic evolution of Xing-Meng Orogenic Belt (XMOB). The two plutons have been intensively studied but the conclusions are still controversial. Combined with the previous study, this paper gives new geological data about the two correlative plutons for gaining a better understanding of their petrogenesis and the geodynamic setting. The Baolidao granitoids contain two different series, calc-alkaline series mainly formed in the Ordovician and high K calc-alkaline series mainly formed in the Carboniferous. The Halatu granites are formed in the Triassic and belong to high-K calc-alkaline series. This study got the zircon U-Pb ages of 316-322 Ma for the Baolidao granitoids and 233 ± 2 Ma for the Halatu syenogranites, respectively. In the tectonic discrimination diagrams, they mainly fall into the area of post-orogenic granites (POG). Hf isotopic analyses for the Baolidao granitoids (Sample BLD-1 and 3) shows ?Hf (t) = 3.0-14.0, with two-stage Hf model age (TDM2) of 436-1138 Ma. The Halatu syenogranite (Sample HLT-1) also shows a depleted ?Hf (t) = 3.8-8.2, with TDM2 of 741-1024 Ma, suggesting the major involvement of juvenile crustal components. The various ?Hf values of the Carboniferous Baolidao and Triassic Halatu granitoids indicates a hybrid magma source of juvenile material with old crustal component, and the ?Hf (t) values decrease from the Carboniferous to Triassic, suggesting the increasing proportion of old continental material during this period. Combined with the regional geology, the Carboniferous Baolidao granitoids are possibly not arc rocks, but originated from the post-collisional setting. The Triassic Halatu granites were formed in the subsequently extensional environment.

  9. GOCE observations and geophysical constraints to better understand the lithosphere and geodynamical processes under the Paraná-Etendeka region: preliminary results of PERLA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizia; Braitenberg, Carla

    2014-05-01

    In the light of the considerable progress made by the modern geodetic satellite mission GOCE, one of the challenges of the European Space Agency (ESA) is to improve knowledge of physical properties and geodynamic processes of the lithosphere and the Earth deep interior, and their relationship to Earth-surface changes. In this context we propose a study that aims to understand the two pieces of lithosphere underlying the Paraná-Etendeka conjugate margins (Brazil, and Angola-Namibia). It is essential to collect the geological and geophysical information about the thickness and the density of sedimentary layers, crustal thickness and mantle inhomogeneities. Our methodology integrates the geophysical database with the GOCE data, product of the innovative gravity satellite mission, that was concluded November 2013. Crustal thickness was obtained from all available seismological datasets. The density-depth relation of the shallow layers is modeled by geophysical data collected from literature and from the on-shore and off-shore drilling programs. Several compaction laws are used to estimate the density of each layer. This information is necessary to reduce the observations considering the gravity effect of all intracrustal known layers, to resolve the deep crustal structures (e.g. Moho and intracrustal bodies). A positive gravity anomaly is expected due to the magmatic activity of the Paraná-Etendeka province. The smaller-scale and shallow gravity anomaly should be due to the occurrence of the volcanic activity close to the alkaline-carbonatite complexes, while the large-scale anomaly is expected from the underplating of a wide denser body at the depth of the crustal mantle boundary. In the present work some preliminary results of the inversion of the residual gravity anomaly in terms of densities in the middle and shallow lithosphere under the Paraná-Etendeka region will be presented and interpreted.

  10. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  11. Géodynamique et évolution thermique de la matière organique: exemple du bassin de Qasbat-Tadla, Maroc centralBasin geodynamics and thermal evolution of organic material: example from the Qasbat-Tadla Basin, central Morocco

    NASA Astrophysics Data System (ADS)

    Er-Raïoui, H.; Bouabdelli, M.; Bélayouni, H.; Chellai, H.

    2001-05-01

    Seismic data analysis of the Qasbat-Tadla Basin allows the deciphering of the main tectonic and sedimentary events that characterised the Hercynian orogen and its role in the basin's structural development. The global tectono-sedimentary framework involves structural evolution of an orogenic foreland basin and was the source of rising geotherms in an epizonal metamorphic environment. The complementary effects of these parameters has led to different source rock maturity levels, ranging from oil producing to graphite domains. Different maturity levels result from three distinct structural domains within the basin, each of which exhibit characteristic geodynamic features (tectonic contraints, rate of subsidence, etc.).

  12. Configuration of geological domains and geodynamic evolution of the Africa-Eurasia plate boundary off SW Iberia revisited based on seismic velocity and density models

    NASA Astrophysics Data System (ADS)

    Martínez-Loriente, Sara; Sallarès, Valentí; Gràcia, Eulàlia; Bartolome, Rafael; Ranero, César

    2015-04-01

    We present a new classification of geological (basement) domains at the Africa-Eurasia plate boundary offshore SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along two regional wide-angle seismic transects, one running NW-SE from the Tagus to the Seine abyssal plains, and the other running N-S from S Portugal to the Seine Abyssal Plain, combined with previously available information. The seismic velocity and density structure at the Seine Abyssal Plain and the internal Gulf of Cadiz indicates the presence of a highly heterogeneous oceanic crust, similar to that described in ultra-slow spreading centers, whereas in the Horseshoe and Tagus abyssal plains, the basement structure resembles that of exhumed mantle sections identified in the Northern Atlantic margin. The integration of all this new information allows defining the presence of three oceanic domains off SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE segment of the Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental break-up (Late Jurassic); and (3) the Gorringe Bank domain, mainly made of rocks exhumed from the mantle with little synchronous magmatism, which formed during the first stages of North Atlantic opening (Early Cretaceous). Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain, which coincides with the seismicity cluster nucleated in the middle of the plain that shows moment tensor solutions of reverse faulting at depths of 40-60 km. The formation and evolution of these three domains during the Mesozoic is key to understand the sequence of events that occurred during the first stages of opening of the Northern Atlantic and its connection and interplay with the Western Mediterranean basin.

  13. New insights in the geodynamics of the Lipari-Vulcano area (Aeolian Archipelago, southern Italy) from geological, geodetic and seismological data

    NASA Astrophysics Data System (ADS)

    Barreca, G.; Bruno, V.; Cultrera, F.; Mattia, M.; Monaco, C.; Scarfì, L.

    2014-12-01

    Geological, geodetic and seismological data have been analyzed in order to frame the Lipari-Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW-SSE trending right-lateral strike-slip fault system named "Aeolian-Tindari-Letojanni" which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW-SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N-S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW-SSE trending Aeolian-Tindari-Letojanni fault system and to the WNW-ESE oriented Sisifo-Alicudi fault system. GPS data analysis displays ?3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10-13 s-1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10-13 s-1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about -15 to -7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari-Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo-Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.

  14. Divergence between Antarctic and South American marine invertebrates: What molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Poulin, Elie; González-Wevar, Claudio; Díaz, Angie; Gérard, Karin; Hüne, Mathias

    2014-12-01

    Continental drift processes such as major gateway openings have been historically advocated to explain the distribution of marine benthic taxa in the Southern Ocean (SO). The separation between Antarctic Peninsula and the southern tip of South America together with the onset of the Antarctic Circumpolar Current (ACC) represent the final step for the complete isolation of the Antarctic region. However, there is still controversy concerning the timing and mode of this process, and especially about the role of the Scotia Arc geodynamics in the development of a fully deep and intensified ACC circulation. Based on mitochondrial Cytochrome c Oxidase Subunit I (COI) sequences obtained from different taxa, we performed molecular comparisons between Antarctic and South American relatives to provide independent time estimations of Antarctica's isolation. We include in the analyses congeneric Antarctic and Patagonian near-shore marine benthic invertebrates including indirect developers (Nacella, Yoldia, Sterechinus, and Parbolasia) and brooders (Xymenopsis and Trophonella). Considering the levels of genetic differentiation between relatives from both regions and assuming the molecular clock hypothesis, we estimated the onset of their respective divergence. On one hand, similar levels of genetic distance in broadcast-spawners (7%-8.3%) support the hypothesis that the development of an effective barrier between Antarctica and South America occurred almost simultaneously for these groups. Divergence time estimations based on specific substitution rates indicate that the separation occurred near the Mio-Pliocene transition, long after the physical separation of both continents. Genetic distance and divergence time estimation in direct developers indicate an older separation time, close to the mid-Miocene. Even when the analyzed groups included both broadcast-spawners and brooder organisms, the divergence between Antarctic and South America lineages rather than being related to processes of continental drift, seems to be associated more to major changes in the Southern Ocean such as the evolution of the Scotia Arc and the deepening of the Drake Passage. Accordingly, these results support a genetic continuity between Antarctica and South America, probably along the Scotia Ridge, until the middle Miocene and a late ACC intensification at the Mio-Pliocene boundary.

  15. Evolution of the Cretaceous magmatism in the Apuseni-Timok-Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Frank, M.; Cvetkovic, V.

    2003-04-01

    Most major Cu-Au (-PGE) deposits in the Carpathian Balkan orogen are related to a 1500 km long belt of Upper Cretaceous magmatism extending from southern Romania through Yugoslavia to Bulgaria, with a likely continuation southeast of the Black Sea into Turkey, known as the Apuseni Banat Timok Srednogorie (ABTS) belt (Popov et al., 2000). In the frame of ABTS belt a new investigation was started to reveal the relation between Cretaceous magmatism and the Cu-Au-PGE deposits across the belt in East Serbia (Yugoslavia) and the Panagyurishte district (Bulgaria). The Late Cretaceous (Palaeogene?) magmatism of East Serbia developed along the Timok Magmatic Complex (TMC) in the east and the Ridanj Krepoljin Zone (RKZ) in the west. High precision U-Pb single zircon dating and a combination of isotope tracing, geochronological data as well as petrological data were used to provide additional data for the geodynamic evolution. A maximum life span of 2.5 Ma could be calculated for the first phase of volcanic activity in TMC, starting with the Amf-andesites of Veliki Kravelj (86.29 ± 0.32 Ma) and finishing with the Timozites (84.66 ± 0.5 Ma). Ore bearing magmatism in a single deposit (Veliki Kravelj) extended a maximum of 0.6 Ma ("pre-ore": 86.29 ± 0.32 Ma, "post-ore": 86.17 ± 0.15 Ma). Preliminary data for the dacites (70.3 ± 3.5 Ma) outcropping near Krepoljin give evidence for a shifting of the volcanic activity from TMC to RKZ together with changing the ore-deposit type from Cu-Au-PGE (TMC) to Pb-Zn-Cu (RKZ). Isotope tracing give evidence for mantle dominated source with increasing of crustal contamination in the same direction: (87Sr/86Sr ratios: 0.70388 to 0.706050, e-Hf-zircon data: +12 in TMC to +4.5 in RKZ). The Panagyurishte district (Bulgaria) show a duration time of the magmatic activity of 14 Ma, starting in the north at 92 Ma and finishing in the south at 78 Ma. Ore-related magmatism becomes younger in the same direction but finishes with 86 Ma. Multiple short magmatic pulses (< 1.Ma) led to several important Cu-Au-PGE ore deposits within the Central Srednogorie zone. Sr-, Nd-, Pb- and Hf-isotope tracing on whole rocks and minerals provides evidence for mixed crust-mantle origin of the magma with specific trends in the single deposits. Presented data suggest subduction related magmatism in the Upper Cretaceous with subduction rollback.

  16. Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data

    NASA Astrophysics Data System (ADS)

    Drobe, Malte; de Luchi, Mónica López; Steenken, André; Wemmer, Klaus; Naumann, Rudolf; Frei, Robert; Siegesmund, Siegfried

    2011-04-01

    Whole-rock geochemical analyses using major and trace elements in combination with the Sm-Nd and Pb-Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm-Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.

  17. Geodetic Tying of Antarctica and India With 10 Years of Continuous GPS Measurements for Geodynamical and Strain Accumulation Studies in the South of Indian Peninsula

    NASA Astrophysics Data System (ADS)

    Ec, M.; N, R.

    2008-12-01

    To holistically understand the geodynamical and crustal deformation processes between India and Antarctica, two global networks (IND and ANT) have been chosen. The objective is to geodetically connect the two continents. The IGS Station at Diego Garcia (DGAR) is the common station between the two networks. 10 years of data from 1997 to 2007 were used. By these global networks' analyses, the stations HYDE in India and MAIT at Antarctica are geodetically tied through the station DGAR. Very long baselines have been estimated from HYDE and also from Kerguelen (KERG) to other chosen IGS stations in and around India and Antarctica. Our analysis and results using ANT network show an increase in the baseline lengths between Kerguelen in Antarctic plate and other stations such as SEY1, DGAR and COCO and shortening of baseline lengths between HYDE in Indian plate and all these above stations using IND network. The analysis using ANT network also shows lengthening of baselines from Kerguelen to the sites Yaragadee (YAR1) and Tidbinbilla (TID2) in Australian plate; and Seychelles (SEY1) in Male plate, COCO in the diffuse plate boundary between India and Australia and DGAR in Capricorn plate at the rates of 5.3cm/yr, 3.8cm/yr, 5.6mm/yr, 3.03 cm/yr and 5.5 cm/yr respectively. The high rate of movement of COCO Island in comparison to Seychelles could be the result of excessive strain accumulation due to the Indo-Australia diffuse plate boundary forces acting upon this region. The estimated elastic strain accumulation shows an increasing trend of 1.27x 10-8 yr-1 in the south of Indian peninsula. Our results show the precision of approximately 3-4mm (North), 5-6 mm (East), and 10-12mm (vertical) for the estimation of site coordinates. These results provide new information on the direction and rate of Indian plate motion, the driving mechanisms of Indian plate and intraplate seismicity of the Indian Ocean on the whole.

  18. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  19. Dating intrusion and cooling of Cenozoic granitoids in the Dinarides of Southern Serbia and discussion of the geodynamic setting of Paleocene-Miocene magmatism in the Balkan Peninsula

    NASA Astrophysics Data System (ADS)

    Senecio, Schefer; Cvetkovi?, Vladica; Fügenschuh, Bernhard; Kounov, Alexandre; Ovtcharova, Maria; Schaltegger, Urs; Schmid, Stefan

    2010-05-01

    This paper presents the results of high precision single grain U-Pb dating and Hf isotope analyses of thermally annealed and chemically abraded zircons from the Kopaonik, Drenje, Željin, Golija and Polumir intrusions in the inner Dinarides of southern Serbia. In addition, new zircon and apatite fission-track data together with local structural observations, allow for constraining the subsequent exhumation history of these intrusions. Two age groups were determined for the granitoid intrusions: (i) Oligocene intrusive bodies (Kopaonik, Drenje, Željin) ranging in age from 31.7 to 30.6 Ma and (ii) Miocene Golija and Polumir intrusions which emplaced at 20.58-20.17 and 18.06-17.74 Ma, respectively. The apatite fission-track modelling combined with zircon central ages show rapid cooling from above 300 to ca. 80 °C between 16 and 10 Ma for granitoids of both age groups, followed by rather slow cooling to surface temperatures for the last 10 Ma. Fast Middle Miocene cooling between 16 and 10 Ma is caused by extensional exhumation of the plutons that are located in the footwall of core-complexes. This documents that Miocene magmatism and core-complex formation leading to formation of the Pannonian basin also affected a part of the mountainous areas of the internal Dinarides. The discussion of an extensive set of age data from the literature and the geodynamic setting of the Balkan Peninsula reveals that there is no direct connection of the Dinaridic Late Eocene to earliest Miocene magmatic belt with contemporaneous Periadriatic intrusions in the Alps and along the Mid-Hungarian fault zone as proposed in the literature. We insist on the fact that the subduction polarity in the Alps, including that within the Western Carpathians north of the Mid-Hungarian fault zone, is opposite to that of the Dinarides during the given time span. Instead, we propose that Late Eocene to Oligocene magmatism, which affects the Adria-derived lower plate units of the internal Dinarides, may be caused by delamination of the Adriatic mantle from the overlying crust, associated with intra-plate convergence that propagates outward into the external Dinarides during this time interval. Miocene magmatism, on the other hand, is associated with core-complex formation at the southern rim of the Pannonian basin probably associated with the W-directed subduction of the European lithosphere beneath the Carpathians, possibly interfering with ongoing Dinaridic-Hellenic back-arc extension.

  20. Integrated studies of the recent evolution of Deception Island in the geodynamic setting of the Bransfield Basin opening (Antarctica): GEOMAGDEC Project

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; Gil-Imaz, Andrés.; Gil-Peña, Inmaculada; Galindo-Zaldívar, Jesús; Rey, Jorge; Soto, Ruth; López-Martínez, Jerónimo; Llave, Estefanía.; Bohoyo, Fernando; Rull, Fernando; Martínez-Frías, Jesús; Galán, Luis; Casas, David; Lunar, Rosario; Ercilla, Gemma; Somoza, Luis

    2010-05-01

    Deception Island shows the most recent active volcanism, evidence of several eruptions since the late 18th century, and well-known eruptions in 1967, 1969, and 1970 at the western end of the volcanic ridge of the Bransfield Trough, between the South Shetland Islands and the Antarctic Peninsula. The recent tectonic activity of the Bransfield Trough is not well defined, and it presents a controversial origin. It is currently explained by two different models: (1) Opening of the basin may be related to passive subduction of the former Phoenix Plate and subsequent rollback of the South Shetland Trench; or (2) an oblique extension along the Antarctic Peninsula continental margin generated by the sinistral movement between the Antarctic and Scotia plates. This extension develops the Bransfield Trough and spread away the South Shetland tectonic block. The GEOMAGDEC project involves a multidisciplinary and integrated research of the Deception Island based on geophysical and geological methods. The purpose of this project, funded by the Spanish research agency, is the understanding of the main processes that govern the evolution of the Deception Island into the development of Bransfield Basin during recent times. Main aims are: (1) Study of the anisotropy of the magnetic susceptibility of volcanic deposits of emerged area of Deception Island to determine the relationship between magmatism (intrusive and extrusive) with the recent tectonic activity. This task allows the reconstruction of igneous flow directions of the different volcanic units established in the island, dikes emplacement modelling in active tectonic regime, and the integration of the results obtained in a kinematic and dynamic emplacement model of the different volcanic units of the Deception Island into recent geodynamic setting of Bransfield Basin opening. (2) Lito- and crono-stratigraphy analysis of the quaternary sedimentary units that filled Port Foster (inner bay of Deception Island) on the basis of the ultra-high seismic profiles and gravity cores data acquired during oceanographic campaigns carried out using the RV. BIO/HESPERIDES. (3) Recovery of the Hydrothermal Precipitation Cells (HPCs) emplaced in Port Foster during 2001 austral summer and the mineralogical and geochemical analysis of the precipitate deposits located in the inner walls of the HPCs. The analysis of these samples will provide important information about the recent volcanic activity.

  1. Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: The Tyrrhenian Sea and surroundings

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Peccerillo, A.; Aoudia, A.; Farina, B.

    2007-01-01

    Information on the physical and chemical properties of the lithosphere-asthenosphere system (LAS) can be obtained by geophysical investigation and by studies of petrology-geochemistry of magmatic rocks and entrained xenoliths. Integration of petrological and geophysical studies is particularly useful in geodynamically complex areas characterised by abundant and compositionally variable young magmatism, such as in the Tyrrhenian Sea and surroundings. A thin crust, less than 10 km, overlying a soft mantle (where partial melting can reach about 10%) is observed for Magnaghi, Vavilov and Marsili, which belong to the Central Tyrrhenian Sea backarc volcanism where subalkaline rocks dominate. Similar characteristics are seen for the uppermost crust of Ischia. A crust about 20 km thick is observed for the majority of the continental volcanoes, including Amiata-Vulsini, Roccamonfina, Phlegraean Fields-Vesuvius, Vulture, Stromboli, Vulcano-Lipari, Etna and Ustica. A thicker crust is present at Albani - about 25 km - and at Cimino-Vico-Sabatini — about 30 km. The structure of the upper mantle, in contrast, shows striking differences among various volcanic provinces. Volcanoes of the Roman region (Vulsini-Sabatini-Alban Hills) sit over an upper mantle characterised by Vs mostly ranging from about 4.2 to 4.4 km/s. At the Alban Hills, however, slightly lower Vs values of about 4.1 km/s are detected between 60 and 120 km of depth. This parallels the similar and rather homogeneous compositional features of the Roman volcanoes, whereas the lower Vs values detected at the Alban Hills may reflect the occurrence of small amounts of melts within the mantle, in agreement with the younger age of this volcano. The axial zone of the Apennines, where ultrapotassic kamafugitic volcanoes are present, has a mantle structure with high-velocity lid ( Vs ˜ 4.5 km/s) occurring at the base of a 40-km-thick crust. Beneath the Campanian volcanoes of Vesuvius and Phlegraean Fields, the mantle structure shows a rigid body dipping westward, a feature that continues southward, up to the eastern Aeolian arc. In contrast, at Ischia the upper mantle contains a shallow low-velocity layer ( Vs = 3.5-4.0 km/s) just beneath a thin but complex crust. The western Aeolian arc and Ustica sit over an upper mantle with Vs ˜ 4.2-4.4 km/s, although a rigid layer ( Vs = 4.55 km/s) from about 80 to 150 km occurs beneath the western Aeolian arc. In Sardinia, no significant differences in the LAS structure are detected from north to south. The petrological-geochemical signatures of Italian volcanoes show strong variations that allow us to distinguish several magmatic provinces. These often coincide with mantle sectors identified by Vs tomography. For instance, the Roman volcanoes show remarkable similar petrological and geochemical characteristics, mirroring similar structure of the LAS. The structure and geochemical-isotopic composition of the upper mantle change significantly when we move to the Stromboli-Campanian volcanoes. The geochemical signatures of Ischia and Procida volcanoes are similar to other Campanian centres, but Sr-Pb isotopic ratios are lower marking a transition to the backarc mantle of the Central Tyrrhenian Sea. The structural variations from Stromboli to the central (Vulcano and Lipari) and western Aeolian arc are accompanied by strong variations of geochemical signatures, such as a decrease of Sr-isotope ratios and an increase of Nd-, Pb-isotope and LILE/HFSE ratios. The dominance of mafic subalkaline magmatism in the Tyrrhenian Sea basin denotes large degrees of partial melting, well in agreement with the soft characteristics of the uppermost mantle in this area. In contrast, striking isotopic differences of Plio-Quaternary volcanic rocks from southern to northern Sardinia does not find a match in the LAS geophysical characteristics. The combination of petrological and geophysical constraints allows us to propose a 3D schematic geodynamic model of the Tyrrhenian basin and bordering volcanic areas, including the subduction of the Ionian-Adria lithosphe

  2. Chemical geodynamics: Tracking mantle depletion

    NASA Astrophysics Data System (ADS)

    Stracke, Andreas

    2008-04-01

    Extraction of the continental crust has left the Earth's mantle depleted in certain elements. Some rocks from the Arctic Ocean floor suggest that the extent of depletion and heterogeneity in the Earth's mantle may be greater than we thought.

  3. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other planets may differ; however, if a transition to non-conductmg fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  4. Magnectic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  5. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothesis passes the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale range. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small-scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magnetogeostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non-conducting fluid hydrogen in Jupiter acts as a barrier to vertical flow, as well as current, then the shape of the jovi-magnetic spectrum could be remarkably Earth-like.

  6. Structural and geodynamic study in central Tunisia using field and geophysical data: new structural interpretation of the N-S axis and associated Atlassic structures

    NASA Astrophysics Data System (ADS)

    Dhahri, Ferid; Tanfous, Dorra; Gabtni, Hakim; Boukadi, Noureddine

    2015-10-01

    A structural and geodynamic evolution of central Tunisia is constructed from field studies and geophysical data within the Tunisian Atlassic domain. Bouguer gravity and horizontal gradient magnitude (HGM) maps indicate that computed anomalies are related to subsurface structures and are in accordance with the general structural trends of central Tunisia. Near Cherichira fault, the strike is ENE-WSW, whereas it is N-S along the N-S axis, a major discontinuity between the Pelagian shelf to the east and Central Atlas Mountains to the west. E-W-oriented HGM profiles on the north side of the Cherichira fault show moderate HGM variations, which correspond to the NE-SW fault system of the Ousselet-Bou Dabbous. This trend is also expressed by the second-order vertical derivative map of this area. However, on the south side of the fault, a dominant peak is indicated rather than the anomalies characteristic of the north side of the fault. This anomaly is associated with the N-S axis discontinuity. Seismic reflection data are also used to elucidate the structural configuration and style north and south of the Cherichira fault. The seismic lines demonstrate that faulting and associate halokinesis in Ousselet-Bou Dabbous area are not comparable to the paleogeographic fault system of the N-S axis southward. To the south of Cherichira fault, the seismic lines show massive Triassic evaporates piercing along the major paleogeographic faults associated with thickness variations of Mesozoic and Cenozoic stratigraphic units and a reverse slip of western structural elements. It seems that the N-S axis corresponds to a steeply dipping major zone of weakness in the Tunisian Atlassic Mountains and indicates evidence of several stages of activity, including the rise of Triassic evaporates rise up which outcrop at several localities such as Rheouis and Mezzouna. The loading and upward rise of Triassic evaporites along this weak zone are a key factor in the thinning of the Mesozoic-Cenozoic sedimentary cover along this paleogeographic discontinuity. These new data indicate the northeast extrapolation of fold and grabens of the Central Atlas of Tunisia to the northeast of Kairouan, whereas the northern extent of the N-S axis is limited to south of the Cherichira fault. The Cherichira fault is NE-SW oriented and parallels the Ballouta-Zaghouan fault system, which reflects the regional strike of the Tellian orogeny and the associated nappes to the north. The geometry and kinematics of these Tellian features are linked to the tectonic evolution of the northern African margin, including Mesozoic extension separating the African and European plates to the inversion of these structures since the Late Cretaceous. The N-S axis is correlated in its direction and tectonic framework to the strike-slip fault system of the African craton, which is present to the south in the Algerian Saharan domain of Hoggar.

  7. KALMAR - "Kurile-Kamchatka and Aleutean Marginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time" - an integrated science approach between Russia and Germany

    NASA Astrophysics Data System (ADS)

    Dullo, Wolf-Christian; Baranov, Boris; van den Bogaard, Christel

    2010-05-01

    The exploration of the arctic seas require an integrated approach applying different infrastructures. In Fall 2009 German and Russian scientists performed a geo marine cruise off Kamchatka and in the western Bering Sea within the frame of the KALMAR-Project. Two main research subjects formed the scientific backbone of the cruise: The first objective focuses on the geodynamic and volcanological-magmatic development of the Kuril-Kamchatka island arc system and the Kamchatka Aleutean Islands Triple-Junction. Very little is known about the composition of the mantle and the oceanic crust as well as of the seamounts including their ages. The best studied site is the Volcanologist's Massif located between the Bering- and the Alpha Fracture Zone (Tsvetkov 1990, Volynets et al. 1992, Yogodzinsky et al. 1994), which structurally belongs to the Komandorsky Basin. The oldest rocks of the Volcanologist's Massif show very similar trace element and isotope signatures like those rocks cropping out in the volcanoes on Kamchatka in the prolongation of the Alpha Fracture Zone (Portnyagin et al. 2005a), indicating similar conditions of magma formation. The top of the Volcanologist's Massif is characterized by the young (< 0.5 Ma) and hydrothermally active Piip volcano, which consists of special magnesium rich andesites ("Piip type"). Another hot site was the Meiji-Seamount which is the northernmost Seamount of the hotspot spur of the Hawaii-Emperor-Seamount chain, having an age of probably > 85 Ma. The only existing basement rocks from this seamount were gained during DSDP Leg 19. These are basalts with MORB like trace element and isotope signatures (Keller et al. 2000, Regelous et al. 2003). These data indicate that the Hawaii-Hotspot was at a MOR in Cretaceous time and that large volumes of depleted mantle material played a role during the magma formation. The second objective focuses on paleo-oceanographic investigations concentrating on the sediments along the eastern continental slope of Kamchatka, in the Komandorsky Basin, and on the Shirshov Ridge in order to explore paleoclimate archives to better understand the subpolar water mass transfer and the oceanographic and climatic development in the subarctic NW-Pacific. Comparisons of Late Pleistocene and Holocene temperature changes within the near surface water masses between the NW-Pacific and the N-Atlantic resulted in a new hypothesis, the "Atlantic-Pacific seesaw" (Kiefer et al. 2001, Kim et al. 2004, Kiefer and Kienast, 2005). This Atlantic-Pacific pattern of opposite temperature variations dominates the last 60ka on millennial timescales. Modelling results of Saenko et al. (2004) support the hypothesis of the "Atlantic-Pacific seesaw" and they postulate a mechanistic connection between the two regions driven by salinity variations, which couples both regions through the thermohaline circulation. A different model relates the Holocene Atlantic-Pacific dipole to the atmospheric tele-connection between the Arctic Oscillation/N-Atlantic Oscillation and the Pacific N-American Oscillation (Kim et al. 2004). http://kalmar.ifm-geomar.de

  8. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Tassi, F.; Vaselli, O.; Poreda, R. J.; Darrah, T.; Cuoco, E.; Yalire, M. M.

    2010-01-01

    On 17 January 2002, the city of Goma was partly destroyed by two of the several lava flows erupted from a roughly N-S oriented fracture system opened along the southern flank of Mount Nyiragongo (Democratic Republic of Congo), in the western branch of the East African rift system. A humanitarian and scientific response was promptly organized by international, governmental, and nongovernmental agencies coordinated by the United Nations and the European Union. Among the different scientific projects undertaken to study the mechanisms triggering this and possible future eruptions, we focused on the isotopic (He, C, and Ar) analysis of the magmatic-hydrothermal and cold gas discharges related to the Nyiragongo volcanic system, the Kivu and Virunga region. The studied area includes the Nyiragongo volcano, its surroundings, and peripheral areas inside and outside the rift. They have been subdivided into seven regions characterized by distinct 3He/4He (expressed as R/Rair) ratios and/or ?13C-CO2 values. The Nyiragongo summit crater fumaroles, whose R/Rair and ?13C-CO2 values are up to 8.73 and from -3.5‰ to -4.0‰ VPDB, respectively, show a clear mantle, mid-ocean ridge basalt (MORB)-like contribution. Similar mantle-like He isotopic values (6.5-8.3 R/Rair) are also found in CO2-rich gas emanations (mazukus) along the northern shoreline of Lake Kivu main basin, whereas the 13?C-CO2 values range from -5.3‰ to -6.8‰ VPDB. The mantle influence progressively decreases in (1) dissolved gases of Lake Kivu (2.6-5.5 R/Rair) and (2) the distal gas discharges within and outside the two sides of the rift (from 0.1 to 1.7 R/Rair). Similarly, ?13C-CO2 ratios of the peripheral gas emissions are lighter (from -5.9‰ to -11.6‰ VPDB) than those of the crater fumaroles. Therefore, the spatial distribution of He and C signatures in the Lake Kivu region is mainly produced by mixing of mantle-related (e.g., Nyiragongo crater fumaroles and/or mazukus gases) and crustal-related (e.g., gas discharges in the Archean craton) fluids. The CO2/3He ratio (up to 10 × 1010) is 1 order of magnitude higher than those found in MORB, and it is due to the increasing solubility of CO2 in the foiditic magma feeding the Nyiragongo volcano. However, the exceptionally high 40Ar*/4He ratio (up to 8.7) of the Nyiragongo crater fumaroles may be related to the difference between He and Ar solubility in the magmatic source. The results of the present investigation suggest that in this area the uprising of mantle-originated f luids seems strongly controlled by regional tectonics in relation to the geodynamic assessment of the rift. These fluids are mainly localized in a relatively small zone between Lake Kivu and Nyiragongo volcano, with important implications in terms of volcanic activity.

  9. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran

    NASA Astrophysics Data System (ADS)

    Mirnejad, H.; Lalonde, A. E.; Obeid, M.; Hassanzadeh, J.

    2013-06-01

    Mashhad granitoids in northeast Iran are part of the so-called Silk Road arc that extended for 8300 km along the entire southern margin of Eurasia from North China to Europe and formed as the result of a north-dipping subduction of the Paleo-Tethys. The exact timing of the final coalescence of the Iran and Turan plates in the Silk Road arc is poorly constrained and thus the study of the Mashhad granitoids provides valuable information on the geodynamic history of the Paleo-Tethys. Three distinct granitoid suites are developed in space and time (ca. 217-200 Ma) during evolution of the Paleo-Tethys in the Mashhad area. They are: 1) the quartz diorite-tonalite-granodiorite, 2) the granodiorite, and 3) the monzogranite. Quartz diorite-tonalite-granodiorite stock from Dehnow-Vakilabad (217 ± 4-215 ± 4 Ma) intruded the pre-Late Triassic metamorphosed rocks. Large granodiorite and monzogranite intrusions, comprising the Mashhad batholith, were emplaced at 212 ± 5.2 Ma and 199.8 ± 3.7 Ma, respectively. The high initial 87Sr/86Sr ratios (0.708042-0.708368), low initial 143Nd/144Nd ratios (0.512044-0.51078) and low ?Nd(t) values (- 5.5 to - 6.1) of quartz diorite-tonalite-granodiorite stock along with its metaluminous to mildly peraluminous character (Al2O3/(CaO + Na2O + K2O) Mol. = 0.94-1.15) is consistent with geochemical features of I-type granitoid magma. This magma was derived from a mafic mantle source that was enriched by subducted slab materials. The granodiorite suite has low contents of Y (? 18 ppm) and heavy REE (HREE) (Yb < 1.53 ppm) and high contents of Sr (> 594 ppm) and high ratio of Sr/Y (> 35) that resemble geochemical characteristics of adakite intrusions. The metaluminous to mildly peraluminous nature of granodiorite from Mashhad batholiths as well as its initial 87Sr/86Sr ratios (0.705469-0.706356), initial 143Nd/144Nd ratios (0.512204-0.512225) and ?Nd(t) values (- 2.7 to - 3.2) are typical of adakitic magmas generated by partial melting of a subducted slab. These magmas were then hybridized in the mantle wedge with peridotite melt. The quartz diorite-tonalite-granodiorite stock and granodiorite batholith could be considered as arc-related granitoid intrusions, which were emplaced during the northward subduction of Paleo-Tethys Ocean crust beneath the Turan micro-continent. The monzogranite is strongly peraluminous (Al2O3/(CaO + Na2O + K2O) Mol. = 1.07-1.17), alkali-rich with normative corundum ranging between 1.19% and 2.37%, has high initial 87Sr/86Sr ratios (0.707457-0.709710) and low initial 143Nd/144Nd ratios (0.512042-0.512111) and ?Nd(t) values (- 5.3 to - 6.6) that substantiate with geochemical attributes of S-type granites formed by dehydration-melting of heterogeneous metasedimentary assemblages in thickened lower continental crust. The monzogranite was emplaced as a consequence of high-temperature metamorphism during the final integration of Turan and Iran plates. The ages found in the Mashhad granites show that the subduction of Paleo-Tethys under the Turan plate that led to the generation of arc-related Mashhad granites in late-Triassic, finally ceased due to the collision of Iran and Turan micro-plates in early Jurassic.

  10. New insights into the origin of the subduction component in Late Oligocene magmatism in the Ronda peridotite (southern Spain): geodynamic implications for the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly; Acosta-Vigil, Antonio

    2013-04-01

    Several tectonic scenarios have been proposed for the Tertiary evolution of the Betic-Rif chain in the westernmost Mediterranean. Recent studies on late, mantle-derived Cr-rich websterite dykes in the Ronda peridotite have revealed recycling the involvement of sources of continental detrital sediments in the waning magmatic stage of the Ronda peridotite (Marchesi et al., 2012). This new data are consistent with a subduction-related setting for the late evolution of the Alboran lithospheric mantle before its final intracrustal emplacement in the early Miocene (Garrido et al., 2011). Detailed structural studies of Ronda plagioclase peridotites show that large-scale, ductile folding of peridotites-associated to the development of LT-LP plagioclase peridotite tectonites and ultramylonites-occurred during a contractional event before intracrustal emplacement of peridotites (Hidas et al., 2013). These authors have proposed that this event was related to inversion of a back-arc basin, followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge. This new structural data leads us to hypothesize that the crustal component observed in late, Cr-rich websterite might come from fluids produced by dehydration of underthrusted crustal units in the earliest stages of subduction initiation. Here we present new trace element and Sr-Nd-Pb-Hf isotopic data in whole rocks from Flysch sediments from the Betic cordillera and the underlying crustal units of the Ronda massif, which may account for the timing and geochemical signature of the Ronda Cr-rich pyroxenites dykes. These units correspond to the Flysch trough composed of turbiditic deposits, formed in the region between Iberia and Africa during Late Oligocene-Early Miocene, and the underlying crustal unit of the Ronda peridotite known as the Blanca unit. These new data are used to constrain the potential role of different crustal sources in the generation of the Late Oligocene subduction-related magmatism in the Ronda peridotite, and its implications for geodynamic models of the western Mediterranean in the Cenozoic. REFERENCES Garrido, C. J., F. Gueydan, G. Booth-Rea, J. Precigout, K. Hidas, J. A. Padrón-Navarta, and Marchesi C. . (2011) Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean, Geology, 39(10), 927-930. Hidas, K., Booth-Rea, G, Garrido, C. J., Martínez-Martínez, J. M., Padrón-Navarta, J. A., Konc, Z., Giaconia, F., Frets, E., and Marchesi, C. (2013) . Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain): Journal of the Geological Society, London. Marchesi, C., Garrido, C. J., Bosch, D., Bodinier, J.-L., Hidas, K., Padrón-Navarta, J. A., and Gervilla, F. (2012) A Late Oligocene Suprasubduction Setting in the Westernmost Mediterranean Revealed by Intrusive Pyroxenite Dikes in the Ronda Peridotite (Southern Spain): The Journal of Geology, 120 (2), 237-247.

  11. Petrogenesis and U-Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequences

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Yener

    2015-01-01

    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, which is one of the key areas of the Alpine-Himalayan system, is still controversial due to lack of systematic geological, geophysical, geochemical and chronological data. The prevailing interpretation is that this belt represents the southern margin of Eurasia during the Mesozoic and its geodynamic evolution is related to northward subduction of oceanic lithosphere. This paper reports the first detailed geological, geochemical and chronological data from felsic tuffs interbedded with late Cretaceous turbidites in the Southern Zone of the Eastern Pontides Orogenic Belt. Individual tuff layers are thin, mostly < 2 m in thickness, implying that these are dominantly air-fall tuffs. Petrographic data indicate that the felsic tuffs, which exhibit various degrees of alteration, can be classified as crystal-rich and crystal-poor tuffs. The crystal-poor tuffs consist mainly of 45-65% devitrified glass shards and 10-20% broken quartz crystals, whereas the crystal-rich tuffs consist of > 50% crystals. The zircon U-Pb data show three statistically distinct ages at 84, 81 and 77 Ma, with uncertainties of about 1 Ma, suggesting that tuff-forming late Cretaceous magmatism started about 84 Ma ago and was episodically active over a minimum of 7 Ma. The age data also indicate that the average accumulation rate of the turbiditic sequence that hosts the felsic tuffs remained constant between 36 and 40 cm/10 ky. Their enrichment in LIL and LRE elements relative to HFS and HRE elements, and also strongly negative Nb, Ta and Ti anomalies, are consistent with those of magmas generated by subduction-related processes. The tuffs have relatively low initial ratios of 143Nd/144Nd (0.512296-0.512484; ?Nd: - 2.1 and - 7.2) and 87Sr/86Sr (0.704896-0.706159). Their initial Pb isotopic compositions range from 18.604 to 18.646 for 206Pb/204Pb, from 15.644 to 15.654 for 207Pb/206Pb and from 38.712 to 38.763 for 208Pb/204Pb. The distribution of Sr-Nd isotopic compositions in the late Cretaceous igneous rocks from different locations of the Eastern Pontides Orogenic Belt is consistent with two-component mixing between depleted mantle and crust. However, the Pb isotopic data are not compatible with two-component mixing and require at least a third component. Considering all of the new data and also previous data such as southward migration and increasing potassium content of the late Cretaceous arc volcanism, the northward migration of Cenozoic igneous activity, northward drift of the belt since the late Cretaceous and the existence of south-dipping reverse fault systems in the whole region, the Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt can be best explained by southward subduction of Tethys oceanic lithosphere, rather than northward subduction.

  12. Le Carbonifère du Maroc central : les formations de Migoumess, de Tirhela et d'Idmarrach. Lithologie, biostratigraphie et conséquences géodynamiquesThe Carboniferous formations of Migoumess, Tirhela and Idmarrach (central Morocco): lithology, biostratigraphy and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Berkhli, Mostafa; Vachard, Daniel

    2002-01-01

    New biostratigraphical data based on foraminifers, algae and pseudo-algae indicate that the limestone pebbles of the channelized polygenic conglomerates of the Migoumess formation contain Late Visean (V3b ?-V3c) assemblages. That confirms the Westphalian age attributed to this formation by Hollard [Zdt. Geol. Ges. 129 (1978) 495-512]. The Tournaisian age assigned to it by palynology [C. R. Acad. Sci. Paris, série II 310 (1990) 1573-1576] cannot be retained. The Tirhela formation, Late Visean and Serpukhovian (E1) in age, is coeval with the Akerchi formation [Berkhli, thèse d'État, 1999; Berkhli et al., J. Afr. Earth Sci. (accepté)]. The Idmarrach formation, mapped as a thrust sheet [C. R. Acad. Sci. Paris, série II 310 (1990) 1573-1576], is dated as Serpukhovian (E1) and its thrusting is consequently post-Serpukhovian. Palaeogeographic and geodynamic consequences are listed. To cite this article: M. Berkhli, D. Vachard, C. R. Geoscience 334 (2002) 67-72

  13. Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India

    NASA Astrophysics Data System (ADS)

    Rao, N. V. Chalapathi; Atiullah; Burgess, R.; Nanda, Purnendu; Choudhary, A. K.; Sahoo, Samarendra; Lehmann, B.; Chahong, Ngazipmi

    2015-09-01

    We report the mineralogy, bulk-rock geochemistry, 40Ar/39Ar (whole-rock) age and radiogenic (Sr and Nd) isotope composition of an ultrapotassic dyke from Sakri (Nuapada lamproite field) located at the tectonic contact between the easternmost margin of the Bastar craton and Eastern Ghats Mobile Belt, India. The Sakri dyke has a mineralogy which strongly resembles a lamproite sensu stricto (viz.,Ti-rich phlogopite, Na-poor diopside, Fe-rich sanidine, ulvospinel trend and Sr-rich apatite). However, its bulk-rock major element geochemical characteristics (viz., extreme silica-undersaturated nature) resemble sensu lato kamafugite from Toro Ankole, Uganda, East African Rift, and Alto Paranaiba Province, Brazil. The Sakri dyke also displays certain compositional peculiarities (viz., high degree of evolution of mica composition from phlogopite to biotite, elevated titanium and aluminum in clinopyroxene and significantly lower bulk Mg#) when compared to the ultrapotassic rocks from various Indian cratons. 40Ar/39Ar dating gave a plateau age of 1045 ± 9 Ma which is broadly similar to that of other Mesoproterozoic (i) lamproites from the Bastar and Bundelkhand cratons, and (ii) kimberlites from the Eastern Dharwar craton. Initial bulk-rock Sr (0.705865-0.709024) and Nd (0.511063-0.511154) isotopic ratios reveal involvement of an `enriched' source region with long-term incompatible element enrichment and a depleted mantle (TDM) Nd model age of 2.56 Ga straddling the Archaean-Proterozoic chronostratigraphic boundary. The bulk-rock incompatible trace element ratios (Ta/Yb, Th/Yb, Rb/Ba and Ce/Y) of the Sakri ultrapotassic dyke negate any significant influence of crustal contamination. Small-degree melting (1 to 1.5 %) of a mixed garnet-facies and spinel-facies phlogopite lherzolite can account for its observed REE concentrations. Whereas the emplacement of the Sakri ultrapotassic dyke is related to the amalgamation of the supercontinent of Rodinia, its overlapping geochemical characteristics of lamproite and kamafugite (also displayed by two other lamproites of the Nuapada field at Amlidadar and Parkom) are linked to the emplacement in a unique geological setting at the craton-mobile belt contact and hence of geodynamic significance.

  14. South Aegean Geodynamic And Tsunami Monitoring Platform

    NASA Astrophysics Data System (ADS)

    Paradissis, Demitris; Drakatos, George; Marinou, Aggeliki; Anastasiou, Demitris; Alatza, Stauroula; Zacharis, Vangelis; Papanikolaou, Xanthos; Melis, Nicolaos; Kalogeras, Ioannis; Chouliaras, Gerasimos; Evangelidis, Christos; Makropoulos, Konstantinos

    2015-04-01

    The Aegean Sea is one of the most tectonically and seismically active areas in the world, thus constituting a Natural Laboratory. For the first time, a permanent multiparametric platform of networks that combine different (both terrestrial and space oriented) techniques, is established, in order to monitor the tectonic and volcanic activity in the area and produce an on-line database available both to the scientific community and the public. This platform includes continuous GNSS networks, tide-gauge sensors, accelerometers and seismographs. All the available existing infrastructure has been upgraded, enlarged and modernized resulting in a collaborative operation. New instrumentation has been installed in carefully selected sites. All the available data are analysed using state of the art processing software. Raw data and products will be available through a project dedicated portal. The multiparametric data and results gathered will be integrated and combined with the existing archive owned by the participating institutes to produce a thoroughgoing view of the underlying geophysical processes. The island of Santorini will serve as a focused study case for the project, due to the special tectono-volcanic interest and because of the already existing dense multiparametric network. Our goal is to provide permanent infrastructure and knowledge both to enlighten ambiguous scientific hypothesis and serve as a focal point for further scientific research.

  15. South China Sea: New geodynamic constraints

    NASA Astrophysics Data System (ADS)

    Sibuet, Jean-Claude; Yeh, Yi-Ching; Hsu, Shu-Kun; Lee, Chao-Shing; Lin, Jing-Yi; Wu, Jonny

    2015-04-01

    Magnetic modeling shows that the youngest magnetic anomaly in the South China Sea (SCS) is either younger than C5c (15.5 Ma, Briais et al., JGR, 1995) or C6A1 (20.5 Ma, Barckhausen et al., MPG, 2014). Close to the rift axis of the East basin, Ar-Ar age dating of oceanic crustal rocks collected during IODP Leg 349 gives ages of 15 and 15.2 +/- 0.2 Ma (Koppers, Fall AGU meeting, 2014), which seems to favor the 15.5 Ma age given by Briais et al. modeling. However, basaltic samples were recovered in a sill and further below in another sill or inside the true oceanic crust. As post-spreading magmatic activity (~8-13 Ma) largely masks the spreading fabric, in particular near the previously identified E-W portion of the extinct ridge axis of the East Basin, the location of the central magnetic anomaly and spreading rates are incorrect. The compilation of the extremely dense set of magnetic data and published swath bathymetric data shows that if post-spreading volcanics hide the seafloor spreading magnetic fabric mostly along and near the extinct spreading axis, the whole SCS is characterized by rift directions following three directions: N055°in the youngest portion of the SCS, N065° and N085° in the oldest portions of the SCS. We conclude that the extinct ridge axis is N055° trending instead of E-W. We are also able to propose a preliminary kinematic sketch of the evolution of the SCS in 6 steps, which will be used to carefully establish the SCS magnetic pattern and forward magnetic modeling of the SCS. From this preliminary kinematic sketch, we have established a new fracture zone pattern, which highlights conjugate segments of SCS continental margins. We have also used the unfolded and restored Manila slab to highlight a roughly N-S dVp discontinuity located inside the slab, suggesting the existence of a roughly N-S limit, which defines a new segment of conjugate margins. In addition, the extinct spreading center, which ends close to the Manila trench, jumps to the north and then continues within the Manila slab following a slow dVp trend, which might correspond to the location of the extinct spreading axis.

  16. Arctic region: new model of geodynamic history

    NASA Astrophysics Data System (ADS)

    Nikishin, Anatoly; Kazmin, Yuriy; Malyshev, Nikolay; Morozov, Andrey; Petrov, Eugene

    2014-05-01

    Basement of the Arctic shelf areas is characterizes with a complex structure. Age of the defined domains is early Pre-Cambrian, Neoproterozoic to Cambrian (Timanian and Baykalian), early-middle Paleozoic (Caledonian) and late Paleozoic (Uralian, Taimyrian and Ellesmerian). Mesozoic deformations affected Novaya Zemlya, Southern Taimyr and southern parts of the Laptev Sea, the East Siberian Sea, and the Chukchi Sea regions. There are several Paleozoic rift-postrift basins. The North Kara Basin and the Timan-Pechora Basin was formed during the early Ordovician time as subduction-related back-arc rift systems. The East-Barents Basin has the same origin but the age of its formation is late Devonian. Carboniferous rifting took place in the Norwegian part of the Barents Sea, the Chukchi Sea (Hanna Trough Basin) and the Sverdrup Basin. There are also rift-postrift basins of the Mesozoic age. Late Permian to Early Triassic rifting took place in the South Kara Basin; it was connected with both collapse of the Uralian Orogen and activity of the Siberian mantle plume. Aptian to Albian rifting was affected with really big area in the Laptev Sea, the East Siberian Sea and the Chukchi Sea right after the De-Long plume-related magmatic event. Paleogene (mainly Eocene) rifting was also widely spread in these areas. The Arctic Ocean consists of three main domains: the Canada Basin, Alpha-Mendeleev-Podvodnikov-Makarov domain, and the Eurasia Basin. The Canada Basin is a typical oceanic one. There are many uncertainties in the definition of spreading age, but in accordance with the prevalent point of view, it should be early Cretaceous, Neocomian. Alpha-Mendeleev-Podvodnikov-Makarov domain is an enigmatic region. We propose the following scenario for the formation of this domain: Aptian to Cenomanian plume-related large-scale intraplate basalt magmatism was followed by Albian to late Cretaceous rifting. Few axes of rifting were nearly orthogonal to the pre-existing one in the Canada Basin. The Alpha-Mendeleev Ridge is a rifted continental terrane covered by pre-rift basalts. The Eurasian Basin is a small oceanic one. Defined age of spreading is 56-0 Ma. The basin is characterized by a very slow spreading rate. Eocene to recent sediments covers the system of prominent linear ranges and valleys of former mid-oceanic ridge. The Lomonosov Ridge is a well known continental terrane dissected by Neogene-Quaternary faults. New data shows that the area of the Lomonosov and the Alpha-Mendeleev ridges was affected by strong Neogene to recent extension or transtension tectonics with the formation of numerous normal faults and related topographic highs and valleys. Recent bathymetry of these ridges is a result of this Neogene to recent tectonics. Our report is based on a new set of seismic lines in the Russian part of the Arctic region.

  17. Geodynamics of the Shanxi Rift system, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiwei; Ma, Xingyuan

    1992-07-01

    The Pliocene-Quaternary Shanxi Rift system of northern China transsects the domal axis of the Shanxi Highlands and is defined by an S-shaped string of asymmetric basins, extending from Huailai-Yanqing in the north via Taiyuan to Yuncheng in the south. This rift system has a length of about 1200 km and a width of 20-80 km; it is characterized by strong earthquakes. Its central, NNE-trending, transtensional segment forms the main element of the Shanxi Rift system. Basin subsidence commenced during the early Pliocene along NNE oriented master-faults characterized by large strike-slip rates (5.68-7 mm/yr); crustal extension amounts to some 1.4 km; basins are separated by push-up blocks; destructive earthquakes ( M = 7-8) are unevenly distributed. The ENE trending northern and southern branches of the Shanxi Rift system are characterized by orthogonal crustal extension along ENE striking normal faults, amounting to about 8 km; these areas are characterized by a basin-and-range type structural style and weak seismic activity. The Shanxi Rift system developed on a some 40 km thick, thermally cool Precambrian crustal segment that was overprinted during Mesozoic diastrophic events. There is only minor rift-related volcanic activity. The Moho is pulled up by a few kilometers only under the axial rift zone; sub-Moho compressional velocities are in the 8.0-8.1 km/s range. The Shanxi Rift system evolved in response to the build-up of regional stress fields related to the collision of India and Eurasia; its localization involved reactivation of pre-existing fracture systems.

  18. Geodynamics of Cenozoic deformation in central Asia

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1981-01-01

    This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.

  19. On the geodynamic setting of kimberlite genesis

    NASA Technical Reports Server (NTRS)

    England, P.; Houseman, G.

    1984-01-01

    The emplacement of kimberlites in the North American and African continents since the early Palaeozoic appears to have occurred during periods of relatively slow motion of these continents. The distribution of kimberlites in time may reflect the global pattern of convection, which forces individual plates to move faster or slower at different times. Two-dimensional numerical experiments on a convecting layer with a moving upper boundary show two different regimes: in the first, when the upper boundary velocity is high, heat is transferred by the large-scale circulation and in the second, when the upper boundary velocity is lower, heat is predominantly transferred by thermal plumes rising from the lower boundary layer. For a reasonable mantle solidus, this second regime can give rise to partial melting beneath the moving plate, far from the plate boundaries. The transition between these modes takes place over a small range of plate velocities; for a Rayleigh number of 1,000,000 it occurs around 20 mm/yr. It is suggested that the generation of kimberlite magmas may result from thermal plumes incident on the base of a slowly moving plate.

  20. Effects of Mineralogical Thermodynamics in Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Chust, T. C.; Steinle-Neumann, G.; Bunge, H.-P.

    2012-04-01

    Material parameters of the polycrystalline aggregates in the mantle are important controls for the mechanical and thermal behaviour of the convection system. We use a self-consistent thermodynamic model of mineral phases based on the database by Xu et al. 2008 to determine stable phase assemblages and compute pressure and temperature dependent properties like density that are fed into fluid dynamic simulations. We examine the influence of different bulk compositions and varying material properties on the thermal state and dynamic processes of the earth's mantle. We also compute elastic parameters of the system in a post-processing step to allow the comparison with seismological results.

  1. Geodynamics Of Slovenian Karst And Istria

    NASA Astrophysics Data System (ADS)

    Vodopivec, F.; Kogoj, D.

    2003-04-01

    The tectonic map of Slovenian Karst in Istria with the latest displacements determined is presented. On the base of this tectonic map and recent displacements determination in the framework of the CERGOP I, the project which deals with GPS measurements on the line between permanent stations Pula - Vilach is presented. At faults with a narrow breaking zone there are foreseen also the classic measurements with the precise distancemeter Kern Mekometer ME 5000 and with a precise theodollite.

  2. Magmatism and Geodynamics of Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Keskin, Mehmet; Oyan, Vural; Sharkov, Evgenii V.; Chugaev, Andrey V.; Genç, ?. Can; Ünal, Esin; Aysal, Nam?k; Duru, Olgun; Kavak, Orhan

    2013-04-01

    Eastern Turkey has been an active collision zone for the last 15 My between the Arabian Plate and Eurasian continent. The collision initiated after the closure of the southern branch of the Neotethys Ocean by northward subduction beneath E Anatolia at ~15 Ma. The collision-related volcanism started immediately after the closure of the ocean (again at around 15 Ma) in the north of the present day Lake Van with the eruption of mostly intermediate to acid lavas displaying distinct subduction characteristics. Both continental collision and the magmatism are still active, because the Arabian plate still converges to Anatolia with a velocity of ~2.5 cm/y. The overriding Anatolian block experienced a major uplift event around 10 Ma. The region once resided below the sea level merged as a widespread plateau ~2 km above the sea level as part of a regional dome structure with ~1000 km diameter, extending from Central Anatolia in the West to Azerbaijan in the East. The first alkaline lavas derived from a relatively more enriched source erupted to the surface in the N of Lake Van coeval with the initiation of the uplift at around 10 Ma. The underthrusting Arabian platform, on the other hand, was deformed as a result of both crustal-scale east-west folds adjacent to the major thrust zone and extensional deformations perpendicular to the suture zone. Alkaline within-plate lavas with no subduction component erupted through these extension zones. This intraplate volcanism focused on the Karacada? volcanic complex that covers an area of ~10,000 km2. Early Stage volcanism of Karacada? was dominated by magmas derived from a shallower metasomatized (litospheric) mantle source, while magmas of the later stages were derived from deeper (asthenospheric) sources. The Karacada? volcanic area of SE Anatolia was sourced by a garnet bearing, deep asthenospheric mantle which is similar to that of Afar in terms of its Pb isotopic ratios. This brings into question whether the mantle material from the Afar plume reached beneath Eastern Anatolian by a mantle convection cell. We argue that both the uplift and the widespread volcanism across the region share a common reason: a major "slab-steepening and breakoff event beneath the large Eastern Anatolian Accretionary Complex". We argue that the older intermediate calc-alkaline volcanic products displaying a distinct subduction signature were possibly derived from the mantle wedge that opened out due to the steepening of the slab after the continental collision. Being unsupported by the subduction, the slab started to be steepened beneath the region, possibly resulting in widening, invasion and upwelling of the mantle wedge beneath E Anatolian accretionary complex. This possibly created a sucking effect on the asthenosphere, creating a mantle flow from the Pontides in the north to the south. The inferred asthenospheric flow perhaps pulled a portion of the asthenosphere that once had resided beneath the Pontide arc. Therefore, the subduction component was inherited from the previous Pontide arc magmatism. The widespread decompressional melting generated voluminous magmas with the aforementioned inherited subduction signature in a period from 15 to 10 Ma. The slab broke off beneath the region, creating a slab window at around 10 Ma. This caused the enriched asthenospheric mantle with no subduction component beneath the Arabian continent to flow to the north through a slab-window. As a result, the subduction-modified E Anatolian and the enriched Arabian asthenospheric mantles started to mix into each other. We interpret the eruption of the first alkaline lavas in the region at around 10 Ma (e.g. tephrites and alkaline basalts in the N of Lake Van) as the indication of the formation of the slab-window beneath the region due to tearing of the slab. The volcanism in the collision zone continued till the historical times. The region includes some of the largest volcanic centers (e.g. Ararat, Nemrut, Tendürek and Süphan volcanoes) and plateaus (e.g. The Erzurum-Kars Plateau) around the Mediterranean

  3. Precise leveling, space geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Reilinger, R.

    1981-01-01

    The implications of currently available leveling data on understanding the crustal dynamics of the continental United States are investigated. Neotectonic deformation, near surface movements, systematic errors in releveling measurements, and the implications of this information for earthquake prediction are described. Vertical crustal movements in the vicinity of the 1931 Valentine, Texas, earthquake which may represent coseismic deformation are investigated. The detection of vertical fault displacements by precise leveling in western Kentucky is reported. An empirical basis for defining releveling anomalies and its implications for crustal deformation in southern California is presented. Releveling measurements in the eastern United States and their meaning in the context of possible crustal deformation, including uplift of the Appalachian Mountains, eastward tilting of the Atlantic Coastal Plain, and apparent movements associated with a number of structural features along the east coast, are reported.

  4. The geodynamics of the Levant margin

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Z.

    2006-12-01

    The Levant continental margin, offshore Israel, Lebanon and Syria, is usually defined as a passive margin that was formed through rifting processes. During the formation two major continental fragments are assumed to separate from the northern edge of the Afro-Arabian plate to form the Levant basin: the Tauride and Eratosthenes blocks. Today an oceanic crust and, in places, a very thin continental crust are present between the Levant margin and Eratosthenes seamount. The margin can be divided into two distinct provinces that are separated by the Carmel Structure, which extends from seawards to the northwest across the continental shelf and slope. The preservation of segmentation, both in the shallow and in the deep structure, insinuates that the two segments were formed through different continental breakup processes, which continue to dictate the style of sediment accumulation. The nature and development of the continental margin offshore Israel were the subject of numerous studies, which suggest that the southern Levant segment (south of the Carmel Structure) was formed through continental rifting processes. In contrast, the northern segment, from the Carmel structure northwards and offshore southern Lebanon, was hardly studied before. Recent studies however indicate that the northern segment shows a strong similarity to classical transform margins in the world. In view of the new classification of the northern Levant margin a modified scenario is suggested for: (a) the initial stages in which the Levant margin was formed; and (b) the present day structural differences between the two segments of the margin. At present, the northern Levant continental margin is being reactivated by transpressional faulting of the marine continuation of the Carmel fault which bends northward at the base of the continental slope due to the rheological discontinuity in this region. This fault system coincides with the sharp continental-oceanic crustal transition, and acts as an isolator between the Levant basin and its land counterpart. To the north, this feature may initiate the formation of a new triple junction, with the Latakia ridge (part of the eastern Cyprian arc) and the East Anatolian fault.

  5. 12.520 Geodynamics, Fall 2004

    E-print Network

    Hager, Bradford H.

    This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

  6. 12.520 Geodynamics, Fall 2005

    E-print Network

    Hager, Bradford H.

    This course deals with mechanics of deformation of the crust and mantle, with emphasis on the importance of different rheological descriptions: brittle, elastic, linear and nonlinear fluids, and viscoelastic.

  7. A climate model with cryodynamics and geodynamics

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Le Treut, H.

    1981-01-01

    A simplified, zero-dimensional model of the climatic system is presented which attempts to incorporate mechanisms important on the time scale of glaciation cycles: 10,000 to 100,000 years. The ocean-atmosphere radiation balance, continental ice sheet plastic flow, and upper mantle viscous flow are taken into account, with stress on the interaction between the ice sheets and the upper mantle. The model exhibits free, self-sustained oscillations of an amplitude and period comparable to those found in the paleoclimatic record of glaciations, offering mild support for the idea that unforced oscillations can actually exist in the real climatic system itself. The careful study of the interplay between internal mechanisms and external forcing is held to represent an interesting challenge to the theory of ice ages.

  8. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    Additional results are presented concerning a study that considers improvements over present Earth Rotation Parameter (ERP) determination methods by directly combining observations from various space geodetic systems in one adjustment. Earlier results are extended, showing that in addition to slight improvements in accuracy, substantial (a factor of three or more) improvements in precision and significant reductions in correlations between various parameters can be obtained (by combining Lunar Laser Ranging - LLR, Satellite Laser Ranging - SLR to Lageos, and Very Long Baseline Interferometry - VLBI data in one adjustment) as compared to results from individual systems. Smaller improvements are also seen over the weighted means of the individual system results. Although data transmission would not be significantly reduced, negligible additional computer time would be required if (standardized) normal equations were available from individual solutions. Suggestions for future work and implications for the New Earth Rotation Service (IERS) are also presented.

  9. Putting the Dynamics in Chemical Geodynamics

    NASA Astrophysics Data System (ADS)

    Spiegelman, M.; Katz, R. F.; Kelemen, P. B.; Fang, Y.; Collier, M.; Holtzman, B.

    2007-12-01

    An outstanding goal for both geochemists and geophysicists is to understand how to use the wide range of proxy geochemical (and geophysical) data to make useful inferences about the current and past dynamics of the planet. To relate data to dynamics, however, requires models that include the fundamental processes that affect chemical variability: i.e. source heterogeneity, chemical fractionation (melting/reactions), chemical transport and mixing. In particular, most models of chemical evolution do not include explicit fluid or magma transport and questions remain as to how much observed chemical variability can be attributed to magma dynamics. We discuss recent developments and models that suggest that at least some of the observed variability arises from transport processes. Driven by field observations, experiments and computational models, there is an emerging picture of partially molten regions as highly localized, channelized plumbing systems. Computations suggest that melt localization can arise from both chemical/physical and purely mechanical instabilities and can provide non-trivial mixing pathways through the mantle. Questions remain as to how the different instabilities interact and which may be dominant in the mantle. Regardless, a highly localized melt transport system can lead to significant trace element (and U-series) variability and fractionation even for a homogeneous source. Recent work extends these results to consider the interaction of a channelized melt system with a heterogeneous source and suggests that small scale spatial variations in partitioning can lead to significant scatter in the ratios of highly incompatible elements (Fang, Spiegelman & Kelemen). Current work is extending these approaches to try to understand the variability of major elements and reaction in open systems (Collier, Kelemen & Spiegelman) Looking forward, the integration of magma dynamics and small-scale localization into global mantle dynamics presents a major scientific and computational challenge. A key addition to magma dynamics models will be the consistent coupling of fluid/solid mechanics with thermodynamics to resolve both melting and crystallization of magmas (e.g. see Katz U06, this meeting). These models will also require advanced methods for the efficient solution of highly multi-scale problems. The CIG Magma dynamics project is actively pursuing these computational objectives with the long-term goal of developing true dynamic geochemistry models whose output can be directly compared to observations.

  10. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Laser systems deployed in satellite tracking were upgraded to accuracy levels where biases from systematic unmodelled effects constitute the basic factor that prohibits extraction of the full amount of information contained in the observations. Taking into consideration that the quality of the instrument advances at a faster pace compared to the understanding and modeling of the physical processes involved, one can foresee that in the near future when all lasers are replaced with third generation ones the limiting factor for the estimated accuracies will be the aforementioned biases. Therefore, for the reduction of the observations, methods should be deployed in such a way that the effect of the biases will be kept well below the noise level. Such a method was proposed and studied. This method consists of using the observed part of the satellite pass and converting the laser ranges into range differences in hopes that they will be less affected by biases in the orbital models, the reference system, and the observations themselves.

  11. NASA geodynamics program investigations summaries: A supplement to the NASA geodynamics program overview

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a time series of global atmospheric motion and mass fields through April 1984 to compare with changes in length of day and polar motion was investigated. Earth rotation was studied and the following topics are discussed: (1) computation of atmospheric angular momentum through April 1984; (2) comparisons of psi sub values with variations in length of day obtained by several groups utilizing B.I.H., lunar laser ranging, VLBI, or Lageos measurements; (3) computation of atmospheric excitation of polar motion using daily fields of atmospheric winds and pressures for a short test period. Daily calculations may be extended over a longer period to examine the forcing of the annual and Chandler wobbles, in addition to higher frequency nutations.

  12. Phanerozoic growth of Asia: Geodynamic processes and evolution

    NASA Astrophysics Data System (ADS)

    Pubellier, Manuel; Meresse, Florian

    2013-08-01

    Accretion processes often obscured in mountain belts can be documented with great detail in SE Asia where these have taken place during the Tertiary. The resulting configuration showing accreted continental strips and tectonised wedges is illustrated by the Tethysides jammed between the northern Laurasian cratons (Baltica and Siberia) and Gondwanian cratons (Africa, Arabia, India and Australia). Eurasia increased progressively in size due to the amalgamation of crustal and sedimentary belts. At places where the processes are documented in the recent times, they can be included within a "collision factory" which displays the opening of basins by rifting and sea floor spreading within the upper plate, until they undergo a process of shortening, both stages being subduction-controlled. In SE Asia the early stages are illustrated in the eastern Sunda arc where the subduction of the Sunda Trench is blocked in Sumba and Timor region, and flipped into the Flores Trough in less than 2 My. The incipient shortening is at present taking place in the Pliocene Damar basins. Another stage, where half of the upper plate basin has disappeared, is documented in the Celebes Sea. The examples of deformation being transferred further inland exist in the northern Celebes Sea and the Makassar Basin. The next important stage is the complete consumption of the marginal basin where both margins collide and the accretionary wedge is thrust over the margin, as illustrated in NW Borneo and Palawan. Each of these stages is responsible for a single short-lived tectonic event, the succession of several events composes an orogen which may last for over 10 My. These events predate the arrival of the conjugate margin of the large ocean, which marks the beginning of continental subduction as observed in the Himalaya-Tibet region. These examples show that the closure is generally diachronous through time as illustrated in the Philippines. We observe that the ophiolite obducted in such context is generally of back-arc origin (upper plate) rather than the relict of the vanishing large ocean which is rarely preserved. In the Philippines, once the crust is accreted the subduction zone progressively moved southward until its present position. We propose that the lithospheric mantle of the accreted block is delaminated and rolls back in a continuous manner, whereas the crust is deformed and accreted.

  13. The Coming Role of GPU in Computational Geodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; Knepley, M. G.; Erlebacher, G.; Wright, G. B.

    2009-12-01

    With the proliferation of GPU ( graphics accelerator board) the computing landscape has changed enormously in the last 3 years. The new additional capabilities of the GPU , such as larger shared memories and load-store operations , allow it to be considered as a viable stand-alone computational and visualization engine. Today the massive threading and computing capability of GPU can deliver at least an order of magnitude performance over the multi-core CPU architecture. The cost of a GPU system is also considerably cheaper than a CPU cluster by more than an order of magnitude.The introduction of CUDA and ancillary software aids, such as Jackets, have allowed the rapid translation of many venerable codes into software usable on GPU. We will discuss our experience acquired over the past year in attacking five different computational problems in the geosciences, using the GPU. They include (1.) 3-D seismic wave propagation with the spectral-element method (2.)2-D shallow water equation as applied to tsunami wave propagation, using finite-differences (3.) 3-D mantle convection with constant viscosity using a 4th order compact finite-difference operator (4.) non-linear heat-diffusion equation in 2-D using a collocation method based on radial basis functions over an elliptical area . Grid points are divided so as to lie on a centroidal Voronoi mesh . Derivatives are calculated at each grid point using a point-dependent stencil computed from the nearest neighbors .(5.) Stokes flow with variable viscosity by means of a pre-conditioner calculated on the GPU based on the vortex method using Green’s functions, along with the radial basis functions and the fast multi-pole method. The Krylov method is used on the CPU for the final iterative step .We will discuss the relative speed-ups of the GPU over the CPU in each of these cases. We will point out the need to go to more computationally intensive mode with multiple GPUs, which calls for key CPUs to control the message passing between the different computational domains by means of MPI. In our CPU-GPU system a separate GPU, the Nvidia GTX 295 , is also devoted for visualizing the ongoing computed results. According to some circles, the future roadmap of GPU seems to be at least one and a half order of magnitude brighter than the CPU in the next 6 years.

  14. Geodynamics of the Baikal-Stanovoy seismic belt

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1983-01-01

    The convection generated tensional stress field in the earth, as inferred from satellite gravity data, reveals an anomalous lens of upwelling mantle rocks under the Baikal rift zone. The point of no strain at 56 deg N 116 deg E forms a seismic gap along the Baikal-Stanovoy seismic belt. East of this point, the stress field changes from extension to compression. Therefore, the position of no strain at the eastern termination of the rift accounts for the dying-out of the rift zone and for the appearance of a compressive structure in the Stanovoy Range.

  15. (C.Bina, 9/2011) From thermodynamics to geodynamics

    E-print Network

    Cerveny, Vlastislav

    podzim 2011 4. lekce 2.11. #12;(C.Bina, 9/2011) The Plagioclase Spinel Garnet Lherzolite Transitions Facies: plagioclase lherzolite spinel lherzolite garnet lherzolite Reaction 1: plagioclase + olivine spinel + pyroxenes Reaction 2: spinel + pyroxenes garnet + olivine Example 1: CaAl2Si2O8 (plag) + 2 Mg2

  16. (C.Bina, 9/2011) From thermodynamics to geodynamics

    E-print Network

    Cerveny, Vlastislav

    of -spinel to perovskite + magnesiowüstite (periclase). Points are experimental data of Ito and Takahashi-garnet components (C), after Gasparik [I990] and Ita and Stixrude [1992]. Phases are olivine (). modified spinel (), spinel (). perovskite (pv), magnesiowüstite (mw), pyroxene (px), garnet (gt) . and ilmenite (il). Broken

  17. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    The Cenozoic Moma rift system is a major tectonic feature in northeast Russia. It is composed of a series of basins (Selennyakh, Kyrin,Lower Moma,Upper Moma,etc.) filled with up to one km thick and bounded by the Chersky Range (up to 3100 m high) on the southwest and the Moma Range (up to 2400 m high) on the northeast. Northeast of the Moma Range is the Indigirka-Zyryanka foreland basin, composed of thick, up to 2.5 km, Eocene, Oligocene, and Miocene coal-bearing sequences, while on the southwestern side of the Chersky Range there are a number of piedmont basins (Tuostakh, Upper Adycha, Derbeke, etc.) containing up to several hundred meters of Miocene and Oligocene coal-bearing deposits. Despite considerable study over the past half-century, there is considerable debate over the origin, present-day tectonics, and evolution of the Moma rift system. The Cenozoic deposits of the basins generally become younger from northwest to southeast with the exception of the Seimchan-Buyunda basin. In the northeast, fan-shaped coal-bearing basins (e.g., Nenneli, Olzhoi, Selennyakh, Uyandina, Tommot, and others) are filled with Miocene to Pliocene deposits, while basins in the southeast (e.g., Taskan) are filled with Neogene sediments. The Seimchan-Buyunda basin, however, has sediments of Oligocene age. The Moma rift system is reflected a major step in the gravity field, presumably separating denser rocks of the Kolyma-Omolon superterrain from somewhat less dense rocks of the Verkhoyansk fold belt (margin of the North Asian Craton). Analysis of travel-times of Pn and Pg waves from local earthquakes indicates an area of thinned crust (30-35 km) southwest of the Moma rift system, extending as a "tongue" from the Lena River delta and the Laptev Sea to the upper part of the Kolyma River, as compared to 40-45 km in the surrounding areas. This region of thinned crust also coincides with a region of high heat flow values measured in boreholes of the Chersky Range (up to 88 mW/m2). Hot springs with temperatures up to +20°C are found within the Moma and Selnnyakh basins proper.The crustal inhomogeneity is also reflected in the upper mantle as indicated by a 40° rotation of the Rayleigh wave polarization angle from teleseisms recorded at Tiksi that cross the Moma rift system as opposed to those that do not. Cenozoic volcanism, chemically similar to basalts and rhyolites from rift zones elsewhere is found in the Moma rift proper. Balagan-Tas is a basaltic cinder cone which has been dated at 286,000 years based on Ar-Ar dating, while Uraga-Khaya is an undated, presumed Quaternary, rhyolitic dome. All these factors indicate that the Moma rift system originated as a continental rift, probably as an extension of the Arctic (Gakkel) Mid-Ocean Ridge. At the present, however, compressional conditions prevail within the Moma rift zone. Seismicity is generally absent from the rift basins proper or their margins; most seismicity is concentrated to the southwest of the Moma rift basins along major strike-slip fault systems. Focal mechanisms of the largest earthquakes in the Chersky Range also all show transpression. Field mapping indicates that the majority of the faults mapped in the field are strike-slip, thrust and reverse faults (86%) with only a small number of normal faults (14%) and that the Cenozoic deposits within the Moma rift are intensely folded. Re-leveling surveys conducted along the Indigirka River, which cuts across the Moma rift system, reveal a moderate rate of presnt-day vertical uplift (up to +4 mm/yr). Thus, the Moma rift system is no longer acting as a rift, but is undergoing transpression. This conclusion is also supported by recent plate motion calculations based on GPS and VLBI data, as well as slip-vectors of earthquakes, which indicates that the Euler pole between North America and Eurasia is located around 68-70°N, near the coast of the Laptev Sea. This places the Moma rift system in a zone of convergence between North America and Eurasia; this geometry also supports the extrusion of the Okhotsk Sea plate. Poles of ro

  18. Archean Geodynamics and Envionments Geophysical Monograph Series 164

    E-print Network

    Sandiford, Mike

    ­greenstone terrains worldwide. In general, variably deformed and metamorphosed granitoids define broad, high-amplitude "domes" that are separated from each other by narrow, synformal "keels" consisting of steeply dip- ping

  19. Neotethyan closure history of western Anatolia: a geodynamic discussion

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Oberhänsli, Roland; Candan, Osman; Barrier, Eric; Vrielynck, Bruno

    2015-07-01

    This paper addresses the lithosphere-scale subduction-collision history of the eastern termination of the Aegean retreating subduction system, i.e. western Anatolia. Although there is some general consensus on the protracted subduction evolution of the Aegean since the early Cenozoic at least, correlation with western Anatolia has been widely debated for more than several decades. In western Anatolia, three main tectonic configurations have been envisaged in the past years to reconstruct slab dynamics during the closure of the Neotethyan oceanic realm since the Late Cretaceous. Some authors have suggested an Aegean-type scenario, with the continuous subduction of a single lithospheric slab, punctuated by episodic slab roll-back and trench retreat, whereas others assumed a discontinuous subduction history marked by intermittent slab break-off during either the Campanian (ca. 75 Ma) or the Early Eocene (ca. 55-50 Ma). The third view implies three partly contemporaneous subduction zones. Our review of these models points to key debated aspects that can be re-evaluated in the light of multidisciplinary constraints from the literature. Our discussion leads us to address the timing of subduction initiation, the existence of hypothetical ocean basins, the number of intervening subduction zones between the Taurides and the Pontides, the palaeogeographic origin of tectonic units and the possibility for slab break-off during either the Campanian or the Early Eocene. Thence, we put forward a favoured tectonic scenario featuring two successive phases of subduction of a single lithospheric slab and episodic accretion of two continental domains separated by a continental trough, representing the eastern end of the Cycladic Ocean of the Aegean. The lack of univocal evidence for slab break-off in western Anatolia and southward-younging HP/LT metamorphism in continental tectonic units (from ~85, 70 to 50 Ma) in the Late Cretaceous-Palaeogene period suggests continuous subduction since ~110 Ma, marked by roll-back episodes in the Palaeocene and the Oligo-Miocene, and slab tearing below western Anatolia during the Miocene.

  20. Geodynamic Implications for the 8 October 2005 North Pakistan Earthquake

    NASA Astrophysics Data System (ADS)

    Khan, Prosanta K.; Mohanty, S.; Mohanty, M.

    2010-01-01

    We propose here that the 8 October 2005 North Pakistan earthquake occurred beneath the wedge-top of Balakot Formation in the Hazara-Kashmir syntaxial area. Slip occurred along the Muzaffarabad thrust, a southeast extended part of the Indus-Kohistan seismic zone. Tectonic loading of the high-density wedge/thrust sheet between the wedge-top and the descending Indian lithosphere coupled with continued flexural tectonics provoked this earthquake. The obliquely converging Indian plate along with block rotations led to development of a pinned zone around Northwestern Syntaxis of the Himalayas. Strain adjustment related to the rotational deformation processes resulted in the buckling of the more competent rock-units sandwiched between the less competent rock-units around the Hazara-Kashmir syntaxis. The western limb of the buckled unit gave rise to the development of thrusts and associated oblique slip in the inner arc of the competent rock-unit. The observations demonstrate reactivated tectonic movement along the growing fracture-tip of the buried Riasi thrust.

  1. The role of carbon in extrasolar planetary geodynamics and habitability

    SciTech Connect

    Unterborn, Cayman T.; Kabbes, Jason E.; Pigott, Jeffrey S.; Panero, Wendy R.; Reaman, Daniel M.

    2014-10-01

    The proportions of oxygen, carbon, and major rock-forming elements (e.g., Mg, Fe, Si) determine a planet's dominant mineralogy. Variation in a planet's mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. Through thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate that the oxidation potential of C is above that of Fe at all pressures and temperatures, indicative of 0.1-2 Earth-mass planets. This means that for a planet with (Mg+2Si+Fe+2C)/O > 1, excess C in the mantle will be in the form of diamond. We find that an increase in C, and thus diamond, concentration slows convection relative to a silicate-dominated planet, due to diamond's ?3 order of magnitude increase in both viscosity and thermal conductivity. We assert then that in the C-(Mg+2Si+Fe)-O system, there is a compositional range in which a planet can be habitable. Planets outside of this range will be dynamically sluggish or stagnant, thus having limited carbon or water cycles leading to surface conditions inhospitable to life as we know it.

  2. A proposed test area for the spaceborne geodynamic ranging system

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1978-01-01

    Precise geodetic measurements are proposed in which an orbiting laser obtains intersite distance between retroreflectors 25 to 100 km apart on the ground. The recommended area is a rectangle 200 by 400 km in southern California and adjacent Nevada, trending northeast. It includes the entire width of the San Andreas fault zone, the Garlock fault, the thrust faults of the Transverse Ranges, and the active strike-slip faults of the Mojave Desert.

  3. Geodynamic modelling of low-buoyancy thermo-chemical plumes

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan

    2015-04-01

    The Earth's biggest magmatic events that form Large Igneous Provinces are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models of thermal mantle plumes predict a flattening of the plume head to a disk-like structure, a kilometer-scale surface uplift just before the initiation of LIPs and thin plume tails. However, there are seismic observations and paleo-topography data that are difficult to explain with this classical approach. Here, using numerical models, we show that the issue can be resolved if major mantle plumes are thermo-chemical rather than purely thermal. It has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes; and based on geochemical data, they may contain up to 15-20% of this recycled material in the form of dense eclogite, which drastically decreases their buoyancy and makes it depth-dependent. We perform numerical experiments in a 3D spherical shell geometry to investigate the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For this purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure- and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for both peridotite and eclogite, mantle compressibility and a strong temperature- and depth-dependent viscosity. We demonstrate that despite their low buoyancy, such plumes can rise through the whole mantle causing only negligible surface uplift. Conditions for this ascent are high plume volume and moderate lower mantle subadiabaticity. While high plume buoyancy results in plumes directly advancing to the base of the lithosphere, plumes with slightly lower buoyancy pond in a depth of 300-400 km and form pools or a second layer of hot material. These structures are caused by phase transitions occurring in different depths in peridotite and eclogite; and they become asymmetric and finger-like channels begin to form when the plume gets entrained by a quickly moving overlying plate. We also show that the bulky tails of large and hot low-buoyancy plumes are stable for several tens of millions of years and that their shapes fit seismic tomography data much better than the narrow tails of thermal plumes.

  4. Palaeomagnetic constraints on the geodynamic evolution of the Gibraltar Arc

    E-print Network

    Utrecht, Universiteit

    , the Mediterranean is also known for its large-scale extensional basins (e.g. Aegean Sea, Tyrrhenian Sea, Panno- nian is directed to the apparent paradox of coeval shortening and extension and to the formation of the Alboran Sea

  5. Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Chorowicz, J.; Yürür, T.; Froger, J.-L.; Köse, O.; Gündogdu, N.

    1998-10-01

    Observations on Synthetic Aperture Radar (SAR) scenes of the European Remote Sensing (ERS) satellite and Digital Elevation Models (DEMs), complemented by field structural analysis permit a new understanding of relationships between tectonics and volcanism since the late Miocene (10 Ma) in Central Anatolia. Volcanic edifices form elongate stratovolcanoes, linear clusters and volcanic ridges. They indicate emplacement on tension fractures and tail-crack or horsetail features. For instance, the Kara Dag volcano is rooted on a tail-crack which accommodates a horizontal left-lateral throw component at a fault termination. Caldera complexes of Cappadocia are associated with horsetail fault patterns. The emplacement of volcanoes also benefits from larger-scale tectonic structures: the Erciyes Dag volcano is localized by the Sultan Saz releasing bend which opens along the sinistral strike-slip Ecemis fault. Deformation has been analysed from tension fractures—which are perpendicular to the direction of extension—and from field structural analysis. On a regional scale, the tectonic regime responsible for the distribution of volcanic vents in this area of convergence and lateral extrusion, is not compression but extension. The Central Taurus range is the thermally uplifted shoulder of the Adana-Cilicia basin, which is related to lithosphere thinning. Westward movements in the northwestern part of the studied area are influenced by the active back-arc Aegean extension situated to the west. Farther to the south, the direction of motion turns southwest and south, under the influence of the opening of the Adana-Cilicia basin. We interpreted that extension in the Central Anatolian plateau is related to crustal blocks moving above sub-horizontal detachment surfaces located in the lower crust. This is based on several facts: the Tuz Gölü fault zone is a within-crust detachment; the Tuz Gölü basin does not affect the whole lithosphere because otherwise it would have been bordered by thermally uplifted shoulders; movements change trend within a small (50 km) region.

  6. Anisotropic measurements in South Korea and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Kang, Tae-Seob

    2010-05-01

    Seismic anisotropy beneath the southern Korean Peninsula was investigated. The most striking feature of the observed splitting patterns is the preference of the fast directions (NW-SE) that are nearly parallel to the direction of the absolute plate motion in the region. However, the splitting patterns over the region show significant variation in splitting parameters indicating a complex anisotropic structure. Variations of the splitting directions and dissimilarity in the source domains of basaltic volcanisms suggest that the asthenospheric mantle flow since at least the late Cenozoic cannot explain the seismic anisotropy beneath the region. Comparison to shear-wave splitting measurements from eastern China revealed that the NW-SE fast direction of splitting measurements in the the southern Korean Peninsula is close to that in the North China Block while the NE-SW fast direction might be related to that in the South China Block. The shallow mantle lithosphere beneath the southern Korean Peninsula retains the fossil anisotropy amalgamated prior to the late Paleozoic before the collision between the North China Block and South China Block, and the anisotropic structure was not completely realigned by the major orogenic events during the late Paleozoic to Mesozoic eras.

  7. Mars north polar deposits: stratigraphy, age, and geodynamical response

    USGS Publications Warehouse

    Phillips, R.J.; Zuber, M.T.; Smrekar, S.E.; Mellon, M.T.; Head, J.W.; Tanaka, K.L.; Putzig, N.E.; Milkovich, S.M.; Campbell, B.A.; Plaut, J.J.; Safaeinili, A.; Seu, R.; Biccari, D.; Carter, L.M.; Picardi, G.; Orosei, R.; Surdas, Mohit P.; Heggy, E.; Zurek, R.W.; Egan, A.F.; Giacomoni, E.; Russo, F.; Cutigni, M.; Pettinelli, E.; Holt, J.W.; Leuschen, C.J.; Marinangeli, L.

    2008-01-01

    The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed ???100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

  8. Arctic geodynamics: Arctic science and ERS-1 satellite altimetry

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Sandwell, David T.

    1994-01-01

    A detailed gravity field map of the mid Arctic Ocean, spreading ridge system was produced on the basis of ERS-1 satellite altimetry data. Areas of special concern, the Barents and Kara Seas, and areas surrounding the islands of Svalbard, Frans Josef Land and Novoya Zemlya are reviewed. ERS-1 altimetry covers unique Arctic and Antarctic latitudes above 72 degrees. Before ERS-1 it was not possible to study these areas with satellite altimetry. Gravity field solutions for the Barents Sea, portions of the Arctic Ocean and the Norwegian sea are shown. The largest gravity anomalies occur along the Greenland fracture zone as well as along transform faults near Svalbard.

  9. Relative motion of the geodynamic twin-satellite

    NASA Astrophysics Data System (ADS)

    Lala, P.; Klokocnik, J.

    1986-07-01

    The use of twin passive-laser-reflector satellites to improve the longer-wavelength accuracy of earth-gravity-field models, proposed by Klokocnik (1985), is examined theoretically. The effects of different gravitational and nongravitational forces on the twin satellites (created by separation from a single passive satellite after 1 yr or more in stable orbit) are analyzed, and numerical results are presented in graphs. It is shown that the twins can be kept within 20 km if the separation velocity is small (0.03-0.3 m/s) and perpendicular to the orbital plane.

  10. EAS 4312/6312: Geodynamics The Georgia Institute of Technology

    E-print Network

    Black, Robert X.

    , and crustal faulting as mechanisms and consequences of plate tectonics. Office Hours: Hours will be held in my throughout the semester. Week Date Topic Exam 1,2 Aug. 24 - Sept. 2 Introduction to Plate Tectonics: · Kearey, P. & F.J. Vine, Global Tectonics, Blackwell Publishing, 333 pp., 1996. · Stein, S.A., & M

  11. The geodynamic reasons of decade changes of climate

    NASA Astrophysics Data System (ADS)

    Sidorenkov, N. S.

    2012-11-01

    An analysis of meteorological observations and the spectral analysis of the daily air temperature anomalies have shown that the hot summers and the severe winters caused by the beats (slow periodic variations in the resulting amplitude) of the interacting temperature oscillations with close frequencies. The 35-year basic period of beats in the temperature and other hydrometeorological characteristics takes place due to the interference between their oscillations with periods of solar (365 days) and lunar (355 days) years. In 2010 over European Russia, the phases of the "solar" annual oscillations of hydrometeorological characteristics coincided with those of their basic "lunar" oscillations. As a result, the amplitudes of these oscillations added up and reached extreme values. Time series of the amount of sunshine are analyzed. It is shown that cycle with characteristic time about 35 years and quasi four-year fluctuations of the large amplitude manifest themselves in changes in cloud amount and the amount of sunshine. The revealed cycles are generated by lunisolar tides. The quasi 35-year changes of the cloud amount lead to fluctuations of the radiating balance. The amplitude of these fluctuations increases with the growth of latitude and becomes especially high in polar areas where the day (summer) and the night (winter) can last half a year. Big fluctuations of the thermal regime of polar areas generate radical disturbances of the interhemisphere circulation that lead to greater anomalies of the exchange of the air masses, heat, water vapour and pollution between the northern and southern hemispheres. These processes are responsible for the epochs of the atmospheric circulation, the decade variations in the intensity of the Indian monsoon, changes of the ice masses in Antarctica and Greenland that lead to the decade variations in the parameters of the Earth's rotation.

  12. (C.Bina, 5/2012) From thermodynamics to geodynamics

    E-print Network

    Cerveny, Vlastislav

    Solution ­ Congruently Melting End-Members Eutectic MeltingTwo-Component Systems: Note that temperature that we are discussing equilibrium ("batch") melting, where liquids remain in contact with sol of phase relations ­ Melting Craig R. Bina Dept. of Earth and Planetary Sciences Northwestern University

  13. Utilization of range-difference observations in geodynamics

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The utilization of simultaneous laser range differences (SRD) for the determination of Earth orientation and baseline variations is summarized. Results from the Aug. 1980 Lageos data collected during the short MERIT campaign, and simulations for a possible station arrangement for the main campaign are reported.

  14. Wilson study cycles: Research relative to ocean geodynamic cycles

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1985-01-01

    The effects of conversion of Atlantic (rifted) margins to convergent plate boundaries; oceanic plateaus at subduction zones; continental collision and tectonic escape; southern Africa rifts; and global hot spot distribution on long term development of the continental lithosphere were studied.

  15. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Astrophysics Data System (ADS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-09-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  16. Connections between the bulk composition, geodynamics and habitability of Earth

    NASA Astrophysics Data System (ADS)

    Jellinek, A. M.; Jackson, M. G.

    2015-08-01

    The bulk composition of the silicate part of Earth has long been linked to chondritic meteorites. Ordinary chondrites -- the most abundant meteorite class -- are thought to represent planetary building materials. However, a landmark discovery showed that the 142Nd/144Nd ratio of the accessible parts of the modern terrestrial mantle on Earth is greater than that of ordinary chondrites. If Earth was derived from these precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20 to 30 million years of accretion. This reservoir would host the equivalent of the modern continents' budget of radioactive heat-producing elements (uranium, thorium and potassium), yet has not been discovered. We argue that this reservoir could have been lost to space by ablation from early impactors. If so, Earth's radiogenic heat generation is between 18 and 45% lower than estimates based on a chondritic composition. Calculations of Earth's thermal history that incorporate such reduced radiogenic heating are consistent with a transition to the current plate tectonic mode in the past 2.5 billion years or so, a late onset of the dynamo and an evolving rate of volcanic outgassing consistent with Earth's long-term habitable climate. Reduced heat production compared with Venus and Mars could also explain aspects of the differences between the current climatic regimes of these planets and Earth.

  17. (C.Bina, 9/2011) From thermodynamics to geodynamics

    E-print Network

    Cerveny, Vlastislav

    #12;(C.Bina, 9/2011) (fromB.Hacker) podrobnjsímetamorfnífacie(stupnmetamorfózy) #12;(C.Bina, 9 reactions. (faciesboundariesfromB.Hacker) Precise boundaries involve several reactions and depend upon bulk (over a temperature interval of more than 50°). (faciesboundariesfromB.Hacker) Precise boundaries

  18. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  19. Reconstructing Pliocene coastlines, topography and bathymetry: A geodynamic perspective

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2014-12-01

    The middle Pliocene period (~3.3-3.0 Mya) was characterized by warm temperatures (2-3? higher) and high carbon-dioxide (~400 ppmv) concentrations which has led to its recognition as a possible analogue for the future climate. Under the auspices of the Pliocene Modeling and Intercomparison Project (PlioMIP), general circulation models (GCM's) are being employed to simulate mid-Pliocene climate to better understand the biases in these models, which are presently used to make future climate predictions. Necessary boundary conditions for these simulations — land mask, topography, surface albedo and vegetation cover are being provided by the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project. Bathymetry, which is not part of the PRISM supplied dataset has been adjusted by raising the sea-level by an assumed constant eustatic amount. At present the PRISM land mask, topography and bathymetry reconstructions do not incorporate the gravitationally self consistent changes that would be required to account for the mass loss from the Greenland and Antarctic ice-sheets that produced the assumed rise in eustatic sea level. The effects of dynamic topography induced corrections, due to the action of the mantle convection process, have also been neglected.The influence of these corrections on the predictions of Pliocene climate using modern GCM's remains unexplored. The continuing failure of these models to simulate proxy inferred levels of warming in high-latitude [Dowsett et al., 2013, Sci. Rep.] regions where the magnitude of the required corrections are expected to be largest make it especially important that their impact be assessed. Here, we present the results from a preliminary of the required modifications to the boundary condition data sets.We compute the gravitationally self consistent corrections using the viscoelastic theory of global, glacial isostatic adjustment and relative sea level history for a spherically symmetric Earth model. Dynamic topography related changes are computed using a 3D convection model initialized using seismic tomography. Together, this creates an updated picture of the mid-Pliocene shoreline, topography and bathymetry that can be employed as boundary conditions for future Pliocene climate modeling.

  20. The global geodynamic effect of the Macquarie Ridge earthquake

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Fong B.

    1990-01-01

    The coseismic effect of the Macquarie Ridge earthquake on the earth's length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are compared. It is found that this earthquake should have caused the length-of-day to decrease by 0.06, the position of the mean rotation pole to shift 0.11 milliarcsec towards 323 E longitude, and selected degree l = 2-5 gravitational field coefficients to change by about 1 part in 10 to the 13th.

  1. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    SciTech Connect

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  2. Geodynamic inversion to constrain the nonlinear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Kaus, Boris

    2015-04-01

    A common method to determine the strength of the lithosphere is through estimating its effective elastic thickness from the coherence between gravity and topography. This method assumes a priori that the lithosphere is a thin elastic plate floating on a viscous mantle. Whereas this seems to work well with oceanic plates, it has given controversial results in continental collision zones. Usually, continental collisions zones are well-studied areas for which additional geophysical datasets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere, as this also requires knowledge of the rheology of the lithosphere. Experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent approach is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. Our method combines numerical thermo-mechanical forward models of the present-day lithosphere with a massively parallel Bayesian inversion approach. The geometry of the forward models is part of the a priori knowledge and is constructed from seismological data. We jointly invert topography, gravity, horizontal and vertical surface velocities to constrain the unknown rheological material parameters of the forward models in a probabilistic sense. The model rheology is described with experimentally determined viscous creep laws and other parameters describing the plastic behaviour. As viscosity is temperature dependent, the temperature structure of the forward models is parameterised as well. We apply the method to cross-sections of the India-Asia collision system. In this case, we deal with 17 to 20 model parameters, which requires solving up to 2 × 106 forward models. The resulting models fit the data within their respective uncertainty bounds, and show that the Indian mantle lithosphere must have a high viscosity. Results for the Tibetan plateau are less clear, and both models with a weak Asian mantle lithosphere and with a weak Asian lower crust fit the data nearly equally well.

  3. Prelaunch testing of the laser geodynamic satellite (LAGEOS)

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M. W.; Minott, P. O.; Abshire, J. B.; Rowe, H. E.

    1977-01-01

    The LAGEOS was extensively tested optically prior to launch. The measurement techniques used are described and resulting data is presented. Principal emphasis was placed on pulse spreading characteristics, range correction for center of mass tracking, and pulse distortion due to coherent effects. A mode-locked freqeuncy doubled Nd:YAG laser with a pulse width of about 60 ps was used as the ranging transmitter and a crossfield photo-multiplier was used in the receiver. High speed sampling electronics were employed to increase receiver bandwidth. LAGEOS reflected pulses typically had a width of 250 ps with a variability in the range correction of less than 2 mm rms. Pulse distortion due to coherent effects was inferred from average waveforms and appears to introduce less than + or - 50 ps jitter in the location of the pulse peak. Analytic results on this effect based on computer simulations are also presented. Theoretical and experimental data on the lidar cross section were developed in order to predict the strength of lidar echoes from the satellite. Cross section was measured using a large aperture laser collimating system to illuminate the LAGEOS. Reflected radiation far-field patterns were measured using the collimator in an autocollimating mode. Data were collected with an optical data digitzer and displayed as a three-dimensional plot of intensity versus the two far-field coordinates. Measurements were made at several wavelengths, for several types of polarizations, and as a function of satellite orientation.

  4. Bends in Hotspot Tracks: Kinematic observations and geodynamic models

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bunge, H.-P.; Sleep, N.; Hansen, U.

    2009-04-01

    Bends in volcanic hotspot lineaments, best represented by the large 60 degree turn in the Hawaiian-Emperor chain, were once thought to record solely changes in plate motion. Several lines of geophysical inquiry, including paleomagnetism and plate-circuit analyses, now suggest that a change in the locus of upwelling in the mantle induced by mantle dynamics causes bends in hotspot tracks. Deep flow near the core-mantle boundary may have played a role in the Hawaiian-Emperor bend. However, we suggest that capture of a plume by a ridge, followed by changes in sub-Pacific mantle flow can better explain the observations. Ridge capture of plumes may be enhanced in the Pacific Ocean basin because of its history of rapidly spreading ridges, distant from the complicating effects of continents. We explore how ridge capture may resolve apparent discrepancies between the Hawaiian-Emperor chain and other hotspots of the Pacific Ocean basin.

  5. Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Khan, Prosanta Kumar; Ansari, Md Afroz; Mohanty, S.

    2014-06-01

    The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen. A positive correlation between plate and stress obliquities is established for this diffuse plate boundary. We propose that the zone of sharp bending of the descending Indian lithosphere is the nodal area of major stress accumulation which is released occasionally in form of earthquakes. The lateral geometry of the Himalayas shows clusters of seismicity at an angle of ˜20? from the centre part of the arc. Such spatial distribution is interpreted in terms of compression across the arc and extension parallel to the arc. This biaxial deformation results in the development of dilational shear fractures, observed along the orogenic belt, at an angle of ˜20? from the principal compressive stress axis.

  6. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  7. Contrasting andean geodynamics drive evolution of lowland taxa in western Amazonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a palm lineage of 15 species (Astrocaryum sect. Huicungo), we tested an hypothesis that past geologic events in western Amazonia influenced the modern configuration of the upper Amazon drainage and thus diversification and distribution of these palsm, which found only in this region. The chang...

  8. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS

    SciTech Connect

    Kite, E. S.; Manga, M.; Gaidos, E.

    2009-08-01

    We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25-25 M {sub +}, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing-volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the 10 Gyr-old {tau} Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.

  9. A change in the geodynamics of continental growth 3 billion years ago.

    PubMed

    Dhuime, Bruno; Hawkesworth, Chris J; Cawood, Peter A; Storey, Craig D

    2012-03-16

    Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics. PMID:22422979

  10. Plate Tectonics: Geodynamic models of evolution of oil and gas bearing basins of Kazakhstan

    SciTech Connect

    Zholtayev, G. )

    1994-07-01

    Five types of sedimentary basins in Kazakhstan have been recognized by using plate tectonics to reinterpret geological and geophysical data: (1) intracontinental, central pre-Caspian, above rift, south pre-Caspian; (2) passive margin, east pre-Caspian; (3) back-arc, Turgan and Sir-Daria; (4) intra-arc, north Kisil-Koum, interior, Tengis and Chu-Sarisiu; and (5) marginal, north Usturt. Paleozoic history of these basins was connected with the spreading and collision of two lithospheric plates: east European and Kazakhstanian, which were separated by the paleo-Ural Ocean. Different tectonic positions of sedimentary basins were the reason for their different oil and gas potential.

  11. The enigmatic Mongol-Okhotsk Belt in NE Mongolia - a preliminary evaluation of the geodynamic development

    NASA Astrophysics Data System (ADS)

    Denise, Bussien; Nergui, Martin-Gombojav; Wilfried, Winkler; Quadt Albrecht, Von

    2010-05-01

    The Mongol-Okhotsk Belt (MOB) extends from Central Mongolia across eastern Siberia towards the Okhotsk Sea in the northwestern Pacific. The belt formed in a late stage of Jurassic orogeny in the composite Central Asian Orogenic Belt by the consumption of the Mongol-Okhotsk ocean (MOO). The Late Paleozoic-Mesozoic sediments associated with the belt in Mongolia are investigated in order to evaluate the timing and mode of ocean formation, the subduction and the collision of the framing margins. We apply an advanced provenance analysis including (1) heavy mineral and sandstone framework grain analysis and (2) U/Pb laser ablation ICPMS dating, trace element, and Hf isotope analysis of detrital zircons. We differentiate three tectono-stratigraphic units: (1) the Adaatsag and Doschgol terranes, which are supposed to represent the suture zone, (2) the Hangai-Hentei basin to the northwest of the suture, and (3) the Ereendavaa terrane and the Middle Gobi volcanic belt to the southeast. The latter two are concurrent with the northern and southern margins of the former MOO (in modern coordinates) respectively. The northern margin development is documented by ophiolitic accretionary wedge and fore-arc deposits. The southern margin is represented by Devonian-Carboniferous sediments presumably laid down on deformed and metamorphosed Neoproterozoic-Early Paleozoic continental and ophiolitic basement, which initially was accreted against the North Asia Craton (Siberia) by the closure of the Paleoasian ocean in the Ordovician. The available tectono-stratigraphic arguments together with biostratigraphic and radiometric age data suggest that the Mongol-Okhotsk ocean opened in Late Silurian, possibly by back-arc spreading within the Early Paleozoic collage due to northward subduction of the Paleotethys/Paleopacific ocean under the accreted Mongolian margin. The syn-sedimentary U/Pb detrital zircon age patterns and Hf isotopic values (epsilon Hf +6 - +7 in Devonian and Permo-Carboniferous time) show similar subduction related magma production processes in the northern and southern margin. However, the two continental margins of the MOO were presumably active at different periods. Our preliminary data propose that along the northern margin, from Silurian to Early Carboniferous subduction and accretion prevailed, which was re-initiated during the Permian. Reworking of older basement zircons is sparse. The contemporaneous Silurian-Devonian southern margin represented an extensional continental margin showing reworking of Neoproterozoic-Early Paleozoic zircons from the basement. It presumably turned into an active continental margin with starting arc magmatism in the Carboniferous. Continued subduction is manifested by the occurrence of Permian and Triassic zircons. On both margins Triassic and Jurassic continental sediments unconformably overlie tectonically deformed fore-arc series. In the suture zone in-between, Permo-Triassic and Jurassic samples contain Permian zircon grains, and an irregular mixing with Cambrian to Carboniferous zircons is documented. The pre-Permian zircon age spectra closer compare with the southern margin age distributions. Synsedimentary magmatic activity is documented until Late Triassic-Liassic (? 202 Ma). This volcanic source age approximately correlates with the time of closure of the MOO in the Mongolian segment of the mountain belt.

  12. Permian age of the Burpala alkaline pluton, Northern Transbaikalia: Geodynamic implications

    NASA Astrophysics Data System (ADS)

    Kotov, A. B.; Vladykin, N. V.; Yarmolyuk, V. V.; Sal'nikova, E. B.; Sotnikova, I. A.; Yakovleva, S. Z.

    2013-11-01

    This paper presents the U-Pb zircon age of pulaskite of the main phase (294 ± 1 Ma) and the rare metal syenite (283 ± 8 Ma) of the Burpala alkaline pluton. The geochronological data show that it was formed in the Early Permian. By age, it is comparable with the Synnyr pluton of the Synnyr rift zone, alkaline granitic rocks and bimodal volcanic associations of the Uda-Vitim rift zone, and carbonatites of the Saizhen rift zone of the Central Asian foldbelt. These intraplate igneous complexes were formed almost simultaneously with crustal granitic rocks of the Angara-Vitim batholite. All of this gives ground to suppose that the origination of their parental melts is a result of the influence of the mantle hot spot or mantle plume on the lithosphere that led to extensive crustal anatexis.

  13. On Lateral Viscosity Contrast in the Mantle and the Rheology of Low-Frequency Geodynamics

    NASA Technical Reports Server (NTRS)

    Ivins, Erik R.; Sammis, Charles G.

    1995-01-01

    Mantle-wide heterogeneity is largely controlled by deeply penetrating thermal convective currents. These thermal currents are likely to produce significant lateral variation in rheology, and this can profoundly influence overall material behaviour. How thermally related lateral viscosity variations impact models of glacio-isostatic and tidal deformation is largely unknown. An important step towards model improvement is to quantify, or bound, the actual viscosity variations that characterize the mantle. Simple scaling of viscosity to shear-wave velocity fluctuations yields map-views of long- wavelength viscosity variation. These give a general quantitative description and aid in estimating the depth dependence of rheological heterogeneity throughout the mantle. The upper mantle is probably characterized by two to four orders of magnitude variation (peak-to-peak). Discrepant time-scales for rebounding Holocene shorelines of Hudson Bay and southern Iceland are consistent with this characterization. Results are given in terms of a local average viscosity ratio, (Delta)eta(bar)(sub i), of volumetric concentration, phi(sub i). For the upper mantle deeper than 340 km the following reasonable limits are estimated for (delta)eta(bar) approx. equal 10(exp -2): 0.01 less than or equal to phi less than or equal to 0.15. A spectrum of ratios (Delta)eta(bar)(sub i) less than 0.1 at concentration level eta(sub i) approx. equal 10(exp -6) - 10(exp -1) in the lower mantle implies a spectrum of shorter time-scale deformational response modes for second-degree spherical harmonic deformations of the Earth. Although highly uncertain, this spectrum of spatial variation allows a purely Maxwellian viscoelastic rheology simultaneously to explain all solid tidal dispersion phenomena and long-term rebound-related mantle viscosity. Composite theory of multiphase viscoelastic media is used to demonstrate this effect.

  14. Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan)

    NASA Astrophysics Data System (ADS)

    Rolland, Yann; Picard, Christian; Pêcher, Arnaud; Carrio, Elisabeth; Sheppard, Simon M. F.; Oddone, Massimo; Villa, Igor M.

    New geological, geochemical and geochronological data from the Southern Karakoram (NE Pakistan) indicate the presence of several unexpectedly old and well preserved units along the Asian margin: (1) a Precambrian basement, displaying a minimum amphibole Ar-Ar age of 651 Ma; (2) a thick Cambro-Ordovician platform-type sedimentary unit overlying the Precambrian basement. These series are dated by graptolite and crinoid faunas, and are confirmed by concordant 87Sr/ 86Sr and 13C "ages" of the marbles; (3) a dismembered ophiolitic series formed by slices of metagabbros and metabasalts separated by ultramafic lenses (the Masherbrum Greenstone Complex). The occurrence of such Cambro-Ordovician series overlying a Precambrian basement in south-eastern Karakoram similar to the south-western Karakoram shows that the Karakoram constitutes a continuous tectonic block. The petrology and geochemistry of the Masherbrum Greenstone Complex (mineral chemistry, major and trace element and Sr-Nd isotopic data) are indicative of a supra-subductive environment. The presence of LREE-enriched calc-alkaline rocks ?(La/Yb) N = 4.4-5.6; (Nb/La) N = 0.2-0.3; ?Nd 565 = 5.1-7.1? and LREE-depleted tholeiitic rocks ?(La/Yb) N = 0.5-1.3; (Nb/La) N = 0.6-0.9; ?Nd 565 = 5.6-7.8? are consistent with arc and back-arc settings, respectively. A high-Mg andesitic dolerite and an OIB-type metabasalt, with lower ?Nd ratios (?Nd 565 = 0.5 and 4.5) are in accordance with source heterogeneity beneath the arc. The Masherbrum Greenstone Complex, along with other Cambro-Ordovician central-eastern volcanic series give evidence of a tectonic situation governed by micro-plate convergent-divergent systems with occurrence of arc - back-arc settings during the Lower Palaeozoic, comparable to that of the current SW Pacific area.

  15. The application of continuum damage mechanics to solve problems in geodynamics

    NASA Astrophysics Data System (ADS)

    Manaker, David Martin

    Deformation within the Earth's lithosphere is largely controlled by the rheology of the rock. Ductile behavior in rocks is often associated with plasticity due to dislocation motion or diffusion under high pressures and temperatures. However, ductile behavior can also occur in brittle materials. An example would be cataclastic flow associated with folding at shallow crustal levels, steep subduction zones, and large-scale deformation at plate boundaries. Engineers utilize damage mechanics to model the continuum deformation of brittle materials. We utilize a modified form of damage mechanics where damage represents a reduction in frictional strength and includes a yield stress. We use this empirical approach to simulate the bending of the lithosphere. We use numerical simulations to obtain elastostatic solutions for plate bending and where the stress exceeds a yield stress, we apply damage to reduce the elastic moduli. Damage is calculated at each time step by a power-law relationship of the ratio of the yield stress to stress and the yield strain to the strain. To test our method, we apply our damage rheology to a plate deforming under applied shear, a constant bending moment, and a constant load. We simulate a wide range of behaviors from slow relaxation to instantaneous failure, over timescales that span six orders of magnitude. Stress relaxation produces elastic-perfectly plastic behavior in cases where failure does not occur. For cases of failure, we observe a rapid increase in damage leading to failure. The changes in the rate of damage accumulation in failure cases are similar to the changes in b-values of acoustic emissions observed in triaxial compression tests of fractured rock and b-value changes prior to some large earthquakes. Thus continuum damage mechanics can simulate ductile behavior due to brittle mechanisms as well as observations of laboratory experiments and seismicity.

  16. The Neoproterozoic-Paleozoic Arctic Margins: early stages of geodynamic evolution and plate reconstructions

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Yu.; Lobkovsky, L. I.; Shipilov, E. V.

    2012-04-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the paleomagnetic poles) according to the general model and the available global reconstructions that include the structures of the Arctic (Scotese, 1997; Lawyer et al., 2002; Golonka et al., 2003, 2006; Cocks, Torsvik, 2002, 2007). The position of those Arctida blocks that lack paleomagnetic data is reconstructed based on geological data.

  17. Tectonic structure and geodynamics of the divide between the Atlantic and Arctic oceans

    NASA Astrophysics Data System (ADS)

    Pushcharovsky, Yu. M.

    2010-05-01

    Tectonic analysis of the divide between the Atlantic and Arctic oceans, where Greenland and Eurasia are located close to each other, is accompanied by description of the main structural units of this region, including the Lena Trough, continental Yermak Block (Plateau), Molloy and Spitsbergen fracture zones, and Molloy interfault tectonic complex. The tectonic features of these structural units allow us to combine them into a single domain of the interoceanic tectonic divide, which separates the spreading zones of the North Atlantic and the Gakkel Ridge of the Arctic Ocean. This dividing domain is compared with other interoceanic divides of the Earth, the classification of which is proposed in my previous publications. Their common feature is the development of fault systems particularly pronounced in the Australian-Antarctic and African-Antarctic oceanic domains. The morphology, crustal structure, and magmatism of the considered region show that it is currently undergoing rifting, which probably predates oceanic spreading.

  18. Lower Carboniferous carbonates rocks in Chukotka (North-East of Russia): paleogeographical reconstruction and geodynamic events

    NASA Astrophysics Data System (ADS)

    Tuchkova, Marianna; Sokolov, Sergey; Khudoley, Andrey; Pokrovsky, Boris; Vatrushkina, Elena

    2014-05-01

    Carbonates of Anyui-Chukotka fold belt are widespread in Devonian and Carboniferous age. Missisipian limestones of different tectonic structure were investigated. We examine limestones from i) South-Anyui Suture (Polarny Creek); ii) Alarmaut uplift, iii) Kibera Cape and iv) Wrangel island. Limestones of Polarny Creek contain fragments of fauna and they occur with basalt-chert rocks (Sizhykh et al., 1977; Sokolov et al., 2006). Carbonates of Alarmaut uplift have terrigenous materials (sandstones) and are associated with schists. Carboniferous rocks of Kibera Cape consist of sandstones, gravels and conglomerates in the lower part of Mississipian unit. In the upper part they replaced by limestones and dolostones. Lower Carboniferous formation of Wrangel Island is composed of clastic and carbonate rocks with evaporates (Kos'ko et al., 1993, 2003). The lower unit of the Lower Carboniferous formation is composed of conglomerate or gravelstone with fragments of locally derived Devonian rocks. All carbonate rocks contain lenses and interlayers of cherts. We used geochemical criteria and isotopic data for understanding the Paleogeographic position of different Carboniferous blocks. Sedimentation of carbonates of Wrangel Island and Kibera Cape was in shallow-marine shelf of carbonate platform with lagoon shoal. Carbonates of Alarmaut uplift accumulating in the shallow-marine environment, in active hydrodynamics conditions. Sedimentation of Polarny Creek (SAS) was not near from bioherm reef. We have demonstrated the different paleogeographic environments for Chukotka's carbonate platform. Sedimentological, geochemical and isotopic data indicate shallow sea-water of carbonate platform for limestones of Alarmaut uplift, Kibera Cape and Wrangel island. Limestones of Polarny Creek (South-Anyui Suture) may be a part of a carbonate sequence formed on a volcanic atoll. Paleozoic deposits of Wrangel Island are presented as fragment of Arctida-Crockerland basement (Shatsky, 1935; Eardly, 1948; Embry, 1993, 2011). In our opinion, Carboniferous carbonates rocks of Chukotka are the part of carbonate platform of Old continental block, that was existent in the north of Arctic. Lower Carboniferous limestones of South-Anyui Suture cannot be considered an element of the exhumed Paleozoic section of Anyui-Chukotka fold belt (Sokolov et al., 2006). Acknowledgments: This work is financially supported by RFBR Project nos. 11-05-00074, 11-05-00787, 14-05-00031 and Scientific School NSh - 2981.2014.5

  19. Upper Jurassic-Lower Cretaceous sincollisional sedimentary sequences of Chukotka: sedimentation, structural style and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S. D.; Verzhbitsky, V. E.

    2008-12-01

    Upper Jurassic-Lower Cretaceous sincollisional sedimentary sequence, exposed on the Central part of Northern Chukotka is critical for understanding the timing, dynamics and sedimentary setting evolution of Chukotka-Eurasia collisional process (e.g., Sokolov et al., 2002) and so, represents one of the key regional stratigraphic units (Til'man, 1973; Tibilov, 1982; Miller et al., 2002,2007). From the other hand, this research may shed the light on the widely discussing problem of the Canadian and Makarov basins opening (e.g., Miller, Verzhbitsky, in press). Field observations reveal moderately to weakly deformed terrigenous sediments of the first stage of deposition with visible and dispersal plants remnants and containing organic-rich beds. Widely distributed and intensively deformed Triassic sequences (Tuchkova et al., 2007) and discussing Jurassic-Cretaceous units both intruded by Aptian-Albian postcollisional plutons and dikes (e.g., Katkov et al., 2006). Collisional-related fabric and subsequent granitoids are complicated by small-scale latest normal faults, in particular related to the westernmost segment of South Chukchi (Hope) basin development in Upper Cretaceous(?)-Cenozoic. We believe, that Upper Jurassic-Lower Cretaceous chukotkian formation, overthrusted by Triassic (and Paleozoic?) sequences (Tibilov, 1982; Baranov, 1995), continues offshore to the Eastern Siberian and Chukchi Seas and play significant role in the structure of the Eastern Arctic Russian shelf. The work is supported by the Russian Foundation for Basic Research (grant 08-05-00547), program of ONZ RAS, and NSH-3172.2008.5.

  20. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  1. Geodynamics and Rate of Volcanism on Massive Earth-like Planets

    E-print Network

    Edwin S. Kite; Michael Manga; Eric Gaidos

    2009-05-31

    We provide estimates of volcanism versus time for planets with Earth-like composition and masses from 0.25 to 25 times Earth, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. Here we show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution) but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing - volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. Magma must also crystallize at or near the surface, and the pressure of overlying volatiles must be fairly low, if volatiles are to reach the surface. If volcanism is detected in the Tau Ceti system, and tidal forcing can be shown to be weak, this would be evidence for plate tectonics.

  2. Cenozoic volcanic rocks from central Myanmar: Age, geochemical characteristics and geodynamic significance

    NASA Astrophysics Data System (ADS)

    Lee, H.; Chung, S.; Yang, H.; Chu, C.; Lo, C.; Mitchell, A.

    2010-12-01

    Late Cenozoic volcanism occurs in the central Myanmar basin, a region that is marked by the existence of the dextral Sagaing fault linking the eastern Himalayan Syntaxis in the north and the Andaman Sea in the south. This region is located in a unique and transitional position between compressional/Himalayan and extensional/Andaman Sea tectonic settings. Here we report new 40Ar/39Ar age results for the volcanic rocks from Mt. Popa and two volcanoes in Monywa, central Myanmar. The results suggest two distinct stages of eruptions, a mid-Miocene stage from ~16 to 13 Ma and a Quaternary stage <1 Ma, with a >10-m.y. magmatic gap in between. While calc-alkaline rocks showing arc lava geochemistry are abundant, an apparent change in magma composition is observed between the two stages. The mid-Miocene rocks are typical of high-K calc-alkaline nature and dominated by intermediate compositions (SiO2=53-62 wt.%). By contrast, the Quaternary rocks are mainly basalts but show heterogeneous compositions, including (1) high-Al basalts from Mt. Popa: ?Nd=+3.0 to +2.1, ?Hf=+17.4 to +10.7, (2) absarokites and high-Al basalts from Monywa: ?Nd?+3.6, ?Hf?+12.1 for the former and ?Nd?+3.0, ?Hf?+11.8 for the latter, and (3) OIB-type alkali basalts from Singu, a locality off the Sagaing fault: ?Nd?+0.9, ?Hf?+3.7. We interpret the long magmatic gap as a consequence of cessation of the oblique subduction of the Indian oceanic lithosphere beneath this part of Asia that occurred in the mid-Miocene, when the dextral motion of the Sagaing fault system initiated and opening of the Andaman Sea began. All these processes were related to the India-Asia collision that caused plate reorganization in the region and eventually transformed the subduction system from oblique convergence to dextral movement. Under this framework, the Quaternary volcanism renewed owing to small-degree melting of different types of pre-Miocene subduction-enriched mantle domains beneath central Myanmar related to an extensional or transtensional setting created by the stress partitioning along the Sagaing fault system.

  3. CretaceousTertiary geodynamics: a North Atlantic exercise Trond H. Torsvik,1,2

    E-print Network

    Torsvik, Trond Helge

    described misfits between the North Atlantic Plate elements at successive intervals during this time period, globally applicable from mid-Jurassic times, provide relative fits between continents, whilst palaeo

  4. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1984-01-01

    The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.

  5. Global Geodynamics and Hf isotope arrays: implications for supercontinental cycles and mantle convection patterns

    NASA Astrophysics Data System (ADS)

    Collins, W. J.; Murphy, B. J.

    2014-12-01

    Combined U-Pb-Hf isotope studies of zircons provide new insights into the evolution of large-scale, long-term orogenic systems, applicable to understanding supercontinental cycles throughout Earth history. Three types of Hf arrays exist on Phanerozoic Earth: (1) long term isotopic contraction to positive epilson Hf values, reflecting circum-Pacific type orogenesis; (2) fanning isotopic array associated with ongoing collisional orogenesis involving repeated Wilson-cycles; (3) crustal reworking arrays typical of backarc opening and closing during slow convergence of continents, such as Phanerozoic Europe. Each Phanerozoic array has its Precambrian precursors, at least to 3.0 Ga. Global isotopic contraction similar to the Phanerozoic circum-Pacific system is also recorded between 2.0-1.6 Ga, and less obviously between 2.8-2.5 Ga, suggesting global scale symmetrical subduction systems dominated by accretionary orogenesis since the Late Archean. Fanning arrays between 2.2-1.8 Ga and 1.2-0.6 Ga reflect dominantly collisional processes associated with amalgamation of Nuna and Gondwana, whereas the Mesoproterozoic (1.6-1.2 Ga) produces a dominantly reworking array like that of Phanerozoic Europe. Circum-Pacific subduction reflects hemispheric-scale, whole mantle convection and probably began approximately 2.8 Ga ago. Global scale accretionary orogens associated with this arrangement include the widespread Late Archean greenstone belts and the circum-Nuna Late Paleoproterozoic orogenic belts. The Mesoproterozoic era possibly represents progressive, slow collapse of a Panthalassic ocean surrounding Nuna, ultimately forming the Grenvillean orogenic system. This climactic event rearranged global mantle convection patterns, observed in the Neoproterozoic "Pan-African" Hf arrays, triggering a peculiar toroidal-type mantle convective cell that transitioned Rodinia to Gondwana.

  6. I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate.

    E-print Network

    Kite, Edwin Stephen

    2011-01-01

    greenhouse effect parameterization uses a simplified atmosphericgreenhouse effect provide a good approximation to Mars’ observed surface temperature. Atmosphericgreenhouse effect is calculated CHAPTER 4. SNOWMELT AND SEDIMENTARY ROCK FORMATION ON MARS.144 using an atmospheric

  7. Geodynamically unusual settings of sedimentary rock and ore formation due to tectonic-decompression effects

    SciTech Connect

    Goryainov, P.M.

    1984-05-01

    The traditional views of terrigenous rocks as products of classical sedimentary cycle, ''mobilization-transport-deposition,'' are not universal. Detrital rocks are sometimes formed due to flaking and fracturation of rocks of rising blocks. The process is produced by tectonic-decompression mechanisms - the origination of a gradient of excessive stress and its discharge. It is incorrect to classify rocks created by this phenomenon with weathering crusts. The origins of certain terrigenous rocks, as well as products of low-temperature chemical processing, are connected with deep-volume decompression (brecciation, stockwork formation, formation of pipes and columns of igneous rocks, and chamber pegmatite and karst formation). The ore concentrations associated with such entities and appearing as stratiform deposits are most likely not exogenous, but they complete the endogenous history of the block concerned. The means and methods tested on typical endogenous deposits may therefore prove valuable in predicting certain varieties of stratiform deposits.

  8. Geodynamic stability of the primary in the binary asteroid system 65803 Didymos

    NASA Astrophysics Data System (ADS)

    Barnouin, Olivier S.; Maurel, Clara; Richardson, Derek C.; Ballouz, Ronald-Louis; Schwartz, Stephen; Michel, Patrick

    2015-11-01

    The moon of the near-Earth binary asteroid 65803 Didymos is the target of the Asteroid Impact and Deflection Assessment (AIDA) mission. This mission is a joint concept between NASA and ESA to investigate the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two components: the NASA-led Double Asteroid Redirect Test (DART) that will impact the Didymos moon, and the ESA-led Asteroid Impact Monitoring (AIM) mission that will characterize the Didymos system. In order to provide AIDA constraints on the physical character of the both objects in this binary system, we undertook preliminary numerical investigations to evaluate the stability of the shape of the primary using its rapid 2.26 h rotation. We modeled the primary as a rubble pile. Each model consisted of thousands of uniform rigid spheres collapsed together under their own gravity to form a spherical pile that was then carved to match the current radar-derived shape model of the primary, as well as other comparable shapes (e.g. asteroid 1999 KW4, spheres) that were scaled to match best estimates of the size of Didymos. Each model was given a starting rotation period of 6 h with the spin axis aligned to the pole. At each timestep the spin rate was increased by a small amount so that after about 1 million timesteps the spin would match the observed rotation of 2.26 h. We tested a range of bulk densities spanning the current observational uncertainty (mean 2.4 g/cc) using "gravel"-like material parameters that provide significant resistance to sliding and rolling. We find that at the upper range of the density uncertainty it is possible for Didymos to hold its shape and not lose mass at its nominal rotation period, without the need for cohesive forces. At lower densities or with smoother particles, significant shape change occurs and mass loss is possible. We conclude that based on the radar shape available at the time of this writing, Didymos is marginally stable as a rubble pile with bulk density close to 3 g/cc. Revisions to the radar shape in process may allow for stability at lower bulk densities without cohesion. These results suggest that the moon of Didymos may also not be heavily influenced by cohesion.

  9. Contraints for an interpretation of the italian geodynamics: Vincoli per una interpretazione della geodinamica italiana

    E-print Network

    with a back-arc basin (Tyrrhenian Sea) characterised in some part by oceanic crust and high heat flow. KEY; igneous products are distin- guished, in the Tyrrhenian and circum-Tyrrhenian region, in relation

  10. Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction

    NASA Astrophysics Data System (ADS)

    Audemard, Felipe E.; Audemard, Franck A.

    2002-02-01

    For over 50 years, several models based on diverse geologic concepts and variable quality of data have been proposed to explain the major structure and history of the Mérida Andes (MA), in western Venezuela. Lately, this chain growth and associated flexural basins deepening have been related to incipient type-A subductions of either polarity, accounting for the across-chain asymmetry. However, these recent models have not well integrated the present tectonically active setting driven by neighboring major plate interactions. At present, this chain exhibits ongoing strain partitioning where cumulative right-lateral slip along chain axis is as much as half of, or about the same, as the transverse shortening since late Miocene, thus implying that the NNE-directed Maracaibo block extrusion with respect to the South America (SA) plate is not a secondary feature. Consequently, this paper discusses some limitations exhibited by the SE-directed continental subduction models-Maracaibo crust underthrusting the Mérida Andes-in the light of available geological and geophysical data. Besides, it is herein proposed that the Mérida Andes structuration is related to a NW-directed, gently dipping, incipient type-A subduction, where chain growth and evolution are similar to those of a sedimentary accretionary wedge (i.e., Barbados), but at crustal scale and with ongoing strain partitioning. This continental subduction is the SE portion of a major orogenic float that also comprises the Perijá range and the Santa Marta block.

  11. Structure of the Mérida Andes, Venezuela: relations with the South America Caribbean geodynamic interaction

    NASA Astrophysics Data System (ADS)

    Audemard, Felipe E.; Audemard, Franck A.

    2002-02-01

    For over 50 years, several models based on diverse geologic concepts and variable quality of data have been proposed to explain the major structure and history of the Mérida Andes (MA), in western Venezuela. Lately, this chain growth and associated flexural basins deepening have been related to incipient type-A subductions of either polarity, accounting for the across-chain asymmetry. However, these recent models have not well integrated the present tectonically active setting driven by neighboring major plate interactions. At present, this chain exhibits ongoing strain partitioning where cumulative right-lateral slip along chain axis is as much as half of, or about the same, as the transverse shortening since late Miocene, thus implying that the NNE-directed Maracaibo block extrusion with respect to the South America (SA) plate is not a secondary feature. Consequently, this paper discusses some limitations exhibited by the SE-directed continental subduction models—Maracaibo crust underthrusting the Mérida Andes—in the light of available geological and geophysical data. Besides, it is herein proposed that the Mérida Andes structuration is related to a NW-directed, gently dipping, incipient type-A subduction, where chain growth and evolution are similar to those of a sedimentary accretionary wedge (i.e., Barbados), but at crustal scale and with ongoing strain partitioning. This continental subduction is the SE portion of a major orogenic float that also comprises the Perijá range and the Santa Marta block.

  12. Geodynamics of collision and collapse at the AfricaArabiaEurasia subduction zone an introduction

    E-print Network

    Utrecht, Universiteit

    ; (2) continental drift, sea-floor spreading and formation of ocean basins; (3) subduction initiation and drifting in the Western Mediterranean (Dercourt et al. 1986), and with initiation of the Tyrrhenian oceanic subduction stage closes the oceanic basin, even- tually resulting in the arrival of a continental

  13. A geodynamic and mineral physics model of a solid-state ultralow-velocity zone

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Wicks, June K.; Gurnis, Michael; Jackson, Jennifer M.

    2011-03-01

    Recent results (Wicks et al., 2010) suggest that a mixture of iron-enriched (Mg,Fe)O and ambient mantle is consistent with wavespeed reductions and density increases inferred for ultralow-velocity zones (ULVZs). We explore this hypothesis by simulating convection to deduce the stability and morphology of such chemically-distinct structures. The buoyancy number, or chemical density anomaly, largely dictates ULVZ shape, and the prescribed initial thickness (proxy for volume) of the chemically-distinct layer controls its size. We synthesize our dynamic results with a Voigt-Reuss-Hill mixing model to provide insight into the inherent seismic tradeoff between ULVZ thickness and wavespeed reduction. Seismic data are compatible with a solid-state origin for ULVZs, and a suite of these structures may scatter seismic energy to produce broadband PKP precursors.

  14. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints

    E-print Network

    and the Dinarides, respectively. The wide chemical composition of the igneous rocks emplaced during this tectonic the geochemical composition of igneous rocks to infer the coeval tectonic setting characteristics cannot be used, structures, igneous and metamorphic rocks having been described in detail. Also the crustal and the upper

  15. A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Effective numerical treatment of multicomponent viscous flow problems involving the advection of sharp interfaces between materials of differing physical properties requires correction techniques to prevent spurious diffusion and dispersion. We develop a particular algorithm, based on modern shock-capture techniques, employing a two-step nonlinear method. The first step involves the global application of a high-order upwind scheme to a hyperbolic advection equation used to model the distribution of distinct material components in a flow field. The second step is corrective and involves the application of a global filter designed to remove dispersion errors that result from the advection of discontinuities (e.g., material interfaces) by high-order, minimally dissipative schemes. The filter introduces no additional diffusion error. Nonuniform viscosity across a material interface is allowed for by the implementation of a compositionally weighted-inverse interface viscosity scheme. The combined method approaches the optimal accuracy of modern shock-capture techniques with a minimal increase in computational time and memory. A key advantage of this method is its simplicity to incorporate into preexisting codes be they finite difference, element, or volume of two or three dimensions.

  16. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review

    NASA Astrophysics Data System (ADS)

    Seltmann, Reimar; Porter, T. Mike; Pirajno, Franco

    2014-01-01

    Major porphyry Cu-Au and Cu-Mo deposits are distributed across almost 5000 km across central Eurasia, from the Urals Mountains in Russia in the west, to Inner Mongolia in north-eastern China. These deposits were formed during multiple magmatic episodes from the Ordovician to the Jurassic. They are associated with magmatic arcs within the extensive subduction-accretion complex of the Altaid and Transbaikal-Mongolian orogenic collages that developed from the late Neoproterozoic, through the Palaeozoic, to the Jurassic intracratonic extension. The arcs formed predominantly on the Palaeo-Tethys Ocean margin of the proto-Asian continent, but also within two back-arc basins. The development of the collages commenced when slivers of an older Proterozoic subduction complex were rifted from an existing cratonic mass and accreted to the Palaeo-Tethys Ocean margin of the combined Eastern Europe and Siberian cratons. Subduction of the Palaeo-Tethys Ocean beneath the Karakum and Altai-Tarim microcontinents and the associated back-arc basin produced the overlapping late Neoproterozoic to early Palaeozoic Tuva-Mongol and Kipchak magmatic arcs. Contemporaneous intra-oceanic subduction within the back-arc basin from the Late Ordovician produced the parallel Urals-Zharma magmatic arc, and separated the main Khanty-Mansi back-arc basin from the inboard Sakmara marginal sea. By the Late Devonian, the Tuva-Mongol and Kipchak arcs had amalgamated to form the Kazakh-Mongol arc. By the mid Palaeozoic, the two principal cratonic elements, the Siberian and Eastern European cratons, had begun to rotate relative to each other, "drawing-in" the two sets of parallel arcs to form the Kazakh Orocline between the two cratons. During the Late Devonian to Early Carboniferous, the Palaeo-Pacific Ocean began subducting below the Siberian craton to form the Sayan-Transbaikal arc, which expanded by the Permian to become the Selanga-Gobi-Khanka arc. By the Middle to Late Permian, as the Kazakh Orocline continued to develop, both the Sakmara and Khanty-Mansi back-arc basins were closed and the collage of cratons and arcs were sutured by accretionary complexes. During the Permian and Triassic, the North China craton approached and docked with the continent, closing the Mongol-Okhotsk Sea, an embayment on the Palaeo-Pacific margin, to form the Mongolian Orocline. Subduction and arc-building activity on the Palaeo-Pacific Ocean margin continued to the mid Mesozoic as the Indosinian and Yanshanian orogens.

  17. Geodynamics of late Paleozoic magmatism in the Tien Shan and its framework

    NASA Astrophysics Data System (ADS)

    Biske, Yu. S.; Konopelko, D. L.; Seltmann, R.

    2013-07-01

    The Devonian-Permian history of magmatic activity in the Tien Shan and its framework has been considered using new isotopic datings. It has been shown that the intensity of magmatism and composition of igneous rocks are controlled by interaction of the local thermal upper mantle state (plumes) and dynamics of the lithosphere on a broader regional scale (plate motion). The Kazakhstan paleocontinent, which partly included the present-day Tien Shan and Kyzylkum, was formed in the Late Ordovician-Early Silurian as a result of amalgamation of ancient continental masses and island arcs. In the Early Devonian, heating of the mantle resulted in the within-plate basaltic volcanism in the southern framework of the Kazakhstan paleocontinent (Turkestan paleoocean) and development of suprasubduction magmatism over an extensive area at its margin. In the Middle-Late Devonian, the margins of the Turkestan paleoocean were passive; the area of within-plate oceanic magmatism shifted eastward, and the active margin was retained at the junction with the Balkhash-Junggar paleoocean. A new period of active magmatism was induced by an overall shortening of the region under the settings of plate convergence. The process started in the Early Carboniferous at the Junggar-Balkhash margin of the Kazakhstan paleocontinent and the southern (Paleotethian) margin of the Karakum-Tajik paleocontinent. In the Late Carboniferous, magmatism developed along the northern boundary of the Turkestan paleoocean, which was closing between them. The disappearance of deepwater oceanic basins by the end of the Carboniferous was accompanied by collisional granitic magmatism, which inherited the paleolocations of subduction zones. Postcollision magmatism fell in the Early Permian with a peak at 280 Ma ago. In contrast to Late Carboniferous granitic rocks, the localization of Early Permian granitoids is more independent of collision sutures. The magmatism of this time comprises: (1) continuation of the suprasubduction process (I-granites, etc.) with transition to the bimodal type in the Tien Shan segment of the Kazakhstan paleocontinent that formed; (2) superposition of A-granites on the outer Hercynides and foredeep at the margin of the Tarim paleocontinent (Kokshaal-Halyktau) and emplacement of various granitoids (I, S, and A types, up to alkali syenite) in the linear Kyzylkum-Alay Orogen; and (3) within-plate basalts and alkaline intrusions in the Tarim paleocontinent. Synchronism of the maximum manifestation and atypical combination of igneous rock associations with spreading of magmatism over the foreland can be readily explained by the effect of the Tarim plume on the lithosphere. Having reached maximum intensity by the Early Permian, this plume could have imparted a more distinct thermal expression to collision. The localization of granitoids in the upper crust was controlled by postcollision regional strike-slip faults and antiforms at the last stage of Paleozoic convergence.

  18. Habitability of the Goldilocks planet Gliese 581g: results from geodynamic models

    NASA Astrophysics Data System (ADS)

    von Bloh, W.; Cuntz, M.; Franck, S.; Bounama, C.

    2011-04-01

    Aims: In 2010, detailed observations have been published that seem to indicate another super-Earth planet in the system of Gliese 581, which is located in the midst of the stellar climatological habitable zone. The mass of the planet, known as Gl 581g, has been estimated to be between 3.1 and 4.3 M?. In this study, we investigate the habitability of Gl 581g based on a previously used concept that explores its long-term possibility of photosynthetic biomass production, which has already been used to gauge the principal possibility of life regarding the super-Earths Gl 581c and Gl 581d. Methods: A thermal evolution model for super-Earths is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic biological productivity on the planetary surface. Models with different ratios of land/ocean coverage are pursued. Results: The maximum time span for habitable conditions is attained for water worlds at a position of about 0.14 ± 0.015 AU, which deviates by just a few percent (depending on the adopted stellar luminosity) from the actual position of Gl 581g, an estimate that does however not reflect systematic uncertainties inherent in our model. Therefore, in the framework of our model an almost perfect Goldilock position is realized. The existence of habitability is found to critically depend on the relative planetary continental area, lending a considerable advantage to the possibility of life if Gl 581g's ocean coverage is relatively high. Conclusions: Our results are another step toward identifying the possibility of life beyond the Solar System, especially concerning super-Earth planets, which appear to be more abundant than previously surmised.

  19. Habitability of the Goldilocks Planet Gliese 581g: Results from Geodynamic Models

    E-print Network

    von Bloh, W; Franck, S; Bounama, C

    2011-01-01

    Aims: In 2010, detailed observations have been published that seem to indicate another super-Earth planet in the system of Gliese 581 located in the midst of the stellar climatological habitable zone. The mass of the planet, known as Gl 581g, has been estimated as between 3.1 and 4.3 Earth masses. In this study, we investigate the habitability of Gl 581g based on a previously used concept that explores its long-term possibility of photosynthetic biomass production, which has already been used to gauge the principal possibility of life regarding the super-Earths Gl 581c and Gl 581d. Methods: A thermal evolution model for super-Earths is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic biological productivity on the planetary surface. Models with different ratios of land / ocean coverage are pursued. Results: The maximum time span for habitable conditions is attained for water worlds at a position of about 0.14+/-0.015 AU, wh...

  20. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ?10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes ? and ? parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which ? and ? parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal ? controlling factor for both approaches is ?2/3, instead of the 1/2 Crank-Nicolson parameter inferred from a linearized accuracy analysis. This more-implicit value coincides with the velocity factor for a Galerkin time discretization applied to our penalization term using linear shape functions in time.

  1. On the question of the interrelation between variations in crustal electrical conductivity and geodynamical processes

    NASA Astrophysics Data System (ADS)

    Bataleva, E. A.; Batalev, V. Yu.; Rybin, A. K.

    2013-05-01

    The behavior of the variations in the crustal electrical conductivity in a wide range of periods is studied from the data of magnetotelluric soundings (MTS) during the Kambarata experiment (a strong industrial explosion to construct the blast-fill dam on the Naryn river), as well as at Aksu, a stationary geophysical monitoring point. The concept of the interrelation between the stress-strain state of the medium and the change in the apparent electrical resistivity, which is based on the idea of the redistribution of mineralized solutions between the crack networks, is confirmed experimentally. A procedure of azimuthal monitoring is developed, which allowed us not only to identify the anomalous changes in the module and phase of apparent resistivity but also to establish the directions of their maximum increases and decreases (the axes of compression and tension). For 34 points of deep MTS in the territory of Central Tien Shan, the depth intervals in the upper crust that are most sensitive to the changes in the stress-strain state of the medium are established. The variations in the electrical conductivity are compared with the solar-lunar tidal impacts. It is shown that by analyzing the recorded time series, it is possible to recognize the characteristic signs of the changes in the stress-strain state of the medium that are caused by seismic events.

  2. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  3. ELSEVIER Tectonophysics 298 (1998) 259269 On the post-25 Ma geodynamic evolution of the western Mediterranean

    E-print Network

    1998-01-01

    Anzio, 85100 Potenza, Italy b Dipartimento di Scienze della Terra, Universita` La Sapienza, P. le A. Moro 5, 00185 Roma, Italy c CSIC, Institute of Earth Sciences, Jaume Almera, 08028 Barcelona, Spain along the Atlantic oceanic ridge. However, in spite of regularly E­ W-oriented transform faults

  4. The Contribution of the Topo-Iberia Project to the Knowledge of the Western Mediterranean Geodynamics.

    NASA Astrophysics Data System (ADS)

    Diaz Cusi, J.

    2012-12-01

    The large scale research program Topo-Iberia aims to unravel the complex structure and mantle processes in the area of interaction between the African and European continental plates in the western Mediterranean. The project, funded by the Spanish Ministry of Science and Education, started in 2007 and will be active till Fall 2013. Topo-Iberia has gathered expertise of different fields of the Earth Sciences. One of the key assets of the project involves the deploying of a technological observatory platform, IberArray, with unprecedented resolution and coverage. This platform is currently building up a comprehensive, multidisciplinary data set, stored by the SIGEOF database, which includes seismological, GPS and magnetotelluric data. Using also other analytical methodologies included in the Topo-Iberia program (potential fields, quantitative analysis of the topography, dating methods) the final scope of the project is to study the relationship between superficial and deep-rooted processes. Topo-Iberia has also benefited from the interaction with other projects investigating the same area, as the American program PICASSO, the French Pyrope or the Portuguese WILAS. This interaction includes sharing the available data to better assess the key geological questions. This contribution will present the current state of the most significant scientific results which are arising from the data acquired using the Iberarray platform. -. SKS splitting analysis has provided a spectacular image of the anisotropic pattern over the area, including a clear rotation of the fast velocity direction along the Gibraltar Arc. -. Receiver functions have revealed the crustal thickness variations beneath the Rif and southern Iberia, including a crustal root beneath the Rif not clearly documented previously. The 410-km and 660-km upper mantle discontinuities have been investigated using novel cross-correlation/stacking techniques. -. Surface wave tomography using both earthquakes and ambient noise allows describing the main characteristics of crustal structure. Local body-wave tomography, currently focused on Northern Morocco, has improved the location of the small magnitude events affecting the area and the details of the crustal structure. Teleseismic tomography has confirmed, using an independent data set, the presence of a high-velocity slab beneath the Gibraltar Arc. -. A number of 2-D Magnetotelluric (MT) profiles have been acquired in Iberia and Morocco. These MT profiles provide a 1500 km long N-S lithospheric transect extending from the Cantabrian Mountains to the Atlas. -. The Topoiberia GPS deployments acquired long-term time series of data allowing well resolved determinations of the relatively small velocity displacements affecting the region. Additional high-resolution active-source seismic experiments recently carried out in the Atlas, the Rif and the Central and Iberian Massifs piggy back with this large scale project are complementing this multidisciplinary data base. This new data provide a large number of physical observables to better constrain numerical models at lithospheric scale, which would result in high-quality lithospheric transects.

  5. Le volcanisme cambrien du Maroc central : implications géodynamiquesThe Central Morocco Cambrian volcanism: geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul

    2003-05-01

    In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).

  6. The evolution of planetary geodynamics modulated by water Peter van Thienen and Philippe Lognonn

    E-print Network

    van Thienen, Peter

    including the effects of water on the viscosity and water exchange with the hydrosphere have been published, there is a no-slip top boundary condition, and no rehydration of mantle material takes place. Dehydration takes and cool down, their upper mantles become too cold to allow partial melting and dehydration no longer takes

  7. Geodynamic setting and emplacement of mylonitic granitoids within the North Golpayegan shear zone, Iran

    NASA Astrophysics Data System (ADS)

    Mortaza, Sharifi; Mohsen, Tabatabaei Manesh Seyed; Homayon, Safaei; Somaye, Karimi

    2013-11-01

    The metamorphic complex of the North Golpayegan is part of the Sanandaj-Sirjan Zone. There are at least three distinct stages of deformation in this complex. Throughout the first stage, Paleozoic and Mesozoic sedimentary rocks have experienced regional metamorphism during Late Jurassic tectonic events related to the subduction of the Neo-Tethys oceanic lithosphere under the Iranian microcontinent. During the second deformation stage in the Late Cretaceous-Paleocene, the rocks have been mylonitized. The third stage of deformation in the region has led to folding and faulting superimposed on previous structures, and to exhumation of the metamorphic complex. This stage has determined the current morphology and N70E strike of the complex. The mylonitic zones of the second stage of deformation have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. The granitoids in the metamorphic complex have been injected along the extensional shear fractures related to the dextral transpressional displacements. The granitoids have been transformed into mylonites within the synthetic or antithetic shear zones. These granitoids are recognized as syncollision type (CCG) and have been formed at the end of orogenic events synchronous to the collision between the Arabian and the Iranian plates at the Late Cretaceous-Paleocene.

  8. Rare metal granites of the Katugin complex (Aldan shield): Sources and geodynamic formation settings

    NASA Astrophysics Data System (ADS)

    Larin, A. M.; Kotov, A. B.; Vladykin, N. V.; Gladkochub, D. P.; Kovach, V. P.; Sklyarov, E. V.; Donskaya, T. V.; Velikoslavinskii, S. D.; Zagornaya, N. Yu.; Sotnikova, I. A.

    2015-09-01

    Isotope-Geochemical Sm-Nd studies of the Early Proterozoic alkaline granites of the Katugan complex (Aldan shield) were carried out. The unique Katugan rare metals (Ta, Nb, Zr, Y, and REE) deposit is confined to these granites. Parent melts of the granites are of mantle-crustal nature.

  9. The non-chondritic composition of the Earth and its consequences for chemical geodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Caro, G.; Bourdon, B.

    2009-12-01

    Super-chondritic 142Nd signatures are ubiquitous in terrestrial and lunar samples, and indicate that the Earth may have accreted from material with Sm/Nd ratio higher than chondritic [1]. This early Sm/Nd fractionation must predate both core formation and the giant impact [2], and could therefore result from the loss of crustal material by collisional erosion during the early stages of planetary accretion [3]. These observations contradict the long-held view that chondrites represent a reference composition for the 147Sm-143Nd system. Using coupled 146Sm-142Nd and 147Sm-143Nd systematics in planetary samples, we have proposed a new set of values for the 147Sm/144Nd and 143Nd/144Nd ratios of the bulk silicate Earth [1]. Here, we revise the Bulk Silicate Earth estimates for the 176Lu-176Hf system using coupled Nd-Hf systematics in terrestrial rocks and show that these estimates are consistent with lunar Hf-Nd data. The implications of a non-chondritic silicate Earth with respect to the geochemical evolution of the mantle-crust system are then examined. We show that the positive ?143Nd and ?176Hf values ubiquitous in the Archean mantle can be accounted for by the non-chondritic Sm/Nd and Lu/Hf composition of the primitive mantle rather than early crustal formation, which solves the paradox that early Archean domains only have a limited extension in the present-day continents. Re-examination of Sm-Nd mass balance for the mantle-crust system shows that currently ongoing crustal extraction processes can readily explain the isotopic and trace elements systematics in oceanic basalts, without the need to call upon hidden crustal or mantle reservoirs. References: [1] Caro, G., Bourdon, B., Halliday, A. N., and Quitté, G., 2008. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452, 336-339. [2] Bourdon, B., Touboul, M., Caro, G., and Kleine, T., 2008. Early differentiation of the Earth and the Moon. Phil. Trans. Roy. Soc. 366, 4105-4128. [3] O'Neill, H. S. C. and Palme, H., 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. Roy. Soc. 366, 4205-4238.

  10. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border

    NASA Astrophysics Data System (ADS)

    Liu, Jia-qi; Chen, Shuang-shuang; Guo, Zheng-fu; Guo, Wen-feng; He, Huai-yu; You, Hai-tao; Kim, Hang-min; Sung, Gun-ho; Kim, Haenam

    2015-11-01

    The intense Cenozoic volcanism of Mt. Changbai provides a natural laboratory for investigating the characteristics of volcanism and the dynamical evolution of the Northeast Asian continental margin. Mt. Changbai volcanoes predominantly consist of Wangtian'e volcano in China, Tianchi volcano spanning China and DPR Korea, and Namphothe volcano in DPR Korea. Geochronology data and historical records of volcanism indicate that the three eruption centers were formed in the following sequence: Wangtian'e volcano to Namphothe and Tianchi volcano, advancing temporally and spatially from southwest to northeast. The three eruption centers of Mt. Changbai volcano are located close together, have similar magma evolution trends, bimodal volcanic rock distribution, and an enriched mantle source, etc. Although the Cenozoic volcanism in Mt. Changbai is thought to be somewhat related to the subduction of the Western Pacific Plate, the regularity of volcanic activity and petrography characteristics have continental rift affinity. We therefore conclude that the occurrence of synchronous and similar volcanic activity on both sides of the Japan Sea (i.e., the Japan Arc and Northeast China) likely respond to the rift expansion and the back-arc spreading of Japan Sea. From many perspectives, Mt. Changbai volcano is a giant active volcano with hidden potentially eruptive risks.

  11. Using (222)Rn as a tracer of geodynamical processes in underground environments.

    PubMed

    Valladares, D L; da Silva, A A R; Lacerda, T; Anjos, R M; Rizzotto, M; Velasco, H; de Rosas, J P; Tognelli, G; Yoshimura, E M; Ayub, J Juri

    2014-01-15

    Radon levels in two old mines in San Luis, Argentina, were measured and analyzed, with the aim to assess the potential use of this radioactive noble gas as a tracer of geological processes in underground environments. La Carolina gold mine and Los Cóndores tungsten mine are today used as tourism mines. CR-39 nuclear track detectors were used for this purpose. Measurements were performed during both winter and summer seasons. The findings show that in these environments, significant radon concentrations are subject to large seasonal fluctuations, due to the strong dependence on natural ventilation with the outside temperature variations. For both mines, higher concentration values of (222)Rn were observed in summer than in winter; with an extreme ratio of 2.5 times between summer and winter seasons for Los Cóndores mine. The pattern of radon transport inside La Carolina mine revealed, contrary to what was believed, that this mine behaves as a system with two entrances located at different levels. However, this feature can only be observed in the winter season, when there is a marked difference between the inside and outside temperatures of the mine. In the case of Los Cóndores mine, the radon concentration pattern distribution is principally established by air current due to chimney-effect in summer and winter seasons. In both cases, the analyses of radon pattern distribution appear as a good method to trace air currents, and then localize unknown ducts, fissures or secondary tunnels in subterranean environments. PMID:24012891

  12. Petrological-thermomechanical modeling of Precambrian continental collision: geodynamical effects of subcontinental lithospheric mantle thickness

    NASA Astrophysics Data System (ADS)

    Zakharov, Vladimir; Perchuk, Alexei; Zavyalov, Sergei; Sineva, Tamara; Gerya, Taras

    2015-04-01

    The Precambrian collision and orogeny remains enigmatic and contentious. Different tectonic styles of orogeny in the Precambrian compared to modern Earth are suggested by interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts. Here, we present results of 2D petrological-thermomechanical numerical modeling of continental collision at crustal thickness of 35 km and convergence rate of 5 cm/year with variable thickness of subcontinental lithospheric mantle (SCLM). The numerical experiments cover the range of SCLM thickness from 65 km to 165 km, the upper mantle temperature exceeded the modern temperature by 150 oC, and the radiogenic heat production of continental crust is 1.5 times higher than that at present. The numerical modeling has shown that in the case of SCLM thickness of 65 to 125 km the subduction terminates with slab break-off followed by the formation of a large igneous province in between the two continents instead of an orogenic belt. The time and the place of the slab break-off depend on SCLM thickness. The thinner it is, the earlier and the closer to the surface the slab breaks-off. For instance, the slab is detached in 10.3 m.y. at the depth 150 km when the model with SCLM of 115 km, whereas in the case of SCLM of 65 km the slab detaches in 5.1 m.y. almost near the very surface. In the latter case, the magmatic province is very large due to development at the both sides of the oceanic slab (instead of one side provinces in the other experiments). Continental collision with a very thick SCLM (of 165 km and more) proceeds without slab break-off and rather limited volcanism. This work was supported by the Russian Foundation for Basic Research, grant 13-05-01033 and by the Supercomputing Centre of Lomonosov Moscow State University.

  13. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified two distinct types of continent crust. The first type is a pristine granite-greenstone-like crust with dome-and-keel geometry formed over delaminating-upwelling mantle which is mostly subjected to vertical tectonics processes. By contrast, the second type is a reworked (accreted) crust comprising strongly deformed granite-greenstone and subduction-related sequences and subjected to both strong horizontal compression and vertical tectonics processes. Thus, our study has identified a possible spatial and temporal transition from the lower-grade granite-greenstone terrains to higher-grade gneiss terrains in the Archean as each tectonic cycle is terminated by short-lived subduction. We suggest that the contemporaneity of the proposed mechanisms for the generation of TTGs explains the variety and complexity of the Archean geological record.

  14. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.

  15. Early Paleozoic intracontinental felsic magmatism in the South China Block: Petrogenesis and geodynamics

    NASA Astrophysics Data System (ADS)

    Xu, Wenjing; Xu, Xisheng

    2015-10-01

    Intraplate magmatism is generally anorogenic in nature, characterized by geochemical and isotopic signatures that are indicative of mantle sources. However, the early Paleozoic intracontinental magmatic rocks in the South China Block, which cover an area of ~ 22,000 km2, are mainly granitoids with fertile isotopic signatures. Based on mineral assemblages, these early Paleozoic granitoids are divided into three groups: Group A (amphibole-bearing granitoids) characterized by relatively low initial 87Sr/86Sr ratios (0.705227-0.711639), high ?Nd(t) values (- 7.0 to - 3.0), and high ?Hf(t) values (- 8.6 to - 1.2, average - 5.0); Group B (two-mica granites) that have high initial 87Sr/86Sr ratios (0.715335-0. 721933), low ?Nd(t) values (- 9.4 to - 7.3), and low ?Hf(t) values (- 15.4 to - 4.4, average - 8.7); and Group C (biotite granites) that have geochemical and isotopic compositions that are roughly intermediate between those of Group A and Group B. The Group A granitoids show weak negative Eu anomalies, whereas Group B and Group C granitoids show moderate to strong negative Eu anomalies. A mafic microgranular enclave from the Guantian quartz dioritic pluton (Group A) shows Sr-Nd isotopic signatures similar to its host, but higher ?Hf(t) values (- 2.3 to - 0.2, average - 1.1). These early Paleozoic intracontinental granitoids generally contain considerable amount of mafic microgranular enclaves and have varied chemical compositions, indicating that they are more likely the result of mixing between mantle-derived mafic magmas and crust-derived felsic magmas, as opposed to being derived solely from crustal anatexis without any mantle contribution. Petrogenetic models suggest these early Paleozoic intracontinental felsic magmatic rocks are linked to lower- to middle-crustal anatexis, triggered by underplating and/or intraplating of mantle-derived magmas. This early Paleozoic intracontinental granitoid province represents large-scale crustal growth and reworking, possibly associated with the unique tectonic environment of the early break-up of Gondwanaland in this region.

  16. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Measurement of the gradient of the gravitational acceleration from a satellite platform is likely to provide the next improvement in knowledge of the Earth's gravity field after the upcoming Geopotential Research Mission. Observations from the subsatellite of a tethered satellite system (TSS) would increase sensitivity and resolution due to the low altitude possible. However, the TSS is a dynamically noisy system and would be perturbed by atmospheric drag fluctuations. The dynamic noise is being modeled in order to evaluate the feasibility of TSS gradiometry and to design methods of abating the error caused by this noise. The demonstration flights of the TSS are to provide an opportunity to directly observe the dynamical environment and refine modeling techniques. Random vibration analysis as a technique for modeling the TSS under atmospheric perturbation was studied.

  17. Geodynamics and seismic hazard in the Calabrian Arc: towards a Messina earthquake supersite

    NASA Astrophysics Data System (ADS)

    Chiarabba, Claudio; Dell'Acqua, Fabio; Faccenna, Claudio; Lanari, Riccardo; Matteuzzi, Francesco; Mattia, Mario; Neri, Giancarlo; Patané, Domenico; Polonia, Alina; Prati, Claudio; Tinti, Stefano; Zerbini, Susanna; Ozener, Haluk

    2015-04-01

    The Messina region represents a key site of the Mediterranean, where active faulting, seismic shaking, volcanism, rapid uplift and landslides represent the surface manifestation of deep processes. Fast deformation results in one of the highest seismic hazard of the Mediterranean, as testified by historic destructive earthquakes occasionally accompanied by submarine mass flows and tsunami-events that added death and destruction to the already devastating effects of the earthquakes. Several geophysical and geological studies carried out during the last decades help defining the kinematics and the dynamics of the system. The tectonic evolution of the Messina region is strictly linked with the Southern Tyrrhenian and Calabrian Arc system, the retreat of the Ionian slab and the back-arc basin opening. The present-day geometry of the Calabrian slab, as well imaged by tomographic analyses and shallow-to-deep seismicity, shows a narrow slab plunging down steeply into the mantle. At 100-150 km depth, the southern edge of the slab is positioned beneath Northeastern Sicily, approximately between Tindari and Messina. Within this frame, several relevant questions are still unsolved. For example, it is not clear how the upper plate may deform as a response of a differential sinking of the subducting slabs, or how deep mantle flow at the slab edge may influence the pattern of surface deformation. Structural and geodetic data show the first-order pattern of deformation in Northeastern Sicily, and define the Tindari-Messina area as the boundary between a region in compression to the west, dominated by the Africa convergence, and a region in extension to the east-northeast, dominated by slab rollback. In addition, geodetic studies also show an increase of crustal motion velocity from Sicily to Calabria with an overall clockwise rotation of the velocity vector. This pattern of surface deformation evidences a sharp extension process active in the Messina region. The elevation of marine terraces indicates that vertical uplift in this region is occurring at a very high rate, locally more than 1 mm/yr, and of the same order of magnitude estimated for horizontal deformation. This pattern is also indicative of non-isostatic deformation that may be related to deep mantle dynamics. The Messina Straits region represents a very rare opportunity to investigate a wide variety of interrelated geological processes resulting in different types of high-impact geo-hazards affecting a single region. Notwithstanding the disastrous societal and economic impacts that these geo-hazards might cause in the study area, this opportunity, along with the ambition of revealing fundamental aspects of how mantle processes are coupled to shallow and surface ones, are among the main scientific motivations to propose the Messina Straits as a GEO earthquake supersite.

  18. Geodynamic scenario and structural styles of Mesozoic and Cenozoic basins in China

    SciTech Connect

    Hefu, L.

    1986-04-01

    The continental lithosphere of China is situated at the junction of the Marginal-Pacific and Tethys-Himalayan tectonic domains. The most manifest tectonic movements responsible for the deformation of the continental lithosphere of China are taphrogenic, collisional, and shearing. These movements played an important role in the Mesozoic and Cenozoic tectonic evolution of China and formed various types of Mesozoic and Cenozoic basins in China. The Marginal-Pacific crust in eastern China was attenuated by rifting and developed north-northeast-trending Mesozoic and Cenozoic basins, e.g., the Songliao, Bohai Bay, and Jianghan basins. Rifting mainly followed preexisting lineaments or shear zones in the basement. Then basin-range (graben-horst) structures and large fault-bounded basins developed. Extensional structural styles have prevailed in Mesozoic and Cenozoic basins in eastern China, with listric faults and tilted blocks in the basement, and detached faults, growth faults, and rollover anticlines or drape folds in the cover rocks. These structures are favorable for hydrocarbon accumulation; thus, the famous Daqing and Zhongyuan oil fields formed in Songliao basin and Bohai Bay basin, respectively. In western China the continental crust thickened by collision and formed a series of Mesozoic and Cenozoic intermontane and foreland basins, such as the Junggar (Dzungaria), Tarim, and Qaidam basins. Contraction structural styles are predominant in Mesozoic and Cenozoic basins in western China, with shortened fault blocks and ramps in basement, and thrust faults and folds in the cover rocks. The Kelamayi and Laojunmiao oil fields formed in these compressional basins. 22 figures, 1 table.

  19. Strong intracontinental lithospheric deformation in South China: Implications from seismic observations and geodynamic modeling

    E-print Network

    Kaus, Boris

    ; Tapponnier and Molnar, 1979) with the Tarim cratonic basin to the south, the Late Mesozoic to Cenozoic in the cratonic Sichuan Basin. Tomographic studies in the mantle in the same area show that the thickness of lithosphere beneath the intracontinental orogen is larger than that beneath the cratonic Sichuan Basin

  20. On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: A geodynamical perspective

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Manea, Vlad C.

    2008-08-01

    The origin of El Chichón volcano is poorly understood, and we attempt in this study to demonstrate that the Tehuantepec Ridge (TR), a major tectonic discontinuity on the Cocos plate, plays a key role in determining the location of the volcano by enhancing the slab dehydration budget beneath it. Using marine magnetic anomalies we show that the upper mantle beneath TR undergoes strong serpentinization, carrying significant amounts of water into subduction. Another key aspect of the magnetic anomaly over southern Mexico is a long-wavelength (˜ 150 km) high amplitude (˜ 500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction P- T structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40-80 km depth that we interpret as a partially serpentinized mantle wedge formed by fluids expelled from the subducting Cocos plate. Using phase diagrams for sediments, basalt and peridotite, and the thermal structure of the subduction zone beneath El Chichón we find that ˜ 40% of sediments and basalt dehydrate at depths corresponding with the location of the serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (˜90%) at depths of 180-200 km comparable with the slab depths beneath El Chichón (200-220 km). We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths is responsible for the unusual location, singularity and, probably, the geochemically distinct signature (adakitic-like) of El Chichón volcano.

  1. Histories of magnetic mineral diagenesis, geodynamics and geomagnetic paleointensity as recorded by rock- and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei Victorovich

    Rock magnetic and paleomagnetic approaches are used to investigate a range of geological and geophysical issues, including the nature of diagenesis in pelagic sediments, techniques of low-temperature magnetometry, the origin of flood basalts, and the evolution of the early Earth's core. In Chapters 1 and 2 (published as two papers in Journal of Geophysical Research) the fidelity of pelagic sediments as paleomagnetic and paleoenvironmental recorders is studied. The processes of maghemitization and magnetic reduction diagenesis are shown to play dominant roles in controlling the low-temperature magnetic properties of the sediments. A technique, based on the time-dependency of coercivity of remanence, is developed to acquire quantitative estimates of superparamagnetism as a proxy for paleoenvironmental and biogeochemical processes in the sediments. In Chapter 3 (published in Earth and Planetary Science Letters), magnetic properties of cation-deficient and stoichiometric magnetite at very low temperatures (<120K) are studied. The discovery of several low temperature magnetic phenomena, including a field memory effect is discussed. A theoretical interpretation of these observations is also provided in terms of interaction between magnetic and twin domains in magnetite. Chapter 4 (submitted to EOS) describes the field memory effect for a general scientific audience. Chapter 5 addresses the problem of the origin the Siberian Traps. Paleomagnetic Euler pole analysis is used to reconstruct the position of the Traps to the time of their eruption at ˜250 million years ago. The results support a hotspot origin of the Traps and further constrain the long-lived nature of plume sources in the mantle currently underlying the North Atlantic/Arctic region. Chapter 6 concern the intensity of the Earth's magnetic field at the Archean/Proterozoic boundary as recorded by single plagioclase crystals from dikes of northern Karelia (Russia). The preliminary paleointensity estimate, which is similar to the modern field strength, suggest the inner core started to grow by ˜2.45 Ga. Chapter 7 describes new rock magnetic and paleointensity results from submarine basaltic glass, subaerial basaltic glass and closely associated volcanic rocks from Ocean Drilling Program Leg 197 (Emperor Seamounts of the northwestern Pacific Ocean).

  2. Recent geodynamic characteristics in the Arabian Eurasian and Indian Eurasian collision region by active fault data

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.; Vostrikov, G. A.; Trifonov, R. V.; Karakhanian, A. S.; Soboleva, O. V.

    1999-07-01

    A part of the Alpine-Himalayan orogenic belt is studied, limited by 30-104°E and by 26-46°N to the west of 64°E and 26-56°N to the east of 64°E. A technique is proposed to calculate the field of the recent (Late Pleistocene and Holocene) deformation rate tensors in the upper crust (15 to 20 km) by active fault data. A hydrodynamic model of the medium is used for the calculation. Monotonous fault segments as long as 10-15 km are taken as the elementary cells of the medium. The cell square (the length multiplied by the depth) multiplied by the displacement vector magnitude, gives the geometric moment. Similar components of the local tensors of the geometric moments are summarized within the windows into which the region is divided. Finally, parameters of the axes of principal rates of deformation are calculated, and their directions and magnitudes are mapped. This tectonic deformation is compared with the seismotectonic one calculated by focal mechanisms of earthquakes. The compiled maps show: a concentration of high deformation rates in the plate boundary zones (especially in front of the southern plate syntaxes) and a smaller concentration in some microplate boundary zones; a predominance of the N-S-trending shortening and of strike-slip type of deformation. The rates of shortening and lengthening are usually almost equal to each other and differ essentially (the shortening rate is higher than the lengthening) only in specific sites. These are areas of intense recent detachment or late Quaternary volcanism. It seems that the double-axis lengthening (extension) is suitable for these processes.

  3. Grain size evolution in the mantle and its effect on geodynamics, seismic velocities and attenuation

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Eilon, Zach; Gassmoeller, Rene; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich; Asimow, Paul

    2015-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We use several published formulations to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing body wave travel times, ray paths, and attenuation (t*) at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that rapid metamorphic reactions in mantle upwellings and downwellings lead to high lateral viscosity contrasts, as a result of gradual grain size evolution. Positive feedback between grain size reduction and viscosity reduction results in shear localisation. As a result, the edges of thermal plumes have smaller grain sizes and lower viscosities than their cores. Dynamic recrystallisation in subducting slabs results in lower seismic velocities and Q than would be predicted from purely thermal models. A change in physical parameters such as activation volume is required across the 660 km discontinuity to match the higher Q observed seismically in the lower mantle. The very slow grain growth in the lower mantle predicted by high pressure experiments produces unrealistically large travel time delays (>20 s) and t* values (>4 s) in our synthetic calculations with our current constitutive relationships for deriving Vs and Q. Benchmarking our dynamic models against seismic observations will involve further adjustments to the grain size evolution in the lower mantle as well as the tuning of these constitutive relationships.

  4. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models

    E-print Network

    Becker, Thorsten W.

    debated. Partly, this is due to insufficient data coverage for both body and surface waves. Trade anisotropic crys- tals under dislocation creep [e.g., Nicolas and Christensen, 1987; Karato, 1992; Mainprice

  5. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Hadi, Ayten; Asahara, Yoshihiro; Mohammad, Youssef Osman

    2013-12-01

    The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ? Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D? layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.

  6. The geodynamic evolution of the Precaspian Basin (Kazakhstan) along a north south section

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; A. Volozh, Yuri; Antipov, Mikhail P.; Lobkovsky, Leopold I.

    1999-11-01

    Several hypotheses exist for the origin and evolution of the Precaspian Basin. There are more than 20 km of sediments deposited, yet there is little consensus on the causes of the subsidence. Except for the presence of a thick salt layer (Lower Permian), the main problem is the chronostratigraphic interpretation of the sediments in the centre of the basin, where the calibration of seismic data with well data from the basin margins is problematic at deep levels. The age of the deepest sediments could be either Riphean or Devonian. A generalised cross-section of the Precaspian Basin, roughly perpendicular to the central elongated E-W depocentre, is used to represent the basin's evolution. Several evolutionary steps from the end of the Riphean until the Present are demonstrated. Tectonic subsidence analysis indicates that there are six main phases of evolution: (1) subsidence during an active rifting phase in Riphean times; (2) rifting during the Vendian-Ordovician (poorly dated); (3) significant subsidence during the Late Devonian in an extensional context possibly due to back-arc rifting; (4) acceleration of subsidence during the Late Carboniferous-Permian, synchronous with or just following the closure of the Uralian Ocean, a major subsidence phase in the Dniepr-Donets Basin and possible subduction to the south of the basin; (5) renewed rifting during the Triassic coincident with a general phase of extension in Eurasia and the opening of the Neo-Tethys; and (6) neotectonic subsidence resulting from crustal down-bending in a generally compressional setting. The nature of the crust underlying the basin is not well known. It could be Riphean-early Palaeozoic or Devonian oceanic crust or continental crust attenuated during the several episodes of supposed rifting between the Riphean and the Triassic. Estimations of crustal thickness in the basin vary and they depend on the interpretation of a high-velocity layer situated at the base of the crust. The presence and general distribution of this layer is confirmed by gravity data. It may be considered as the uppermost mantle, as oceanic crust metamorphosed into eclogite at depth during collision and then exhumed and emplaced at the base of the crust, or as lower crust transformed in situ (into eclogites?). The crustal thinning factor leading to the observed present crustal thickness — assuming an initial thickness of 40 km — is 3.3 in the two first cases and 2 in the latter, if the crust is considered to be continental. The geophysical and subsidence data are discussed in terms of basin-forming mechanisms such as: (1) intracontinental rifting of early Palaeozoic, Devonian or Permo-Triassic ages; (2) oceanisation of continental crust during Riphean or Devonian time; (3) eclogititisation at the base of the crust in the upper mantle or by metamorphism of subducted oceanic crust; and (4) down-bending due to compressional forces or mantle flow induced by subduction-collision processes in Carboniferous and Recent times.

  7. A new geodynamical thermal model of rift evolution, with application to the Dnieper Donets Basin, Ukraine

    NASA Astrophysics Data System (ADS)

    Starostenko, V. I.; Danilenko, V. A.; Vengrovitch, D. B.; Kutas, R. I.; Stovba, S. M.; Stephenson, R. A.; Kharitonov, O. M.

    1999-11-01

    A model of the lithosphere, incorporating both dynamic and thermal processes, has been developed by solving a coupled system of differential equations governing stress and temperature in a 2-D block-structured geophysical medium. Designed to study the roles of tectonic and geothermal factors in continental rift formation and evolution, the model incorporates syn-sedimentary and/or erosional faulting of an upper crustal layer and allows the thermal regime of the lithosphere to be calculated through time. The method has been applied to the formation and evolution of the northwest Dnieper-Donets Basin (DDB) along one regional profile controlled by seismic and other geophysical and subsurface data. The results are compared with those published earlier for the same profile using different methods of modelling the rift and early post-rift development of the region. The final basement geometry at the end of the rifting stage predicted by the new model satisfactorily corresponds with geological data and is qualitatively similar to that predicted by the previously published models. However, the new results imply an important role for an active mechanism during rifting that generates greater mantle thinning than crustal thinning and elevated temperatures in the upper mantle beneath the rift.

  8. Fault Evolution and Strain Partitioning in Southern California: Insights from Geodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Ye, J.; Liu, M.

    2014-12-01

    In southern California, the Pacific-North American relative plate motion is accommodated by a complex system of transcurrent, transcompressional, and transtensional faults. Although high-precision GPS measurements in recent years have greatly refined the kinematics of crustal motion and strain partitioning among major faults in Southern California, the causes of such strain partitioning and fault evolution remain uncertain. Using a three-dimensional viscoelasto-plastic finite element model, we have explored how the plate boundary fault system evolves to accommodate the relative plate motion in Southern California. Our results show that, when the plate boundary faults are not optimally orientated to accommodate the relative plate motion, new faults will be initiated. In particular, the Big Bend of the San Andreas Fault (SAF), which is the main plate boundary fault, impedes the relative plate motion, thus forces the development of a system of secondary faults. The evolution of these secondary faults is to minimize the work needed to accommodate the relative plate motion, and this mechanism provides a framework for understanding the present-day strain partitioning and earthquake hazards. In particular, the Big Bend and the offshore parallel faults facilitate strain localization in the Western Transverse Ranges in the form of thrust faults and blind faults, and the bends on the southern SAF enhance the development of the dextral faults across the Mojave Desert, where a number of damaging earthquakes occurred in recent years.

  9. Postmiocene geodynamic evolution of the drake passage, Western Antarctic Region, southern ocean

    NASA Astrophysics Data System (ADS)

    Teterin, D. E.

    2011-08-01

    In 1994-2006, the German research vessel, Polarstern, and the Russian research vessel, Akademik Boris Petrov, carried out marine geologic and geophysical explorations in the Western Antarctic Region within the Bellingshausen, Amundsen, and Scotia marginal Seas and the Drake Passage. In these expeditions, new unique data on submarine topography have been collected by a multibeam echosounder, gravity and magnetic measurements have been carried out, multichannel seismic profiling has been performed, and the collections of rock samples have been acquired. The analysis and interpretation of new evidence together with previous geologic and geophysical data for the Drake Passage region have shown that end of spreading in the Aluk Ridge three million years ago resulted in the redistribution of stresses associated with the relative motion of the Antarctic, Scotia, and Phoenix Plates, which, in turn, caused significant tectonic reconstruction of the entire transition zone of the Drake Passage.

  10. Geodynamic evolution of Drake Passage in Post Miocene time, West Antarctica.

    NASA Astrophysics Data System (ADS)

    Teterin, Dmitry

    2010-05-01

    At present it is assumed that within continental margin of Drake Passage the process of transformation from active type of margin to passive one has been taking place since the spreading on ridge Aluk stopped 3.3 million years ago. In spite of strict geological-geophysical scrutiny of the region the nature of Bransfield Strait is not clear until now. Most explorers do not doubt in rifting nature of the strict, however the model of the formation of the rift is under discussion. Some theories assume that the sharp decrease of subduction velocity from 6.4 to 2.6 cm/year 7.8 million years ago and then the ending of subduction 3.3 million years ago caused the moving of heavy subduction lithosphere slab of the plate Phoenix towards the ocean and led to the formation of the rift zone. Alternative model states that the formation of the rift zone comes out of tectonic deformations propagation from the direction of the ridge Southern Scotia. New data on the structure of the relief, the sediment and the ocean crust were obtained during marine geological-geophysical expeditions of German RV Polarstern and Russian RV Academician Boris Petrov. This information allows one to understand some properties of the evolution of the continental margin of Drake Passage and the origin of Bransfield Strait. Joint analysis and interpretation of new data and available geological-geophysical information on the region show that the stop of spreading on the ridge Aluk 3.3 million years ago led to the redistribution of complex geometry of expansion and compression axes because of mutual drift of Antarctic, Scotia and Phoenix plates and was a trigger mechanism for the beginning of expansion deformations propagation from the direction of the ridge Southern Scotia and the formation of Bransfield Strait ridge.

  11. I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate

    NASA Astrophysics Data System (ADS)

    Kite, Edwin Stephen

    This thesis describes work related to long-term climate stability, on Mars and exoplanets. Mars is the only planet known to record a major transition in planetary habitability. The evidence for surface temperatures near the melting point of water on Early Mars is difficult to explain, because theory predicts a faint young Sun. Seasonal snowmelt need not require high annual mean temperatures, but surface water ice tends to migrate away from the warmer regions of the planet where melting is energetically possible. In the first part of this thesis I use geological analysis, mesoscale models, and idealized surface energy balance models to examine two possible solutions to this problem. Impacts into icy targets, groundwater outbursts, and phreatic explosions are all expected to inject water vapor into the Mars atmosphere. I use mesoscale models to track the atmospheric response to these transient, localized vapor sources. Using idealized boundary conditions, I show that storms with updraft speeds >50 m/s and localized precipitation are expected near transient lakes >103 km2 in size. Snow deposited in this way is out of equilibrium with orbital forcing, and correspondingly more likely to melt. Canyon paleolakes in the Valles Marineris are frequently associated with streams preserved on the plateaux just downwind of the canyons. Using geologically realistic boundary conditions, I study the atmospheric response to two short-lived paleolakes. In each case, the plateau streams are in the locations expected for localized precipitation. Liquid water availability favors lithification, so the Martian sedimentary rock record is a wet-pass filter. Orbital variability strongly affects liquid water availability, so considering only averaged orbital conditions is neither sufficient not appropriate. To find the likelihood of snow melting, I consider all possible orbital forcings using an idealized but self-consistent model of snowpack energy balance and the CO2 greenhouse effect. Seasonal snowmelt on Early Mars is possible under unusual orbital conditions provided that the snow is dust-contaminated. The predicted distribution of snowmelt can explain the distribution of sedimentary rocks on Mars, but only if Mars had a thin atmosphere when the sedimentary rocks formed. This framework is the first to link upcoming observations by the Mars Science Laboratory Curiosity rover at the lower Gale Crater mound to past global climate on Mars. The model makes predictions about the lower Gale Crater mound that can be tested using Curiosity rover data. Earth is the only example of long term climate stability that is available for study, so long term climate stability is difficult to understand. Extrasolar planets may ameliorate this problem of uniqueness. It is clear that rates of volcanic activity and of surface weathering are important in regulating long term climate. In the second part of this thesis, I model the rate of volcanism on massive Earth-like planets, and the surface weathering rate on planets in 1:1 spin:orbit resonance. "Super-Earths" in the range 1-10 Earth masses have been detected by radial velocity and transit methods. Using an idealized mantle thermal evolution model to drive mantle-melting models, I show that the rate of volcanism on massive Earth like planets is a weak function of planet mass. Planet mass can, however, affect tectonics by changing the mode of mantle convection. Earth's climate stability depends on a negative feedback involving the temperature-dependent rate of weathering and mean surface temperature. I use an idealized model to show that for intermediate surface pressures and for low-opacity atmospheres, nonlinearities in the surface energy balance can reverse the sign of this dependence on tidally-locked planets. This leads to climate instability. I conclude by discussing future observations and research aimed at understanding long-term climate stability.

  12. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanbo; Mao, Jingwen; Spandler, Carl

    2013-08-01

    The Gejiu tin district in western Cathaysia block comprises a series of igneous rocks including equigranular and porphyritic granites, gabbro and nepheline syenite. Systematic SHRIMP or LA-ICP-MS zircon U-Pb analyses of 15 representative samples from various phases of the Gejiu complex yielded Late Cretaceous ages of 78-85 Ma. Based on their mineralogical, geochemical and Sr-Nd-Hf isotope characteristics, these rocks are categorized into three groups: felsic rocks, alkaline rocks and mafic rocks. The felsic rock group includes the equigranular and porphyritic granites. Geochemical characteristics include high SiO2 contents, enrichment in Rb, Th, U, Nb, Ta, Nd and Hf and depletion in Ba, K, Sr, P, Eu and Ti compared to primitive mantle. REE patterns feature slight LREE enrichment with pronounced negative Eu anomalies. Geochemical data and Sr-, Nd- and Hf-isotopic compositions indicate that the felsic rocks were probably generated by partial melting of crustal source rocks with a minor input from mantle materials. The mafic rocks (gabbro and mafic microgranular enclaves) have distinct geochemical and isotopic features consistent with derivation from an enriched mantle source, with variable degrees of mixing with crustal-derived magmas. Strontium-, Nd- and Hf-isotopic compositions of the alkaline rocks are similar with those of the mafic rocks, suggesting that they have a similar source. Nevertheless, petrological and geochemical characteristics of these rocks indicate that they experienced extensive crystal fractionation and limited crustal contamination. Based on the emplacement of the gabbro-mafic microgranular enclaves-syenite-granites in the Gejiu district, together with contemporaneous geological events in other parts of the western Cathaysia block, we suggest that a widespread extension-related magmatic episode affected the entire region in the late Cretaceous, possibly as a result of lithospheric thinning, basaltic underplating and associated crustal melting.

  13. Detrital glaucophane in graywackes of the Rhenohercynian Harz mountains and the geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ganssloser, M.; Theye, T.; Wachendorf, H.

    Detrital blue amphibole was found for the first time in two samples of the Famennian section of the South Harz-Selke Graywacke and the Tanne Graywacke (Middle Visean) of the Harz Mountains. Microprobe analyses reveal that the blue amphiboles represent glaucophane with Fe3+/(Fe3++AlVI)=0.22 molar ratio. The minimum pressure required for the formation of glaucophane of this composition is estimated to be approximately 8kbar. The source area of the detrital glaucophane is assumed to be located between the Northern Phyllite Zone and the Mid-German Crystalline Rise, in areas which have been downfaulted (?subducted) during the Variscan orogeny. The age of blueschist-facies metamorphism in the source area must be of pre-Upper Devonian age. This metamorphic event is significantly older than the Lower Carboniferous high-pressure/low-temperature metamorphism documented in parts of the northern Phyllite zone. Hence, the convergent tectonics connected with blueschist-facies metamorphism is not restricted to the Lower Carboniferous, but can be traced back at least to the early Upper Devonian. These data are in accordance with a southerly directed underplating (?subduction) at the northern margin of the Saxothuringian zone active during at least from early Upper Devonian to Lower Carboniferous.

  14. Detrital glaucophane in graywackes of the Rhenohercynian Harz mountains and the geodynamic implications

    NASA Astrophysics Data System (ADS)

    Ganssloser, M.; Theye, T.; Wachendorf, H.

    1996-12-01

    Detrital blue amphibole was found for the first time in two samples of the Famennian section of the South Harz-Selke Graywacke and the Tanne Graywacke (Middle Visean) of the Harz Mountains. Microprobe analyses reveal that the blue amphiboles represent glaucophane with Fe3+/(Fe3++AlVI)=0.22 molar ratio. The minimum pressure required for the formation of glaucophane of this composition is estimated to be approximately 8 kbar. The source area of the detrital glaucophane is assumed to be located between the Northern Phyllite Zone and the Mid-German Crystalline Rise, in areas which have been downfaulted (?subducted) during the Variscan orogeny. The age of blueschist-facies metamorphism in the source area must be of pre-Upper Devonian age. This metamorphic event is significantly older than the Lower Carboniferous high-pressure/low-temperature metamorphism documented in parts of the northern Phyllite zone. Hence, the convergent tectonics connected with blueschist-facies metamorphism is not restricted to the Lower Carboniferous, but can be traced back at least to the early Upper Devonian. These data are in accordance with a southerly directed underplating (?subduction) at the northern margin of the Saxothuringian zone active during at least from early Upper Devonian to Lower Carboniferous.

  15. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling

    E-print Network

    Rawlinson, Nick

    and discussions since the advent of plate tectonic theory. This paper provides a historical background: Convergent plate margin Subduction Collision Orogenesis Slab Plate tectonics Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one

  16. Journal of Geodynamics 46 (2008) 19 Contents lists available at ScienceDirect

    E-print Network

    Müller, Dietmar

    2008-01-01

    move with the rotation model for each plate. For subduction trenches, the plate boundary should as a continuous body, any two points of which have no motion relative to each other, the boundaries of plates continuously evolve. If regional plate boundaries can easily be calculated and defined over a series of time

  17. Origin of low ?26Mg Cenozoic basalts from South China Block and their geodynamic implications

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Shu-Guang; Xiao, Yilin; Ke, Shan; Li, Wang-Ye; Tian, Ye

    2015-09-01

    Origin of low ?26Mg basalts is a controversial subject and has been attributed to interaction of isotopically light carbonatitic melts derived from a subducted oceanic slab with the mantle (Yang et al., 2012), or alternatively, to accumulation of isotopically light ilmenite (FeTiO3) in their mantle source (Sedaghatpour et al., 2013). To study the origin of low ?26Mg basalts and evaluate whether Mg isotope ratios of basalts can be used to trace deeply recycled carbon, high-precision major and trace element and Mg isotopic analyses on the Cenozoic alkaline and tholeiitic basalts from the South China Block (SCB), eastern China have been carried out in this study. The basalts show light Mg isotopic compositions, with ?26Mg ranging from -0.60 to -0.35. The relatively low TiO2 contents (<2.7 wt.%) of our basalts, roughly positive correlations between ?26Mg and Ti/Ti? and their constant Nb/Ta ratios (16.4-20) irrespective of variable TiO2 contents indicate no significant amounts of isotopically light ilmenite accumulation in their mantle source. Notably, the basalts display negative correlations between ?26Mg and the amounts of total alkalis (i.e., Na2O + K2O) and incompatible trace elements (e.g., Ti, La, Nd, Nb, Th) and trace element abundance ratios (e.g., Sm/Yb, Nb/Y). Generally, with decrease of ?26Mg values, their Hf/Hf? and Ti/Ti? ratios decrease, whereas Ca/Al and Zr/Hf ratios increase. These features are consistent with incongruent partial melting of an isotopically light carbonated mantle, suggesting that large variations in Mg isotope ratios occurred during partial melting of such carbonated mantle under high temperatures. The isotopically light carbonated mantle were probably formed by interaction of the mantle with low ?26Mg carbonatitic melts derived from the deeply subducted low ?26Mg carbonated eclogite transformed from carbonate-bearing oceanic crust during plate subduction. As only the Pacific slab has an influence on both the North China Block (NCB) and SCB, our results together with the study of Yang et al. (2012) demonstrate that the recycled carbonatitic melts might have originated from the stagnant Pacific slab beneath East Asia in the Cretaceous and Cenozoic and that a widespread carbonated upper mantle exists beneath eastern China, which may serve as the main source for the <110 Ma basalts in this area. Thus, our study demonstrates that Mg isotope ratios of basalts are a powerful tool to trace deeply recycled carbon.

  18. Nonlinear geodynamics of the Baikal rift system: An evolution scenario with triple equilibrium bifurcation

    NASA Astrophysics Data System (ADS)

    Klyuchevskii, Anatoly V.

    2010-01-01

    This is an attempt to analyze the current lithospheric stress pattern in the Baikal rift in terms of nonlinear dynamics as an open self-organizing system in order to gain more insights into the general laws of regional seismicity. According to the suggested approach, the stress pattern inferred from seismic moments of 70,000 MLH ? 2.0 events that occurred in the region between 1968 and 1994 is presented as a phase portrait in the phase spaces of the seismic moments. The obtained phase portrait of the system evolution fits well a scenario with triple equilibrium bifurcation where stress bifurcations account for the frequency of M > 5.5 earthquakes. Extrapolation of the results into the nearest future indicates probability of such a bifurcation (a catastrophe of stress), i.e., there is growing risk that M ? 7 events may happen in the region within a few years.

  19. Tertiary and quaternary volcanism of the Erzurumkars area (Eastern Turkey): Geochronological data and geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Innocenti, F.; Mazzuoli, R.; Pasquarè, G.; Radicati Di Brozolo, F.; Villari, L.

    1982-08-01

    This paper presents new geochemical and geochronological data on the Neogene and Quaternary volcanic products from the area of Erzurum and Kars (Eastern Turkey). The affinity of most of the volcanic rocks concerned is calc-alkaline, with the exception of minor Quaternary alkaline rocks that outcrop in the Kars sector. Ages range from 8 m.y. to 1.3 m.y. The time-space distribution of the calc-alkaline volcanism in Eastern Turkey - NW Iran is characterized by a sudden northward jump, that occurred around 6 m.y. ago, from the Van-Erzurum Southern Belt to the Kars Northern Belt. Available data indicate that this northward migration of volcanism was due to changes in the subduction geometry of the Arabian plate under Eurasia.

  20. Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Koulakov, Ivan; Deverchère, Jacques

    1998-10-01

    We present new results on the velocity structure of the Baikal rift zone, Asia, deduced from a comparative teleseismic and local tomography analysis. The aim of this paper is to better identify the role of deep mantle processes versus that of far-field tectonic effects on the occurrence of extensional tectonics within a continental plate. We use 36000 traveltimes of P-refracted waves from the ISC catalogues and Pg and Pn traveltimes of 578 earthquakes recorded by the Russian regional network to determine a velocity model by the use of local and teleseismic inversion procedures. The models show that some velocity patterns are continuous from the surface down to at least 400 km. Among them, a narrow negative anomaly goes through Mongolia and follows the southern and eastern margins of the Siberian craton: this structure is interpreted as a thin mantle plume rising beneath the rift axis. However, our results do not evidence any wide asthenospheric upwarp at this place. Other velocity anomalies observed near the surface are not deeply rooted. In particular, a negative anomaly is observed at shallow levels (48 km) beneath the northern third of Lake Baikal, which is disconnected from deeper structures. It may be explained by the existence of underplated magmatic material at the bottom of the crust. By comparing the geometry of deep-rooted anomalies to the present-day stress field patterns, we conclude that the sub-lithospheric mantle dynamics is not the main factor controlling extensional processes in the Baikal rift. However, it does contribute to a thermal weakening of the lithosphere along a mechanical discontinuity bounding the Siberian shield. We finally conclude that three favourable conditions are gathered in the Baikal area to generate extension: far-field extensional stress field, mechanical inherited lithospheric weakness and heat supply. Further studies should help to precise the genetic link between these three factors.

  1. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry

    NASA Astrophysics Data System (ADS)

    ?ížková, Hana; Bina, Craig R.

    2015-11-01

    For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous and trench advance quite rare, largely due to rheological and ridge-push effects. Recently updated analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Marianas-Izu-Bonin arc. Thus, we explore conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry of the Philippine Sea region. In this subduction system, a slab-pull force from distal subduction is transmitted to the overriding plate at the Pacific trench. Our 2D modeling demonstrates that trench advance can occur for terrestrial rheologies in such special geometries. We observe persistent trench advance punctuated by two episodes of back-arc extension. Characteristic features of the model, such as time interval between extensional episodes, high back-arc heat flow, and stress state of Philippine plate correspond to processes recorded in the region.

  2. Geodynamic aspects of the basic intrusions of central and Western Nepal

    NASA Astrophysics Data System (ADS)

    Remy, Jean Marcel

    1980-02-01

    A petrological study of the basic rocks of magmatic activity in the Pokhara and Beri Khola regions of Central and Western Nepal suggests that the volcanic activities were not related to collision or continental subduction.

  3. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Huang, Xiongfei; Luo, Mingfei; Dong, Guochen; Mo, Xuanxue

    2015-06-01

    Lying in the northern margin of the Tibetan Plateau, the East Kunlun Orogenic Belt (EKOB) is characterized by widespread of the late Permian to Late Triassic magmatic rocks. In order to better understand magma genesis and evolution during the waning stage of the Paleo-Tethyan oceanic subduction and subsequent collision, we present zircon U-Pb dating and Lu-Hf isotopes, whole-rock major and trace elements, and Sr-Nd isotope data for the Triassic volcanic lavas in the Haishigou area of the EKOB, northern Tibet. Lithologically, the Haishigou volcanic lavas are mainly composed of dacites and rhyolites. The LA-ICP-MS zircon U-Pb analyses for rhyolites have shown that the Haishigou volcanic rocks formed during the Middle Triassic with ages of ca. 244-245 Ma. The Haishigou volcanic lavas actually belong to part of the Middle Triassic Naocangjiangou Formation, rather than the Late Triassic Elashan Formation. Geochemically, Haishigou volcanic lavas have SiO2 = 60.31-76.19 wt% and K2O = 2.60-4.18 wt%, placing them in high-K calc-alkaline series. These lavas are characterized by enrichment in some large-ion lithophile elements (e.g., Rb, K and Pb) and light rare earth elements and depletion in some high field strength elements (e.g., Nb, Ta, and Ti), with geochemical affinities to those rocks forming in a continental or an oceanic arc setting. All the volcanic rocks exhibit high initial 87Sr/86Sr ratios (0.70614-0.70841) and moderately negative ?Nd(t) values (-5.9 to -4.3) that imply a continental rather than oceanic type magma source. The rhyolites in the Haishigou volcanics exhibit moderately negative to slightly positive ?Hf(t) values (-4.2 to 1.4). Combined with their zircon Hf two-stage model ages of 1187-1538 Ma and whole-rock Nd two-stage model ages of 1.37-1.38 Ga, it can be inferred that the crustal growth of East Kunlun occurred during the Mesoproterozoic, making them similar in age to the lower crust metamorphic basement beneath the EKOB (i.e., the Xiaomiao Group). We suggest that the Haishigou dacites were generated by partial melting of the mafic lower crust beneath the EKOB with addition of a mantle-derived mafic component and that the rhyolites were produced by fractional crystallization from a dacitic parent. Taking into account the Late Permian to Triassic geological record from the EKOB and surrounding regions, we argue that the Middle Triassic volcanic rocks in the Haishigou area erupted during the northward subduction of the Paleo-Tethyan oceanic plate. Consequently, the timing of closure of the Paleo-Tethyan Ocean just south of the EKOB is no earlier than the Middle Triassic.

  4. Metamorphic diamonds in a garnet megacryst from the Edough Massif (northeastern Algeria). Recognition and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Caby, Renaud; Bruguier, Olivier; Fernandez, Laure; Hammor, Dalila; Bosch, Delphine; Mechati, Mehdi; Laouar, Rabah; Ouabadi, Aziouz; Abdallah, Nachida; Douchet, Chantal

    2014-12-01

    We report for the first time the discovery of diamond inclusions (5-30 ?m in size), identified by Raman spectroscopy and the characteristic sharp band at 1332 cm- 1 for crystalline diamond, in a garnet megacryst (? 5 cm) from the Edough Massif (NE Algeria). The garnet is adjacent to actinolite and ultramafic boudins and slices of marbles that are inserted within a major mylonite-ultramylonite band. This tectonic contact sharply delineates the Kef Lakhal oceanic unit from the granite-gneiss core below. The host garnet is almandine-dominant and is rich in exsolution of acicular rutile needles. Major and trace elements show a gradual but significant zonation from core to rim, and a sharp increase in grossular component in the rim. Trace element analyses of prismatic rutile inclusions up to 300 ?m in size indicate that the host metamorphic rock was a mafic protolith of MORB affinity. The Zr-in-rutile thermometry indicates a temperature range of 724-778 °C that we relate to rutile growth, either during prograde metamorphism or under peak UHP metamorphic conditions of ? 3.6 GPa that were reached during subduction of the UHP-rock precursors. We suggest that the mafic protolith originates from the subducted retreating Calabrian branch of the Tethyan slab, that broke or tore, and which fragments were dragged upward and thrust onto the North African margin along with the Kef Lakhal unit, shortly followed by formation of the Edough dome and opening of the Algerian basin.

  5. A consistent geodynamic model for predicting the velocity and plate-internal deformation of Eurasia

    NASA Astrophysics Data System (ADS)

    Govers, Rob; Garcia-Sancho, Candela; Warners-Ruckstuhl, Karin; van der Burgt, Janneke; Wortel, Rinus

    2015-04-01

    The motion and deformation of tectonic plates is driven by gravity and resisted by frictional forces. In principle it should thus be possible to build mechanical models that reproduce plate velocities and surface deformation. Here we present a new approach that overcomes many of the previous obstacles to achieving this goal. Our approach to quantify the forces is based on mechanical equilibrium of the whole Eurasian plate, meaning that an increase in, for instance collision, forces must be matched by other plate tectonic forces. We first focus on present-day Eurasia. We include basal tractions from a global convection model, lithospheric body forces, and edge forces resulting from the interaction of the Eurasian plate with neighboring plates. The resulting force distribution is constrained by observed plate motion and by stress observations. Eurasia's stress field turns out to be most sensitive to the distribution of collision forces on the plate's southern margin and, to a lesser extent, to lithospheric density structure and normal pressure from mantle flow. Stress observations require collision forces on the India-Eurasia boundary of 7.0 - 10.5 TN/m. A similar analysis is performed for Eurasia at 20 Ma and 40 Ma. Plate geometry is taken from the global Lausanne (Stampfli) reconstruction, as are plate velocities and oceanic ages. Lithospheric body forces are accounted for in a simplified way because we lack detailed enough information on the plate scale topography. For the Miocene, we find ˜1.2 TN/m for the collision force on the India-Eurasia boundary. In the Eocene, the collision force we find is ˜0.4 TN/m. We conclude that the magnitude of the collision force on Tibet increased significantly after 20 Ma: from 40-20 Ma, the plate contact force on the India/Tibet plate boundary segment was of the same order of magnitude as resistive forces on subduction plate boundaries elsewhere. Our timing of the collision force on Eurasia, is substantially younger than the often quoted collision age of ˜50Ma. Forces (and the corresponding stresses) drive permanent deformation on both geological time scales and short time scales, e.g., earthquakes. Low stress magnitudes may result in strain if the material is weak, high stresses may give no strain in strong materials. Our next step therefore is to use geological information on the strength of the lithosphere. We show new results of our work on using estimates of the mechanical properties of the lithosphere to predict surface deformation.

  6. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    E-print Network

    Utrecht, Universiteit

    , the Netherlands d Federal Institute for Geology, Sarajevo, Ustanicka 11, 71210 Ilidza, Bosnia and Herzegovina a b b Department of Geology & Palaeontology, The Natural History Museum Vienna, Burgring 7, 1010 Wien an apparent contro- versy between structural geological and paleomagnetic rotation estimates for the Dinarides

  7. Main Stages of Geodynamic Evolution of the Caucasian Segment of the Alpine-Mediterranean Belt

    NASA Astrophysics Data System (ADS)

    Gamkrelidze, Irakli; Shengelia, David; Maisadze, Ferando; Tsutsunava, Tamara; Chichinadze, Giorgi

    2013-04-01

    Within the oceanic area of Tethys, with a typical oceanic crust, in geological past relatively small continental or subcontinental plates (terranes) were situated. The Greater Caucasian, Black Sea - Central Transcaucasian, Baiburt - Sevanian and Iran - Afghanian accretionary terranes, which in geological past represented island arcs or microcontinents, are identified in the Caucasian segment of the Alpine-Mediterranean belt. They are separated by ophiolite sutures (relics of small or large oceanic basins) of different age. During the Late Precambrian, Paleozoic and Early Mesozoic these terranes underwent horizontal displacement in different directions and ultimately they joined the Eurasian continent. New LA-ICP-MS U-Pb zircon dating along with available geologic, petrologic and geochemical investigations, allow to trace with confidence the main stages of regional metamorphism, granite formation and, consequently, pre-Alpine continental crust making within the Caucasus. At the pre-Grenville stage (1200 Ma and more) between the Baltica and Gondvana ancient continents, on the oceanic crust of Prototethys accumulation mainly of terrigenous sediments and of basic volcanites took place. At the Grenville stage (1000-800 Ma) subcontinental or primitive continental crust (gneiss-migmatite complex and synmetamorphic grenitoids of sodium series) were formed in suprasubduction conditions by both sides of Proto-Paleotethys and along the northern peripheries of comparatively small oceanic basins of the Arkhiz and Southern Slope of the Greater Caucasus. At the Baikalian stage (650-550 Ma) plagiogneissic complex has been cut by Precambrian gabbroids and intruded by large bodies of quartz-diorites. The next, Late Baikalian stage (540-500 Ma) is determined by the intrusion of Cambrian basites and Late Baikalian granitoids and by manifestation of intensive suprasubduction regional metamorphism. Late Baikalian tectogenesis is accompanied by contraction of the small oceanic basin of the Southern slope of the Greater Caucasus and obduction of its oceanic crust on the island arc of the Greater Caucasus. With the Early Variscan (Bretonian) orogeny regional metamorphism of the most Lower-Middle Paleozoic rocks of the Caucasus and formation of synmetamorphic granitoids is con-nected. Saurian orog¬eny (seemingly in Turneasian) corresponds to the most important pre-Alpine time of nappe formation in the Caucasus. And here, at last, Late Variscan orogeny with processes of intensive granite formation took place. Early Cimmerian (Indosinian) orogeny completes the formation of the Caucasian pre-Alpine structure. In the rear of the gradually closing Paleotethys generation of Mesotethys (Neotethys) had been taking place already since the Triassic. But Lesser Caucasus branch of the latter was formed since the end of the Middle Jurassic. In terms of geologic and paleomagnetic data Paleotethys became entirely closed only in the Bathonian phase of compression. The movement of the Austrian phase closed the Lesser Caucasian branch of Neotethys. In Alpine time one can distinguished: pre-orogenic (Adigean, Andean, Austrian, Subhercynian, Laramian and Pyrenean), early orogenic (Styrian and Attic) and Late orogenic or collision (Rodanian, Wallachian, Pasadenian) folding stages. In Late Alpine time maximum compression vast transsecting transverse fissures of extention, responsible for the penetration of orogenic volcanism far into the continent, in a zone of Transcaucasian transverse uplift occurred.

  8. Geodynamical evolution of the Southern Carpathians: inferences from computational models of lithospheric gravitational instability

    NASA Astrophysics Data System (ADS)

    Lorinczi, Piroska; Houseman, Gregory

    2010-05-01

    The Carpathians are a geologically young mountain chain which, together with the Alps and the Dinarides, surround the extensional Pannonian and Transylvanian basins of Central Europe. The tectonic evolution of the Alpine-Carpathian-Pannonian system was controlled by convergence between the Adriatic and European plates, by the extensional collapse of thickened Alpine crust and by the retreat of the Eastern Carpathians driven by either a brief episode of subduction or by gravitational instability of the continental lithospheric mantle. The Southeast corner of the Carpathians has been widely studied due to its strong seismic activity. The distribution and rate of moment release of this seismic activity provides convincing evidence of a mantle drip produced by gravitational instability of the lithospheric mantle developing beneath the Vrancea region now. The question of why gravitational instability is strongly evident beneath Vrancea and not elsewhere beneath the Southern Carpathians is unresolved. Geological and geophysical interpretations of the Southern Carpathians emphasise the transcurrent deformation that has dominated recent tectonic evolution of this mountain belt. We use computational models of gravitational instability in order to address the question of why the instability appears to have developed strongly only at the eastern end of this mountain chain. We use a parallelised 3D Lagrangean-frame finite deformation algorithm, which solves the equations of momentum and mass conservation in an incompressible viscous fluid, assuming a non-linear power-law that relates deviatoric stress and strain-rate. We consider a gravitationally unstable system, with a dense mantle lithosphere overlying a less dense asthenosphere, subject to boundary conditions which simulate the combination of shear and convergence that are thought to have governed the evolution of the South Carpathians. This program (OREGANO) allows 3D viscous flow fields to be computed for spatially variable density and viscosity and we assume that deformation is initially localized in the Carpathian region because its crust and/or mantle layers are weakened by some prior tectonic or magmatic process.

  9. Journal of Geodynamics 46 (2008) 6977 Contents lists available at ScienceDirect

    E-print Network

    Stuttgart, Universität

    2008-01-01

    this contribution is germane to using the GIA-driven component for modeling solid-Earth and paleo-climatic parameters. Seismic and heat-flux-based models of the Earth's interior are emerging with ever higher levels Newtonian and non-Newtonian viscosity models that only allow radial variations of Earth parameters? In other

  10. Geodynamical model of oil-gas and mineral deposits using RS&GIS Western Uzbekistan

    NASA Astrophysics Data System (ADS)

    Sidorova, I.

    2006-05-01

    This paper deals with the application of complex study of Remote Sensing images and deep Lithospheric structures to the knowledge of spatial interrelation between regional lineaments and oil-gas and mineral deposits in Uzbekistan. Deciphering of structural units of Uzbekistan territory using space ASTER images allows us to reveal regional, deeprooted lineament, extending in latitudinal direction over Uzbekistan territory and neighboring countries. Thus lineament could penetrate the Earth up to deep Lithosphere layers, inheriting a position of old fault-lineament systems which origin related to Paleocene tectonic processes. The most extended latitudinal lineament is the "Transregional lineament of Central Asia" located within 42-44N zone. It stretches for more than 2000km from Sultan-Uvais mountains (Karakalpakstan), through Kyzylkums and Nurata mountains (Uzbekistan), Turkestan-Alay and Atbashi-Inychek mountains (Kyrgyzstan), to Chinese border with possible extension along the Chinese Tien-Shan. The main objective is to associate the surface «indicators» as geological, geophysical and tectonic base of data using RS&GIS with the purpose toidentify the occurrence special geoobjects of economic interest. Additionally, it will be possible to evaluate geospatial distributions of these altered zones related to morphological structures using Digital Elevation Modelling/DEM/ products of ASTER images. RS&GIS methods were used to determine the interrelations of the volcanic and granitic rocks distribution-mineralization-alteration with the faults-lineaments, circular structures. The alteration zones, the tectonic lines and the Circular structures related to the cones and calderas determined these methods and checked by group truth studies may be target areas to explore for some new oil-gas and ore deposits. As a result, our investigations envelops more then 10 deposits in Western Uzbekistan.In conclusion, it is necessary to note that such structures are well-known in the American, Australian continents. They are recognizes as deep structures and served as channels fo the heat (endogenous) energy, magmas and fluids to come out of the core and mantle of the Earth. It gives us an opportunity to concentrate there our efforts for prospecting of such kind oil-gas and mineral deposits.

  11. Uzon-Geysernaya volcano-tectonic depression: geodynamics phenomena last years

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia

    2010-05-01

    One of the most active volcanic arcs in the Pacific Rim, Kamchatka is also one with poor geophysical constraints on its shallow magma plumbing systems. Uzon calderas lie within a graben approximately 20 km wide running beneath the eastern Kamchatka volcanic group. Cross sections of the shallow crustal graben show that it steps WNW from its southeasterly bounding fault beneath Kikhpinych volcano, deepening toward Uzon caldera. Uzon Caldera Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia; Kamchatka Peninsula Volcano Number: 1000-17 Volcano Type: Calderas Last Known Eruption: 200 AD +/- 300 years Summit Elevation: 1617 m (5,305 feet) Coordinates: 54.50°N, 159.97°E Kikhpinych volcano Summary (by Global Volcanism Program, http://www.volcano.si.edu ): Country, Subregion Name: Russia, Kamchatka Peninsula Volcano Number: 1000-18 Volcano Type: Stratovolcanoes Last Known Eruption: 1550 (?) Summit Elevation: 1552 m (5,092 feet) Coordinates: 160.253°N, 160.253°E The twin Uzon and Geysernaya calderas, containing Kamchatka's largest geothermal area, from a 7x18 km Uzon-Geysernaya volcano-tectonic depression that originated during multiple eruptions during the mid-Pleistocene. Post-caldera activity was largely Pleistocene in age and consisted of the extrusion of small silicic lava domes and flows, maar formation and several Holocene phreatic eruptions. The extensive high-temperature hydrothermal system includes the many hot springs, mudpots, and geysers of the Valley of the Geysers on the SE margin of the Uzon-Geysernaya depression. Hydrothermal explosions took place in the western part of caldera in 1986 and 1989. The Valley of the Geysers in the far eastern portion of Uzon caldera is considered derived from shallow meteoric water in contact with a heat source associated with Kikhpinych volcano The general structure places a deep aquifer shallower than a depth of about 2 km with the top of a cooling magma chamber at depths greater than 4 km from beneath the eastern side of the caldera complex. Geological observations of extruded lavas and other deposits over the course of Uzon's history show that there have been episodic basalt intrusions into a granitic magma chamber, with the system becoming progressively more crystallized and lower in temperature with time [Belousov et al., 1984; Leonov et al., 1991]. By study of RADARSAT-1 synthetic aperture radar (SAR) data the interferometric SAR (InSAR) images of surface deformation at Uzon caldera was computed [Lundgren and Lu, 2006]. From 2000 to 2003 approximately 0.15 m of inflation occurred at Uzon caldera, extending beneath adjacent Kikhpinych volcano. This contrasts with InSAR data showing no significant deformation during either the 1999 to 2000, or 2003 to 2004, time periods. The preferred source model is an irregularly shaped, pressurized crack, dipping near 20° to the NW, 4 km below the surface. The geometry of this solution is similar to the upper boundary of the geologically inferred magma chamber. In the judgment of the authors, extension of the surface deformation and source to adjacent Kikhpinych volcano, without an eruption, suggests that the deformation is more likely of hydrothermal origin, possibly driven by recharge of the magma chamber. A natural disaster - big landslide with volume estimated 20x106 m3 - occurred on June 3, 2007 in the Valley of the Geysers (Leonov, 2007, Kugaenko, 2008). The results of landslide investigation show that heated rocks were involved in failure. One of the main reasons of landslide is weakening of semi-rock pumice soils due to their steaming during hidden unloading of hydrothermal system. Local field observations were organized in the eastern part of the Uzon-Geysernaya depression in 2008 and 2009. Main results of seismic investigation: - Shallow weak seismicity connected with Kikhpinych volcanic center and eastern part of the Uzon-Geysernaya depression was discovered; - Seismicity has spasmodic (swarm) type. - The majority of earthquakes are connected with areas of hydrothermal activity

  12. I. Climate change on ancient Mars. II. Exoplanet geodynamics and climate.

    E-print Network

    Kite, Edwin Stephen

    2011-01-01

    VOLCANISM ON SUPER-EARTHS. This is important for climate-volcanism (such that V n ? 0) extinguishes the possibility of a stable climateclimate regime jump is set by the rate of weathering and/or rate of volcanism

  13. Geodynamic evolution of southwestern Pre-Caspian region and neighboring areas of Northern Caucasus

    SciTech Connect

    Kleshchev K.; Shein, V.

    1995-08-01

    The study area includes two hydrocarbon-bearing basins. They are the southwestern Pre-Caspian basin and the eastern Northern Caucasus basin. They formed by the interaction of East-European, Aravia, Kazakhstan, Northern Caucasus, Guriev, and Ustyurt continental and sub-continental blocks. In the southwestern Pre-Caspian basin, sedimentation began at passive margins (Early-Middle Paleozoic), included salt deposition while the passive margins deformed in continental collisions (Late Paleozoic), and continued during isostatic compensation (Mesozoic-Cenozoic). Source rocks accumulated on upper Devonian to Carboniferous continental shelves and slopes. Oil and gas are trapped in sub-salt carbonate reservoirs and in clastic and carbonate rocks in complex post-salt structures. Devonian to Permian rocks, which accumulated on the margins of the Guriev continental block, are the most prospective reservoirs. The eroding Caucasus orogen produced the sediments in the Northern Caucasus basin. Clays (Oligocene-Miocene) deposited on the deep shelf in front of the orogen are the local source rocks. In the northern part of the basin, faulted anticlines are traps in the Mesozoic sequence. Traps are in thrust structures in the southern part of the basin. Carbonate and clastic rocks of the Tersko-Caspian trough are prospective in the basin.

  14. Low frequency electromagnetic signals in the atmosphere caused by geodynamics and solar activity

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    Due to the composed structure of the medium and large portions of energy transferred, a seismic excitation in the oceanic or continental lithosphere disturbs all types of geophysical fields. To investigate the problem of electromagnetic (EM) forcing on the atmosphere from the seismically activated lithosphere, we have formulated two mathematical models of interaction of fields of different physical nature resulting in arising of the low-frequency (from 0.1 to 10 Hz by amplitude of a few hundreds of pT) EM signals in the atmosphere. First we have considered the EM field generation in the moving oceanic lithosphere and then in the moving continental one. For both cases, the main physical principles and geological data were applied for formulation of the model and characteristics of the computed signals of different nature agree with measurements of other authors. On the basis of the 2D model of the seismo-hydro-EM-temperature interaction in a lithosphere-Ocean-atmosphere domain, a block-scheme of a multisensory vertically distributed (from a seafloor up to the ionosphere) tsunami precursors’ detection system is described. On the basis of the 3D model of the seismo-EM interaction in a lithosphere-atmosphere domain, we explain effect of location of the future seismic epicenter area (obtained by Prof. Kopytenko, Yu. A. from Inst. IZMIRAN of Russian Acad. Sci. and co-authors) as the result of the magnetic field measurements in the atmosphere near the earth’s surface. We believe that the biosphere effects of forcing on the atmosphere may not be ignored. We formulate the result of our measurements with the system of micro-voltmeters: low-frequency EM disturbances of the atmosphere caused by solar activity (namely, geomagnetic storms with the geomagnetic index values K = 5 and K = 6), are decreasing temporarily the coherence of oscillations of the electric potentials of different points on the surface of a head, i.e. the coherence of the human brain EM processes. We are grateful to Prof. Kopytenko, Yu. A. and participants of the scientific seminars and conferences in IZMIRAN and Space Research Institute, Russian Acad. Sci., for discussions and researchers of the IZMIRAN observatory for data about the K index dynamics.

  15. Archean plate tectonics geodynamics: example from the Belomorian province, Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2014-05-01

    A fragment of the Archean collisional Belomorian orogen has been identified as the Belomorian province (BP) of the Fennoscandian Shield (Slabunov, 2008; Holtta et al., 2014). The province consists dominantly of Archean rocks, Early Paleoproterozoic rocks being less abundant. Rock of BP exhumed from middle crustal depths in Paleoproterozoic time (1.94-1.8 Ga). Seismic (CDP) profiling data (Sharov et al., 2010) show that the internal structure of BP reflects nappe tectonics: in Archean time, a collage of numerous slides was formed, and in Paleoproterozoic time the BP was thrusted on the Karelian craton and, in turn, was thrusted by rocks of the Kola province. The BP consists dominantly of Meso- and Neoarchean rock association (Slabunov et al. 2006). Neoarchean granitoids predominate, but eclogite-bearing metam?lange (Volodichev et al., 2004; Mints et al., 2010; Shchipansky et al., 2012), island-arc volcanics, front-arc basin sediments, ophiolite-type oceanic plateau-type rocks, collisional S-granites, kyanite-facies metamorphic rocks, molassa-type rocks, subalkaline granitoids and leucogabbro have been revealed among supracrustal rock associations. Rocks of the Belomorian province were subjected to multiple metamorphism in Archean and Paleoproterozoic time at moderately high to high pressures and were considerably deformed. High-grade supracrustal complexes make up not more than 20 % of the BP, but as they probably host ore and are crucial for the understanding of the formation and evolution of the structure, they are given close attention. Five generations of greenstone complexes of different ages: 2.88-2.82 Ga, 2.8-2.78 Ga, ca. 2.75 Ga , ca. 2.72 Ga and not later than 2.66 Ga, and two paragneiss complex in which sediments were formed 2.89-2.82 and 2.78 Ga ago, are distinguished. The main stages of crustal evolution in the BP: ca 2.88-2.82 Ga - the first subduction-accretion event marked by the following complexes: island-arc volcanics of the Keret GB; metagraywacke (front-arc basin sediments) of the Chupa paragneiss belt; Salma eclogites; 2.81?2.78 Ga - the second subduction-accretion event marked by the following complexes: island-arc volcanics, supra-subduction ophiolite (Iringora), graywackes, granulites (Notozero) and 4) eclogites (Kuru-Vaara); 2.75 Ga - the third subduction event marked by island-arc volcanics (Chelozero); 2.73-2.72 Ga - the fourth subduction-accretion event marked by : island-arc volcanics (Mil'kevich et al., 2007), granulites and Gridino eclogites; ca 2.7-2.66 Ga - collisional event marked by: collisional S-granites, kyanite-facies metamorphic rocks, molassa-type rocks, subalkaline granitoids and leucogabbro. The crustal evolution of the BP in the period 2.88-2.66 Ga is similar to the evolution of Phanerozoic collision orogens. This is a contribution to RFBR Project 13-05-91162.

  16. Linking seismology, mineralogy and geodynamics with seismic anisotropy in the lowermost mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Walker, Andrew; Wookey, James; Walpole, Jack; Masters, Guy; Kendall, J.-Michael

    2013-04-01

    The core-mantle boundary (CMB) is the site of the largest change in properties in the Earth, where the liquid outer core and solid mantle meet. Forming the lower boundary layer in the convecting mantle, D? (the lowermost mantle) may hold the key to understanding dynamics both above and below. One property of the region which holds much potential to advance this understanding is its seismic anisotropy, which may be caused by factors such as the alignment of anisotropic mineral grains in response to mantle flow. Anisotropy is widely observed in D?, yet not in the overlying mantle more than a few hundred kilometres above the CMB, as evidenced by numerous tomographic and waveform studies. Shear wave splitting is an unambiguous indicator of the presence of anisotropy and measurements thereof need not make any simplification regarding the kind of anisotropy. Such measurements therefore allow us to test the widest range of candidate processes which might cause D" anisotropy. Ultimately, if one cause such as mineral alignment is more likely than others, we can then use seismic anisotropy to directly infer flow in the lowermost mantle. In order to test candidate processes for D? anisotropy, we construct a series of elastic models of the lowermost mantle. Each is based on a different assumption regarding the cause of lowermost mantle anisotropy, concentrating thus far on the development of lattice-preferred orientation in dislocation creep in lower mantle mineral phases such as perovskite, post-perovskite and (Mg,Fe)O (and mixtures thereof). In order to do this, for these phases we require mineral physical data regarding the single-crystal elasticity and deformation mechanisms. Whilst there exists some uncertainty in these parameters, we can nevertheless test what effect these have on our final models. We then use a steady-state mantle flow field retrieved from seismic, geodetic and mineral physical observables, and calculate the texturing along pathlines in the lowermost mantle, eventually producing a three-dimensional model of completely general elasticity. Observations of seismic anisotropy in ScS waves are then re-created for our candidate models and direct comparison can be made with the data. A complicating factor is that the ray-theoretical assumption may not accurately capture the sensitivity of the waves to varying D? elastic structure, and thus we use a spectral-element approach to calculate synthetic seismograms at the same frequency as the observations (~0.2 Hz). The calculations involve thousands of processors and terabytes of memory, but are necessary for retrieving the wavefield in a fully anisotropic medium. We compare a new set of global observations of shear wave splitting in ScS, corrected for upper mantle anisotropy, and can potentially rule in or out different causative mechanisms for anisotropy in the lowermost mantle. More constraints can be incorporated in the future as our method allows the measurement of any seismic phase and any causative mechanism.

  17. A Coupled Geochemical and Geodynamical Approach for Mantle Melting Beneath Hawaii.

    NASA Astrophysics Data System (ADS)

    Lambart, S.; Kelemen, P. B.

    2014-12-01

    The presence of the Hawaiian plume is manifested by the Hawaiian swell [1] and voluminous eruption of Ni-rich lavas [2] with enriched isotopic compositions [3]. Here we estimate the conditions of melt generation needed to reproduce both features. We used thermodynamic treatment for fractional melting [4] and melting parameterizations for pyroxenites [5] and peridotite [6] to determine pyroxenite contribution in magmas Xpx as functions of potential temperature TP, pyroxenite abundance in the source P, radius of the melting zone R and distance to the plume axis. The final pressure of melting is set to correspond with the base of the lithosphere (3 GPa) at the plume axis and increases with the distance from the axis [7]. The Hawaiian plume axis is thought to be currently between Loihi (L), Kilauea (K) and Mauna Loa (ML), which are 25 km, 32 km and 44 km radially away from the plume axis, respectively [3]. To determine Xpx, we assumed that magmas are accumulated melts produced on a circular sampling zone of 50 km diameter centered beneath each volcano [8]. Preliminary calculations show that for TP = 1525°C, P = 0.07 and R = 55 km, XpxML = 0.59, XpxK = 0.49 and XpxL = 0.45. XpxML and XpxK are similar to values suggested by [2]. Computed liquidus temperatures at 3 GPa are consistent with those of Hawaiian parental melts (1500-1520°C; [9]). XpxL is higher than suggested by [2] (XpxL = 0.09) but their estimate is based on only one glass analysis. Our model is also consistent with isotopic compositions: K and L have similar ?Nd, while ML is more enriched [3]. Finally, we can compute the density deficit using parameterization of [1] and relate it to the volume flux volume flux [10]: we obtain 3.2 km3/Yr, a value similar to the estimations based on the Hawaiian swell model [1]. 1-Ribe & Christensen EPSL 1999; 2-Sobolev et al. Nature 2005; 3-DePaulo et al. GGG 2001; 4-Phipps Morgan GGG 2001; 5-Lambart et al. in prep; 6-Katz et al. GGG 2003; 7-Ito & Mahoney EPSL 2005; 8-DePaulo & Stolper JGR 1996; 9-Putirka Miner. Soc. Amer. Geochem. Soc. 2008; 10-Turcotte & Schubert Cambridge Press 2002

  18. Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons

    NASA Astrophysics Data System (ADS)

    Hopkins, Michelle D.; Harrison, T. Mark; Manning, Craig E.

    2010-10-01

    The inclusion mineralogy of 1450 zircons over 4 billion years in age from the Jack Hills, Western Australia, was characterized for composition and phase assemblage. Results confirm that the inclusion population of these largely igneous zircons is dominated by muscovite and quartz (~ 75%). If the inclusions are original to the igneous zircons, this observation alone restricts the host melts to formation at pressure-temperature ( P- T) conditions of ~ 650-800 °C and > 4 kbar. Several lines of evidence support the view that most of the analyzed mineral inclusions are primary, including their lack of association with cracks, magmatic crystal forms, and lack of exchange with fuchsitic (Cr-rich) micas in the host conglomerate. The application of Ti-in-zircon thermometry, and phengite, Ti-in-quartz, and Al-in-hornblende barometry to these inclusion assemblages yields estimates of magmatic P-T conditions from 5 to > 12 kbar and 700 ± 40 °C. These data indicate zircon formation along geotherms of ? 60 °C/km and imply conductive near-surface heat flow of < 40 to 85 mW/m 2— a range that is substantially lower than most estimates of global Hadean heat flow. Of the possible environments capable of generating melting under such locally low heat flow early in Earth history, underthrusting, possibly in a manner similar to modern convergent margins, appears most consistent with numerous other geochemical constraints derived from investigation of Hadean zircons.

  19. Petrology and geodynamical interpretation of mantle xenoliths from Late Cretaceous lamprophyres, Villány Mts (S Hungary)

    NASA Astrophysics Data System (ADS)

    Nédli, Zsuzsanna; M. Tóth, Tivadar; Downes, Hilary; Császár, Géza; Beard, Andrew; Szabó, Csaba

    2010-06-01

    A Late Cretaceous lamprophyre dyke in the Villány Mts (S Hungary), situated in the Tisza unit, contains abundant spinel lherzolite xenoliths with porphyroclastic textures. Mineral chemistry suggests a relatively fertile mantle, which experienced only 5-7% melt extraction. Differences in porphyroclast and neoblast chemistry and thermobarometric calculations suggest that the mantle section represented by the xenoliths experienced recrystallization at lower PT as it was transported to shallow mantle depths close to the plagioclase stability field, followed by later relaxation. Based on volcanological and sedimentological constraints from the Villány Mts and the neighboring Mecsek Mts, we suggest that the uprise of the subcontinental mantle material was related to a Cretaceous rifting event and lithospheric deformation of the southwestern part of the Tisza unit. Mantle upwelling and formation of lamprophyre melts can be related to generation or reactivation of deep fractures of the lithosphere, during a period of lithospheric extension between the major nappe emplacements (Albian-Cenomanian and Paleocene) of the region.

  20. Laser geodynamic satellite thermal/optical/vibrational analyses and testing, volume 2, book 1 technical report. [retroreflector performance

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results are presented of a retroreflector performance improvement program. The following areas of the program are discussed: retroreflector dimensional verification, initial optical performance analysis, LAGEOS test retroreflector rework, final optical performance analysis, optical performance tests, evaluations and conclusions, and laser wavelength evaluation and dihedral angle selection. Data tables, diagrams, graphs, and photographs are included.

  1. Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey

    NASA Astrophysics Data System (ADS)

    Aysal, Nam?k

    2015-06-01

    Widespread plutonic rocks in NW Turkey occur within the southward-younging and overlapping magmatic belts across the Aegean region. Post-collisional magmatism is represented by a series of granitoidic intrusions and volcanic successions. K-Ar and U-Pb LA-ICP-MS zircon dating of the Kazda? and Yenice plutons yielded ages between 20.5 ± 0.5 Ma and 27.89 ± 0.17 Ma (Late Oligocene-Early Miocene). The granitoid samples are high-K calc-alkaline and metaluminous to slightly peraluminous. The 87Sr/86Sr values for the granitoids, enclaves and leucocratic rocks range between 0.705168 and 0.708357. The initial 143Nd/144Nd ratios calculated for the crystallization ages of ca. 23-27 Ma are between 0.512425 and 0.512614, and the ?Nd values vary from -3.5 to 0.2. The Nd TDM model ages range between 0.73 and 1.13 Ga. These samples are enriched in LILEs and LREE and depleted in HFSEs with negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted slab-derived melts. Energy constrained-assimilation and fractional crystallization (EC-AFC) modelling indicates that fractional crystallization and crustal assimilation modified the parent magma's composition during its residence in the upper crust. The mineral chemistry of amphiboles, pyroxenes, biotites and feldspars is used to constrain the pressure (P), temperature (T), oxygen fugacity (logƒO2) and water contents (H2Omelt) during the crystallization of the magmas in the studied granitoids. The clinopyroxene temperatures are in the range of 823-910 ± 45 °C. The amphibole temperatures for the studied plutonic rocks are in the range of 707-926 °C (mean = 798 ± 45 °C), and the crystallization depths are estimated to be in the interval of 1.02-10.2 km. The NW Anatolian plutonic rocks can be considered to have been equilibrated at the oxygen fugacities of calcic amphiboles (logƒO2) between -8.99 and -13.96 bars (mean = -12.11 bar) and H2Omelt contents between 1.63% and 6.79% (mean = 4.15%). Meanwhile, the biotites, which display consistent oxygen fugacity values (-10.65 to -13.22), suggest their reliability with the typical values of calc-alkaline magma crystallization. These values suggest a relatively higher oxidation state during crystallization and are related to arc magmatism. All of the calculated values indicate that all of the plutons were emplaced at shallow crustal levels. It can be inferred that the Oligo-Miocene magmatism in NW Turkey may be linked to crustal thinning that resulted from slab roll-back and a back-arc extensional regime after the collision between the Sakarya Zone and Anatolide-Tauride Platform.

  2. Mesozoic and Cenozoic plate tectonics in the High Arctic: new 2D seismic data and geodynamic models

    NASA Astrophysics Data System (ADS)

    Nikishin, Anatoly; Kazmin, Yuriy; Glumov, Ivan; Petrov, Eugene; Poselov, Viktor; Burov, Evgueni; Gaina, Carmen

    2014-05-01

    Our paper is mainly based on the interpretation of 2D seismic lines, obtained from Arctic-2001 and Arctic-2012 projects. We also analyzed all available open-source data concerning Arctic geology. Three domains are distinguished in the abyssal part of Arctic Ocean: (1) Canada Basin, (2) Lomonosov-Podvodnikov-Alpha-Mendeleev-Nautilus-Chukchi Plateau (LPAMNCP) area, (3) Eurasia Basin. Canada Basin has oceanic and transitional crust of different structure. The formation time of this oceanic basin is probably 134-117 Ma. New seismic data for LPAMNCP area shows numerous rift structures parallel to the Lomonosov Ridge and Mendeleev Ridge. These rift structures are also nearly orthogonal to the Canada Basin spreading axis, and this may indicate either a different mechanism for the formation of the LPAMNCP region and Canada Basin, or a very complicated basin architecture formed by processes we do not yet understand. We also observe at the base of the LPAMNCP area sedimentary cover packages of bright reflectors, they were interpreted as basalt flows probably related to the Cretaceous plume volcanism. Approximate time of the volcanism is about 125 Ma. After this event, the area experienced stretching and transtension as documented by large scale rifting structures. The younger Eurasian Basin has oceanic crust of Eocene to Recent age, and our new seismic data confirms that Gakkel Ridge has typical ultraslow-spreading zone topography. Perhaps, Eurasia Basin crust was partly formed by exhumed and serpentinized mantle. Lomonosov and Alpha-Mendeleev Ridges has typical present-day basin and range topography with Oligocene to Recent faults. It means, that all LPAMNCP area was subjected to regional intra-plate stretching during Neogene to Recent time. We assume, that this intra-plate stretching was related to the Gakkel Ridge extension. We suppose, that the deep-water part of Arctic Ocean was formed during three main stages: (1) Valanginian - Early Aptian: formation of Canada Basin; (2) 125 Ma - Large-scale magmatism at Alpha-Mendeleev Ridge area, followed by large-scale rifting at LPAMNCP area; (3) Eocene to present: Eurasian Basin formation, ultraslow spreading. This process is accompanied by LPAMNCP area stretching. These three stages are connected with main phases of the plate tectonic reorganization.

  3. Paleomagnetism and geodynamics of the onshore High Arctic Large Igneous Province and its connection to the offshore Alpha Ridge

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.

    2009-05-01

    Here I summarize findings from the University of Rochester paleomagnetic expeditions to the High Canadian Arctic dedicated to understanding the tectonic and magmatic evolution of the region, together with recovering data useful for defining the history of the geomagnetic field. Our work has focused on what we now recognize as two distinct episodes of volcanism: i. massive flood basalt volcanism at ca. 92 Ma and ii. smaller volume, spatially restricted volcanism at ca 77 Ma. Lava flows from the older event have provided key paleomagnetic data that exclude significant latitudinal motion of the Canadian Arctic Islands relative to North America. When combined with other North American sites, these data define a time-averaged dipolar magnetic field. The younger volcanics, preserved in small basins on remote northern Ellesmere Island, may define a failed rifting event; their extent in the Arctic Ocean is uncertain, but they may correlate with dikes reported from northern Greenland. The older flood basalts thicken to the north in the Canadian Arctic (Axel Heiberg Island), near the region where Alpha Ridge of the Arctic Ocean abuts the coastline. Following results of seismic analyses, I interpret this, together with Mendeleev Ridge as a volcanic oceanic plateau, potentially with continental blocks similar in structure to Kerguelen Plateau of the Indian Ocean. Simple hotspot track models fail to predict a tie of this feature to an extant hotspot (although a tie to the Iceland hotspot has been suggested). A new model of plume tilt at mid-mantle depths toward an upper mantle upwelling may better explain the observations.

  4. Comparative Analysis of Biogeographic, Sedimentologic and Paleomagnetic Data and the Geodynamics of Terranes of Northeast Asia in Late Permian

    NASA Astrophysics Data System (ADS)

    Biakov, A.; Kolosev, E.

    2004-12-01

    We present the first consistent model of the relative locations of the most important tectonic structures in Northeast of Asia for Late Paleozoic time. This model is based on comparative analysis of paleomagnetic, sedimentologic and biogeographic data. Results of research by the authors and critically reviewed data of the other researchers are used. The current paleomagnetic data for Permian rocks from the Northeast region still remain scanty and are practically non-existent for some tectonic structures such as the Okhotsk microcontinent. Nevertheless we believe that it can be shown that there was no major (thousands of kilometers) horizontal motion between the separate tectonic blocks of Yana-Kolyma fold-and-thrust area, at least starting Middle Paleozoic. In paleogeographic terms Northeast Asia in the Permian represented a system of marine basins of various types. Okhotsk microcontinent was outboard from the Siberian craton to the southeast (present day coordinates). A system of deepwater marginal type marine basins lay to the east of the Siberian craton. The Koni-Taigonos volcanic arc was along the south edge, and. its erosion products formed deepwater fore-arc basins. Significant differences between the Permian bivalve communities on the Omolon microcontinent and contemporary communities of Verkhoyansk indicate the existence of the deepwater Ayan-Yuryakh trough basin. The strata of the latter are characterized as thick (up to 7 km) flysch deposits plus thick diamictites. Paleobiogeographic studies show that major biogeographic units can be clearly distinguished in the Verkhoyansk-Okhotsk on one side and Kolyma-Omolon biochores on the other, which can be currently ranked as sub regions. Verkhoyansk-Okhotsk sub region includes Verkhoyansk epicontinental sea shelf and the Okhotsk microcontinent shelf. These can be further subdivided into a number of provinces. The Kolyma-Omolon sub region includes continental shelves of the Omolon, Omulevka, Prykolyma microcontinents and the Koni-Taigonos arc. The degree of diversity of these two biochores is so great that it requires separate development and indicates the existence of a major biogeographical barrier during the Permian. The distinctions between the Verkhoyansk-Okhotsk and Kolyma-Omolon sub regions are found througout the whole Permian and over other faunal groups such as brachiopods and ammonites as well as over the rest of bivalve taxons. Multiple use of biogeographic, sedimentologic and paleomagnetic materials including new original data on sedimentology and paleomagnetism allowed a model of the relative positions of the basic tectonic structures of Verkhoyansk-Kolyma fold-and-thrust area in the second half of the Permian. . These studies have been supported by the Russian Foundation for Basic Research, grant N 03-05-96012-Arctic and Far East Branch Russian Academy of Sciences, Grant N 04-3-A-08-014.

  5. Late Mesozoic silicic magmatism of the North Chukotka area (NE Russia): Age, magma sources, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Tikhomirov, P. L.; Kalinina, E. A.; Kobayashi, K.; Nakamura, E.

    2008-10-01

    The Cretaceous Okhotsk-Chukotka volcanic belt (OCVB) is one of the largest subduction-related volcanic provinces of the Earth. It is thought to be related with the subduction of paleo-Pacific plates under the collage of terranes of NE Asia accreted during Jurassic and Early Cretaceous time. The OCVB comprises a remarkably high portion of silicic rocks, up to 80-90% in some segments. Within the Central Chukotka segment of the belt, volcanic sequences reveal a rather uniform 40Ar/ 39Ar and U-Pb isotopic age of near 89-87 Ma. But the felsic volcanic unit with coeval subsurface intrusives named the 'Berlozhya magmatic assemblage' (BMA) yields much older zircon U-Pb ages (146.0 ± 2.4 for rhyolitic tuff and 145.5 ± 1.8 Ma for related granodiorite). The relationship of the BMA with the active boundary between the Chukotka-Arctic Alaska microcontinent and the Anyui-Angayucham oceanic basin is suggested. BMA rocks seem to be undeformed, and their age puts constraints on the timing of main compressional events in the North Chukotka area. We present analytical data for both BMA and OCVB silicic magmatic rocks, including the first isotopic compositions of Sr, Nd, Pb, and Hf for the 1500 km long northern part of the OCVB. We infer that felsic magmas of both BMA and OCVB were produced by the melting of the continental crust, without a significant direct contribution from mantle sources. However, the crustal protolith could contain some ancient island arc complexes, which affected the chemical and isotopic composition of magmatic derivatives. The BMA exhibits a relatively uniform isotopic composition ( 87Sr/ 86Sr i = 0.7057 to 0.7070, ?Ndi = - 0.51 to - 0.12, ?Hfi = 4.41 to 4.92, 206Pb/ 204Pb i = 18.50 to 18.57, and 208Pb/ 204Pb i = 38.23 to 38.31), and its chemical diversity likely results from crystal fractionation. The protolith of OCVB rhyolites has more variable isotopic characteristics ( 87Sr/ 86Sr i = 0.7032 to 0.7082, ?Ndi = - 4.06 to - 2.84, ?Hfi = - 1.56 to 3.77, 206Pb/ 204Pb i = 18.56 to 18.81, and 208Pb/ 204Pb i = 38.21 to 38.63), and reveals at least three end-members. Each of them is distinct from the source of the Berlozhya assemblage, thus suggestive of compositional layering of the crust. Nd and Hf model ages of all studied rocks correspond to Neoproterozoic. The estimated Nd model age of the OCVB protolith is slightly older than that for the BMA, but both fall into the Neoproterozoic interval (1000 to 800 Ma).

  6. Tectonic magnetic lineation and oroclinal bending of the Alborz range: Implications on the Iran-Southern Caspian geodynamics

    NASA Astrophysics Data System (ADS)

    Cifelli, Francesca; Ballato, Paolo; Alimohammadian, Habib; Sabouri, Jafar; Mattei, Massimo

    2015-01-01

    In this study we use the anisotropy of magnetic susceptibility (AMS) and paleomagnetic data for deciphering the origin of magnetic lineation in weakly deformed sedimentary rocks and for evaluating oroclinal processes within the Arabia-Eurasia collision zone. In particular, we have analyzed the Miocene Upper Red Formation (URF) from the outer curved front of the southern Central Alborz Mountains of north Iran, to test for the first time with paleomagnetic data the origin (primary versus secondary) of this orogenic arc. AMS data document the existence of a magnetic lineation parallel to the orientation of the major tectonic structures, which vary along strike from WNW to ENE. These directions are highly oblique to the paleoflow directions and hence suggest that the magnetic lineation in the URF was produced by compressional deformation during layer-parallel shortening. In addition, our paleomagnetic data document clockwise and anticlockwise rotations along vertical axis for the western and eastern sectors of the Central Alborz Mountains, respectively. Combined, our results suggest that the orogen represents an orocline, which formed not earlier than circa 7.6 Ma most likely through bending processes caused by the relative motion between the rigid crustal blocks of the collision zone. Moreover, our study provides new insights into the Iran-Southern Caspian Basin kinematic evolution suggesting that the present-day SW motion of the South Caspian Basin with respect to Central Iran postdates oroclinal bending and hence cannot be as old as late Miocene to early Pliocene but a rather recent configuration (i.e., 3 to <1 Ma).

  7. Stanniferrous granites of Vietnam: Rb-Sr and Ar-Ar isotope age, composition, sources, and geodynamic formation conditions

    NASA Astrophysics Data System (ADS)

    Anh, Phan Luu; Vladimirov, A. G.; Kruk, N. N.; Polyakov, G. V.; Ponomarchuk, V. A.; Hoa, Tran Trong; Phuong, Ngo Thi; Kuibida, M. L.; Annikova, I. Yu.; Pavlova, G. G.; Kiseleva, V. Yu.

    2010-06-01

    Stanniferrous granite-leucogranite massifs in Vietnam to which the bedrock and placer commercial deposits of cassiterite are associated (Timtuc etc.) are of late Cretaceous age (˜85 Ma by Rb-Sr and Ar-Ar isotope dating). These massifs are presented by stocks and fracture intrusions (to 100 km2 in area) of simple homodromic structure: biotite granites ? two-mica and muscovite leucogranites ? topaz-containing aplites ? rare-metal pegmatites.

  8. Geological and archaeological evidence of active faulting on the Martana Fault (Umbria-Marche Apennines, Italy) and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Tanini, Chiara; Moratti, Giovanna; Piccardi, Luigi; Sani, Federico

    2003-12-01

    This paper examines the morphotectonic and structural-geological characteristics of the Quaternary Martana Fault in the Umbria-Marche Apennines fold-and-thrust belt. This structure is more than 30 km long and comprises two segments: a N-NNW-trending longer segment and a 100°N-trending segment. After developing as a normal fault in Early Pleistocene times, the N-NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE-ENE-trending 3 axis and NW-NNW 1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N-NNW-trending fault segments and almost pure normal faulting on newly formed NW-SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left-lateral kinematic along N-NNW-trending fault segments is also revealed by the 1.8 m horizontal offset of the E-W-trending Decumanus road, at the Roman town of Carsulae. We interpret the present-day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north-northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright

  9. Surface uplift, fluvial incision, and geodynamics of plateau evolution, from the western margin of the Central Andean plateau

    E-print Network

    Schildgen, Taylor F. (Taylor Frances)

    2008-01-01

    The Colca-Majes and Cotahuasi-Ocona rivers in southwest Peru that cut through the western margin of the Andean plateau en route to the Pacific Ocean incised canyons over 3 km deep in response to late Cenozoic surface uplift. ...