Science.gov

Sample records for geological granite disposal

  1. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  2. The Necessity of Geologic Disposal

    SciTech Connect

    R. Linden

    2004-07-01

    deep geologic disposal, and are evaluating sites in granites, argillaceous rocks, and salt formations.

  3. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  4. The ‘granite encapsulation’ route to the safe disposal of Pu and other actinides

    NASA Astrophysics Data System (ADS)

    Gibb, F. G. F.; Taylor, K. J.; Burakov, B. E.

    2008-03-01

    Waste actinides, including plutonium, present a long-term management problem and a serious security issue. Immobilisation in mineral or ceramic waste forms for interim storage is a widely proposed first step. The safest, most secure geological disposal for Pu is in very deep boreholes and we propose that the key step to combination of these immobilisation and disposal concepts is encapsulation of the waste form in cylinders of recrystallized granite. We discuss the underpinning science, focusing on experimental work, and consider implementation. Finally, we present and discuss analyses of zircon, UO 2 and Ce-doped cubic zirconia from high pressure and temperature experiments in granitic melts that demonstrate the viability of this solution and that actinides can be isolated from the environment for millions, maybe hundreds of millions, of years.

  5. Granite geomorphology and its geological controls, Serra da Estrela, Portugal

    NASA Astrophysics Data System (ADS)

    Migoń, Piotr; Vieira, Gonçalo

    2014-12-01

    Serra da Estrela is an elevated granite massif in central Portugal, characterized by extensive plateau surfaces incised by deep valleys affected by Quaternary glaciation, bounded by steep fault-generated escarpments. The presence of seven major textural variants of granite provides an opportunity to study the relationships between lithology and relief, whereas DEM analysis helped to show the relationships between lithology and topography objectively. The higher ground is associated with fine- to medium-grained granites and is typified by planar surfaces of low gradient, with occasional angular tors and rock pedestals. Block fields built by angular material are common in the parts that were not previously glaciated. Less elevated parts of the plateau are supported by medium- to coarse-grained granites and show more varied topography, with an abundance of tors, boulder piles, and depressions. Lithological boundaries locally coincide with slope breaks but this is not the rule. In the northern part of the massif a deep topographic basin has evolved in biotite granite, whereas deeply incised valleys follow major fault lines. Geological controls show a hierarchy, in that gross relief reflects the pattern of tectonic uplift and subsidence, whereas lithology and then fracture patterns become more and more important if one focuses on smaller and smaller landforms.

  6. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    SciTech Connect

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-07-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

  7. The geology and petrogenesis of the southern closepet granite

    NASA Technical Reports Server (NTRS)

    Jayananda, M.; Mahabaleswar, B.; Oak, K. A.; Friend, C. R. L.

    1988-01-01

    The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases.

  8. Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China's HLW disposal

    NASA Astrophysics Data System (ADS)

    Zhao, X. G.; Wang, J.; Chen, F.; Li, P. F.; Ma, L. K.; Xie, J. L.; Liu, Y. M.

    2016-06-01

    Crystalline rocks are potential host rock types for the construction of high-level radioactive waste (HLW) repositories. A better understanding of thermal conductivity of rocks is essential to safe evaluation and engineering optimization of a HLW disposal system in the rock at depth. In the present study, experimental investigations on the thermal conductivity characteristics of 47 pairs of granitic rock specimens were conducted using the Transient Plane Source (TPS) method. The specimens were collected from borehole cores in the Beishan area, which is being considered as the most potential candidate area for China's HLW repository. To evaluate geological nature of the rocks, mineralogical compositions of the rocks were identified, and porosity of the specimens was measured. The thermal conductivities of the specimens under dry and water-saturated conditions were determined, and the effect of water saturation on the thermal conductivity was investigated. In addition, the influence of temperature and axial compression stress on the thermal conductivity of dry specimens was studied. The results revealed that the thermal conductivity of tested rocks was dependent on water saturation, temperature and compression stress. Based on the obtained data, some models considering porosity were established for describing the thermal conductivity characteristics of the tested rocks. Furthermore, when the rocks have a similar porosity, the quartz content dominates the thermal conductivity, and there exists an obvious increase of the thermal conductivity with increasing quartz content. The test results constitute the first systematic measurements on the Beishan granitic rocks and can further be used for the development of thermal models for predicting thermal response near the underground excavations for HLW disposal.

  9. Granite disposal of U.S. high-level radioactive waste.

    SciTech Connect

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  10. Mined Geologic Disposal System Concept of Operations

    SciTech Connect

    Heidt, R.M.

    1995-06-08

    A Concept of Operations has been developed for the disposal of high-level radioactive waste in the potential geologic repository at Yucca Mountain. The Concept of Operations has been developed to document a cormion understanding of how the repository is to be operated. It is based on the repository architecture identified in the Initial Summary Report for Repository/Waste Package Advanced Conceptual Design and describes the operation of the repository from the initial receipt of waste through repository closure. Also described are operations for waste retrieval.

  11. Geology of the Integrated Disposal Facility Trench

    SciTech Connect

    Reidel, Steve P.; Fecht, Karl R.

    2005-07-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments.

  12. Berdyaush pluton of rapakivi granites, South Urals: New data on the geological structure and geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Snachev, V. I.; Bazhin, E. A.

    2016-01-01

    The new version of the geological structure of the Berdyaush pluton (a single intrusion of rapakivi granites in the Urals) presented in this paper is significantly distinct from the previous structural schemes. Rapakivi granites compose no more than 10-20% of the area of the pluton and they are widespread only in its northeastern and southwestern flanks. The contacts between gabbro (I phase), hybrid syenodiorites (II phase), and rapakivi granites (III phase) are transitional, metasomatic. The hybrid syenodiorites and rapakivi granites are formed after gabbroic rocks as a result of their intense thermal and metasomatic transformation by the deep fluids. The driving force of this process could be the unilateral compression of the Berdyaush pluton resulting from formation of the eastward continental rift in the beginning of the Middle Riphean.

  13. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    SciTech Connect

    Tomas, J.

    2003-02-25

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. This selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in

  14. Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538

    SciTech Connect

    Crockett, Glenda; King, Samantha

    2013-07-01

    The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

  15. Geological aspects of the nuclear waste disposal problem

    SciTech Connect

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  16. Radioactive high level waste insight modelling for geological disposal facilities

    NASA Astrophysics Data System (ADS)

    Carter, Alexander; Kelly, Martin; Bailey, Lucy

    Within this paper we present a simplified analytical model to provide insight into the key performance measures of a generic disposal system for high level waste within a geological disposal facility. The model assumes a low solubility waste matrix within a corrosion resistant disposal container surrounded by a low permeability buffer. Radionuclides migrate from the disposal area through a porous geosphere to the biosphere and give a radiological dose to a receptor. The system of equations describing the migration is transformed into Laplace space and an approximation used to determine peak values for the radionuclide mass transfer rate entering the biosphere. Results from the model are compared with those from more detailed numerical models for key radionuclides in the UK high level waste inventory. Such an insight model can provide a valuable second line of argument to assist in confirming the results of more detailed models and build confidence in the safety case for a geological disposal facility.

  17. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  18. The El Berrocal project: Geological characterization and radionuclide migration studies in a fractured granitic environment

    SciTech Connect

    Miller, W.M.; Perez del Villar, L.; Gomez, P.

    1995-12-31

    El Berrocal is an abandoned uranium mine in a mineralized quartz vein hosted by a Hyercynian granite in central Spain. This mine is the focus of an international project to characterize and model natural elemental migration in a fractured-rock environment as an aid to understanding and predicting processes that may occur in a geological repository for radioactive wastes. Uranium in the mineralized quartz vein has been shown to have originated from the orthomagmatic uraninite in the granite with the elemental removal and migration occurring predominantly by hydrothermal fluids. Mobilization of uranium from the mineralized quartz vein and from granite adjacent to hydraulically-active fractures away from the vein occurred over the geologically-recent past and in the present-day. The most recent mobilization is evidenced by dissolution features seen in SEM photomicrographs; mineral growth and sorption signatures identified by enhanced uranium concentrations on the surfaces of preexisting minerals; and measured disequilibrium in the uranium series for whole rock close to fracture walls. Present-day groundwaters in the studied area are young meteoric waters. They are generally calcium-sulfate enriched, oxidizing and mildly acidic near the surface, becoming more bicarbonate-rich with near neutral pH in the deeper zones, except around the mineralized vein where the waters are acid (pH around 3) due to oxidation of the sulfide minerals. No deep, chemically-reducing groundwaters have yet been identified in the El Berrocal boreholes.

  19. Geology of a Transect Across a Mesoproterozoic Anorthosite - Granite Batholith, Nain, Northern Labrador

    NASA Astrophysics Data System (ADS)

    Myers, J.

    2004-05-01

    A five year research project at Memorial University, supported by VBN/INCO and NSERC, is studying the geology of a transect across the Nain Plutonic Suite to better understand the geological setting of the Voisey's Bay Ni-Cu-Co deposit. This study is based on new geological mapping at a scale of 1:20 000, completed between 1999-2003 by Furlong, Gaskill, Goddard, Rawlings-Hinchey, Myers, Tettelaar, Voordouw and Wright. The talk outlines the regional geology determined by this collective study in a transect 80 km long and 40 km wide. The Nain Plutonic Suite forms a batholith comprising numerous plutons, dykes and sheets of anorthosite, leuconorite, leucotroctolite, troctolite, ferrodiorite, monzonite and granite. The batholith is 70 km wide and over 200 km long and was emplaced from 1360 to 1290 Ma along a 1860 Ma suture between two Archean continents. Within the Nain Plutonic Suite, pluton and dyke emplacement was associated with intermittent extension and transcurrent movements on east-west and NNW-SSE faults. During successive emplacement, older structures tended to be reactivated by younger intrusions. The same kinds of magmas were intruded intermittently throughout the development of the batholith. In many cases, intrusion was accompanied by fragmentation of the adjacent wall and roof rocks, and probably involved cauldron subsidence. Anorthosite and granite form large tabular plutons whereas composite ferrodiorite-monzonite intrusions mostly form arcuate dykes, small circular plutons, or narrow remnants in the margins of large anorthosite plutons. Relatively small amounts of troctolite mainly form sheet-like bodies. There is an overall longitudinal asymmetry to the batholith with rapakivi granite predominant in the west and anorthosite in the east. The anorthosite is further spatially divided into older, partly deformed and recrystallized anorthosite and leuconorite in the west and north, and younger, undeformed and unrecrystallized anorthosite and

  20. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  1. Immobilization and geological disposal of nuclear fuel waste.

    PubMed

    Tait, J C

    1984-08-01

    The Canadian Nuclear Fuel Waste Management Program is developing methods for the safe disposal of both used nuclear fuel and fuel recycle waste. The disposal strategy is based on interim storage of the used fuel, immobilization of either used fuel or recycle waste, and disposal, deep in a stable geological formation in the Canadian Shield. The disposal concept proposes a multibarrier system to inhibit the release of the radioactive waste from the disposal vault. The principal components of the multibarrier system are (i) the waste form in which the radionuclides are immobilized, (ii) engineered barriers including high integrity containers, buffers and backfills designed to retard the movement of groundwaters in the disposal vault, and (iii) the natural barrier provided by the massive geological formation itself. The research programs to investigate this concept are discussed briefly. Several different waste forms are being developed for the immobilization of high-level fuel recycle waste, including glass, glass-ceramics and crystalline materials. Dissolution of these materials in groundwater is the only likely scenario that could lead to radionuclide release. The factors that influence the aqueous dissolution behaviour of these materials are reviewed. PMID:6488089

  2. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  3. Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.

    2014-01-01

    The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low

  4. Predictive geology: with emphasis on nuclear-waste disposal

    SciTech Connect

    De Marsily, G.; Merriam, D.F.

    1982-11-01

    Reviews book which primarily discusses applications of earth science to the disposal of high-level radioactive wastes. Points out that very little is said regarding practical experience with, or the epistemological foundation of, prediction in the earth and geotechnical sciences. Suggests that an in-depth examination of the difficulties of retrodiction in the earth sciences might have provided the philosophical overview missing in a volume whose title stresses predictive geology.

  5. Interface management for the Mined Geologic Disposal System

    SciTech Connect

    Ashlock, K.J.

    1998-03-01

    The purpose of this paper is to present the interface management process that is to be used for Mined Geologic Disposal System (MGDS) development. As part of the systems engineering and integration performed on the Yucca Mountain Project (YMP), interface management is critical in the development of the potential MGDS. The application of interface management on the YMP directly addresses integration between physical elements of the MGDS and the organizations responsible for their development.

  6. Mined Geologic Disposal System Requirements Document. Revision 1

    SciTech Connect

    Not Available

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS.

  7. Current Mined Geologic Disposal System concept of operations

    SciTech Connect

    Daniel, R.B.; Teraoka, G.M.

    1998-07-01

    The concept of operations for the Mined Geologic Disposal System (MGDS) provides an integrated, conceptual description of the physical architecture and operating concept of the potential repository. The document facilitates a common understanding of the operations among system planners, developers and implementors by summarizing design solutions and operating concepts. During this past year, the MGDS Concept of Operations document was updated to reflect the Viability Assessment (VA) design and operating concept. Previously, this document reflected the Advanced Conceptual Design (ACD). This paper presents a description of the significant operational changes from ACD to VA design that are now captured in the concept of operations document.

  8. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    NASA Astrophysics Data System (ADS)

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen

    2016-06-01

    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (< 1 day) pumping tests, which facilitated the characterization of some of the fractures. The hydraulic properties were then used for other fractures that, according to geophysics and structural geology, belonged to the same families. Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  9. Risk methodology for geologic disposal of radioactive waste

    SciTech Connect

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. ); Guzowski, R.V. )

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

  10. Cement-based grouts in geological disposal of radioactive waste

    SciTech Connect

    Onofrei, M.

    1996-04-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from <10{sup -7} m s{sup -1} to 10{sup -9} m s{sup -1} and to penetrate fissures in the rock with apertures as small as 10 {mu}m. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment.

  11. Quaternary geology and waste disposal in South Norfolk, England

    NASA Astrophysics Data System (ADS)

    Gray, J. M.

    South Norfolk is dominated by the till plain of the Anglian Glaciation in eastern England, and therefore there are very few disused gravel pits and quarries suitable for the landfilling of municipal waste. Consequently, in May 1991, Norfolk County Council applied for planning permission to develop an above ground or 'landraise' waste disposal site at a disused U.S. World War II Airfield at Hardwick in South Norfolk. The proposal involved excavating a pit 2-4 m deep into the Lowestoft Till and overfilling it to create a hill of waste up to 10 m above the existing till plain. In general, leachate containment was to be achieved by utilising the relatively low permeability till on the floor of the site, but with reworking of the till around the site perimeter because of sand lenses in the upper part of the till. This paper examines three aspects of the proposal and the wider issues relating to Quaternary geology and waste disposal planning in South Norfolk: (i) the suitability of the till as a natural leachate containment system; (ii) the appropriateness of the landraise landform; and (iii) alternative sites. A Public Inquiry into the proposals was held in January/February 1993 and notification of refusal of planning permission was published in August 1993. Among the grounds for refusal were an inadequate knowledge of the site's geology and hydrogeology and the availability of alternative sites. The paper concludes by stressing that a knowledge of Quaternary geology is crucial to both the planning and design of landfill sites in areas of glacial/Quaternary sediments.

  12. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  13. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    SciTech Connect

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how

  14. Nuclear Waste Disposal in Deep Geological Formations: What are the Major Remaining Scientific Issues?

    SciTech Connect

    Toulhoat, Pierre

    2007-07-01

    For more than thirty years, considerable efforts have been carried out in order to evaluate the possibility of disposing of high level wastes in deep geological formations. Different rock types have been examined, such as water-under-saturated tuffs (USA), granites or crystalline rocks (Canada, Sweden, and Finland), clays (France, Belgium, and Switzerland), rock-salt (Germany). Deep clays and granites, (provided that the most fractured zones are avoided in the second case) are considered to fulfill most allocated functions, either on short term (reversibility) or long term. Chemically reducing conditions favor the immobilization of actinides and most fission products by precipitation, co-precipitation and sorption. If oxidizing conditions prevail, the safety demonstration will mostly rely on the performance of artificial confinement systems. Rock-salt offers limited performance considering the issue of reversibility, which is now perceived as essential, mostly for ethical and sociological reasons. However, several issues would deserve additional research programs, and as a first priority, a clear description of time/space succession of processes during the evolution of the repository. This will allow a better representation of coupled processes in performance assessment, such as the influence of gases (H{sub 2}) generated by corrosion, on the long term dynamics of the re-saturation. Geochemical interactions between the host formation and the engineered systems (packages + barriers) are still insufficiently described. Additional gains in performance could be obtained when taking into account processes such as isotopic exchange. Imaginative solutions, employing ceramic- carbon composite materials could be proposed to replace heavy and gas-generating overpacks, or to accommodate the small but probably significant amount of 'ultimate' wastes that will be inevitably produced by Generation IV reactor systems. (author)

  15. Treatment of uncertainties in the geologic disposal of radioactive waste

    SciTech Connect

    Cranwell, R.M.

    1985-12-31

    Uncertainty in the analysis of geologic waste disposal is generally considered to have three primary components: (1) computer code/model uncertainty, (2) model parameter uncertainty, and (3) scenario uncertainty. Computer code/model uncertainty arises from problems associated with determination of appropriate parameters for use in model construction, mathematical formulatin of models, and numerical techniques used in conjunction with the mathematical formulation of models. Model parameter uncertainty arises from problems associated with selection of appropriate values for model input, data interpretation and possible misuse of data, and variation of data. Scenario uncertainty arises from problems associated with the "completeness` of scenarios, the definition of parameters which describe scenarios, and the rate or probability of scenario occurrence. The preceding sources of uncertainty are discussed below.

  16. Status of LLNL granite projects

    SciTech Connect

    Ramspott, L.D.

    1980-12-31

    The status of LLNL Projects dealing with nuclear waste disposal in granitic rocks is reviewed. This review covers work done subsequent to the June 1979 Workshop on Thermomechanical Modeling for a Hardrock Waste Repository and is prepared for the July 1980 Workshop on Thermomechanical-Hydrochemical Modeling for a Hardrock Waste Repository. Topics reviewed include laboratory determination of thermal, mechanical, and transport properties of rocks at conditions simulating a deep geologic repository, and field testing at the Climax granitic stock at the USDOE Nevada Test Site.

  17. Modeling Biogeochemical Reactive Transport in Fractured Granites: Implications for the Performance of a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Molinero, J.; Samper, J.; Pedersen, K.; Puigdomenech, I.

    2003-12-01

    Several countries around the world are considering deep repositories in fractured granitic formations for the final disposal of high-level radioactive waste. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Žsp” in Sweden. One of the key aspects for performance assessment concerns to groundwater redox conditions because: (a) the presence of oxygen will affect to the corrosion of canisters, (b) possible production of hydrogen sulphide from sulphate reduction will also have a negative effect on these metallic containers, and (c) several long-lived radionuclides are much more soluble and mobile under oxidizing conditions. Several projects have been performed at Žsp” to investigate different aspects of the groundwater redox evolution. The vast amount of in situ-generated information has been used in this work to set up coupled hydrobiogeochemical models. Numerical models account for saturated groundwater flow, solute transport by advection, dispersion and molecular diffusion, geochemical reactions involving both the liquid and solid phases, and microbially-catallyzed processes. For the Žsp” site, modelling results provide quantitative support for the following conclusions. (A) At the operational phase of the repository, shallow fresh groundwater could reach the depth of the underground facility. Shallow groundwaters loose dissolved oxygen during the infiltration through soil layers and then, respiration of dissolved organic matter is induced along the flow paths through the reduction of Fe(III)-bearing minerals of the fracture zones. Microbial anaerobic respiration of DOC provides additional reducing capacity at the depth of the tunnel. (B) After repository closure, atmospheric oxygen will remain trapped within the tunnel. Abiotic consumption of this oxygen has been

  18. Reversible Experiments: Putting Geological Disposal to the Test.

    PubMed

    Bergen, Jan Peter

    2016-06-01

    Conceiving of nuclear energy as a social experiment gives rise to the question of what to do when the experiment is no longer responsible or desirable. To be able to appropriately respond to such a situation, the nuclear energy technology in question should be reversible, i.e. it must be possible to stop its further development and implementation in society, and it must be possible to undo its undesirable consequences. This paper explores these two conditions by applying them to geological disposal of high-level radioactive waste (GD). Despite the fact that considerations of reversibility and retrievability have received increased attention in GD, the analysis in this paper concludes that GD cannot be considered reversible. Firstly, it would be difficult to stop its further development and implementation, since its historical development has led to a point where GD is significantly locked-in. Secondly, the strategy it employs for undoing undesirable consequences is less-than-ideal: it relies on containment of severely radiotoxic waste rather than attempting to eliminate this waste or its radioactivity. And while it may currently be technologically impossible to turn high-level waste into benign substances, GD's containment strategy makes it difficult to eliminate this waste's radioactivity when the possibility would arise. In all, GD should be critically reconsidered if the inclusion of reversibility considerations in radioactive waste management has indeed become as important as is sometimes claimed. PMID:26364214

  19. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    SciTech Connect

    Murphy, W.M.; Kovach, L.A.

    1995-09-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW.

  20. Underground mining and deep geologic disposal - Two compatible and complementary activities

    SciTech Connect

    Rempe, N.T.

    1995-12-31

    Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

  1. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  2. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    PubMed

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like. PMID:25981511

  3. Integrated Numerical Simulation of Thermo-Hydro-Chemical Phenomena Associated with Geologic Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Kim, Jun-Mo; Kihm, Jung-Hwi

    2014-05-01

    A series of numerical simulations was performed using a multiphase thermo-hydro-chemical numerical model to predict integratedly and evaluate quantitatively thermo-hydro-chemical phenomena due to heat generation associated with geologic disposal of high-level radioactive waste. The average mineralogical composition of the fifteen unweathered igneous rock bodies, which were classified as granite, in Republic of Korea was adopted as an initial (primary) mineralogical composition of the host rock of the repository of high-level radioactive waste in the numerical simulations. The numerical simulation results show that temperature rises and thus convective groundwater flow occurs near the repository due to heat generation associated with geologic disposal of high-level radioactive waste. Under these circumstances, a series of water-rock interactions take place. As a result, among the primary minerals, quartz, plagioclase (albite), biotite (annite), and muscovite are dissolved. However, orthoclase is initially precipitated and is then dissolved, whereas microcline is initially dissolved and is then precipitated. On the other hand, the secondary minerals such as kaolinite, Na-smectite, chlorite, and hematite are precipitated and are then partly dissolved. In addition, such dissolution and precipitation of the primary and secondary minerals change groundwater chemistry (quality) and induce reactive chemical transport. As a result, in groundwater, Na+, Fe2+, and HCO3- concentrations initially decrease, whereas K+, AlO2-, and aqueous SiO2 concentrations initially increase. On the other hand, H+ concentration initially increases and thus pH initially decreases due to dissociation of groundwater in order to provide OH-, which is essential in precipitation of Na-smectite and chlorite. Thus, the above-mentioned numerical simulation results suggest that thermo-hydro-chemical numerical simulation can provide a better understanding of heat transport, groundwater flow, and reactive

  4. Systems engineering programs for geologic nuclear waste disposal

    SciTech Connect

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  5. Spent fuel test-climax: a test of geologic storage of high-level waste in granite

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1981-01-01

    A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

  6. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  7. 3D surface roughness recreation and data processing of granitic rocks and claystones, potential host rocks for radioactive waste disposal

    NASA Astrophysics Data System (ADS)

    Buocz, Ildikó; Török, Ákos; Rozgonyi-Boissinot, Nikoletta

    2015-04-01

    The determination and modelling of the stability of rock slopes, tunnels, or underground spaces, i.e. radioactive waste disposal facilities, is an important task in engineering. The appropriate estimation of the mechanical parameters for a realistic description of the behaviour of rocks results in higher safety and more economic design. The failure of stability is primarily due to the shear failure of the rock masses along fractures and joints: therefore the correct determination of the shear strength is crucial. One of the most important parameters influencing the shear strength along rock joints is their surface roughness. Although the quantification of surface roughness has been an open question during the past century, several attempts have been made, starting with 2D and continuing with 3D measurements, to provide engineers with a method for determining shear strength numerically. As technology evolved, the 3D methods became more popular and several scientists started to investigate the surface properties through laser scanning and different photogrammetrical methods. This paper shows a photogrammetric method for the 3D digital recreation of joint surfaces of granitic rock and claystone, both potential host rocks for radioactive waste disposal. The rocks derived from Bátaapáti (South Hungary) and Mont Terri (North Switzerland) respectively. The samples are laboratory scaled specimens with an areal size of 50x50 mm. The software used is called ShapeMetrix3D, developed by 3GSM GmbH in Austria. The major steps of the creation of the 3D picture are presented, as well as the following data processing which leads to the quantification of the 3D surface roughness.

  8. Geology and tin-greisen mineralization of the Akash granite, northern Arabian Shield

    USGS Publications Warehouse

    Kellogg, K.S.; Smith, C.W.

    1986-01-01

    The western margin of the postorogenic Akash granite, 30 km E of Ha'il in the northern Arabian Shield, is greisenized and contains anomalous concentrations of Sn. The pluton intrudes metamorphic and intrusive rocks, and crops out as a 10 by 15 km elliptical body with its long axis oriented N. It consists predominantly of metaluminous alkali-feldspar granite or syenogranite, with accessory biotite and muscovite, and traces of fluorite. Greisenization extends discontinuously in a zone at least 3 km long parallel to the western contact, and along E-trending hematitic quartz veins for more than 2 km from the contact. The veins occupy fractures that were probably conduits for ascending mineralizing fluids. Within about 20 m of the contact, they are enclosed in quartz-white mica greisen containing hematite, fluorite, and locally, topaz and cassiterite. Composite chip samples from the greisenized zone have an average Sn content of 710 ppm, and a maximum of 1600 ppm. Anomalous values for Zn, Fe, Mn, Mo, Bi and Cu also occur, but none of the samples contain detectable W. Three samples of hematitic quartz averaged 126 ppm Sn, and one contained 200 ppm W. ?? 1986.

  9. Ukranian program of radioactive waste disposal in geological formations

    SciTech Connect

    Khrushchov, D.P.; Pavlovsky, M.A.; Starodoumov, V.M.

    1996-12-01

    On the initiative of State Committee on Nuclear Power Utilization the purposeful investigations in the frames of interinstitutional program `isolation of radioactive waste in geologic formations` has been started in 1998. A preparatory stage of R&D program has been completed.

  10. U.S. Geological Survey research in radioactive waste disposal; fiscal year 1980

    USGS Publications Warehouse

    Schneider, Robert; Trask, N.J.

    1982-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) High-level and transuranic wastes; (2) Low-level wastes, or (3) Uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  11. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs.

  12. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W.

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  13. Criticality safety considerations in the geologic disposal of spent nuclear fuel assemblies

    SciTech Connect

    Gore, B.F.; McNair, G.W.; Heaberlin, S.W.

    1980-05-01

    Features of geologic disposal which hamper the demonstration that criticality cannot occur therein include possible changes of shape and form, intrusion of water as a neutron moderator, and selective leaching of spent fuel constituents. If the criticality safety of spent fuel disposal depends on burnup, independent measurements verifying the burnup should be performed prior to disposal. The status of nondestructive analysis method which might provide such verification is discussed. Calculations were performed to assess the potential for increasing the allowed size of a spent fuel disposal canister if potential water intrusion were limited by close-packing the enclosed rods. Several factors were identified which severely limited the potential of this application. The theoretical limit of hexagonal close-packing cannot be achieved due to fuel rod bowing. It is concluded that disposal canisters should be sized on the basis of assumed optimum moderation. Several topics for additional research were identified during this limited study.

  14. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  15. Development of an Environmental Safety Case for a Geological Disposal Facility in the UK

    NASA Astrophysics Data System (ADS)

    Bailey, L.; Clark, H.; Wellstead, M.

    2012-04-01

    Geological disposal is the UK policy for the long-term management of higher activity radioactive waste. The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal. The implementation process is founded on the principles of voluntarism and partnership and the UK Government has set in place a process that encourages communities to participate in the siting process. Developing an environmental safety case (ESC) that gives confidence that a geological disposal facility (GDF) for higher activity radioactive wastes will remain passively safe for hundreds of thousands of years after the facility has been closed, and is no longer actively maintained, is an important and challenging part of the programme to implement geological disposal. Our approach for building confidence in long-term safety is to use multiple barriers to isolate and contain the wastes and to explain our confidence in the performance of these barriers by developing a multi-factor safety case. We will develop a safety case based on varied and different lines of reasoning, including both quantitative aspects and qualitative arguments. We will use a range of safety arguments to support the ESC, drawing on underpinning science and engineering. We have published a generic ESC (that is not specific to any site or disposal facility design) that considers the long-term safety of illustrative generic disposal facility design examples in stylised geological environments. This generic ESC explains how engineered and natural barriers can work together to isolate and contain the radioactivity in the wastes. The safety arguments in the generic ESC are supported by calculations using a simple model that is illustrative of a broad range of disposal facility designs and geological environments. The generic ESC provides a benchmark enabling us to undertake disposability assessments for waste packages, without

  16. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  17. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    PubMed

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. PMID:27457674

  18. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part II. Geologic and hydrologic characterization

    SciTech Connect

    Sargent, K.A.; Bedinger, M.S.

    1985-12-31

    The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground-water hydrology and Pleistocene lakes and marshes. Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province. Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho. 43 refs., 22 figs.

  19. The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel: geology, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Eyal, M.; Litvinovsky, B. A.; Katzir, Y.; Zanvilevich, A. N.

    2004-10-01

    Calc-alkaline leucocratic granites that were emplaced at the late post-collision stage of the Pan-African orogeny are abundant in the northern half of the Arabian-Nubian Shield. Commonly, they are referred to as the Younger Granite II suite. In southern Israel such rocks are known as Elat granite. Studies of these rocks enable to recognize two types of granites: coarse-grained, massive Elat granite (EG), and fine- to medium-grained Shahmon gneissic granite (SGG). Both granite types are high-K and peraluminous ( ASI ranges from 1.03 to 1.16). They are similar in modal composition, mineral and whole-rock chemistry. Within the EG, a noticeable distinction in whole-rock chemistry and mineral composition is observed between rocks making up different plutons. In particular, the granite of Wadi Shelomo, as compared to the Rehavam pluton, is enriched in SiO 2, FeO∗, K 2O, Ba, Zr, Th, LREE and impoverished in MgO, Na 2O, Sr, and HREE. The Eu/Eu∗ values in the granite are low, up to 0.44. Mass-balance calculations suggest that chemical and mineralogical variations were caused by fractionation of ˜16 wt.% plagioclase from the parental Rehavam granite magma at temperature of 760-800 °C (muscovite-biotite geothermometer). The Rb-Sr isochrons yielded a date of 623 ± 24 Ma for the EG, although high value of age-error does not allow to constrain time of emplacement properly. The Rb-Sr date for SGG is 640 ± 9 Ma; however, it is likely that this date points to the time of metamorphism. A survey of the literature shows that peraluminous, high-K granites, similar to the EG, are abundant among the Younger Granite II plutons in the Sinai Peninsula and Eastern Desert, Egypt. They were emplaced at the end of the batholithic (late post-collision) stage. The most appropriate model for the generation of the peraluminous granitic magma is partial melting of metapelite and metagreywacke.

  20. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    SciTech Connect

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  1. MINED GEOLOGIC DISPOSAL SYSTEM (MGDS) MONITORING & CONTROL SYSTEMS CENTRALIZATION TECHNICAL REPORT

    SciTech Connect

    M.J. McGrath

    1998-03-31

    The objective of this report is to identify and document Mined Geologic Disposal System (MGDS) requirements for centralized command and control. Additionally, to further develop the MGDS monitoring and control functions. This monitoring and control report provides the following information: (1) Determines the applicable requirements for a monitoring and control system for repository operations and construction (excluding Performance Confirmation). (2) Makes a determination as to whether or not centralized command and control is required.

  2. Effects of shield brine on the safe disposal of waste in deep geologic environments

    NASA Astrophysics Data System (ADS)

    Park, Y.-J.; Sudicky, E. A.; Sykes, J. F.

    2009-08-01

    The salinity of groundwater increases with depth in the Canadian Shield (up to 1.3 kg/L of density). The existence of brine can be critically important for the safe geologic disposal of radioactive wastes, as dense brine can significantly retard the upward migration of radionuclides released from repositories. Static and flushing conditions of the deep brine are analyzed using a U-tube analogy model. Velocity reduction due to the presence of dense brine is derived under flushing conditions. A set of illustrative numerical simulations in a two-dimensional cross section is presented to demonstrate that dense brine can significantly influence regional groundwater flow patterns in a shield environment. It is implied from the results that (1) the existence of Shield brine can be an indicator of a hydrogeologically stable environment, (2) activities near ground surface may not perturb the stable groundwater environment in the deep brine region, and thus, (3) the deep brine region can be considered as a candidate geologic site for the safe disposal of waste. In addition to brine, other issues associated with long-term waste disposal, such as geological, glacial and seismic events, may need to be considered for the safe storage of spent nuclear fuel in a shield environment.

  3. Temperature-package power correlations for open-mode geologic disposal concepts.

    SciTech Connect

    Hardin, Ernest L.

    2013-02-01

    Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.

  4. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  5. Proceedings of the Symposium on Uncertainties Associated with the Regulation of the Geologic Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Kocher, D. C.

    1982-03-01

    Technical aspects related to the development of standards for regulating geologic disposal of high level radioactive waste, with particular emphasis on the sources and magnitudes of uncertainties associated with methods for predicting post closure repository performance and potential health risks to future generations are discussed. Important licensing and regulatory issues involved in geologic waste disposal, and the social and political climate in which issues of high level waste management are being debated are also considered.

  6. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria. PMID:26024740

  7. The geology and hydrogeology of Bear Creek Valley Waste Disposal Areas A and B

    SciTech Connect

    1984-05-01

    A study was undertaken of the Oil Landfarm and Burial Grounds A and B, which are three disposal sites within the Bear Creek Waste Disposal Area. The area is located west of the Y-12 plant, about 3 miles southwest of Oak Ridge, Tennessee. The purpose of this interim report is to present data collected at the Burial Grounds A and B, and to provide the results of hydrogeologic analyses. The Oil Landfarm geologic and hydrogeologic data and analyses have been submitted in a January 1984 interim report. The overall objectives of the study were to characterize the types and extent of wastes present and to define the occurrence and movement of ground water beneath the sites. The intention of this work is to provide criteria on which a design for containing the waste can be developed. Specific activities performed by Bechtel included: drilling for subsurface geologic data; installing monitoring wells; measuring permeability and ground-water flow directions; and collecting soil, sediment, surface- and ground-water, and liquid-waste samples for chemical analysis. Results are presented on the geology and ground waters.

  8. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  9. Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Shaw, Sam; Byrne, James M; Boothman, Christopher; Lloyd, Jonathan R

    2013-06-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ~11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides. PMID:23524677

  10. Microbial Reduction of Fe(III) under Alkaline Conditions Relevant to Geological Disposal

    PubMed Central

    Williamson, Adam J.; Morris, Katherine; Shaw, Sam; Byrne, James M.; Boothman, Christopher

    2013-01-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ∼11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides. PMID:23524677

  11. Summary of key directives governing permanent disposal in a geologic repository

    SciTech Connect

    Sands, S.C. III

    1993-11-01

    This document was developed in support of the Idaho National Engineering Laboratory (INEL) Spent Fuel and Waste Management Technology Development Program (SF&WMTDP). It is largely comprised of flow diagrams summarizing the key regulatory requirements which govern permanent disposal in a geologic repository. The key purposes are (1) to provide an easy and effective tool for referencing or cross referencing federal directives (i.e., regulations and orders), (2) to provide a method for examining the requirements in one directive category against the requirements in another, and (3) to list actions that must be taken to ensure directive compliance. The document is categorically broken down into a Transportation section and a Mined Geologic Disposal System (MGDS) section to ensure that the interrelationship of the entire disposal system is considered. The Transportation section describes the transportation packaging requirements, testing methods, and safety requirements imposed on fissile material shipments. The MGDS section encompasses technical aspects involved in siting, licensing, waste interaction with the container, container design features, physical characteristics of the surrounding environment, facility design features, barrier systems, safety features, criticality considerations, migration restrictions, implementation guidelines, and so forth. For purposes of illustration, the worst case scenario is outlined. It is important that the approaches and considerations contained in this document be integrated into the efforts of the SF&WMTDP so that every applicable aspect of the regulatory requirements can be evaluated to avoid investing large sums of money into projects that do not take into account all of the aspects of permanent waste disposal. Not until an overall picture and clear understanding of these regulations is established can a basis be developed to govern the direction of future activities of the SF&WMTDP.

  12. EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053

    SciTech Connect

    Breen, B.J.; Garcia-Sineriz, J.L.; Mayer, S.; Schroeder, T.J.; Verstricht, J.

    2012-07-01

    Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise

  13. Development of Wireless Data Transmission System for the Monitoring in Geological Disposal of Radioactive Waste - 12063

    SciTech Connect

    Suzuki, Kei; Eto, Jiro; Tanabe, Hiromi; Esaki, Taichi; Takamura, Hisashi; Suyama, Yasuhiro

    2012-07-01

    The authors have been developing a wireless data transmission system to monitor the performance of a geological disposal system for radioactive waste. The system's concepts, advantages, and a recent development focused on reducing transmitter size to suit narrow spaces such as bentonite buffers and boreholes. A wireless transmitter with a built-in temperature sensor and a connector for external sensors has been developed, measuring 130 mm in length and 50 mm in diameter. The capability of the transmitter was confirmed by transmission tests on the ground and in a bentonite block. (authors)

  14. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  15. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    SciTech Connect

    Carr, M.D.; Yount, J.C.

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  16. Acoustic mapping of the regional seafloor geology in and around Hawaiian ocean dredged-material disposal sites

    USGS Publications Warehouse

    Torresan, Michael E.; Gardner, James V.

    2000-01-01

    During January and February 1998 the U.S. Geological Survey Coastal and Marine Geology Team (USGS) conducted regional high-resolution multibeam mapping surveys of the area surrounding EPA-designated ocean disposal sites located offshore of the Hawaiian Islands of Oahu, Kauai, Maui, and Hawaii. The sites are all located within 5 nautical miles of shore on insular shelves or slopes. Regional maps were required of areas much larger than the disposal sites themselves to assess both the regional seafloor geology and the immediate vicinity of the disposal sites. The purpose of the disposal site surveys was to delimit the extent of disposal material by producing detailed bathymetric and backscatter maps of the seafloor with a ± 1 m spatial accuracy and <1% depth error. The advantage of using multibeam over conventional towed, single-beam sidescan sonar is that the multibeam data are accurately georeferenced for precise location of all imaged features. The multibeam produces a coregistered acoustic-backscatter map that is often required to locate individual disposal deposits. These data were collected by the USGS as part of its regional seafloor mapping and in support of ocean disposal site monitoring studies conducted in cooperation with the US Environmental Protection Agency (EPA) and the US Army Corps of Engineers (COE).

  17. The consideration of geological uncertainty in the siting process for a Geological Disposal Facility for radioactive waste

    NASA Astrophysics Data System (ADS)

    Mathers, Steve; McEvoy, Fiona; Shaw, Richard

    2015-04-01

    Any decision about the site of a Geological Disposal Facility at depth for medium to high level radioactive waste is based on a safety case which in turn is based on an understanding of the geological environment which enables, for example, understanding groundwater flows and groundwater chemical composition. Because the information on which geological understanding is based cannot be fully understood, it is important to ensure that: i. Inferences are made from data in a way that is consistent with the data. ii. The uncertainty in the inferred information is described, quantitatively where this is appropriate. Despite these uncertainties decisions can and must be made, and so the implications of the uncertainty need to be understood and quantified. To achieve this it is important to ensure that: i. An understanding of how error propagates in all models and decision tools. Information which is collected to support the decision-making process may be used as input into models of various kinds to generate further information. For example, a process model may be used to predict groundwater flows, so uncertainty in the properties which are input to the model (e.g. on rock porosity and structure) will give rise to uncertainty in the model predictions. Understanding how this happens is called the analysis of error propagation. It is important that there is an understanding of how error propagates in all models and decision tools, and therefore knowledge of how much uncertainty remains in the process at any stage. As successive phases of data collection take place the analysis of error propagation shows how the uncertainty in key model outputs is gradually reduced. ii. The implications of all uncertainties can be traced through the process. A clear analysis of the decision-making process is necessary so that the implications of all uncertainties can be traced through the process. This means that, when a final decision is made, one can state with a high level of confidence

  18. Analytical model for radionuclide transport in the buffer zone of the deep geological disposal

    NASA Astrophysics Data System (ADS)

    Tsao, L. D.; Chen, J. S.; Li, M. H.

    2015-12-01

    Radioactive nuclear waste poses long-term threat to human beings and the environment because that remains radioactive after millions of years. Therefore, radioactive wastes must be isolated from the living environment for millennia. A deep geological disposal entails a combination of four parts: vitrified waste form, imaginary zone, buffer zone and excavation-affected zone. The buffer zone constituted by bentonite clay provides a high level of containment of the radioactivity in the wastes over a very long time period. Analytical solution is an efficient tool for the performance evaluation of the buffer zone. This study develops a new analytical model to diffusion equation in cylindrical coordinate for describing radionuclide transport in the buffer zone. The derived solution is compared against the previous solution to illustrate the validity of previous solution which was derived using a diffusion equation in Cartesian coordinates.

  19. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  20. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  1. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect

    Van den Akker, B.P.; Ahn, J.

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  2. Birds of a Feather - Developments towards shared, regional geological disposal in the EU?

    SciTech Connect

    Codee, H.D.K.; Verhoef, E.V.; McCombie, Ch.

    2008-07-01

    Geological disposal is an essential component of the long-term management of spent fuel, high level and other long-lived radioactive waste. In the EU, all 25 member states generate radioactive waste. Of course, there are large differences in type and quantity between the member states, but all of them need a long-term solution. Even a country with only lightning rods with radium will need a long-term solution for the disposal. The 1600 year half-life of radium does not fit in a solution with a span of control of just a few hundred years. Implementation of a suitable deep repository may, however, be difficult or impossible for countries with small volumes of waste, because of the high costs involved. Will economy of scale force these birds of a feather to wait to flock together and share a repository? Implementing a small repository and operating it for very long times is very costly. There are past and current examples of countries being prepared to accept radioactive waste from others if a better environmental solution is thus achieved and if the arrangements are fair for all parties involved. The need for supranational surveillance also points to shared solutions. Although the European Parliament and the Commission have both supported the concept of shared regional repositories in Europe, (national) political and societal constraints have hampered the realization of such facilities up to now. The first step in this staged process was the EC funded project, SAPIERR I. The project (2003 to 2005) studied the feasibility of shared regional storage facilities and geological repositories, for use by European countries. It showed that, if shared regional repositories are to be implemented even some decades ahead, efforts must already be increased now. The next step in the process is to develop a practical implementation strategy and organizational structures to work on shared EU radioactive waste storage and disposal activities. This is addressed in the EC funded

  3. Groundwater study using drill holes in the Abukuma granitic province, NE Japan: chemical and isotopic features in the fracture zone around the geological tectonic line

    NASA Astrophysics Data System (ADS)

    Takahashi, H. A.; Tsukamoto, H.; Kazahaya, K.; Takahashi, M.; Morikawa, N.; Yasuhara, M.; Inamura, A.; Handa, H.; Nakamura, T.

    2010-12-01

    Chemical and isotopic features of groundwater in a granitic province are considered to be controlled by water origin, water-rock reaction and/or fracture connection in rocks. Under the depth of a weathering layer, groundwater is existed only in cracks of granite, and its chemical nature or origin has been poorly understood because of difficulties on collection of water samples preserving its natural conditions. On the other hand, a geological tectonic line in a granitic province might provide an influence to groundwater as a path for ascending deep fluid. We conducted a study for chemical processes of groundwater in cracks with investigation of an influence of tectonic line by drilling three bore holes at two sites in a same rock body; Miharu site is located ca. 1.2km west from the Morioka-Shirakawa tectonic line, and Shirasawa site is ca. 5km west. In situ sampling of waters in cracks of granite are done with the single and double packer methods. The drill holes were made 305m and 135m at the Miharu site and 230m at the Shirasawa site. Using these bole holes, groundwater features in the fracture zone around the geological tectonic line can be compared with those outside it. Chemical type of groundwater has a variety with depth; the shallower groundwater is categorized as Ca-HCO3- type with slight NO3 contamination whereas deeper groundwater has Na-HCO3- type. Stable isotope composition of water showed that all the sample water is meteoric origin. Those have significantly low values (ca. 10‰ of δD lower than shallow groundwater) obviously indicating that the groundwater does not originate from the present meteoric water. Groundwater with low δD and δ18O values is likely recharged in an ice age consistent with the 14C date showing the age of carbon ranging from 10000 to 15000 yrBP. The vertical trends of chemical and isotopic components are similar between the two holes at the Miharu site, but different between the two sites, Miharu and Shirasawa. The

  4. Geologic, hydrologic, and cultural factors in the selection of sites for the land disposal of wastes in Washington

    USGS Publications Warehouse

    Dion, N.P.; Alvord, R.C.; Olson, T.D.

    1986-01-01

    As part of a program to deal with the problems of waste disposal in Washington, the Department of Ecology (WDOE), in cooperation with the U.S. Geological Survey, completed a study designed to provide the geologic, hydrologic, and cultural data needed to evaluate the suitability of State land areas for the disposal of wastes. Data portraying the distribution of factors that could affect the suitability of areas in Washington for waste disposal were presented in a series of 18 maps (overlays). The factors selected include major geologic units; natural hazards from earthquakes, faulting, and volcanoes; climate; locations of major surface-water and groundwater bodies; population density; and land and water uses. Within each factor (map) the data were grouped into class intervals and the intervals for most factors ranked according to their relative suitability/unsuitability for land disposal of wastes following criteria supplied by WDOE. Areas of the State considered completely unsuitable (as determined by WDOE personnel) for waste disposal because of current or proposed land uses were excluded from ranking. (USGS)

  5. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Alonso, Úrsula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (˜1×10 -3 M) and alkaline (pH≥8) waters.

  6. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.

    PubMed

    Missana, Tiziana; Alonso, Ursula; Turrero, Maria Jesús

    2003-03-01

    The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters. PMID:12598091

  7. Retention of Anionic Species on Granite: Influence of Granite Composition - 12129

    SciTech Connect

    Videnska, Katerina; Havlova, Vaclava

    2012-07-01

    Technetium (Tc-99, T{sub 1/2} = 2.1.10{sup 5} yrs) and selenium (Se-79, T{sub 1/2} = 6.5.10{sup 4} yrs) belong among fission products, being produced by fission of nuclear fuel. Both elements can significantly contribute to risk due to their complicated chemistry, long life times, high mobility and prevailing anionic character. Therefore, knowledge of migration behaviour under different conditions can significantly improve input into performance and safety assessment models. Granite is considered as a potential host rock for deep geological disposal of radioactive waste in many countries. Granitic rocks consist usually of quartz, feldspar, plagioclase (main components), mica, chlorite, kaolinite (minor components). The main feature of the rock is advection governed transport in fractures, complemented with diffusion process from fracture towards undisturbed rock matrix. The presented work is focused on interaction of anionic species (TcO{sub 4}{sup -}, SeO{sub 4}{sup 2-}, SeO{sub 3}{sup 2-}) with granitic rock. Furthermore, the importance of mineral composition on sorption of anionic species was also studied. The batch sorption experiments were conducted on the crushed granite from Bohemian Massive. Five fractions with defined grain size were used for static batch method. Mineral composition of each granitic fraction was evaluated using X-ray diffraction. The results showed differences in composition of granitic fractions, even though originating from one homogenized material. Sorption experiments showed influence of granite composition on adsorption of both TcO4{sup -} and SeO3{sup 2-} on granitic rock. Generally, Se(IV) showed higher retention than Tc(VII). Se(VI) was not almost sorbed at all. Fe containing minerals are pronounced as a selective Se and Tc sorbent, being reduced on their surface. As micas in granite are usually enriched in Fe, increased sorption of anionic species onto mica enriched fractions can be explained by this reason. On the other hand

  8. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    SciTech Connect

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  9. Microbiology and Biogeochemical Study of Underground Research Tunnel for the Geological Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Oh, J.; Seo, H.; Rhee, S.

    2007-12-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.

  10. Geological setting and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga Parbat - Haramosh Massif, northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.

    1998-01-01

    Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic

  11. Monte Carlo simulations for generic granite repository studies

    SciTech Connect

    Chu, Shaoping; Lee, Joon H; Wang, Yifeng

    2010-12-08

    In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport models were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.

  12. Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs

    SciTech Connect

    Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

    1987-09-01

    This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

  13. Factors affecting public and political acceptance for the implementation of geological disposal

    SciTech Connect

    Neerdael, Bernard

    2007-07-01

    The main objective of this paper is to identify conditions which affect public concern (either increase or decrease) and political acceptance for developing and implementing programmes for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant actors can be associated in the decision making process in such a way that their input is enriching the outcome towards a more socially robust and sustainable solution. Finally, it aims at learning from the interaction how to optimise risk management addressing needs and expectations of the public and of other relevant stakeholders. In order to meet these objectives, factors of relevance for societal acceptance conditions are identified, described and analysed. Subsequently these factors are looked for in the real world of nuclear waste management through cases in several countries. The analysis is conducted for six stages of a repository programme and implementation process, from policy development to the realisation of the repository itself. The diversity of characteristics of such contexts increases insight in the way society and values of reference are influencing technological decision making. These interrelated factors need to be integrated in step by step decision making processes as emerging the last years in HLW disposal management. In the conclusions, the effect of each factor on acceptance is derived from the empirical record. In the course of carrying out this analysis, it became clear that acceptance had a different meaning in the first three stages of the process, more generic and therefore mainly discussed at policy level and the other stages, by nature more site-specific, and therefore requesting both public and political acceptance. Experience as clearly addressed in this report has shown that a feasible solution has its technical dimension but that 'an acceptable solution' always will have a combined technical and social dimension. If the paper provides tentative answers

  14. International Socio-Technical Challenges for Geological Disposal (InSOTEC): Project Aims and Preliminary Results - 12236

    SciTech Connect

    Bergmans, Anne; Schroeder, Jantine; Simmons, Peter; Barthe, Yannick; Meyer, Morgan; Sundqvist, Goeran; Martell, Merixell; Kallenbach-Herbert, Beate

    2012-07-01

    InSOTEC is a social sciences research project which aims to generate a better understanding of the complex interplay between the technical and the social in radioactive waste management and, in particular, in the design and implementation of geological disposal. It currently investigates and analyses the most striking socio-technical challenges to implementing geological disposal of radioactive waste in 14 national programs. A focus is put on situations and issues where the relationship between the technical and social components is still unstable, ambiguous and controversial, and where negotiations are taking place in terms of problem definitions and preferred solutions. Such negotiations can vary from relatively minor contestation, over mild commotion, to strong and open conflicts. Concrete examples of socio-technical challenges are: the question of siting, introducing the notion of reversibility / retrievability into the concept of geological disposal, or monitoring for confidence building. In a second stage the InSOTEC partners aim to develop a fine-grained understanding of how the technical and the social influence, shape, build upon each other in the case of radioactive waste management and the design and implementation of geological disposal. How are socio-technical combinations in this field translated and materialized into the solutions finally adopted? With what kinds of tools and instruments are they being integrated? Complementary to providing better theoretical insight into these socio-technical challenges/combinations, InSOTEC aims to provide concrete suggestions on how to address these within national and international contexts. To this end, InSOTEC will deliver insights into how mechanisms for interaction between the technical community and a broad range of socio-political actors could be developed. (authors)

  15. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part III. Geologic and hydrologic evaluation

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Brady, B.T.

    1985-12-31

    This report describes the first phase in evaluating the geology and hydrology of the Basin and Range Province for potential suitability of geohydrologic environments for isolation of high-level radioactive waste. The geologic and hydrologic factors considered in the Province evaluation include distribution of potential host rocks, tectonic conditions and data on ground-water hydrology. Potential host media considered include argillaceous rocks, tuff, basaltic rocks, granitic rocks, evaporites, and the unsaturated zone. The tectonic factors considered are Quaternary faults, late Cenozoic volcanics, seismic activity, heat flow, and late Cenozoic rates of vertical uplift. Hydrologic conditions considered include length of flow path from potential host rocks to discharge areas, interbasin and geothermal flow systems and thick unsaturated sections as potential host media. The Basin and Range Province was divided into 12 subprovinces; each subprovince is evaluated separately and prospective areas for further study are identified. About one-half of the Province appears to have combinations of potential host rocks, tectonic conditions, and ground-water hydrology that merit consideration for further study. The prospective areas for further study in each subprovince are summarized in a brief list of the potentially favorable factors and the issues of concern. Data compiled for the entire Province do not permit a complete evaluation of the favorability for high-level waste isolation. The evaluations here are intended to identify broad regions that contain potential geohydrologic environments containing multiple natural barriers to radionuclide migration. 13 refs., 14 figs.

  16. A tree diagram for compiling a methodology to evaluate suitability of host rock for geological disposal

    NASA Astrophysics Data System (ADS)

    Hayano, A.; Sawada, A.; Goto, J.; Ishii, E.; Moriya, T.; Inagaki, M.; Kubota, S.; Ebashi, T.

    2012-12-01

    In Japan, the Specified Radioactive Waste Final Disposal Act states that the siting process of geological repository for vitrified high-level radioactive waste (HLW) and low-level radioactive waste containing long-lived nuclides (TRU waste) shall consist of three stages. In the first stage, the Preliminary Investigation Areas (PIAs) will be selected by excluding these areas where future significant impacts of natural phenomena such as volcanism and rock deformation are expected based on literature information. The Detailed Investigation Areas (DIAs) will be then selected in the second stage among PIAs focusing on suitability of the host rock where the underground facility is constructed, as well as confirming the results of the first stage through a series of surface-based field activities such as regional geophysics and borehole investigations. The suitability of the host rock is evaluated taking account of thermal, hydrologic, mechanical and geochemical conditions and the volume of host rock, based on the site descriptive models which are constructed by integrating geoscientific information obtained from step-wise investigations. However, due to the limitation of such information in particular in the early stages of investigation, the relatively large uncertainties are associated with the developed site descriptive models. In addition, the integration of above-mentioned multi-disciplinary site investigation information into a site descriptive model is very complex task. It is therefore essential to clarify relationships between the important factors for both safety assessment (SA) and repository design (Design) and the information obtained by the site investigations via site descriptive models. Taking this into account, we have developed a method for evaluating the suitability of the host rock by linking site investigations, SA and Design. In this method, special attention has been paid to uncertainties associated with the site descriptive models and the degree

  17. Hydrologic and geologic aspects of waste management and disposal; a bibliography of publications by U.S. Geological Survey authors, 1950-81

    USGS Publications Warehouse

    Handman, Elinor H.

    1983-01-01

    References to more than 550 reports, articles, and maps are listed alphabetically by author and are indexed by subject. The subject index includes geographic-area terms. Citations from 69 series are included; series are listed separately. The publications listed report the results of U.S. Geological Survey research and field projects throughout the Nation concerning earth-science aspects of waste management and disposal. They include organic, inorganic, and radioactive wastes and related topics such as mathematical models of solute transport. Most of the references are to (1) Geological Survey report series such as Water-Supply Papers, Professional Papers, Bulletins, Circulars, Water-Resources Investigations, and Open-File Reports, (2) technical journals of professional organizations, or (3) reports by other Federal and State agencies.

  18. Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Gautschi, Andreas

    2001-01-01

    As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10-30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities <10-12 m/s, even though joints and faults were included in some of the test intervals. These measurements are consistent with hydrogeological data from Opalinus Clay sections in ten tunnels in the Folded Jura of northern Switzerland. Despite extensive faulting, only a few indications of minor water inflow were encountered in more than 6,600 m of tunnel. All inflows were in tunnel sections where the overburden is less than 200 m. The hydraulic data are consistent with clay pore-water hydrochemical and isotopic data. The extensive hydrogeological data base - part of which derives from particularly unfavourable geological environments - provides arguments that advective transport through faults and joints is not a critical issue for the suitability of Opalinus Clay as a host rock for deep geological waste disposal. Résumé. Dans le cadre du programme suisse de stockage de déchets hautement radioactifs, une formation argileuse du Jurassique, l'argile à Opalinus, a été étudiée en tant que roche hôte potentielle. Des observations dans des cavités dans l'argile et les résultats du programme de recherche allemand consacré au stockage de déchets à risques ont démontré que, à des profondeur de 10 à 30 m, la perméabilité des argiles à Opalinus décroît de plusieurs ordres de grandeur. Des essais hydrauliques dans des forages plus profonds (intervalles de test á une profondeur de plus de 300 m) ont donné des conductivités hydrauliques inférieures à 10-12 m/s, m

  19. Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Gautschi, Andreas

    2001-01-01

    As part of the Swiss programme for high-level radioactive-waste disposal, a Jurassic shale (Opalinus Clay) is being investigated as a potential host rock. Observations in clay pits and the results of a German research programme focusing on hazardous waste disposal have demonstrated that, at depths of 10-30 m, the permeability of the Opalinus Clay decreases by several orders of magnitude. Hydraulic tests in deeper boreholes (test intervals below 300 m) yielded hydraulic conductivities <10-12 m/s, even though joints and faults were included in some of the test intervals. These measurements are consistent with hydrogeological data from Opalinus Clay sections in ten tunnels in the Folded Jura of northern Switzerland. Despite extensive faulting, only a few indications of minor water inflow were encountered in more than 6,600 m of tunnel. All inflows were in tunnel sections where the overburden is less than 200 m. The hydraulic data are consistent with clay pore-water hydrochemical and isotopic data. The extensive hydrogeological data base - part of which derives from particularly unfavourable geological environments - provides arguments that advective transport through faults and joints is not a critical issue for the suitability of Opalinus Clay as a host rock for deep geological waste disposal. Résumé. Dans le cadre du programme suisse de stockage de déchets hautement radioactifs, une formation argileuse du Jurassique, l'argile à Opalinus, a été étudiée en tant que roche hôte potentielle. Des observations dans des cavités dans l'argile et les résultats du programme de recherche allemand consacré au stockage de déchets à risques ont démontré que, à des profondeur de 10 à 30 m, la perméabilité des argiles à Opalinus décroît de plusieurs ordres de grandeur. Des essais hydrauliques dans des forages plus profonds (intervalles de test á une profondeur de plus de 300 m) ont donné des conductivités hydrauliques inférieures à 10-12 m/s, m

  20. Evaluation of a method for designing sealing plugs for HLW geological disposal facilities, taking into account the heterogeneous characteristics of the geological environment

    SciTech Connect

    Suyama, Yasuhiro; Yanagizawa, Koichi; Toida, Masaru

    2007-07-01

    In order to ensure that a repository for the geological disposal of HLW is isolated from the human environment, underground excavations, including pits and tunnels, must be properly sealed. Effective sealing requires that these excavations are backfilled, and that the Excavation Damage or Disturbed Zone (EDZ), which includes preferential flow paths, must be intersected by sealing plugs. Methods for constructing a full-scale sealing plug and their influence on plug performance were evaluated and confirmed by a Tunnel Sealing Experiment (TSX). This experiment was carried out by an international partnership of the Japan Nuclear Cycle Development Institute (JNC) and Atomic Energy of Canada Limited (AECL). However certain specific roles of the scaling plugs at the scale of the whole repository were not studied. There remain issues to be clarified, notably the effectiveness of sealing plugs in a geological environment with heterogeneous characteristics and the resulting influences of the heterogeneities in performance assessment. Focusing on a geological environment with spatially heterogeneous characteristics, the authors have developed a method for designing the sealing plugs, based on a concept of 'primarily design for closure, secondarily design for construction'. Though the proposed method for designing sealing plugs has presently been developed only at a conceptual level, it indicates the possibility of establishing a repository even in a strongly heterogeneous geological environment that may have been considered previously to be inappropriate for a repository. (authors)

  1. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport

  2. Interpretation and Modelling of Data from Site Investigations for a Geological Disposal facility located in the UK

    NASA Astrophysics Data System (ADS)

    Clark, H.; Bailey, L.; Parkes, A.

    2012-04-01

    The Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) has been given the responsibility for implementing geological disposal in the United Kingdom. The implementation process envisaged is that once a candidate site or sites for a geological disposal facility have been identified, NDA-RWMD will undertake surface-based investigations at the site or sites. The information acquired through these investigations would be used as an input to the development of the safety case, for engineering design of the disposal facility and to demonstrate confidence to the key stakeholders that the potential disposal facility site is adequately understood. NDA-RWMD proposes to develop and present the information derived from site characterisation activities in the form of a single integrated Site Descriptive Model, i.e. a description of the geometry, properties of the bedrock and water, and the associated interacting processes and mechanisms, which will be used to address the information requirements of all the end users (including the safety case). It is anticipated that, in a similar way to the approach adopted by international radioactive waste programmes led by SKB (Sweden) and Posiva (Finland), the integrated Site Descriptive Model will be divided into parts comprising clearly defined disciplines which may form either chapters or discipline-based models such as: • Geology; • Hydrogeology; • Hydrochemistry; • Geotechnical; • Radionuclide Transport Properties; • Thermal Properties; and • Biosphere. The integrated Site Descriptive Model will evolve as understanding of the particular site advances and will describe the current understanding of a specific site and, where relevant, the historical development of conditions at the site where this supports the conceptual understanding. The Site Descriptive Model will not include prediction of the future evolution of the conditions at the site: this will be an important component

  3. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part III. Geologic and hydrolic evaluation

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Brady, B.T.

    1983-12-31

    The geologic and hydrologic factors considered in the Province evaluation include distribution of potential host rocks, tectonic conditions and data on ground-water hydrology. Potential host media considered include argillaceous rocks, tuff, basaltic rocks, granitic rocks, evaporites, and the unsaturated zone. The tectonic factors considered are Quaternary faults, late Cenozoic volcanics, seismic activity, heat flow, and late Cenozoic rates of vertical uplift. Hydrologic conditions considered include length of flow path from potential host rocks to discharge areas, interbasin and geothermal flow systems and thick unsaturated sections as potential host media. The Basin and Range Province was divided into 12 subprovinces; each subprovince is evaluated separately and prospective areas for further study are identified. About one-half of the Province appears to have combinations of potential host rocks, tectonic conditions, and ground-water hydrology that merit consideration for further study. The prospective areas for further study in each subprovince are summarized in a brief list of the potentially favorable factors and the issues of concern. Data compiled for the entire Province do not permit a complete evaluation of the favorability for high-level waste isolation. The evaluations here are intended to identify broad regions that contain potential geohydrologic environments containing multiple natural barriers to radionuclide migration. 13 refs., 14 figs.

  4. Use of in-vitro experimental results to model in-situ experiments: bio-denitrification under geological disposal conditions.

    PubMed

    Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira

    2013-01-01

    Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems. PMID:24010028

  5. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    SciTech Connect

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  6. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    SciTech Connect

    Ouzounian, P.; Palmu, Marjatta; Eng, Torsten

    2012-07-01

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge

  7. Report of the second meeting of the consultants on coupled processes associated with geological disposal of nuclear waste

    SciTech Connect

    Tsang, Chin-Fu; Mangold, D.C.

    1985-09-01

    The second meeting of the Consultants on Coupled Processes Associated with Geological Disposal of Nuclear Waste occurred on January 15-16, 1985 at Lawrence Berkeley Laboratory (LBL). All the consultants were present except Dr. K. Kovari, who presented comments in writing afterward. This report contains a brief summary of the presentations and discussions from the meeting. The main points of the speakers' topics are briefly summarized in the report. Some points that emerged during the discussions of the presentations are included in the text related to the respective talks. These comments are grouped under the headings: Comments on Coupled Processes in Unsaturated Fractured Porous Media, Comments on Overview of Coupled Processes, Presentations by Consultants on Selected Topics of Current Interest in Coupled Processes, and Recommendations for Underground Field Tests with Applications to Three Geologic Environments.

  8. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    SciTech Connect

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  9. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    SciTech Connect

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.; Hansen, Frank D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  10. Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328

    SciTech Connect

    Huff, Kathryn D.

    2013-07-01

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

  11. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    NASA Astrophysics Data System (ADS)

    Einziger, R. E.; Himes, D. A.

    1982-09-01

    The possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository is studied. One aspect is an assessment of the possible spent fuel waste forms. The fuel performance portion was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radiouclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3) rods vented to remove gases and resealed; (4) disassembled fuel bundles to close pack the rods; and (5) rods chopped and fragments immobilized in a matrix material.

  12. Geophysical investigation for the evaluation of the long-time safety of repositories and underground disposals in deep geological formations

    NASA Astrophysics Data System (ADS)

    Just, A.; Salinar Group

    2003-04-01

    The performance assessment of underground disposal facilities is an indispensable premise to ensure that repositories fulfil the requirements for permanent and safe disposal of hazardous waste. The geological barrier is supposed to be a virtually impermeable host formation like rock salt. The efficiency of the barrier is endangered by the presence of risk zones such as faults or fractures particularly with regard to water-bearing host rocks. Thus the evaluation of the long-time safety of the geological barrier has to be carried out with a minimum of invasion of the future host formation and a maximum of spatial coverage and resolution. Especially geophysical methods are suitable to investigate the geological barrier due to their non-destructive character and spatial information content. Three research projects supported by the German Federal Ministry of Education and Research (BMBF) are engaged in the design and enhancement of a complex geophysical measuring and evaluation system for the investigation of problem zones of the geological barrier in rock salt. The benefit of the combination of high-performance geophysical measuring techniques as seismics, DC-geoelectrics, ground penetrating radar (GPR), electromagnetics and sonar together with strong knowledge of regional salt geology is to increase essentially the reliability of the interpretation of underground measurements. The measuring methods and interpretation tools for host rock characterisation were applied, developed and improved in a flat salt seam structure of an inoperative salt mine in the Lower Harz region. The joint interpretation of the underground geophysical measurements revealed a by-then unknown wet zone, which was tectonically affected. With the scope of refining the complex geophysical measuring and evaluation system and transferring the precedingly acquired experiences to another type of host formation, an operating potassium salt mine in the vicinity of Hannover/Germany was chosen as a new

  13. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    NASA Technical Reports Server (NTRS)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  14. Burying uncertainty: Risk and the case against geological disposal of nuclear waste

    SciTech Connect

    Shrader-Frechette, K.S.

    1996-12-31

    The author of this book asserts that moral and ethical issues must be considered in the development of nuclear waste disposal policies. The book develops this theme showing that to date no technology has provided a fool-proof method of isolating high-level nuclear wastes and that technological advances alone will not increase public acceptance. She supports a plan for the federal government to negotiate construction of MRS facilities that would safely house high-level nuclear waste for about 100 years, providing a temporary solution and a moral and ethical alternative to permanent storage.

  15. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    SciTech Connect

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  16. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.

    PubMed

    Schütz, Marta K; Schlegel, Michel L; Libert, Marie; Bildstein, Olivier

    2015-06-16

    The current projects for the disposal of high-level radioactive waste rely on underground burial and confinement by metallic envelopes that are susceptible to corrosion processes. The impact of microbial activity must be fully clarified in order to provide biological parameters for predictive reactive transport models. This study investigates the impact of hydrogenotrophic iron-reducing bacteria (Shewanella oneidensis strain MR-1) on the corrosion rate of carbon steel under simulated geological disposal conditions by using a geochemical approach. It was found that corrosion damage changes mostly according to the experimental solution (i.e., chemical composition). Magnetite and vivianite were identified as the main corrosion products. In the presence of bacteria, the corrosion rate increased by a factor of 1.3 (according to weight loss analysis) to 1.8 (according to H2 measurements), and the detected amount of magnetite diminished. The mechanism likely to enhance corrosion is the destabilization and dissolution of the passivating magnetite layer by reduction of structural Fe(III) coupled to H2 oxidation. PMID:25988515

  17. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    SciTech Connect

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.

  18. Initial public perceptions of deep geological and oceanic disposal of carbon dioxide.

    PubMed

    Palmgren, Claire R; Morgan, M Granger; Bruine de Bruin, Wändi; Keith, David W

    2004-12-15

    Two studies were conducted to gauge likely public perceptions of proposals to avoid releasing carbon dioxide from power plants to the atmosphere by injecting it into deep geological formations or the deep ocean. Following a modified version of the mental model interview method, Study 1 involved face-to-face interviews with 18 nontechnical respondents. Respondents shared their beliefs after receiving basic information about the technologies and again after getting specific details. Many interviewees wanted to frame the issue in the broader context of alternative strategies for carbon management, but public understanding of mitigation strategies is limited. The second study, administered to a sample of 126 individuals, involved a closed-form survey that measured the prevalence of general beliefs revealed in study 1 and also assessed the respondent's views of these technologies. Study results suggest that the public may develop misgivings about deep injection of carbon dioxide because it can be seen as temporizing and perhaps creating future problems. Ocean injection was seen as more problematic than geological injection. An approach to public communication and regulation that is open and respectful of public concerns is likely to be a prerequisite to the successful adoption of this technology. PMID:15669298

  19. The Belgian approach towards the study of the compatibility of Eurobitum with the geological disposal environment

    SciTech Connect

    Valcke, Elie; Gens, Robert

    2007-07-01

    In Belgium, EUROBITUM bituminized radioactive waste containing large amount of soluble salts (NaNO{sub 3}) is to be disposed of in a final repository in a clay formation. Since the emplacement of the waste will induce many interdependent processes that could negatively affect the interesting radionuclide retarding properties of the clay, the study of the compatibility of EUROBITUM is very complex. To better structure the research and to identify possible knowledge gaps, NIRAS/ONDRAF, the Belgian Radioactive Waste Management Agency, developed the safety functions and safety statements approach. In this paper, we present the application of this approach for the case of EUROBITUM. The approach is illustrated with new and old results on water uptake, swelling, swelling pressure build-up, and ageing, obtained from tests performed in the laboratories of SCK.CEN, the Belgian Nuclear Research Centre. (authors)

  20. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  1. Determination of Granites' Mineral Specific Porosities by PMMA Method and FESEM/EDAX

    SciTech Connect

    Leskinen, A.; Penttinen, L.; Siitari-Kauppi, M.; Alanso, U.; Garcia-Gutierrez, M.; Missana, T.; Patelli, Alessandro

    2007-07-01

    Over extended periods, long-lived radionuclides (RN) or activation products within geologic disposal sites may be released from the fuel and migrate to the geo/biosphere. In the bedrock, contaminants will be transported along fractures by advection and retarded by sorption on mineral surfaces and by molecular diffusion into stagnant pore water in the matrix along a connected system of pores and micro-fissures. The objective of this paper was to determine the connective porosity and mineral-specific porosities for three granite samples by {sup 14}C methyl-methacrylate ({sup 14}C-PMMA) autoradiography. Scanning electron microscopy and energy-dispersive X-ray analyses (FESEM/EDAX) were performed in order to study the pore apertures of porous regions in greater detail and to identify the corresponding minerals. Finally, the porosity results were used to evaluate the diffusion coefficients of RNs from previous experiments which determined apparent diffusion coefficients for the main minerals in three granite samples by the Rutherford Backscattering technique. The total porosity of the Grimsel granite (0.75%) was significantly higher than the porosities of the El Berrocal and Los Ratones granites (0.3%). The porosities of the Grimsel granite feldspars were two to three times higher than the porosities of the El Berrocal and Los Ratones granites feldspars. However, there was no significant difference between the porosities of the dark minerals. A clear difference was found between the various quartz grains. Quartz crystals were non-porous in the El Berrocal and Los Ratones granites when measured by the PMMA method, but the quartz crystals in the Grimsel granite showed 0.5% intra granular porosity. The apparent diffusion coefficients calculated for uranium diffusion within Grimsel granite on different minerals were very similar (2.10{sup -13} {+-} 0.5 m{sup 2}/s), but differences within both Spanish granites were found from one mineral to another (9 {+-} 1.10{sup -14} m

  2. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  3. Geology of the Williston basin, North Dakota, Montana, and South Dakota, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Sandberg, C.A.

    1962-01-01

    The southern Williston basin, which underlies about 110,000 square miles #n North Dakota, South Dakota, and eastern Montana, is part of a large structural and sedimentary basin. Its surface is a flat to gently rolling plain, standing about 1,500 to 3,500 feet above sea level and locally studded by a few high buttes. The sedimentary sequence that fills the basin has a maximum thickness of about 16,700 feet and rests on Precambrian metamorphic rocks at depths of 500 to 13,900 feet below sea level. It contains rocks of every geologic system, from Cambrian to Quaternary. Rocks of Middle Cambrian through Middle Ordovician age are largely shale and sandstone, as much as 1,200 feet thick; rocks of Late Ordovician through Pennsylvanian age are largely limestone and dolomite, as much as 7,500 feet thick; and rocks of Permian through Tertiary age are predominantly shale and siltstone, as much as 8,000 feet thick. Pleistocene glacial drift mantles the northern and eastern parts of the area. Rocks of the Williston basin are gently folded and regional dips are 1? or less from the margins to the basin center. Dips on the flanks of the major anticlinal folds, the Nesson and cedar Creek anticlines and the Poplar and Bowdoin domes, generally are about 1? to 3? except on the steep west limb of the Cedar Creek anticline. The basin was shaped by Laramide orogeny during latest Cretaceous and early Tertiary time. Most of the present structural features, however, were initiated during the Precambrian and reactivated by several subsequent orogenies, of which the latest was the Laramide. The most important mineral resource of the area is oil, which is produced predominantly from the Paleozoic carbonate sequence and largely on three of the major anticlinal folds, and lignite, which is present near the surface in Paleocene rocks. The subsurface disposal of radioactive wastes at some places in the Williston basin appears to be geographically and geologically feasible. Many sites, at which

  4. The origin of granites and related rocks

    USGS Publications Warehouse

    Brown, Michael, (Edited By); Piccoli, Philip M.

    1995-01-01

    This Circular is a compilation of abstracts for posters and oral presentations given at the third Hutton symposium on the Origin of granites and related rocks. The symposium was co-sponsored by the Department of Geology, University of Maryland at College Park; the U.S. Geological Survey, Reston, Virginia; and the Department of Terrestrial Magnetism and Geophysical Laboratory, Carnegie Institution of Washington.

  5. Three-Dimensional Geologic Modeling of a Prospective Deep Underground Laboratory Site for High-Level Radioactive Waste Disposal in Korea

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Lee, S.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of three-dimensional geologic modeling was performed using a geostatistical geologic model GOCAD (ASGA and Paradigm) to characterize quantitatively and to visualize realistically a prospective deep underground laboratory site for high-level radioactive waste disposal in Korea. The necessity of a deep underground laboratory arises from its in-situ conditions for related deep scientific experiments. However, the construction and operation of such a deep underground laboratory take great efforts and expenses owing to its larger depth and thus higher geologic uncertainty. For these reasons, quantitative characterization and realistic visualization of geologic formations and structures of a deep underground laboratory site is crucial before its construction and operation. The study area for the prospective deep underground laboratory site is mainly consists of Precambrian metamorphic rocks as a complex. First, various topographic and geologic data of the study area were collected from literature and boreholes and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations and structures, was established, and a three-dimensional grid model, which consists of hexahedral grid blocks, was produced. Three-dimensional geologic formation model was then established by polymerizing these two models. Finally, a series of three-dimensional lithofacies modeling was performed using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The volume fractions of metamorphic rocks predicted using the TGS are more similar to the actual data observed in boreholes than those predicted using the SIS. These three-dimensional geologic modeling results can improve a quantitative and realistic understanding of geologic characteristics of the prospective deep underground laboratory site for high-level radioactive waste disposal and thus can provide

  6. Melting granites to make granites

    NASA Astrophysics Data System (ADS)

    Carvalho, Bruna B.; Sawyer, Edward W.; Janasi, Valdecir de A.

    2014-05-01

    Large-scale partial melting in the continental crust is widely attributed to fluid-absent incongruent breakdown of hydrous minerals in the case of pelites, greywackes and meta-mafic rocks. Granite is a far more common rock in the continental crust, but fluid-absent hydrate-breakdown melting is unlikely to result in significant melting in granites because of their low modal abundance of mica or amphibole. Experiments show that fluid-present melting can produce ~30% melt at low temperatures (690°C). Thus, granites and leucogranites can be very fertile if H2O-present melting occurs via reactions such as plagioclase + quartz + K-feldspar + H2O = melt, because of their high modal proportions of the reactant phases. Our study investigates the Kinawa Migmatite in the São Francisco Craton, southeastern Brazil. This migmatite is derived from an Archaean TTG sequence and can be divided into; 1) pink diatexites, 2) leucosomes, 3) grey gneisses and 4) amphibolites. The migmatite records upper-amphibolite to beginning of granulite facies metamorphism in a P-T range from 5.1-6.6 kbar and ~650-780°C. Pink diatexites are the most abundant rocks, and their appearance varies depending on the amount of melt they contained. Three types are recognised: residual diatexites (low melt fraction (Mf)), schlieren diatexites (moderate Mf) and homogeneous diatexites (high Mf). They are very closely related spatially in the field, with mostly transitional contacts. There is a sequence with progressive loss of ferromagnesian minerals, schollen and schlieren through the sequence to the most melt-rich parts of the diatexites as magmatic flow became more intense. There are fewer ferromagnesian minerals, thus the melt becomes cleaner (more leucocratic) and, because the schlieren have disaggregated the aspect is more homogeneous. These parts are texturally similar to leucogranites in which the biotite is randomly distributed and pre-melting structures are completely destroyed. The likely protolith

  7. Geology, petrology, and tectonic setting of the Mafic rocks of the 1480 Ma old granite-rhyolite terrane of Missouri, USA

    NASA Astrophysics Data System (ADS)

    Sylvester, P. J.

    Igneous and metamorphic mafic rocks form a volumetrically subordinate component of the 1480 Ma old granite rhyolite terrain of Missouri. The igneous rocks are present in the St. Francois Mountains and a drillcore from Shannon county and can be subdivided into two groups. The Silver Mines Mafic Group exhibits some calc-alkaline chemical affinities that may be the result of crustal contamination by a source with a bulk intermediate to felsic composition. The contaminant probably is not the exposed granites or rhyolites of the St. Francois Mountains. The 1500 to 1400 Ma old belt probably formed in an extensional tectonic setting. The Basin and Range province of the western United States may be the most similar modern analogue. Between 1400 to 1200 Ma ago, an incipient continental rift may have formed along the axis of the 1500 to 1400 Ma old magmatic belt. Mafic magma emplaced during the rifting event possibly included the Skrainka Mafic Group of Missouri, the Harp dikes and Seal Lake Group of Labrador, and some of the Gardar rocks of southwest Greenland.

  8. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    SciTech Connect

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.

  9. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  10. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  11. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    USGS Publications Warehouse

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, William; Weir, J.E., Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000-50,000 ft or 9,140-15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000-20,000 ft or 305-6,100 m), (3) a mined chamber (1,000-10,000 ft or 305-3,050 m), (4) a cavity with separate manmade structures (1,000-10,000 ft or 305-3,050 m), and (5) an exploded cavity (2,000-20,000 ft or 610-6,100 m) o The geohydrologic investigation is made on the presumption that the concepts or methods of disposal are technically feasible. Field and laboratory experiments in the future may demonstrate whether or not any of the methods are practical and safe. All the conclusions drawn are tentative pending experimental confirmation. The investigation focuses principally on the geohydrologic possibilities of several methods of disposal in rocks other than salt. Disposal in mined chambers in salt is currently under field investigation, and this disposal method has been intensely investigated and evaluated by various workers under the sponsorship of the Atomic Energy Commission. Of the various geohydrologic factors that must be considered in the selection of optimum waste-disposal sites, the most important is hydrologic isolation to assure that the wastes will be safely contained within a small radius of the emplacement zone. To achieve this degree of hydrologic isolation, the host rock for the wastes must have very low permeability and the site must be virtually free of faults. In addition, the locality should be in (1) an area of low seismic risk where the possibility of large earthquakes rupturing the emplacement zone is very low, (2) where the possibility- of flooding by

  12. Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico

    SciTech Connect

    Levich, R. A.; Patterson, R. L.; Linden, R. M.

    2002-02-26

    A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

  13. Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    SciTech Connect

    N /A

    2002-10-25

    The purpose of this environmental impact statement (EIS) is to provide information on potential environmental impacts that could result from a Proposed Action to construct, operate and monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nye County, Nevada. The EIS also provides information on potential environmental impacts from an alternative referred to as the No-Action Alternative, under which there would be no development of a geologic repository at Yucca Mountain.

  14. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    SciTech Connect

    Patrick, W.C.

    1986-09-02

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time.

  15. Granites of southeast Asian tin belt

    SciTech Connect

    Cobbing, E.J.; Mallick, D.I.J.; Pitfield, P.E.J.; Darbyshire, D.P.F.; Teoh, L.H.

    1986-07-01

    The objective of this study is to establish the essential granite geology of the southeast Asian tin belt, distinguishing plutons within batholiths and characterizing them by their component units, field relationships, lithology, texture, petrology, geochemistry, geochronology, and mineral potential. To date, approximately 180 plutons have been recognized and partly or entirely described in the above terms. In addition, four granite provinces have been delineated, each with its own distinctive mineralization pattern. In all provinces, but particularly in the Main Range, granitoids designated as two-phase variants have been recognized where xenocrysts and xenoliths of coarse, primary texture granite are enclosed in and corroded by an invasive, equigranular quartzo-feldspathic matrix. These rocks form an essential part of the granite sequence in all provinces and have probably resulted from the infiltration and disruption of the host granite by late-stage magmatic fluids. Whole-rock geochemistry from peninsular Malaysia shows that the granites from the Main Range and Eastern provinces comprise two contrasted suites, which correspond approximately to the I- and S-type categories advocated by Chappell and White. In addition, individual plutons within batholiths in the two provinces have distinct geochemical parameters. Variation diagrams of plutons having the intrusive sequence primary texture granite-two-phase granite-microgranite show linear trends with increasing SiO/sub 2/, Na/sub 2/O, Rb, W, Sn, and U, and decreasing Sr, Ba, Th, and all other major elements.

  16. Possible effects of UO/sub 2/ oxidation on light water reactor spent fuel performance in long-term geologic disposal

    SciTech Connect

    Almassy, M.Y.; Woodley, R.E.

    1982-08-01

    Disposal of spent nuclear fuel in a conventionally mined geologic formation is the nearest-term option for permanently isolating radionuclides from the biosphere. Because irradiated uranium dioxide (UO/sub 2/) fuel pellets retain 95 to 99% of the radionuclides generated during normal light water reactor operation, they may represent a significant barrier to radionuclide release. This document presents a technical assessment of published literature representing the current level of understanding of spent fuel characteristics and conditions that may degrade pellet integrity during a geologic disposal sequence. A significant deterioration mechanism is spent UO/sub 2/ oxidation with possible consequences identified as fission gas release, rod diameter increases, cladding breach extension, and release of solid fuel particles containing radionuclides. Areas requiring further study to support development of a comprehensive spent fuel performance prediction model are highlighted. A program and preliminary schedule to obtain the information needed to develop model correlations are also presented.

  17. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect

    Patrick, W.C.

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  18. Digital version of "Open-File Report 92-183: Geologic map of the Granite Spring Quadrangle, San Bernardino County, California"

    USGS Publications Warehouse

    Wilshire, Howard G.; Bedford, David R.; Coleman, Teresa

    2002-01-01

    3. Plottable map representations of the database at 1:24,000 scale in PostScript and Adobe PDF formats. The plottable files consist of a color geologic map derived from the spatial database, composited with a topographic base map in the form of the USGS Digital Raster Graphic for the map area. Color symbology from each of these datasets is maintained, which can cause plot file sizes to be large.

  19. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong

    2016-09-01

    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of ~ 216 Ma and ~ 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes.

  20. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier

  1. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  2. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  3. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    SciTech Connect

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  4. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  5. AMS studies in Portuguese variscan granites

    NASA Astrophysics Data System (ADS)

    Sant'Ovaia, Helena; Martins, Helena; Noronha, Fernando

    2014-05-01

    A large volume of Variscan granitic rocks outcrop in Central Iberian Zone which are well documented concerning geological mapping, petrography and geochemistry but whose magnetic characteristics and fabric remain unknown. In this study we summarize the available AMS data from approximately 644 sampling stations (5152 samples) on different massifs of Variscan Portuguese granites. Despite their different geological, petrographic and geochemical characteristics, magnetic susceptibility (K) values obtained for the majority of the studied granites range from 15 to 300 × 10-6 SI. The dominant paramagnetic behaviour of the granite bodies reflects the presence of ilmenite as the main iron oxide. This feature indicates the reduced conditions involved in the granite melt formation during the Variscan orogeny. The two-mica granites show K values ranging between 15 to 70 × 10-6 SI which are lower than values displayed by the biotite-rich facies scattered within the interval of 70 and 300 × 10-6 SI. The magnetite-bearing granites are scarce but represented in Lavadores, Gerês and Manteigas. Even so, only the Lavadores body could be considered as a true magnetite-type granite (K >3.0 × 10-3 SI) in face of its K, comprised between 1550 and 19303 × 10-6 SI. Magnetic anisotropy can be used as a "marker" for the deformation experienced by granite mushes during their crustal emplacement and further cooling. Magnetic anisotropy can thus be correlated with the finite deformation of a rock, as record by mineral fabrics. Post-tectonic granites, such as those from Vila Pouca de Aguiar, Pedras Salgadas, Caria, Vila da Ponte, Chaves and Lamas de Olo, have a magnetic anisotropy <2.5% which corresponds to a deformation hardly visible to the naked eye. Nevertheless, at microscopic scale, these granites display almost ubiquitous magmatic to submagmatic microstructures (rare wavy extinction in quartz, erratic subgrain boundaries in quartz and, eventually, folded or kinked biotites). For

  6. Preface to special issue: Granite magmatism in Brazil

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; de Pinho Guimarães, Ignez; Nardi, Lauro Valentim Stoll

    2016-07-01

    Granites are important both to the geologic evolution and to the economy of Brazil. Deposits of precious and rare metals, such as Au, Sn and many others, are directly or indirectly associated with granites, especially in the geologically under-explored Amazon region. On the opposite eastern side of the country, expanding exploitation of natural granite as dimension stone makes Brazil currently the world's second largest exporter of granite blocks. Granites are a major constituent of the Brazilian Archean-Proterozoic cratonic domains (the Amazon and São Francisco cratons) and their surrounding Neoproterozoic fold belts. The granites are thus fundamental markers of the major events of crustal generation and recycling that shaped the South American Platform. As a result, Brazilian granites have received great attention from the national and international community, and a number of influential meetings focused on the study of granites were held in the country in the last three decades. These meetings include the two International Symposia on Granites and Associated Mineralization (Salvador, January 21-31, 1987, and August 24-29, 1997), the Symposium on Rapakivi Granites and Related Rocks (Belém, August 2-5, 1995) and the Symposium on Magmatism, Crustal Evolution, and Metallogenesis of the Amazonian Craton (Belém, August 2006). Special issues dedicated to contributions presented at these meetings in the Journal of South American Earth Sciences (Sial et al., 1998), Lithos (Stephens et al., 1999), Canadian Mineralogist (Dall'Agnol and Ramo, 2006), Precambrian Research (Ramo et al., 2002) and Anais da Academia Brasileira de Ciências (Dall'Agnol and Bettencourt, 1997; Sial et al., 1999a) are still important references on the knowledge of Brazilian granites and granite petrology in general.

  7. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect

    Eriksson, Leif G.; Dials, George E.

    2012-07-01

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  8. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion

  9. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  10. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    SciTech Connect

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  11. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 1: Executive Summary

    SciTech Connect

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.Z.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  12. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    SciTech Connect

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  13. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  14. Critical conditions for initiation of localized corrosion of mild steels in contact with bentonite used in geological disposal packages of nuclear waste

    SciTech Connect

    Nakayama, Guen; Akashi, Masatsune

    1993-12-31

    In the current design of geological disposal of high-level nuclear waste, the use of bentonite to stand as an artificial barrier-cum-buffer between the host rock and the packages made of mild steel is being investigated. Although mild steels commonly have been considered to be passivity in alkaline environments, under certain circumstances, they become liable to localized corrosion, e.g., pitting corrosion and crevice corrosion. Since bentonite can turn the environment alkaline to a pH of approximately 10 when it is mixed with groundwater, critical conditions for the initiation of localized corrosion of mild steel must be known to evaluate the extremely long time integrity of disposal packages serving in such an environment. This paper presents and discusses the observations and results acquired in a series of critical conditions for the initiation of localized corrosion of mild steels in various groundwater-bentonite environments at 20C, with a deaerated aqueous solution of 1 mMol/L [HCO{sub 3}{sup -}] + 10 ppm [Cl{sup -}], simulating the natural groundwater and varying the bentonite content.

  15. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    SciTech Connect

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  16. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Hai

    2014-05-01

    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  17. A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste

    SciTech Connect

    Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

    2008-04-15

    The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

  18. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    SciTech Connect

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

  19. Potential migration of buoyant LNAPL from intermediate level waste (ILW) emplaced in a geological disposal facility (GDF) for U.K. radioactive waste.

    PubMed

    Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon

    2014-10-15

    A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package

  20. Uncertainty and sensitivity analysis within the post closure Performance and Safety Assessment of the French deep geological radwaste disposal: methodology, tool and examples of results

    NASA Astrophysics Data System (ADS)

    Pepin, G.

    2009-04-01

    Within the framework of the December 30, 1991 french act, Andra submitted to the French Parliament in December 2005 a report on the feasibility of a high-level and long-lived radwaste disposal in the Callovo-Oxfodien clay layer (Meuse/Haute-Marne site). Further to 2006 french act, Andra is now involved in licensing of the reversible disposal up to 2015, which requires a great scientific and technical knowledge. Studies are based on many years of research carried out in France, in particular in Andra's Meuse/Haute-Marne Underground Research Laboratory (MHM URL), and international programs on radwastes, engineered barriers and deep clay formations. Intensive programs on hydraulic, solute transfer and radionuclides behaviour (solubility, retention) were and are carried out on Callovo-Oxfordian argilites (undisturbed and damaged), concrete materials and swelling clay based material, in order to provide a sound database. All these data allowed to perform firstly a sound description of the expected phenomenological evolution of the repository and its geological environment (including release and migration of radionuclides) from operating period to post closure period up to one million years, secondly a sound post-closure performance and safety assessment covering the different waste types (ILLW, HLW). Various safety scenarii were defined to quantify radiological impacts and to evaluate performance of the components and safety functions in post closure using specific indicators (concentration, molar rate, water flux…). According to the RFS III2.f (french safety rule related to deep geological radwaste disposad), there is no risk analysis in post closure and assessments are performed using deterministic situations, models and values. To complete analysis, propagation of uncertainties from models and input data in Performance and Safey Assessment (PA/SA) models is done using both deterministic and multiparametric probabilistic approach, with two main objectives: (i) to

  1. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    NASA Astrophysics Data System (ADS)

    Martin, F. A.; Bataillon, C.; Schlegel, M. L.

    2008-09-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 °C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry… The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-xCa xCO 3), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes.

  2. Spent fuel radionuclide source term model for assessing spent fuel performance in geological disposal. Part II: Matrix alteration model and global performance

    NASA Astrophysics Data System (ADS)

    Poinssot, Christophe; Ferry, Cécile; Lovera, Patrick; Jegou, Christophe; Gras, Jean-Marie

    2005-11-01

    In the framework of the research conducted on the long term evolution of spent nuclear fuel under geological disposal conditions, a source term model has been developed to evaluate the instantaneous release of radionuclides (RN) (instant release fraction, IRF) and the delayed release of the RN which are embedded within the matrix. This model takes into account most of the scientific results currently available except the effect of hydrogen and the current knowledge of the uncertainties. IRF was assessed by considering the evolution with time of the RN inventories located within the fuel microstructure to which no confinement properties can be allocated over the long term (gap, rim, grain boundaries). This allows for bounding values for the IRF as a function of time of canister breach and burnup. The matrix radiolytic dissolution was modeled by a simple kinetic model neglecting the recombination of radiolytic species and the influence of aqueous ligands. The oxidation of the UO 2 matrix was assumed not to be kinetically controlled. Spent fuel performance was therefore demonstrated to mainly depend on the reactive surface area.

  3. Geologic observations at the 2800-meter radioactive waste disposal site and associated deepwater dumpsite 106 (DWD-106) in the Atlantic Ocean. (Revised). Final report

    SciTech Connect

    Rawson, M.D.; Ryan, W.B.F.

    1983-09-01

    During 1975 and 1976 a total of eight manned submersible dives with DSRV ALVIN were carried out in a relatively small region of the Atlantic 2800m radioactive waste dumpsite and were centered at 38 degrees 30'N and 72 degrees 09'W. Six other dives were distributed through the northern part of Deepwater Dumpsite 106 (DWD-106) near the boundary of the continental rise/continental slope. One of the primary purposes of these dives was to observe the geological conditions in this disposal region slightly south of the Hudson submarine Canyon. The lower continental slope was found to be incised by submarine canyons debouching into the northern side of DWD-106. The upper continental rise was incised by narrow meandering channels. One of these channels passed through the radioactive waste dumpsite and was surveyed in detail. On the upper continental rise the local terrain was relatively flat but studded with numerous tracks, trails, holes, and mounds of biological orgin. The sediment carpet was composed of a grapy silty-clay. Detailed mineralogical analysis was performed.

  4. Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results

    SciTech Connect

    Dauzeres, A.; Le Bescop, P.; Sardini, P.; Cau Dit Coumes, C.

    2010-08-15

    Within the concepts under study for the geological disposal of intermediate-level long-lived waste, cement-based materials are considered as candidate materials. The clayey surrounding rock and the cement-based material being considered differ greatly in their porewater composition. Experiments are conducted on the diffusion of solutes constituting those porewaters in a confined clay/cement composite system using cells. The test temperature was set at 25 {sup o}C and 2, 6 and 12 months. Results supply new information: carbonation is low and not clog the interface. Such absence of carbonation allows for the diffusion of aqueous species and, thus, for the degradation of the cement paste and the illitisation of illite/smectite interstratifications. The cement material is subjected to a decalcification: portlandite dissolution and a CaO/SiO{sub 2} reduction in the calcium silicate hydrate. The sulphate in diffusion induces non-destructive ettringite precipitation in the largest pores. After 12 months, about 800 {mu}m of cement material is concerned by decalcification.

  5. Effects of chloride, bromide, and thiosulfate ions on the critical conditions for crevice corrosion of several stainless alloys as a material for geological disposal packages for nuclear waste

    SciTech Connect

    Nakayama, Guen; Akashi, Masatsune; Wakamatsu, Hisao

    1993-12-31

    In addition to mild steel, several stainless alloys are being proposed as materials for packages for geological disposal of high-level nuclear waste. When buried deep underground, the greatest detriment to the integrity of packages made of these alloys is localized corrosion, for which critical conditions for initiation of crevice corrosion in chloride environments, with or without other ions, need be precisely known. Crevice corrosion behavior of Type 304 stainless steel, Type 316 stainless steel, Alloy 825, Ti-Gr.1, and Ti-Gr.12 in solutions containing ions of chloride, bromide (these two for their ordinary presence in natural waters), or thiosulphate (this for the likelihood of microbially influenced corrosion) to varying concentrations have been empirically examined. All of these alloys exhibit much the same concentration dependency of crevice corrosion sensitivity for chloride and bromide ions, while Type 304 stainless steel is particularly sensitive to the thiosulphate ion. The region of insensitivity for chloride ion is wider in the increasing order of Type 304 stainless steel, Type 316 stainless steel, Ti-Gr.1, and Ti-Gr.12, with that of Alloy 825 lying somewhere in between.

  6. Confocal {mu}-XRF, {mu}-XAFS, and {mu}-XRD Studies of Sediment from a Nuclear Waste Disposal Natural Analogue Site and Fractured Granite Following a Radiotracer Migration Experiment

    SciTech Connect

    Denecke, Melissa A.; Brendebach, Boris; Rothe, Joerg; Simon, Rolf; Janssens, Koen; Nolf, Wout de; Vekemans, Bart; Falkenberg, Gerald; Somogyi, Andrea; Noseck, Ulrich

    2007-02-02

    Combined {mu}-XRF, {mu}-XAFS, and {mu}-XRD investigations of a uranium-rich tertiary sediment, from a nuclear repository natural analogue site, and a fractured granite bore core section after a column tracer experiment using a Np(V) containing cocktail have been performed. Most {mu}-XRF/{mu}-XAFS measurements are recorded in a confocal geometry to provide added depth information. The U-rich sediment results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(0). The As(0) forms thin coatings on the surface of pyrite nodules. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of ground water dissolved U(VI) leading to precipitation of less soluble U(IV) and thereby forming As(V). Results for the granite sample show the immobilized Np to be tetravalent and associated with facture material.

  7. IRETHERM: The geothermal energy potential of Irish radiothermal granites

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas; Jones, Alan; Muller, Mark; Feely, Martin; Brock, Andrew; Long, Mike; Waters, Tim

    2014-05-01

    The IRETHERM project is developing a strategic understanding of Ireland's deep geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), surface heat-flow (SHF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is important to assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Galway granite in western Ireland, and the Leinster and the buried Kentstown granites in eastern Ireland. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of a 1980's geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite, to the SW of Dublin. In the Galway granite batholith, on the west coast of Ireland, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Rossaveal borehole. The buried Kentstown granite, 35 km NW of Dublin, has an associated negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 490 m. Heat production is measured at 2.4 μWm-3 in core samples taken from the weathered top 30 m of the granite. The core of this study consists of a program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite (40 km SW of Dublin) extend to depths of 2-5 km. Preliminary results from the southern profile suggest a greater thickness of granite to a depth of 6-9 km beneath the Tullow pluton, 75 km SW of

  8. Geology, hydrology, and results of tracer testing in the Galena-Platteville aquifer at a waste-disposal site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Prinos, Scott T.; Morrow, William S.; Vendl, Mark

    1999-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency of the geohydrology of the dolomite bedrock at a waste-disposal site near Byron, Illinois. The study was designed to identify and characterize the flow pathways through the bedrock aquifer beneath the site. The geologic units of concern at the site are the Glenwood Formation of the Ancell Group, and the Platteville and Galena Groups. These deposits compose the Galena-Platteville aquifer and the underlying Harmony Hill Shale semiconfining unit. The Galena-Platteville aquifer is an unconfined aquifer. Geophysical logging, water levels, and aquifer-test data indicate the presence of interconnected, hydraulically active fractures in the middle of the Galena-Platteville aquifer (the upper flow pathway), and a second set of hydraulically active fractures (the lower flow pathway). The lower flow pathway may be present through much of the site. Few hydraulically active fractures are present in the upper part of the aquifer near the center of the site, but appear to be more numerous in the upper part of the aquifer in the western and northeastern parts of the site. Water-level data obtained during the tracer test indicate that pumping effects were present near the pumped wells. Pumping effects may have been present at several wells located along directions of identified fracture orientation from the pumped well. The upper part of the aquifer did not appear to be hydraulically well connected to the flow pathways supplying water to the pumped well. Large background changes in water levels obscured the effects of pumping and prevented calculation of aquifer properties. The velocity of the bromide tracer through the lower flow pathway under the hydraulic gradient resulting from the pumping was about 152 feet per day. Solution of the Darcy velocity equation results in a calculated effective porosity for this interval of 3.5 percent, indicating hydraulic interconnection between the

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  10. GRANITE CHIEF WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Harwood, David S.; Federspiel, Francis E.

    1984-01-01

    The Granite Chief Wilderness study area encompasses 57 sq mi near the crest of the Sierra Nevada 6 mi west of Tahoe City, California. Geologic, geochemical, and mines and prospect studies were carried out to assess the mineral-resource potential of the area. On the basis of the mineral-resource survey, it is concluded that the area has little promise for the occurrence of precious or base metals, oil, gas, coal, or geothermal resources. Sand, gravel, and glacial till suitable for construction materials occur in the area, but inaccessability and remoteness from available markets preclude their being shown on the map as a potential resource.

  11. Peralkaline and peraluminous granites and related mineral deposits of the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Elliott, James E.

    1983-01-01

    Existing geochemical and geologic data for many parts of the Arabian Shield were compiled as a basis for evaluating the resource potential of the granites of the Shield. Commodities associated with granites that have potential for economic mineral deposits include tin, tungsten, molybdenum, beryllium, niobium, tantalum, zirconium, uranium, thorium, rare-earth elements, and fluorite. Prospecting methods useful in discriminating those granites having significant economic potential include reconnaissance geologic mapping, petrographic and mineralogic studies, geochemical sampling of rock and wadi sediment, and radiometric surveying.

  12. Investigating α-particle radiation damage in phyllosilicates using synchrotron microfocus-XRD/XAS: implications for geological disposal of nuclear waste

    NASA Astrophysics Data System (ADS)

    Bower, W. R.; Pearce, C. I.; Pimblott, S. M.; Haigh, S. J.; Mosselmans, J. F. W.; Pattrick, R. A. D.

    2014-12-01

    The response of mineral phases to the radiation fields that will be experienced in a geological disposal facility (GDF) for nuclear waste is poorly understood. Phyllosilicates are critical phases in a GDF with bentonite clay as the backfill of choice surrounding high level wastes in the engineered barrier, and clays and micas forming the most important reactive component of potential host rocks. It is essential that we understand changes in mineral properties and behaviour as a result of damage from both α and γ radiation over long timescales. Radiation damage has been demonstrated to affect the physical integrity and oxidation state1 of minerals which will also influence their ability to react with radionuclides. Using the University of Manchester's newly commissioned particle accelerator at the Dalton Cumbrian Facility, UK, model phyllosilicate minerals (e.g. biotite, chlorite) were irradiated with high energy (5MeV) alpha particles at controlled dose rates. This has been compared alongside radiation damage found in naturally formed 'radiohalos' - spherical areas of discolouration in minerals surrounding radioactive inclusions, resulting from alpha particle penetration, providing a natural analogue to study lattice damage under long term bombardment1,2. Both natural and artificially irradiated samples have been analysed using microfocus X-ray absorption spectroscopy and high resolution X-ray diffraction mapping on Beamline I18 at Diamond Light Source; samples were probed for redox changes and long/short range disorder. This was combined with lattice scale imaging of damage using HR-TEM (TitanTM Transmission Electron Microscope). The results show aberrations in lattice parameters as a result of irradiation, with multiple damage-induced 'domains' surrounded by amorphous regions. In the naturally damaged samples, neo-formed phyllosilicate phases are shown to be breakdown products of highly damaged regions. A clear reduction of the Fe(III) component has been

  13. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area. PMID:25590704

  14. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO

    2014-10-24

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area. PMID:25352370

  15. Granite magma formation, transport and emplacement in the Earth's crust.

    PubMed

    Petford, N; Cruden, A R; McCaffrey, K J; Vigneresse, J L

    2000-12-01

    The origin of granites was once a question solely for petrologists and geochemists. But in recent years a consensus has emerged that recognizes the essential role of deformation in the segregation, transport and emplacement of silica-rich melts in the continental crust. Accepted petrological models are being questioned, either because they require unrealistic rheological behaviours of rocks and magmas, or because they do not satisfactorily explain the available structural or geophysical data. Provided flow is continuous, mechanical considerations suggest that--far from being geologically sluggish--granite magmatism is a rapid, dynamic process operating at timescales of < or = 100,000 years, irrespective of tectonic setting. PMID:11130061

  16. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    SciTech Connect

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  17. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    USGS Publications Warehouse

    Baltz, E.H.; Abrahams, J.H., Jr.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  18. Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo C.; Vicente-Tavera, Santiago; Molina-Ballesteros, Eloy

    2015-04-01

    Silicified Granites have been widely used to build the main Romanesque monuments in the 12 th century of Avila city that was designated a World Heritage Site by the UNESCO in 1985. The stone was used in the Cathedral (12 th century); churches located interior and exterior of the Walls (e.g. Saint Vincent; Saint Peter). During the Renaissance and Gothic period, 15 th century Silicified Granites have been used mainly to buid ribbed vaults in Avila city (e.g. Royal Palace of the Catholic Monarchs, and Chapel of Mosén Rubí). Silicified Granites are related to an intermediate and upper parts of a complex palaeoweathering mantle developed on the Iberian Hercynian Basement (the greatest part of the western Iberian Peninsula and its oldest geological entity). In the Mesozoic the basement underwent tropical weathering processes. The weathered mantle were truncated by the Alpine tectonic movements during the Tertiary, and Its remnants were unconformably covered by more recent sediments and are located in the west and south part of the Duero Basin and in the north edge of the Ambles Valley graben. For the weathering profiles developed on the Hercynian Basement is possible to define three levels from bottom to top: 1) Lower level (biotitic granodiorite/porphyry and aplite dykes); 2) Intermediate level (ochre granite); 3) Upper level (red/white granite). The lower level has been much used as a source of ornamental stone, Avila Grey granite. The porphyry and applite dykes are mainly used to built the Walls of the City. The intermediate level is called Ochre granite or Caleño and was formed from the previous level through a tropical weathering process that, apart from variations in the petrophysical characteristics of the stone, has been accompanied by important mineralogical changes (2:1 and 1:1 phyllosilicates) and decreases in the contents of the most mobile cations. The upper level has received several names, Bleeding stone, Red and White granite or Silcrete and was formed

  19. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    USGS Publications Warehouse

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  20. Late variscan evolution of the Pelvoux Massif in the light of 3D mapping of granites

    NASA Astrophysics Data System (ADS)

    Strzerzynski, P.; Guillot, S.; Courrioux, G.; Ledru, P.

    2003-04-01

    The Pelvoux massif is a fragment of Paleozoic crustal rock involved in the alpine belt. The inner part of the massif is composed by anatectic and amphibolitic gneisses intruded by Stephanian granites. The Turbat-Lauranoure, Etages and Berarde granites have a N160 vertical magmatic foliation cross cut by N135 vertical ductile strike slip faults. A three dimensional modeling of the shape of the Turbat-Lauranoure, Etages and Berarde granites has been realized using field and cartographic data. The method based on potential field allows the integration of structural data as foliation and contact orientation measurements. The granite shapes have been modeled with three types of surface with different geological significance: The first type of surface is constrained by granite foliation measurements. They are NNW-SSE and vertical oriented. They form the eastward and westward granite-gneiss and Etages-Berarde granites boundaries. The second surface is a well known alpine structure called the Meije-Muzele Trust. This structure is oriented N50 50^oSE. The third surface is a granite-gneiss boundary in where gneisses are located on of the top the granite. The granite-gneiss contact has a northward plunge on the north and a southward plunge on the south of the massif. The NNW-SSE elongated shape of the granite associated with a left lateral ductile strike slip fault and the dome like shape of the massif are consistent with a N-S direction of extension during Stephanian time. In order to integrate this Stephanian Pelvoux Massif magmatic event in the Variscan scheme, an anticlockwise rotation occurred during Permian time. The observed N20 dextral strike slip faults are at the origin of the Permian rotation of the Pelvoux Massif.

  1. Example of fracture characterization in granitic rock

    SciTech Connect

    Thorpe, R.K.

    1981-03-01

    A detailed study of geologic discontinuities for an underground heater test in highly fractured granitic rock is reported. Several prominent shear fractures were delineated within a 6 x 30 x 15 m rock mass by correlating surface mapping and borehole fracture logs. Oblique-reverse faulting is suspected on at least one of the surfaces, and its inferred borehole intercepts appear to be collinear in the direction of slickensiding observed in the field. Four distinct joint sets were identified, one of which coincides with the shear fractures. Another lies nearly horizontal, and two others are steeply inclined and orthogonal. Fracture lengths and spacings for the four joint sets are represented by lognormal probability distributions.

  2. Late Paleozoic granitic rocks of the Chukchi Peninsula: Composition and location in the structure of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Kotov, A. B.; Natapov, L. M.; Belousova, E. A.; Katkov, S. M.

    2015-07-01

    An Early Carboniferous (352-359 Ma) U-Pb (TIMS, SIMS) age is established for granitic rocks of the Kibera pluton, quartz sienites of the Kuekvun pluton, and granites from the pebbles in the basement of Carboniferous rocks of the Kuul and Kuekvun uplifts in the Central Chukotka region. These data support the suggestion of granitic magmatism to occur in the region in the Late Paleozoic. The petrogeochemistry of most granitic rocks of the Kibera and Kuekvun plutons is similar to that of I-type granites, and their age coincides with tectonic events of Ellesmerian Orogeny in the Arctic region at the Late Devonian-Early Carboniferous boundary. The Devonian-Early Carboniferous granitic complexes extend to the territories of the Arctic Alaska, Yukon, and Arctic Canada, which indicates a common geological evolution within the Chukotka-Arctic Alaska block, which experienced a motion away from Arctic Canada.

  3. New data on the age and geodynamic interpretation of the Kalba-Narym granitic batholith, eastern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kotler, P. D.; Khromykh, S. V.; Vladimirov, A. G.; Navozov, O. V.; Travin, A. V.; Karavaeva, G. S.; Kruk, N. N.; Murzintsev, N. G.

    2015-06-01

    Geological and new geochronological data are summarized for the Kalba-Narym granitic batholith in eastern Kazakhstan, and their geodynamic interpretation is suggested. In the structure of the batholith, we consider (from late to early) the Kunush plagiogranitic complex, the Kalguta granodiorite-granitic association, and the Kalba granitic, Monastery leucogranitic, and Kainda granitic complexes. The granitic complexes of the Kalba-Narym batholith were formed between the Carboniferous-Permian and the Early-Middle Permian (˜30 Ma). New data indicate that formation of the Kalba-Narym batholith was related to the activity of the Tarim mantle plume. Heating of the lithosphere by the plume coincided with postcollision collapse of the orogenic structure and led to the crust melting and formation of the studied granitic complexes in a relatively short period.

  4. Granite microcracks: Structure and connectivity at different depths

    NASA Astrophysics Data System (ADS)

    Song, Fan; Dong, Yan-Hui; Xu, Zhi-Fang; Zhou, Peng-Peng; Wang, Li-Heng; Tong, Shao-Qing; Duan, Rui-Qi

    2016-07-01

    Granite is one rock type used to host high-level radioactive waste repositories, and the structure of microcracks in the rock can influence its hydraulic characteristics. Thus, a quantitative analysis of granite microcracks is relevant for understanding the hydrogeological characteristics of the rocks surrounding geological repositories. The analysis can also contribute scientific data to a seepage model for low permeability rocks and materials with microscopic pores. In this study, seven granite core samples were drilled from different depths up to 600 m in Alxa, Inner Mongolia, China. Using a grid survey method and image processing technology, micrographs were converted into binary images of microcracks. The geometric parameters of the microcracks, including their quantity, width, cranny ratio, crack intersections and dimensional parameters of the fracture network, were analyzed in order to fully describe their spatial distribution. In addition, the morphological characteristics and elemental compositions of the microcracks were analyzed by scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), and the natural moisture content was also determined through heated. Finally, two-dimensional microcrack network seepage models of the granite samples were simulated using the Lattice Boltzmann method (LBM), which revealed the influence of the microcrack structure on their connectivity. The results show that the growth and development of microcracks in the granite samples generally decreases as sampling depth increases in this study area. Connectivity is positively correlated with a number of the geometric parameters: the quantity of microcracks, the cranny ratio, the number of crack intersections and dimensional parameters of the fracture network, which is revealed in the two-dimensional microcrack network seepage models for these granite samples.

  5. Contribution of Portuguese two-mica granites to stone built heritage

    NASA Astrophysics Data System (ADS)

    Almeida, Angela; Begonha, Arlindo

    2013-04-01

    The present study deals with the importance of the application of natural stone in monuments in urban setting, both as the main building material during the historical evolution of a city and as a means to increase the public awareness of the social role of geological resources of a specific region. The City of Oporto, World Heritage of the Humanity , has been selected to illustrate the use of the local granite since ancient times to the present day, a two-mica peraluminous granite ,classified as syn-tectonic relatively to the third tectonic deformation phase of the Hercynian orogeny, included in an expressive group that occurs extensively in northern Portugal . The Oporto granite has been the object of several geochemical, structural and geotechnical approaches. Despite the urban development, outcrops of this granite can be observed in different areas of the city, side by side with the urban constructions, and particularly in the imposing and intensely fractured escarpments carved by the river Douro. Oporto monumental heritage goes back to Roman occupation and the profile has been developed by the construction of granite buildings, following history and the social evolution, of an impressive grey architecture according to different styles of granite work that characterize the city in all its aspects, namely the old city wall, the medieval and baroque churches, the neoclassic houses but also the small humble habitations. The Oporto granite is always affected by weathering processes and the buildings exhibit various aspects of stone decay such as granular desintegration, plates, flakes, black crusts, thin black layers, efflorescences and biological colonization. The description of selected sites within the historical centre , where it is possible to recognize the importance of the granite in the character of the city, aims to call the attention to the inextricable role of geology in built heritage and in the culture, as well as to diagnose the deterioration

  6. Numerical Studies of Fluid Leakage from a Geologic DisposalReservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and HeatTransfer

    SciTech Connect

    Pruess, Karsten

    2005-03-22

    Leakage of CO2 from a hypothetical geologic storage reservoir along an idealized fault zone has been simulated, including transitions between supercritical, liquid, and gaseous CO2. We find strong non-isothermal effects due to boiling and Joule-Thomson cooling of expanding CO2. Leakage fluxes are limited by limitations in conductive heat transfer to the fault zone. The interplay between multiphase flow and heat transfer effects produces non-monotonic leakage behavior.

  7. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  8. Some Fundamental Experiments on Apparent Dissolution Rate of Gas Phase in the Groundwater Recovery Processes of the Geological Disposal System - 12146

    SciTech Connect

    Yoshii, Taiki; Niibori, Yuichi; Mimura, Hitoshi

    2012-07-01

    The apparent dissolution rates of gas phase in the co-presence of solid phase were examined by in-room experiments in this study. The apparent dissolution rate of gas phase q (mol/m{sup 3}.s) was generally defined by q=aK{sub L}(γP{sub g}-c), where a (1/m) is specific surface area of the interface between gas and liquid phases, K{sub L} (m/s) is overall mass transfer coefficient, γ (mol/(Pa.m{sup 3})) is reciprocal number of Henry constant, P{sub g} (Pa) is partial pressure of gas phase, and c (mol/m{sup 3}) is the concentration of gas component in liquid phase. As a model gas, CO{sub 2} gas was used. For evaluating the values of K{sub L}, this study monitored pH or the migration rate of the interface between water/gas phases, using some experiments such as the packed beds and the micro channel consisting of granite chip and rubber sheet including a slit. In the results, the values of K{sub L} were distributed in the range from 5.0x10{sup -6} m/s to 5.0x10{sup -7} m/s. These values were small, in comparison with that (7.8x10{sup -4} m/s) obtained from the bubbling test where gas phase was continually injected into deionized water without solid phase. This means that the solid phase limits the local mixing of water phase near gas-liquid interfaces. (authors)

  9. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  10. Origin of alkali-feldspar granites: An example from the Poimena Granite, northeastern Tasmania, Australia

    SciTech Connect

    Mackenzie, D.E.; Black, L.P.; Sun, Shensu )

    1988-10-01

    The Lottah Granite is a composite pluton of tin mineralized strongly peraluminous alkali-feldspar granite which intrudes the Poimena Granite, a major component of the mid-Devonian Blue Tier Batholith of northeastern Tasmania. Earlier workers interpreted the Lottah Granite as a metasomatised differentiate of the Poimena Granite. The Poimena Granite is a slightly peraluminous, felsic, I-type biotite granite which contains restite minerals and shows linear trends on Harker plots, both consistent with restite separation. The mineralogy, chemical variation, and isotopic characteristics of the Lottah Granite are consistent with origin as a magma genetically unrelated to the host granite. The Lottah Granite contains sanidine, albite, topaz, zinnwaldite and other minerals consistent with crystallization from a melt. Furthermore, Rb-Sr isotopic dating indicates that the Lottah Granite was emplaced about 10 Ma after the Poimena Granite, and initial Sr and Nd isotope ratios indicate that the Lottah Granite was derived from a higher-{sup 87}Sr/{sup 86}Sr, higher-{epsilon}Nd source composition. Chemical and mineralogical evolution of the Lottah Granite conform to the experimental behavior of Li-F-rich melts, and indicate a possible crystallization temperature range as extreme as 750-430{degree}C. Many other examples of alkali-feldspar granite, and much of the associated mineralization, are probably also of essentially primary magmatic origin rather than of metasomatic or hydrothermal origin as commonly interpreted. They may also be genetically unrelated to granites with which they are associated.

  11. Mapping possible subsurface granitic bodies in the northeastern Taiwan mountain belt using the VLF-EM method

    NASA Astrophysics Data System (ADS)

    Jeng, Yih; Huang, Chu-Lin; Tong, Lun-Tao; Lin, Ming-Juin; Chen, Chih-Sung; Huang, Hsin-Han

    2012-10-01

    Large gneiss bodies have been reported in the metamorphic complex in northern and eastern Taiwan for decades. Some of them are cut or intruded by granitic pegmatite dikes. However, increasing evidence suggests that the gneiss bodies are more likely to be granites or meta-granites. To validate the existence of the granites/meta-granites and propose their potential distribution in the metamorphic complex of northeastern Taiwan, a geological reconnaissance along with a crooked long-distance VLF-EM survey line of 19 km and a 4.4 km controlled experimental line were conducted in the Hoping geological area of the northeastern Taiwan mountain belt. The VLF-EM data were initially processed by using the Fraser linear filter and a nonlinear filtering method based on the ensemble empirical mode decomposition (EEMD) technique to enhance the signal and to evaluate the data quality. A skin-depth added Karous-Hjelt filter was performed to generate the equivalent current density model. With the aid of the 3-D topographic representation, the equivalent current density model clearly indicates that a vast area of granites/meta-granites in the survey area is highly possible. In spite of a large uncertainty of the pseudo-quantitative model, the geological implication of our finding agrees with the tectonic framework that Taiwan and the adjacent southern Ryukyu arc system could be part of the rifted China continental margin before the collision of the Luzon and Ryukyu arcs started in late Cenozoic.

  12. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Müller, Axel; Leichmann, Jaromír; Gabašová, Ananda

    2005-03-01

    The Podlesí granite stock (Czech Republic) is a fractionated, peraluminous, F-, Li- and P-rich, and Sn, W, Nb, Ta-bearing rare-metal granite system. Its magmatic evolution involved processes typical of intrusions related to porphyry type deposits (explosive breccia, comb layers), rare-metal granites (stockscheider), and rare metal pegmatites (extreme F-P-Li enrichment, Nb-Ta-Sn minerals, layering). Geological, textural and mineralogical data suggest that the Podlesí granites evolved from fractionated granitic melt progressively enriched in H 2O, F, P, Li, etc. Quartz, K-feldspar, Fe-Li mica and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. Changes in chemical composition between individual crystal zones and/or populations provide evidence of chemical evolution of the melt. Variations in rock textures mirror changes in the pressure and temperature conditions of crystallization. Equilibrium crystallization was interrupted several times by opening of the system and the consequent adiabatic decrease of pressure and temperature resulted in episodes of nonequilibrium crystallization. The Podlesí granites demonstrate that adiabatic fluctuation of pressure ("swinging eutectic") and boundary-layer crystallization of undercooled melt can explain magmatic layering and unidirectional solidification textures (USTs) in highly fractionated granites.

  13. An integrated multi-scale hydrogeological model for performance and safety assessment of French geological high level and long live radwaste disposal in clay formation

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, H.; Cornaton, F. J.; Kerrou, J.

    2009-12-01

    A deep geological repository of high level and long live radwaste requires sound understanding of the far field and near field groundwater flow and transport properties. Andra, French National radioactive waste management Agency is developing since last 15 years, an integrated multi-scale hydrogeological model of whole Paris basin of 200'000 Km2 area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse / Haute Marne clay site of about 250 Km2 area in the eastern part of Paris basin that was chosen for the emplacement of a repository. Callovo-Oxfordian as host formation is a clay layer characterized by very low permeability, a mean thickness of 130 m at about 500 m depth and is embedded by calcareous formations as aquifers (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petrophysic modeling of the Paris basin and is accounting for the sound structural, geological, hydrogeological and geochemical data in an integrated way. At Paris basin scale, the model is a multilayer system of 27 layers (hydrogeological units) from Trias to Tertiary. A refinement at local scale of the site defines 27 hydro-geological units from Trias to Portlandian within an area of 1800 Km2. Based on sound data acquisition from borehole and seismic campaigns performed by Andra, regional faults, minor and diffuse fractures are considered. A structural and petrophysical representation of the transition zone between the Paris basin scale and site scale, as well as a better handling of surface flow boundary conditions are considered. Finite element flow and transport simulator Ground Water code (GW) is used to solve for groundwater flow at steady-state in a 1.8 Million nodes model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 5

  14. Archaean greenstone belts and associated granitic rocks - A review

    NASA Astrophysics Data System (ADS)

    Anhaeusser, Carl R.

    2014-12-01

    Archaean greenstone belts and associated granitic rocks comprise some of the most diverse rock types on the Earth's surface and were formed during the early stages of the development of the planet from Eoarchaean to Neoarchaean times - a period extending back from about 4000 to 2500 million years ago. Because of their great age, these rocks have received unprecedented attention from a wide spectrum of Earth scientists striving to learn more about the evolution of the Earth, including its crust, hydrosphere, atmosphere, the commencement of life, and the nature and distribution of mineral deposits. The knowledge gained thus far has accumulated incrementally, beginning with solid field-based studies, the latter being supplemented with increasingly advanced technological developments that have enabled scientists to probe fundamental questions of Earth history. Archaean granite-greenstone terranes display considerable variability of lithologies and geotectonic events, yet there are unifying characteristics that distinguish them from other geological environments. Most greenstone belts consist of a wide variety of volcanic and sedimentary rocks that reflect different evolutionary conditions of formation and all have invariably been influenced by subsequent geotectonic factors, including the intrusion of ultramafic, mafic and granitic complexes, resulting in widespread deformation, metamorphism, metasomatism, as well as mineralization. Geochemical and isotopic age determinations have shown how complex these ancient rocks are and efforts at understanding the nature and evolution of the hydrosphere, atmosphere and primitive life have made Archaean terranes exciting environments in which to study. Conflicting views as to the nature, history and origin of many of the rock types and events in Archaean terranes has been ongoing and stimulating. This review attempts to describe the main lithotypes and other characteristics of granite-greenstone belt geology and points to some

  15. IRETHERM: Magnetotelluric studies of Irish radiothermal granites and their geothermal energy potential

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Jones, A. G.; Muller, M. R.; Feely, M.

    2013-12-01

    The IRETHERM project seeks to develop a strategic understanding of Ireland's deep geothermal energy potential through integrated modeling of new and existing geophysical and geological data. One aspect of IRETHERM's research focuses on Ireland's radiothermal granites, where increased concentrations of radioelements provide elevated heat-production (HP), heat-flow (HF) and subsurface temperatures. An understanding of the contribution of granites to the thermal field of Ireland is of key importance in assessing the geothermal energy potential of this low-enthalpy setting. This study focuses on the Leinster granite, the Galway granite and the buried Kentstown granite. Shallow (<250 m) boreholes were drilled into the exposed Caledonian Leinster and Galway granites as part of an early 1980's EU-funded geothermal project. These studies yielded HP = 2-3 μWm-3 and HF = 80 mWm-2 at the Sally Gap borehole in the Northern Units of the Leinster granite. In the Galway granite batholith, the Costelloe-Murvey granite returned HP = 7 μWm-3 and HF = 77 mWm-2, measured at the Ros a Mhil borehole. The lower heat-flow encountered at the Ros a Mhil borehole suggests that the associated high heat production does not extend to great depth. The buried Kentstown granite has associated with it a significant negative Bouguer anomaly and was intersected by two mineral exploration boreholes at depths of 660 m and 485 m. Heat production has been measured at 2.4 μWm-3 in core samples taken from the weathered top 30m of the granite. The core of this study consists of an ambitious program of magnetotelluric (MT) and audio-magnetotelluric (AMT) data acquisition across the three granite bodies, extending over three fieldwork seasons. MT and AMT data were collected at 59 locations along two profiles over the Leinster granite. Preliminary results show that the northern units of the Leinster granite extend to depths of 2-5 km. Over the Galway granite, MT and AMT data have been collected at a total

  16. Practical aspects of geological prediction

    SciTech Connect

    Mallio, W.J.; Peck, J.H.

    1981-11-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs.

  17. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  18. Gravity and magnetic modeling of granitic bodies in Central Portugal

    NASA Astrophysics Data System (ADS)

    Machadinho, Ana; Figueiredo, Fernando; Pereira, Alcides

    2015-04-01

    A better understanding of the subsurface geometry of the granitic bodies in Central Portugal is the main goal of this work. The results are also relevant for the assessment of the geothermal potential of the same region. The study area is located in the Central Iberian Zone where the Beiras granite batholith outcrops. These variscan granitoids were emplaced into the "Complexo Xisto-Grauváquico" (CXG), a thick and monotonous megasequences of metapelites and metagreywackes. This metasedimentary sequence is affected by the Variscan deformation phases and a late Proterozoic to Cambrian age has been generally assumed for this rocks. The granitoids in the region are attributed to the magmatic activity associated to the post-collisional stages of the Variscan orogeny during the D3 stage. The granitic bodies in the study area are considered syn-D3 and late to post-D3. To achieve the goal of the research, magnetic and gravimetric surveys where performed in order to obtain the Bouguer and magnetic anomalies. All the standard corrections were applied to the gravimetric and magnetic data. Considering and integrating all the available geological data and physical proprieties (density and magnetic susceptibility) the mentioned potential fields were simultaneously modeled. In this way it was possible to characterize the subsurface geometry of the granitic bodies in the studied region. The modeling results show that the regional tectonic setting controls the geometry of the granitic bodies as well as the structure of the host CXG metasedimentary sequence. Through the modeling of the potential field the overall geometry, average and maximum depths of the granitic bodies in the study area was obtained. Some late to post-D3 plutons outcrop in spatial continuity and as they have similar ages, a common feeding zone is assumed as the most likely scenario. The sin-D3 pluton is more abrupt and vertical, suggesting the presence of a fault contact with the late-D3 pluton. According to the

  19. Crustal structure of the Archaean granite-greenstone terrane in the northern portion of the Kaapvaal Craton

    NASA Technical Reports Server (NTRS)

    Debeer, J. H.; Stettler, E. H.; Barton, J. M., Jr.; Vanreenen, D. D.; Bearncombe, J. R.

    1986-01-01

    Recent investigations of the electrical resistivity, gravity and aeromagnetic signatures of the various granite-greenstone units in the northern portion of the Kaapvaal craton have revealed three features of significance: (1) the Archean greenstone belts are shallow features, rarely exceeding 5 km in depth; (2) the high resistivity upper crustal layer typical of the lower grade granite-greenstone terranes is absent in the granulite facies terrane; and (3) the aeromagnetic lineation patterns allow the granite-greenstone terrane to be subdivided into geologically recognizable tectono-metamorphic domains on the basis of lineation frequency and direction. A discussion follows.

  20. Spent fuel test project, Climax granitic stock, Nevada Test Site

    SciTech Connect

    Ramspott, L.D.

    1980-10-24

    The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

  1. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction

  2. Geochemical characteristics of the Bulgarmarse Granite of the Fall River Pluton in the Avalonian Superterrane of southeastern New England

    SciTech Connect

    Mancuso, C.I.; Puffer, J.H. . Dept. of Geological Sciences)

    1993-03-01

    The 600 m.y. Bulgarmarsh Granite of the Fall River Pluton crops out along the SE margin of the Pennsylvanian-age Narragansett Basin in the Dedham terrane of the New England Avalonian Superterrane. The Bulgarmarsh is a coarse-grained, quartz-rich, very leucooratic granite, in which mafic minerals, generally less than 5--8%, occur chiefly as chlorite, biotite and garnet disequilibrium intergrowths. Most of the granite is very slightly deformed, but there are many localized zones of deformation, both brittle and plastic, that vary in degree of intensity. The Bulgarmarsh intrudes Basin margin metavolcanics similar to those of Price Neck Formation that crop out within the Basin in Newport and on Gould Island. The Bulgarmarsh Granite has many of the mineralogical and geochemical characteristics of an A-type granite. Its geochemistry places it in the post-orogenic classification of Maniar and Piccoli (1989). New major and minor element geochemical data clearly discriminate between the Bulgarmarsh Granite and the adjacent calc-alkaline Metacom Granite Gneiss. Avalonian Orogeny, occupying a place in geologic history similar to that of the Newport Granite.

  3. 75 FR 5561 - Information Collection; Disposal of Mineral Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Information Collection; Disposal of Mineral Materials AGENCY: Forest... on the extension of a currently approved information collection; Disposal of Mineral Materials. DATES... notice should be addressed to Ivette Torres, Liaison Specialist, Minerals and Geology Management,...

  4. In situ geomechanics: Climax granite, Nevada Test Site

    SciTech Connect

    Heuze, F.E.; Patrick, W.C.; De la Cruz, R.V.; Voss, C.F.

    1981-04-01

    The in situ modulus of the Climax granite in the Spent Fuel Test (SFT-C) area of the Nevada Test Site was estimated using six different approaches. Our best estimate of field modulus as E/sub f/ = 26 GPa was obtained from a comparison of the various approaches. A best estimate of laboratory modulus acquired by comparing three different sources was E/sub l/ = 70 GPa. Therefore, the modulus reduction factor for the Climax granite appears to be E/sub f//E/sub l/ = 0.37. In turn, our estimate of in situ rock-mass deformability was used to back-calculate in situ values for the normal stiffness of the granite joints. Our analysis of former stress measurements by the US Geological Survey (USGS) shows that the horizontal stresses in the vicinity of SFT-C vary greatly with azimuth. An unexplained feature of the stresses at SFT-C is the fact that the vertical stress appears to be only 65 to 75% of the calculated lithostatic burden. From the three-dimensional stress ellipsoid at mid-length in the tunnels, assuming a plane strain condition, we were able to estimate an in situ Poisson`s ratio of the rock mass as {nu} = 0.246. Two other techniques were applied in an attempt to measure the stresses around the SFT-C heater and canister drifts: the undercoring method and the borehole jack fracturing approach. The former technique appears to have given reasonable estimates of tangential stresses in the roof of the heater drifts; the latter appears to give low results for stresses in the pillars. Specific recommendations are made for future tests to further characterize the mechanical properties of the Climax granite and the in situ stresses at SFT-C.

  5. Rapakivi Granite: An architectural emblem of St Petersburg and its utilisation in other world cities

    NASA Astrophysics Data System (ADS)

    Bulakh, Andrey; Gavrilenko, Vladimir; Panova, Helen

    2015-04-01

    . (In Russian). 3) Bulakh, A. G. Stone Town Guide, St Petersburg, 1-5. URL: [PDF] stone - GTK - Projects projects.gtk.fi/export/.../Bulakh_Stone_Guide 4) Paavo, H, Selonen, O, Luodes, H. The Wiborg Granite Batholith. The Main Production Area for Granite in Finland. Engineering Geology for Society and Territory - Volume 5. Springer. 2015. P. 259-262. 5) Bulakh, A. G. Ornamental Stone in the History of St Petersburg Architecture. Geological Society, London, 2015. SP407. Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones.

  6. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P. ); Wicks, G.G. ); Clark, D.E. ); Lodding, A.R. )

    1991-01-01

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  7. Analyses of SRS waste glass buried in granite in Sweden and salt in the United States

    SciTech Connect

    Williams, J.P.; Wicks, G.G.; Clark, D.E.; Lodding, A.R.

    1991-12-31

    Simulated Savannah River Site (SRS) waste glass forms have been buried in the granite geology of the Stirpa mine in Sweden for two years. Analyses of glass surfaces provided a measure of the performance of the waste glasses as a function of time. Similar SRS waste glass compositions have also been buried in salt at the WIPP facility in Carlsbad, New Mexico for a similar time period. Analyses of the SRS waste glasses buried in-situ in granite will be presented and compared to the performance of these same compositions buried in salt at WIPP.

  8. 6. Photocopied August 1971 from Photo 13731, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1971 from Photo 13731, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  10. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  11. Ulkan-Dzhugdzhur ore-bearing anorthosite-rapakivi granite-peralkaline granite association, Siberian Craton: Age, tectonic setting, sources, and metallogeny

    NASA Astrophysics Data System (ADS)

    Larin, A. M.

    2014-07-01

    The paper systematizes and integrates the results of geological, isotopic geochronological, and geochemical studies of the igneous rocks that make up the Ulkan-Dzhugdzhur anorthosite-rapakivi granite-peralkaline granite association and related mineralization. This association is a typical example of anorogenic igneous rocks that formed in the within-plate geodynamic setting most likely under effect of the mantle superplume, which was active in the territory of the Siberian Craton 1.75-1.70 Ga ago. The igneous rock association formed in a discrete regime that reflected the pulsatory evolution of a sublithospheric mantle source. The prerift (1736-1727 Ma) and rift proper (1722-1705 Ma) stages and a number of substages are distinguished. All igneous rocks pertaining to this association have mixed mantle-crustal origin. Basic rocks crystallized from the OIB-type basaltic magma, which underwent crustal contamination at various depths. Felsic rocks are products of mantle and crustal magma mixing. The contribution of mantle component progressively increased in a time-dependent sequence: moderately alkaline subsolvus granite → moderately alkaline and alkaline hypersolvus granites → peralkaline hypersolvus granite. All endogenic deposits in the studied district are related to a single source represented by the mantle plume and its derivatives. The Fe-Ti-apatite deposits hosted in anorthosite formed as a result of intense lower crustal contamination of basaltic magma near the Moho discontinuity and two stages of fractional crystallization at lower and upper crustal depth levels. The rare-metal deposits are genetically related to peralkaline granite. Formation of uranium deposits was most likely caused by Middle Riphean rejuvenation of the region, which also involved rocks of the Ulkan-Dzhugdzhur association.

  12. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  13. Disposing of Canada's used fuel

    SciTech Connect

    Torgerson, D.F.

    1990-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the permanent disposal of used nuclear fuel in a waste vault located 500 to 1,000 m deep in the Precambrian granitic rock of the Canadian Shield. The specific objectives of the program are to develop and demonstrate the technology to site, design, build, and operate a disposal facility in a way that creates no, or negligible, burden on future generations. In addition, the program must develop a methodology to evaluate the performance of the disposal system against safety criteria and demonstrate that sites are likely to exist in the Canadian Shield that satisfy regulatory criteria. These criteria are very stringent. As in other national high-level waste management programs, the Canadian concept for the permanent disposal of nuclear fuel wastes employs a multiple barrier system for isolating contaminants from the environment. The current phase of the work is generic in nature and is not site specific. Research and development (R and D) has advanced to the point where the generic concept will be evaluated under the Canadian environmental assessment review process, which involves public hearings and independent scientific review.

  14. CO2 laser cutting of natural granite

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Mejías, A.; Soto, R.; Quintero, F.; del Val, J.; Boutinguiza, M.; Lusquiños, F.; Pardo, J.; Pou, J.

    2016-01-01

    Commercial black granite boards (trade name: "Zimbabwe black granite") 10 mm thick, were successfully cut by a 3.5 kW CO2 laser source. Cutting quality, in terms of kerf width and roughness of the cut wall, was assessed by means of statistically planned experiments. No chemical modification of the material in the cutting walls was detected by the laser beam action. Costs associated to the process were calculated, and the main factors affecting them were identified. Results reported here demonstrate that cutting granite boards could be a new application of CO2 laser cutting machines provided a supersonic nozzle is used.

  15. URANIUM-SERIES DISEQUILIBRIUM IN TUFF AND GRANITE:HYDROGEOLOGICAL IMPLICATIONS

    SciTech Connect

    M. Gasscoyne; N.H. Miller

    2000-10-27

    Uranium occurs naturally at trace levels in the major rock-forming minerals (quartz, feldspars, micas) in volcanic and plutonic rocks and is concentrated in accessory minerals (zircon, sphene, apatite). It may attain concentrations as high as 1000 ppm in the accessory minerals. Radiometric age determinations on zircon and sphene have shown that uranium migration from these minerals is generally negligible over prolonged periods of geologic time. Zircon grains separated from highly weathered igneous rocks have been found to retain most of their uranium. In contrast, the uranium fixed onto mineral grain boundaries or present in less-resistant minerals such as biotite or hornblende can be readily leached by groundwater. The ubiquitous presence of uranium in a rock makes it an ideal ''natural analogue'' for understanding the mobility of uranium at a potential site for nuclear fuel waste disposal and one that is easily overlooked in the search for suitable analogues for a disposal site. Several of the intermediate radionuclides in the decay series of the two long-lived isotopes of uranium ({sup 238}U and {sup 235}U) have half-lives greater than one year and are, therefore, of geological interest. In a sealed rock mass with no water-rock interactions, all intermediate radionuclides attain radioactive equilibrium with one another within a maximum 1-2 million years. Because rocks of the Yucca Mountain area and the Canadian Shield (both potential sites for nuclear waste disposal in the United States and Canadian programs, respectively) are considerably older, this condition (known as secular equilibrium) should exist in these rocks, and all daughter/parent radionuclide activity ratios should equal unity (1.000). If the ratios are found not to equal unity, then the rock has been disturbed, probably by groundwater transport of more soluble radionuclides into or away from the rock. How recently this migration has occurred can be determined from the half-life of the

  16. Potassium-argon dating of the cape granite and a granitized xenolith at sea point.

    PubMed

    Schreiner, G D; Basson, H H; Verbeek, A A

    1968-11-01

    Ages obtained by potassium-argon dating are reported for the total rock, light mineral fraction and heavy mineral fractions of the Cape Granite, and of a granitized xenolith derived from the Malmesbury sediments. These ages lie between 430 and 554 million years. The heavy mineral fractions from each rock type show the oldest age, 540 (granite) and 554 (xenolith) million years. These ages are interpreted as lower limits, and the granite age confirms the age of 553 million years found by rubidium-strontium dating. The coincidence of the ages of the different fractions of the granite and xenolith samples is discussed in the light of the different suggestions about the age of the Malmesbury sediments. The conclusion is reached that all pre-granitization history has been eliminated. The possibility of the use of argon retention as a measure of metamorphic activity is suggested. PMID:18960415

  17. Sorption and diffusion of selenium oxyanions in granitic rock.

    PubMed

    Ikonen, Jussi; Voutilainen, Mikko; Söderlund, Mervi; Jokelainen, Lalli; Siitari-Kauppi, Marja; Martin, Andrew

    2016-09-01

    The processes controlling diffusion and sorption of radionuclides have been studied extensively in the laboratory, whereas, only a few in-situ experiments have been carried out in order to study in-situ diffusion over the long-term (several years). This is largely due to the fact that in-situ experiments are typically time consuming and cost intensive, and it is commonly accepted that laboratory scale tests are well-established approaches to characterizing the properties of geological media. In order to assess the relevance of laboratory experiments, the Swiss National Cooperative for Disposal of Radioactive Waste (Nagra) have been conducting extensive experiments in the Underground Rock Laboratory (URL) at the Grimsel Test Site (GTS) in order to study radionuclide transport and retention in-situ. One of the elements used in these experiments is non-radioactive selenium, as an analog for the radiotoxic isotope Se-79, which is present in radioactive waste. In this work, two laboratory through-diffusion experiments using selenium as a tracer were carried out in block (decimeter) scale rock specimens to support one of the ongoing radionuclide transport and retention in-situ experiment at the GTS mentioned above. The though-diffusion tests of selenium were performed under atmospheric conditions in both Kuru grey granite (KGG) and Grimsel granodiorite (GG). The decrease of selenium concentration in an inlet hole drilled into each of the rock samples and the breakthrough of selenium into sampling holes drilled around the inlet were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The effective diffusion (De) and distribution coefficients (Kd) of selenium were then determined from the changes of selenium concentration in the inlet and sampling holes using a Time-Domain Diffusion (TDD) simulations. In addition, Kd of selenium was measured by batch sorption experiments as a function of pH and Se concentration in atmospheric conditions and nitrogen

  18. Grusification of granite (scheme based on the study of granites from Sudety Mts., SW Poland)

    NASA Astrophysics Data System (ADS)

    Kajdas, Bartlomiej; Michalik, Marek

    2014-05-01

    Gruses that are developed on the Karkonosze granite (three outcrops) and the Izera granite (one outcrop) were investigated using optical microscope, scanning electron microscope equipped with EDS and electron microprobe, X-ray diffraction, IR spectrometry, chemical analysis (ICP-AES and ICP-MS), hydrogen and oxygen isotopic ratio determination and K-Ar dating. Three groups of samples were distinguished according to the degree of grusification (group I - compact granite; group II - friable granite; group III - granitic grus). The results of the examination allowed to present the simplified scheme of the grusification: 1. Development of microcracks (caused by tectonic stress, mechanical upload or magma cooling processes) promote circulation of hydrothermal fluids in granites; 2. The presence of the microcracks in granite facilitate the circulation of low-temperature fluids (low-temperature hydrothermal or weathering fluids). Fluids cause hydration and expansion of primary biotite (vermiculitization), what leads to development of secondary cracks in a rock. Fluids can also induce advanced alteration of plagioclases into clay minerals (mainly smectite or vermiculite). Expansion of biotite during vermiculitization is the most important factor in grusification. Other processes of alteration also contribute to grusification. Hydrothermal fluids in granite contribute the increase of alteration degree of primary minerals (e.g. sericitization and albitization of feldspar, chloritization or muscovitization of biotite, decomposition of monazite-(Ce) and formation of secondary REE phosphates). If primary biotite is subjected to muscovitization or chloritization, complete grusification of granite does not occur because of lack of vermiculitation.

  19. Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: Significance for formation of granite-derived fluids

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masanori; Sasa, Kimikazu; Shin, Ki-Choel; Ishii, Satoshi

    2016-06-01

    Fluid inclusions in quartz samples from a miarolitic cavity, two quartz veins, and a hydrothermal ore vein in the Tsushima granite, Japan, were analyzed by particle-induced X-ray emission to examine the chemistry and process of formation of hydrothermal fluids in an island-arc granite. Most of the inclusions were polyphase or vapor, and there were smaller numbers of two-phase aqueous inclusions. The inclusions contained Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Ge, Br, Rb, Sr, Ba, and Pb. For each inclusion, there was a strong positive correlation between Cl content and contents of other elements identified. Concentration ranges for most elements (other than Rb and Ge) in polyphase inclusions from the miarolitic cavity were comparable to those from cavities in alkaline granites; those from the ore vein were comparable to large-scale continental hydrothermal ore deposits. The lower Rb and higher Ge contents in the polyphase inclusions of the Tsushima granite may be characteristic of hydrothermal fluids from calc-alkaline granites in an island-arc setting. Br/Cl ratios (by weight) for the vapor and two-phase inclusions were 0.0013-0.0030 and differed among the three geological settings. Br/Cl ratios of polyphase inclusions increased with increasing Cl content in single-crystal and polycrystalline quartz, and high values of more than 0.0100 were found. The high Br/Cl ratios and the differences among the geological settings sampled may be due to pressure dependences of partitioning of Cl and Br between fluid and magma during fluid segregation and between liquid and vapor during boiling. Using a simple model based on these dependences, we calculated Br/Cl ratios greater than 0.01 in brine generated at pressures <0.89 kbar. Differences in Br/Cl ratios in polyphase and vapor inclusions from each geological setting were attributed to mixing between two end-member fluids: a high Br/Cl fluid generated at low pressure and a low Br/Cl fluid generated at high pressure. Br/Cl ratios of

  20. Neutrons and Granite: Transport and Activation

    SciTech Connect

    Bedrossian, P J

    2004-04-13

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  1. Granite Exfoliation, Cosumnes River Watershed, Somerset, California

    NASA Astrophysics Data System (ADS)

    Crockett, I. Q.; Neiss-Cortez, M.

    2015-12-01

    In the Sierra Nevada foothills of California there are many exposed granite plutons within the greater Sierra Nevada batholith. As with most exposed parts of the batholith, these granite slabs exfoliate. It is important to understand exfoliation for issues of public safety as it can cause rock slides near homes, roads, and recreation areas. Through observation, measuring, and mapping we characterize exfoliation in our Cosumnes River watershed community.

  2. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    SciTech Connect

    Vinson, D.W.

    1998-11-06

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  3. Les Granites des Complexes Annulaires

    NASA Astrophysics Data System (ADS)

    Bowden, Peter

    This book, Manual and Methods 4, published by France's BRGM, together with a mouthwatering preface by R. Black promises much for the student of ring complexes. It consists of four distinct chapters, each divided into a number of subsections, with 52 text figures and 9 tables. Although in reality it is based on a doctoral dissertation concerned with the newly discovered ring structures in Corsica, it is spiced with references to past and present research in Nigeria, and observations from French expeditions to the Kerguelen Islands. There are also brief commentaries on the author's observations in New Hampshire and Massachusetts. The text effectively represents a distillation of knowledge concerned with oversaturated alkaline magmatism in continental and oceanic settings. The book has a good bibliography with English-language scientific literature references up to 1980. While aware that ring-complex compositions can be variable, ranging from calc-alkaline to alkaline, the author restricts his writings to granitic and related rocks of the alkaline and peralkaline spectrum.

  4. Stereology-based fabric analysis of microcracks in damaged granite

    NASA Astrophysics Data System (ADS)

    Takemura, Takato; Oda, Masanobu

    2004-08-01

    Crack-related fabric analyses were carried out in terms of crack tensors using Inada granite deformed inelastically in a triaxial vessel up to post-failure, focusing on the fabric changes during brittle failure. Complementarily, numerical simulation tests were conducted to determine the representative volume element (RVE) required for crack surveying. Numerical simulation tests show that the window size for crack surveying should be at least six times the mean trace length in order to obtain a statistically meaningful crack tensor. A larger window is needed to estimate the distribution of crack radii. In quartz, cracks grow preferentially parallel to the major loading axis. Crack tensors in quartz can provide a measure of damage reflecting inelastic deformation under differential stress in past geological events. During the first stage of inelastic deformation, the number density of cracks decreases with a rather sharp increase in crack diameters. This happens because pre-existing cracks in intact rock join together to make longer cracks. However, the density remains almost constant during the second stage of loading from 90% to 100% of the peak stress. The crack diameter gradually increases due to the stable propagation of cracks. When granite is further deformed beyond the peak stress, the number density decreases again while sharp increases in crack diameters appear as a result of the forking and coalescence of cracks. It is also suggested that load-normal grain boundary cracks are generated as a result of the rolling and sliding of disintegrated blocks in the post-failure stage.

  5. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)

    NASA Astrophysics Data System (ADS)

    Koita, M.; Jourde, H.; Koffi, K. J. P.; da Silveira, K. S.; Biaou, A.

    2013-06-01

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcanosedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers: alloterite, isalterite, fissured layer, and fractured fresh basement. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the alterite are more resistant to dismantling.

  6. Disposable Scholarship?

    ERIC Educational Resources Information Center

    Miller, Fredrick

    2004-01-01

    The digital materials that faculty produce for their classrooms often are saved only to storage devices that might become obsolete in a few years. Without an institutional effort to provide access systems, storage, and services for their digital media, are campuses in danger of creating "Disposable Scholarship"? In this article, the author…

  7. Disposal rabbit

    DOEpatents

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  8. Disposable rabbit

    DOEpatents

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  9. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    SciTech Connect

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  10. Geochronology, geochemistry, and petrology of the Precambrian Sandia granite, Albuquerque, New Mexico

    SciTech Connect

    Majumdar, A.

    1985-01-01

    The Precambrian Sandia granite of north-central New Mexico belongs to the 1.2-1.6 Ga crustal province of the western USA. The granite shows an intrusive contact with the metamorphic country rocks. The Rb-Sr whole rock isochron age of the country rocks is 1.61 +/- 0.06 Ga, (/sup 87/Sr//sup 86/Sr)/sub 0/ = 0.705 +/- 0.001. The culmination of the intrusion of the Sandia granite took place at 1.44 +/- 0.04 GA. (/sup 87/Sr//sup 86/)/sub 0/ = 0.7054 +/- 0.0005. Rb-Sr ages on biotite-whole rock pairs and an /sup 40/Ar//sup 39/Ar dating of a biotite from the granite indicate final cooling to 300-350/sup 0/C at 1.33 Ga. This suggests slow cooling of the granite at rates which averaged 4/sup 0/C/Ma for about 100 Ma after its emplacement; during this period the Rb-Sr isotope system perhaps remained partially open. The Sandia granite shows compositional variation from granodiorite to quartz monzonite in both the northern and southern blocks. The field geology, petrology, and geochemistry of the two blocks suggest that they form a single pluton. Both the Sandia granite and mesocratic, two pyroxene granulite xenoliths therein give an ..delta../sup 18/O value of +8.0 +/- 0.5% indicating (meta)igneous source ricks for each of them. These values tend to rule out Condie's (1978) favored hypothesis for magma generation of 30-50% partial melting of siliceous gradulites. Rather, they favor an alternative hypothesis, equally satisfactory from the geochemical viewpoint, involving 5-10% melt of a gabbroic or two-pyroxene granulite parent rock in the lower crust. The Sandia granite, and by implication, the other high-Ca granitic rocks of the western USA thus do not seem to represent addition of new mantle-derived materials to the middle-late Proterozoic crust of this section of the continent.

  11. Age of granites of Wrangel Island metamorphic complex

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sergeev, Sergey; Sokolov, Sergey; Tuchkova, Marianna

    2014-05-01

    Within huge arctic shelf of Eastern-Siberian and Chukchi seas the metamorphic basement (Wrangel complex, Berri Formation) is exposed only on the Wrangel Island. There are different points of views on the age of metamorphic rocks of Wrangel complex (Berri Formation): (1) Neoproterozoic (Kameneva, 1970; Ageev, 1979; Kos'ko et al., 1993, 2003), (2) Devonian (Til'man et al., 1964, 1970; Ganelin, 1989). Metamorphic basement is represented by stratified complex, composed of dislocated metavolcanic, metavolcaniclastic and metasedimentary rocks (schists, metasandstones, metaconglomerated) with single lenses and layers of carbonate rocks (Wrangel Island…, 2003). Among basement rocks in the central part of Wrangel Island there are felsic intrusive bodies. They form small tabular bodies from tens centimeters to 70-80 meters in thickness, rarely dikes and small stocks (up to 20 x 30 m) and are composed of granite-porphyres, rarely muscovite porphyr-like granites and granosyenites (Wrangel Island…, 2003). The age of intrusions allow to determine the age of basement formation. Earlier the age of intrusions was determined by different methods and correlated to the boundary between Neoproterozoic and Paleozoic: K-Ar 570-603 Ma, Pb-Pb 590±50 Ma (S.M. Pavlov, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), Rb-Sr 475±31 Ma (I.M.Vasil'eva, Institute of Precambrian Geology and Geochronology, USSR Academy of Sciences), U-Pb 609, 633, 677 Ma (Geological Survey of Canada) (Wrangel Island…, 2003; Kos'ko et al., 1993; Cecile et al., 1991). In the lower part of metamorphic rocks of Wrangel complex there are conformable tabular bodies of gneissosed and foliated granitoides. The latter are meramorphosed and transformed in biotite-muscovite-feldspar-quartz-sericite and muscovite-feldspar-quartz-sericite gneisses and schists, where relics of primary minerals (quartz, plagioclase, potassium feldspar, rarely biotite and muscovite) and equigranular granitic

  12. "Gris Quintana": a Spanish granite from the Past into the Future.

    NASA Astrophysics Data System (ADS)

    José Tejado, Juan; Mota, M. Isabel; Pereira, Dolores

    2014-05-01

    "Gris Quintana" is a medium-grained, biotite and amphibole granodiorite extracted in the Pluton of Quintana de la Serena (Extremadura, Spain). It is a constant light grey granite from the Hercynian geologic with excellent physicomechanical and physicochemical properties. The granodiorite is composed of plagioclase, biotite, quartz and alkali feldspar, with accessory allanite, titanite, apatite, zircon and ilmenite, mostly as inclusions within the biotite crystals. This commercial variety is extracted from many quarries in the late Hercynian plutons located in the Iberian Massif in Spain period (transition between Central Iberian and Ossa-Moren Zones), having large reserves of granite. Many of the quarries have their own transformation factory (high production zone), with which the sector is offered an endless variety of finishes and constructive rock typologies. A wide range of solutions to architects and designers are offered. Gris Quintana granite is one of the materials with highest technological benefits that are used in arquitecture. "Gris Quintana" granite has been used since ancient times, not only at a regional, but also at national and international level: paving, building (structural, exterior façadas, interior uses), urban decoration and funeral art. It can be found in monuments and more recently, in buildings of different styles and uses, that stand out in beauty and splendor, lasting in time. Some singular works in "Gris Quintana" granite all over the world: extension to the "Congreso de Diputados" (Parliament) in Madrid, "Puerta de San Vicente" in Madrid, Andalucia Parliament columns in Sevilla, New Senate Buiding in Madird, "Gran Vía" pavement in Madrid, "Teatro Real façade" in Madrid… "Gris Quintana" granite accomplishes all the requirements for its nomination as Global Heritage Stone Resource, for both its use in construction and for artistic purposes.

  13. Origin of late Archean granite: geochemical evidence from the Vermilion Granitic Complex of northern Minnesota

    NASA Astrophysics Data System (ADS)

    Day, Warren C.; Weiblen, P. W.

    1986-07-01

    The 2,700-Ma Vermilion Granitic Complex of northern Minnesota is a granite-migmatite terrane composed of supracrustal metasedimentary rocks, mafic rocks, tonalitic and granodioritic plutonic rocks, and granite. The metasedimentary rocks are predominantly graywacke, which has been regionally metamorphosed to garnet-sillimanite-muscovite-bearing biotite schist, and has locally undergone anatexis. The mafic rocks form early phases within the complex and are of two types: (1) basaltic amphibolite, and (2) monzodiorite and essexite rich in large ion lithophile elements (LILE). The members of the early plutonic suite form small bodies that intrude the metasedimentary rocks and mafic rocks, producing an early migmatite. The granite is of two distinct varieties: (1) white garnet-muscovite-biotite leucogranite ( S-type; Chappell and White 1974) and (2) grayish-pink biotite-magnetite Lac La Croix Granite ( I-type). The leucogranite occurs in the early migmatite and in paragneissic portions of the complex, whereas the Lac La Croix Granite is a late-stage intrusive phase that invades the early migmatite and metasediment (producing a late migmatite) and forms a batholith. This study focuses specifically on the origin of granite in the Vermilion Granitic Complex. Chemical mass-balance calculations suggest that the S-type two-mica leucogranite had a metagraywacke source, and that the I-type Lac La Croix Granite formed via partial fusion of calc-alkaline tonalitic material, which may have been similar to rocks of the early plutonic suite. This model is satisfactory for petrogenesis of similar Late Archean post-kinematic granites throughout the Canadian Shield.

  14. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  15. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  16. Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal.

    PubMed

    Martins, L M O; Gomes, M E P; Teixeira, R J S; Pereira, A J S C; Neves, L J P F

    2016-11-01

    At Vila Pouca de Aguiar area, northern Portugal, crops out a post-tectonic Variscan granite pluton, related with the Régua-Vila Real-Verín fault zone, comprising three types of biotite granites. Among these granites, PSG granite yield the highest average contents of U, probably due to its enrichment in accessory U-bearing minerals such as zircon. In the proximity of faults and joints, these granites are often affected by different degrees of hydrothermal alteration, forming reddish altered rocks, commonly known as "episyenites". These altered rocks are probably associated to the occurrence of hydrothermal processes, which led to uranium enrichment in the most advanced stages of episyenitization. In these granites, both average gamma absorbed dose rates in outdoor and indoor air are higher than those of the world average. Furthermore, even in the worst usage scenario, all these granites can be used as a building material, since their annual effective doses are similar to the limit defined by the European Commission. The geometric mean of radon activity of 91 dwellings located at the Vila Pouca de Aguiar pluton is 568Bqm(-3), exceeding that of other northern Portuguese granites. Measurements carried out during a winter season, indicate that 62.6% of the analysed dwellings yield higher indoor radon average values than the Portuguese legislation limit (400Bqm(-3)), and annual effective doses due higher than the world's average value (1.2mSvy(-1)). The interaction of geogenic, architectural and anthropogenic features is crucial to explain the variance in the geometric mean of radon activity of dwellings from Vila Pouca de Aguiar pluton, but the role of geologic faults is probably the most important decisive factor to increase the indoor radon concentration in dwellings. Hence, the development of awareness campaigns in order to inform population about the incurred radiological risks to radon exposure are highly recommended for this specific area. PMID:27448957

  17. Frictional slip of granite at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    To measure the strength, sliding behavior, and friction constitutive properties of faults at hydrothermal conditions, laboratory granite faults containing a layer of granite powder (simulated gouge) were slid. The mechanical results define two regimes. The first regime includes dry granite up to at least 845?? and wet granite below 250??C. In this regime the coefficient of friction is high (?? = 0.7 to 0.8) and depends only modestly on temperature, slip rate, and PH2O. The second regime includes wet granite above ~350??C. In this regime friction decreases considerably with increasing temperature (temperature weakening) and with decreasing slip rate (velocity strengthening). These regimes correspond well to those identified in sliding tests on ultrafine quartz. The results highlight the importance of fluid-assisted deformation processes active in faults at depth and the need for laboratory studies on the roles of additional factors such as fluid chemistry, large displacements, higher concentrations of phyllosilicates, and time-dependent fault healing. -from Authors

  18. Environmental Geology

    ERIC Educational Resources Information Center

    Passero, Richard N.

    1978-01-01

    1977 was a year of continued and expanding efforts in the application of the geosciences to land-use planning, especially as they relate to geologic hazards, and elucidating the role of geology in public policy. The work of environmental geological programs is reviewed. (Author/MA)

  19. Proterozoic granitic magmatism in the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Haapala, I.; Lahtinen, R.; Rämö, O. T.

    2003-04-01

    The main tectonic units of the Fennoscandian Shield are 1) the Archean 3.1--2.6 Ga granite gneiss (GGT) -- greenstone belt domain in the east, 2) the broad orogenic Svecofennian domain (1.9--1.8 Ga), and 3) the Southwest Scandinavian domain that consists of granitic gneisses, Gothian arc-type volcanic -- sedimentary and plutonic rocks (1.7--1.55 Ga), and has a Sveconorwegian (Grenvillian) overprint. The Svecofennian domain was formed by sequential accretion of volcanic arcs to the Archean craton (Lahtinen, 1994; Nironen, 1997). Rifting of the Archean craton at 2.50--2.44 Ga led to emplacement of a bimodal suite of layered mafic intrusions and minor A-type quartz syenites -- granites into the Archean crust in nortern Finland and adjacent Russia. Nd isotopes suggest Archean crustal source for some of the silicic plutons (Lauri and Mänttäri, 2003). The earliest Svecofennian granitoid rocks are ˜1.92 Ga gneissic calc-alkalic tonalities and granodiorites in central and northernmost Finland close to the Archean craton. I-type 1.89--1.87 Ga calc-alkalic granitoids of tonalite-granodiorite-granite association are common in the Svecofennian belts. In the Central Finland Granitoid Complex two suites can be separated: the 1.89--1.88 Ga calc-alkalic deformed granodiorites and granites, and the massive 1.88--1.87 Ga alkali-calcic or alkalic quartz monzonites and monzogranites (Nironen et al., 2000; Rämö et al., 2001). Southern Finland is characterized by 1.84--1.80 Ga migmatite-forming peraluminous S-type granites that were formed by anatectic melting of mainly sedimentary -- volcanic rocks of the thick Svecofennian crust. The Svecofennian plutonism was finished by intrusion of extension-related postorogenic (post-collisional) 1.80--1.77 Ga granite stocks that have a shoshonitic affinity and were possibly derived from enriched lithospheric mantle. Nd isotopes of the 1.81--1.77 Ga granites of northern Finland and the 1.88--1.86 Ga granites of eastern Finland near the

  20. Early Proterozoic syn-and postcollision granites in the northern part of the Baikal fold area

    NASA Astrophysics Data System (ADS)

    Larin, A. M.; Sal'Nikova, E. B.; Kotov, A. B.; Makar'ev, L. B.; Yakovleva, S. Z.; Kovach, V. P.

    2006-10-01

    Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ˜1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ˜2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.

  1. A-type stratoid granites of Madagascar: evidence of Rodinia rifting at ca 790 Ma

    NASA Astrophysics Data System (ADS)

    Nedelec, Anne; Paquette, Jean-Louis; Bouchez, Jean-Luc

    2015-04-01

    The so-called stratoid granites are sheet-like granites emplaced as conformable sills in the Precambrian basement of central Madagascar. Most of them have A-type affinities (Nédélec et al. 1995). They are everywhere characterized by the same structural pattern evidencing two stages of deformation. The first one (foliations mildly dipping to the west and lineations trending WSW) is regarded as the consequence of synkinematic magma emplacement. The second stage, characterized by interference folds, steeply dipping foliations and subhorizontal lineations trending to the north, corresponds to a more or less pronounced reworking in ductile conditions, regarded as the result of Late Pan-African transcurrent tectonics. To the north of Antananarivo, the stratoid granites are associated with comagmatic quartz-syenites. New U-Pb zircons ages obtained by in situ analyses reveal two group of ages: upper intercept ages of ca 790 Ma, and younger ages of ca 550 Ma corresponding to crystal rims. These new data question the geological significance of former TIMS ages of ca 630 Ma formerly obtained from the same rocks (Paquette & Nédélec 1998). It is suggested that the stratoid granites and syenites were emplaced during a crustal thinning event corresponding to an early Rodinia rifting stage. The Pan-African imprint on these rocks is therefore limited to reheating, tectonic reworking and deep fluid transfer in the vicinity of Late-Neoproterozoic shear zones at ca 550 Ma (Nédélec et al. 2014).

  2. Radioactivity and gamma-dose rates observed at the Morungaba granites, Southeastern Brazil.

    PubMed

    Lucas, Fabio de Oliveira; Ribeiro, Fernando Brenha

    2013-07-01

    A ground gamma-ray survey was conducted over part of a large granitic body located near the city of Campinas, eastern São Paulo State, Brazil. The dominant rock types are K-feldspar porphyries-rich granites, porphyritic biotite and hornblend-bearing granites, fine to medium-grained monzogranites and medium to gross grained, biotite and muscovite-bearing monzogranites. The radioactive element distribution reflects local geology, in part re-worked by weathering, and the most radioactive rocks are the K-feldspar-rich granites. The rate of the absorbed dose by the air reflects the integrated effects of the radioactive elements distribution. Most of the observed values vary between 67 and 130 nGy h(-1) and with localised spots with the absorbed dose rate values up to 193 nGy h(-1) and low values of ∼25 nGy h(-1). The mean air absorbed dose rate for the studied area is 77 nGy h(-1). PMID:23222823

  3. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  4. Geochemical evolution of the metaluminous and peraluminous granites of Ganawuri Younger Granite Complex, northern Nigeria

    NASA Astrophysics Data System (ADS)

    Imeokparia, Ebo. Gab.

    The Ganawuri Complex is one of the numerous high level composite granitoid bodies occurring in the central plateau sector of the Nigerian Younger Granite province. Lithologically the Complex is composed of a hastingsite-fayalite granite, hastingsite-biotite granite and biotite granite. Although the major element chemistry of the constituent rock types shows only subtle variation typical of granites with minimum melt composition, the trace elements data and variation indicate that the granites in the Complex formed essentially by fractional crystallization. Geochemically the late-stage rock types are characterized by anomalously high contents of F, Li, Y, Th, Ga, Rb, Sn and Nb and by unusually low contents of Ba, Sr and Zr. These geochemical peculiarities are interpreted to be due to extreme fractionation. The ultimate product of fractional crystallization was a water-saturated melt, enriched in incompatible elements whose crystallization resulted in tin mineralization. The chemistry of the rocks can be compared with A-type granites which are considered typical of anorogenic extensional environments and/or Continental rifts.

  5. Radionuclide transport in fractured granite interface zones

    NASA Astrophysics Data System (ADS)

    Hu, Q. H.; Möri, A.

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study migration paths of radionuclides in fractured granite. In this work, a micro-scale mapping technique was applied by interfacing laser ablation sampling with inductively coupled plasma-mass spectrometry (LA-ICP-MS) to detect the small scale (micron-range) distribution of actinides in the interface zones between fractures and the granitic rock matrix. Long-lived 234U, 235U, and 237Np were detected in flow channels, as well as in the diffusion accessible rock matrix, using the sensitive, feature-based mapping of the LA-ICP-MS technique. The retarded actinides are mainly located at the fracture walls and in the fine grained fracture filling material as well as within the immediately adjacent wallrock. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. Actinides studied in this work did not penetrate into the mylonite side as much as into the granite matrix, most likely due to the lower porosity, the enhanced sorption capacity and the disturbed diffusion paths of the mylonite region itself. Overall, the maximum penetration depth detected with this technique for 237Np and uranium isotopes over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modelling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results.

  6. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    SciTech Connect

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    2007-07-01

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried out at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)

  7. Disposal phase experimental program plan

    SciTech Connect

    1997-01-31

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes.

  8. Geologic setting and mineralization of the Kougarok Sn(Ta-Nb) deposit, seaward peninsula, Alaska

    SciTech Connect

    Puchner, C.C.

    1985-01-01

    The Kougarok tin (tantalum-niobium) deposit is located in the north-central Seward Peninsula, roughly 130 kilometers north of Nome, Alaska. Tin and tantalum-niobium mineralization occur within granitic dikes, subhorizontal sheets, plugs, and in schists adjacent to the granite bodies. Rb/Sr and K/Ar age determinations indicate the granites at Kougarok are late Cretaceous in age and coeval with other tin granites of the Seward Peninsula. The host rock to the granites at Kougarok is polydeformed pelitic schists of possible Precambrian age. Known mineralization occurs in four geologic settings: 1) within steep cylindrical pipes of greisenized granite; 2) in greisenized dikes; 3) in greisen along the roof zone of a subhorizontal granite sheet; and 4) as stringer zones in schists. Tin mineralization is known in all the above geologic environments and occurs dominantly as disseminated cassiterite in quartz+/-tourmaline+/-topaz greisen. Grades of significant tin mineralization range from 0.1 to 15 percent tin and average approximately 0.5 percent tin. Tantalum-niobium mineralization is confined to the roof greisen environment. Tantalite-columbite occurs as disseminated grains in white mica altered granite lateral to tin-bearing quartz-tourmaline greisen. Grades for both tantalum and niobium range from 0.02 to 0.05 percent.

  9. OVERALL VIEW OF QUARRY, FACING NORTH, WITH UNQUARRIED GRANITE OUTCROP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTH, WITH UN-QUARRIED GRANITE OUTCROP IN BACKGROUND - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  10. The use of protective barriers to deter inadvertent human intrusion into a mined geologic facility for the disposal of radioactive waste: A review of previous investigations and potential concepts

    SciTech Connect

    Tolan, T.L.

    1993-06-01

    Sandia National Laboratories is evaluating the feasibility of developing protective barrier system for the Waste Isolation Pilot Plant (WIPP) to thwart inadvertent human intrusion into this radioactive-waste disposal system for a period of 9,900 years after assumed loss of active institutional controls. The protective barrier system would be part of a series of enduring passive institutional controls whose long-term function will be to reduce the likelihood of inadvertent human activities (e.g., exploratory drilling for resources) that could disrupt the WIPP disposal system.

  11. High Resolution Images of the Granitic Plutons Along the Iberseis Deep Seismic Reflection Transect: Southwestern Iberia

    NASA Astrophysics Data System (ADS)

    Palomeras, I.; Flecha, I.; Simacas, F.; Gonzalez-Lodeiro, F.; Carbonell, R.

    2006-12-01

    IBERSEIS is a 303 Km long deep seismic profile in the S-W of Iberian Peninsula. The parameters used for the acquisition allow for a high resolution imaging of the shallow subsurface. The deep seismic transect goes across several characteristic granitic plutons. Detailed imaging of these outcropping granites and the neighboring geologic structures has been attempted. The trace of the profile followed roads and paths, resulting in a irregular acquisition geometry. The quality of the final image is improved considerably by using crooked line techniques which took into account the irregular distribution of sources and receivers. The rugged topography which can reach more than 300 m height and the highly heterogeneous surface geology required carefully estimated static corrections. Reliable shallow velocity models were obtained by first arrival travel time tomographic inversions. These velocity models were also used for pre-stack depth migration imaging. The reprocessing improved the seismic reflection images allowing for a better geological interpretation and, in some cases, provide a direct correlation between the surface geology and the imaged features. The imaged structures suggest possible emplacement mechanisms.

  12. Geology of the reading prong

    SciTech Connect

    Schutz, D.

    1987-03-01

    For over a billion years the geological terrain now called New Jersey has been the site of unusually high uranium concentrations. Although the highest of these concentrations occurs in the Reading Prong, the area is itself only part of a larger geologic province extending to the northeast and southwest. The rocks in the Reading Prong are not uniformly radioactive. High uranium concentrations tend to be associated with magnetite deposits - metamorphic equivalents of iron-rich formations - and with pegmatites - rocks formed by precipitation from mineralizing solutions in the late phases of granite emplacement. Because of the way they were formed, the uranium-bearing magnetite and pegmatite bodies tend to be long and narrow, and the resulting patterns of radon occurrence can be expected to be the same. This may explain why, in some places, adjacent houses have very different radon concentrations.

  13. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  14. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect

    Reidel, Stephen P.; Chamness, Mickie A.

    2007-12-14

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  15. 7. Photocopied August 1971 from Photo 13729, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied August 1971 from Photo 13729, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  16. 9. Photocopied August 1971 from Photo 13730, Granite Folder #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopied August 1971 from Photo 13730, Granite Folder #1, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE STATION: WESTINGHOUSE 750 K.V.A., 2- PHASE GENERATORS AND SWITCHBOARD, MAY 24, 1915. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  17. 8. Photocopied August 1971 from Photo 11479, Granite Station Special ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1971 from Photo 11479, Granite Station Special Folder, Engineering Department, Utah Power and Light Co., Salt Lake City, Utah. GRANITE HYDRO-ELECTRIC PLANT (1500 KW) STATION. PENSTOCK AND SPILWAY, NOVEMBER 1914. - Utah Power Company, Granite Hydroelectric Plant, Holladay, Salt Lake County, UT

  18. The global age distribution of granitic pegmatites

    USGS Publications Warehouse

    McCauley, Andrew; Bradley, Dwight C.

    2014-01-01

    An updated global compilation of 377 new and previously published ages indicates that granitic pegmatites range in age from Mesoarchean to Neogene and have a semi-periodic age distribution. Undivided granitic pegmatites show twelve age maxima: 2913, 2687, 2501, 1853, 1379, 1174, 988, 525, 483, 391, 319, and 72 Ma. These peaks correspond broadly with various proxy records of supercontinent assembly, including the age distributions of granites, detrital zircon grains, and passive margins. Lithium-cesium-tantalum (LCT) pegmatites have a similar age distribution to the undivided granitic pegmatites, with maxima at 2638, 1800, 962, 529, 485, 371, 309, and 274 Ma. Lithium and Ta resources in LCT pegmatites are concentrated in the Archean and Phanerozoic. While there are some Li resources from the Proterozoic, the dominantly bimodal distribution of resources is particularly evident for Ta. This distribution is similar to that of orogenic gold deposits, and has been interpreted to reflect the preservation potential of the orogenic belts where these deposits are formed. Niobium-yttrium-fluorine (NYF) pegmatites show similar age distributions to LCT pegmatites, but with a strong maximum at ca. 1000 Ma.

  19. Granite School District First Grade Reading Study.

    ERIC Educational Resources Information Center

    Castner, Myra H.; And Others

    A comparative study of first-grade reading instructional methods was undertaken with the support of the Granite School District Exemplary Center for Reading Instruction. This study was conducted in 19 schools of the district and involved approximately 1,295 students. Nine hypotheses concerning the various approaches used in reading instruction…

  20. Catastrophic Versus Uniformitarian Geology: Outline for Classroom Debate

    ERIC Educational Resources Information Center

    Carl, James D.; O'Brien, Neal R.

    1970-01-01

    Presents the two positions of the geological debate, as presented in 1796, between the Wernerians (uniformitarians) and the Huttonians (catastrophic supporters). Presentations stress importance of earth heat, the origin of granite and basalt, and the cyclic theme of Hutton's earth. (RR)

  1. Fractal patterns of fractures in granites

    NASA Astrophysics Data System (ADS)

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-05-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: (1) The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). (2) Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. (3) Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis.

  2. Fractal patterns of fractures in granites

    USGS Publications Warehouse

    Velde, B.; Dubois, J.; Moore, D.; Touchard, G.

    1991-01-01

    Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: 1. (1)|The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). 2. (2)|Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. 3. (3)|Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis. ?? 1991.

  3. Laboratory Simulation of Flow through Single Fractured Granite

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Singh, D. N.; Ranjith, P. G.

    2015-05-01

    Laboratory simulation on fluid flow through fractured rock is important in addressing the seepage/fluid-in-rush related problems that occur during the execution of any civil or geological engineering projects. To understand the mechanics and transport properties of fluid through a fractured rock in detail and to quantify the sources of non-linearity in the discharge and base pressure relationship, fluid flow experiments were carried out on a cylindrical sample of granite containing a `single rough walled fracture'. These experiments were performed under varied conditions of confining pressures, σ 3 (5-40 MPa), which can simulate the condition occurring about 1,000 m below in the earth crust, with elevated base pressure, b p (up to 25 MPa) and by changing fracture roughness. The details of the methodologies involved and the observations are discussed here. The obtained results indicate that most of the data in the Q verses b p plot, fall on the straight line and the flow through the single fracture in granite obeys Darcy's law or the well-known "cubic law" even at high value of b p (=4 MPa) and σ 3 (=5 MPa) combination. The Reynolds number is quite sensitive to the b p, σ 3 and fracture roughness, and there is a critical b p, beyond which transition in flow occurs from laminar to turbulent. It is believed that such studies will be quite useful in identifying the limits of applicability of well know `cubic law', which is required for precise calculation of discharge and/or aperture in any practical issues and in further improving theoretical/numerical models associated with fluid flow through a single fracture.

  4. Geochronology, geochemistry and tectonic implications of Late Triassic granites in the Mongolian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Dash, Batulzii; Boldbaatar, Enkhjargal; Zorigtkhuu, Oyun-Erdene; Yin, An

    2016-03-01

    Although the closure of the Paleo-Asian Ocean in western China and western Mongolia occurred in the Late Carboniferous and Early Permian, widespread intra-continental magmatism continued to occur across this region from the Late Permian to the end of the Triassic. In this study we document field relationships and geochemical characterization of a Late Triassic felsic intrusive complex in the western Mongolian Altai. The plutonic complex occurs as sills, dikes, and small stocks and its composition varies from biotite granite, two-mica granite, to leucogranite. Structurally, the plutonic complex occurs in the hanging wall of a segment of the regionally extensively (>1500 km long) Irtysh-Ertix-Bulgan thrust zone. As the plutonic bodies both cut and are deformed by the shear fabrics in this regional thrust shear zone, the duration of felsic magmatism and regional thrusting was temporally overlapping. This suggests that magmatism was coeval with crustal thickening. Major- and trace-element data and isotopic analysis of granitoid samples from our study area indicate that the felsic intrusions were derived from partial melting of meta-sediments, with the biotite and two-mica granite generated through vapor-absent melting and the leucogranite from flux melting. Although the Mongolian Altai intrusions were clearly originated from anatexis, coeval granite in the Chinese Altai directly west of our study area in the hanging wall of the Irtysh-Ertix-Bulgan thrust was derived in part from mantle melting. To reconcile these observations, we propose a Himalayan-style intracontinental-subduction model that predicts two geologic settings for the occurrence of felsic magmatism: (1) along the intracontinental thrust zone where granite was entirely generated by anatexis and (2) in the hanging wall of the intracontinental thrust where convective removal and/or continental subduction induced mantle melting.

  5. Ragnar Granit 100 years--memories and reflections.

    PubMed

    Kernell, D

    2000-12-01

    The Swedish-Finnish Nobel laureate Ragnar Granit, born 100 years ago, is commemorated in a brief article by one of his former PhD students and collaborators. After a short account of Granit's life and scientific career, special attention is given to Granit's role as a teacher in research training and his published thoughts on this matter, partly reflecting Granit's own experience as a "postdoc" in the laboratory of Sherrington (Oxford). The article includes personal recollections of how it was to work together with Granit in his laboratory. PMID:11232369

  6. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    SciTech Connect

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannot account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.

  7. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  8. Modeling of nuclear waste disposal by rock melting

    SciTech Connect

    Heuze, F.E.

    1982-04-01

    Today, the favored option for disposal of high-level nuclear wastes is their burial in mined caverns. As an alternative, the concept of deep disposal by rock melting (DRM) also has received some attention. DRM entails the injection of waste, in a cavity or borehole, 2 to 3 kilometers down in the earth crust. Granitic rocks are the prime candidate medium. The high thermal loading initially will melt the rock surrounding the waste. Following resolidification, a rock/waste matrix is formed, which should provide isolation for many years. The complex thermal, mechanical, and hydraulic aspects of DRM can be studied best by means of numerical models. The models must accommodate the coupling of the physical processes involved, and the temperature dependency of the granite properties, some of which are subject to abrupt discontinuities, during ..cap alpha..-..beta.. phase transition and melting. This paper outlines a strategy for such complex modeling.

  9. High-level waste processing and disposal

    NASA Astrophysics Data System (ADS)

    Crandall, J. L.; Drause, H.; Sombret, C.; Uematsu, K.

    The national high level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high level waste disposal will probably and about 5 to 10% to the costs of nuclear electric power. Third conclusion is less optimistic.

  10. Assessment of radiological hazard of commercial granites from Extremadura (Spain).

    PubMed

    Guillén, J; Tejado, J J; Baeza, A; Corbacho, J A; Muñoz, J G

    2014-06-01

    The term "commercial granite" comprises different natural stones with different mineralogical components. In Extremadura, western Spain, "commercial granites" can be classified in three types: granite s.s. (sensus stricti), granodiorite, and diorite. The content of naturally occurring radionuclides depended of the mineralogy. Thus, the (40)K content increased as the relative content of alkaline feldspar increased but decreased as the plagioclase content increased. The radioactive content decreased in the following order: granite s.s. > granodiorite > diorite. In this work, the radiological hazard of these granites as building material was analyzed in terms of external irradiation and radon exposure. External irradiation was estimated based on the "I" index, ranged between 0.073 and 1.36. Therefore, these granites can be use as superficial building materials with no restriction. Radon exposure was estimated using the surface exhalation rates in polished granites. The exhalation rate in granites depends of their superficial finishes (different roughness). For distinct mechanical finishes of granite (polish, diamond sawed, bush-hammered and flamed), the surface exhalation rate increased with the roughness of the finishes. Thermal finish presented the highest exhalation rate, because the high temperatures applied to the granite may increase the number of fissures within it. The exhalation rates in polished granites varied from 0.013 to 10.4 Bq m(-2) h(-1). PMID:24583635

  11. METHODOLOGY TO INVENTORY, CLASSIFY, AND PRIORITIZE UNCONTROLLED WASTE DISPOSAL SITES

    EPA Science Inventory

    A comprehensive method to inventory uncontrolled waste disposal sites integrates all available historic, engineering, geologic, land use, water supply, and public agency or private company records in order to develop a complete and accurate site profile. Detailed information on s...

  12. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  13. Thermal-Mechanical Modeling of Deep Borehole Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Clayton, D. J.; Herrick, C. G.; Hadgu, T.

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 °C and 180 °C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  14. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect

    Forsberg, Charles W.; Driscoll, Michael J.

    2007-07-01

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  15. DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER

    SciTech Connect

    F. Habashi

    1998-06-26

    The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting

  16. Physics of the granite sphere fountain

    NASA Astrophysics Data System (ADS)

    Snoeijer, Jacco H.; der Weele, Ko van

    2014-11-01

    A striking example of levitation is encountered in the "kugel fountain" where a granite sphere, sometimes weighing over a ton, is kept aloft by a thin film of flowing water. In this paper, we explain the working principle behind this levitation. We show that the fountain can be viewed as a giant ball bearing and thus forms a prime example of lubrication theory. It is demonstrated how the viscosity and flow rate of the fluid determine (i) the remarkably small thickness of the film supporting the sphere and (ii) the surprisingly long time it takes for rotations to damp out. The theoretical results compare well with measurements on a fountain holding a granite sphere of one meter in diameter. We close by discussing several related cases of levitation by lubrication.

  17. GRANITE FIORDS WILDERNESS STUDY AREA, ALASKA.

    USGS Publications Warehouse

    Berg, Henry C.; Pittman, Tom L.

    1984-01-01

    Mineral surveys of the Granite Fiords Wilderness study area revealed areas with probable and substantiated mineral-resource potential. In the northeastern sector, areas of probable and substantiated resource potential for gold, sivler, and base metals in small, locally high grade vein and disseminated deposits occur in recrystallized Mesozoic volcanic, sedimentary, and intrusive rocks. In the central part, areas of probable resource potential for gold, silver, copper, and zinc in disseminated and locally massive sulfide deposits occur in undated pelitic paragneiss roof pendants. A molybdenite-bearing quartz vein has been prospected in western Granite Fiords, and molybdenum also occurs along with other metals in veins in the northeastern sector and in geochemical samples collected from areas where there is probable resource potential for low-grade porphyry molybdenum deposits in several Cenozoic plutons. No energy resource potential was identified in the course of this study.

  18. Comparison of specularly reflecting mirrors for GRANIT

    NASA Astrophysics Data System (ADS)

    Nesvizhevsky, V. V.; Pignol, G.; Protasov, K. V.; Quemener, G.; Forest, D.; Ganau, P.; Mackowski, J. M.; Michel, Ch.; Montorio, J. L.; Morgado, N.; Pinard, L.; Remillieux, A.

    2007-08-01

    The specularity of ultracold neutron reflection was compared for different "promising" surfaces, including sapphire, silica, silica with carbon (diamond-like), and copper coatings with very small roughness. The probability of total losses of ultracold neutrons (UCN) from a specular trajectory was dominated by diffusive (non-specular) elastic scattering of UCN. In all the cases considered the quality of reflection was sufficiently high for storage of UCN at specular trajectories for the first stage of GRANIT experiment.

  19. Heater test 1, Climax Stock granite, Nevada

    SciTech Connect

    Montan, D.N.; Bradkin, W.E.

    1984-10-01

    We conducted a series of in-situ tests in the Climax Stock, an intrusive granite formation at the Nevada Test Site, to validate the concept of housing a nuclear waste repository in granitic crystalline rock. The thermal properties of the granite were measured with resistance heaters and thermocouple frames that had been emplaced in drilled holes in the floor of a drift 420 m below the surface. Data analysis was performed primarily by comparing the measured and calculated temperature histories, varying conductivity and diffusivity in the calculations until reasonable agreement was achieved. The best-fit value for in-situ conductivity was approximately 3.1 W/m x K, and the deduced value for in-situ diffusivity was approximately 1.2 mm{sup 2}/s. Anisotropic effects in the thermal field were less than 10%. Permeability was determined by sealing off portions of the drilled holes, using inflatable rubber packers and an air-pressurization system. We then compared the resulting decay in pressure with analytic solutions of the pressure loss from a cylindrical source in an infinite isotropic medium, obtaining a permeability of approximately 1 nanodarcy (nD) at about 30{sup 0}C. As the temperature increased, the permeability decreased to about 0.2 nD at about 50{sup 0}C and became too small to measure (<0.02 nD) at higher temperatures. These tests provided new data on the in-situ properties of a granite typical of the Basin and Range province and significantly advanced our understanding of and ability to perform in-situ thermal and permeability measurements. This knowledge will be of considerable value for future spent-fuel tests.

  20. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    NASA Astrophysics Data System (ADS)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  1. Silicosis in West Country Granite Workers

    PubMed Central

    Hale, L. W.; Sheers, G.

    1963-01-01

    The granite industry in Cornwall and Devon is briefly described, especially the production of dust in dressing the stone. In 1951, 210 granite masons were examined (about 84% of the total at that time) and 37 (17·6%) showed silicosis. These men were followed up for 10 years. No silicosis was seen in men with less than 15 years' exposure, but after this time the risk increased to 11 out of 14 in those with over 35 years' exposure. Nine deaths occurred, two of which were due to silicosis. Radiological progression was observed in 13 of the 28 survivors. It was not necessarily associated with additional exposure but was related to age. More young men progressed. In 1961, 132 of the granite masons (about 93% of the total at that time) were re-examined and nine new cases of silicosis were found to have developed during the 10-year interval. The exposure in the 1961 cases was comparable with that of similar cases in 1951. Thus the risk has not been much reduced over this period. Pulmonary tuberculosis occurred in eight of the 37 cases of silicosis in 1951, and between 1951 and 1961 a further five cases were diagnosed, four being from one locality. This was by far the most frequent and disabling complication. Only one case of progressive massive fibrosis was seen. More extensive use of protective antituberculous chemotherapy is advocated, and also better dust control. Images PMID:14046159

  2. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  3. Engineering Geology

    ERIC Educational Resources Information Center

    Lee, Fitzhugh T.

    1974-01-01

    Briefly reviews the increasing application of geologic principles, techniques and data to engineering practices in the areas of land use and zoning controls, resource management energy programs and other fields. (BR)

  4. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.

    PubMed

    Yi, Shuping; Ma, Haiyi; Zheng, Chunmiao; Zhu, Xiaobin; Wang, Hua'an; Li, Xueshan; Hu, Xueling; Qin, Jianbo

    2012-01-01

    Near surface disposal of low- and intermediate-level radioactive wastes (LILW) requires evaluating the field conditions of the candidate site. However, assessment of the site conditions may be challenging due to the limited prior knowledge of some remote sites, and various multi-disciplinary data requirements at any given site. These situations arise in China as in the rest of the industrialized world, particularly since a regional strategy for LILW disposal has been implemented to protect humans and the environment. This paper presents a demonstration of the site assessment process through a case study focusing mainly on the geologic, hydrogeologic and geochemical characteristics of the candidate site. A joint on-site and laboratory investigation, supplemented by numerical modeling, was implemented in this assessment. Results indicate that no fault is present in the site area, although there are some minor joints and fractures, primarily showing a north-south trend. Most of the joints are filled with quartz deposits and would thus function hydraulically as impervious barriers. Investigation of local hydrologic boundaries has shown that the candidate site represents an essentially isolated hydrogeologic unit, and that little or no groundwater flow occurs across its boundaries on the north or east, or across the hilly areas to the south. Groundwater in the site area is recharged by precipitation and discharges primarily by evapo-transpiration and surface flow through a narrow outlet to the west. Groundwater flows slowly from the hilly area to the foot of the hills and discharges mainly into the inner brooks and marshes. Some groundwater circulates in deeper granite in a slower manner. The vadose zone in the site was investigated specially for their significant capability for restraining the transport of radionuclides. Results indicate that the vadose zone is up to 38m in thickness and is made up of alluvial clay soils and very highly weathered granite. The vadose

  5. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; Teixeira, Nilson P.; Rämö, O. Tapani; Moura, Candido A. V.; Macambira, Moacir J. B.; de Oliveira, Davis C.

    2005-03-01

    ). Geology 17, 135-138], the origin of the ˜1.88 Ga Carajás granites is related to a mantle superswell beneath the Trans-Amazonian supercontinent. This caused breakup of the continent and was associated with magmatic underplating and resultant crustal melting and generation of A-type granite magmas. The Paleoproterozoic continent that included the Archean and Trans-Amazonian domains of the Amazonian craton was assembled at ˜2.0 Ga; its disruption was initiated at ˜1.88 Ga, at least 200 Ma earlier than in Laurentia and Fennoscandia. The Carajás granites were related to the breakup of the supercontinent, not to subduction processes.

  6. IRRIGATION WASTEWATER DISPOSAL WELL STUDIES--SNAKE PLAIN AQUIFER

    EPA Science Inventory

    An investigation was conducted to evaluate the impact of irrigation disposal well practices on the water quality of the Snake Plain aquifer. A study site was selected where the geology was determined to be characteristic of areas in the Snake River Plain where irrigation disposal...

  7. 3,800-Myr granitic gneiss in South-Western Minnesota

    USGS Publications Warehouse

    Goldich, S.S.; Hedge, C.E.

    1974-01-01

    WE have previously arrived at an age of 3,550 Myr for granitic1 gneiss in the vicinities of Morton and Montevideo in the Minnesota River valley, south-western Minnesota. We now report new Rb-Sr analyses (Table 1) and an age of 3,800 Myr for the fine grained foliated phase of the Montevideo Gneiss of Lund2. The rocks have undergone a complex history of metamorphism which remains to be deciphered, but the age determinations reveal that the geological mapping and previous interpretations did not provide a proper basis for sampling. ?? 1974 Nature Publishing Group.

  8. Petroleum Engineering Techniques for HLW Disposal

    SciTech Connect

    van den Broek, W. M. G. T.

    2002-02-25

    This paper describes why petroleum engineering techniques are of importance and can be used for underground disposal of HLW (high-level radioactive waste). It is focused on rock salt as a geological host medium in combination with disposal of the HLW canisters in boreholes drilled from the surface. Both permanent disposal and disposal with the option to retrieve the waste are considered. The paper starts with a description of the disposal procedure. Next disposal in deep boreholes is treated. Then the possible use of deviated boreholes and of multiple boreholes is discussed. Also waste isolation aspects and the implications of the HLW heat generation are treated. It appears that the use of deep boreholes can be beneficial, and also that--to a certain extent--borehole deviation offers possibilities. The benefits of using multiple boreholes are questionable for permanent disposal, while this technique cannot be applied for retrievable disposal. For the use of casing material, the additional temperature rise due to the HLW heat generation must be taken into account.

  9. Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis

    NASA Astrophysics Data System (ADS)

    Trumbull, A.-type granite genesis R. B.; Harris, C.; Frindt, S.; Wigand, M.

    2004-03-01

    Many of the early Cretaceous intrusive complexes in the Damaraland of west-central Namibia are silicic in composition. Although all have trace element characteristics typical for the so-called A-type granites, major differences in alkali/aluminum ratios and isotopic compositions require diverse magma sources. This paper presents Nd and O isotope data from the five largest silicic complexes (Paresis, Erongo, Brandberg, Cape Cross, Gross Spitzkoppe) that provide new constraints on the nature of crustal and mantle sources involved, and their relative proportions. The Paresis complex has an isotopic signature ( δ18O=+9‰, ɛNd 130 Ma=-21) indicating a crustal component similar to Mesoproterozoic gneisses of the Angola craton. The other complexes have isotope variations ( δ18O from +8.1‰ to +10.7‰ and ɛNd 130 Ma from -1 to -9) that can be explained by a binary mixing model between a mantle and crustal component. More importantly, this same mixing line also fits the Nd-O isotope variations reported from the mafic Okenyenya and Messum complexes, and from rhyodacites in the southern Etendeka volcanic sequence. The uniformity of the crustal component implied by this mixing model suggests lower crustal material, in contrast to the geologic complexity of the Neoproterozoic Damara Belt presently exposed at the surface. This is consistent with the isotopic data, and we interpret the crustal component to be lower crustal metametasediments that were dehydrated and perhaps melt-depleted by generation of the S-type granites, which are widespread in the Damara Belt. The mantle component is interpreted to be dominated by the Tristan mantle plume, but some involvement of depleted mantle material is needed to explain all of the isotope data. The data rule out any significant role for enriched, subcontinental mantle lithosphere. All silicic Damaraland complexes, as well as the Etendeka rhyodacites, classify as A-type granites despite their proven source diversity. This means

  10. Destination: Geology?

    NASA Astrophysics Data System (ADS)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  11. Early Mesozoic granites in the Nanling Belt, South China: Implications for intracontinental tectonics associated with stress regime transformation

    NASA Astrophysics Data System (ADS)

    Song, Meijia; Shu, Liangshu; Santosh, M.

    2016-04-01

    The link between two tectono-magmatic events during Early and Late Mesozoic periods in the Nanling Belt of South China remains debated. Here we present zircon U-Pb geochronology, Hf isotopes and whole-rock geochemistry of granitic intrusions from Zhuguangshan in the Nanling Belt. The zircon data exhibit two magmatic episodes with 206Pb/238U ages of ca. 230 Ma and 150 Ma, representing the Indosinian (Early-Middle Triassic period) and Early Yanshanian (Jurassic-Cretaceous period) events, respectively. The Indosinian granites are characterized by strongly peraluminous nature with high A/CNK values (> 1.1), whereas the Early Yanshanian granites are weakly peraluminous (average A/CNK value of 1.06). Although the Early Yanshanian granites bear higher HREE contents and lower LREE/HREE ratios, the two-phase granites show enrichment in LREE, Rb, Th, U and Pb, depletion in Eu and negative Ba, Sr, Nb and Ti anomalies. All samples show variably negative εHf(t) values (- 5 to - 16) with two-stage Hf model ages clustered around 1.8-2.1 Ga. Our data indicate that the two-phase granitic magmas were generated from the partial melting of early Paleoproterozoic basement rocks with no input of mantle material. Combined with other geological evidence, we infer that the Indosinian tectono-magmatic event was closely related to intracontinental orogeny triggered by collisions along the boundaries of South China Craton, in relation to processes associated with the E-W trending Tethys tectonic domain. We envisage that the Early Yanshanian event might be a response to the back-arc extension of NW-directed paleo-Pacific plate subduction. The Nanling Belt is a critical zone that records the transformation from Tethys to paleo-Pacific tectonic regimes.

  12. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    interpretation that the megacrysts formed ag igneous sanidine phenocrysts, that intrusion temperatures varied by only small amounts while the megacrysts grew, and that megacryst growth ceased before the intrusions cooled below the solidus. Individual Ba-enriched zones were apparently formed by repeated surges of new, hotter granitic melt that replenished these large magma chambers. Each recharge of hot magron offset cooling, maintained the partially molten or mushy character of the chamber, stirred up crystals, and induced convective currents that lofted, settling megacrysts back up into the chamber. Because of repeated reheating of the magma chamber and prolonged maintenance of the melt, this process apparently continued long enough to provide the ideal environment for the growth of these extraordinarily large K-feldspar phenocrysts. ??2008 Geological Society of America.

  13. Structural Geology

    NASA Astrophysics Data System (ADS)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  14. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen

    NASA Astrophysics Data System (ADS)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante

    2016-07-01

    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  15. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  16. Characterization of Physical and Hydro-Geological Properties of Kanamaru Research Site in Japan

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Zhang, M.; Takeno, N.; Watanabe, Y.

    2004-12-01

    Establishing the comprehensive knowledge of applicability of the methods for investigating hydraulic properties of low permeability geologic strata is an urgent issue for supporting regulation of geological disposal of nuclear waste in the near future. As a beginning of this work, a systematic examination of various kinds of techniques for hydro-geological surveys has been started in Kanamaru Research Site in Japan. This paper briefly introduces the research plan and preliminary results obtained from the first year of investigation. The survey techniques include borehole excavation, borehole imaging, gamma-ray, caliper, acoustic, electrical resistivity and density loggings, permeability tests and flow direction measurement using a single borehole, permeability tests and flow direction measurement using multi boreholes, etc. Preliminary findings can be summarized as follows: (1) The stratigraphy at the survey area consists of topsoil, debris sediments, sandstone, mudstone, conglomeratic sandstone, mudstone, arkose sandstone, and granite. High uranium concentrations are detected at lower portion of the conglomeratic sandstone by gamma-ray logging. (2) The survey area is located at a slope inclined from the north to the south, and the dominant groundwater flow is considered to be in the direction form the north to the south. And the downward flow was also recognized by the flow direction measurements and water quality logging. (3) Hydraulic conductivities derived from permeability tests using a single borehole were in the range of 5E-10 to 1E-7 m/s. The hydraulic conductivities of the same lithology derived from different boreholes varied, and the discrepancies were up to an order. This result indicates that the formations in the survey area have hydraulic heterogeneity in both the vertical and horizontal directions. (4) On the whole, stratum with fast velocity of elastic wave showed large resistivity and low permeability. The degree of correlation between the

  17. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  18. The granite-upper mantle connection in terrestrial planetary bodies: an anomaly to the current granite paradigm?

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Bébien, Jean

    2005-03-01

    Granite formed in the terrestrial planets very soon after their accretion. The oldest granite-forming minerals (4.4 Ga zircon) and granite (4.0 Ga granodiorite) indicate conditions resembling the present-day ones, with the presence of oceans and external processes related to liquid water. As a result, the current granite paradigm states that granite is not issued directly from the melting of the mantle. However, a granite-upper mantle connection is well established from several pieces of evidence. Tiny micrometre- to millimetre-sized enclaves of granite-like glassy and crystalline materials in Earth's mantle rocks are known in oceanic and continental areas. Earth's mantle-forming minerals, such as olivine, pyroxene, and chromite, can contain silicic materials, either as glass inclusions or as crystallised products (quartz or tridymite, sanidine, K-feldspar, and/or plagioclase close to albite end-member). Importantly, the same evidence is amply found in some types of meteorites, whether they are primitive, such as ordinary chondrites, or differentiated, such as IIE irons, howardite eucrite diogenite (HED), and Martian shergottite nakhlite chassignite (SNC) achondrites. Although constituting apparently an anomaly, the granite-upper mantle connection can be reconciled with the current granite paradigm by recognising that the conditions prevailing in the formation of granite are not only necessarily crustal but can occur also at depths in mantle rocks. Unresolved problems to be explored further include whether tiny amounts of granitic material within terrestrial mantles may be hints of greater abundances and more direct mantle involvement, and what role can be played by granite trapped within the upper mantle in lithosphere buoyancy.

  19. Rare accessory uraninite in a Sierran granite

    NASA Technical Reports Server (NTRS)

    Snetsinger, K. G.; Polkowski, G.

    1977-01-01

    One grain of uraninite was found in a single thin-section of Sierran granite. Electron and ion microprobe analysis were used to determine the composition. Since the U-Pb age calculated for the uraninite does not differ greatly from the K-Ar age of the unit in which it occurs, it is suggested that the mineral is primary and not reworked from a preexisting rock. No uraninite has been detected in heavy mineral concentrates from other rocks of the local area.

  20. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  1. Thermoluminescence of the mineral components in granite

    SciTech Connect

    Schwartzman, R.G.; Kierstead, J.A.; Levy, P.W.

    1982-01-01

    The thermoluminescence (TL) of the minerals in Climax Stock (Nevada, USA) granite has been studied. The principal mineral constituents are plagioclase, quartz, potassium feldspar and biotite. Pyrite, sphene apatite and zircon occur at one percent or less. All exhibit TL except biotite. The TL kinetics were determined for plagioclase, quartz, potassium feldspar and pyrite. Plagioclase and potassium feldspar exhibit second order and pyrite first orker kinetics. Natural TL of quartz follows second order and artificial TL first order kinetics. However, in these four minerals unrealistic kinetic parameters are often obtained; thus more general kinetics, e.g. interactive kinetics, may apply. 8 figures.

  2. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  3. Preliminary risk benefit assessment for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  4. City Geology.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    This article provides information on the evolution of the building material, concrete, and suggests hands-on activities that allow students to experience concrete's qualities, test the heat absorbency of various ground surface materials, discover how an area's geology changes, and search for city fossils. A reproducible activity sheet is included.…

  5. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  6. Defense High Level Waste Disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  7. Correlation between magnetic fabrics, strain and biotite microstructure with increasing mylonitisation in the pretectonic Wyangala Granite, Australia

    NASA Astrophysics Data System (ADS)

    Lennox, P. G.; de Wall, H.; Durney, D. W.

    2016-04-01

    The Wyangala Granite is a foliated, porphyritic Silurian granite from the Palaeozoic Circum-Pacific type Eastern Lachlan Orogen (ELO) of Australia. It is a paramagnetic ilmenite-bearing, S/marginal I type two-mica- to mainly biotite-granite with different biotite contents and local chlorite alteration. Very highly strained quartz-epidote bands are present. In this contribution, anisotropy of magnetic susceptibility (AMS) is compared with independently measured intensity and 3D style of strain, biotite microstructure and degree of mylonitisation for low-strain granites with weak S-foliations, through medium-strain protomylonitic granites with moderate S- and C-foliations to a high-strain altered granite with a strong single foliation. The samples are further analysed for possible contributions from sample heterogeneity, magmatic flow and 'sub-magmatic' deformation. A good correlation, P‧AMS ~ 1.02 + 0.04 ln P‧(e)Qtz, is obtained between site-average degree of AMS (P‧AMS) in the granite and degree of finite-strain anisotropy (P‧(e)Qtz) from aspect ratios of quartz aggregates in S-foliations in hand specimen and outcrop (P‧AMS 1.03-1.14, P‧(e)Qtz 1.4-19). The magnetic fabric ellipsoids agree with a kinematic regime between neutral and pure oblate predicted by the March model. The observed quartz strains, however, exceed the AMS March strains and are near neutral, plano-linear character. The geological factors that may have contributed to these differences include intra- and inter-crystalline deformation of biotite and bimodality in S and C. Magmatic fabric is not clearly evident in either the AMS or the biotite data. New data for synkinematic oligoclase, low-titanium biotite and low-sodium K-feldspar show that conditions during deformation were approximately transitional greenschist-amphibolite facies: i.e., well below solidus. This agrees with published age data that put the granite emplacement in an extensional, back-arc setting in already deformed

  8. Cigeo, the French Geological Repository Project - 13022

    SciTech Connect

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald

    2013-07-01

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  9. Geologic investigations

    SciTech Connect

    Orkild, P.P.; Baldwin, M.J.; Townsend, D.R.

    1983-12-31

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  10. Effectiveness of granite cleaning procedures in cultural heritage: A review.

    PubMed

    Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A

    2016-11-15

    Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out. PMID:27443454

  11. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  12. Detail of south granite pier revealing riveted truss ends and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  13. Plane shock wave studies of Westerly granite and Nugget sandstone

    SciTech Connect

    Larson, D.B.; Anderson, G.D.

    1980-12-01

    Plane shock wave experiments were performed by using a light-gas gun on dry and water-saturated Westerly granite and dry Nugget sandstone. Changes in the slopes of the shock velocity versus particle velocity curves at 2 to 3 GPa and 1 to 2 GPa for dry granite and for dry sandstone, respectively, are attributed to the onset of pore collapse. However, there is little apparent loss of shear strength in either dry rock over the stress range of the experiments (i.e., 9.3 GPa in Westerly granite and 9.2 GPa in Nugget sandstone). Agreement between the shock wave data and quasistatic, uniaxial strain data for the dry rock implies the absence of rate-dependence in uniaxial strain. The shock data on saturated granite agree well with those for dry granite, thus suggesting there was no loss in shear strength as a result of pore pressure buildup.

  14. Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Bussy, François

    2013-09-01

    The uncommon association of cogenetic and nearly contemporaneous potassic K-feldspar A-type granites and sodic albite granites is observed within the 347 Ma-old bimodal Saint-Jean-du-Doigt (SJDD) intrusion, Brittany, France. A-type granites outcrop as small bodies (< 1 km2) of fine-grained, pinkish to yellowish rock or as meter-thick sills in-between mafic layers. They emplaced early within the thermally “cool” part of the SJDD pluton directly beneath the Precambrian host rock, forming the pluton roof. Albite granites are fine-grained hololeucocratic yellowish rocks emplaced slightly after the A-type granites in the thermally mature part of the pluton. They form meter-thick sills that mingle with adjacent mafic layers and represent ca. 1 vol.% of the outcropping part of the pluton. The two granite types are similar in many respects with comparable Sr-Nd-Hf isotope compositions (87Sr/86Sr347 = 0.7071 for A-type granites vs. 0.7073 for albite granites; εNd347 = + 0.2 vs. + 0.3; εHf347zircon = + 2.47 vs. + 2.71, respectively) and SiO2 contents (74.8 vs. 74.4 wt.%). On the other hand, they have contrasting concentrations in K2O (5.30 vs. 1.97 wt.%), Na2O (2.95 vs. 4.73 wt.%) and CaO (0.48 vs. 2.04, respectively) as well as in some trace elements like Sr (59 vs. 158 ppm in average), Rb (87 vs. 35 ppm), Cr (170 vs. 35 ppm) and Ga (30 vs. 20 ppm). The isotopic composition of the A-type and albite granites is very distinct from that of the associated and volumetrically dominant mafic rocks (i.e. 87Sr/86Sr347 = 0.7042; εNd347 = + 5.07; εHf347zircon = + 8.11), excluding a direct derivation of the felsic rocks through fractional crystallization from the basaltic magma. On the other hand, small volumes of hybrid, enclave-bearing granodiorite within the SJDD lopolith suggest mixing processes within a reservoir located at deeper crustal levels. A-type granites may therefore form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive

  15. Geology Fulbrights

    NASA Astrophysics Data System (ADS)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  16. Subseabed Disposal Program Plan. Volume I. Overview

    SciTech Connect

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations.

  17. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites

    NASA Astrophysics Data System (ADS)

    Breiter, Karel; Lamarão, Claudio Nery; Borges, Régis Munhoz Krás; Dall'Agnol, Roberto

    2014-04-01

    The trace element content in zircons from A-type granites and rhyolites was investigated by using back-scattered electron images and electron microprobe analyses. The studied Proterozoic (Wiborg batholith, Finland and Pará, Amazonas and Goiás states, Brazil) and Variscan (Krušné Hory/Erzgebirge, Czech Republic and Germany) plutons cover a wide range of rocks, from large rapakivi-textured geochemically primitive plutons to small intrusions of F-, Li-, Sn-, Nb-, Ta-, and U-enriched rare-metal granites. While zircon is one of the first crystallized minerals in less fractionated metaluminous and peraluminous granites, it is a late-crystallized phase in peralkaline granites and in evolved granites that may crystallize during the whole process of magma solidification. The early crystals are included in mica, quartz, and feldspar; the late grains are included in fluorite or cryolite or are interstitial. The zircon in hornblende-biotite and biotite granites from the non-mineralized plutons is poor in minor and trace elements; the zircon in moderately fractionated granite varieties is slightly enriched in Hf, Th, U, Y, and HREEs; whereas the zircon in highly fractionated ore-bearing granites may be strongly enriched in Hf (up to 10 wt.% HfO2), Th (up to 10 wt.% ThO2), U (up to 10 wt.% UO2), Y (up to 12 wt.% Y2O3), Sc (up to 3 wt.% Sc2O3), Nb (up to 5 wt.% Nb2O5), Ta (up to 1 wt.% Ta2O5), W (up to 3 wt.% WO3), F (up to 2.5 wt.% F), P (up to 11 wt.% P2O5), and As (up to 1 wt.% As2O5). Metamictized zircons may also be enriched in Bi, Ca, Fe, and Al. The increase in the Hf content coupled with the decrease in the Zr/Hf value in zircon is one of the most reliable indicators of granitic magma evolution. In the zircon of A-type granites, the Zr/Hf value decreases from 41-67 (porphyritic granite) to 16-19 (equigranular granite) in the Kymi stock, Finland, and from 49-52 (biotite granite) to 18-36 (leucogranite) in the Pedra Branca pluton, Brazil. In the in situ strongly

  18. Permeability reduction in granite under hydrothermal conditions

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2001-01-01

    The formation of impermeable fault seals between earthquake events is a feature of many models of earthquake generation, suggesting that earthquake recurrence may depend in part on the rate of permeability reduction of fault zone materials under hydrothermal conditions. In this study, permeability measurements were conducted on intact, fractured, and gouge-bearing Westerly granite at an effective pressure of 50 MPa and at temperatures from 150?? to 500??C, simulating conditions in the earthquake-generating portions of fault zones. Pore fluids were cycled back and forth under a 2 MPa pressure differential for periods of up to 40 days. Permeability of the granite decreased with time t, following the exponential relation k = c(10-rt). For intact samples run between 250?? and 500??C the time constant for permeability decrease r was proportional to temperature and ranged between 0.001 and 0.1 days-1 (i.e., between 0.4 and 40 decades year-1 loss of permeability). Values of r for the lower-temperature experiments differed little from the 250??C runs. In contrast, prefractured samples showed higher rates of permeability decrease at a given temperature. The surfaces of the fractured samples showed evidence of dissolution and mineral growth that increased in abundance with both temperature and time. The experimentally grown mineral assemblages varied with temperature and were consistent with a rock-dominated hydrothermal system. As such mineral deposits progressively seal the fractured samples, their rates of permeability decrease approach the rates for intact rocks at the same temperature. These results place constraints on models of precipitation sealing and suggest that fault rocks may seal at a rate consistent with earthquake recurrence intervals of typical fault zones.

  19. The Feasibility of Using an Ultrasonic Fish Tracking System in the Tailrace of Lower Granite Dam in 2002

    SciTech Connect

    Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.; Cash, Kenneth; Zimmerman, Shon A.

    2003-09-10

    This report describes a study conducted by PNNL in Spring 2002 at Lower Granite Dam on the Snake River for the US Army Corps of Engineers Portland District. Our goal was to determine the feasibility of using ultrasonic fish tracking in the untested environment of a hydroelectric dam tailrace. If fish tracking were determined to be feasible, we would track the movement of juvenile hatchery chinook (Oncorhynchus tshawytscha), juvenile hatchery steelhead (O. mykiss), and juvenile wild steelhead (O. mykiss) and relate their movement to dam operations. The majority of fish to be tracked were released as a part of a separate study conducted by the Biological Resources Division of the U.S. Geological Survey (BRD), which was investigating the movement of juvenile salmon in the forebay of Lower Granite Dam in relation to Removable Spillway Weir (RSW) testing. The two studies took place consecutively from April 14 to June 7, 2002.

  20. Application of Generic Disposal System Models

    SciTech Connect

    Mariner, Paul; Hammond, Glenn Edward; Sevougian, S. David; Stein, Emily

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  1. Systems overview of the subseabed disposal program

    NASA Astrophysics Data System (ADS)

    Klett, R. D.; Brush, L. H.; Lipkin, J.; Percival, C. M.

    1982-09-01

    The Subseabed Disposal Program (SDP) is considering high-level waste (HLW) disposal in the oceanic geologic formations as a possible longer term complement to mined geologic repositories. The approach to safety assessment is to compute occupational exposure for all processes, predict the consequences and probabilities of pre-emplacement accidents and controlled release from the sediments, and analyze of all pathways to man and resulting health effects. Models are being developed to form a physical/mathematical computer description of each process; to measure as well as possible associated phenomena and properties in the laboratory; to make predictions and run confirming in-situ experiments; and to modify predictive methods if required. Models have been developed to describe heat transfer, fluid flow, mechanical response of the sediment, nuclide migration in the sediment, physical and biologic oceanography, land transport accidents, dose to man, and health effects.

  2. Radon exhalation from granites used in Saudi Arabia.

    PubMed

    al-Jarallah, M

    2001-01-01

    Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series. PMID:11378931

  3. Single And Multiple Jet Penetration Experiments Into Geologic Materials

    SciTech Connect

    Kuklo, R; Murphy, M J; Rambur, T A; Switzer, L L; Summers, M A

    2003-12-19

    This paper presents the results of experiments that investigate the effect of single and multiple jet penetration into geologic materials. In previous studies of jet penetration into concrete targets, we demonstrated that an enhanced surface crater could be created by the simultaneous penetration of multiple shaped charge jets and that an enhanced target borehole could be created by the subsequent delayed penetration of a single shaped charge jet. This paper describes an extension of the multiple jet penetration research to limestone and granite.

  4. The Blaník Gneiss in the southern Bohemian Massif (Czech Republic): a rare rock composition among the early palaeozoic granites of Variscan Central Europe

    NASA Astrophysics Data System (ADS)

    René, Miloš; Finger, Fritz

    2016-01-01

    Metamorphosed and deformed tourmaline-bearing leucogranites with a Cambro-Ordovician formation age are widespread in the Monotonous Group of the Variscan southern Bohemian Massif, Czech Republic. The rocks, known locally as Blaník gneiss, are strongly peraluminous and classify as phosphorus-rich low-T, S-type granite. The magma formed from a metapelitic source, most likely through muscovite dehydration melting. With respect to its low-T origin and the abundance of tourmaline, the Blaník gneiss is exotic within the spectrum of Early Palaeozoic granites of the Variscan fold belt of Central Europe. Coeval granitic gneisses in the neighbouring Gföhl unit of the Bohemian Massif can be classified as higher T S-type granites and were probably generated through biotite dehydration melting. The geochemical differences between the Early Palaeozoic granitic magmatism in the Gföhl unit and the Monotonous Group support models claiming that these two geological units belonged to independent peri-Gondwana terranes before the Variscan collision. It is suggested here, that the Gföhl unit and the Monotonous Group represent zones of higher and lower heat flow within the Early Palaeozoic northern Gondwana margin, respectively. The geochemical data presented in this study could be helpful for terrane correlations and palaeogeographic reconstructions.

  5. The Blaník Gneiss in the southern Bohemian Massif (Czech Republic): a rare rock composition among the early palaeozoic granites of Variscan Central Europe

    NASA Astrophysics Data System (ADS)

    René, Miloš; Finger, Fritz

    2016-08-01

    Metamorphosed and deformed tourmaline-bearing leucogranites with a Cambro-Ordovician formation age are widespread in the Monotonous Group of the Variscan southern Bohemian Massif, Czech Republic. The rocks, known locally as Blaník gneiss, are strongly peraluminous and classify as phosphorus-rich low-T, S-type granite. The magma formed from a metapelitic source, most likely through muscovite dehydration melting. With respect to its low-T origin and the abundance of tourmaline, the Blaník gneiss is exotic within the spectrum of Early Palaeozoic granites of the Variscan fold belt of Central Europe. Coeval granitic gneisses in the neighbouring Gföhl unit of the Bohemian Massif can be classified as higher T S-type granites and were probably generated through biotite dehydration melting. The geochemical differences between the Early Palaeozoic granitic magmatism in the Gföhl unit and the Monotonous Group support models claiming that these two geological units belonged to independent peri-Gondwana terranes before the Variscan collision. It is suggested here, that the Gföhl unit and the Monotonous Group represent zones of higher and lower heat flow within the Early Palaeozoic northern Gondwana margin, respectively. The geochemical data presented in this study could be helpful for terrane correlations and palaeogeographic reconstructions.

  6. Petrogenesis of pegmatites and granites in southwestern Maine

    SciTech Connect

    Tomascak, P.B.; Walker, R.J.; Krogstad, E.J. . Dept. of Geology)

    1993-03-01

    Granitic pegmatites occurring near the town of Topsham in southwestern Maine are mineralogically diverse, featuring abundant dikes and contain rare earth element minerals as well as one pegmatite that contains Li minerals. The pegmatite series crops out near the Brunswick granite, a texturally diverse granitic pluton, and lies 13 km southeast of the Mississippian age Sebago batholith. Areas intruded by pegmatites that possess such different mineral assemblages are globally rare. The origins of these mixed'' pegmatite series have not been comprehensively investigated. There is no known pattern of regional zonation (mineral/chemical) among Topsham series pegmatites, hence simple fractionation processes are probably not responsible for the compositional variations. The authors are attempting to clarify pegmatite petrogenesis using common Pb isotopic ratios of feldspars and Sm-Nd isotopic data from whole rocks and minerals. Pb isotopic ratios from leached feldspars reflect the Pb ratios of the source from which they were derived. The range of Pb isotopic compositions of alkali feldspars from 7 granitic pegmatites is as follows: [sup 206]Pb/[sup 204]Pb = 18.5-19.1; [sup 207]Pb/[sup 204]Pb = 15.53-15.69; [sup 208]Pb/[sup 204]Pb = 38.3-38.6. The Brunswick granite has K-feldspars with [sup 206]Pb/[sup 204]Pb = 18.40-18.47, [sup 207]/[sup 204]Pb = 15.64-15.66 and [sup 208]Pb/[sup 204]Pb = 38.29-38.39. The Pb isotopic compositions of both pegmatites and granites are significantly more radiogenic than existing data for the Sebago granite and argue against the consanguinity of Topsham pegmatites and the Sebago batholith. These data instead support a genetic link between the pegmatites and the Brunswick granite, which ranges from a fine-grained two-mica granite to a garnet-bearing pegmatitic leucogranite.

  7. Alteration, evaluation and use of extremaduran granite residues

    NASA Astrophysics Data System (ADS)

    Albarrán-Liso, C.; Jordán-Vidal, M. M.; Sanfeliu-Montolio, T.; Liso-Rubio, M. J.

    2006-04-01

    The necessity of eliminating debris from a granite quarry has awakened an interest in applications of by-products, called “marginal arids”, in different fields, like construction and foundations for roadways, restoration, material for the manufacture of artificial rocks, and artesian products etc. Conclusions obtained from the results of tests carried out by X-ray diffraction of granite quarry by-products in Extremadura, Spain, submitted to different treatments, are established. Test pieces from two quarries are analyzed and compared generally and specifically, for commercial use. Finally, conclusions relating to essays in test pieces and mineral dynamics of marginal arid granite are exposed.

  8. Geologic nozzles

    USGS Publications Warehouse

    Werner, Kieffer S.

    1989-01-01

    The importance of the low characteristic velocities of geologic fluids has not been widely recognized, and as a result, the importance of supercritical and supersonic flow in geological processes has generally been underestimated. The lateral blast at Mount St. Helens, Washington, propelled a gas heavily laden with dust into the atmosphere. Because of the low sound speed in this gas (about 100 m/s), the flow was internally supersonic. Old Faithful Geyser, Wyoming, is a converging-diverging nozzle in which liquid water refilling the conduit during the recharge cycle changes during eruption into a two-phase liquid-vapor mixture with a very low sound velocity. The high sound speed of liquid water determines the characteristics of harmonic tremor observed at the geyser during the recharge interval, whereas the low sound speed of the liquid-vapor mixture influences the fluid flow characteristics of the eruption. At the rapids of the Colorado River in the Grand Canyon, Arizona, the channel is constricted into the shape of a converging-diverging nozzle by the debris flows that enter from tributary canyons. Both subcritical and supercritical flow occur within the rapids. -from Author

  9. The National Geologic Mapping Act of 1992

    SciTech Connect

    Haney, D.C. . Kentucky Geological Survey)

    1993-03-01

    The well being of any nation is based, in large part, on its ability to locate and prudently use its mineral and water resources; to assess potential harm to its citizens from natural hazards; and to provide for safe disposal of its waste material. These tasks require a detailed knowledge of the character and distribution of geologic materials at or near the surface of the earth, and geologic maps are the principal sources of these types of information. Geologic maps provide essential information regarding the assessment of mineral, energy, and water resources; locating potential sites for the safe disposal of hazardous and nonhazardous waste; land-use planning; earthquake-hazard reduction; predicting volcanic hazards; reducing losses from landslides and other ground failures; mitigating effects of coastal and stream erosion; siting of critical facilities; and basic earth-science research. Geologic maps are the primary sources of geologic information for nearly all decision making related to the habitation of the earth's surface and the use of its resources. Available maps are in continuous use by Federal agencies, state and local governments, private industries, and the general public, but large areas of the US have remained unmapped, or mapped at scales to small to be of general use. Recognizing the increasing National need for geologic maps, the Association of American State Geologists initiated an effort in 1989 to establish a geologic mapping program for the entire US. After developing an implementation plan in concert with the US Geological Survey, the Association of American State Geologists arranged for geologic mapping bills to be introduced simultaneously in both houses of Congress in late 1991. On May 18, 1992, President Bush signed the National Geologic Mapping Act into law.

  10. Petrogenesis and Tectonic Evolution of Granitic Rocks in The Northern Margin of North China Plate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Zhao, Q.; Zheng, C.; Liu, W.; Xu, B.

    2010-12-01

    The late Paleozoic-early Mesozoic granites in Daqingshan district of the northern margin of north China plate is classified into six types as follows.Aguigou intrusion is consists of gabbro, diorite, quartz diorite, and granodiorite.Its feature is rich in mafic compositions.The formation age is 284.5±2.9Ma or 283.7±3.7Ma for the quartz diorite, and 281.1±3.4Ma for granodiorite. The genesis of the intrusion belongs to I-type granite. Laoyinhada intrusion comprises fine biotite monzonitic granite and porphyritic biotite monzonitic granite. The age is 272±4Ma for the fine biotite monzonitic granite. The genesis of the body is I-type granite.Halaheshao intrusion is a group of medium-coarse biotite-bearing monzonitic granites and large porphyritic-bearing monzonitic granite. The age is 260±0.5Ma for the biotite-bearing monzonitic granite.The tectonic environment belongs to post-orogenic granites.Taolegai intrusion consists of medium-fine granite, medium-coarse granite, porphyritic-bearing granite, and fine granite. The age is 224±3Ma for medium-coarse granite.Its genesis is light color granite co-occurred with muscovite peraluminous granites. The tectonic environment belongs to post-orogenic granites.Gechoushan intrusion is medium-fine monzonitic granite, a kind of typical muscovite granites. Its formation era is late Triassic. The tectonic environment belongs to post-orogenic granite.Shadegai intrusion is mainly composed of biotite granites. The age is 211.2±0.7Ma for medium-coarse biotite granite. The tectonic setting belongs to post-orogenic granites. The different types granites in the area basically reveal all the magmatic events from late Palaeozoic orogeny, to post-orogeny, and to intracontinental orogeny in the north edge of the north China plate. Early Permian Aguigou intrusion is a magmatic arc granite, formed in the continental edge in the early period of the middle Asia ocean plate subduction. Mid-Permian Laoyinhada intrusion is a magmatic arc granite

  11. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R.; Johns, W.; Flood, R.; Hawley, K.; Wackwitz, L.

    1976-01-01

    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints.

  12. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    SciTech Connect

    Not Available

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.

  13. Black and red granites in the Egyptian Antiquity Museum of Turin. A minero-petrographic and provenance study.

    NASA Astrophysics Data System (ADS)

    Serra, M.; Borghi, A.; Vaggelli, G.; D'Amicone, E.; Vigna, L.

    2009-04-01

    The University of Turin, in cooperation with the Egyptian Antiquity Museum, has recently undertaken several projects aimed at developing a scientific approach to the analysis of ancient Egyptian finds. In particular, a straightforward project to investigate the stony handcrafts preserved in the statuary rooms started in 2006 to obtain their systematic petrographic classification and their possible geological sources. The main intent of the project was to understand the provenance of the materials used in Pharaonic period, setting the base for the identification of the ancient quarry sites and for a correct interpretation of the extraction and working techniques, in order to provide fundamental information about economical and social development of Egyptian civilization through historical times. The choice to focus attention on black and red granites came from the statement of the percentage relevance (40 of the 54 sculptures actually exposed) of these materials in the statuary rooms. Moreover, especially for black granites, the need of detailed minero-petrographic analysis arose from the difficulty in making a macroscopic classification of the fine-grained dark-coloured rock varieties. Therefore, five black granite statues, belonging to the Drovetti collection were sampled in a micro-invasive way: three sculptures of goddess Sekhmet (cat. 260, 251, 247), the statue of Ramses II (cat. 1380) and the statue of goddess Hathor (cat. 694). The choice to analyse even three of the twenty-one statues of goddess Sekhmet (cat. 247, cat. 251, cat. 260), originally located in the same Egyptian temple but ichnographically different, derived from the need of answering the archaeological questions about their provenance. On the other hand, the opportunity of studying the fine-grained black rocks used for the sculptures of goddess Hathor (cat. 694) and of Ramses II in Majesty (cat. 1380), symbol of the Egyptian museum of Turin, provided the opportunity to analyse and classify the

  14. Granite Monument Plaza Oklahoma City Civic Center, Bounded by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Granite Monument Plaza - Oklahoma City Civic Center, Bounded by N. Shartel Avenue to the West, N. Hudson Avenue to the East, Couch Drive to the North, and Colcord Drive to the South, Oklahoma City, Oklahoma County, OK

  15. 8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  16. 7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. July, 1970 DETAIL OF BRICK SIDEWALK AND GRANITE CURB, LOOKING EAST ON NORTH SIDE OF INDIA STREET FROM DRIVEWAY OF 31 INDIA STREET - India Street Neighborhood Study, 15-45 India Street, Nantucket, Nantucket County, MA

  17. 10. Lighthouse boathouse and granite wharf, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Lighthouse boathouse and granite wharf, view north northeast, southwest and southeast sides of boathouse, west and south sides of dock - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  18. Detail of track girder, south portal and granite piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of track girder, south portal and granite piers at low tide. View Northwest - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  19. 19. OVERVIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. OVERVIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO BRIDGE, LOOKING NORTHEAST - Middle Fork Stanislaus River Bridge, Spans Middle Fork Stanislaus River at State Highway 108, Dardanelle, Tuolumne County, CA

  20. 20. DETAIL VIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW SHOWING REMOVAL OF GRANITE OUTCROP, FOLLOWING DAMAGE TO BRIDGE, LOOKING NORTHEAST - Middle Fork Stanislaus River Bridge, Spans Middle Fork Stanislaus River at State Highway 108, Dardanelle, Tuolumne County, CA

  1. 6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HISTORIC AMERICAN BUILDINGS SURVEY, INTERIOR SHOWING ORIGINAL GRANITE COLUMNS AND COLUMN BRICKFACED AFTER THE GREAT FIRE 1904 - Old U.S. Appraisers Stores, Gay & Lombard Streets, Baltimore, Independent City, MD

  2. 17. SPRINGHOUSE, SOUTHWEST SIDE; NOTE BROKEN GRANITE FOUNDATION FROM SURROUNDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SPRINGHOUSE, SOUTHWEST SIDE; NOTE BROKEN GRANITE FOUNDATION FROM SURROUNDING HILLSIDES. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO

  3. 9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW NORTH, ACROSS DECK AT EAST SIDE SHOWING GRANITE BLOCK PAVING, EXPANSION JOINT AND NORTH SIDE PIPE RAILING - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  4. Lift Off (Granite City C. U. School District 9)

    ERIC Educational Resources Information Center

    Goodall, Robert C.; And Others

    1970-01-01

    Describes and evaluates the ESEA Title I program in Granite City (Illinois) target area schools which provide preschool classes, remedial reading, and supportive health and counseling services. The programs are considered to be efficient. (DM)

  5. Geology and U-Pb Zircon ages of the Kavacik Leucogranite in the Bornova Flysch Zone (Western Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Güngör, Talip; Hasözbek, Altuǧ; Akal, Cüneyt; Mertz-Kraus, Regina; Peştemalci Üregel, Reyhan

    2016-04-01

    The Bornova Flysch Zone comprises an olistostrome-melange situated NE-SW direction between the Izmir Ankara Suture Zone and the Menderes Massif. The Bornova Flysch Zone is mainly composed of slightly deformed Late Cretaceous to Paleocene sandstone and shale with Mesozoic limestone and oceanic crustal associations. These large-scale blocks in the matrix of the Bornova Flysch Zone are mostly defined as limestone, basalt, serpentinite and radiolarian cherts. In this study, granitic bodies, situated in the Bornova Flysch Zone, named as Kavacik leucogranite is examined for the first time, in terms its geological features and its U-Pb zircon crystallization ages. Kavacik leucogranite displays a typical granitic texture and its composition indicates ranging between granitic to granodioritic in composition with lack of mafic minerals. The geochemical features of the granite indicate the I-type and subalkaline nature of the granitic body. The geochemical signatures of the Kavacik granite points out Volcanic Arc Granitoids as similarly seen in Karaburun granite. U-Pb zircon LA ages were also obtained from the Kavacik granite ranging between 224.5 ± 2.0 Ma and 230.0 ± 2.8 Ma. Early Triassic zircon ages are also previously observed in the Karaburun Peninsula (Karaburun Granite) and the Menderes Massif (Odemis-Kiraz Submassif). The initial geological boundary relation of the Kavacik Leucogranite is not clear in the field and likely displays tectonic boundary features in the matrix of the Bornova Flysch Zone. Overall, the geochemical features of the Kavacik leucogranite and similar leucomagmatic bodies in the Western Anatolia points out the subduction-related tectonic setting is favorable during the Triassic time.

  6. Integration of geophysical and geological data for delimitation of mineralized zones in Um Naggat area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-06-01

    An integrated approach for geophysical, geological and mineralogical data was followed for Um Naggat area, Central Eastern Desert, Egypt, in order to delineate its mineralized zones. The albitized granites are well-defined on the Th- and U-channel images, by their anomalous shapes, reaching 150 ppm and 90 ppm respectively, beside low K content. Interpretations of the aeromagnetic maps delineated four regional structural trends oriented due NNW, NW, ENE and E-W directions. They are identified as strike-slip faults, which coincide well with field observations, where NW-trending faults cut and displace right laterally ENE-trending older ones. The interaction between these two strike-slip fault systems confining the albite granite is easily identified on the regional data presenting longer wavelength anomalies, implying deep-seated structures. They could represent potential pathways for migration of enriched mineralized fluids. Geochemically, albite granites of peraluminous characteristics that had suffered extensive post-magmatic metasomatic reworking, resulted into development of (Zr, Hf, Nb, Ta, U, Th, Sn) and albite-enriched and greisenized granite body of about 600 m thick, and more than 3 km in strike length. The albite granite is characterized by sharp increase in average rare metal content: Zr (830 ppm), Hf (51 ppm), Nb (340 ppm), Ta (44 ppm), and U (90 ppm). Thorite, uranothorite, uraninite and zircon are the main uranium-bearing minerals of magmatic origin within the enclosing granite. However, with respect to Zr, Nb, and Ta, the albitized granite can be categorized as rare metal granite. The integration of airborne geophysical (magnetic and γ-ray spectrometric), geological, geochemical and mineralogical data succeeded in assigning the albite granite of Um Naggat pluton as a mineralized zone. This zone is characterized by its high thorium and uranium of hydrothermal origin as indicated by its low Th/U ratio, with rare metals mineralization controlled by two

  7. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  8. Mortality experience of Vermont granite workers

    SciTech Connect

    Davis, L.K.; Wegman, D.H.; Monson, R.R.; Froines, J.

    1982-01-01

    A comparison was made between the chief cause of death among 969 deceased white male granite workers in Vermont and the causes of death among other individuals not in that occupation. Tuberculosis deaths were ten times the number predicted, based on the U.S. white male experience. Of the 65 tuberculosis deaths, 48 were silicotuberculosis and 16 were pulmonary tuberculosis. A notable increase was found for deaths due to all respiratory diseases, with 28 deaths due to silicosis. Excluding deaths due to silicosis and tuberculosis left a small excess of emphysema-related deaths. For 25 men in the respiratory disease category whose cause of death was not listed as silicosis, ten had evidence of silicosis in their x-ray records suggesting some misdiagnoses may have occurred. An excess of lung cancer deaths was noted among sawyers and polishers, suggesting possible effects of abrasive exposures. No tuberculosis deaths were noted in men who started work in the post dust control period, after 1950. There was an excess of suicide deaths before 1970.

  9. Sidetracking experiences in hot granitic wellbores

    SciTech Connect

    Pettitt, R.A.; Carden, R.

    1981-01-01

    In the development of the first Hot Dry Rock (HDR) geothermal energy extraction system at Fenton Hill, west of Los Alamos, New Mexico, man-made reservoirs were created by connecting two holes in hot, impermeable crystalline rock with hydraulically-produced fractures. This system consists of two near-vertical, 24.5-cm (9-5/8-in.) diameter holes approximately 3 km (10,000 ft) deep in Precambrian basement rock, at a bottom-hole temperature of 200/sup 0/C (400/sup 0/F). In order to improve the connection between the wellbores, the production hole was sidetracked to intercept the fracture zone at a more favorable depth. Two successful sidetrack operations were accomplished in 1977, utilizing cement plugs, underreaming, Dyna-Drills, and both button and diamond bits. Drilling of the second larger, commercial-sized reservoir system began in 1979 and consists of two boreholes drilled to a depth of 4 km (15,000 ft) at an angle of 35/sup 0/ from the vertical, which will be connected by a series of hydraulic fractures extending across the 400-m-(1200-ft) vertical separation of the two holes. Sidetracking to bypass a stuck bottom-hole assembly was accomplished through the use of a whipstock device, Dyna-Drills, and button bits. This paper is presented as a case history of the efforts involved to achieve successful sidetracking in hot granitic wellbores.

  10. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  11. Geologic Map of the Peach Springs 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Dyer, Helen C.

    2006-01-01

    This map is a product of a cooperative project of the U.S. Geological Survey, the U.S. National Park Service, and the Bureau of Land Management to provide geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead National Recreation Area, Grand Canyon-Parashant-National Monument, and adjacent lands in northwestern Arizona. This map is a synthesis of previous and new geologic mapping that encompasses the Peach Springs 30' x 60' quadrangle, Arizona. The geologic data will support future geologic, biologic, hydrologic, and other science resource studies of this area conducted by the National Park Service, the Hualapai Indian Tribe, the Bureau of Land Management, the State of Arizona, and private organizations. The Colorado River and its tributaries have dissected the southwestern Colorado Plateau into what is now the southwestern part of Grand Canyon. The erosion of Grand Canyon has exposed about 426 m (1,400 ft) of Proterozoic crystalline metamorphic rocks and granite, about 1,450 m (4,760 ft) of Paleozoic strata, and about 300 m (1,000 ft) of Tertiary sedimentary rocks. Outcrops of Proterozoic crystalline rocks are exposed at the bottom of Grand Canyon at Granite Park from Colorado River Mile 207 to 209, at Mile 212, and in the Lower Granite Gorge from Colorado River Mile 216 to 262, and along the Grand Wash Cliffs in the southwest corner of the map area.

  12. Alpine tectonics of granites in basement of Ysyk-Köl Basin, northern Tien Shan

    NASA Astrophysics Data System (ADS)

    Leonov, M. G.; Przhiyalgovsky, E. S.; Lavrushina, E. V.; Poleshchuk, A. V.; Rybin, A. K.

    2016-07-01

    The Ysyk-Köl Basin filled with Lower Jurassic-Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian-Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic-Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.

  13. Explosion in the Granite Field: Hardening and Softening Behavior in Rocks

    SciTech Connect

    Lomov, I N; Antoun, T H; Glenn, L A

    2001-06-25

    Properties of rock materials under quasistatic conditions are well characterized in laboratory experiments. Unfortunately, quasistatic data alone are not sufficient to calibrate models for use to describe inelastic wave propagation associated with conventional and nuclear explosions, or with impact. First, rock properties are size-dependent. properties measured using laboratory samples on the order of a few centimeters in size need to be modified to adequately describe wave propagation in a problem on the order of a few hundred meters in size. Second, there is lack of data about the damage (softening) behavior of rock because most laboratory tests focus on the pre-peak hardening region with very little emphasis on the post-peak softening region. This paper presents a model for granite that accounts for both the hardening and softening of geologic materials, and also provides a simple description of rubblized rock. The model is shown to reproduce results of quasistatic triaxial experiments as well as peak velocity and peak displacement attenuation from a compendium of dynamic wave propagation experiments that includes US and French nuclear tests in granite.

  14. Explosion in the Granite Field: Hardening and Softening Behavior in Rocks

    SciTech Connect

    Lomov, I N; Antoun, T H; Glenn, L A

    2001-07-12

    Properties of rock materials under quasistatic conditions are well characterized in laboratory experiments. Unfortunately, quasistatic data alone are not sufficient to calibrate models for use to describe inelastic wave propagation associated with conventional and nuclear explosions, or with impact. First, rock properties are size-dependent. properties measured using laboratory samples on the order of a few centimeters in size need to be modified to adequately describe wave propagation in a problem on the order of a few hundred meters in size. Second, there is lack of data about the damage (softening) behavior of rock because most laboratory tests focus on the pre-peak hardening region with very little emphasis on the post-peak softening region. This paper presents a model for granite that accounts for both the hardening and softening of geologic materials, and also provides a simple description of rubblized rock. The model is shown to reproduce results of quasistatic triaxial experiments as well as peak velocity and peak displacement attenuation from a compendium of dynamic wave propagation experiments that includes US and French nuclear tests in granite.

  15. Application of singular value decomposition (SVD) in extraction of gravity components indicating the deeply and shallowly buried granitic complex associated with tin polymetallic mineralization in the Gejiu tin ore field, Southwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Yongqing; Zhang, Lina; Zhao, Binbin

    2015-12-01

    The Gejiu tin polymetallic ore deposit, located at the westernmost end of the Cathaysia Block, is one of the largest tin polymetallic ore deposits in the world. It is associated with a magmatic-hydrothermal ore-forming system triggered by the deeply buried geological structures and concealed granites. A singular value decomposition (SVD) program on a MATLAB platform was effectively used to extract deeply buried geological information reflecting deep-seated geological structures and the concealed granites by decomposing gravity signals within the Gejiu tin polymetallic ore field. Firstly, the gravity signals were decomposed into a few components with different eigenvalues using a singular value decomposition (SVD) approach. Secondly, the thresholds between the eigenvalues of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were established by a multifractal method. Finally, the images of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were reconstituted. This yielded two layers of significant two dimensional singular value gravity component images that indicate deeply and shallowly buried ore-controlling geological structures and/or geological bodies, respectively. The deep layer of gravity component image reveals a negative gravity anomaly (I) which indicates that the granites exposed in the west ore field, bounded by the Gejiu Fault, may be extended to the east ore field at depth, forming concealed granites (Fig. 4). The shallow layer of gravity component image reveals a structural framework created by two groups of NW-trending and three groups of NE-trending positive gravity component images defining two negative gravity anomalies (I and II), which may reflect existence of the exposed granites in the western ore field (I) and the concealed granites in the eastern ore field (II) (Figs. 5 and 6). Almost all tin

  16. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in

  17. Reference analysis on the use of engineered barriers for isolation of spent nuclear fuel in granite and basalt

    SciTech Connect

    Cloninger, M.O.; Cole, C.R.

    1981-08-01

    This report evaluates the effectiveness of engineered barriers in delaying or reducing the rate of release of radionuclides from spent fuel in geologic respositories in granite and basalt. It was assumed that the major exposure pathway from the respository to humans would be the ground-water system overlying or underlying a site. Hence, this report focuses on ground-water pathways. A geosphere transport model, GETOUT, and the biosphere transport/dose models, ALLDOS and PABLM, were integrated and used to calculate the potential radiological dose that might be received by humans at various times after repository closure.

  18. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late

  19. Structural record of mechanisms of granite intrusion in the Achaean gneisses

    NASA Astrophysics Data System (ADS)

    Perchuk, L. L.; van Reenen, D. D.

    2009-04-01

    A model of diapiric formation of granite domes within green-stone areas is based on gravitational re-distribution mechanisms of rocks in the Precambrian continental crust (e.g. McGregor, 1951; Ramberg, 1951; Perchuk, 1989, 1993; Perchuk et al., 1992). In addition, the gravitational re-distribution is the leading mechanism to form Precambrian granulite facies terrains among green-stone belts. It has been proven by data on general geology, tectonics, petrology, geochemistry, isotopic geology, geophysics, and numerical modeling (Perchuk et al., 2001; Gerya et al., 2000, 2002). However the behavior of granite melt within gneisses of similar bulk composition is questionable. If the above mechanisms works well in the case of "granitic gneiss - granite melt", the ascending rocks must have structural features that indicate upward movement, while the adjacent wall rocks must demonstrate structural features of the opposite movement. In metamorphic rocks these features are represented by lineation, drag folds, orientation of fold hinges etc. Apart from "straight gneisses" (Davidson, 1984; Smit & van Reenen, 1997) no direct evidence for the internal dynamics of the formation of high-grade terrains has ever been considered. In this paper we formulate a rule allowing discrimination between cylindrical metamorphogenic and magmatogenic structures and demonstrate a model of their formation. Two types of ring structures are considered as indicators of ascending granulites toward the surface, i.e. cylindrical folds (sheath fold) and granite stocks. Systematic studies of such structures at diverse erosion sections allowing the conclusion on their formation. During exhumation (decompression) of granulite facies terrains the formation of sheath folds are resulted from generation of the granite magma within the same granitogneissic material and subsequent uprising due to difference in densities of contacting materials because all sheath folds con. This is recorded in the contrasting

  20. Test storage of spent reactor fuel in the Climax granite at the Nevada Test Site

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.

    1980-02-13

    A test of retrievable dry geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.3 years out of reactor core (about 2 kW/canister thermal output) will be emplaced in a storage drift along with 6 electrical simulator canisters and their effects will be compared. Two adjacent drifts will contain electrical heaters, which will be operated to simulate within the test array the thermal field of a large repository. The test objectives, technical concepts and rationale, and details of the test are stated and discussed.

  1. Radiation damage measurements on rock salt and other minerals for waste disposal applications. Quarterly report, January 1, 1980-March 31, 1980

    SciTech Connect

    Swyler, K J; Loman, J M; Teutonico, L J; Elgort, G E; Levy, P W

    1980-04-10

    Different aspects of radiation damage in both synthetic NaCl crystals and various natural rock salt samples as well as granite, basalt and other minerals which will be important for radioactive waste disposal applications are being investigated. The principal means of measuring radiation damage is the determination of F-center concentrations, and the concentration and size of sodium metal colloid particles. Formation of these and other defects during irradiation and the annealing of defects and characterization of other processes occurring after irradiation are being studied as a function of dose rate, total dose, sample temperature during irradiation, strain applied prior to and during irradiation, etc. Measurements are being made on synthetic NaCl and natural rock salt samples from different geological locations, including some potential repository sites. It will be necessary to determine if radiation damage in the minerals from different localities is similar. If non-negligible differences are observed a detailed study must be made for each locality under consideration. Almost all current studies are being made on rock salt but other minerals particularly granite and basalt are being phased into the program. It is now established that radiation damage formation in both natural and synthetic rock salt is strongly dependent on strain. The strain related effects strongly indicate that the damage formation processes and in particular the colloid nucleation processes are related to the strain induced disolcations. A temporary theoretical effort has been started to determine which dislocation related effects are important for radiation damage processes and, most importantly, what dislocation interactions are most likely to create nucleation sites for colloid particles. If these preliminary studies indicate that additional theoretical studies will be useful an effort will be made to have them extended.

  2. Geotechnical characteristics of shallow ocean dredge spoil disposal mounds

    SciTech Connect

    Demars, K.R.; Dowling, J.J.; Long, R.P.; Morton, R.W.

    1984-05-01

    This paper summarizes the data obtained from site surveying and sediment sampling of dredge spoil disposal mounds at the Central Long Island Sound site. Emphasis is placed on the geotechnical and geological features of the mound and natural seabed. Since some of the spoil is contaminated, cappings of clean spoil have been used to isolate the spoil mounds from fauna and flora in the water column. Because of the contaminated spoil, improvements in the disposal techniques are needed and methodologies must be developed for evaluating short-term and long-term stability of these shallow ocean deposits which are subjected to loadings from waves, spoil disposal and capping operations.

  3. Disposable Diapers Are OK.

    ERIC Educational Resources Information Center

    Poore, Patricia

    1992-01-01

    A personal account of measuring the pros and cons of disposable diaper usage leads the author to differentiate between a garbage problem and environmental problem. Concludes the disposable diaper issue is a political and economic issue with a local environmental impact and well within our abilities to manage. (MCO)

  4. Gamma-ray spectrometry of granitic suites of the Paranaguá Terrane, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Weihermann, Jessica Derkacz; Ferreira, Francisco José Fonseca; Cury, Leonardo Fadel; da Silveira, Claudinei Taborda

    2016-09-01

    The Paranaguá Terrane, located in the coastal portion of the states of Santa Catarina, Paraná and São Paulo in Southern Brazil is a crustal segment constituted mainly by an igneous complex, with a variety of granitic rocks inserted into the Serra do Mar ridge. The average altitude is approximately 1200 m above sea level, with peaks of up to 1800 m. Due to the difficulty of accessing the area, a shortage of outcrops and the thick weathering mantle, this terrane is understudied. This research aims to evaluate the gamma-ray spectrometry data of the granitic suites of the Paranaguá Terrane, in correspondence with the geological, petrographical, lithogeochemical, relief and mass movement information available in the literature. Aerogeophysical data were acquired along north-south lines spaced at 500 m, with a mean terrain clearance of 100 m. These data cover potassium (K, %), equivalent in thorium (eTh, ppm) and equivalent in uranium (eU, ppm). After performing a critical analysis of the data, basic (K, eU, eTh) and ternary (R-K/G-eTh/B-eU) maps were generated and then superimposed on the digital elevation model (DEM). The investigation of the radionuclide mobility across the relief and weathering mantle consisted of an analysis of the schematic profiles of elevation related with each radionuclide; a comparison of the K, eU and eTh maps with their 3D correspondents; and the study of mass movements registered in the region. A statistical comparison of lithogeochemical (K, U, Th) and geophysical (K, eU, eTh) data showed consistency in all the granitic suites studied (Morro Inglês, Rio do Poço and Canavieiras-Estrela). Through gamma-ray spectrometry, it was possible to establish relationships between scars (from mass movements) and the gamma-ray responses as well as the radionuclide mobility and the relief and to map the granitic bodies.

  5. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    NASA Astrophysics Data System (ADS)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  6. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  7. Status on disposal of greater-than-Class C

    SciTech Connect

    Plummer, T.L.

    1995-12-31

    The Department of Energy (DOE) has developed a plan for the management and disposal of commercially generated greater-than-Class C (GTCC) low-level radioactive waste. The Low-Level Radioactive Waste Policy Amendments Act of 1985 made DOE responsible for disposal of GTCC waste. The act requires that GTCC waste be disposed in a Nuclear Regulatory Commission (NRC)-licensed facility. The NRC has amended 10 CFR 61 to express a preference for geologic disposal of GTCC waste. Based on reassessment studies, legislative guidance, and stakeholder involvement, a revised plan has been formulated to provide for total management of GTCC waste. The plan has four major thrusts: (1) plan for GTCC waste storage at the generator site until disposal is available, (2) establish storage for GTCC sealed sources posing health and safety risk to the public, (3) facilitate storage for other GTCC waste posing health and safety risk to the public, and (4) plan for co-disposal of GTCC waste in a geologic disposal site with similar waste types. The revised plan focuses on applying available resources to near- and long-term needs.

  8. Applications of geohydrologic concepts in geology

    USGS Publications Warehouse

    Maxey, G.B.; Hackett, J.E.

    1963-01-01

    Subsurface water, an active agent in many geologic proceses, must be considered in interpreting geologic phenomena. Principles of the occurrence, distribution, and movement of subsurface waters are well established and readily applicable. In many interpretations in geologic literature, geohydrologic principles have been employed realistically, but in many others these principles have been either ignored or violated. Explanations of genesis of underclays and associated deposits afford some examples wherein principles of movement and activity of vadose and ground water have been ignored and others in which they have been used advantageously. Postulates stating that waters percolate downward from swamp areas do not allow for the usual movement of subsurface water in such environments. The idea that sediments were leached by vadose water after uplift satisfies the geohydrologic requirements. Weathering and solution form porous and permeable zones subjacent to unconformities in dense rocks such as carbonates and granites; this illustrates the geohydrologic and economic significance of unconformities. Examples are Mohawkian carbonate aquifers of northern Illinois and oil-bearing limestones of Mississippian age of eastern Montana. The flushing effects of meteoric water and other hydrodynamic factors active during erosion periods are important elements in the genesis and concentration of brines. Explanation of the origin and occurrence of brines must include consideration of the geohydrologic environments throughout their geologic history. ?? 1963.

  9. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  10. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  11. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    NASA Astrophysics Data System (ADS)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  12. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; Rämö, O. Tapani; de Magalhães, Marilia Sacramento; Macambira, Moacir José Buenano

    1999-03-01

    The 1.88 Ga Jamon and Musa granites are magnetite-bearing anorogenic, A-type granites of Paleoproterozoic age. They intrude the Archaean rocks of the Rio Maria Granite-Greenstone Terrain in the eastern part of the Amazonian Craton in northern Brazil. A suite of biotite±amphibole monzogranite to syenogranite, with associated dacite porphyry (DP) and granite porphyry (GP) dykes, dominates in these subalkaline granites that vary from metaluminous to peraluminous and show high FeO/(FeO+MgO) and K 2O/Na 2O. In spite of their broad geochemical similarities, the Jamon and Musa granites show some significant differences in their REE patterns and in the behaviour of Y. The Jamon granites are related by fractional crystallisation of plagioclase, potassium feldspar, quartz, biotite, magnetite±amphibole±apatite±ilmenite. Geochemical modelling and Nd isotopic data indicate that the Archaean granodiorites, trondhjemites and tonalites of the Rio Maria region are not the source of the Jamon Granite and associated dyke magmas. Archaean quartz diorites, differentiated from the mantle at least 1000 m.y. before the emplacement of the granites, have a composition adequate to generate DP and the hornblende-biotite monzogranite magmas by different degrees of partial melting. A larger extent of amphibole fractionation during the evolution of the Musa pluton can explain some of the observed differences between it and the Jamon pluton. The studied granites crystallised at relatively high fO 2 and are anorogenic magnetite-series granites. In this aspect, as well as concerning geochemical characteristics, they display many affinities with the Proterozoic A-type granites of south-western United States. The Jamon and Musa granites differ from the anorthosite-mangerite-charnockite-rapakivi granite suites of north-eastern Canada and from the reduced rapakivi granites of the Fennoscandian Shield in several aspects, probably because of different magmatic sources.

  13. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classified as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap operations

  14. Post-wildfire erosion response in two geologic terrains in the western USA

    USGS Publications Warehouse

    Moody, J.A.; Martin, D.A.; Cannon, S.H.

    2008-01-01

    Volumes of eroded sediment after wildfires vary substantially throughout different geologic terrains across the western United States. These volumes are difficult to compare because they represent the response to rainstorms and runoff with different characteristics. However, by measuring the erosion response as the erodibility efficiency of water to detach and transport sediment on hillslopes and in channels, the erosion response from different geologic terrains can be compared. Specifically, the erodibility efficiency is the percentage of the total available stream power expended to detach, remobilize, or transport a mass of sediment. Erodibility efficiencies were calculated for the (i) initial detachment, and for the (ii) remobilization and transport of sediment on the hillslopes and in the channels after wildfire in two different geological terrains. The initial detachment efficiencies for the main channel and tributary channel in the granitic terrain were 10 ?? 9% and 5 ?? 4% and were similar to those for the volcanic terrain, which were 5 ?? 5% and 1 ?? 1%. No initial detachment efficiency could be measured for the hillslopes in the granitic terrain because hillslope measurements were started after the first major rainstorm. The initial detachment efficiency in the volcanic terrain was 1.3 ?? 0.41%. The average remobilization and transport efficiencies associated with flash floods in the channels also were similar in the granitic (0.18 ?? 0.57%) and volcanic (0.11 ?? 0.41%) terrains. On the hillslope the remobilization and transport efficiency was greater in the volcanic terrain (2.4%) than in the granitic terrain (0.65%). However, this may reflect the reduced sediment availability after the first major rainstorm (30-min maximum rainfall intensity ??? 90??mm h- 1) in the granitic terrain, while easily erodible fine colluvium remained on the hillslope after the first rainstorm (30-min maximum rainfall intensity = 7.2??mm h- 1) in the volcanic terrain. The

  15. Alteration and arenization processes of granitic waste rock piles from former uranium Mines in Limousin, France.

    NASA Astrophysics Data System (ADS)

    Kanzari, Aisha; Boekhout, Flora; Gérard, Martine; Galoisy, Laurence; Phrommavanh, Vannapha; Descostes, Michael

    2014-05-01

    France counts approximately 200 former uranium mines, 50 of which are located in the Limousin region. Mining activities between 1945 and 2001 have generated close to 200 000 tons of waste rocks in the Limousin, with uranium levels corresponding essentially to the geological background. Waste rock piles from three former mining sites in this region, were selected according to their age, uranium content and petrological signature. These sites are part of the two-mica granitic complex of St Sylvestre massif, formed 324 million years ago. Granitic blocks that build up the waste rock piles have experienced different processes and intensities of alteration before their emplacement at the surface. These processes are responsible for the petrological heterogeneity throughout the waste rock pile at the time of construction. It is important to make a distinction within waste rocks between natural-cut-off waste rocks and economic-cut-off waste rocks. The latter represents a minority and is linked to stock prices. Natural-cut-off waste rocks contain about 20 ppm of uranium; economic-cut-off waste rocks contain about 100 to 300 ppm of uranium. The aims of this study are to 1) assess the neo-formation of U-bearing minerals hosted by these rocks, and 2) to characterize the weathering processes since the construction of the rock piles, including both mechanical and chemical processes. The structure of the waste rocks piles, from metric blocks to boulders of tens centimeters, induces an enhanced weathering rate, compared to a granitic massif. Mechanical fracturing and chemical leaching by rainwater (arenization) of the waste rocks produce a sandy-silty alteration phase. Silty-clay weathering aureoles of submetric-granitic blocks evolving into technic soil are mainly located below growing birch trees. Sampling on the rock piles was restricted to surface rocks. Samples collected consist mainly of granites, and rare lamprophyres with a high radiometric signal, thereby especially

  16. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  17. Anisotropy of Pore Structure and Permeability in Granite: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Onishi, C. T.; Shimizu, I.; Mizoguchi, K.; Uehara, S.; Shimamoto, T.

    2001-12-01

    The permeability of rocks is sensitive to pore structures. In fault zones where brittle deformation dominates, connectivity of cracks is perhaps the most important factor to control the fluid permeability. The relationship between microstructure, porosity-pore structures and permeability were investigated, using drill core samples from the Toki Granite in Gifu Prefecture, Central Japan. Core samples taken from a borehole penetrating a fault strand of the Tsukiyoshi Fault at the depth of 700 m were used for analysis and measurements. The Toki Granite shows textural variations. For example, away from the fault zone, the granite is fresh, massive biotite granite. Toward the fault the granitic texture is largely destroyed, reflecting deformation due to fault movement, with extensive fracturing and development of calcite veins. The central part of the fault zone constitutes foliated ultra-cataclasites with a fine grained matrix. Microstructural observations indicate that fragmentation of crystals is the cause of grain size reduction in the fault zone and anisotropy in micro-crack development. The effective porosity of bulk samples measured by Helium pycnometer varies from 0.54% for unaltered fresh granite to over 5.4% for foliated cataclasite from the central part of the fault zone. The pore structures of the granite samples were visualized by the Laser Scanning Microscope (LSM). The samples were impregnated with low viscosity fluorescent resin under vacuum condition, and then observed by the LSM. Quasi 3-D images of pore structures were constructed from optical slices (confocal images) of thick sections. Micro-cracks in granites were successfully filled with the fluorescent resin. Micro-cracks were mainly observed at grain boundaries, and the intra and inter granular fractures. Permeability measurements were performed by a High Pressure Temperature (HPT) gas apparatus using the pore oscillation technique. Confining pressure was increased and then decreased in the range

  18. Prevalence of dry methods in granite countertop fabrication in Oklahoma.

    PubMed

    Phillips, Margaret L; Johnson, Andrew C

    2012-01-01

    Granite countertop fabricators are at risk of exposure to respirable crystalline silica, which may cause silicosis and other lung conditions. The purpose of this study was to estimate the prevalence of exposure control methods, especially wet methods, in granite countertop fabrication in Oklahoma to assess how many workers might be at risk of overexposure to crystalline silica in this industry. Granite fabrication shops in the three largest metropolitan areas in Oklahoma were enumerated, and 47 of the 52 shops participated in a survey on fabrication methods. Countertop shops were small businesses with average work forces of fewer than 10 employees. Ten shops (21%) reported using exclusively wet methods during all fabrication steps. Thirty-five shops (74%) employing a total of about 200 workers reported using dry methods all or most of the time in at least one fabrication step. The tasks most often performed dry were edge profiling (17% of shops), cutting of grooves for reinforcing rods (62% of shops), and cutting of sink openings (45% of shops). All shops reported providing either half-face or full-face respirators for use during fabrication, but none reported doing respirator fit testing. Few shops reported using any kind of dust collection system. These findings suggest that current consumer demand for granite countertops is giving rise to a new wave of workers at risk of silicosis due to potential overexposure to granite dust. PMID:22650974

  19. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed

    2015-04-01

    ores revealed two main groups of fluid inclusions in both areas: A) Aqueous inclusions (H2O-NaCl±KCl system), and B) Carbonic inclusions (H2O-CO2-NaCl±CH4). A drop of pressure during the migration of these fluids to shallower depths along the shear zones was the main reason for phase separation. Isochores calculation from microthermometric results proved that, the P-T boundary conditions outlined for Fatira gold deposits are of 275° to 297° C and between (0.2 - 1.2 Kbar); and of 277° to 300° C and between (0.2 - 1 Kbar) for Gidami gold deposits. The normalization Chondrite patterns of rare earth elements (REEs) for the gold-ore deposits with the surrounding I-type granitic rocks exhibit an obvious similarity and positive correlation. The geological, mineralogical, geochemical and fluid inclusions studies revealed a genetic link between gold mineralization and intrusion of calc-alkaine granitic magma. Whereas, The granitic magma acts as a supplier for the ore-bearing fluid and as a heat source for metamorphic processes, leading to hydrothermal convection currents.

  20. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    PubMed

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  1. Modelling granite migration by mesoscale pervasive flow

    NASA Astrophysics Data System (ADS)

    Leitch, A. M.; Weinberg, R. F.

    2002-06-01

    Mesoscale pervasive magma migration leads to granite injection complexes, common in hot crustal terranes. Pervasive migration is limited by magma freezing when intruding cold country rock. Here, we explore numerically the feedback mechanism between magma intrusion and heating of the country rock, which allows younger intrusive batches to reach increasingly shallower/cooler levels. This process relies on the higher solidus temperature of a rock compared to that of its melt, once melt is segregated. We define the 'free-ride layer' as the region above the melt source, where magma may freely migrate because rock temperature is above melt solidus. The top of the free-ride layer, which corresponds to the melt solidus ( TS) isotherm, is at the 'limiting depth', zS. After magma passes through the free-ride layer, the magma 'front' is always at the limiting depth. We modeled the thickening and heating of the crust above the source as melt at its liquidus ( TL) intrudes it pervasively from below. We found that: (a) magma quickly warms crust below zS to about TL, forming a step in temperature at zS; (b) the front ( zS) moves up through the crust as more magma is intruded; (c) as magma is emplaced at the front, a mingled layer of about half magma half crust forms below it, so that the total rise of the front corresponds approximately to half of the thickness of magma added to the free-ride layer; (d) the rate of rise of the front depends on the temperature difference between crust and TL, and slows down as the magma front rises; (e) for most reasonable intrusion rates and volumes, the crust above zS feels little influence of the intrusion, because the diffusion time scale is much smaller than the rise rate of the front. In summary, pervasive migration is an efficient way of heating the lower to middle crust, and can result in an injection complex several kilometers thick, consisting of about half magma and half original crust.

  2. Waste disposal in underground mines -- A technology partnership to protect the environment

    SciTech Connect

    1995-12-31

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment.

  3. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1994 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    1994-10-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1994 spring outmigration at migrant traps on the Snake River, Clearwater River, and Salmon River. The 1994 snowpack was among the lowest since the beginning of the present drought, and the subsequent runoff was very poor. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1994. Total annual (hatchery + wild) chinook salmon catch at the Snake River trap was 1.5 times greater than in 1993. Hatchery and wild steelhead trout catches were similar to 1993. The Snake River trap collected 30 age 0 chinook salmon. Hatchery chinook salmon catch at the Clearwater River trap was 3.5 times higher than in 1993, and wild chinook salmon catch was 4.2 times higher. Hatchery steelhead trout trap catch was less than half of 1993 numbers because the trap was fishing near the north shore during the majority of the hatchery steelhead movement due to flow augmentations from Dworshak. Wild steelhead trout trap catch was 2 times higher than in 1993. The Salmon River trap was operated for about a month longer in 1994 than in 1993 due to extremely low flows. Hatchery chinook salmon catch was 1.4 times greater in 1994 than the previous year. Wild chinook salmon catch was slightly less in 1994. The 1994 hatchery steelhead trout collection did not change significantly from 1993 numbers. Wild steelhead trout collection in 1994 was 59% of the 1993 catch. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were interrogated at four dams with PIT tag detection systems (Lower Granite, Little Goose, Lower Monumental, and McNary dams). Because of the addition of the fourth interrogation site (Lower Monumental) in 1993, cumulative interrogation data is not comparable with the prior five years (1988-1992).

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001. The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The increase

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003. The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km

  6. Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Sandjo, A. F. Yakeu; Njanko, T.; Njonfang, E.; Errami, E.; Rochette, P.; Fozing, E.

    2016-02-01

    The Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D 2 and D 3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 ±17 Ma (Rb/Sr) for D 1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D 2-D 3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement.

  7. Geology of Damon Mound Salt Dome, Texas

    SciTech Connect

    Collins, E.W.

    1989-01-01

    Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

  8. License for the Konrad Deep Geological Repository

    SciTech Connect

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  9. Comparisons of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm

    NASA Astrophysics Data System (ADS)

    Littler, M. M.; Littler, D. S.; Titlyanov, E. A.

    1991-12-01

    This exploratory study suggests that different geological systems (carbonate vs. granitic) in tropical waters have contrasting patterns of photosynthetic nutrient limitation correlated with inorganic nitrogen (N) and phosphorus (P) availability. Physiological assays for 21 predominant macrophyte species show that inorganic N and P are much less limiting to photosynthesis on granitic islands than is the case on carbonate islands and that, of the two, P is more likely to limit production in carbonate-rich tropical waters. Patterns of nutrient limitation in turn are reflected by differences in the relative dominance of functional groups of sessile, epilithic, photosynthetic organisms. Surveys at 33 sites on 10 islands revealed that nearshore waters on high granitic islands tend to be characterized by large and species-rich standing stocks of frondose macroalgae, often dominated by Sargassum spp., whereas waters around low carbonate islands tend to be dominated by hermatypic corals. Macrophyte tissue and seawater analyses also indicate a possible trend toward higher levels of N and P in granitic vs. carbonate islands. Pagode Island, a low carbonate island influenced by guano from seabird colonies, is an exception, with few corals, relatively high levels of tissue and seawater N and P, and a predominance of macroalgae (mostly Dictyosphaeria cavernosa).

  10. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; de Oliveira, Davis Carvalho

    2007-02-01

    The varying geochemical and petrogenetic nature of A-type granites is a controversial issue. The oxidized, magnetite-series A-type granites, defined by Anderson and Bender [Anderson, J.L., Bender, E.E., 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23, 19-52.], are the most problematic as they do not strictly follow the original definition of A-type granites, and approach calc-alkaline and I-type granites in some aspects. The oxidized Jamon suite A-type granites of the Carajás province of the Amazonian craton are compared with the magnetite-series granites of Laurentia, and other representative A-type granites, including Finnish rapakivi and Lachlan Fold Belt A-type granites, as well as with calc-alkaline, I-type orogenic granites. The geochemistry and petrogenesis of different groups of A-types granites are discussed with an emphasis on oxidized A-type granites in order to define their geochemical signatures and to clarify the processes involved in their petrogenesis. Oxidized A-type granites are clearly distinguished from calc-alkaline Cordilleran granites not only regarding trace element composition, as previously demonstrated, but also in their major element geochemistry. Oxidized A-type granites have high whole-rock FeO t/(FeO t + MgO), TiO 2/MgO, and K 2O/Na 2O and low Al 2O 3 and CaO compared to calc-alkaline granites. The contrast of Al 2O 3 contents in these two granite groups is remarkable. The CaO/(FeO t + MgO + TiO 2) vs. CaO + Al 2O 3 and CaO/(FeO t + MgO + TiO 2) vs. Al 2O 3 diagrams are proposed to distinguish A-type and calc-alkaline granites. Whole-rock FeO t/(FeO t + MgO) and the FeO t/(FeO t + MgO) vs. Al 2O 3 and FeO t/(FeO t + MgO) vs. Al 2O 3/(K 2O/Na 2O) diagrams are suggested for discrimination of oxidized and reduced A-type granites. Experimental data indicate that, besides pressure, the nature of A-type granites is dependent of ƒO 2 conditions and the water content

  11. Assessing exposure to granite countertops--Part 1: Radiation.

    PubMed

    Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F

    2010-05-01

    Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health. PMID:19707248

  12. History of Geology.

    ERIC Educational Resources Information Center

    Greene, Mott T.

    1985-01-01

    Discusses: (1) geologists and the history of geology; (2) American historians and the history of geology; (3) history of geology in the 1980s; (4) sources for the history of geology (bibliographies, dictionaries, encyclopedias, handbooks, periodicals, public/official histories, compilations, and books); (5) research opportunities; and (6) other…

  13. Microcracking and healing in granites: new evidence from cathodoluminescence.

    PubMed

    Sprunt, E S; Nur, A

    1979-08-01

    Quartz grains in granitic rocks usually have blue cathodoluminescence (CL). Within the blue-luminescing grains, there are often red-luminescing domains which are frequently impossible to detect without CL contrast. This finding suggests that the red-luminescing quartz is sealing preexisting mnicrocracks. The presence of these now-healed microcracks has important implications with respect to the role of pore fluid pressure and fluid transfer in metamorphism, the origih of granites, longperiod crustal deformation, earthquake mechanics, physical properties of rocks, and deep-seated geothermal energy. PMID:17758791

  14. The Swedish Bohus granite - a stone with a fascinating history

    NASA Astrophysics Data System (ADS)

    Schouenborg, Björn; Eliasson, Thomas

    2015-04-01

    One of the most well-known and well spread Swedish stone types used as building stones is the Bonus granite. It outcrops in an area north of Gothenburgh (SW Sweden), along the coastline, approximately 35 km wide and 85 km long. The granite continues into Norway as the Iddefjord granite. The Bohus granite is one of Sweden's youngest granites. Isotopic dating shows that the magma cooled at about 920 M years ago and thus marking the end of the Sveconorwegian orogoney. It is a composite granite massif area with several granitic intrusions but with rather homogeneous mineralogy. However, colour and texture varies quite a lot and the colour ranges from red to reddish grey although some pure grey varieties occur sparsely. The grain size ranges from medium grained to coarse grained and even with some porphyric parts. Quarrying in an industrial scale started 1842. The merchant A C Kullgren opened the first quarry and produced stones for the construction of the 86 km long Trollhättan channel connecting lake Vänern and the Atlantic ocean in the SW Sweden The stone was used for constructing harbors and wharves along the channel. Several quarries opened in the late 1800 around 1870 - 1890 and the export increased steadily with deliveries to Germany, Denmark, Holland, England and even to South America. The stone industries in Bohuslän (Bohus county), at its peak in 1929, engaged around 7 000 employees. During the depression in 1930 almost all of them became unemployed. However, as a curiosity, production and export continued to Germany for construction of Germania, the future World capital city ("Welthauptstadt Germania"), planned by Adolf Hitler and Albert Speer. About 500 stone workers were kept employed for this project during the late thirties. Today several varieties are still produced: Evja/Ävja, Tossene, Brastad, Näsinge, Broberg, Nolby, Allemarken and Skarstad. However, the number of stone workers is far from that of the early 1900. The Swedish production is mainly

  15. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an

  16. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Putnam, Scott A.

    2009-02-18

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002. The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due to high

  17. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    1994-04-01

    Many granites result from anatexis of common crustal rock types and the segregation, aggregation, ascent and emplacement of the resultant magma. What then is the connection between migmatites, rocks which preserve evidence at outcrop-scale for the presence of former melt now frozen as granite, whether in situ or locally displaced with respect to the site of melting, and map-scale bodies of crustally-derived granite, clearly removed from the site of melting? Both water-rich volatile phase-present melting and volatile phase-absent dehydration melting can occur in the middle and lower crust, but dehydration melting that involves the decomposition of mica and amphibole likely is the more important process in the generation of plutonic volumes of magma with sufficient mobility to reach the upper crust. Both volatile phase-present and dehydration melting can occur in each of the two main types of orogenic belt, those that result from thickening before maximum temperatures are achieved (clockwise in P- T space) and those that result from heating prior to or concomitant with thickening (anticlockwise in P- T space). Depending upon the particular tectonic circumstances, the thermal perturbation to provide the heat necessary for crustal anatexis may be caused by internal radiogenic heat production in overthickened crust, intraplating/underplating of mantle-derived magma, an enhanced flux from the mantle, or some combination of these mechanisms. The tectonic environment to a large extent also controls the segregation, ascent and emplacement of granite magma. For example, at the present time a majority of convergent plate margins exhibit an oblique net displacement vector, and it is likely, therefore, that oblique convergence was important in the past. Retreating subduction boundaries will result in regional deformation of the overriding plate by horizontal extension or transtension in contrast to advancing subduction boundaries that will result in regional deformation of the

  18. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand

    NASA Astrophysics Data System (ADS)

    Sanematsu, Kenzo; Kon, Yoshiaki; Imai, Akira

    2015-11-01

    The Permo-Jurassic North Thai (NT) Granites and the Late Cretaceous to Paleogene Western Province (WP) Granites in Thailand are contrasting in terms of tectonic settings and chemical compositions. The NT Granites, which are dominated by S-type features, are characterized by lower SiO2 contents and higher P2O5 contents than the WP Granites in this study. In order to compare the mobility and adsorption of rare earth elements (REEs) during weathering of the two granite suites, geochemical analyses were conducted on the granite and weathered granites. The weathered WP Granites show wider ranges of REEs + Y (REY) contents, percentages of ion-exchangeable REY and Ce anomalies than the weathered NT Granites. These results indicate that REEs were less mobile during weathering of the NT Granites than those of the WP Granites. The low mobility of REEs can be explained by the occurrences of residual monazite and secondary REE phosphates which immobilize REEs during weathering. Therefore, in the weathered NT Granites, REEs are mostly contained in the phosphate minerals. In contrast, the weathered WP Granites are dominated by ion-exchangeable REEs (adsorbed REEs) which are likely to exist on the surface of clays. Previous studies and our study results suggest that the ion-exchangeable REEs in the weathered granites were probably sourced from weatherable allanite, titanite, apatite and/or REE fluorocarbonate, and rarely from monazite and zircon, which are resistant to weathering. The weathered granites of low phosphate contents potentially show high percentages of ion-exchangeable REY, although they can be influenced by the degree of hydrothermal alteration or weathering of granites.

  19. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1998 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.

    2000-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka, during the 1998 spring outmigration at migrant traps on the Snake and Salmon rivers. All hatchery chinook salmon released above Lower Granite Dam 19 1998 were marked with a fin-clip. Total annual hatchery chinook salmon catch at the Snake River trap was 226% of the 1997 number and 110% of the 1996 catch. The wild chinook catch was 120% of the 1997 catch but was only 93% of 1996. Hatchery steelhead trout catch was 501% of 1997 numbers but only 90% of the 1996 numbers. Wild steelhead trout catch was 569% of 1997 and 125% of the 1996 numbers. The Snake River trap collected 106 age-0 chinook salmon. During 1998, for the first time, the Snake River trap captured a significant number of hatchery sockeye salmon (1,552) and hatchery coho salmon O. kisutch (166). Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 8 and were terminated for the season due to high flows on June 12. The trap was out of operation for 34 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 476% and wild chinook salmon catch was 137% of 1997 numbers and 175% and 82% of 1996 catch, respectively. The hatchery steelhead trout collection in 1998 was 96% of the 1997 catch and 13% of the 1996 numbers. Wild steelhead trout collection in 1998 was 170% of the 1997 catch and 37% of the 1996 numbers. Travel time (d) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir were affected by discharge. For fish tagged at the Snake River trap, statistical analysis of 1998 detected a significant relation between migration rate and discharge. For hatchery and

  20. Linear geologic structure and magic rock discrimination as determined from infrared data

    NASA Technical Reports Server (NTRS)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  1. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Geologic maps of four test sites were compiled at 1/250,000. Band 7 prints enlarged to 1/500,000 scale are the best for the purpose, and negative prints provide a valuable supplement. More than 100 mapped lineaments represent most of the major faults of the area and a large number of suspected faults, including many of northeast trend. Under ideal conditions dip slopes may be recognized, laccoliths outlined, and axial traces drawn for narrow, plunging folds. Use of ERTS-1 imagery will greatly facilitate construction of a needed tectonic map of Montana. From ERTS-1 imagery alone, it was possible to identify up-turned undivided Paleozoic and Mesozoic strata and to map the boundaries of mountain glaciation, intermontane basins, a volcanic field, and an area of granitic rocks. It was also possible to outline clay pans associated with bentonite. However, widespread recognition of gross rock types will be difficult.

  2. 3D geological modeling based on gravitational and magnetic data inversion in the Luanchuan ore region, Henan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Gongwen; Zhu, Yanyan; Zhang, Shouting; Yan, Changhai; Song, Yaowu; Ma, Zhenbo; Hong, Dongming; Chen, Tianzhen

    2012-05-01

    Three-dimensional (3D) geological modeling is an important method for understanding geological structures and exploring for mineral deposits. The Luanchuan super-large molybdenum polymetallic ore region has a complex geological setting and multiple metallogenic types. 3D geological modeling is implemented by combining geological knowledge with gravitational and magnetic data inversion in the study area. The 3D geological modeling methodology and the results are summarized as follows. (1) Based on the geological setting and the deposits/occurrences, the aim was to constrain and determine the main geological objects in 3D space to construct geological and metallogenic models. (2) Based on geological observations and rock physical measurements to derive qualitative information about geological objects at depths using gravitational and magnetic data inversion, 2.5D forward modeling was used to identify shallow/subsurface geological objects, and the 3D probability method of potential field inversion was used for coarse constraining of geological objects at depths. (3) A combination of geological information with gravitational and magnetic data inversion information was used to determine the space-time genesis of metallogenic objects in potential mineral targets (i.e., Late Jurassic granite intrusions, ore-forming strata, and ore mineralization favorable faults). (4)A 3D model of the study area (17.7 km × 12.0 km × 2.5 km) is associated with the surface and subsurface geological data, which has geophysical information that is beneficial for identifying and evaluating potential prospecting zones.

  3. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1990 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Nelson, V. Lance

    1991-05-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout Oncorhynchus mvkiss smolts during the 1990 spring outmigration at migrant traps on the Snake River and the Clearwater River. Chinook salmon catch at the Snake River trap was similar to 1987 and 1988, drought years, but considerably less than 1989, a near normal flow year. Trapping effort was the same during the four years. Hatchery steelhead trout catch was similar to 1988 and 1989. Wild steelhead trout catch was greater than in any previous year. Chinook salmon catch at the Clearwater River trap was slightly less than in 1987 or 1988 and considerably higher than in 1989. Hatchery steelhead trout trap catch was 3 to 26 times greater than in previous years. Wild steelhead trout trap catch was 2 to 11 times greater than in previous years. Fish tagged with Passive Integrated Transponder (PIT) tags at the Snake River trap were recovered at the three dams with PIT tag detection systems (Lower Granite, Little Goose, and McNary dams). Cumulative recovery at the three dams for fish marked at the Snake River trap was 64.4% for chinook salmon, 83.1% for hatchery steelhead trout, and 79.0% for wild steelhead trout. Cumulative recovery at the three dams for fish PIT-tagged at the Clearwater River trap was 54.6% for chinook salmon, 77.6% for hatchery steelhead trout, and 70.4% for wild steelhead trout. Travel time (days) and migration rate (km/d) through Lower Granite Reservoir for PIT-tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that a two-fold increase in discharge increased migration rate by 2.2 times for PIT-tagged chinook salmon released from the Snake River trap and 1.8 times for chinook salmon released from the Clearwater River trap. A two-fold increase in discharge increased migration rate by 3.1 times for PIT-tagged hatchery steelhead trout released from the Snake River trap

  4. Depleted uranium disposal options.

    SciTech Connect

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  5. The Antei uranium deposit: A natural analogue of an SNF repository and an underground geodynamic laboratory in granite

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Petrov, V. A.; Poluektov, V. V.; Nasimov, R. M.; Hammer, J.; Burmistrov, A. A.; Shchukin, S. I.

    2008-10-01

    The estimation of the long-term stability of crystalline rock massifs with respect to natural and technogenic loads in the course of long-term storage of spent nuclear fuel (SNF) is a special area of surveys at underground research laboratories (URLs). In parallel with these surveys, data on uranium deposits—natural analogues of repositories of SNF consisting of 95% UO2—are used for obtaining insight into the dynamics of radionuclide migration and validating barrier properties of host rocks. Examples of URLs located in granitic massifs of Sweden (Äspö), Canada (Whiteshell), Switzerland (Grimsel), Japan (Mizunami), and Finland (ONKALO), as well as the El Berrocal (Spain), Palmottu (Finland), Sanerliu (China), and Kamaishi (Japan) deposits, are considered in the paper. The objects listed above are distinct in tectonic settings, geology, control of ore mineralization, redox conditions of uranium migration, and character and intensity of filtration and transportation, which predetermine the direction and specific features of research conducted therein. A variant in which a URL and a natural analogue are combined in one object is especially promising for validation of safe long-term isolation of SNF. The Antei vein-stockwork uranium deposit in the southeastern Transbaikal region, localized in Paleozoic granite at a depth of 400 1000 m and opened by mine workings at six levels, is such an object. Its geological features, stress-strain state, and infrastructure of mine workings offer an opportunity to study the entire spectrum of processes proceeding in near-and far-field of an SNF repository. The structural geology, mineralogy and petrography, and petrophysical and tectonophysical features of the deposit at its three lower levels are considered. The sequence of metasomatic alteration of rocks and the dynamics of formation of ore-bearing faults that crosscut prototectonic elements, as well as relationships of physicomechanical properties of rocks as a function of

  6. Experimental introduction of excess Ar40 into a granitic melt

    USGS Publications Warehouse

    Fyfe, W.S.; Lanphere, M.A.; Dalrymple, G.B.

    1969-01-01

    Samples of a Precambrian granite were melted in sealed capsules to produce a radiogenic Ar40 atmosphere over the melt. The amount of Ar40 incorporated in the quenched charge was then determined. Under these experimental conditions the amount of argon dissolved in the quenched melt was appreciable and could be an important source of error in potassiumargon dating. ?? 1969 Springer-Verlag.

  7. 16. Detail showing roller nest between granite pier cap and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail showing roller nest between granite pier cap and moveable end of truss at east end of main spans. View to southeast. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  8. 8. Granite quay wall at foot of Pier 10 (west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Granite quay wall at foot of Pier 10 (west end), view to north, at low tide. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  9. Detail of west span showing connection of superstructure to granite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of west span showing connection of superstructure to granite pier at low tide. Photograph articulates subdeck support members. View southeast - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  10. 74. The Butte Water Company Building (124 Weat Granite) was ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. The Butte Water Company Building (124 Weat Granite) was built in 1907 for the Montana Independant Telephone Company, which occupied it until 1918. Since then, it has been occupied by the Butte Water Company, and has not been altered substantially. It was designed by George H. Shanley. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  11. Granite School District's Comprehensive Counseling and Guidance Program in Action.

    ERIC Educational Resources Information Center

    Petersen, Judy

    This paper discusses the development of the Utah Model for Comprehensive Counseling and Guidance, and specifically, its application in the Granite School Districts Guidance Program. This model adopted the National Occupational Information Coordinating Committee (NOICC) competencies as its desired program content, which focuses on student outcomes.…

  12. Electrical properties of granite with implications for the lower crust.

    USGS Publications Warehouse

    Olhoeft, G.R.

    1981-01-01

    The electrical properties of granite appear to be dominantly controlled by the amount of free water in the granite and by temperature. Minor contributions to the electrical properties are provided by hydrostatic and lithostatic pressure, structurally bound water, oxygen fugacity, and other parameters. The effect of sulphur fugacity may be important but is experimentally unconfirmed. In addition to changing the magnitude of electrical properties, the amount and chemistry of water in granite significantly changes the temperature dependence of the electrical properties. With increasing temperature, changes in water content retain large, but lessened, effects on electrical properties. Near room temperature, a monolayer of water will decrease the electrical resistivity by an order of magnitude. Several weight-percent water may decrease the electrical resistivity by as much as nine orders of magnitude and decrease the thermal activation energy by a factor of five. At elevated temperatures just below granitic melting, a few weight-percent water may still decrease the resistivity by as much as 3 orders of magnitude and the activation energy by a factor of two.-Author

  13. Ancient granite gneiss in the Black Hills, South Dakota

    USGS Publications Warehouse

    Zartman, R.E.; Norton, J.J.; Stern, T.W.

    1964-01-01

    Granite gneiss, with an age of approximately 2.5 billion years, in the Black Hills, South Dakota , provides a link betweeen ancient rocks in western Wyoming and Montana and in eastern North and South Dakota and Minnesota. The discovery suggests that early Precambrian rocks covered an extensive area in northcentral United States and were not restricted to several small nuclei.

  14. Flow Chart for Mineral Separation from Granitic Rocks.

    ERIC Educational Resources Information Center

    Mursky, Gregory

    1987-01-01

    Provided is a flow chart for the separation and purification of major, minor, and accessory minerals from granitic rocks. With careful use of heavy liquids, and a Franz Isodynamic Magnetic Separator, it is possible to obtain mineral concentrates with a purity of 95 percent or better. (Author/RH)

  15. Detail of typical subdeck of granite pier showing humanscale arched ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of typical subdeck of granite pier showing human-scale arched openings in pies. Note remnants of fender system. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  16. Defense High Level Waste Disposal Container System Description

    SciTech Connect

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  17. Geological structures and geochronology of the Gonam Complex in the Gyeonggi Massif, South Korea

    NASA Astrophysics Data System (ADS)

    Kihm, You Hong; Kim, Sung Won

    2013-04-01

    Geological structures and geochronology of the Gonam Complex in the Gyeonggi Massif, South Korea You Hong Kihm and Sung Won Kim The Gonam complex is exposed in the westernmost part of the Gyeonggi Massif, which is recently thought be related with Triassic collision of China. This complex consists of various lithologies such as quartz schist, mica schist, quartzite, marble, leucocratic granite, mafic dyke and alkali granite. The Gonam complex can be divided into three units from south to north. The first is dominated by alternation of quartz schist and mica schist, which are intruded by leucocratic granites and mafic dykes. The second unit is highly sheared and folded quartzite. The last unit is composed of schists and marble intruded by acidic dykes, mafic dykes and foliated syenite. The deformation of the Gonam complex is characterized by one ductile shearing, two generations of folding, and four generations of faulting. The most prominent geological structures developed in the Gonam Complex are ductile structures, such as mylonitic foliations, mineral stretching lineations, sheath folds and oblique folds. At most outcrops the Gonam Complex was strongly sheared and intruded by amphibolitic dykes and leucocratic granites, which are also sheared. Widely developed mylonite indicates the ductile shearing occurred in high temperature metamorphic condition. SHRIMP zircon ages of detrital zircons obtained from schist and quartzite range from 3313 to 1819 Ma indicating the Gonam Complex deposited after Paleoproterozoic. Intrusion ages of foliated leucocratic granite, mafic dyke and foliated syenite are 821 Ma, 812 Ma and 751 Ma, respectively. And massive mafic dyke, syenite and two-mica granite (232~228 Ma) are interpreted as post-collisional igneous activity. These events are similar to those of Qinling-Dabie Belt and suggest that the Gyeonggi Massif is probably correlated to the Qinling-Dabie Belt.

  18. Riftogenic A-type granites of the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Udoratina, Oksana; Kulikova, Ksenia; Shuysky, Alexander

    2016-04-01

    There are granitoids-markers of the riftogenic geodynamic setting in the Polar Urals. Isotope-geochronological and petrographic-petrogeochemical data on granitoids indicate the post-collisional conditions of their formation. Granitoids along with other alkaline massifs North Urals mark rifting in this part of the Urals. These granitoids formed after the collision peak of Timanides formation, after 520 Ma in the absolute chronology, when the intensity of magmatism fell sharply and only small volumes of rhyolite and A-type granites were formed. Granitoid massifs occur within the Northern Urals fragment of the Central Ural uplift composed of preuralide complexes. According to the recent data (U-Pb, SIMS) for single zircon the granitoids of the massifs (hereinafter Ma): Syadatayakhinsky (516±2, 503±6.3), Ochetinsky (500±5), Ingilorsky (487.3±6.9, 503±5), the northern part of Gerdizsky (496.2±7.1), Marunkeu Ridge (495±2.4) and part of massifs of kharbeysky complex of Laptayugansky and Evyugansky domes (497±3 and 487.1±2.1) were formed in the Late Cambrian-Early Ordovician time. Within rare metal ore deposits of Taykeyusky ore unit, except for older granitoids with ages 600-560-540 Ma, the granitoids occur with the following ages: Longotyugansky (512±8, 482±8, 511±11), Taykeusky (513±3.4, 518.6±3.9, 477±12), Ust-Mramorny (516±16). There are the following situation localization of granites in the area of the Central Urals uplift: 1) in Ochetinsky and Syadatayakhinsky blocks without significant tectonic deformations among greenschist metamorphites; 2) in the areas of intense tectonic transformations (Longotyugansky, Taykeusky, Ust-Mramorny), but also among greenschist metamorphites; 3) in highly metamorphized rocks (Marunkeu Ridge, Ingilorsky, Gerdizsky, small bodies of Kharbeysky complex). Granitoids differ by the material and structural-textural features of the rocks. Some are massive with preserved granite fabric (1), the other have clearly expressed

  19. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical... comprehensive identification of potential event sequences; (c) Data pertaining to the Yucca Mountain site,...

  20. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical... comprehensive identification of potential event sequences; (c) Data pertaining to the Yucca Mountain site,...

  1. Metamorphic geology: Why should we care?

    NASA Astrophysics Data System (ADS)

    Tajcmanova, Lucie; Moulas, Evangelos; Vrijmoed, Johannes

    2016-04-01

    Estimation of pressure-temperature (P-T) from petrographic observations in metamorphic rocks has become a common practice in petrology studies during the last 50 years. This data then often serves as a key input in geodynamic reconstructions and thus directly influences our understanding of lithospheric processes. Such an approach might have led the metamorphic geology field to a certain level of quiescence. Obtaining high-quality analytical data from metamorphic rocks has become a standard part of geology studies. The numerical tools for geodynamic reconstructions have evolved to a great extend as well. Furthermore, the increasing demand on using the Earth's interior for sustainable energy or nuclear waste disposal requires a better understanding of the physical processes involved in fluid-rock interaction. However, nowadays, metamorphic data have apparently lost their importance in the "bigger picture" of the Earth sciences. Interestingly, the suppression of the metamorphic geology discipline limits the potential for understanding the aforementioned physical processes that could have been exploited. In fact, those phenomena must be considered in the development of new generations of fully coupled numerical codes that involve reacting materials with changing porosity while obeying conservation of mass, momentum and energy. In our contribution, we would like to discuss the current role of metamorphic geology. We will bring food for thoughts and specifically touch upon the following questions: How can we revitalize metamorphic geology? How can we increase the importance of it? How can metamorphic geology contribute to societal issues?

  2. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  3. The origin and nature of thermal evolution during Granite emplacement and differentiation and its influence on upper crustal dynamics.

    NASA Astrophysics Data System (ADS)

    Buchwaldt, R.; Toulkeridis, T.; Todt, W.

    2014-12-01

    Structural geological, geochemical and geochronological data were compiled with the purpose to exercise models for the construction of upper crustal batholith. Models for pulsed intrusion of small magma batches over long timescales versus transfer of larger magma bodies on a shorter time scales are able to predict a different thermal, metamorphic, and rheological state of the crust. For this purpose we have applied the chronostratigraphic framework for magma differentiation on three granite complexes namely the St. Francois Mountain granite pluton (Precambrian), the Galway granite (Cambrian), and the Sithonia Plutonic Complex (Eocene). These plutons have similar sizes and range in composition from quartz diorites through granodiorites and granites to alkali granites, indicating multiple intrusive episodes. Thermobarometric calculations imply an upper crustal emplacement. Geochemical, isotopic and petrological data indicate a variety of pulses from each pluton allowing to be related through their liquid line of decent, which is supported by fractional crystallization of predominantly plagioclase, K-feldspar, biotite, hornblende and some minor accessory mineral phases, magma mingling and mixing as well as crustal contamination. To obtain the temporal relationship we carried out high-precision CA-TIMS zircon geochronology on selected samples along the liquid line of decent. The obtained data indicate a wide range of rates: such as different pulses evolved on timescales of about only 10-30ka, although, the construction time of the different complexes ranges from millions of years with prolonged tectonically inactive phases to relatively short lived time ranges of about ~300 ka. For a better understanding how these new data were used and evaluated in order to reconstruct constraints on the dynamics of the magmatic plumbing system, we integrated the short-lived, elevated heat production, due to latent heat of crystallization, into a 2D numerical model of the thermal

  4. ASTEROIDAL GRANITE-LIKE MAGMATISM 4.53 GYR AGO

    SciTech Connect

    Terada, Kentaro; Bischoff, Addi

    2009-07-10

    Constraining the timescales for the evolution of planetary bodies in our solar system is essential for a complete understanding of planet-forming processes. However, frequent collisions between planetesimals in the early solar system obscured and destroyed much of the primitive features of the old, first-generation planetary bodies. The presence of differentiated, achondritic clasts in brecciated chondrites and of chondritic fragments in achondritic breccias clearly witness multiple processes such as metamorphism, magmatism, fragmentation, mixing, and reaccretion. Here, we report the results of ion microprobe Pb-Pb dating of a granite-like fragment found in a meteorite, the LL3-6 ordinary chondrite regolith breccia Adzhi-Bogdo. Eight spot analyses of two phosphate grains and other co-genetic phases of the granitoid give a Pb-Pb isochron age of 4.48 {+-} 0.12 billion years (95% confidence) and a model age of 4.53 {+-} 0.03 billion years (1{sigma}), respectively. These ages represent the crystallization age of a parental granite-like magma that is significantly older than those of terrestrial (4.00-4.40 Gyr) and lunar granites (3.88-4.32 Gyr) indicating that the clast in Adzhi-Bogdo is the oldest known granitoid in the solar system. This is the first evidence that granite-like formation is not only a common process on Earth, but also occurred on primitive asteroids in the early solar system 4.53 Gyr ago. Thus, the discovery of granite magmatism recorded in a brecciated meteorite provides an innovative idea within the framework of scenarios for the formation and evolution of planetary bodies and possibly exoplanetary bodies.

  5. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    USGS Publications Warehouse

    Horton, J. Wright, Jr.; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  6. Magnesium battery disposal characteristics

    NASA Astrophysics Data System (ADS)

    Soffer, Louis; Atwater, Terrill

    1994-12-01

    This study assesses the disposal characteristics of U.S. Army procured military magnesium batteries under current Resource Conservation and Recovery Act (RCRA) hazardous waste identification regulations administered by the U.S. Environmental Protection Agency. Magnesium batteries were tested at 100, 50, 10 and 0 percent remaining state of charge. Present findings indicate that magnesium batteries with less than 50 percent remaining charge do not exceed the federal regulatory limit of 5.0 mg/L for chromium. All other RCRA contaminates were below regulatory limits at all levels of remaining charge. Assay methods, findings, disposal requirements and design implications are discussed.

  7. Impacts of Wildfire on Runoff and Sediment Loads at Little Granite Creek near Bondurant, Wyoming

    NASA Astrophysics Data System (ADS)

    Ryan, S. E.; Dwire, K. A.

    2009-12-01

    There are a variety of mechanisms by which sediment is transferred from burned hillslopes to stream channels following wildfire. Post-fire erodability is related to a number of factors, including fire severity, topography, underlying geology, and nature of the soils, making the potential sedimentation impacts difficult to predict. Large scale disturbances, such as increased landsliding and debris flows, present dramatic responses that have long-lasting influences on channel form and process. However, not all burned areas undergo increased landsliding following wildfire. Perhaps a more common watershed response is the post-fire delivery of fine sediment that is carried in suspension during moderate to high flows. In this presentation we describe changes in suspended sediment loads observed in a burned watershed in NW Wyoming from the years 2001-03 and later in 2008. In August 2000, wildfire burned portions of the Little Granite Creek watershed near Bondurant, Wyoming where bedload and suspended sediment measurements had been collected during 13 previous runoff seasons. This presented an opportunity to quantify increases in sediment loads associated with wildfire. The first 3 years post-fire were warm and dry, with low snowpacks and few significant summer storms. Despite relatively low flows during the first runoff season, the estimated sediment load was about 4 times that predicted had there been no fire. This was attributed to increases in sediment loading during the rising limb and snowmelt peak (54%) and during the few summer storms (44%). In later years, loads decreased, indicating a return to baseline levels. The results from our sediment monitoring lacked some of the more dramatic responses that have been observed following fire. In other environments, high intensity rainstorms caused progressively bulking flows that triggered debris flows though channel erosion. In Little Granite Creek, there were a few substantial storms, but they did not trigger this type

  8. Geochemical study of the granitic rocks from the Ryongnam massif, Geochang, South Korea

    NASA Astrophysics Data System (ADS)

    Han, M.; Kim, J.; Yang, K.

    2009-12-01

    The geochemical studies on the granitic rocks of the central part of the Ryongnam massif were carried out in order to constrain the petrogenesis and the paleotectonic environment. The area is composed of Precambrian gneissic rocks and metamorphosed sedimentary rocks, age-unknown granite and dioritic rocks, and Jurassic granitic rocks. The modal compositions indicate that the studied granitic rocks are granodiorite, monzogranite, syeno-granite, and alkali-feldspar granite. Except for Na2O and K2O, the contents of most oxides such as P2O5, TiO2, Al2O3, CaO, MgO and Fe2O3 decrease when SiO2 increases. These granitic rocks belong to the calc-alkaline series in the TAS and AFM diagram. They also show high-K nature, indicating the rocks experienced considerable differentiations. The studied granitic rocks correspond to Peraluminous and I-type(less than 1.1) in the A/CNK diagram. Chondrite-normalized REE patterns show generally enrichment in LREE and depleted in HREE. This suggests that the magma has been largely differentiated at an early stage. REE patterns of different granitic rocks in composition are subparallel each other, suggesting cogenetic in origin. The (-) anomaly of Eu shows that the granitic rocks were generated from residual magma which had fractionated plagioclase. Furthermore, the amount of total REE of the studied granitic rocks ranges 46.93~108.84 ppm, which corresponds to the range of granitic rocks from the continental margin granite. On the N-type MORB normalized spiderdiagram, the studied rocks generally show Nb-Ta and Hf-Zr trough, indicating the subduction-related products. According to the tectonomagmatic discrimination diagram, they correspond to volcanic arc granite(VAG). The major and trace element characteristics of the granitic rocks support their emplacement at the active continental margin.

  9. An Occurrence of H2 in Silicate Melt Inclusions in Quartz from Granite of Jiajika Granitic Pegmatite Deposit, China

    NASA Astrophysics Data System (ADS)

    Li, J.; Chou, I.-M.

    2014-06-01

    Laser Raman spectroscopic analyses of silicate melt inclusions in quartz, from granite of Jiajika Li-bearing pegmatite deposit in China, revealed the existence of H_2 in the vapor phase with unknown mechanisms for the formation and retention of H_2.

  10. Petrogenesis of the Neoproterozoic West Highland Granitic Gneiss, Scottish Caledonides: Cryptic mantle input to S-type granites?

    NASA Astrophysics Data System (ADS)

    Fowler, M.; Millar, I. L.; Strachan, R. A.; Fallick, A. E.

    2013-05-01

    The Neoproterozoic (c. 870 Ma) West Highland Granitic Gneiss, exposed in the Northern Highlands Terrane of Scotland, has elemental characteristics that are strikingly similar to those of the host Moine metasediments, which are thus consistent with an origin involving major Moine melting. Most of the constituent bodies have compositions significantly removed from minimum melts of pelites, and trace element constraints suggest variable but significant restite entrainment leading to less silicic bulk compositions with enhanced REE, Zr and Y. However, initial Nd and Hf isotope ratios are not coincident with contemporary Moine and imply a significant juvenile contribution. Close association with a regional suite of metabasites prompts consideration of mafic magma input, for which binary mixing models offer qualitative support. Quantitative difficulties with typical Moine metasediments are eased with radiogenic pelites or by partial melting of the mafic component. A possible alternative is currently unexposed Grenvillian felsic crust. Subsequent interaction of the granitic gneisses with meteoric water has significantly perturbed the oxygen and Sr isotope systems, the timing of which is equivocal but probably occurred during Caledonian events. The elemental characteristics of the West Highland Granitic Gneiss show many similarities with Scandinavian (rift-related?) granites of the same age, but since their geochemistry is largely inherited from the protolith it would be unwise to pursue palaeotectonic attribution on this basis. However, the probable incorporation of significant mantle-derived mafic magma of MORB-like affinity is consistent with an extensional setting.

  11. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2014-12-01

    A combined study of whole-rock major-trace elements and Sr-Nd isotopes, zircon U-Pb ages, Hf and O isotopes as well as biotite geochemistry was carried out for Triassic granite intrusions from the Nanling Range in South China. The results provide insights into the effects of source composition and melting conditions on the geochemical diversity of granites. The granites of interest are peraluminous, and contain primary muscovite and tourmaline. They are characterized by high zircon δ18O values of > 9.0‰, high initial 87Sr/86Sr values of ~ 0.7200, and homogeneous εNd(t) values of - 11.3 to - 9.8, as well as variable zircon εHf(t) values of - 12.2 to - 5.8. Biotite geochemistry is similar to that of common peraluminous granites. An integrated interpretation of these petrological, mineralogical and geochemical data indicates that these granites were derived from partial melting of metasedimentary rocks under variable physicochemical conditions. The differences in whole-rock and biotite geochemistry between the intrusions are ascribed to the variable effects of source heterogeneity and melting temperature. The Luxi intrusion exhibits higher contents of MgO, FeOT, TiO2 and CaO than common melts derived from metasedimentary rocks, tight variations in major-trace elements and homogeneous Sr-Nd isotopic compositions, and homogeneous biotite composition with high Mg# [= Mg / (Mg + Fe) in molar] and lower whole-rock A/CNK values [= Al2O3 / (CaO + Na2O + K2O) in molar]. These can be explained by originating from a relatively mafic metasedimentary source. On the other hand, the geochemical diversity of granites can be caused by the difference in melting temperature in addition to the source heterogeneity. This is suggested by the Xiazhuang and Fucheng intrusions which exhibit similar range of SiO2. Nevertheless, the Fucheng intrusion is ferroan, and high in TiO2, (Na2O + K2O)/CaO, TiO2/MgO, Ga/Al and Zr + Nb + Ce + Y, but low in CaO, MgO and Mg#. Most of its major

  12. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  13. Geology for the Masses

    ERIC Educational Resources Information Center

    Dickinson, William R.

    1970-01-01

    Describes environmental geology as including planning to avoid natural hazards, acquire natural resources, and use land wisely. Describes philosophy and strategies for developing interdisciplinary, environmental geology education at the high school, college, professional graduate, and doctoral research levels. (PR)

  14. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  15. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    NASA Astrophysics Data System (ADS)

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  16. Geology and tectonics of Japanese islands: A review - The key to understanding the geology of Asia

    NASA Astrophysics Data System (ADS)

    Wakita, Koji

    2013-08-01

    The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts. The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction-accretion, paired metamorphism, arc volcanism, back-arc spreading and arc-arc collision. The major accretionary

  17. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  20. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  1. Alternative Trench Disposal Concepts

    SciTech Connect

    Wilhite, E.

    2001-09-05

    During Fiscal Year 2000, a number of activities were conducted to expand the use of trenches for disposal of low-level waste in the E-Area Low-Level Waste Facility (LLWF). This document presents a summary and interpretation of these activities in the context of future work.

  2. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  3. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  4. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

  5. Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications

    USGS Publications Warehouse

    Bettencourt, Jorge S.; Tosdal, R.M.; Leite, W.B., Jr.; Payolla, B.L.

    1999-01-01

    Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic.

  6. Geologic interpretation of ERTS-1 satellite images for West Aswan Area, Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Elkassas, I. A.

    1974-01-01

    ERTS-1 images of West Aswan area were interpreted in terms of geology, drainage, and structure. Twenty-two geological units were distinguished on ERTS-1 images in West Aswan area covering geological formations and erosional levels within some formations ranging from the Precambrian to the Quaternary. Apart from the distinction of Aswan monumental granite the investigated area shows very interesting exposures of sedimentary rocks ranging from the Cretaceous to the Quaternary. Of special interest is the delineation of the iron-ore member of the Nubian Sandstone and the phosphate-bearing formation. The tracing of the geological formations from south to north and the distinction of the varied geological units within the Pliocene and Quaternary, and the discussion on the origin of tufa are of particular significance. Also, the tracing on these images of major fractures and faults intercepting Aswan Dam Reservoir and their significance on the seepage and possible future development of diversion channels from reservoir is emphasized.

  7. Scaling minerals from deep-seated granitic geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Norio

    2016-04-01

    To promote geothermal energy use and sustainable production, the information of scaling situation from deep-seated geothermal reservoir is important. In Japan, at the Kakkonda geothermal field, Iwate prefecture, north-eastern of Japan, there is 80MW geothermal power plant using about 300 degree C fluid from the reservoir at the boundary between Quaternary Kakkonda granite and Pre-Tertiary formations about 3km depth and more deep-seated reservoir survey was carried out by NEDO. Then, to understand the mechanism of deep-seated reservoir, we survey the metal sulphide minerals deposited at production wellhead and pipeline and compare with the brine And the brine of WD-1a at 3.7km depth, into Quaternary Kakkonda granite rock. In Kakkonda geothermal system, the scales are classified into two types based on sulphide mineralogy, which are Pb-Zn rich type and Cu rich type. Pb-Zn rich scales, for example galena (PbS) and Sphalerite (ZnS), are found in Well-19 located at the marginal part of the Kakkonda granite And Cu-rich scales, for example chalcocite (Cu2S), loellingite (FeAs2) and native antimony (Sb), are found in Well-13, located at the central part of the Kakkonda granite. And the brine of WD-1a at 3.7km depth about 500 degree C, into Quaternary Kakkonda granite rock near Well-19 is rich in Pb and Zn and similar composition as the Well-19 scale. Therefore, deep reservoir of Kakkonda field evolves with mixing the fluid of shallow reservoir and the brine of occurred in the Quaternary Kakkonda granite. Then, the existence of both Pb-Zn rich scale and Cu rich scale is a characteristic feature of Kakkonda geothermal and this fact suggest to have similar zoning as found in Porphyry Copper Zoning. On progress of production the fluids from deep reservoir continue to be suffered by the fluid of shallow reservoir and meteoritic water. With temperature of production well decreasing and chemical composition changed, silica precipitation decreased and the metal sulfide mineral

  8. A-type granite and the Red Sea opening

    USGS Publications Warehouse

    Coleman, R.G.; DeBari, S.; Peterman, Z.

    1992-01-01

    Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and

  9. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  10. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1997 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Nelson, William R.

    1999-04-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss smolts during the 1997 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1997. Total annual hatchery chinook salmon catch at the Snake River trap was 49% of the 1996 number but only 6% of the 1995 catch. The wild chinook catch was 77% of the 1996 but was only 13% of 1995. Hatchery steelhead trout catch was 18% of 1996 numbers but only 7% of the 1995 numbers. Wild steelhead trout catch was 22% of 1996 but only 11% of the 1995 numbers. The Snake River trap collected eight age-0 chinook salmon and one sockeye/kokanee salmon O. nerka. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations were terminated for the season due to high flows and trap damage on May 8 and were out of operation for 23 d due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 37% and wild chinook salmon catch was 60% of 1996 numbers but only 5% and 11% of 1995 catch, respectively. The 1997 hatchery steelhead trout collection was 13% of the 1996 catch and 32% of the 1995 numbers. Wild steelhead trout collection in 1997 was 21% of the 1996 catch and 13% of the 1995 numbers. Trap operations were terminated for the season due to high flows and trap damage on May 7 and were out of operation for 19 d due to high flow and debris.

  11. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 1999 Annual Report.

    SciTech Connect

    Buettner, Edwin W.; Brimmer, Arnold F.; Putnam, Scott A.

    2001-06-01

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 1999 spring out-migration at migrant traps on the Snake River and Salmon River. All hatchery chinook salmon released above Lower Granite Dam were marked with a fin clip in 1999. Total annual hatchery chinook salmon catch at the Snake River trap was 440% of the 1998 number. The wild chinook catch was 603% of the previous year's catch. Hatchery steelhead trout catch was 93% of 1998 numbers. Wild steelhead trout catch was 68% of 1998 numbers. The Snake River trap collected 62 age-0 chinook salmon. During 1998 the Snake River trap captured 173 hatchery and 37 wild/natural sockeye salmon and 130 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with high flows. Trap operations began on March 14 and were terminated for the season due to high flows on May 25. The trap was out of operation for 18 d during the season due to high flow and debris. Hatchery chinook salmon catch at the Salmon River trap was 214%, and wild chinook salmon catch was 384% of 1998 numbers. The hatchery steelhead trout collection in 1999 was 210% of the 1998 numbers. Wild steelhead trout collection in 1999 was 203% of the 1998 catch. Trap operations began on March 14 and were terminated for the season due to high flows on May 21. The trap was out of operation for 17 d during the season due to high flow and debris.

  12. Geochemical aspects of radioactive waste disposal

    SciTech Connect

    Brookins, D.G.

    1984-01-01

    The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

  13. Research needs in HLW disposal programmes

    SciTech Connect

    Hadermann, J.; McCombie, C.

    1993-12-31

    A repository for high-level radioactive waste (HLW) will not be in operation in Switzerland (or elsewhere) before the turn of the century. However, extensive investigations for disposal in specific regions or sites are ongoing and formal safety analyses have been performed in many countries. Broadly speaking, these analyses show the feasibility of the chosen options for deep geological disposal. At the present stage, before a licensing application, performance assessments have another important application: to identify further needs to improve system understanding, and to guide the necessary research activities. Performance assessments are thus indispensable tools for focussing in on research requirements and discriminating between necessary, and merely desirable or interesting, research projects. Based on experience from assessments of HLW disposal in the crystalline of Northern Switzerland (Project Gewaehr, KRISTALLIN-I) we consider in detail the chain of models resulting from a scenario analysis. For each model block (e.g., engineered barrier performance, hydrology, radionuclide transport), the adequacy of understanding is addressed and the necessary research needs pointed out. These needs cover a wide span, from a requirement for more reliable input numbers (example: long-term corrosion rate of glass) to a better understanding of important features (example: excavation-damaged-zone) and key mechanisms (example: sorption).

  14. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect

    Scaglione, John M; Wagner, John C

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  15. Disposal of Some Problem Chemicals.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1978

    1978-01-01

    Describes procedures for the disposal of chemicals commonly used in secondary school chemistry laboratories. Special reference is given to inorganic salts. It is suggested that cyanides and other highly toxic salts should be disposed of by experts. (MA)

  16. DSEM. Disposal Site Economic Model

    SciTech Connect

    Smith, P.R.

    1989-01-01

    The DISPOSAL SITE ECONOMIC MODEL calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development.

  17. As-built mechanical and thermomechanical calculations of a spent-fuel test in Climax Stock granite

    SciTech Connect

    Butkovich, T.R.

    1981-09-01

    A generic test of geological storage of spent-fuel assemblies from an operating nuclear reactor in Climax Stock granite has been underway at the US Department of Energy's Nevada Test Site since spring 1980. The spent-fuel assemblies were emplaced in the floor of the central drift of three parallel drifts. Auxiliary electric heaters were installed in the floors of the side drifts to simulate a large repository. Calculational modeling of the spent-fuel repository was made with the finite element codes, ADINA stress analysis code and the compatible ADINAT heat flow code. The primary purpose for doing the calculations was to provide results with the best estimates of physical and mechanical rock properties and in situ stresses. Field measurements show the effective modulus of Climax Stock granite is a factor of two lower than that obtained in the laboratory on small samples. Comparative calculations using these field measurements and measurements obtained in the laboratory show displacements are approximately inversely proportional to the modulus. They also indicate the importance of knowing the effective in situ modulus. Another comparison, varying the in situ stress loading, shows the importance of knowing the correct value of in situ stress. Calculations using the best-estimate values of rock properties, effective in situ modulus and Poisson's ratio, and in situ stress are not intended to predict the displacement and stress changes from the mining and the imposition of a thermal load. The existing jointing in the Climax Stock granite could have a significant effect on the actual displacements and stress field. Such effects are not accounted for here. However, these calculations do indicate the direction and magnitude of displacements and stresses that would be expected in absence of jointing. Comparison of those results with actual field measurements will, thus, indicate the significance of including a joint model in future calculations.

  18. Forensic geology exhumed

    NASA Astrophysics Data System (ADS)

    Martinez, Joseph Didier

    Forensic geology binds applied geology to the world of legal controversy and action. However, the term “forensic” is often misconstrued. Although even some attorneys apply it only to the marshalling of evidence in criminal cases, it has a much broader definition. One dictionary defines it as “pertaining to, connected with, or used in courts of law or public discussion and debate.” The American Geological Institute's Glossary of Geology defines forensic geology as “the application of the Earth sciences to the law.” The cited reference to Murray and Tedrow [1975], however, deals mostly if not exclusively with the gathering and use of evidence in criminal cases, despite the widespread involvement of geologists in more general legal matters. It seems appropriate to “exhume” geology's wider application to the law, which is encompassed by forensic geology.

  19. Sequence of mineral assemblages in differentiated granitic pegmatites.

    USGS Publications Warehouse

    Norton, J.J.

    1983-01-01

    The sequence of mineral assemblages in internally zoned granitic pegmatites recognized by Cameron et al. (1949) is modified here to account for an observed vertical component, especially in feldspar compositions, in addition to the recognized outer contact-to-inner core differentiation process, and the importance of primary lithium minerals other than spodumene, such as petalite. The zonal patterns of 11 well-known granitic pegmatites are consistent with this revised sequence, with additional explanations for the repeated monomineralic zones of quartz or pollucite, etc. The crystallization history of zoned pegmatites is described in general terms, beginning with the magmatic crystallization which produces the outer zones. Aqueous fluid is exsolved continuously from the magma as relatively anhydrous phases precipitate, and plays an important role in the formation of the inner zones; its evolution is thought to be a major cause of pegmatite differentiation.-J.E.S.

  20. Thermal Influence on Mechanical Properties of Granite: A Microcracking Perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihong

    2016-03-01

    The particle mechanics method is used to simulate the process of thermally induced micro- and macrocracks in granite, to elucidate the mechanisms responsible for temperature-dependent mechanical properties. The numerical results are quantified and compared with existing results from other experimental data in the literature. The results indicate that heating generally reduces the compressive and tensile strengths of granites, first because of increasing thermal stresses, and second because of the generation of tensile microcracks. Rock mechanical properties are reduced in specimens subjected to heating-cooling cycles, solely because of the increase in density of thermally induced tensile microcracks. The presence of a thermal gradient induces the formation of macrocracks, which propagate from relatively cool to relatively warm areas. It is also observed that the boundary condition of the specimen can also affect the development of microcracks.

  1. Fault stability inferred from granite sliding experiments at hydrothermal conditions

    USGS Publications Warehouse

    Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.

    1991-01-01

    Seismicity on crustal faults is concentrated in the depth interval 1-3 to 12-15 km. Tse and Rice (1986) suggested that the lower bound on seismicity is due to a switch with increasing temperature from velocity weakening (destabilizing) to velocity strengthening (stabilizing) friction. New data is presented from sliding experiments on granite at elevated T (23?? to 600??C) plus elevated PH2O(100 MPa). Results show velocity strengthening at room temperature, but velocity weakening from 100?? to 350??C (except at 250??). From 350?? to 600?? there are systematic trends from velocity weakening to strong velocity strengthening, and from high to low friction; neither trend was seen in tests on dry granite. The velocity dependence data imply the potential for unstable slip in the interval 100?? to 350??. Using a geotherm to map temperature to depth, this interval closely matches the observed earthquake distribution. -from Authors

  2. Reduction of permeability in granite at elevated temperatures.

    PubMed

    Moore, D E; Lockner, D A; Byerlee, J D

    1994-09-01

    The addition of hydrothermal fluids to heated, intact granite leads to permeability reductions in the temperature range of 300 degrees to 500 degrees C, with the rate of change generally increasing with increasing temperature. The addition of gouge enhances the rate of permeability reduction because of the greater reactivity of the fine material. Flow rate is initially high in a throughgoing fracture but eventually drops to the level of intact granite. These results support the fault-valve model for the development of mesothermal ore deposits, in which seals are formed at the base of the seismogenic zone of high-angle thrust faults. The lower temperature results yield varying estimates of mineral-sealing rates at shallower depths in fault zones, although they generally support the hypothesis that such seals develop in less time than the recurrence interval for moderate to large earthquakes on the San Andreas fault. PMID:17801532

  3. Preliminary report on a glass burial experiment in granite

    SciTech Connect

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10/sup 0/C) or 90/sup 0/C. The glasses were analyzed before burial and after one month storage at 90/sup 0/C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared.

  4. Lower Granite Dam Smolt Monitoring Program, 1999 Annual Report.

    SciTech Connect

    Verhey, Peter; Morrill, Charles; Mensik, Fred

    1999-01-01

    The 1999 fish collection season at Lower Granite was characterized by high spring flows and spill, low levels of debris, cool water temperatures, increased hatchery chinook numbers, and an overall decrease in numbers of smolts collected and transported. A total of 5,882,872 juvenile salmonids were collected at Lower Granite. Of these, 5,466,057 were transported to release sites below Bonneville Dam, 5,232,105 by barge and 233,952 by truck. An additional 339,398 fish were bypassed back to the river. A total of 117,609 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 440,810 smolts (7.5% of the total collected) of which 247,268 were PIT tagged and 572 were recorded as incidental mortalities.

  5. Minerals associated with biofilms occurring on exposed rock in a granitic underground research laboratory.

    PubMed

    Brown, D A; Kamineni, D C; Sawicki, J A; Beveridge, T J

    1994-09-01

    The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites. PMID:16349374

  6. Minerals Associated with Biofilms Occurring on Exposed Rock in a Granitic Underground Research Laboratory

    PubMed Central

    Brown, D. Ann; Kamineni, D. Choudari; Sawicki, Jerzy A.; Beveridge, Terry J.

    1994-01-01

    The concept of disposal of nuclear fuel waste in crystalline rock requires the effects of microbial action to be investigated. The Underground Research Laboratory excavated in a pluton of the Canadian Shield provides a unique opportunity to study these effects. Three biofilms kept moist by seepage through fractures in granitic rock faces of the Underground Research Laboratory have been examined. The biofilms contained a variety of gram-negative and gram-positive morphotypes held together by an organic extracellular matrix. Nutrient levels in the groundwater were low, but energy-dispersive X-ray spectroscopy has shown biogeochemical immobilization of several elements in the biofilms; some of these elements were concentrated from extremely dilute environmental concentrations, and all elements were chemically complexed together to form amorphous or crystalline fine-grained minerals. These were seen by transmission electron microscopy to be both associated with the surfaces of the bacteria and scattered throughout the extracellular matrix, suggesting their de novo development through bacterial surface-mediated nucleation. The biofilm consortia are thought to concentrate elements both by passive sorption and by energy metabolism. By Mössbauer spectroscopy and X-ray diffraction, one of the biofilms showed that iron was both oxidized and precipitated as ferrihydrite or hematite aerobically and reduced and precipitated as siderite anaerobically. We believe that some Archean banded-iron formations could have been formed in a manner similar to this, as it would explain the deposition of hematite and siderite in close proximity. This biogeochemical development of minerals may also affect the transport of material in waste disposal sites. Images PMID:16349374

  7. Lower Granite Dam Smolt Monitoring Program; 1997 Annual Report.

    SciTech Connect

    Verhey, Peter; Witalis, Shirley; Morrill, Charles

    1998-01-01

    The 1997 fish collection season at Lower Granite was characterized by high spring flows, extensive spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database of fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  8. Lower Granite Dam Smolt Monitoring Program, 1998 Annual Report.

    SciTech Connect

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1998-12-01

    The 1998 fish collection season at Lower Granite was characterized by relatively moderate spring flows and spill, moderate levels of debris, cool spring, warm summer and fall water temperatures, and increased chinook numbers, particularly wild subyearling chinook collected and transported. The Fish Passage Center's Smolt Monitoring Program is designed to provide a consistent, real-time database on fish passage and document the migrational characteristics of the many stocks of salmon and steelhead in the Columbia Basin.

  9. Lower granite GIS data description and collection guidelines

    SciTech Connect

    Gordon, J.L.; Evans, B.J.; Perry, E.M.

    1995-12-01

    The Lower Granite Geographic Information System (GIS) was developed jointly by the US Army Corps of Engineers (USCOE) Walla Walla District and the Pacific Northwest Laboratory (PNL). The goal of the project is to use GIS technology to analyze impacts of the drawdown mitigation option on the physical and biological environment of the Lower Granite Reservoir. The drawdown mitigation option is based on the hypothesis that faster juvenile salmon travel to the ocean would result in higher juvenile survival and greater smolt-to-adult return ratios; to accomplish this, reservoir elevations would be lowered to increase channel velocities. Altering the elevation of the reservoirs on the Snake River is expected to have a variety of impacts to the Physical environment including changes to water velocity, temperature, dissolved gases, and turbidity. The GIS was developed to evaluate these changes and the resulting impacts on the anadromous and resident fish of the Snake River, as well as other aquatic organisms and terrestrial wildlife residing in the adjacent riparian areas. The Lower Granite GIS was developed using commercial hardware and software and is supported by a commercial relational database. Much of the initial system development involved collecting and incorporating data describing the river channel characteristics, hydrologic properties, and aquatic ecology. Potentially meaningful data for the Lower Granite GIS were identified and an extensive data search was performed. Data were obtained from scientists who are analyzing the habitats, limnology, and hydrology of the Snake River. The next six sections of this document describe the bathymetry, fish abundance, substrate, sediment chemistry, and channel hydrology data.

  10. 76. The Silver Bow County Courthouse, 19101912, at West Granite ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. The Silver Bow County Courthouse, 1910-1912, at West Granite and Montana Streets, was designed by Link and Haire. The building has a dressed sandstone foundation, brick walls, and sandstone trim, parapet and columns. It was used as a barracks for the State militia when the city was placed under martial law following the dynamiting of the Old Miners' Union Hall in September, 1914. - Butte Historic District, Bounded by Copper, Arizona, Mercury & Continental Streets, Butte, Silver Bow County, MT

  11. Process of magnetite fabric development during granite deformation

    NASA Astrophysics Data System (ADS)

    Mamtani, Manish A.; Piazolo, Sandra; Greiling, Reinhard O.; Kontny, Agnes; Hrouda, František

    2011-08-01

    This study evaluates the fabric defined by magnetite grains in a syntectonically deformed granite and deciphers the processes that led to magnetite fabric development. Anisotropy of anhysteretic remanence magnetization (AARM) analysis is performed in samples taken from different parts of the granite to establish that the magnetite grains define a fabric. Along with microstructural studies, the AARM data help conclude that this fabric is on account of shape preferred orientation (SPO) of the magnetite grains. The intensity of magnetite fabric (degree of anisotropy of the AARM ellipsoid) is higher in the southern parts as compared to the north, which is inferred to indicate a strain gradient. Electron back scattered diffraction (EBSD) analyses of magnetite grains were performed to determine if there are intracrystalline deformation features that could have influenced magnetite shape and SPO, and thus AARM data. Detailed crystallographic orientation data coupled with orientation contrast imaging did not reveal any subgrains and/or significant variations in crystallographic orientations within magnetite grains. Instead, grains exhibit fractures and are in places associated with quartz pressure fringes. Hence, neither the SPO nor the variation in the magnetite fabric intensity in the granite can be attributed to intracrystalline deformation of magnetite by dislocation creep. It is concluded that the magnetite grains were rheologically rigid and there was relative movement between the magnetite and the matrix minerals (quartz, feldspar and biotite). These matrix minerals actually define the fabric attractor and the magnetite grains passively rotated to align with it. Thus it is demonstrated that the magnetite fabric in the granite stems from rigid body movement rather than dislocation creep.

  12. Effect of Fe and Mg on crystallization in granitic systems

    SciTech Connect

    Naney, M.T.; Swanson, S.E.

    1980-07-01

    Single-step and multistep undercooling experiments using both Fe, Mg-free and Fe, Mg-bearing model granitic compositions were conducted to investigate the influence of mafic components on the crystallization of granitic melts. Crystallization of granite and granodiorite compositions in the system NaAlSi/sub 3/O/sub 8/-KAlSi/sub 3/O/sub 8/-CaAl/sub 2/Si/sub 2/O/sub 8/-SiO/sub 2/-H/sub 2/O produces assemblages containing one or more of the following phases: plagioclase, alkali feldspar, quartz, silicate liquid, and vapor. The observed phase assemblages are generally in good agreement with equilibrium data reported in the literature on the same bulk compositions. With the addition of Fe and Mg to these bulk compositions six new phases participate in the equilibria (orthopyroxene, clinopyroxene, biotite, hornblende,epidote, and magnetite). However, crystalline assemblages produced in phase equilibrium and crystal growth experiments brought to the same final P-T-X/sub H/sub 2/O/ conditions are in general not equivalent. Perhaps the addition of Fe and Mg has caused a breakdown of the Si-O framework in the melt, thereby promoting the more rapid nucleation of the ino- and phyllosilicates rather than the framework silicates. Border zones of granitic plutons, commonly rich in mafic minerals, may result from the more rapid nucleation of mafic phases from the silicate liquid. These zones are thought to develop by early crystallization along the walls of the pluton. Our results suggest the mafic phases should nucleate more quickly than the feldspars and quartz and thus should enrich the early crystallization products in ferromagnesian minerals.

  13. Static and kinetic friction of granite at high normal stress

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  14. Getting granite dikes out of the source region

    NASA Technical Reports Server (NTRS)

    Rubin, Allan M.

    1995-01-01

    Whether a dike can propagate far from a magma reservoir depends upon the competition between the rate at which propagation widens the dike and the rate at which freezing constricts the aperture available for magma flow. Various formulations are developed for a viscous fluid at temperature T(sub m) intruding a growing crack in an elastic solid. The initial solid temperature equals T(sub m) at the source and decreases linearly with distance from the source. If T(sub m) is the unique freezing temperature of the fluid, dike growth is initially self-similar and an essentially exact solution is obtained; if T(sub m) is above the solidus temperature, the solution is approximate but is designed to overestimate the distance the dike may propagate. The ability of a dike to survive thermally depends primarily upon a single parameter that is a measure of the ratio of the dike frozen margin thickness to elastic thickness. Perhaps more intuitively, one may define a minimum distance from the essentially solid reservoir wall to the point at which the host rock temperature drops below the solidus, necessary for dikes to propagate far into subsolidus rock. It is concluded that for reasonable material properties and source conditions, most basalt dikes will have little difficulty leaving the source region, but most rhyolite dikes will be halted by freezing soon after the magma encounters rock at temperatures below the magma solidus. While these results can explain why granitic dikes are common near granitic plutons but rare elsewhere, the potentially large variation in magmatic systems makes it premature to rule out the possibility that most granites are transported through the crust in dikes. Nonetheless, these results highlight difficulties with such proposals and suggest that it may also be premature to rule out the possibility that most granite plutons ascend as more equidimensional bodies.

  15. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    SciTech Connect

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-05-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m.

  16. Proceedings of the 22nd symposium on engineering geology and soils engineering

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a symposium on soil mechanics and engineering geology. Topics considered at the symposium included geotechnical testing and site exploration, design, soil dynamics, geotextiles, earthquake and volcanic hazard studies, slope stability and landslides, seismic considerations in geotechnical engineering, hazardous substances disposal, ground water, environmental and urban geology, and the response of the Boise geothermal aquifer to earth tides.

  17. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Overall system performance objective for the geologic repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system...

  18. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Overall system performance objective for the geologic repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system...

  19. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Overall system performance objective for the geologic repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system...

  20. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Overall system performance objective for the geologic repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system...

  1. 10 CFR 60.112 - Overall system performance objective for the geologic repository after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Overall system performance objective for the geologic repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system...

  2. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical...

  3. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Emergency plan for the geologic repository operations area through permanent closure. 63.161 Section 63.161 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA...

  4. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository operations area through permanent closure. 63.111 Section 63.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN,...

  5. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Emergency plan for the geologic repository operations area through permanent closure. 63.161 Section 63.161 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA...

  6. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical...

  7. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Performance objectives for the geologic repository operations area through permanent closure. 63.111 Section 63.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN,...

  8. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical...

  9. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Emergency plan for the geologic repository operations area through permanent closure. 63.161 Section 63.161 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA...

  10. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Emergency plan for the geologic repository operations area through permanent closure. 63.161 Section 63.161 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA...

  11. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Performance objectives for the geologic repository operations area through permanent closure. 63.111 Section 63.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN,...

  12. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical...

  13. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Performance objectives for the geologic repository operations area through permanent closure. 63.111 Section 63.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN,...

  14. 10 CFR 63.161 - Emergency plan for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Emergency plan for the geologic repository operations area through permanent closure. 63.161 Section 63.161 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA...

  15. 10 CFR 63.111 - Performance objectives for the geologic repository operations area through permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository operations area through permanent closure. 63.111 Section 63.111 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN,...

  16. 10 CFR 63.113 - Performance objectives for the geologic repository after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Performance objectives for the geologic repository after permanent closure. 63.113 Section 63.113 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical...

  17. Static and Dynamic Flexural Strength Anisotropy of Barre Granite

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Zuo, J. P.; Zhang, R.; Xu, N. W.

    2013-11-01

    Granite exhibits anisotropy due to pre-existing microcracks under tectonic loadings; and the mechanical property anisotropy such as flexural/tensile strength is vital to many rock engineering applications. In this paper, Barre Granite is studied to understand the flexural strength anisotropy under a wide range of loading rates using newly proposed semi-circular bend tests. Static tests are conducted with a MTS hydraulic servo-control testing machine and dynamic tests with a split Hopkinson pressure bar (SHPB) system. Six samples groups are fabricated with respect to the three principle directions of Barre granite. Pulse shaping technique is used in all dynamic SHPB tests to facilitate dynamic stress equilibrium. Finite element method is utilized to build up equations calculating the flexural tensile strength. For samples in the same orientation group, a loading rate dependence of the flexural tensile strength is observed. The measured flexural tensile strength is higher than the tensile strength measured using Brazilian disc method at given loading rate and this scenario has been rationalized using a non-local failure theory. The flexural tensile strength anisotropy features obvious dependence on the loading rates, the higher the loading rate, the less the anisotropy and this phenomenon may be explained considering the interaction of the preferentially oriented microcracks.

  18. Laboratory studies of radionuclide transport in fractured Climax granite

    SciTech Connect

    Failor, R.; Isherwood, D.; Raber, E.; Vandergraaf, T.

    1982-06-01

    This report documents our laboratory studies of radionuclide transport in fractured granite cores. To simulate natural conditions, our laboratory studies used naturally fractured cores and natural ground water from the Climax Granite Stock at the Nevada Test Site. For comparison, additional tests used artificially fractured granite cores or distilled water. Relative to the flow of tritiated water, {sup 85}Sr and /sup 95m/Tc showed little or no retardation, whereas {sup 137}Cs was retarded. After the transport runs the cores retained varying amounts of the injected radionuclides along the fracture. Autoradiography revealed some correlation between sorption and the fracture fill material. Strontium and cesium retention increased when the change was made from natural ground water to distilled water. Artificial fractures retained less {sup 137}Cs than most natural fractures. Estimated fracture apertures from 18 to 60 {mu}m and hydraulic conductivities from 1.7 to 26 x 10{sup -3} m/s were calculated from the core measurements.

  19. δ30Si systematics in a granitic saprolite, Puerto Rico

    USGS Publications Warehouse

    Ziegler, Karen; Chadwick, Oliver A.; White, Arthur F.; Brzezinski, Mark A.

    2005-01-01

    Granite weathering and clay mineral formation impart distinct and interpretable stable Si isotope (δ30Si) signatures to their solid and aqueous products. Within a saprolite, clay minerals have δ30Si values ∼2.0‰ more negative than their parent mineral and the δ30Si signature of the bulk solid is determined by the ratio of primary to secondary minerals. Mineral-specific weathering reactions predominate at different depths, driving changes in differing δ30Sipore watervalues. At the bedrock-saprolite interface, dissolution of plagioclase and hornblende creates δ30Sipore water signatures more positive than granite by up to 1.2‰; these reactions are the main contributor of Si to stream water and determine its δ30Si value. Throughout the saprolite, biotite weathering releases Si to pore waters but kaolinite overgrowth formation modulates its contribution to pore-water Si. The influence of biotite on δ30Sipore water is greatest near the bedrock where biotite-derived Si mixes with bulk pore water prior to kaolinite formation. Higher in the saprolite, biotite grains have become more isolated by kaolinite overgrowth, which consumes biotite-derived Si that would otherwise influence δ30Sipore water. Because of this isolation, which shifts the dominant source of pore-water Si from biotite to quartz, δ30Sipore water values are more negative than granite by up to 1.3‰ near the top of the saprolite.

  20. Chemical weathering of granite under acid rainfall environment, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeop; Kim, Soo Jin; Baik, Min Hoon

    2008-08-01

    Chemical weathering was investigated by collecting samples from five selected weathering profiles in a high elevation granitic environment located in Seoul, Korea. The overall changes of chemistry and mineralogical textures were examined reflecting weathering degrees of the samples, using polarization microscopy, X-ray diffraction (XRD), electron probe micro analysis (EPMA), X-ray fluorescence spectroscopy (XRF), and inductively coupled plasma-mass spectroscopy (ICP-MS). The chemical distribution in the weathering profiles shows that few trace elements are slightly immobile, whereas most major (particularly Ca and Na) and trace elements are mobile from the beginning of the granite weathering. On the other hand, there were mineralogical changes initiated from a plagioclase breakdown, which shows a characteristic circular dissolved pattern caused by a preferential leaching of Ca cation along grain boundaries and zoning. The biotite in that region is also supposed to be sensitive to exterior environmental condition and may be easily dissolved by acidic percolated water. As a result, it seems that some rock-forming minerals in the granitic rock located in Seoul are significantly unstable due to the environmental condition of acidic rainfall and steep slopes, where they are susceptible to be dissolved incongruently leading some elements to be highly depleted.