Science.gov

Sample records for geological storage capacity

  1. Classification of CO2 Geologic Storage: Resource and Capacity

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  2. Impact of Brine Extraction and Well Placement Optimization on Geologic Carbon Storage Capacity Estimation

    NASA Astrophysics Data System (ADS)

    Ganjdanesh, R.; Hosseini, S. A.

    2015-12-01

    Capacity of carbon dioxide storage aquifers depends on a variety of factors including geologic properties and operational designs. The injection well numbers, well spacing and location, open versus closed boundary conditions, and injection with or without extraction of brine are of the parameters that impact the capacity of a storage site. Brine extraction from storage formations has been introduced as an effective strategy for enhancing the storage capacity and mitigating the risk of rapid pressure buildup. It is proposed that extracted brine can be disposed within an overlying formation or will be desalinated at surface facilities. Optimal well placement and rate of CO2 injection/brine extraction control achieving a predefined pressure constraint at the end of a specific period of storage operation. Reservoir simulation study is required to solve the two-phase flow of gas/brine and pressure buildup in the aquifer. Numerical simulation of geological storage using multiple injectors and extractors is costly and time consuming. Instead, analytical simulation can provide the results with a very good accuracy in a fraction of time compared to the numerical simulation. In this study, an analytical solution was implemented for pressure buildup calculation. The analytical model includes the effects of two-phase relative permeability, CO2 dissolution into reservoir brine and formation of a dry-out zone around the wellbore. Through the optimization algorithm coupled with analytical model, the optimal rates and locations of CO2 injectors and brine extractors were estimated, while simultaneously satisfying the pressure constraint to avoid fracture pressure in all injectors. The optimized results of analytical model was verified with a numerical simulator for several reservoir conditions, well configurations and operating constraints. The comparison of the results shows that the analytical model is a reliable tool for preliminary capacity estimation of saline aquifers and

  3. Estimation of Geologic Storage Capacity of Carbon Dioxide in the Bukpyeong Basin, Korea Using Integrated Three-Dimensional Geologic Formation Modeling and Thermo-Hydrological Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic

  4. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  5. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  6. Geologic factors controlling CO2 storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage

    NASA Astrophysics Data System (ADS)

    Ambrose, W. A.; Lakshminarasimhan, S.; Holtz, M. H.; Núñez-López, V.; Hovorka, S. D.; Duncan, I.

    2008-06-01

    A variety of structural and stratigraphic factors control geological heterogeneity, inferred to influence both sequestration capacity and effectiveness, as well as seal capacity. Structural heterogeneity factors include faults, folds, and fracture intensity. Stratigraphic heterogeneity is primarily controlled by the geometry of depositional facies and sandbody continuity, which controls permeability structure. The permeability structure, in turn, has implications for CO2 injectivity and near-term migration pathways, whereas the long-term sequestration capacity can be inferred from the production history. Examples of Gulf Coast oil and gas reservoirs with differing styles of stratigraphic heterogeneity demonstrate the impact of facies variability on fluid flow and CO2 sequestration potential. Beach and barrier-island deposits in West Ranch field in southeast Texas are homogeneous and continuous. In contrast, Seeligson and Stratton fields in south Texas, examples of major heterogeneity in fluvial systems, are composed of discontinuous, channel-fill sandstones confined to narrow, sinuous belts. These heterogeneous deposits contain limited compartments for potential CO2 storage, although CO2 sequestration effectiveness may be enhanced by the high number of intraformational shale beds. These field examples demonstrate that areas for CO2 storage can be optimized by assessing sites for enhanced oil and gas recovery in mature hydrocarbon provinces.

  7. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells.

    PubMed

    Edwards, Ryan W J; Celia, Michael A; Bandilla, Karl W; Doster, Florian; Kanno, Cynthia M

    2015-08-01

    Recent studies suggest the possibility of CO2 sequestration in depleted shale gas formations, motivated by large storage capacity estimates in these formations. Questions remain regarding the dynamic response and practicality of injection of large amounts of CO2 into shale gas wells. A two-component (CO2 and CH4) model of gas flow in a shale gas formation including adsorption effects provides the basis to investigate the dynamics of CO2 injection. History-matching of gas production data allows for formation parameter estimation. Application to three shale gas-producing regions shows that CO2 can only be injected at low rates into individual wells and that individual well capacity is relatively small, despite significant capacity variation between shale plays. The estimated total capacity of an average Marcellus Shale well in Pennsylvania is 0.5 million metric tonnes (Mt) of CO2, compared with 0.15 Mt in an average Barnett Shale well. Applying the individual well estimates to the total number of existing and permitted planned wells (as of March, 2015) in each play yields a current estimated capacity of 7200-9600 Mt in the Marcellus Shale in Pennsylvania and 2100-3100 Mt in the Barnett Shale. PMID:26186496

  8. CO2 storage capacity estimation: Methodology and gaps

    USGS Publications Warehouse

    Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd

  9. National assessment of geologic carbon dioxide storage resources: summary

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  10. Impacts of Geological Variability on Carbon Storage Potential

    NASA Astrophysics Data System (ADS)

    Eccles, Jordan Kaelin

    The changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO 2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO 2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination

  11. CO2 storage capacity estimation: Issues and development of standards

    USGS Publications Warehouse

    Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.

    2007-01-01

    Associated with the endeavours of geoscientists to pursue the promise that geological storage of CO2 has of potentially making deep cuts into greenhouse gas emissions, Governments around the world are dependent on reliable estimates of CO2 storage capacity and insightful indications of the viability of geological storage in their respective jurisdictions. Similarly, industry needs reliable estimates for business decisions regarding site selection and development. If such estimates are unreliable, and decisions are made based on poor advice, then valuable resources and time could be wasted. Policies that have been put in place to address CO2 emissions could be jeopardised. Estimates need to clearly state the limitations that existed (data, time, knowledge) at the time of making the assessment and indicate the purpose and future use to which the estimates should be applied. A set of guidelines for estimation of storage capacity will greatly assist future deliberations by government and industry on the appropriateness of geological storage of CO2 in different geological settings and political jurisdictions. This work has been initiated under the auspices of the Carbon Sequestration Leadership Forum (www.cslforum.org), and it is intended that it will be an ongoing taskforce to further examine issues associated with storage capacity estimation. Crown Copyright ?? 2007.

  12. National assessment of geologic carbon dioxide storage resources: results

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    replacement storage resource (KRRSR) is a conservative estimate that represents only the amount of CO2 at subsurface conditions that could replace the volume of known hydrocarbon production. The mean national KRRSR, determined from production volumes rather than the geologic model of buoyant and residual traps that make up TASR, is 13 Gt. The estimated storage resources are dominated by residual trapping class 2, which accounts for 89 percent of the total resources. The Coastal Plains Region of the United States contains the largest storage resource of any region. Within the Coastal Plains Region, the resources from the U.S. Gulf Coast area represent 59 percent of the national CO2 storage capacity.

  13. Working and Net Available Shell Storage Capacity

    EIA Publications

    2016-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  14. Large capacity cryopropellant orbital storage facility

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.

    1987-01-01

    A comprehensive study was performed to develop the major features of a large capacity orbital propellant storage facility for the space-based cryogenic orbital transfer vehicle. Projected propellant usage and delivery schedules can be accommodated by two orbital tank sets of 100,000 lb storage capacity, with advanced missions expected to require increased capacity. Information is given on tank pressurization schemes, propellant transfer configurations, pump specifications, the refrigeration system, and flight tests.

  15. CO2-storage assessment and effective capacity in Algeria.

    PubMed

    Aktouf, Abdelouahab; Bentellis, Abdelhakim

    2016-01-01

    Deep saline aquifers widely distributed deep in the earth offer the greatest CO2 storage potential in all current geological CO2 storage approaches. The western region of the Saharan platform in Algeria includes several sedimentary basins characterized by a large production of dry gas with high CO2 rates sometimes exceeding 9 %. To reduce CO2 emissions, these basins were analyzed to identify those with the largest potential for the geological sequestration of CO2 (GSC). The evaluation methodology applied to determine the basin potential is based on qualitative geological and practical criteria to which we have assigned normalized numerical values. This evaluation method allows us to quantitatively compare and evaluate the basins in Algeria. Estimations of the CO2 storage capacities of several structures in the sedimentary Ahnet-Gourara Basin, which has the greatest potential for GSC, vary from 1 Gt to over 5 Gt. Based on cautious estimations, these geologic structures should be able to contain the entire volume of the CO2 emitted over the next three decades at least. PMID:27462486

  16. Capacity retention in hydrogen storage alloys

    NASA Technical Reports Server (NTRS)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  17. System-level modeling for geological storage of CO2

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

  18. CO2 sequestration: Storage capacity guideline needed

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  19. Public Acceptance for Geological CO2-Storage

    NASA Astrophysics Data System (ADS)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  20. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    PubMed

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-01

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage. PMID:22844874

  1. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  2. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181... Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum...

  3. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  4. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  5. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  6. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  7. 46 CFR 112.55-15 - Capacity of storage batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  8. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  9. Geological Storage od CO2 in the Southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Vernon, Richard; O'Neill, Nick; Pasquali, Riccardo; Niemi, Auli

    2014-05-01

    Geological Storage of CO2 in the Southern Baltic Sea Region The BASTOR project identifies and characterises the potential CO2 storage sites in the southern Baltic Sea. A regional theoretical storage capacity of 16Gt of CO2 in the Middle Cambrian sandstone beneath 900 metres of cap rock was estimated. 1.9Gt of this storage potential is estimated in the Dalders Monocline with some 743Mt CO2 in individual hydrocarbon and saline aquifer structures located mainly offshore Latvia and 128Mt in the Dalders Structure. Although the study has established a relatively large theoretical storage capacity, there is no effective capacity proven within these totals. Dynamic modelling undertaken in the Southern Swedish sector suggests that the relatively poor permeability and porosity characteristics would limit the injection rate to 0.5Mt per well per annum and restrict the reservoir pressure increase to 50% above the hydrostatic pressure for an injection period of 50 years. The dynamic modelling for this area suggests that an injection strategy for this sector would be limited to 5 injection wells giving a total injection capacity of 2.5 Mt per annum. Based on these results, the potential of the Southern Swedish offshore sector to sustain injection rates of CO2 required for regional industrial capture, even when using horizontal wells, brine extraction and hydraulic fracturing, would appear to be very low. Areas to the north east of the Monocline, such as offshore Latvia have been identified as having better reservoir quality despite limited data being available. These areas could sustain higher rates of injection and prove suitable areas for commercial storage. Furthermore, the regional storage capacity assessment demonstrated that there are sweet spots in the Cambrian reservoir such as onshore Latvia, where there is commercial gas storage, and both onshore and offshore Kaliningrad, where there is ongoing hydrocarbon production. The potential for seal failure was investigated as

  10. Information storage capacity of discrete spin systems

    SciTech Connect

    Yoshida, Beni

    2013-11-15

    Understanding the limits imposed on information storage capacity of physical systems is a problem of fundamental and practical importance which bridges physics and information science. There is a well-known upper bound on the amount of information that can be stored reliably in a given volume of discrete spin systems which are supported by gapped local Hamiltonians. However, all the previously known systems were far below this theoretical bound, and it remained open whether there exists a gapped spin system that saturates this bound. Here, we present a construction of spin systems which saturate this theoretical limit asymptotically by borrowing an idea from fractal properties arising in the Sierpinski triangle. Our construction provides not only the best classical error-correcting code which is physically realizable as the energy ground space of gapped frustration-free Hamiltonians, but also a new research avenue for correlated spin phases with fractal spin configurations. -- Highlights: •We propose a spin model with fractal ground states and study its coding properties. •We show that the model asymptotically saturates a theoretical limit on information storage capacity. •We discuss its relations to various theoretical physics problems.

  11. Potential environmental impacts of offshore UK geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Geological carbon dioxide storage in the United Kingdom (UK) will almost certainly be entirely offshore, with storage for over 100 years' worth of UK CO2 output from industry and power generation in offshore depleted hydrocarbon fields and sandstone formations. Storage capacity can be limited by the increase in formation water pressure upon CO2 injection, therefore removal and disposal of formation waters ('produced waters') can control formation water pressures, and increase CO2 storage capacity. Formation waters could also be produced during CO2-Enhanced Oil Recovery (CO2-EOR). The precedent from current UK North Sea hydrocarbon extraction is to 'overboard' produced waters into the ocean, under current regulations. However, laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution, including heavy metals. Eight of these elements are specifically identified in the UK as potentially hazardous to the marine environment (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn). A comparison was made between the concentrations of these eight trace elements in the results of laboratory batch leaching experiments of reservoir rock in CO2-rich saline solutions and overboarded waters from current offshore UK hydrocarbon production. This showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2

  12. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGESBeta

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  13. Development of high-capacity antimatter storage

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Smith, Gerald A.

    2000-01-01

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed-high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 1014 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance-fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity. .

  14. National assessment of geologic carbon dioxide storage resources: data

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.

  15. CO 2 geological storage: The environmental mineralogy perspective

    NASA Astrophysics Data System (ADS)

    Guyot, François; Daval, Damien; Dupraz, Sébastien; Martinez, Isabelle; Ménez, Bénédicte; Sissmann, Olivier

    2011-02-01

    Geological storage of carbon dioxide (CO 2) is one of the options envisaged for mitigating the environmental consequences of anthropogenic CO 2 increases in the atmosphere. The general principle is to capture carbon dioxide at the exhaust of power plants and then to inject the compressed fluid into deep geological formations. Before implementation over large scales, it is necessary to assess the efficiency of the process and its environmental consequences. The goal of this paper is to discuss some environmental mineralogy research perspectives raised by CO 2 geological storage.

  16. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  17. Storage Capacity Explains Fluid Intelligence but Executive Control Does Not

    ERIC Educational Resources Information Center

    Chuderski, Adam; Taraday, Maciej; Necka, Edward; Smolen, Tomasz

    2012-01-01

    We examined whether fluid intelligence (Gf) is better predicted by the storage capacity of active memory or by the effectiveness of executive control. In two psychometric studies, we measured storage capacity with three kinds of task which required the maintenance of a visual array, the monitoring of simple relations among perceptually available…

  18. A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage

    USGS Publications Warehouse

    Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.

    2010-01-01

    In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.

  19. International Symposium on Site Characterization for CO2Geological Storage

    SciTech Connect

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  20. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  1. An Integrated Approach to Predicting Carbon Dioxide Storage Capacity in Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Mason, H. E.; Carroll, S.

    2015-12-01

    Carbonate reservoirs are widespread globally but pose unique challenges for geologic carbon dioxide (CO2) storage due to the reactive nature of carbonate minerals and the inherently heterogeneous pore structures of these rock types. Carbonate mineral dissolution resulting from CO2-acidified fluids may actually create new storage capacity, but predicting the extent and location of enhanced storage is complicated by the presence of pore size distributions spanning orders of magnitude as well as common microfractures. To address this issue, core samples spanning a wide range of depths and predicted permeabilities were procured from wells drilled into the Weyburn-Midale reservoir from the IEA GHG's CO2 Monitoring and Storage Project, Saskatchewan, Canada; and from the Arbuckle dolomite at the Kansas Geological Survey's South-central Kansas CO2 Project. Our approach integrated non-invasive characterization, complex core-flooding experiments, and 3-D reactive transport simulations to calibrate relevant CO2 storage relationships among fluid flow, porosity, permeability, and chemical reactivity. The resulting observations from this work permit us to constrain (and place uncertainty limits on) some of the model parameters needed for estimating evolving reservoir CO2 storage capacity. The challenge remains, however, as to how to best interpret and implement these observations at the actual reservoir scale. We present our key findings from these projects and recommendations for storage capacity predictions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Adapting Dry Cask Storage for Aging at a Geologic Repository

    SciTech Connect

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS

  3. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; McMillan, Hilary; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2015-04-01

    The root zone water storage capacity (Sr) of a catchment is an important variable for the hydrological behaviour of a catchment; it strongly influences the storage, transpiration and runoff generation in an area. However, the root zone storage capacity is largely heterogeneous and not measurable. There are different theories about the variables affecting the root zone storage capacity; among the most debated are soil, vegetation and climate. The effect of vegetation and soil is often accounted for by detailed soil and land use maps. To investigate the effect of climate on the root zone storage capacity, an analogue can be made between the root zone storage capacity of a catchment and the human habit to design and construct reservoirs: both storage capacities help to overcome a dry period of a certain length. Humans often use the mass curve technique to determine the required storage needed to design the reservoir capacity. This mass curve technique can also be used to derive the root zone storage capacity created by vegetation in a certain ecosystem and climate (Gao et al., 2014). Only precipitation and discharge or evaporation data are required for this method. This study tests whether Sr values derived by both the mass curve technique and from soil maps are comparable for a range of catchments in New Zealand. Catchments are selected over a gradient of climates and land use. Special focus lies on how Sr values derived for a larger catchment are representative for smaller nested catchments. The spatial differences are examined between values derived from soil data and from climate and flow data. Gao, H., Hrachowitz, M., Schymanski, S.J., Fenicia, F., Sriwongsitanon, N., Savenije, H.H.G, (2014): Climate controls how ecosystems size the root zone storage capacity at catchment scale. DOI: 10.1002/2014GL061668

  4. A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

    SciTech Connect

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

    2010-10-01

    The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

  5. Comparison of Publically Available Methodologies for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Strazisar, B. R.; Guthrie, G. D.; Bromhal, G.

    2012-12-01

    High-level estimates of CO2 storage potential at the national, regional, and basin scale are required to assess the potential for carbon capture, utilization, and storage (CCUS) technologies to reduce CO2 emissions for application to saline formations. Both private and public entities worldwide rely on CO2 storage potential estimates for broad energy-related government policy and business decisions. High-level estimates of CO2 geologic storage potential, however, have a high degree of uncertainty because the assessments rely on simplifying assumptions due to the deficiency or absence of data from the subsurface associated with areas of potential storage in saline formations and the natural heterogeneity of geologic formations in general, resulting in undefined rock properties. As site characterization progresses to individual CO2 storage sites, additional site-specific data will likely be collected and analyzed that will allow for the refinement of high-level CO2 storage resource estimates and development of CO2 storage capacities. Until such detailed characterization can be documented, dependable high-level CO2 storage estimates are essential to ensure successful widespread deployment of CCUS technologies. Initiatives for assessing CO2 geologic storage potential have been conducted since 1993. Although dependable high-level CO2 storage estimates are essential to ensure successful deployment of CCUS technologies, it is difficult to assess the uncertainty of these estimates without knowing how the current methodologies targeted at high-level CO2 storage resource estimates for saline formations compare to one another. In this study, we compare high-level CO2 methodologies for development of geologic storage estimates for CO2 in saline formations to assess the uncertainty associated with various methodologies. The methodologies applied are listed as follows: (1) U.S. DOE Methodology: Development of Geologic Storage Potential for Carbon Dioxide at the National and

  6. High capacity hydrogen storage nanocomposite materials

    DOEpatents

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  7. Global root zone storage capacity from satellite-based evaporation

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  8. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  9. Potential of Microbes to Increase Geologic CO2 Storage Security

    NASA Astrophysics Data System (ADS)

    Gerlach, R.; Mitchell, A. C.; Ebigbo, A.; Phillips, A.; Cunningham, A. B.

    2011-12-01

    Geologic Carbon Capture and Storage (CCS) involves the injection of supercritical CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2. Concepts and results will be presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. Batch and flow experiments at atmospheric and geologic CO2 storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recent work has focused on small and large scale (75 cm diameter, 38 cm high sandstone) radial flow systems as well as the molecular characterization and isolation of microbes from geologic carbon sequestration-relevant environments. Methods for microscopic and macroscopic visualization of relevant processes from the pore to the bulk scale are being developed and have been proven to be essential tools in establishing the necessary understanding to increase CO2 storage security. As a result, reactive transport models describing the influence of biological processes on CO2 storage security have been developed and are continuously being modified to include relevant processes.

  10. Capacity loss on storage and possible capacity recovery for HST nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Lowery, John E.

    1992-01-01

    Negatively precharged nickel hydrogen cells will experience a useable capacity loss during extended open circuit storage periods. Some of the lost capacity can be recovered through cycling. Capacity recovery through cycling can be enhanced by cycling at high depths of discharge (DOD). The most timely procedure for recovering the faded capacity is to charge the cell fully and allow the cell to sit open-circuit at room temperature. This procedure seems to be effective in part because of the enlarged structure of the active materials. The compounds that formed during storage at the low electrode potentials can more easily dissolve and redistribute. All of the original capacity cannot be recovered because the lattice structure of the active material is irreversibly altered during storage. The recommendation is to use positively precharged cells activated with 26 percent KOH if possible. In aerospace applications, the benefits of negative precharge are offset by the possibility of delays and storage periods.

  11. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  12. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    NASA Astrophysics Data System (ADS)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  13. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et

  14. National Assessment of Geologic Carbon Dioxide Storage Resources -- Trends and Interpretations

    NASA Astrophysics Data System (ADS)

    Buursink, M. L.; Blondes, M. S.; Brennan, S.; Drake, R., II; Merrill, M. D.; Roberts-Ashby, T. L.; Slucher, E. R.; Warwick, P.

    2013-12-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resource (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins or study areas were defined on the basis of geologic and hydrologic characteristics outlined in the USGS assessment methodology. The mean national TASR is approximately 3,000 metric gigatons. To augment the release of the assessment, this study reviews input estimates and output results as a part of the resource calculation. Included in this study are a collection of both cross-plots and maps to demonstrate our trends and interpretations. Alongside the assessment, the input estimates were examined for consistency between SAUs and cross-plotted to verify expected trends, such as decreasing storage formation porosity with increasing SAU depth, for instance, and to show a positive correlation between storage formation porosity and permeability estimates. Following the assessment, the output results were examined for correlation with selected input estimates. For example, there exists a positive correlation between CO2 density and the TASR, and between storage formation porosity and the TASR, as expected. These correlations, in part, serve to verify our estimates for the geologic variables. The USGS assessment concluded that the Coastal Plains Region of the eastern and southeastern United States contains the largest storage resource. Within the Coastal Plains Region, the storage resources from the U.S. Gulf Coast study area represent 59 percent of the national CO2 storage capacity

  15. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  16. Modelling Landuse Change with Dynamic Moisture Storage Capacities

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hrachowitz, Markus; Savenije, Hubert H. G.

    2015-04-01

    A new method to determine the moisture storage capacity of a catchment was recently proposed by Gao et al.(2014). This method was based on the hypothesis that moisture storage capacities will adjust to the demand and availability of water in the ecosystem. In other words, Gao et al.(2014) determined the moisture capacity of a catchment based on meteorological data. To do so, a mass curve technique was used. First, the cumulative sum of effective precipitation was determined. Second, the long term mean actual evaporation for the dry season was determined. In this way supply and average demand are known. The maximum difference between the tangents to the cumulative precipitation is the maximum storage capacity. The method was tested for a large number of catchments. However, the method was not used to create a dynamic series of moisture storage capacities. In this research, long time series of meteorological data of catchments with some landuse change are used to determine a dynamic series of moisture storage capacity. It is expected that moisture storage capacities, but also runoff, adjust to the new situation. The calibration of a simple, lumped hydrological model with different time windows, could help identify the different moisture storage capacities. A sudden change is expected to occur after deforestation, after which the system should recover to the initial state. The same time windows can also be applied to the method of Gao et al.(2014) in order to see how meteorology, the ecosystem and landuse change interact. Subsequently, these dynamic values can be used in the hydrological model. In this way, a hydrological model is created that accounts for landuse change automatically, without recalibration or manual adjustment of the model.

  17. Coupled Hydro-Mechanical Modeling of Fluid Geological Storage

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Garipov, T.; Tchelepi, H. A.

    2013-12-01

    The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.

  18. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs

    NASA Astrophysics Data System (ADS)

    Wisser, Dominik; Frolking, Steve; Hagen, Stephen; Bierkens, Marc F. P.

    2013-09-01

    Water storage is an important way to cope with temporal variation in water supply and demand. The storage capacity and the lifetime of water storage reservoirs can be significantly reduced by the inflow of sediments. A global, spatially explicit assessment of reservoir storage loss in conjunction with vulnerability to storage loss has not been done. We estimated the loss in reservoir capacity for a global data set of large reservoirs from 1901 to 2010, using modeled sediment flux data. We use spatially explicit population data sets as a proxy for storage demand and calculate storage capacity for all river basins globally. Simulations suggest that the net reservoir capacity is declining as a result of sedimentation (˜5% compared to the installed capacity). Combined with increasing need for storage, these losses challenge the sustainable management of reservoir operation and water resources management in many regions. River basins that are most vulnerable include those with a strong seasonal flow pattern and high population growth rates such as the major river basins in India and China. Decreasing storage capacity globally suggests that the role of reservoir water storage in offsetting sea-level rise is likely weakening and may be changing sign.

  19. Geologic Water Storage in Pre-Columbian Peru

    SciTech Connect

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  20. Numerical Modelling of Geological Heterogeneity - Implications for CO2 Geological Storage

    NASA Astrophysics Data System (ADS)

    Hermanson, J. L.; Kirste, D. M.

    2012-12-01

    CO2 geological storage is a proposed mitigation strategy currently being considered to reduce atmospheric greenhouse gas emissions. One factor often limiting the implementation of CO2 geological storage is the uncertainty associated with geological heterogeneities within storage reservoirs and how these heterogeneities will impact CO2 partitioning into the various storage mechanisms. Numerical models are a useful tool for integrating field and laboratory data to generate predictions on the extent of CO2 storage at larger spatial and temporal scales than experimental work is capable of undertaking alone. Numerical models use governing equations to simulate physical and chemical processes, such as the flow and transport of CO2 within the subsurface. Governing equations require the specification of a number of input parameters inherent to the porous medium. In nature, parameters such as porosity and permeability vary within and between different rock types, according to variations in factors such as grain size, sorting, cementation and structure. These variations lead to geological heterogeneity at a number of scales. However, geological heterogeneity is often oversimplified in numerical models, either due to a lack of geological data or to increase computational efficiency. Grid spacing is often coarse, leading to faster simulation times but a decrease in numerical accuracy. Further work is required to investigate how simplifying geological heterogeneity within numerical models affects short and long term CO2 storage predictions. To quantify the impact of geological heterogeneity, TOUGH2, a multiphase flow and transport code, is used to construct a series of simulations with increasing degrees of geological complexity. Comparisons are made between numerous scenarios, including discrete versus gradual progression into areas of heterogeneous rock types, continuous versus discontinuous layering, internal structures and anisotropy. Input parameters associated with

  1. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  2. System-level modeling for economic evaluation of geological CO2storage in gas reservoirs

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-03-02

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine aquifers ordepleted oil or gas reservoirs. Research is being conducted to improveunderstanding of factors affecting particular aspects of geological CO2storage (such as storage performance, storage capacity, and health,safety and environmental (HSE) issues) as well as to lower the cost ofCO2 capture and related processes. However, there has been less emphasisto date on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedprocess models to representations of engineering components andassociated economic models. The objective of this study is to develop asystem-level model for geological CO2 storage, including CO2 capture andseparation, compression, pipeline transportation to the storage site, andCO2 injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection into a gas reservoir and relatedenhanced production of methane. Potential leakage and associatedenvironmental impacts are also considered. The platform for thesystem-level model is GoldSim [GoldSim User's Guide. GoldSim TechnologyGroup; 2006, http://www.goldsim.com]. The application of the system modelfocuses on evaluating the feasibility of carbon sequestration withenhanced gas recovery (CSEGR) in the Rio Vista region of California. Thereservoir simulations are performed using a special module of the TOUGH2simulator, EOS7C, for multicomponent gas mixtures of methane and CO2.Using a system-level modeling approach, the economic benefits of enhancedgas recovery can be directly weighed against the costs and benefits ofCO2 injection.

  3. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  4. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  5. Improved storage efficiency through geologic modeling and reservoir simulation

    SciTech Connect

    Ammer, J.R.; Mroz, T.H.; Covatch, G.L.

    1997-11-01

    The US Department of Energy (DOE), through partnerships with industry, is demonstrating the importance of geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. The geologic modeling and reservoir simulation study for the Natural Fuel Gas Supply Corporation CRADA was completed in September 1995. The results of this study were presented at the 1995 Society of Petroleum Engineers` (SPE) Eastern Regional Meeting. Although there has been no field verification of the modeling results, the study has shown the potential advantages and cost savings opportunities of using horizontal wells for storage enhancement. The geologic modeling for the Equitrans` CRADA was completed in September 1995 and was also presented at the 1995 SPE Eastern Regional Meeting. The reservoir modeling of past field performance was completed in November 1996 and prediction runs are currently being made to investigate the potential of offering either a 10 day or 30 day peaking service in addition to the existing 110 day base load service. Initial results have shown that peaking services can be provided through remediation of well damage and by drilling either several new vertical wells or one new horizontal well. The geologic modeling for the Northern Indiana Public Service Company CRADA was completed in November 1996 with a horizontal well being completed in January 1997. Based on well test results, the well will significantly enhance gas deliverability from the field and will allow the utilization of gas from an area of the storage field that was not accessible from their existing vertical wells. Results are presented from these three case studies.

  6. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  7. Bathymetric Survey and Storage Capacity of Upper Lake Mary near Flagstaff, Arizona

    USGS Publications Warehouse

    Hornewer, Nancy J.; Flynn, Marilyn E.

    2008-01-01

    Upper Lake Mary is a preferred drinking-water source for the City of Flagstaff, Arizona. Therefore, storage capacity and sedimentation issues in Upper Lake Mary are of interest to the City. The U.S. Geological Survey, in cooperation with the City of Flagstaff, collected bathymetric and land-survey data in Upper Lake Mary during late August through October 2006. Water-depth data were collected using a single-beam, high-definition fathometer. Position data were collected using real-time differential global position system receivers. Data were processed using commercial software and imported into geographic information system software to produce contour maps of lakebed elevations and for the computation of area and storage-capacity information. At full pool (spillway elevation of 6,828.5 feet above mean sea level), Upper Lake Mary has a storage capacity of 16,300 acre-feet, a surface area of 939 acres, a mean depth of 17.4 feet, and a depth near the dam of 39 feet. It is 5.6 miles long and varies in width from 308 feet near the central, narrow portion of the lake to 2,630 feet in the upper portion. Comparisons between this survey and a previous survey conducted in the 1950s indicate no apparent decrease in reservoir area or storage capacity between the two surveys.

  8. Canopy storage capacity of xerophytic shrubs in Northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-ping; Zhang, Ya-feng; Hu, Rui; Pan, Yan-xia; Berndtsson, Ronny

    2012-08-01

    SummaryThe capacity of shrub canopy water storage is a key factor in controlling the rainfall interception. Thus, it affects a variety of hydrological processes in water-limited arid desert ecosystems. Vast areas of revegetated desert ecosystems in Northwestern China are occupied by shrub and dwarf shrub communities. Yet, data are still scarce regarding their rainwater storage capacity. In this study, simulated rainfall tests were conducted in controlled conditions for three dominant xerophytic shrub types in the arid Tengger Desert. Eight rainfall intensities varying from 1.15 to 11.53 mm h-1 were used to determine the canopy water storage capacity. The simulated rainfall intensities were selected according to the long-term rainfall records in the study area. The results indicate that canopy storage capacity (expressed in water storage per leaf area, canopy projection area, biomass, and volume of shrub respectively) increased exponentially with increase in rainfall intensity for the selected shrubs. Linear relationships were found between canopy storage capacity and leaf area (LA) or leaf area index (LAI), although there was a striking difference in correlation between storage capacity and LA or LAI of Artemisia ordosica compared to Caragana korshinskii and Hedysarum scoparium. This is a result of differences in biometric characteristics, especially canopy morphology between the shrub species. Pearson correlation coefficient indicated that LA and dry biomass are better predictors as compared to canopy projection area and volume of samples for precise estimation of canopy water storage capacity. In terms of unit leaf area, mean storage capacity was 0.39 mm (range of 0.24-0.53 mm), 0.43 mm (range of 0.28-0.60 mm), and 0.61 mm (range of 0.29-0.89 mm) for C. korshinskii, H. scoparium, and A. ordosica, respectively. Correspondingly, divided per unit dry biomass, mean storage capacity was 0.51 g g-1 (range of 0.30-0.70 g g-1), 0.41 g g-1 (range of 0.26-0.57 g g-1), and

  9. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    NASA Astrophysics Data System (ADS)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  10. Geological investigation for CO2 storage: from seismic and well data to storage design

    NASA Astrophysics Data System (ADS)

    Chapuis, Flavie; Bauer, Hugues; Grataloup, Sandrine; Leynet, Aurélien; Bourgine, Bernard; Castagnac, Claire; Fillacier, Simon; Lecomte, Antony; Le Gallo, Yann; Bonijoly, Didier

    2010-05-01

    Geological investigation for CO2 storage: from seismic and well data to storage design Chapuis F.1, Bauer H.1, Grataloup S.1, Leynet A.1, Bourgine B.1, Castagnac C.1, Fillacier, S.2, Lecomte A.2, Le Gallo Y.2, Bonijoly D.1. 1 BRGM, 3 av Claude Guillemin, 45060 Orléans Cedex, France, f.chapuis@brgm.fr, d.bonijoly@brgm.fr 2 Geogreen, 7, rue E. et A. Peugeot, 92563 Rueil-Malmaison Cedex, France, ylg@greogreen.fr The main purpose of this study is to evaluate the techno-economical potential of storing 200 000 tCO2 per year produced by a sugar beat distillery. To reach this goal, an accurate hydro-geological characterisation of a CO2 injection site is of primary importance because it will strongly influence the site selection, the storage design and the risk management. Geological investigation for CO2 storage is usually set in the center or deepest part of sedimentary basins. However, CO2 producers do not always match with the geological settings, and so other geological configurations have to be studied. This is the aim of this project, which is located near the South-West border of the Paris Basin, in the Orléans region. Special geometries such as onlaps and pinch out of formation against the basement are likely to be observed and so have to be taken into account. Two deep saline aquifers are potentially good candidates for CO2 storage. The Triassic continental deposits capped by the Upper Triassic/Lower Jurassic continental shales and the Dogger carbonate deposits capped by the Callovian and Oxfordian shales. First, a data review was undertaken, to provide the palaeogeographical settings and ideas about the facies, thicknesses and depth of the targeted formations. It was followed by a seismic interpretation. Three hundred kilometres of seismic lines were reprocessed and interpreted to characterize the geometry of the studied area. The main structure identified is the Étampes fault that affects all the formations. Apart from the vicinity of the fault where drag

  11. Geological investigation for CO2 storage: from seismic and well data to storage design

    NASA Astrophysics Data System (ADS)

    Chapuis, Flavie; Bauer, Hugues; Grataloup, Sandrine; Leynet, Aurélien; Bourgine, Bernard; Castagnac, Claire; Fillacier, Simon; Lecomte, Antony; Le Gallo, Yann; Bonijoly, Didier

    2010-05-01

    Geological investigation for CO2 storage: from seismic and well data to storage design Chapuis F.1, Bauer H.1, Grataloup S.1, Leynet A.1, Bourgine B.1, Castagnac C.1, Fillacier, S.2, Lecomte A.2, Le Gallo Y.2, Bonijoly D.1. 1 BRGM, 3 av Claude Guillemin, 45060 Orléans Cedex, France, f.chapuis@brgm.fr, d.bonijoly@brgm.fr 2 Geogreen, 7, rue E. et A. Peugeot, 92563 Rueil-Malmaison Cedex, France, ylg@greogreen.fr The main purpose of this study is to evaluate the techno-economical potential of storing 200 000 tCO2 per year produced by a sugar beat distillery. To reach this goal, an accurate hydro-geological characterisation of a CO2 injection site is of primary importance because it will strongly influence the site selection, the storage design and the risk management. Geological investigation for CO2 storage is usually set in the center or deepest part of sedimentary basins. However, CO2 producers do not always match with the geological settings, and so other geological configurations have to be studied. This is the aim of this project, which is located near the South-West border of the Paris Basin, in the Orléans region. Special geometries such as onlaps and pinch out of formation against the basement are likely to be observed and so have to be taken into account. Two deep saline aquifers are potentially good candidates for CO2 storage. The Triassic continental deposits capped by the Upper Triassic/Lower Jurassic continental shales and the Dogger carbonate deposits capped by the Callovian and Oxfordian shales. First, a data review was undertaken, to provide the palaeogeographical settings and ideas about the facies, thicknesses and depth of the targeted formations. It was followed by a seismic interpretation. Three hundred kilometres of seismic lines were reprocessed and interpreted to characterize the geometry of the studied area. The main structure identified is the Étampes fault that affects all the formations. Apart from the vicinity of the fault where drag

  12. Simulating Remediation of CO2 Leakage from Geological Storage Sites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Oldenburg, C. M.; Benson, S. M.

    2003-12-01

    One strategy to reduce net greenhouse gas emissions is to inject carbon dioxide (CO2) deep into subsurface formations where presumably it would be stored indefinitely. Although geologic storage formations will be carefully selected, CO2 injected into a target formation may unexpectedly migrate upwards and ultimately seep out at the ground surface, creating a potential hazard to human beings and ecosystems. In this case, CO2 that has leaked from the geologic storage site is considered a contaminant, and remediation strategies such as passive venting and active pumping are needed. The purpose of this study is to investigate remediation strategies for CO2 leakage from geologic storage sites. We use the integral finite-difference code TOUGH2 to simulate the remediation of CO2 in subsurface systems. We consider the components of water, CO2 and air, and model flow and transport in aqueous and gas phases subject to a variety of initial and boundary conditions including passive venting and active pumping. We have investigated the time it takes for a gas plume of CO2 to be removed from the vadose zone both by natural attenuation processes and by active extraction wells. The time for removal is parameterized in terms of a CO2 plume half-life, defined as the time required for one-half of the CO2 mass to be removed. Initial simulations show that barometric pressure fluctuations enhance the removal of CO2 from the vadose zone, but that CO2 trapped near the water table is difficult to remove by either passive or active remediation approaches. This work was supported by a Cooperative Research and Development Agreement (CRADA) between BP Corporation North America, as part of the CO2 Capture Project (CCP), and the U.S. Department of Energy (DOE) through the National Energy Technologies Laboratory (NETL), and by the U.S. Department of Energy under contract DE-AC03-76SF00098.

  13. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Increase in storage capacity. 157.214 Section 157.214 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  14. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Increase in storage capacity. 157.214 Section 157.214 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  15. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Increase in storage capacity. 157.214 Section 157.214 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF...

  16. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Increase in storage capacity. 157.214 Section 157.214 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR...

  17. 18 CFR 157.214 - Increase in storage capacity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Increase in storage capacity. 157.214 Section 157.214 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR...

  18. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure

    NASA Astrophysics Data System (ADS)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.

    2015-12-01

    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  19. Gas condensate reservoir characterisation for CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, A. P.

    2012-04-01

    During oil and gas production hydrocarbon recovery efficiency is significantly increased by injecting miscible CO2 gas in order to displace hydrocarbons towards producing wells. This process of enhanced oil recovery (EOR) might be used for the total CO2 storage after complete hydrocarbon reservoir depletion. This kind of potential storage sites was selected for detailed studies, including generalised development study to investigate the applicability of CO2 for storages. The study is focused on compositional modelling to predict the miscibility pressures. We consider depleted gas condensate field in Kazakhstan as important target for CO2 storage and EOR. This reservoir being depleted below the dew point leads to retrograde condensate formed in the pore system. CO2 injection in the depleted gas condensate reservoirs may allow enhanced gas recovery by reservoir pressurisation and liquid re-vaporisation. In addition a number of geological and petrophysical parameters should satisfy storage requirements. Studied carbonate gas condensate and oil field has strong seal, good petrophysical parameters and already proven successful containment CO2 and sour gas in high pressure and high temperature (HPHT) conditions. The reservoir is isolated Lower Permian and Carboniferous carbonate platform covering an area of about 30 km. The reservoir contains a gas column about 1.5 km thick. Importantly, the strong massive sealing consists of the salt and shale seal. Sour gas that filled in the oil-saturated shale had an active role to form strong sealing. Two-stage hydrocarbon saturation of oil and later gas within the seal frame were accompanied by bitumen precipitation in shales forming a perfect additional seal. Field hydrocarbon production began three decades ago maintaining a strategy in full replacement of gas in order to maintain pressure of the reservoir above the dew point. This was partially due to the sour nature of the gas with CO2 content over 5%. Our models and

  20. Ringwallspeicher - a geotechnical option for large storage capacities

    NASA Astrophysics Data System (ADS)

    Popp, M.

    2012-04-01

    For a regenerative power supply, based on wind and sun and without fallback to fossil or nuclear energy carriers, the actually available storage capacity of Germany would be required about 500 times as large. If pumped hydro systems shall be established in a land saving way, than gauge deviations should be as large as possible in the upper and in the lower basin, besides a maximum height difference between the two basins. With a Ringwallspeicher, large storage capacities with a high degree of efficiency can be built also in areas, where classic pumped hydro systems wouldn't be considered, because large height differences can be established and natural existing height differences can be increased. Also the water gauge deviations offer a wide scope in designing. Bucket-wheels would excavate the lower basin to build the dam for the upper basin, which will be sealed on the inside. The plant would be operated like a pumped hydro storage system. Using not demanded electricity, water is pumped into the upper basin, which will flow through turbines back down if there is an electricity deficiency. The geometry of these storage plants would lead to a rapid growth of capacity with increasing dimensions. More informations: http://www.ringwallspeicher.de.

  1. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  2. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.

    PubMed

    Pérez-Torrado, Roberto; Matallana, Emilia

    2015-01-01

    During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. PMID:25219977

  3. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    PubMed Central

    2015-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm3 cm–3 under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm3 cm–3, and between 5 and 80 bar, 230 cm3 cm–3. PMID:24661065

  4. The Leakage Risk Monetization Model for Geologic CO2 Storage.

    PubMed

    Bielicki, Jeffrey M; Pollak, Melisa F; Deng, Hang; Wilson, Elizabeth J; Fitts, Jeffrey P; Peters, Catherine A

    2016-05-17

    We developed the Leakage Risk Monetization Model (LRiMM) which integrates simulation of CO2 leakage from geologic CO2 storage reservoirs with estimation of monetized leakage risk (MLR). Using geospatial data, LRiMM quantifies financial responsibility if leaked CO2 or brine interferes with subsurface resources, and estimates the MLR reduction achievable by remediating leaks. We demonstrate LRiMM with simulations of 30 years of injection into the Mt. Simon sandstone at two locations that differ primarily in their proximity to existing wells that could be leakage pathways. The peak MLR for the site nearest the leakage pathways ($7.5/tCO2) was 190x larger than for the farther injection site, illustrating how careful siting would minimize MLR in heavily used sedimentary basins. Our MLR projections are at least an order of magnitude below overall CO2 storage costs at well-sited locations, but some stakeholders may incur substantial costs. Reliable methods to detect and remediate leaks could further minimize MLR. For both sites, the risk of CO2 migrating to potable aquifers or reaching the atmosphere was negligible due to secondary trapping, whereby multiple impervious sedimentary layers trap CO2 that has leaked through the primary seal of the storage formation. PMID:27052112

  5. Buoyant dispersal of CO2 during geological storage

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Woods, A. W.

    2010-01-01

    Carbon capture and storage is currently the only technology that may allow significant reductions in CO2 emissions from large point sources. Seismic images of geological CO2 storage show the rise of CO2 is influenced by horizontal shales. The buoyant CO2 spreads beneath impermeable barriers until a gap allows its upward migration. The large number and small scale of these barriers makes the prediction of the CO2 migration path and hence the magnitude of CO2 trapping very challenging. We show that steady buoyancy dominated flows in complex geometries can be modeled as a cascade of flux partitioning events. This approach allows the analysis of two-dimensional plume dispersal from a horizontal injection well. We show that the plume spreads laterally with height y above the source according to (y/h)1/2 L, where L is the width of the shales and h is their vertical separation. The fluid volume below successive shale layers, and therefore the magnitude of trapped CO2, increase as (y/h)5/4 above the source, so that every additional layer of barriers traps more CO2 than the one below. Upscaling small scale flow barriers by reducing the vertical permeability, common in numerical simulations of CO2 storage, does not capture the dispersion and trapping of the CO2 plume by the flow barriers.

  6. Estimation of Potential Carbon Dioxide Storage Capacities of Onshore Sedimentary Basins in Republic of Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, J.; Lee, Y.

    2010-12-01

    The potential carbon dioxide storage capacities of the five main onshore sedimentary basins (Chungnam, Gyeongsang, Honam, Mungyeong, and Taebaeksan Basins) in Republic of Korea are estimated based on the methods suggested by the United States National Energy Technology Laboratory (NETL). The target geologic formations considered for geologic storage of carbon dioxide in the sedimentary basins are sandstone and coal beds. The density of carbon dioxide is set equal to 446.4 kg/m3. The adsorption capacity and density of coal (anthracite) are set equal to 2.71 × 10-2 kg/kg and 1.82 × 103 kg/m3, respectively. The average storage efficiency factors for sandstone and coal are set equal to 2.5% and 34.0%, respectively. The Chungnam Basin has the sandstone volume of 72 km3 and the coal volume of 1.24 km3. The average porosity of sandstone in the Chungnam Basin is 3.8%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Chungnam Basin are estimated to be 31 Mton and 21 Mton, respectively. The Gyeongsang Basin has the sandstone volume of 1,960 km3. The average porosity of sandstone in the Gyeongsang Basin is 4.6%. As a result, the potential carbon dioxide storage capacity of sandstone in the Gyeongsang Basin is estimated to be 1,011 Mton. The Honam Basin has the sandstone volume of 8 km3 and the coal volume of 0.27 km3. The average porosity of sandstone in the Honam Basin is 1.9%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Honam Basin are estimated to be 2 Mton and 5 Mton, respectively. The Mungyeong Basin has the sandstone volume of 60 km3 and the coal volume of 0.66 km3. The average porosity of sandstone in the Mungyeong Basin is 2.0%. As a result, the potential carbon dioxide storage capacities of sandstone and coal in the Mungyeong Basin are estimated to be 13 Mton and 11 Mton, respectively. The Taebaeksan Basin has the sandstone volume of 71 km3 and the coal volume of 0.73 km3. The

  7. CO2/clay interactions and the significance for geological storage of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Wentinck, Rick; Bertier, Pieter

    2015-04-01

    For the characterization of CO2 storage reservoirs a number of critical parameters need to be assessed, like storage capacity or injection rate, where a straight-forward work flow based on existing experience in the oil and gas industry is available. Added complexity is in the identification of (potential) leakage pathways along wellbores, faults/fractures or even capillary seal networks. The critical aspects are mechanisms and rates of potential leakage. Over the past few years an improved understanding of the interaction of CO2 with clay minerals was generated, with a major focus on swelling clays, such as montmorillonite. Especially in relatively young and / or low maturity sedimentary basins, smectite contents of the seal lithologies can be high (e.g. North Sea). It was found that for CO2 storage and storage containment non-negligible physical effects result from clays in contact with CO2 and water under pressure, temperature and stress conditions representative for geological reservoirs. It was shown that all clay minerals are able to adsorb significant amounts of CO2, while only smectite swells in the presence of CO2, thereby creating a swelling force that is potentially large and may affect local stress fields. Several cases where this interaction might become important are discussed in this contribution: (1) clay swelling between wellbore cement and host rock, (2) CO2 adsorption of clays in the storage reservoir, (3) clay swelling and the impact on fractures and faults, potentially acting as pathways, for fluid leakage and (4) shrinkage of swelling clays due to dehydration by CO2 and the possible creation of dehydration cracks. This contribution aims at summarizing these effects, increasing awareness and discussing its significance for the geological storage of CO2.

  8. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  9. Three-Dimensional Geologic Modeling of the Pohang Basin, Korea for Geologic Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Kim, C.; Ahn, H.; Park, S.; Kim, J.; Kihm, J.

    2013-12-01

    Three-dimensional geologic modeling and cross-validation using GOCAD (Paradigm, 2012) were performed to visualize realistically and to characterize quantitatively geologic formations in the Pohang Basin, which is one of the prospective basins for geologic carbon dioxide storage in Korea. The study area is 1,200 m long in the east-west direction, 2,200 m long in the north-south direction, and 2,176 m thick below the ground surface. First, satellite images, digital topographic maps, geologic maps, and eight deep borehole data in the study area were collected and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations, was established using the discrete smooth interpolation (DSI) method, and a three-dimensional grid model, which consists of 2,046,000 hexahedral blocks, was produced. Three-dimensional geologic formation modeling was then performed by polymerizing these two models. Second, a series of variogram modeling was performed to analyze spatial correlation of lithofacies in individual geologic formations. A Gaussian model, which has 180° strike and 0° dip, was selected as an optimal theoretical variogram because it has the longest lag distance, and its coefficient of determination is nearest to 1 among 84 trials. Based on the optimal theoretical variogram, a series of three-dimensional lithofacies modeling was performed 100 realization times, respectively, using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The results of the three-dimensional lithofacies modeling show that mudstone and sandstone distribute horizontally rather than vertically, and the volume fractions of mudstone and sandstone of the SIS case is more similar to the actual eight deep borehole data than that of the TGS case. Thus, the results of the three-dimensional lithofacies modeling using the SIS geostatistically have higher reliability than

  10. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2015-01-01

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  11. Density-driven enhanced dissolution of injected CO2 during long-term CO2 geological storage

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    2013-10-01

    Geological storage of CO2 in deep saline formations is increasingly seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, possible leakage of injected CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells is a huge challenge for CO2 geological storage projects. Thus, the density-driven fluid flow as a process that can accelerate the phase change of injected CO2 from supercritical phase into aqueous phase is receiving more and more attention. In this paper, we performed higher-resolution reactive transport simulations to investigate the possible density-driven fluid flow process under the `real' condition of CO2 injection and storage. Simulation results indicated that during CO2 injection and geological storage in deep saline formations, the higher-density CO2-saturated aqueous phase within the lower CO2 gas plume migrates downward and moves horizontally along the bottom of the formation, and the higher-density fingers within the upper gas plume propagate downward. These density-driven fluid flow processes can significantly enhance the phase transition of injected CO2 from supercritical phase into aqueous phase, consequently enhancing the effective storage capacity and long-term storage security of injected CO2 in saline formations.

  12. Charged fullerenes as high-capacity hydrogen storage media.

    PubMed

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-09-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20 storage media. We find that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to approximately 8.0 wt %. We also find that, contrary to intuitive expectation, fullerenes containing encapsulated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage media. PMID:17718530

  13. Charged Fullerenes as High Capacity Hydrogen Storage Media

    SciTech Connect

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-01-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20≤n≤84) as hydrogen storage media. We find that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to ~8.0wt%. We also find that, contrary to intuitive expectation, fullerenes containing intercalated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high capacity hydrogen storage media.

  14. Site characterisation of a basin-scale CO2 geological storage system: Gippsland Basin, southeast Australia

    NASA Astrophysics Data System (ADS)

    Gibson-Poole, C. M.; Svendsen, L.; Underschultz, J.; Watson, M. N.; Ennis-King, J.; van Ruth, P. J.; Nelson, E. J.; Daniel, R. F.; Cinar, Y.

    2008-06-01

    Geological storage of CO2 in the offshore Gippsland Basin, Australia, is being investigated by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) as a possible method for storing the very large volumes of CO2 emissions from the nearby Latrobe Valley area. A storage capacity of about 50 million tonnes of CO2 per annum for a 40-year injection period is required, which will necessitate several individual storage sites to be used both sequentially and simultaneously, but timed such that existing hydrocarbon assets will not be compromised. Detailed characterisation focussed on the Kingfish Field area as the first site to be potentially used, in the anticipation that this oil field will be depleted within the period 2015 2025. The potential injection targets are the interbedded sandstones of the Paleocene-Eocene upper Latrobe Group, regionally sealed by the Lakes Entrance Formation. The research identified several features to the offshore Gippsland Basin that make it particularly favourable for CO2 storage. These include: a complex stratigraphic architecture that provides baffles which slow vertical migration and increase residual gas trapping and dissolution; non-reactive reservoir units that have high injectivity; a thin, suitably reactive, lower permeability marginal reservoir just below the regional seal providing mineral trapping; several depleted oil fields that provide storage capacity coupled with a transient production-induced flow regime that enhances containment; and long migration pathways beneath a competent regional seal. This study has shown that the Gippsland Basin has sufficient capacity to store very large volumes of CO2. It may provide a solution to the problem of substantially reducing greenhouse gas emissions from future coal developments in the Latrobe Valley.

  15. Soft-bound Synaptic Plasticity Increases Storage Capacity

    PubMed Central

    van Rossum, Mark C. W.; Shippi, Maria; Barrett, Adam B.

    2012-01-01

    Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses. PMID:23284281

  16. The low cost of geological assessment for underground CO2 storage: Policy and economic implications

    SciTech Connect

    Friedmann, S J; Dooley, J; Held, H; Edenhofer, O

    2005-01-31

    The costs for carbon dioxide (CO{sub 2}) capture and storage (CCS) in geologic formations is estimated to be $6-75/t CO{sub 2}. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning-by-doing until these disincentives for the free venting of CO{sub 2} are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25-60/t CO{sub 2} for power plant applications followed by CO{sub 2} transport and storage, estimated at $0-15/t CO{sub 2}. Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one-time costs are probably on the order of $0.1/t CO{sub 2} or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals, and development facilities engineering. Since assessment costs are roughly 2 orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private/public funding of major assessment initiatives should underpin early policy choices regarding CO{sub 2} storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.d

  17. The low cost of geological assessment for underground CO2 storage: Policy and economic implication

    SciTech Connect

    Friedmann, S. J.; Dooley, James J.; Held, Herman; Ottmar, Edenhofer

    2006-08-31

    The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed byCO2 transport and storage, estimated at $0–15/tCO2.Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.

  18. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  19. Optimising geological storage of CO2 by development of multiple injection sites in regionally extensive storage sandstones

    NASA Astrophysics Data System (ADS)

    Akhurst, Maxine; McDermott, Christopher; Williams, John; Mackay, Eric; Jin, Min; Tucker, Owain; Mallows, Tom; Hannis, Sarah; Pearce, Jonathan

    2016-04-01

    by the operation of more than one injection site in a geological formation by taking a regional-scale approach to site assessment. The study concludes that at least 360 million tonnes of CO2 captured over the coming 35 years could be permanently stored using two injection sites in the Captain Sandstone. Confidence in the planned operation of two or more injection sites in a storage formation is greatly increased by the use of existing information, knowledge and data acquired during hydrocarbon exploitation. Widespread pressure changes should be expected by the injection of CO2 at more than one site. Assessment, management and monitoring of pressure changes on a regional scale will optimise the storage capacity, ensure security of storage and prevent adverse effects to existing storage and hydrocarbon operations. The vast offshore potential across all sectors of the North Sea could be made accessible and practical for storage of CO2 captured at European sources by the operation of two or more sites in a storage formation by following the approach taken in CO2MultiStore.

  20. Atmospheric monitoring for fugitive emissions from geological carbon storage

    NASA Astrophysics Data System (ADS)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  1. Solar electricity supply isolines of generation capacity and storage

    PubMed Central

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.

    2015-01-01

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261

  2. Solar electricity supply isolines of generation capacity and storage.

    PubMed

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W

    2015-03-24

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261

  3. Reaction capacity characterization of shallow sedimentary deposits in geologically different regions of the Netherlands.

    PubMed

    Griffioen, Jasper; Klein, Janneke; van Gaans, Pauline F M

    2012-01-01

    Quantitative insight into the reaction capacity of porous media is necessary to assess the buffering capacity of the subsurface against contaminant input via groundwater recharge. Here, reaction capacity is to be considered as a series of geochemical characteristics that control acid/base conditions, redox conditions and sorption intensity. Using existing geochemical analyses, a statistical regional assessment of the reaction capacity was performed for two geologically different areas in the Netherlands. The first area is dominated by Pleistocene aquifer sediments only, in the second area a heterogeneous Holocene confining layer is found on top of the Pleistocene aquifer sediments. Within both areas, two or more regions can be distinguished that have a distinctly different geological build-up of the shallow subsurface. The reactive compounds considered were pyrite, reactive Fe other than pyrite, sedimentary organic matter, carbonate and clay content. This characterization was complemented by the analysis of a dataset of samples newly collected, from two regions within the Pleistocene area, where the sedimentary facies of samples was additionally distinguished. The statistical assessment per area was executed at the levels of region, geological formation and lithology class. For both areas, significant differences in reaction capacities were observed between: 1. different lithology classes within a geological formation in a single region, 2. identical geological formations in different regions and 3. various geological formations within a single region. Here, the reaction capacity is not only controlled by lithostratigraphy, but also by post-depositional diagenesis and paleohydrology. Correlation coefficients among the reactive compounds were generally higher for sand than for clay, but insufficiently high to allow good estimation of reactive compounds from each other. For the sandy Pleistocene aquifer sediments, the content of reactive compounds was frequently

  4. Metal-diboride nanotubes as high capacity hydrogen storage media

    SciTech Connect

    Meng, Sheng; Kaxiras, Efthimios; Zhang, Zhenyu

    2007-01-01

    We investigate the potential for hydrogen storage of a new class of nanomaterials, metal-diboride nanotubes. These materials have the merits of high density of binding sites on the tubular surfaces without the adverse effects of metal clustering. Using the TiB2 (8,0) and (5,5) nanotube as prototype examples, we show through first-principles calculations that each Ti atom can host two intact H2 units, leading to a retrievable hydrogen storage capacity of 5.5 wt%. Most strikingly, the binding energies fall in the desirable range of 0.2-0.6 eV per H2 molecule, endowing these structures with the potential for room temperature, near ambient pressure applications.

  5. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    de Boer-Euser, Tanja; McMillan, Hilary; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2016-04-01

    The catchment representative root zone storage capacity (Sr), i.e. the plant available soil water, is an important parameter of hydrological systems. It does not only influence the runoff from catchments, by controlling the partitioning of water fluxes but it also influences the local climate, by providing the source for transpiration. Sr is difficult to observe at catchment scale, due to heterogeneities in vegetation and soils. Sr estimates are traditionally derived from soil characteristics and estimates of root depths. In contrast, a recently suggested method allows the determination of Sr based on climate data, i.e. precipitation and evaporation, alone (Gao et al., 2014). By doing so, the time-variable size of Sr, is explicitly accounted for, which is not the case for traditional soil based methods. The time-variable size of Sr reflects root growth and thus the vegetation's adaption to medium-term fluctuations in the climate. Thus, we tested and compared Sr estimates from this 'climate based method' with estimates from soil data for 32 catchments in New Zealand. The results show a larger range in climate derived Sr than in soil derived Sr. Using a model experiment, we show that a model using the climate derived Sr is more accurately able to reproduce a set of hydrological regime signatures, in particular for humid catchments. For more arid catchments, the two methods provide similar model results. This implies that, although soil database information has some predictive power for model soil storage capacity, climate has a similar or greater control on Sr, as climate affects the evolving hydrological functioning of the root zone at the time scale of hydrological interest. In addition, Sr represents the plant available water and thus root surface, volume and density, and is therefore a more complete descriptor of vegetation influence on water fluxes than mere root depth. On balance, the results indicate that climate has a higher explanatory power than soils for

  6. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks

    SciTech Connect

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M.

    2014-08-14

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 and 231 cm3 cm–3 under the same conditions. Furthermore, MOF-519 exhibits an exceptional working capacity, being able to deliver a large amount of methane at pressures between 5 and 35 bar, 151 cm3 cm–3, and between 5 and 80 bar, 230 cm3 cm–3.

  7. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    USGS Publications Warehouse

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  8. Geological controls on the performance of CO2 injection and storage sites

    NASA Astrophysics Data System (ADS)

    Ringrose, P. S.; Nazarian, B.; Gemmer, L.; Cavanagh, A.

    2011-12-01

    Using experience gained from several pioneering industrial-scale CO2 storage projects we identify the key factors controlling injection performance, both for the injection period (c. 10 years) and for the longer term (>10 years). The Sleipner, In Salah and Snøhvit storage sites, which together have succeeded in disposing of over 16 Mt of CO2, present highly variable reservoirs, covering a range of reservoir depth, permeability and geological architecture. Reservoir modelling studies show how CO2 plume development has been controlled by geology, geo-mechanics and fluid phase behaviour. Three general themes about CO2 in the subsurface emerge from these cases studies: a) Geology: Variations in geological architecture result in highly non-uniform plume development. Short-term and near-well injection performance is viscous dominated, while longer-term and far-field performance becomes gravity/capillary dominated. The case studies illustrate how thin-shale layers, top-reservoir topography, faults and fractures control actual CO2 plume development. Understanding how these controls affect field performance is best achieved by careful tuning of reservoir models to observations from reservoir monitoring. b) Rock mechanics: Geo-mechanical properties affect storage capacity, limit well injectivity and determine pressure development within the reservoir. Simple linear elastic models are generally insufficient, whereas by using detailed mechanical models we have been able to fine-tune the reservoir and overburden mechanical models to learn how the rock system responds to fluid pressure. c) Phase behaviour: While pure CO2 phase behaviour is well understood, the behaviour of gas mixtures, within the inherently uncertain ranges of in situ reservoir pressure and temperature, presents a significant challenge, leading to large uncertainties in gas density, viscosity, and solubility. Detailed models of near-wellbore multi-phase flow show how injectivity and plume growth around the

  9. Sparsely Connected, Hebbian Networks with Strikingly Large Storage Capacities.

    PubMed

    BOOS, WILLIAM; VOGEL, DAVID D.

    1997-06-01

    Conspicuous problems confront the use of fully-connected networks (F-nets) in the construction of realistic partial models of biological memory. These problems include the high synaptic densities of F-nets, and the low information storage capacities of F-nets with simple, biologically realistic learning rules. Most auto-associative networks constructed with low connectivities have employed random projections of path length 1. Projective networks (P-nets) are nonrandom, multilayer networks which achieve extremely low connectivities by linking all neurons in the same layer through paths of length 2. In this paper we derive a lower bound on the storage capacities of a class of simple, two-layer P-nets with binary Hebbian synapses. Given a 1% tolerance for spurious neurons, we find that the P-net with 1000 synapses per neuron (2 x 10(6) neurons) will store more than 1.5 x 10(6) training vectors with 20 active neurons per vector (0.25 bits per synapse). Copyright 1997 Elsevier Science Ltd. PMID:12662862

  10. Implications of CO2 Geological Storage on Aquifers Autotrophic Communities

    NASA Astrophysics Data System (ADS)

    Dupraz, Sébastien; Fabbri, Antonin; Joulian, Catherine; Menez, Bénédicte; Gerard, Emanuelle; Henry, Benoit; Crouzet, Catherine; Guyot, François; Garrido, Francis

    2010-05-01

    In a global strategy of carbon emission reduction, a study about CCS (Carbon Capture and Storage) feasibility in the case of a French beet sugar factory and distillery in the Parisian basin was undertaken by regional and state authorities. Besides, economical, geological and engineering questions, microbial interactions were also studied since the potential contribution of the deep biosphere on the storage zones appears to be an essential factor in terms of injectivity and CO2 mobilization. Biological processes like biofilm formation, biomineralization and carbon assimilation may hinder the injections or, to the contrary, improve the stability of the sequestration by shifting CO2 into more stable forms like carbonates and organic matter. Regarding those possibilities, it is thus mandatory to establish how the subsurface biosphere will react by determining which metabolisms will be able to sustain the stress due to high concentrations of CO2 and the resulting acidification. In that case, the study of autotrophic communities reactivity is essential because they are the only entrance for CO2 assimilation in the SLiMEs (Subsurface Litho autotrophic Microbial Ecosystems) and thus are accountable for the general biomass and biofilm production in the deep subsurface. Nevertheless, a simple assessment of the toxical effect induced on these strains cannot be representative of the possible interactions at the scale of a long term storage where adaptations should play a major role. For that reason, we decided to choose different strains, namely autotrophic methanogens (Methanothermococcus thermolithotrophicus and Archeoglobus fulgidus) and sulfate reducing bacteria strains (Desulfotomaculum geothermicum and Desulfotomaculum kuznetsovii), that best characterize the autotrophic communities of our injection site (aquifer of the Triassic Keuper sandstones) and to make them undergo a test of selection/adaptation toward a sequential increase of CO2 partial pressure from 0.05 to 5

  11. Two-phase gravity currents in geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Neufeld, J. A.; Golding, M.; Hesse, M. A.; Huppert, H. E.

    2010-12-01

    Geological carbon capture and storage, in which compressed CO2 is injected into deep saline aquifers for permanent storage, forms an integral part of CO2 mitigation strategies. At representative reservoir conditions CO2 is buoyant and may therefore leak into surface waters or the atmosphere. The leakage of CO2 back into the atmosphere may be prevented by the formation of disconnected immobile residual CO2 in the wake of the migrating plume. Here we constrain the magnitude of residual trapping by considering a two-phase model of the buoyancy driven propagation of a plume of injected CO2 within a saline aquifer. The buoyant rise of CO2 within saline aquifers is the principal mechanism through which CO2 contacts the host reservoir. Most simplified models of CO2 migration have assumed that the capillary transition zone is negligible relative to the current thickness and that the fluids are separated by a sharp interface. The results anticipate that such currents quickly become highly localized at the top boundary of reservoirs resulting in a concomitant reduction in residual trapping. However, such single-phase models neglect both the interfacial tension and large viscosity difference between the injected CO2 and the ambient pore fluid. The key challenge in two-phase gravity currents is the modeling of the variation in CO2 saturation with depth within the current. Here we use a standard model that considers the functional dependence of the relative permeability and capillary pressure on saturation to describe the two-phase flow. We anticipate that, after an initial transient, the extent of the current is much greater than its depth and that the capillary pressures within the current are balanced by gravity in this limit. This balance, called gravity-capillary equilibrium, and the fact that flow is predominantly horizontal within the current determine the saturation profile. Realizing that flow is driven primarily by gradients in the hydrostatic pressure, as in single

  12. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  13. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  14. Coupled Modeling of Fault Poromechanics During Geologic CO2 Storage

    NASA Astrophysics Data System (ADS)

    Jha, B.; Hager, B. H.; Juanes, R.

    2012-12-01

    Perhaps the most pressing current debate surrounding carbon capture and storage (CCS) revolves around the pressure limitations on geologic storage [Szulczewski et al., 2012]. Overpressures due to CO2 injection could fracture the caprock [Birkholzer and Zhou, 2009], trigger earthquakes [Cappa and Rutqvist, 2011], and potentially compromise the caprock by activating faults [Zoback and Gorelick, 2012]. While an alarmist view of these issues [Zoback and Gorelick, 2012] appears unwarranted, it seems clear that addressing the coupled processes of CO2 injection and fault poromechanics constitutes a pressing challenge for CCS. More generally, the fundamental link between earthquakes and groundwater flow is a first-order geoscience problem. Despite the interest that this issue has received in recent times, many aspects remain poorly understood, from the physics of the problem to the ability to perform credible fully-coupled simulations. Here, we advance our current simulation technology for forecasting fault slip and fault activation from fluid injection and withdrawal at depth. We present the development and application of a coupled multiphase-flow and reservoir-geomechanics simulator able to model the poromechanics of faults. We use a recently-discovered operator split, the fixed-stress split [Kim et al., 2011], to obtain an unconditionally-stable sequential iterative scheme for the simulation of multiphase flow and geomechanics. The geomechanics code PyLith [Aagaard et al., 2011] permits simulating faults as surfaces of discontinuity. We use the rigorous nonlinear formulation of coupled geomechanics, in which the variation in the fluid mass of each phase is tracked [Coussy, 1995]. Our approach allows us to model strong capillarity and compressibility effects, which can be important in the context of CO2 injection. We present results from several synthetic case studies to highlight the main features of our simulator, and to perform a preliminary risk assessment of leakage

  15. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  16. Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy

    SciTech Connect

    Hepple, Robert P.; Benson, Sally M.

    2002-07-30

    The probability that long-term geologic storage or sequestration of carbon dioxide (CO{sub 2}) will become an important climate change mitigation strategy will depend on a number of factors, namely (1) availability, capacity and location of suitable sites, (2) the cost of geologic storage compared to other climate change mitigation options, and (3) public acceptance. Whether or not a site is suitable will be determined by establishing that it can meet a set of performance requirements for safe and effective geologic storage (PRGS). To date, no such PRGS have been developed. Establishing effective PRGS must start with an evaluation of how much CO{sub 2} might be stored and for how long the CO{sub 2} must remain underground to meet goals for controlling atmospheric CO{sub 2} concentrations. These requirements then provide a context for addressing the issue of what, if any, is an ''acceptable surface seepage rate''? This paper provides a preliminary evaluation of CO{sub 2} storage amounts, time-scales, and concordant performance requirements.

  17. Subsurface storage capacity influences climate-evapotranspiration interactions in three western United States catchments

    NASA Astrophysics Data System (ADS)

    Garcia, E. S.; Tague, C. L.

    2015-12-01

    In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how plant accessible water storage capacity (AWC) and rates of drainage influence model estimates of ET-climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second-order control. Low AWC, however, increases the sensitivity of annual ET to these climate drivers by 3 to 5 times in our two study basins with drier summers. ET-climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver-ET relationships are most sensitive to subsurface storage (AWC) and drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed-scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in storage and drainage properties are likely to lead to substantial within-watershed plot-scale differences in forest water use and drought stress.

  18. Norg underground gas storage - an integrated 3-D geological and geophysical reservoir modeling study

    SciTech Connect

    Cohen, J.; Smith, S. ); Huis, R.; Copper, J.; Whyte, S. )

    1993-09-01

    The Netherlands have an extensive gas distribution infrastructure supplying 80 x 10[sup 9] m[sup 3] per annum to the domestic and European market. The capacity requirement exceeds 600 x 10[sup 6] sm[sup 3]/d, of which 430 x 10[sup 6] sm[sup 3]/d is provided by the giant Groningen gas field. The Groningen field will soon reach a pressure at which this capacity can no longer be met without considerable investments. It will also become difficult to maintain the market gas quality, because of the increasing supply from small fields with widely varying gas qualities. Underground Gas Storage (UGS) will satisfy both capacity and gas-quality requirements. This UGS must eventually store 4.5 x 10[sup 9] m[sup 3] with injection/production capacities of 36/80-100 x 10[sup 6] sm[sup 3]/d, making it one of the largest UGS projects in the world. These extremely high-capacity requirements demand both high-matrix permeability and good understanding of vertical and lateral reservoir continuity. Matrix permeability is predictable due to the close relationship with the lithofacies defined within the primary Rotliegende depositional model. Minor faults, identified on three-dimensional (3-D) seismic attribute maps, represent potential transmissibility impairment zones, compartmentalizing the reservoir. This was initially suggested by core fracture studies and confirmed by a subsequent field shut-in and pressure buildup test. Lithofacies and seismic structural data are integrated within a computerized reservoir geological modeling system known as [open quotes]Monarch[close quotes] to provide a highly detailed 3-D permeability model that is then tranformed into a model for dynamic reservoir simulation. The results confirm the required working volume for the UGS operation and provide a basis for the initial field development planning.

  19. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    PubMed

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  20. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  1. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  2. Predicting capillarity of mudrocks for geological storage of CO2

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann-Hildenbrand, Alexandra

    2013-04-01

    Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were

  3. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    PubMed

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  4. Status of Geological Storage of CO2 as Part of Negative Emissions Strategy

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2014-12-01

    Recent analyses show that many GHG stabilization scenarios require technologies that permanently extract CO2 from the atmosphere -so-called "net negative emissions." Among the most promising negative emissions approaches is bioenergy with carbon capture and storage (BECCS). The most mature options for CO2 storage are in sedimentary rocks located in thick sedimentary basins. Within those basins, CO2 can be stored either in depleted or depleting hydrocarbon formations or in so-called saline aquifers. In addition to the economic costs of bioenergy with CO2 capture, key to the success of and scale at which BECCS can contribute to negative emissions is the ability to store quantities on the order of 1 Gt per year of CO2. Today, about 65 Mt of CO2 per year are injected underground for the purposes of enhancing oil recovery (CO2-EOR) or for CO2 storage, the vast majority being for CO2-EOR. Achieving 1 Gt per year of negative emissions will require a 15-fold scale up of the current injection operations. This paper will review the conditions necessary for storage at this scale, identify what has been learned from nearly 2 decades of experience with CO2 storage that provides insight into the feasibility of CO2 storage on this scale, and identify critical issues that remain to be resolved to meet these ambitious negative emissions targets. Critical technological issues include but are not limited to: the amount of CO2 storage capacity that is available and where it is located in relation to biomass energy resources; identification of sustainable injection rates and how this depends on the properties of the geological formation; the extent to which water extraction will be required to manage the magnitude of pressure buildup; identification of regions at high risk for induced seismicity that could damage structures and infrastructure; and selection of sites with a adequate seals to permanently contain CO2. Social, economic and political issues are also important: including the

  5. Storage capacity of the Fena Valley Reservoir, Guam, Mariana Islands, 2014

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    Analyses of the bathymetric data indicate that the reservoir currently has 6,915 acre-feet of storage capacity. The engineering drawings of record show that the total reservoir capacity in 1951 was estimated to be 8,365 acre-feet. Thus, between 1951 and 2014, the total storage capacity decreased by 1,450 acre-feet (a loss of 17 percent of the original total storage capacity). The remaining live-storage capacity, or the volume of storage above the lowest-level reservoir outlet elevation, was calculated to be 5,511 acre-feet in 2014, indicating a decrease of 372 acre-feet (or 6 percent) of the original 5,883 acre-feet of live-storage capacity. The remaining dead-storage capacity, or volume of storage below the lowest-level outlet, was 1,404 acre-feet in 2014, indicating a decrease of 1,078 acre-feet (or 43 percent) of the original 2,482 acre-feet of dead-storage capacity.

  6. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    Boer-Euser, Tanja; McMillan, Hilary K.; Hrachowitz, Markus; Winsemius, Hessel C.; Savenije, Hubert H. G.

    2016-03-01

    Root zone storage capacity (Sr) is an important variable for hydrology and climate studies, as it strongly influences the hydrological functioning of a catchment and, via evaporation, the local climate. Despite its importance, it remains difficult to obtain a well-founded catchment representative estimate. This study tests the hypothesis that vegetation adapts its Sr to create a buffer large enough to sustain the plant during drought conditions of a certain critical strength (with a certain probability of exceedance). Following this method, Sr can be estimated from precipitation and evaporative demand data. The results of this "climate-based method" are compared with traditional estimates from soil data for 32 catchments in New Zealand. The results show that the differences between catchments in climate-derived catchment representative Sr values are larger than for soil-derived Sr values. Using a model experiment, we show that the climate-derived Sr can better reproduce hydrological regime signatures for humid catchments; for more arid catchments, the soil and climate methods perform similarly. This makes the climate-based Sr a valuable addition for increasing hydrological understanding and reducing hydrological model uncertainty.

  7. Enhancement of Hydrogen Storage Capacity in Hydrate Lattices

    SciTech Connect

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2012-02-16

    First principles electronic structure calculations of the gas phase pentagonal dodecahedron (H2O)20 (D-cage) and tetrakaidecahedron (H2O)24 (T-cage), which are building blocks of structure I (sI) hydrate lattice, suggest that these can accommodate up to a maximum of 5 and 7 guest hydrogen molecules, respectively. For the pure hydrogen hydrate, Born-Oppenheimer Molecular Dynamics (BOMD) simulations of periodic (sI) hydrate lattices indicate that the guest molecules are released into the vapor phase via the hexagonal phases of the larger T-cages. An additional mechanism for the migration between neighboring D- and T-cages was found to occur through a shared pentagonal face via the breaking and reforming of a hydrogen bond. This molecular mechanism is also found for the expulsion of a CH4 molecule from the D-cage. The presence of methane in the larger T-cages was found to block this release, therefore suggesting possible scenarios for the stabilization of these mixed guest clathrate hydrates and the potential enhancement of their hydrogen storage capacity.

  8. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  9. Methane storage capacity of the early martian cryosphere

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  10. Tree invasion effects on peat water storage capacity (La Guette peatland, France)

    NASA Astrophysics Data System (ADS)

    Binet, Stephane; Viel, Emelie; Gogo, Sebastien; Le Moing, Franck; Laggoun-Defarge, Fatima

    2015-04-01

    In peatlands, carbon fluxes are mainly controlled by peat water saturation state, and this saturation state is an equilibrium between recharge/drainage fluxes and the peat storage capacity. The invasion of Sphagnum peatlands by vascular plants is a current problem in many peat-accumulating systems, raising the question of the relationships between vegetation changes and water storage capacity of peat horizons. To investigate this question, the water storage capacity of the "La Guette" peatland (France), invaded by Betula spp was monitored at the watershed scale since 2008 using a water balance approach and was estimated during the 20th century using historical photographs showing the drainage network and the land cover change. During this period, the site clearly experienced a vegetation change as the site was treeless in 1944. Two main results arise from this experimental device: (1) In this disturbed peatland, tree consumption amplifies the summer drought and the resulting water table drawdown allows an increase of air entrapment in the peat. Even if runoff flows occurred after this drought, the water storage capacity is affected, with about 30% of air that remains trapped in the peat porosity 6 months after the drought period. The effects of a single drought on peat water storage capacity are observed over more than a single hydrological cycle, suggesting a possible cumulative effect of droughts decreasing the peat water storage capacity. (2) Tree invasion is found to drive the drainage network morphology. Hydrological model calibrated for the study site suggested that the development of drainage network had reduced the water storage capacity of the peatland. These observations evidenced a positive feedback between vegetation dynamics and water storage capacity: tree invasion changes the drainage network geometry that decreases the peat water storage capacity, which in return may favor tree development. These two results highlight that the peat water storage

  11. High resolution numerical modelling of high temperature heat storage in geological media

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Bauer, Sebastian

    2014-05-01

    Increasing use of energy stemming from renewable sources, such as wind or solar power plants, requires development of new and improvement of existing energy storage options on different time scales. One potential storage option is high temperature heat storage with temperatures of up to 100°C in the geological subsurface using borehole heat exchanger (BHE). Numerical scenario simulations are performed to assess feasibility and storage capacity and, furthermore, to predict the effects induced. To allow for accurate and reliable results, the BHE must be represented correctly and realistic in the numerical model. Therefore, a detailed model of a single BHE and the surrounding aquifer, accounting for the full geometry and component parametrisation (circulating working fluid, pipe and grout), is set up. This model setup is used to simulate an experimental data set from a laboratory sandbox by Beier et al. (2011), containing an 18 m long single U-tube BHE centered horizontally along it. Temperature curves observed in different radial distances as well as at the pipe outflow can be matched well with the model setup used, which is thus verified. Potential geological formations for high temperature heat storage are located in greater depths below fresh water aquifers that are used for drinking water. Therefore, the above model is adapted to represent a 100 m long vertical double U-tube BHE placed in an average depth of 500 m. The processes of heat transport and groundwater flow are coupled by water density and viscosity, which both depend on pressure and temperature. A sensitivity study is done to quantify the effects of the thermal parameters of grout and aquifer on the amount of heat stored and the temperature distribution in the aquifer. It was found that the amount of heat stored through the BHE is most sensitive to the heat conductivity of the aquifer. Increasing the aquifer heat conductivity by 50 % increases the amount of heat stored in the numerical model by 30

  12. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  13. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  14. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181... minimum volumetric liquid impoundment capacity of: (a) 110 percent of the LNG tank's maximum liquid... largest tank's maximum liquid capacity, whichever is greater, for the impoundment serving more than...

  15. Storage Capacity and Sedimentation of Loch Lomond Reservoir, Santa Cruz, California, 1998

    USGS Publications Warehouse

    McPherson, Kelly R.; Harmon, Jerry G.

    2000-01-01

    In 1998, a bathymetric survey was done to determine the storage capacity and the loss of capacity owing to sedimentation of Loch Lomond Reservoir in Santa Cruz County, California. Results of the survey indicate that the maximum capacity of the reservoir is 8,991 acre-feet in November 1998. The results of previous investigations indicate that storage capacity of the reservoir is less than 8,991 acre-feet. The storage capacity determined from those investigations probably were underestimated because of limitations of the methods and the equipment used. The volume of sedimentation in a reservoir is considered equal to the decrease in storage capacity. To determine sedimentation in Loch Lomond Reservoir, change in storage capacity was estimated for an upstream reach of the reservoir. The change in storage capacity was determined by comparing a 1998 thalweg profile (valley floor) of the reservoir with thalweg profiles from previous investigations; results of the comparison indicate that sedimentation is occurring in the upstream reach. Cross sections for 1998 and 1982 were compared to determine the magnitude of sedimentation in the upstream reach of the reservoir. Results of the comparison, which were determined from changes in the cross-sectional areas, indicate that the capacity of the reservoir decreased by 55 acre-feet.

  16. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  17. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    EIA Publications

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  18. A HIERARCHICAL MODELING FRAMEWORK FOR GEOLOGICAL STORAGE OF CARBON DIOXIDE

    EPA Science Inventory

    Carbon Capture and Storage, or CCS, is likely to be an important technology in a carbonconstrained world. CCS will involve subsurface injection of massive amounts of captured CO2, on a scale that has not previously been approached. The unprecedented scale of t...

  19. OneGeology - a geoscience exemplar for worldwide cyberinfrastructure capacity-building and scientific innovation

    NASA Astrophysics Data System (ADS)

    van Daalen, T.; Allison, M. L.

    2012-12-01

    OneGeology is a trail-blazing global initiative that has helped propel the geosciences into the forefront of cyberinfrastructure development with potentially transformative impacts on scientific and technical innovation across broad areas of society. In the five years since its launch, 117 nations, through their Geological Surveys have signed the OneGeology protocols and nearly half are serving up national geological maps as Web services at varying scales, with the remainder developing those capabilities. In federal systems, states and provinces are increasingly adding higher resolution spatial data to the national contributions to the global system. The OneGeology concept of a distributed, open-source, Web-service based network has become the archetype for transforming data into knowledge and innovation. This is not only revolutionizing the geosciences but offering opportunities for governments to use these cutting-edge capabilities for broad innovation and capacity building. Across the globe, communities are facing the same four challenges: put simply, how do we best make data discoverable, shareable, viewable and downloadable, so that the user also has access to consistent data at a national and continental level? The principle of managing scientific and societal data and knowledge where they are generated and are best understood is well established in the geoscience community and can be scaled up and transferred to other domains and sectors of society. The distributed nature of most data sources means the complementary delivery mechanism of Web map services has become equally prevalent in the spatial data community. Together these factors are driving a world-wide revolution in the way spatial information is being disseminated to its users. Industry, academia, and governments are quickly adopting and adapting to this new paradigm and discovering that very modest investments in this emerging field are reaping tremendous returns in national capacity and triggering

  20. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  1. The Nanoscale Basis of CO2 Trapping for Geologic Storage.

    PubMed

    Bourg, Ian C; Beckingham, Lauren E; DePaolo, Donald J

    2015-09-01

    Carbon capture and storage (CCS) is likely to be a critical technology to achieve large reductions in global carbon emissions over the next century. Research on the subsurface storage of CO2 is aimed at reducing uncertainties in the efficacy of CO2 storage in sedimentary rock formations. Three key parameters that have a nanoscale basis and that contribute uncertainty to predictions of CO2 trapping are the vertical permeability kv of seals, the residual CO2 saturation Sg,r in reservoir rocks, and the reactive surface area ar of silicate minerals. This review summarizes recent progress and identifies outstanding research needs in these areas. Available data suggest that the permeability of shale and mudstone seals is heavily dependent on clay fraction and can be extremely low even in the presence of fractures. Investigations of residual CO2 trapping indicate that CO2-induced alteration in the wettability of mineral surfaces may significantly influence Sg,r. Ultimately, the rate and extent of CO2 conversion to mineral phases are uncertain due to a poor understanding of the kinetics of slow reactions between minerals and fluids. Rapidly improving characterization techniques using X-rays and neutrons, and computing capability for simulating chemical interactions, provide promise for important advances. PMID:26266820

  2. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect

    Goodman, Angela L.; Bromhal, Grant S.; Strazisar, Brian; Rodosta, Traci D.; Guthrie, William J.; Allen, Douglas E.; Guthrie, George D.

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  3. Energy storage capacity of reversible liquid phase Diels-Alder reactions as determined by drop calorimetry

    SciTech Connect

    Chung, C.P.

    1983-01-01

    Several Diels-Alder reactions were evaluated as possible candidates for energy storage. The goal was to use simple drop calorimetry to screen reactions and to identify those with high energy storage capacities. The dienes used were furan and substituted furans. The dienophiles used were maleic anhydride and substituted maleic anhydrides. Sixteen reactions have been examined. Three had energy storage capacities that were increased due to reaction (maleic anhydride and 2-methyl furan, maleic anhydride and 2-ethyl furan, maleic anhydride and 2,5-dimethyl furan). The remaining thirteen showed no increase in apparent heat capacity due to reaction.

  4. Analysis of methods to determine storage capacity of, and sedimentation in, Loch Lomond Reservoir, Santa Cruz County, California, 2009

    USGS Publications Warehouse

    McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.

    2011-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998

  5. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  6. Global root zone storage capacity from satellite-based evaporation data

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert

    2016-04-01

    We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.

  7. Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity.

    PubMed

    Emrich, Stephen M; Busseri, Michael A

    2015-09-01

    The amount of task-irrelevant information encoded in visual working memory (VWM), referred to as unnecessary storage, has been proposed as a potential mechanism underlying individual differences in VWM capacity. In addition, a number of studies have provided evidence for additional activity that initiates the filtering process originating in the frontal cortex and basal ganglia, and is therefore a crucial step in the link between unnecessary storage and VWM capacity. Here, we re-examine data from two prominent studies that identified unnecessary storage activity as a predictor of VWM capacity by directly testing the implied path model linking filtering-related activity, unnecessary storage, and VWM capacity. Across both studies, we found that unnecessary storage was not a significant predictor of individual differences in VWM capacity once activity associated with filtering was accounted for; instead, activity associated with filtering better explained variation in VWM capacity. These findings suggest that unnecessary storage is not a limiting factor in VWM performance, whereas neural activity associated with filtering may play a more central role in determining VWM performance that goes beyond preventing unnecessary storage. PMID:25690338

  8. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGESBeta

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  9. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  10. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  11. Rock Physics of Geologic Carbon Sequestration/Storage

    SciTech Connect

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  12. Geological characterization of Italian reservoirs and numerical 3D modelling of CO2 storage scenarios into saline aquifers

    NASA Astrophysics Data System (ADS)

    Beretta, S.; Moia, F.; Guandalini, R.; Cappelletti, F.

    2012-04-01

    The research activities carried out by the Environment and Sustainable Development Department of RSE S.p.A. aim to evaluate the feasibility of CO2 geological sequestration in Italy, with particular reference to the storage into saline aquifers. The identification and geological characterization of the Italian potential storage sites, together with the study of the temporal and spatial evolution of the CO2 plume within the caprock-reservoir system, are performed using different modelling tools available in the Integrated Analysis Modelling System (SIAM) entirely powered in RSE. The numerical modelling approach is the only one that allows to investigate the behaviour of the injected CO2 regarding the fluid dynamic, geochemical and geomechanical aspects and effects due to its spread, in order to verify the safety of the process. The SIAM tools allow: - Selection of potential Italian storage sites through geological and geophysical data collected in the GIS-CO2 web database; - Characterization of caprock and aquifer parameters, seismic risk and environmental link for the selected site; - Creation of the 3D simulation model for the selected domain, using the modeller METHODRdS powered by RSE and the mesh generator GMSH; - Simulation of the injection and the displacement of CO2: multiphase fluid 3D dynamics is based on the modified version of TOUGH2 model; - Evaluation of geochemical reaction effects; - Evaluation of geomechanic effects, using the coupled 3D CANT-SD finite elements code; - Detailed local analysis through the use of open source auxiliary tools, such as SHEMAT and FEHM. - 3D graphic analysis of the results. These numerical tools have been successfully used for simulating the injection and the spread of CO2 into several real Italian reservoirs and have allowed to achieve accurate results in terms of effective storage capacity and safety analysis. The 3D geological models represent the high geological complexity of the Italian subsoil, where reservoirs are

  13. REGULATING THE ULTIMATE SINK: MANAGING THE RISKS OF GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper addresses the issue of geologic storage (GS) of carbon dioxide (CO2) and discusses the risks and regulatory history of deep underground waste injection on the U.S. mainland and surrounding continental shelf. The treatment focuses on the technical and regulatory aspects ...

  14. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin

  15. Response surfaces for CO2 leakage from geologic storage along abandoned wellbores

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Carey, J. W.; Pawar, R. J.; Stauffer, P. H.

    2011-12-01

    The storage of carbon dioxide (CO2) in geologic reservoirs that have previously been drilled for oil and gas exploration is under investigation worldwide as an option for reducing the amount of anthropogenic carbon introduced to the atmosphere. Reservoirs that have already been tapped for hydrocarbon production have several benefits over development of new sites: they tend to be geologically well-understood, with existing wellbore data to help further characterize the local geologic framework; are known to be conducive to trapping buoyant or pressurized fluids; may have infrastructure in place; and are likely to be already impacted ecologically as compared to pristine sites. One downside to using depleted hydrocarbon reservoirs is the potential for CO2 leakage along pre-existing wellbores that were either not designed for CO2 sequestration or have been improperly plugged and abandoned. The primary goal of this study is to develop estimates of possible wellbore leakage rates of CO2 from storage reservoirs to the surface and/or into overlaying aquifers, as a function of wellbore properties and the surrounding geologic framework. The Finite Element Heat and Mass transfer code (FEHM) was used to perform Monte Carlo simulations of multiphase flow along wellbores across a wide range of geologic and wellbore parameters. Several wellbore scenarios were studied, including a simple wellbore between the CO2 storage reservoir and the surface; a wellbore intersecting a saline aquifer ("thief zone"); and a wellbore intersecting both a thief zone and a freshwater aquifer. The Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE) software was used to analyze results and produce response surfaces for the estimation of wellbore flow rate as a function of the primary factors that influence leakage. These results will be used to develop abstractions for leakage rates to be incorporated in performance assessments of geologic CO2 storage, which will help

  16. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion.

    PubMed

    Jiménez-Zamora, Ana; Delgado-Andrade, Cristina; Rufián-Henares, José A

    2016-05-15

    Many plants, like tea, are widely used for preparing herbal infusions. These plants have an interesting antioxidant capacity that may change after harvesting depending on the technological processing and the storage conditions. We determined the antioxidant capacity (ABTS, DPPH and FRAP methods), total phenolic content and color analysis (reflectance) of 36 plants traditionally consumed in Spain as infusion. Green tea was the most antioxidant herb, although oregano and lemon balm showed also a very high antioxidant capacity, as well as phenolic content. The antioxidant study after 3-month storage at different temperatures showed that up to a 50% of the total antioxidant capacity could be lost. Color analysis correlated with antioxidant capacity evolution, being a quick tool to control the storage conditions. Finally, our data confirm that the intake of one serving of plant infusion could release the equivalent of up to 1,500 μmol trolox, being a good source of antioxidants for the human diet. PMID:26775980

  17. National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands

    USGS Publications Warehouse

    Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.

    2015-01-01

    Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.

  18. Heat transfer analysis of the geologic disposal of spent fuel and high level waste storage canisters

    NASA Astrophysics Data System (ADS)

    Allen, G. K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two and three dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters.

  19. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  20. Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)

    SciTech Connect

    Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B.; Griess, J.C.

    1994-12-31

    The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

  1. [Water storage capacity of qinghai spruce (Picea crassifolia) forest canopy in Qilian Mountains].

    PubMed

    Peng, Huan-hua; Zhao, Chuan-yan; Xu, Zhong-lin; Peng, Shou-zhang; Wang, Yao

    2011-09-01

    By the methods of direct measurement and regression analysis, this paper estimated the water storage capacity of Picea crassifolia forest canopy in Guantan in Qilianshan Mountains, based on the observed throughfall and the laboratory experimental data about the water storage capacity of various canopy components in 2008. Due to the impacts of various factors, differences existed in the canopy water storage capacity estimated by the two methods. The regression analysis was mainly impacted by the measurement approaches of the throughfall, the maximum water storage capacity estimated being 0.69 mm, whereas the direct measurement was mainly impacted by tree height, diameter at breast height, plant density, and leaf area index, with the estimated maximum water storage capacity being 0.77 mm. The direct measurement showed that the maximum water storage capacity per unit area of the canopy components of the forest was in the order of barks (0.31 mm) > branches (0.28 mm) > leaves (0.08 mm). PMID:22126029

  2. Geologic Sequestration Software Suite (GS3): a collaborative approach to the management of geological GHG storage projects

    SciTech Connect

    Bonneville, Alain; Black, Gary D.; Gorton, Ian; Hui, Peter SY; Murphy, Ellyn M.; Murray, Christopher J.; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; White, Mark D.; Williams, Mark D.; Wurstner, Signe K.

    2011-01-23

    Geologic storage projects associated with large anthropogenic sources of greenhouse gases (GHG) will have lifecycles that may easily span a century, involve several numerical simulation cycles, and have distinct modeling teams. The process used for numerical simulation of the fate of GHG in the subsurface follows a generally consistent sequence of steps that often are replicated by scientists and engineers around the world. Site data is gathered, assembled, interpreted, and assimilated into conceptualizations of a solid-earth model; assumptions are made about the processes to be modeled; a computational domain is specified and spatially discretized; driving forces and initial conditions are defined; the conceptual models, computational domain, and driving forces are translated into input files; simulations are executed; and results are analyzed. Then, during and after the GHG injection, a continuous monitoring of the reservoir is done and models are updated with the newly collected data. Typically the working files generated during all these steps are maintained on workstations with local backups and archived once the project has concluded along with any modeling notes and records. We are proposing a new concept for supporting the management of full-scale GHG storage projects where collaboration, flexibility, accountability and long-term access will be essential features: the Geologic Sequestration Software Suite, GS3.

  3. Formation Buffering Potential Pertaining to Geological Storage of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Ellis, B. R.; Peters, C. A.; Buschkuehle, M.

    2007-12-01

    One promising strategy for decreasing CO2 emissions to the atmosphere is carbon capture and storage in deep saline formations. Modeling efforts and the experimental measurements that support these efforts are critical to determining the fate of injected CO2. The focus of this work is CO2-water-rock interactions as they pertain to formation buffering potential. PHREEQC was used to model pH evolution in siliciclastic and carbonate rocks after simulated injection of CO2. The initial mineral and formation water compositions were determined from analysis of core samples and brines from several formations in the Alberta sedimentary basin in western Canada. Simulation parameters correspond to injection conditions of 50°C, CO2 pressure of 100 bar and high ionic strength. Results indicate that the carbonate formations have a higher buffering potential relative to siliciclastic formations. Considerable variability of acid-catalyzed reactions among formations with similar mineralogical compositions was also observed. To assess the effect of grain coating by clay minerals, a comparative simulation was performed with kaolinite as the dominant mineral in contact with the pore fluids. Results from this simulation showed a pronounced retardation in pH buffering reaction kinetics. This emphasizes the importance for differentiating between mineral abundance and accessibility in model calculations when clay coatings may obscure contact between pore fluids and potentially reactive minerals.

  4. Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) and to consult with other Federal and State agencies to locate the pertinent geological data needed for the assessment. The geologic sequestration of CO2 is one possible way to mitigate its effects on climate change. The methodology used for the national CO2 assessment (Open-File Report 2010-1127; http://pubs.usgs.gov/of/2010/1127/) is based on previous USGS probabilistic oil and gas assessment methodologies. The methodology is non-economic and intended to be used at regional to subbasinal scales. The operational unit of the assessment is a storage assessment unit (SAU), composed of a porous storage formation with fluid flow and an overlying sealing unit with low permeability. Assessments are conducted at the SAU level and are aggregated to basinal and regional results. This report identifies and contains geologic descriptions of SAUs in separate packages of sedimentary rocks within the assessed basin and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage

  5. The usable capacity of porous materials for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schlichtenmayer, Maurice; Hirscher, Michael

    2016-04-01

    A large number of different porous materials has been investigated for their hydrogen uptake over a wide pressure range and at different temperature. From the absolute adsorption isotherms, the enthalpy of adsorption is evaluated for a wide range of surface coverage. The usable capacity, defined as the amount of hydrogen released between a maximum tank pressure and a minimum back pressure for a fuel cell, is analyzed for isothermal operation. The usable capacity as a function of temperature shows a maximum which defines the optimum operating temperature. This optimum operating temperature is higher for materials possessing a higher enthalpy of adsorption. However, the fraction of the hydrogen stored overall that can be released at the optimum operating temperature is higher for materials with a lower enthalpy of adsorption than for the ones with higher enthalpy.

  6. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  7. Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species.

    PubMed

    Krainyukova, Nina V; Zubarev, Evgeniy N

    2016-02-01

    We report an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. The allotrope structures are derived from our low temperature electron diffraction and electron microscopy data. These structures can be both periodic and random and are built exclusively from sp^{2}-bonded carbon atoms, and may be considered as three-dimensional graphene. They demonstrate high levels of physical absorption of various gases unattainable in other carbon forms such as fullerites or nanotubes. These honeycomb structures can be used not only for storage of various gases and liquids but also as a matrix for new composites. PMID:26894716

  8. Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.; Zubarev, Evgeniy N.

    2016-02-01

    We report an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. The allotrope structures are derived from our low temperature electron diffraction and electron microscopy data. These structures can be both periodic and random and are built exclusively from s p2 -bonded carbon atoms, and may be considered as three-dimensional graphene. They demonstrate high levels of physical absorption of various gases unattainable in other carbon forms such as fullerites or nanotubes. These honeycomb structures can be used not only for storage of various gases and liquids but also as a matrix for new composites.

  9. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  10. Some examples of the utility of HCMM data in geologic remote sensing. [Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Schieldge, J. P.; Abrams, M. J.; Alley, R. E.

    1981-01-01

    Examples of HCMM (Heat Capacity Mapping Mission) data in geologic remote sensing are presented, and the data set is composed of HCMM and aircraft digital scanner data and ground truth data from four western U.S. test sites. Data are used in the thermal model to test thermal data effectiveness, and changes in temperature with depth and time for dry soils are described by the model. It is found that the HCMM thermal inertia image is useful in the separability of bedrock and alluvium in Death Valley, and aa and pahoehoe flows in the Pisgah basalt flow. In a color composite of HCMM day temperature, night temperature, and day visible images of the Pisgah Crater test site, it is possible to distinguish alluvium, playa, aa and pahoehoe basalt flow, rhyolite intrusives, and other elements. Ground checking of units at a few points will extend capabilities to large areas and assist in creating telegeologic maps.

  11. Statistical characterisation and stochastic parameterisation of sedimentary geological formations on their reaction capacity for sustainable groundwater quality management

    NASA Astrophysics Data System (ADS)

    Griffioen, J.; Vermooten, S.; Keijzer, T.; Bakr, M.; Valstar, J.

    2012-04-01

    The fate of contaminants in groundwater aquifers is determined by the buffering capacity of those aquifers together with the composition of inflowing groundwater. A nationwide characterisation of the environmental geochemistry of the shallow subsurface (down to 30 m below surface) has been started in the Netherlands. This covers: 1. the reaction capacity of sediments as buffer for contamination, and 2. typical elemental composition of geological formations and the association between trace elements and major minerals. For this purpose, the Netherlands is subdivided into 27 so-called geotop regions each having a unique geological build-up of the shallow subsurface. Here, four types are recognised based on vertical hydrogeological build-up. The regions are statistically characterised on their geochemical composition using combinations of lithological class and geological formation as strata. The statistical data are subsequently coupled with a geological voxel model of the subsurface to stochastically parameterise the geological units on reaction capacity. This combined approach will be illustrated for the Dutch province Zeeland. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. A statistical investigation of several hunderds of sediment analyses is performed that provides the geochemical properties of the sediments. Here, classification based on sedimentary facies

  12. Estimating CO2 storage capacity in saline aquifers: Revisited concept and application to the Bécancour area (Québec, Canada)

    NASA Astrophysics Data System (ADS)

    Dung Tran Ngoc, Tien; Lefebvre, René; Malo, Michel; Doughty, Christine

    2013-04-01

    Knowledge of effective storage capacity is needed to assess CO2 geological storage projects. Although many efforts have been made to define and estimate storage capacity in deep saline aquifers, it is a complex issue due to the multiphase-multicomponent displacement processes involved. There are difficulties and differing views about the use of existing dynamic/static capacity estimation approaches, especially regarding the application of these approaches to various types of reservoirs. In this research, a revised methodology to assess the amount of CO2 that can be injected into a saline aquifer is presented in terms of reservoir boundaries, capacity definitions and efficiency storage factors. For the dynamic approach, the TOUGH2 numerical simulator was used to calculate the CO2 storage capacity for a bounded reservoir volume, using a definition of "capacity" based on the mass of all forms of CO2 present in the reservoir after injection (mobile, immobile and dissolved). It is necessary to distinguish the efficiency storage factors, and thus the storage capacity, that are estimated on mass or volume basis because the factors based on mass are greater than the ones based on volume. Local and global efficiency storage factors are respectively averaged over domains containing CO2 and the whole reservoir and they change with space and time. For the static approach (i.e. USDOE volumetric and compressibility methods), in order to compute the storage capacity the only difficulty resides in the estimation of the efficiency storage factors, which are related to the areal, vertical, gravity and microscopic displacements in the volumetric static method. These factors were quantitatively estimated from correlations used in petroleum engineering to relate multiphase displacement processes with dimensionless numbers. The methodology proposed herein was applied to the estimation of the CO2 effective storage capacity of the deep saline aquifers of the Potsdam sandstones in the B

  13. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  14. The Evolution of Root Zone Storage Capacity after Land Use Change

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-04-01

    Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the

  15. CO2 Storage Capacity of Saline Aquifers in the Swedish Sector of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Sopher, Daniel; Juhlin, Christopher

    2014-05-01

    Carbon Capture and Storage (CCS) is one of a range of options to reduce CO2 emissions in order to mitigate climate change in the future. The Intra-cratonic Baltic Sea Basin contains several saline aquifers which could be suitable for CO2 storage. In this study the CO2 storage capacity of the Cambrian När and Faludden sandstone members is evaluated within the Swedish sector of the Baltic Sea Basin. A probabilistic approach is adopted to characterise both the most likely storage capacity estimate as well as the associated uncertainty. The storage capacity within structural closures and stratigraphic traps is considered. Depth structure maps generated using a dense grid of vintage 2D marine seismic data are used to assess the storage potential in structural traps for both potential reservoirs. A regional scale stratigraphic trap is also considered for the Faludden reservoir. Key input properties for the CO2 storage capacity calculations such as porosity, CO2 density and storage efficiency factor are characterised based on available well log and core data. CO2 storage capacities for the structural and stratigraphic traps are then calculated using a Monte Carlo type approach where the input parameters are randomly perturbed within a set range. A statistical analysis of the input parameters is used to define the range within which these properties are allowed to vary, both spatially and at a given point. Finally these results are compared to others for the greater Baltic Sea region. This approach allows a most likely CO2 storage capacity estimate as well as low and high estimates to be obtained for the Swedish sector of the Baltic Sea in the investigated formations. Based on these results it appears that the largest storage capacity lies within the regional stratigraphic trap of the Faludden reservoir. The structural traps provide significantly smaller volumes when compared to the Faludden stratigraphic trap. The majority of the structural traps are also less certain

  16. High-capacity hydrogen storage medium: Ti doped fullerene

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Liu, Zhiguo; Liu, Suqin; Zhao, Xuehui; Huang, Kelong

    2011-01-01

    Using density functional theory, it is shown that titanium doped heterofullerene has superior property of hydrogen storage. The single titanium atom lies at a double bond position of C60 and bonds to four carbons by Dewar interaction. Each titanium atom binds up to six hydrogen molecules. The first and second hydrogen molecules are dissociated to form carbon hydrides with binding energy of -0.43 eV/H. The other four adsorptions are molecular with binding energy of -0.14 eV/H2. For substitutionally dope C60 with six titanium atoms, the gravimetric density of hydrogen reaches the 7.7 wt % limit necessary for applications in the mobile industry.

  17. Interception Storage Capacities of Plants Used in Vegetated Stormwater Management Features

    NASA Astrophysics Data System (ADS)

    Rostad, N.; DiGiovanni, K. A.; Montalto, F. A.

    2011-12-01

    During and after rainstorms, evaporation of precipitation intercepted by canopies (interception loss) constitutes a large fraction of the evapotranspirative fluxes from vegetated surfaces. In engineered urban green spaces, interception losses could thus represent a significant component of stormwater management planning. Conventional hydrologic modeling tools typically predict interception losses using vegetation specific parameters such as interception storage capacity. However, these parameters were usually derived from experiments with trees, in forest stands, or cropped agricultural surfaces. There is very little data available on the interception storage capacities of plants typically used in urban greening programs. This paper will present the results of experiments performed under a rainfall simulator to empirically derive interception storage capacities for native plants typically incorporated into urban greening projects in New York City. A mass based method of measuring interception storage for ground cover plants is tested and compared to results obtained using other previously published methods. These laboratory derived values of interception storage capacities are compared with field data from four weighing lysimeters installed in green spaces in New York City. Relationships between vegetation characteristics and interception storage are explored, and the results used to compare the use of different species for stormwater management.

  18. Spent fuel handling system for a geologic storage test at the Nevada Test Site

    SciTech Connect

    Duncan, J.E.; House, P.A.; Wright, G.W.

    1980-05-01

    The Lawrence Livermore Laboratory is conducting a test of the geologic storage of encapsulated spent commercial reactor fuel assemblies in a granitic rock at the Nevada Test Site. The test, known as the Spent Fuel Test-Climax (SFT-C), is sponsored by the US Department of Energy, Nevada Operations Office. Eleven pressurized-water-reactor spent fuel assemblies are stored retrievably for three to five years in a linear array in the Climax stock at a depth of 420 m.

  19. Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup.

    PubMed

    Heath, Jason E; McKenna, Sean A; Dewers, Thomas A; Roach, Jesse D; Kobos, Peter H

    2014-01-21

    CO2 storage efficiency is a metric that expresses the portion of the pore space of a subsurface geologic formation that is available to store CO2. Estimates of storage efficiency for large-scale geologic CO2 storage depend on a variety of factors including geologic properties and operational design. These factors govern estimates on CO2 storage resources, the longevity of storage sites, and potential pressure buildup in storage reservoirs. This study employs numerical modeling to quantify CO2 injection well numbers, well spacing, and storage efficiency as a function of geologic formation properties, open-versus-closed boundary conditions, and injection with or without brine extraction. The set of modeling runs is important as it allows the comparison of controlling factors on CO2 storage efficiency. Brine extraction in closed domains can result in storage efficiencies that are similar to those of injection in open-boundary domains. Geomechanical constraints on downhole pressure at both injection and extraction wells lower CO2 storage efficiency as compared to the idealized scenario in which the same volumes of CO2 and brine are injected and extracted, respectively. Geomechanical constraints should be taken into account to avoid potential damage to the storage site. PMID:23971876

  20. Environmental considerations for subseabed geological storage of CO2: A review

    NASA Astrophysics Data System (ADS)

    Carroll, A. G.; Przeslawski, R.; Radke, L. C.; Black, J. R.; Picard, K.; Moreau, J. W.; Haese, R. R.; Nichol, S.

    2014-07-01

    Many countries are now using or investigating offshore geological storage of CO2 as a means to reduce atmospheric CO2 emissions. Although associated research often focuses on deep-basin geology (e.g. seismic, geomagnetics), environmental data on the seabed and shallow subseabed is also crucial to (1) detect and characterise potential indicators of fluid seeps and their potential connectivity to targeted storage reserves, (2) obtain baseline environmental data for use in future monitoring, and (3) acquire information to facilitate an improved understanding of ecosystem processes for use in impact prediction. This study reviews the environmental considerations, including potential ecological impacts, associated with subseabed geological storage of CO2. Due to natural variations in CO2 levels in seafloor sediments, baseline CO2 measurements and knowledge of physical-chemical processes affecting the regional distribution of CO2 and pH are critical for the design of appropriate monitoring strategies to assess potential impacts of CO2 seepage from subseabed storage reservoirs. Surficial geological and geophysical information, such as that acquired from multibeam sonar and sub-bottom profiling, can be used to investigate the connectivity between the deep reservoirs and the surface, which is essential in establishing the reservoir containment properties. CO2 leakage can have a pronounced effect on sediments and rocks which in turn can have carryover effects to biogeochemical cycles. The effects of elevated CO2 on marine organisms are variable and species-specific but can also have cascading effects on communities and ecosystems, with marine benthic communities at some natural analogue sites (e.g. volcanic vents) showing decreased diversity, biomass, and trophic complexity. Despite their potential applications, environmental surveys and data are still not a standard and integral part of subseabed CO2 storage projects. However, the habitat mapping and seabed characterisation

  1. Geologic Storage at the Basin Scale: Region-Based Basin Modeling, Powder River Basin (PRB), NE Wyoming and SE Montana

    NASA Astrophysics Data System (ADS)

    Melick, J. J.; Gardner, M. H.

    2008-12-01

    Carbon capture and storage from the over 2000 power plants is estimated at 3-5 GT/yr, which requires large- scale geologic storage of greenhouse gasses in sedimentary basins. Unfortunately, determination of basin scale storage capacity is currently based on oversimplified geologic models that are difficult to validate. Simplification involves reducing the number of geologic parameters incorporated into the model, modeling with large grid cells, and treatment of subsurface reservoirs as homogeneous media. The latter problem reflects the focus of current models on fluid and/or fluid-rock interactions rather than fluid movement and migration pathways. For example, homogeneous models over emphasize fluid behavior, like the buoyancy of super-critical CO2, and hence overestimate leakage rates. Fluid mixing and fluid-rock interactions cannot be assessed with models that only investigate these reactions at a human time scale. Preliminary and conservative estimates of the total pore volume for the PRB suggest 200 GT of supercritical CO2 can be stored in this typical onshore sedimentary basin. The connected pore volume (CPV) however is not included in this estimate. Geological characterization of the CPV relates subsurface storage units to the most prolific reservoir classes (RCs). The CPV, number of well penetrations, supercritical storage area, and potential leakage pathways characterize each RC. Within each RC, a hierarchy of stratigraphic cycles is populated with stationary sedimentation regions that control rock property distributions by correlating environment of deposition (EOD) to CPV. The degree to which CPV varies between RCs depends on the geology and attendant heterogeneity retained in the fluid flow model. Region-based modeling of the PRB incorporates 28000 wells correlated across a 70,000 Km2 area, 2 km thick on average. Within this basin, five of the most productive RCs were identified from production history and placed in a fourfold stratigraphic framework

  2. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  3. Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic and hysteretic characteristic curves

    SciTech Connect

    Doughty, Christine

    2006-07-17

    Numerical models of geologic storage of carbon dioxide (CO2)in brine-bearing formations use characteristic curves to represent theinteractions of non-wetting-phase CO2 and wetting-phase brine. When aproblem includes both injection of CO2 (a drainage process) and itssubsequent post-injection evolution (a combination of drainage andwetting), hysteretic characteristic curves are required to correctlycapture the behavior of the CO2 plume. In the hysteretic formulation,capillary pressure and relative permeability depend not only on thecurrent grid-block saturation, but also on the history of the saturationin the grid block. For a problem that involves only drainage or onlywetting, a non-hysteretic formulation, in which capillary pressure andrelative permeability depend only on the current value of the grid-blocksaturation, is adequate. For the hysteretic formulation to be robustcomputationally, care must be taken to ensure the differentiability ofthe characteristic curves both within and beyond the turning-pointsaturations where transitions between branches of the curves occur. Twoexample problems involving geologic CO2 storage are simulated withTOUGH2, a multiphase, multicomponent code for flow and transport codethrough geological media. Both non-hysteretic and hysteretic formulationsare used, to illustrate the applicability and limitations ofnon-hysteretic methods.The first application considers leakage of CO2from the storage formation to the ground surface, while the secondexamines the role of heterogeneity within the storageformation.

  4. Climate change and storage response in alpine geologic endmember catchments using integrated modeling and baseflow recession analysis

    NASA Astrophysics Data System (ADS)

    Markovich, K. H.; Fogg, G. E.; Maxwell, R. M.; Arumi, J. L.

    2015-12-01

    Runoff generation in snowmelt-dominated alpine systems predominantly occurs in subsurface, be it in the soil, saprolite, or fractured bedrock zone, and shifts in timing and amount of runoff due to climate change remains an open topic of research. Furthermore, the degree to which subsurface storage offsets the loss of snow storage in porous and fractured alpine terrains, i.e., the hydrogeologic buffering capacity, is still largely unknown. The snowmelt-dominated alpine watersheds in California and Chile are particularly vulnerable to climate change due to their Mediterranean climate, where winter snowpack sustains the demand of urban and agricultural needs during the dry summers. The streams draining the western slope of the Sierra Nevada and Andes mountains show a decline in snowmelt runoff, with an earlier shift in spring pulse and center of mass timing over the past 50 years. Following the snowmelt period, summer low flows are sustained by groundwater, and interbasin baseflow trends have been shown to correlate with geology, and to some extent, soil thickness in less permeable basins. However, the interannual (intrabasin) baseflow trends have not been explored with respect to climate change impacts to storage-discharge relationships. Here we estimate long-term groundwater storage trends via baseflow recession analysis for two geologically distinct alpine basins: the granitic Middle Fork Kaweah in the southern Sierra Nevada, California (640 masl, 264.2 km2 with daily data back to 1949) and the volcanic Diguillín in the central Andes, Bío Bío Region, Chile (670 masl and 334 km2 with daily data back to 1959). We employ a simple linear reservoir model for estimating storage from baseflow, and investigate the sensitivity to watershed characteristics, such as depth of groundwater circulation and storage on the results. We supplement these results with numerical experiments conducted using ParFlow-CLM, a fully-integrated hydrologic model coupled to a land surface

  5. On CO2 Behavior in the Subsurface, Following Leakage from aGeologic Storage Reservoir

    SciTech Connect

    Pruess, Karsten

    2006-02-09

    The amounts of CO2 that would need to be injected intogeologic storage reservoirs to achieve a significant reduction ofatmospheric emissions are very large. A 1000 MWe coal-fired power plantemits approximately 30,000 tonnes of CO2 per day, 10 Mt per year(Hitchon, 1996). When injected underground over a typical lifetime of 30years of such a plant, the CO2 plume may occupy a large area of order 100km2 or more, and fluid pressure increase in excess of 1 bar(corresponding to 10 m water head) may extend over an area of more than2,500 km2 (Pruess, et al., 2003). The large areal extent expected for CO2plumes makes it likely that caprock imperfections will be encountered,such as fault zones or fractures, which may allow some CO2 to escape fromthe primary storage reservoir. Under most subsurface conditions oftemperature and pressure, CO2 is buoyant relative to groundwaters. If(sub-)vertical pathways are available, CO2 will tend to flow upward and,depending on geologic conditions, may eventually reach potablegroundwater aquifers or even the land surface. Leakage of CO2 could alsooccur along wellbores, including pre-existing and improperly abandonedwells, or wells drilled in connection with the CO2 storage operations.The pressure increases accompanying CO2 injection will give rise tochanges in effective stress that could cause movement along faults,increasing permeability and potential for leakage.Escape of CO2 from aprimary geologic storage reservoir and potential hazards associated withits discharge at the land surface raise a number of concerns, including(1) acidification of groundwater resources, (2) asphyxiation hazard whenleaking CO2 is discharged at the land surface, (3) increase inatmospheric concentrations of CO2, and (4) damage from a high-energy,eruptive discharge (if such discharge is physically possible). In orderto gain public acceptance for geologic storage as a viable technology forreducing atmospheric emissions of CO2, it is necessary to address theseissues

  6. Storage capacity and retrieval time of small-world neural networks

    SciTech Connect

    Oshima, Hiraku; Odagaki, Takashi

    2007-09-15

    To understand the influence of structure on the function of neural networks, we study the storage capacity and the retrieval time of Hopfield-type neural networks for four network structures: regular, small world, random networks generated by the Watts-Strogatz (WS) model, and the same network as the neural network of the nematode Caenorhabditis elegans. Using computer simulations, we find that (1) as the randomness of network is increased, its storage capacity is enhanced; (2) the retrieval time of WS networks does not depend on the network structure, but the retrieval time of C. elegans's neural network is longer than that of WS networks; (3) the storage capacity of the C. elegans network is smaller than that of networks generated by the WS model, though the neural network of C. elegans is considered to be a small-world network.

  7. Oxygen storage capacity of noble metal car exhaust catalysts containing nickel and cerium

    SciTech Connect

    Loeoef, P.; Kasemo, B.; Keck, K.E. )

    1989-08-01

    Oxygen storage capacity as a function of temperature was measured for two different monolithic car exhaust catalysts. Mass spectrometry connected on-line to a flow reactor was used for quantification of oxygen uptake and reduction, respectively. Both catalysts contained Pt, Rh, and Ce supported by Al{sub 2}O{sub 3}. One of the catalysts also contained Ni. The amount of oxygen that can be taken up/reduced away is strongly temperature-dependent in the range investigated (300-900 K). When present, Ni dominates the oxygen storage capacity at high temperatures. In the catalyst lacking Ni, Ce dominates the storage capacity at high temperatures. At lower temperatures chemisorbed oxygen on Pt/Rh seems to play an essential role.

  8. Physical and economic potential of geological CO2 storage in saline aquifers.

    PubMed

    Eccles, Jordan K; Pratson, Lincoln; Newell, Richard G; Jackson, Robert B

    2009-03-15

    Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve. PMID:19368199

  9. Storage capacity diverges with synaptic efficiency in an associative memory model with synaptic delay and pruning.

    PubMed

    Miyoshi, Seiji; Okada, Masato

    2004-09-01

    It is known that storage capacity per synapse increases by synaptic pruning in the case of a correlation-type associative memory model. However, the storage capacity of the entire network then decreases. To overcome this difficulty, we propose decreasing the connectivity while keeping the total number of synapses constant by introducing delayed synapses. In this paper, a discrete synchronous-type model with both delayed synapses and their prunings is discussed as a concrete example of the proposal. First, we explain the Yanai-Kim theory by employing statistical neurodynamics. This theory involves macrodynamical equations for the dynamics of a network with serial delay elements. Next, considering the translational symmetry of the explained equations, we rederive macroscopic steady-state equations of the model by using the discrete Fourier transformation. The storage capacities are analyzed quantitatively. Furthermore, two types of synaptic prunings are treated analytically: random pruning and systematic pruning. As a result, it becomes clear that in both prunings, the storage capacity increases as the length of delay increases and the connectivity of the synapses decreases when the total number of synapses is constant. Moreover, an interesting fact becomes clear: the storage capacity asymptotically approaches 2/pi due to random pruning. In contrast, the storage capacity diverges in proportion to the logarithm of the length of delay by systematic pruning and the proportion constant is 4/pi. These results theoretically support the significance of pruning following an overgrowth of synapses in the brain and may suggest that the brain prefers to store dynamic attractors such as sequences and limit cycles rather than equilibrium states. PMID:15484896

  10. Systematic Risk Reduction: Chances and Risks of Geological Storage of CO2

    NASA Astrophysics Data System (ADS)

    Schilling, F. R.; Wuerdemann, H.

    2010-12-01

    A profound risk assessment should be the basis of any underground activity such as the geological storage of CO2. The risks and benefits should be weighted, whereas the risks need to be systematically reduced. Even after some decades of geological storage of CO2 (as part of a carbon capture and storage CCS), only a few projects are based on an independent risk assessment. In some cases, a risk assessment was performed after the start of storage operation. Chances: - Are there alternatives to CCS with lower risk? - Is a significant CO2 reduction possible without CCS? - If we accept that CO2 emissions are responsible for climate change having a severe economical impact, we need to substantially reduce CO2 emissions. As long as economic growth is directly related to CO2 emissions, we need to decouple the two. - CCS is one of the few options - may be a necessity, if the energy market is not only dependent on demand. Risks: Beside the risk not to develop and implement CCS, the following risks need to be addressed, ideally in a multi independent risk assessment. - Personal Interests - Acceptance - Political interests - Company interests - HSE (Health Safety Environment) - Risk for Climate and ETS - Operational Risks If a multi independent risk assessment is performed and the risks are addressed in a proper way, a significant and systematic risk reduction can be achieved. Some examples will be given, based on real case studies, such as CO2SINK at Ketzin.

  11. Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves

    SciTech Connect

    Doughty, Christine

    2006-04-28

    TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

  12. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  13. NaBH4 in "Graphene Wrapper:" Significantly Enhanced Hydrogen Storage Capacity and Regenerability through Nanoencapsulation.

    PubMed

    Chong, Lina; Zeng, Xiaoqin; Ding, Wenjiang; Liu, Di-Jia; Zou, Jianxin

    2015-09-01

    A new high-capacity reversible hydrogen-storage material synthesized by the encapsulation of NaBH4 nanoparticles in graphene is reported. This approach effectively prevents phase agglomeration or separation during successive H2 discharge/recharge processes and enables rapid H2 uptake and release in NaBH4 under mild conditions. The strategy advanced here paves a new way for application in energy generation and storage. PMID:26183798

  14. Surface Water Storage Capacity of Twenty Tree Species in Davis, California.

    PubMed

    Xiao, Qingfu; McPherson, E Gregory

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage capacity is known to vary widely among tree species, but it is little studied. This research measured surface storage capacities of 20 urban tree species in a rainfall simulator. The measurement system included a rainfall simulator, digital balance, digital camera, and computer. Eight samples were randomly collected from each tree species. Twelve rainfall intensities (3.5-139.5 mm h) were simulated. Leaf-on and leaf-off simulations were conducted for deciduous species. Stem and foliar surface areas were estimated using an image analysis method. Results indicated that surface storage capacities varied threefold among tree species, 0.59 mm for crape myrtle ( L.) and 1.81 mm for blue spruce ( Engelm.). The mean value across all species was 0.86 mm (0.11 mm SD). To illustrate application of the storage values, interception was simulated and compared across species for a 40-yr period with different rainfall intensities and durations. By quantifying the potential for different tree species to intercept rainfall under a variety of meteorological conditions, this study provides new knowledge that is fundamental to validating the cost-effectiveness of urban forestry as a green infrastructure strategy and designing functional plantings. PMID:26828174

  15. Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota

    USGS Publications Warehouse

    Ludden, A.P.; Frink, D.L.; Johnson, D.H.

    1983-01-01

    Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.

  16. CO2 Geological Storage in Olivine Rich Basaltic Aquifers: New Insights From Flow-Through Experiments

    NASA Astrophysics Data System (ADS)

    Peuble, S.; Godard, M.; Luquot, L.; Gibert, B.; Mainprice, D.; Martinez, I.; Gouze, P.

    2012-04-01

    ) Mg-Fe rich phyllosilicates plates perpendicular to (at the expense of ?) olivine surfaces was observed. The precipitation of these serpentine type minerals may explain the strong decrease in permeability during experiments. Carbonation was relatively efficient in our experiments: between 0.003g (exp.3) and 0.015 g (exp.1 & 2) of CO2 per gram of sample was trapped as carbonates. When these analyses are upscaled to the size of an injection site, they correspond to an average yield of 3.6 to 10.6 Mtons of CO2/km3/day. Our results indicate a strong control of flow rates on carbonation, and also on hydration reactions. This implies not only variations of the CO2 storage capacity of the basaltic aquifer with distance to the injection well, but also that controlling the injection rate would allow enhancing the efficiency of in situ carbonation. Luquot L., Andreani M., Gouze P., Camps P. (2012) CO2 percolation experiment through chlorite/zeolite-rich sandstone (Pretty-Hill Formation - Otway-Basin-Australia), Chemical Geology 294-295, 75-88, doi:10.1016/j.chemgeo.2011.11.018.

  17. Modelling the impacts of climate policy on the deployment of carbon dioxide capture and geologic storage across electric power regions in the United States

    SciTech Connect

    Wise, Marshall A.; Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2007-04-02

    This paper summarizes the results of a first-of-its-kind holistic, integrated economic analysis of the potential role of carbon dioxide (CO2) capture and storage (CCS) technologies across the regional segments of the United States of America (USA) electric power sector, over the time frame 2005-2045, in response to two hypothetical emissions control policies analyzed against two potential energy supply futures that include updated and substantially higher projected prices for natural gas. A key feature of this paper’s analysis is an attempt to explicitly model the inherent heterogeneities that exist in both the nation’s current and future electricity generation infrastructure and candidate deep geologic CO2 storage formations. Overall, between 180 and 580 gigawatts (GW) of coal-fired integrated gasification combined cycle with CCS (IGCC+CCS) capacity is built by 2045 in these four scenarios, requiring between 12 and 41gigatons of CO2 (GtCO2) of storage in regional deep geologic reservoirs across the USA. Nearly all of this CO2 is from new IGCC+CCS systems, which start to deploy after 2025. Relatively little IGCC+CCS capacity is built before that time, primarily under unique niche opportunities. For the most part, CO2 emissions prices will likely need to be sustained at well over $10-20/ton CO2 before CCS begins to deploy on a large scale within the electric power sector. Within these broad national trends, a highly nuanced picture of CCS deployment across the USA emerges. Across the four scenarios studied here, some North American Electric Reliability Council (NERC) regions do not employ any CCS while others build more than 100 GW of CCS-enabled generation capacity. One region sees as much as 50% of their geologic CO2 storage reservoirs’ total theoretical capacity consumed by 2045, while the majority of the regions still have more than 90% of their potential storage capacity available to meet storage needs in the second half of the century and beyond.

  18. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources.

    PubMed

    Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B

    2016-02-01

    Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide. PMID:26767550

  19. Experimentally determined water storage capacity in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ferot, A.; Bolfan-Casanova, N.

    2010-12-01

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence, the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on the study of single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study is to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and orthopyroxene under upper mantle conditions. The solubility of water in coexisting orthopyroxene and olivine was investigated by simultaneously synthesizing the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly polished thin sections of randomly oriented crystals. Water solubility in olivine increases with pressure and decreases with temperature as has been described previously (Bali et al., 2008). The aluminum content strongly decreases in olivine with pressure from 0.09 wt% at 2.5 GPa and 1250°C to 0.04 wt% at 9 GPa and 1175°C. The incorporation of this trivalent cation in the system enhances water solubility in olivine even if present in trace amounts, however this behavior appears to reverse at high pressure. The effect of temperature on water solubility follows a bell-shaped curve with a maximum solubility in olivine and orthopyroxene at 1250°C. Aluminum is incorporated in orthopyroxene following the Tschermak substitution and strongly

  20. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  1. Influence of storage time on functional capacity of flow cytometrically sex-sorted boar spermatozoa.

    PubMed

    Parrilla, Inmaculada; Vazquez, Juan M; Gil, Maria A; Caballero, Ignacio; Almiñana, Carmen; Roca, Jordi; Martinez, Emilio A

    2005-07-01

    Sex-sorting of boar spermatozoa is an emerging biotechnology, still considered suboptimal owing to the slowness of the process, which requires long sorting periods to obtain an adequate number of spermatozoa to perform a non-surgical insemination. This period involves storage of sorted cells that could impair their functional capacity. Here, we have studied how the storage of sex-sorted boar spermatozoa affects their functional capacity. Sorted spermatozoa were assessed at various times (0, 2, 5h or 10h) during storage after sorting and compared with diluted and unsorted spermatozoa for sperm motility patterns, plasma membrane and acrosomal integrity and their ability to penetrate homologous IVM oocytes. Sex-sorted sperm motility and membrane integrity only decreased significantly (p<0.05) by the end of the storage period (10h) compared to unsorted spermatozoa. Sperm velocity, ALH and Dance increased significantly (p<0.05), immediately post-sorting, returning to unsorted sperm values during storage. Acrosome integrity was not seriously affected by the sorting process, but decreased (p<0.05) during storage after sorting. Sorted spermatozoa stored 2h after sorting did not differ from unsorted in penetration rates and numbers of spermatozoa per oocyte, reaching the highest (p<0.05) penetration rates and sperm numbers per oocyte, when co-cultured for 6 or more hours. Non-storage or storage for 5h or 10h negatively (p<0.05) affected sperm penetration ability. In conclusion, although flow cytometrically sex-sorted spermatozoa are able to maintain motility, viability and acrosomal integrity at optimal levels until 10h of storage after sorting, fertilizing ability is maintained only over shorter storage times (<5h). PMID:15935845

  2. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    PubMed

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-01

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767

  3. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  4. Non-Verbal Information Storage in Humans and Developmental Information Processing Channel Capacity.

    ERIC Educational Resources Information Center

    Randhawa, Bikkar S.

    This study was designed to ascertain the nature of information storage in humans and to determine the channel capacity of Ss at various stages of development. A 3 x 2 x 2 multivariate complete factorial design was employed: the three levels of the first factor (Age) were 5, 8, and 12 years; the two levels of the second factor were Visual and…

  5. Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity.

    PubMed

    Lu, Zhisong; Liu, Yingshuai; Hu, Weihua; Lou, Xiong Wen David; Li, Chang Ming

    2011-09-14

    We report a branched polyethyleneimine (BPEI)-quantum dot (QD) based rewritable fluorescent system with a multicolor recording mode, in which BPEI is both QD-multicolor patterning "writer" and data erasing "remover". This method could write distinct colors from size-tailored QDs to represent large numbers of logic states for high data storage capacity. PMID:21796321

  6. A NbO-type metal-organic framework exhibiting high deliverable capacity for methane storage.

    PubMed

    Song, Chengling; Ling, Yajing; Feng, Yunlong; Zhou, Wei; Yildirim, Taner; He, Yabing

    2015-05-18

    A copper-based NbO-type metal-organic framework constructed from a tetracarboxylate incorporating phenylethyne as a spacer exhibited an exceptionally high methane working capacity of 184 cm(3) (STP) cm(-3) for methane storage. The value is among the highest reported for MOF materials. PMID:25892102

  7. Impact of Maximum Allowable Cost on CO2 Storage Capacity in Saline Formations.

    PubMed

    Mathias, Simon A; Gluyas, Jon G; Goldthorpe, Ward H; Mackay, Eric J

    2015-11-17

    Injecting CO2 into deep saline formations represents an important component of many greenhouse-gas-reduction strategies for the future. A number of authors have posed concern over the thousands of injection wells likely to be needed. However, a more important criterion than the number of wells is whether the total cost of storing the CO2 is market-bearable. Previous studies have sought to determine the number of injection wells required to achieve a specified storage target. Here an alternative methodology is presented whereby we specify a maximum allowable cost (MAC) per ton of CO2 stored, a priori, and determine the corresponding potential operational storage capacity. The methodology takes advantage of an analytical solution for pressure build-up during CO2 injection into a cylindrical saline formation, accounting for two-phase flow, brine evaporation, and salt precipitation around the injection well. The methodology is applied to 375 saline formations from the U.K. Continental Shelf. Parameter uncertainty is propagated using Monte Carlo simulation with 10 000 realizations for each formation. The results show that MAC affects both the magnitude and spatial distribution of potential operational storage capacity on a national scale. Different storage prospects can appear more or less attractive depending on the MAC scenario considered. It is also shown that, under high well-injection rate scenarios with relatively low cost, there is adequate operational storage capacity for the equivalent of 40 years of U.K. CO2 emissions. PMID:26480926

  8. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    SciTech Connect

    Kennedy, RD; Krungleviciute, V; Clingerman, DJ; Mondloch, JE; Peng, Y; Wilmer, CE; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK; Mirkin, CA

    2013-09-10

    A Cu-carborane-based metal organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm(3)/g and a gravimetric BET surface area of ca. 2600 m(2)/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the, unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m(2)/cm(3). CH4, CO2, and H-2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 v(STP)/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5-65 bar) is 170 v(STP)/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

  9. Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain

    SciTech Connect

    Hussain, Tanveer; Ahuja, Rajeev; Chakraborty, Sudip; De Sarkar, Abir; Johansson, Börje

    2014-09-22

    The electronic structure, stability, and hydrogen storage capacity of strain induced Mg functionalized silicene (SiMg) and silicane (SiHMg) monolayers have been studied by means of van der Waals induced first principles calculations. A drastic increase in the binding energy of Mg adatoms on both the monolayers under the biaxial symmetric strain of 10% ensures the uniform distribution of dopants over the substrates. A significant positive charge on each Mg accumulates a maximum of six H{sub 2} molecules with H{sub 2} storage capacity of 8.10% and 7.95% in case of SiMg and SiHMg, respectively. The average adsorption energy for H{sub 2} molecules has been found ideal for practical H{sub 2} storage materials.

  10. Antioxidant capacity and vitamin E in barley: Effect of genotype and storage.

    PubMed

    Do, Thu Dung T; Cozzolino, Daniel; Muhlhausler, Beverly; Box, Amanda; Able, Amanda J

    2015-11-15

    Antioxidants, including vitamin E, may have a positive effect on human health and prolong storage of food items. Vitamin E content and antioxidant capacity were measured in 25 barley genotypes before and after 4 months storage at 10 °C using high performance liquid chromatography (HPLC) and ability to scavenge DPPH radicals, respectively. As expected, α-tocotrienol (α-T3) and α-tocopherol (α-T) were the predominant tocol isomers. Vitamin E content and antioxidant capacity varied significantly among genotypes. Vitamin E ranged from 8.5 to 31.5 μg/g dry weight (DW) while ascorbic acid equivalent antioxidant capacity (AEAC) varied from 57.2 to 158.1 mg AEAC/100 g fresh weight (FW). Generally, lower vitamin E content or antioxidant capacity was observed in hulless or coloured genotypes. These results suggest that some genotypes are potential candidates for breeding of barley cultivars with high vitamin E content or antioxidant capacity at harvest, even after storage. PMID:25976999

  11. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  12. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  13. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  14. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for applications for dry cask modes of storage on or after October 16, 2003. 72.103 Section 72.103 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND...

  15. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  16. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  17. Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

    SciTech Connect

    Dahowski, Robert T.; Dooley, James J.

    2008-09-18

    This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir. While 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO2 emissions from these facilities, 92% of the exiting units CO2 and 97% of the planned units CO2 emissions are accounted for by facilities that are within 100 miles of at least one potential CO2 storage reservoir.

  18. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    SciTech Connect

    Lord, Anna Snider

    2009-09-01

    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

  19. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    PubMed Central

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity. PMID:24883372

  20. Geochemical Impact on the Caprock Porous Structure during CO2 Geological Storage : A Laboratory and Modeling Study

    NASA Astrophysics Data System (ADS)

    Rhenals Garrido, D. R.; Lafortune, S.; Souli, H.; Dubujet, P.

    2013-12-01

    CO2 storage is envisioned as a technique which reduces large quantities of CO2 rejected in the atmosphere because of many human activities. The effectiveness of this technique is mainly related to the storage capacity as well as its safety. The safety of this operation is primarily based on the conservation of petro-physical properties of the caprock, which prevents the transport of CO2 towards the surface. However when CO2 reaches the reservoir/caprock interface due to buoyancy effects, the interaction between interstitial fluid and injected fluid creates a serie of dissolution/precipitation reactions affecting the properties of containment of the caprock, which is generally characterized by low transport properties. This study aims to assess the impact caused by CO2/interstitial fluid interaction on the nanostructure of a caprock under geological storage conditions. In order to do this, degradation experiments at high pressure of CO2 (88 bar) and isothermal (55°C) conditions have been conducted using batch reactors for 3.5 months. The sample used for these experiments is a well characterized shale, from the Tournemire formation (Aveyron-France). Porosity evolution has been followed by using volumetric adsorption at low pressure, from advanced NLFDT and classical theories based on the micropores filling, and capillary condensation phenomena. Results showed a slight variation in both mesopores and micropores size distributions, as a result of dissolution processes, which dominated at laboratoty time scale. Furthermore, chemical analysis from the water sampled showed an overall increase in Ca,Mg,K,Si,Na. The results obtained by physical adsorption and water chemistry analysis were consistent, with geochemical modeling, which suggested reaction paths with calcite dissolution as the main mineral, by producing porosity at short term and (clays, feldspars) dissolution of aluminosilicates dominating at long term.

  1. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  2. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  3. Remote Sensing of Soil Water Storage Capacity Using the Landsat and MODIS Image Archives

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Umstot, T.; Wilson, J. L.; Allen, R.; Trezza, R.

    2014-12-01

    We will present a method for the quantitative assessment of the soil water storage capacity of each pixel in a Landsat or MODIS image using the information available in the historic Landsat and MODIS archives. The soil water storage capacity represents the maximum amount of water that can be stored in the soil and/or bedrock so that it is available for release into the atmosphere through transpiration by vegetation and/or evaporation from the land surface. First, the METRIC algorithm is used to convert 15 images representative for growing seasons in wet, dry and normal years into evaporative fraction maps. The evaporative fraction is an expression of the relative evapotranspiration and is strongly correlated to soil moisture conditions in the root zone: high and low evaporative fractions indicate, respectively, high and low root zone soil water contents. We use an experimental relationship to derive a normalized root zone soil moisture value between 0 (dry) to 1 (saturation) from the evaporative fraction. Then, the wetness score for each pixel is calculated as the sum of its 15 "normalized root zone soil moisture" values; it is a relative measure of the overall wetness of a pixel compared to other pixels with values between 0 and 15. Large and small values for the wetness score indicate, respectively, large and small values for the soil water storage capacity. The challenge is to convert the ranking of the wetness scores for each pixel into a quantitative soil water storage capacity. For this operation we use the hydrological Distributed Parameter Watershed Model (DPWM). After construction of seven physically realistic conversion functions between wetness score rank and soil water storage capacity, we evaluate the seven distributions of the differences between the 15 METRIC observed and DPWM simulated "normalized root zone soil moisture" maps. The conversion function that yields the smallest sum of differences is considered the optimal function and is used for

  4. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect

    Oldenburg, Curtis M.

    2005-09-19

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.

  5. Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

    SciTech Connect

    Oldenburg, Curtis M.

    2006-03-15

    This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.

  6. Geologic Storage of Greenhouse Gases: Multiphase andNon-isothermal Effects, and Implications for Leakage Behavior

    SciTech Connect

    Pruess, Karsten

    2005-08-05

    Storage of greenhouse gases, primarily CO2, in geologic formations has been proposed as a means by which atmospheric emissions of such gases may be reduced (Bachu et al., 1994; Orr, 2004). Possible storage reservoirs currently under consideration include saline aquifers, depleted or depleting oil and gas fields, and unmineable coal seams (Baines and Worden, 2004). The amount of CO2 emitted from fossil-fueled power plants is very large, of the order of 30,000 tons per day (10 million tons per year) for a large 1,000 MW coal-fired plant (Hitchon,1996). In order to make a significant impact on reducing emissions, very large amounts of CO2 would have to be injected into subsurface formations, resulting in CO2 disposal plumes with an areal extent of order 100 km2 or more (Pruess et al., 2003). It appears inevitable, then, that such plumes will encounter imperfections in caprocks, such as fracture zones or faults, that would allow CO2 to leak from the primary storage reservoir. At typical subsurface conditions of temperature and pressure, CO2 is always less dense than aqueous fluids; thus buoyancy forces will tend to drive CO2 upward, towards the land surface, whenever adequate (sub-)vertical permeability is available. Upward migration of CO2 could also occur along wells, including pre-existing wells in sedimentary basins where oil and gas exploration and production may have been conducted (Celia et al., 2004), or along wells drilled as part of a CO2 storage operation. Concerns with leakage of CO2 from a geologic storage reservoir include (1) keeping the CO2 contained and out of the atmosphere, (2) avoiding CO2 entering groundwater aquifers, (3)asphyxiation hazard if CO2 is released at the land surface, and (4) the possibility of a self-enhancing runaway discharge, that may culminate in a ''pneumatic eruption'' (Giggenbach et al., 1991). The manner in which CO2 may leak from storage reservoirs must be understood in order to avoid hazards and design monitoring systems.

  7. How to choose capacity of storage tank to utilize water on windless days

    SciTech Connect

    Jugadeesh, A.

    1983-12-01

    As wind flow is not constant throughout the month or year and varies from season to season and from time to time in a day, a storage tank (or reservoir) is essential to supplement water to the field on calm days. In this paper the storage capacity required at two places, namely, Veeraval and Jamnagar in Gujarat State is discussed. The first prerequisite to know the suitability of the windmill size at particular place is the diameter of the windmill which should match the monthly required energy for lifting water.

  8. CO2 wettability of caprocks: Implications for structural storage capacity and containment security

    NASA Astrophysics Data System (ADS)

    Iglauer, Stefan; Al-Yaseri, Ahmed Zarzor; Rezaee, Reza; Lebedev, Maxim

    2015-11-01

    Structural trapping, the most important CO2 geostorage mechanism during the first decades of a sequestration project, hinges on the traditional assumption that the caprock is strongly water wet. However, this assumption has not yet been verified; and it is indeed not generally true as we demonstrate here. Instead, caprock can be weakly water wet or intermediate wet at typical storage conditions; and water wettability decreases with increasing pressure or temperature. Consequently, a lower storage capacity can be inferred for structural trapping in such cases.

  9. Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.

    2012-12-01

    Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast

  10. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect

    Finley, Robert

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern

  11. A risk management approach to double-shell tank waste volume versus storage capacity

    SciTech Connect

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  12. Yttrium-dispersed C60 fullerenes as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-01

    Interaction between hydrogen molecules and functionalized C60 is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C60 decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H2 molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H2 molecule. Consequently, the C60Y12 complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ˜6.30 wt. %.

  13. Mass balance monitoring of geological CO2 storage with a superconducting gravimeter - A case study

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Woo; Neumeyer, Juergen; Kao, Ricky; Kabirzadeh, Hojjat

    2015-03-01

    Although monitoring of geological carbon dioxide (CO2) storage is possible with a number of geophysical and geodetic techniques (e.g., seismic survey), gravimetric monitoring is known to be the most accurate method for measuring total mass changes. Therefore, it can be used for detection of storage pore space content changes and migration of CO2 plumes. A superconducting gravimeter (SG) installed on the Earth's surface provides precise and continuous records of gravity variations over time for periods from minutes to decades, which are required for monitoring subsurface CO2 storage. Due to the fact that gravimeter records combine the gravity effects of surface displacement and subsurface mass change, these two effects must be separated properly for observing CO2 mass balance. The Newtonian attraction gravity effect of stored CO2 is modeled as a function of reservoir depth and CO2 mass for different locations of the gravimeter over the reservoir. The gravity effect of the surface deformation is considered according to the modeled and measured displacement above the CO2 reservoir at the gravimeter's position. For estimation of the detection threshold, an assessment is carried out for the gravity corrections, which must be subtracted from the raw gravity data before obtaining the gravity signal of the stored CO2. A CO2 signal larger than about 0.5 μGal can be detected with an SG's continuous recordings. A measured gravity profile along the reservoir can support the continuous measurements. For providing objective evidence of a CO2 stored gravity signal, real measured raw SG gravity data of the MunGyung site in Korea were superimposed with an artificial uniformly continuous gravity signal up to 1.7 μGal, representing a gravity signal from a CO2 storage site with increasing injections up to about 105 kt at a depth of 600 m. These data were analyzed, and the CO2 storage signal could be clearly identified.

  14. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  15. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings.

    PubMed

    Chiabrando, Valentina; Giacalone, Giovanna

    2015-05-01

    The influence of different edible coatings on total phenolic content, total anthocyanin and antioxidant capacity in highbush blueberry (Vaccinium corymbosum L. cv Berkeley and O'Neal) was investigated, mainly for industrial applications. Also titratable acidity, soluble solids content, firmness and weight loss of berries were determined at harvest and at 15-day intervals during 45 storage days at 0 °C, in order to optimize coating composition. Application of chitosan coating delayed the decrease in anthocyanin content, phenolic content and antioxidant capacity. Coating samples showed no significant reduction in the weight loss during storage period. In cv Berkeley, the use of alginate coating showed a positive effect on firmness, titratable acidity and maintained surface lightness of treated berries. In cv O'Neal, no significant differences in total soluble solids content were found, and the chitosan-coated berries showed the minimum firmness losses. In both cultivars, the addition of chitosan to coatings decreases the microbial growth rate. PMID:25666416

  16. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    NASA Astrophysics Data System (ADS)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  17. High methane storage and working capacities in a NbO-type metal-organic framework.

    PubMed

    Song, Chengling; Liu, Huimin; Jiao, Jingjing; Bai, Dongjie; Zhou, Wei; Yildirim, Taner; He, Yabing

    2016-05-01

    To improve methane adsorption by pore structure optimization, we developed a new organic linker and used it to construct a NbO-type metal-organic framework ZJNU-53 that, after activation, exhibits exceptionally high methane storage and working capacities of 241 and 190 cm(3) (STP) cm(-3) at 298 K and 65 bar, respectively, if the packing loss is not considered, which are among the highest reported for MOF materials. PMID:27083013

  18. A new benzimidazole based covalent organic polymer having high energy storage capacity.

    PubMed

    Patra, Bidhan C; Khilari, Santimoy; Satyanarayana, Lanka; Pradhan, Debabrata; Bhaumik, Asim

    2016-06-18

    We report the synthesis of a new benzimidazole-based covalent organic polymer (TpDAB) via solvothermal Schiff base condensation between 1,3,5-triformylphloroglucinol (Tp) and 3,3'-diaminobenzidine (DAB). TpDAB showed high energy storage capacity with a specific capacitance of 335 F g(-1) at 2 mV s(-1) scan rate and good cyclic stability with 93% retention of its initial specific capacitance after 1000 cycles. PMID:27222226

  19. Pore-scale imaging of geological carbon dioxide storage under in situ conditions

    NASA Astrophysics Data System (ADS)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2013-08-01

    While geological carbon dioxide (CO2) storage could contribute to reducing global emissions, it must be designed such that the CO2 cannot escape from the porous rock into which it is injected. An important mechanism to immobilize the CO2, preventing escape, is capillary trapping, where CO2 is stranded as disconnected pore-scale droplets (ganglia) in the rock, surrounded by water. We used X-Ray microtomography to image, at a resolution of 6.4 µm, the pore-scale arrangement and distribution of trapped CO2 clusters in a limestone. We applied high pressures and temperatures typical of a storage formation, while maintaining chemical equilibrium between the CO2, brine, and rock. Substantial amounts of CO2 were trapped, with an average saturation of 0.18. The cluster sizes obeyed a power law distribution, with an exponent of approximately -2.1, consistent with predictions from percolation theory. This work confirms that residual trapping could aid storage security in carbonate aquifers.

  20. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  1. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links.

    PubMed

    Jiang, Juncong; Furukawa, Hiroyasu; Zhang, Yue-Biao; Yaghi, Omar M

    2016-08-17

    High methane storage capacity in porous materials is important for the design and manufacture of vehicles powered by natural gas. Here, we report the synthesis, crystal structures and methane adsorption properties of five new zinc metal-organic frameworks (MOFs), MOF-905, MOF-905-Me2, MOF-905-Naph, MOF-905-NO2, and MOF-950. All these MOFs consist of the Zn4O(-CO2)6 secondary building units (SBUs) and benzene-1,3,5-tri-β-acrylate, BTAC. The permanent porosity of all five materials was confirmed, and their methane adsorption measured up to 80 bar to reveal that MOF-905 is among the best performing methane storage materials with a volumetric working capacity (desorption at 5 bar) of 203 cm(3) cm(-3) at 80 bar and 298 K, a value rivaling that of HKUST-1 (200 cm(3) cm(-3)), the benchmark compound for methane storage in MOFs. This study expands the scope of MOF materials with ultrahigh working capacity to include linkers having the common acrylate connectivity. PMID:27442620

  2. Comparison of Storage Capacity and Sedimentation Trends of Lago Guayabal, Puerto Rico-December 2001 and October 2006

    USGS Publications Warehouse

    Soler-López, Luis R.

    2008-01-01

    Lago Guayabal dam is located on the Rio Jacaguas in the municipality of Villalba in southern Puerto Rico, about 4 kilometers north of the town of Juana Diaz and about 5 kilometers south of Villalba (fig. 1). The dam is owned and operated by the Puerto Rico Electric Power Authority (PREPA) and was constructed in 1913 for the irrigation of croplands in the southern coastal plains of Puerto Rico. The reservoir impounds the waters of the Rio Jacaguas and those of the Rio Toa Vaca, when the Toa Vaca dam overflows or releases water. The reservoir has a drainage area of 53.8 square kilometers. The dam is a concrete gravity structure with a normal pool (at top of flashboards) elevation of 103.94 meters above mean sea level (Puerto Rico Electric Power Authority, 1988). During October 2006, the U.S. Geological Survey (USGS), Caribbean Water Science Center, in cooperation with the Puerto Rico Aqueduct and Sewer Authority (PRASA) conducted a bathymetric survey of Lago Guayabal to update the reservoir storage capacity and actualize the reservoir sedimentation rate by comparing the 2006 data with the previous 2001 bathymetric survey results. The purpose of this report is to describe and document the USGS sedimentation survey conducted at Lago Guayabal during October 2006, including the methods used to update the reservoir storage capacity, sedimentation rates, and areas of substantial sediment accumulation since December 2001. The Lago Guayabal sedimentation history up to 2001 was published by the USGS in 2003 (Soler-Lopez, 2003); therefore, this report focuses on the comparison between the 2001 and current bathymetric surveys of Lago Guayabal.

  3. Sc-coated Si@Al12 as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Lu, Q. L.; Wan, J. G.

    2010-06-01

    Hydrogen molecules adsorption and storage in Sc coated Si@Al12 cluster were investigated using density functional theory methods. Scandium atoms can bind strongly to the surfaces of Si@Al12 due to the charge transfer between Sc and Si@Al12, and do not suffer from clustering on the substrate. Si@Al12 cluster coated with three and four Sc atoms can adsorb 16 and 18 H2 molecules with a binding energy of 0.28-0.63 eV/H2, corresponding to hydrogen storage capacity of 6.0 and 6.3 wt %, respectively. The stable Si@Al12 can be applied as one of candidates for hydrogen storage materials at ambient conditions.

  4. Li and Ca Co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Wang, Yusheng; Ji, Yong; Li, Meng; Yuan, Pengfei; Sun, Qiang; Jia, Yu

    2011-11-01

    Using first-principles method based on density functional theory, we perform a detailed study of the hydrogen storage properties of Li and Ca co-decorated graphene-like carbon nitride (g-CN) nanostructures. The results show that the average adsorption energy of the molecular hydrogen is ˜0.26 eV/H2, which is acceptable for reversible H2 adsorption/desorption near ambient temperature. Moreover, the findings also show that the storage capacity of the Li and Ca co-decorated g-CN can reach up to 9.17 wt %, presenting a good potential as hydrogen storage material. Regarding the H2 adsorption mechanism, it is demonstrated that the Li adatoms become positively charged through charge transferring to g-CN and then bind hydrogen molecules via the polarization mechanism.

  5. Fluctuations in Phenolic Content and Antioxidant Capacity of Green Vegetable Juices during Refrigerated Storage

    PubMed Central

    Kim, Seong Yeong

    2015-01-01

    Shinseoncho and kale were made into green vegetable juices by building block [shinsenocho branch (SB), shinsenocho leaf (SL), kale branch (KB), and kale leaf (KL)]. Fluctuations in their phenolic contents and antioxidant capacities were analyzed during refrigerated storage at 4°C for 28 days. Total polyphenolic contents of leaf parts showed a decreasing tendency after 4 days (SL) or 7 days (KL), whereas branch parts showed fluctuating values during the entire storage period. The 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity was rapidly decreased in SB and in SL at 28 days (P<0.001), whereas KL showed a slightly increasing tendency after 14 days. For the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, SL showed a sharp fall at 28 days (P<0.001), and KL showed a decreasing tendency after 14 days (P<0.001). SB showed a steady decrease during the entire storage period and KB indicated a nearly zero (0.97%) at 28 days. Pearson’s coefficients for the correlation between antioxidant capacities measured by the ABTS and DPPH assays, and the total polyphenolic contents were determined. The results showed that the ABTS assay (r=0.934, P<0.001) was more strongly positively correlated with the total phenolic contents than the DPPH assay (r=0.630, P<0.001). In conclusion, when considering all building blocks, green vegetable juices, including kale and shinseoncho may have kept antioxidant capacities for up to 14 days under refrigeration, and the ABTS assay better reflects a positive correlation with the total phenolic contents when compared to the DPPH assay. PMID:26451353

  6. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    SciTech Connect

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  7. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  8. Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing.

    PubMed

    Miura, Masato; Nitta, Kouichi; Matoba, Osamu

    2009-10-01

    Maximum storage capacity in a reflection-type holographic memory with three-dimensional speckle shift multiplexing is investigated numerically. An explicit expression of storage capacity is derived on the basis of interpage crosstalk noise. We fabricate a simulator to evaluate reflection-type holographic data storage by calculating wave propagation, recording a hologram, and reconstruction by scalar diffraction. We calculate the properties of the resultant diffraction efficiency, that is the noise, at the first null in the speckle-shift multiplexing. Numerical results indicate that the storage capacity is proportional to the numerical aperture to the fourth power and to the volume of the recording medium and is inversely proportional to the wavelength to the third power. Achievable storage capacity is discussed. PMID:19798408

  9. A Constrained Differential Evolution Algorithm for Reservoir Management: Optimal Placement and Control of Wells for Geological Carbon Storage with Uncertainty in Reservoir Properties

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Birkholzer, J. T.; Bianchi, M.

    2014-12-01

    Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in

  10. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  11. Detection of potential leakage pathways from geological carbon storage by fluid pressure data assimilation

    NASA Astrophysics Data System (ADS)

    González-Nicolás, Ana; Baù, Domenico; Alzraiee, Ayman

    2015-12-01

    One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through "weak" permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.

  12. Predicting possible effects of H2S impurity on CO2 transportation and geological storage.

    PubMed

    Ji, Xiaoyan; Zhu, Chen

    2013-01-01

    For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution. PMID:22823266

  13. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    SciTech Connect

    Birkholzer, J.T.; Zhou, Q.

    2009-04-02

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  14. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  15. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.

    PubMed

    Goldman, Nick; Bertone, Paul; Chen, Siyuan; Dessimoz, Christophe; LeProust, Emily M; Sipos, Botond; Birney, Ewan

    2013-02-01

    Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 × 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade. PMID:23354052

  16. On Leakage andSeepage of CO2 from Geologic Storage Sites intoSurface Water

    SciTech Connect

    Oldenburg, C.M.; Lewicki, J.L.

    2005-10-14

    Geologic carbon sequestration is the capture ofanthropogenic carbon dioxide (CO2) and its storage in deep geologicformations. The processes of CO2 seepage into surface water aftermigration through water-saturated sediments are reviewed. Natural CO2 andCH4 fluxes are pervasive in surface-water environments and are goodanalogues to potential leakage and seepage of CO2. Buoyancy-driven bubblerise in surface water reaches a maximum velocity of approximately 30 cms-1. CO2 rise in saturated porous media tends to occur as channel flowrather than bubble flow. A comparison of ebullition versus dispersive gastransport for CO2 and CH4 shows that bubble flow will dominate overdispersion in surface water. Gaseous CO2 solubility in variable-salinitywaters decreases as pressure decreases leading to greater likelihood ofebullition and bubble flow in surface water as CO2 migratesupward.

  17. Model Comparison and Uncertainty Quantification for Geologic Carbon Storage. The Sim-SEQ Initiative

    SciTech Connect

    Mukhopadhyay, Sumit; Hou, Zhangshuan; Gosink, Luke J.; Bacon, Diana H.; Doughty, Christine A.; Li, J. J.; Wei, L.; Gasda, S.; Bacci, Giacomo; Govindan, Rajesh; Shi, Ji-Quan; Yamamoto, H.; Ramanathan, Ramya; Nicot, Jean-Philippe; Hosseini, Seyyed; Birkholzer, Jens; Bonneville, Alain

    2013-08-07

    Sim-SEQ is a model comparison initiative for geologic carbon storage (GCS). In Sim-SEQ, fifteen different modeling teams are developing conceptual models for flow and transport of an injected CO2 plume at the Sim-SEQ study site (or the S-3 site) located near Cranfield, Mississippi. The objective of the project is to understand the sources of model uncertainty in GCS, and if possible, to quantify these uncertainties through comparison of the different conceptual models and also through comparison with observed data from the S-3 site. In this paper, we compare six different conceptual models of the S-3 site, and present a preliminary uncertainty analysis of these six models using a generalized linear model approach. We show that differences in model conceptualization and interpretation of site characterization data caus a significant range in predictions.

  18. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    SciTech Connect

    Moody, Mark; Sminchak, J.R.

    2015-11-01

    database of over 4 million items on well integrity parameters in the study areas, a systematic CBL evaluation tool for rating cement in boreholes, SCP field testing procedures and analysis methodology, a process for summarizing well integrity at CO2 storage fields, a statistical analysis of well integrity indicators, and an assessment of practical methods and costs necessary to repair/remediate typical wells in the region based on assessment of six test study areas. Project results may benefit both CO2 storage and improved oil recovery applications. This study of wellbore integrity is a useful precursor to support development of geologic storage in the Midwest United States because it sheds more light on the actual well conditions (rather than the perceived condition) of historic oil and gas wells in the region.

  19. Characterization of deep saline aquifers for CO2 storage capacity assessment, Bécancour area, Québec, Canada

    NASA Astrophysics Data System (ADS)

    TRAN NGOC, T.; Konstantinovskaya, E. A.; Lefebvre, R.; Malo, M.

    2011-12-01

    The Cambrian-Ordovician St. Lawrence Lowlands basin of southern Québec has been assessed the most prospective for CO2 storage potential according to geological and practical criteria. Such a demonstration requires the assessment of numerous aspects: storing, injectivity, containment and adequate long-term monitoring. To do so, the characterisation stage of potential sites has to be comprehensive. We provide a case study of the CO2 storage capacity assessment in the deep saline aquifers of the Bécancour region (between Montréal and Québec City) through characterizing in term of hydrogeology and rock petrophysics. The analysed data include stratigraphy and lithology, drill stem tests, hydraulic well tests, well logging, fluid sampling and core analyses. The saline aquifers of the Bécancour region are found at depths between 800 and 2400 m in sandstones of the Potsdam Gp., dolomites of the Beekmantown Gp, and limestones of the Trenton Gp. The caprock consists of at least 800 m of siltstone and shale. The reservoir units are compartmentalized at depth into two distinct blocks by the Yamaska regional normal fault trending SW-NE. Hydrostatic pressure measurements from different intervals and locations show different pressure gradients ΔP with the average value of 12.17 kPa/m, varying from 10.78 kPa/m in the northeastern part of the region and to 15.60 kPa/m in its southwestern part. We observed also different in situ artesian rates of brine-producing boreholes: Q=0, 0< Q <10 and Q=13 l/min which is correlated to ΔP magnitudes. This indicates that the site reservoir is partially overpressurized and non-homogeneous at the regional scale. Permeability anisotropy from core analyses (k_h/k_v = O(10^2)) is indicative of dominant horizontal hydraulic connectivity. Average salinity profiles differing from S=109 g/l to 242 g/l in separate reservoir units confirms this lateral connectivity preponderance and a vertical discontinuity between the aquifers. An average

  20. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Drake II, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2016-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  1. Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Slucher, Ernie R.; Roberts-Ashby, Tina L.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2015-01-01

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resource in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report is the geologic framework document for the Permian and Palo Duro Basins, the combined Bend arch-Fort Worth Basin area, and subbasins therein of Texas, New Mexico, and Oklahoma. In addition to a summarization of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Though appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of inputs selected by the assessment geologists. Spatial files of boundaries for the SAUs herein, as well as maps of the density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  2. The H60Si6C54 heterofullerene as high-capacity hydrogen storage medium

    NASA Astrophysics Data System (ADS)

    Yong, Yongliang; Zhou, Qingxiao; Li, Xiaohong; Lv, Shijie

    2016-07-01

    With the great success in Si atoms doped C60 fullerene and the well-established methods for synthesis of hydrogenated carbon fullerenes, this leads naturally to wonder whether Si-doped fullerenes are possible for special applications such as hydrogen storage. Here by using first-principles calculations, we design a novel high-capacity hydrogen storage material, H60Si6C54 heterofullerene, and confirm its geometric stability. It is found that the H60Si6C54 heterofullerene has a large HOMO-LUMO gap and a high symmetry, indicating it is high chemically stable. Further, our finite temperature simulations indicate that the H60Si6C54 heterofullerene is thermally stable at 300 K. H2 molecules would enter into the cage from the Si-hexagon ring because of lower energy barrier. Through our calculation, a maximum of 21 H2 molecules can be stored inside the H60Si6C54 cage in molecular form, leading to a gravimetric density of 11.11 wt% for 21H2@H60Si6C54 system, which suggests that the hydrogenated Si6C54 heterofullerene could be suitable as a high-capacity hydrogen storage material.

  3. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  4. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  5. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  6. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    SciTech Connect

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  7. Geochemical Implications of Gas Leakage Associated with Geologic CO2 Storage - A Qualitative Review

    SciTech Connect

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Lee, Gie Hyeon; Amonette, James E.; Brown, Christopher F.

    2013-01-01

    Leakage from deep storage reservoirs is considered the major risk factor associated with geologic sequestration of CO2. Different schools of thought exist concerning the potential implications of such leakage for near-surface environments. We reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of overlying potable aquifers. Results from experimental and modeling studies point to the potential for both beneficial (e.g. contaminant immobilization) and deleterious (e.g. contaminant mobilization) consequences of CO2 intrusion into potable groundwater. However, there are significant discrepancies between studies particularly concerning, what contaminants are of concern and the geochemical processes involved. These discrepancies reflected the lack of a consensus on CO2-induced changes in subsurface geochemical processes and subsequent effects on groundwater chemistry. The development of consistent experimental protocols and the identification of pertinent factors driving CO2-induced geochemical changes in the subsurface were identified as key research needs. Geochemical modeling was used to systematically highlight why a standardization of experimental protocols and the consideration of experimental factors such as gas leakage rates, redox status and the influence of co-transported gases are pertinent. The role of analog studies, reactions occurring in the vadose zone, and the influence of organic contaminants are also discussed.

  8. Geologic framework for the national assessment of carbon dioxide storage resources: Powder River Basin, Wyoming, Montana, South Dakota, and Nebraska: Chapter B in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Drake II, Ronald M.; Mars, John L.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven A.; DeVera, Christina A.; Lohr, Celeste D.

    2012-01-01

    This report presents ten storage assessment units (SAUs) within the Powder River Basin of Wyoming, Montana, South Dakota, and Nebraska. The Powder River Basin contains a thick succession of sedimentary rocks that accumulated steadily throughout much of the Phanerozoic, and at least three stratigraphic packages contain strata that are suitable for CO2 storage. Pennsylvanian through Triassic siliciclastic strata contain two potential storage units: the Pennsylvanian and Permian Tensleep Sandstone and Minnelusa Formation, and the Triassic Crow Mountain Sandstone. Jurassic siliciclastic strata contain one potential storage unit: the lower part of the Sundance Formation. Cretaceous siliciclastic strata contain seven potential storage units: (1) the Fall River and Lakota Formations, (2) the Muddy Sandstone, (3) the Frontier Sandstone and Turner Sandy Member of the Carlile Shale, (4) the Sussex and Shannon Sandstone Members of Cody Shale, and (5) the Parkman, (6) Teapot, and (7) Teckla Sandstone Members of the Mesaverde Formation. For each SAU, we discuss the areal distribution of suitable CO2 reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein will be employed to calculate the potential storage space in the various SAUs.

  9. Geologic framework for the national assessment of carbon dioxide storage resources: Hanna, Laramie, and Shirley Basins, Wyoming: Chapter C in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.

    2012-01-01

    The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  10. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk

  11. Assessment of Geological Storage Potential of Carbon Dioxide in the Miocene Pohang Basin, SE Korea

    NASA Astrophysics Data System (ADS)

    Song, C. W.; Son, M.; Sohn, Y. K.

    2014-12-01

    The goal of this study is to assess geological storage potential of CO2 in the Miocene Pohang Basin, based on the structural and stratigraphic characteristics with the hydraulic features of the basin-fill and depth distribution of the basement. The basin is a pull-apart basin extended due to NNW-trending dextral strike slip faulting. The western margin of the basin consists of a series of segmented NNE-trending normal faults divided by NNW- or NW-trending dextral strike-slip faults. The southern margin is Yeonil Tectonic Line that is a zigzag-shaped NNW-trending fault zone consisting of NNW-trending dextral strike-slip and NNE-trending normal fault segments. The line connects with the NNE-trending western border faults with an oblique 50° angle. The Ocheon Fault System (OFS), the eastern marginal fault of the basin, is a NE-trending relayed fault system composed of a number of NE or NNE-trending normal-slip and sinistral-normal oblique-slip faults, and has a scissor fault geometry decreasing in vertical offset southwestward. The OFS which acted as initially normal fault experienced clockwise rotation with change of slip sense from normal-slip to sinistral-normal oblique-slip in response to a progressive dextral simple shear. The geometry and kinematics of syndepositional structures as well as the marginal faults indicate a WNW-ESE horizontal minimum stress. Stratigraphic and sedimentologic investigations suggest that dramatic subsidence of the hanging-wall of the western border faults resulted in thick accumulation of fan-delta successions and intervening and/or overlying hemipelagic mudstones. In addition, this study reveals that there are a number of NNE-trending normal faults dipping toward the east inside the basin. Depth distribution of the basement through deep drilling boreholes also supports the existence of the normal faults. These results thus indicate that potential geologic CO2 storage sites in the Pohang basin are located on the easternmost part of

  12. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    This technology assessment of long-term high capacity data storage systems identifies an emerging crisis of severe proportions related to preserving important historical data in science, healthcare, manufacturing, finance and other fields. For the last 50 years, the information revolution, which has engulfed all major institutions of modem society, centered itself on data-their collection, storage, retrieval, transmission, analysis and presentation. The transformation of long term historical data records into information concepts, according to Drucker, is the next stage in this revolution towards building the new information based scientific and business foundations. For this to occur, data survivability, reliability and evolvability of long term storage media and systems pose formidable technological challenges. Unlike the Y2K problem, where the clock is ticking and a crisis is set to go off at a specific time, large capacity data storage repositories face a crisis similar to the social security system in that the seriousness of the problem emerges after a decade or two. The essence of the storage crisis is as follows: since it could take a decade to migrate a peta-byte of data to a new media for preservation, and the life expectancy of the storage media itself is only a decade, then it may not be possible to complete the transfer before an irrecoverable data loss occurs. Over the last two decades, a number of anecdotal crises have occurred where vital scientific and business data were lost or would have been lost if not for major expenditures of resources and funds to save this data, much like what is happening today to solve the Y2K problem. A pr-ime example was the joint NASA/NSF/NOAA effort to rescue eight years worth of TOVS/AVHRR data from an obsolete system, which otherwise would have not resulted in the valuable 20-year long satellite record of global warming. Current storage systems solutions to long-term data survivability rest on scalable architectures

  13. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method

  14. Study on capacity fading of 18650 type LiCoO2-based lithium ion batteries during storage

    NASA Astrophysics Data System (ADS)

    Zheng, Liu-Qun; Li, Shu-Jun; Zhang, Deng-Feng; Lin, Hai-Jun; Miao, Yan-Yue; Chen, Shou-Wei; Liu, Hai-Bin

    2015-05-01

    The capacity fading of LiCoO2-based lithium ion batteries during storage was studied. The discharging capacity fading is attributed to the decreasing in the charging capacity at the constant current stage. After 300 cycles, the ratio of the charging capacity of batteries at the constant current stage to the total charging capacity decreases from 87.2 to 71.2%. The bounce-back voltage is closely related to the internal resistance when the battery is discharged to the cut-off voltage of 3.0 V. Batteries were disassembled in the fully discharged state, and then a assembled again in order to deeply understand the causes of the capacity fading of the cathode and anode. The results shows that the SEI film thickness increasing, breaking or repairing process at the anode could be responsible for the high bounce-back voltage, the increase of the internal resistance and the capacity fading during storage.

  15. Stratified storage economically increases capacity and efficiency of campus chilled water system

    SciTech Connect

    Bahnfleth, W.P.; Joyce, W.S.

    1995-03-01

    This article describes how the addition of stratified chilled water storage to the Cornell University campus chilled water system has increased its capacity and efficiency and reduced its operating costs for less than the cost of a conventional chilled water plant expansion. While chilled water storage is not appropriate for all chilled water systems, the experience at Cornell indicates that it can be very cost effective when favorable conditions exist. It should receive serious consideration by owners of large systems who are investigating alternatives for system expansion. The benefits of variable speed chiller operation were found to be considerable. It is hoped that this successful application will stimulate further interest in the development and application of variable speed drive chillers.

  16. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    PubMed

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (<30 nm), resulting in a decrease of the melting point and an initial release of hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides. PMID:22873406

  17. Design and reversible hydrogen storage capacity determination of unique nanoarrays of titanium dioxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mishra, Amrita

    In this project hydrogen storage studies were carried out on TiO 2 nanotubular arrays of different diameters prepared by electrochemical anodization, combined with template-grown carbon nanotubes (CNTs). The growth of the CNTs on the nanotubular TiO2 arrays was accomplished by chemical vapor deposition. The hydrogen storage capacity was determined for the nanotubular TiO2 and the combined TiO2-CNT arrays, by charging and discharging hydrogen with a Sievert's apparatus. It was found that the presence of carbon nanotubes on nano-porous titanium oxide can enhance storage of hydrogen as determined by volumetric means. The hydrogen uptake in as-anodized TiO2 nanotubes was found to be 2 wt% at liquid nitrogen temperature (77 K) and 0.94 wt% at room temperature. Desorption results for TiO2 at 393 K and 300 K were 1.5 wt% and 0.7 wt%, respectively. The CNT-TiO2 composites showed a hydrogen uptake capacity of 1.94 wt% at room temperature and 2.5 wt% at 77 K. The desorption results were 1.8 wt% at 393 K and 0.68 wt% at room temperature. It was seen that the hydrogen uptake was higher at lower temperatures and discharge was increased significantly at higher temperatures for both TiO2 and CNT/TiO2 samples. The utilization of this novel hydrogen storage method can be recognized as a break-through in the hydrogen economy as applied to on-board vehicular applications.

  18. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGESBeta

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  19. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  20. Yttrium-dispersed C{sub 60} fullerenes as high-capacity hydrogen storage medium

    SciTech Connect

    Tian, Zi-Ya; Dong, Shun-Le

    2014-02-28

    Interaction between hydrogen molecules and functionalized C{sub 60} is investigated using density functional theory method. Unlike transition metal atoms that tend to cluster on the surface, C{sub 60} decorated with 12 Yttrium atoms on each of its 12 pentagons is extremely stable and remarkably enhances the hydrogen adsorption capacity. Four H{sub 2} molecules can be chemisorbed on a single Y atom through well-known Dewar-Chatt-Duncanson interaction. The nature of bonding is a weak physisorption for the fifth adsorbed H{sub 2} molecule. Consequently, the C{sub 60}Y{sub 12} complex with 60 hydrogen molecules has been demonstrated to lead to a hydrogen storage capacity of ∼6.30 wt. %.

  1. How to Factor GCM Uncertainty in Assessing Changes to Reservoir Storage Capacity for Future (Warmer) Climates?

    NASA Astrophysics Data System (ADS)

    Woldemeskel, F. M.; Sharma, A.; Sivakumar, B.; Mehrotra, R.

    2013-12-01

    Whether or not the existing storage capacity of reservoirs is sufficient to meet future water demands is a question of great interest to water managers and policy makers. Among other factors, uncertainties in GCM projections make accurate estimation of future water availability and reservoir storage requirements extremely complicated. Projections of variables using GCMs (e.g. temperature, precipitation) are highly uncertain due to inaccuracies in the climate model structure, greenhouse gas emission scenarios, and initial conditions (or ensemble runs) used. The present study proposes a new method to quantify the uncertainties (or standard errors) of GCM projections and their influence on the estimation of reservoir storage. The GCM standard errors are estimated through the following four steps: (i) interpolating multiple GCM outputs to a common spatial grid; (ii) converting the interpolated GCM outputs to percentiles; (iii) estimating standard error for model, scenario, initial condition and total uncertainty for each percentile; and (iv) transforming standard error estimates to time series. By assuming an additive error model and conditioning on these standard errors, thousands of rainfall and temperature realizations are obtained for a selected GCM and scenario. The temperature realizations are used to estimate evaporation realizations, which are then used as input (together with rainfall) to rainfall-runoff model for estimating streamflow. Finally, the streamflow realizations are used to quantify reservoir storage requirements with its associated uncertainties using reservoir behavior analysis. The proposed method is tested for the case of the Warragamba dam reservoir system that supplies more than 80% of water to Sydney, Australia. The results suggest that uncertainties in reservoir storage capacity will be significantly large for the future period than that for the historical period. Comparison of the effects of rainfall and evaporation uncertainty suggests

  2. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    NASA Astrophysics Data System (ADS)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  3. CO2 storage resources, reserves, and reserve growth: Toward a methodology for integrated assessment of the storage capacity of oil and gas reservoirs and saline formations

    USGS Publications Warehouse

    Burruss, R.C.

    2009-01-01

    Geologically based methodologies to assess the possible volumes of subsurface CO2 storage must apply clear and uniform definitions of resource and reserve concepts to each assessment unit (AU). Application of the current state of knowledge of geologic, hydrologic, geochemical, and geophysical parameters (contingencies) that control storage volume and injectivity allows definition of the contingent resource (CR) of storage. The parameters known with the greatest certainty are based on observations on known traps (KTs) within the AU that produced oil, gas, and water. The aggregate volume of KTs within an AU defines the most conservation volume of contingent resource. Application of the concept of reserve growth to CR volume provides a logical path for subsequent reevaluation of the total resource as knowledge of CO2 storage processes increases during implementation of storage projects. Increased knowledge of storage performance over time will probably allow the volume of the contingent resource of storage to grow over time, although negative growth is possible. ?? 2009 Elsevier Ltd. All rights reserved.

  4. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15

  5. Natural Analog for Geologic Storage of CO2: CO2 accumulation in China

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, T.; Liu, N.; Zhou, B.

    2012-12-01

    Natural accumulations of CO2 are potential analogues of CO2 geological storage that can provide useful information on the behaviour of supercritical CO2 in reservoirs. Natural CO2 accumulations are common across Northeast China, and, although they occur in a wide variety of geological settings, their distribution is principally controlled by the Mesozoic-Cenozoic rift basins and associated Quaternary volcanism. High CO2 concentrations (>60 CO2%) in natural gas reservoirs are usually related to volcanism and magmatism, and possesses mantle-genetic origin. CO2 reservoirs consist of sandstone, volcanic rocks and carbonate rocks with the buried depth from 2000-3000 m. Dawsonite is recognized in almost all of the CO2-bearing basin, which has been proved to share the same carbon source with CO2 in the reservoirs in Songliao basin, Hailaer basin and Donghai basin. Petrographic data show that dawsonite is abundant in feldspar- rich sandstone, volcanic rock fragment-rich sandstones and tuff. In some cases, high percentage of dawsonite cement constitutes a diagenetic seal, which occurs in the reservoir-mudstone caprock and prevents upward leakage of CO2. Besides dawsonite, mantle-genetic CO2 flux leads to the formation of calcite, ankerite and siderite. The statistics of porosity and permeability measured from the dawsonite-bearing sandstone and dawsonite-absent sandstone with the almost same burial depth in Songliao basin show that the mantle-genetic CO2 flux result in lower reservoir quality, suggesting that mineral trapping for CO2 is significant. Chemical analyses of formation water in Songliao basin and Hailaer basin indicate that the concentrations of TDS, HCO3-,CO32-, Mg2+,Ca2+ and Na+ + K+ in dawsonite-bearing sandstone are higher than that in dawsonite-absent sandstone. Distribution of CO2 and dawsonite is constrainted by the regional caprocks in the Songliao basin. The charging time of the mantle-genetic CO2 in China dates from 50 to 25 Ma.

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  7. Carbonation of mantle peridotites: implications for permanent geological CO2 capture and storage

    NASA Astrophysics Data System (ADS)

    Paukert, A. N.; Matter, J. M.; Kelemen, P. B.; Marsala, P.; Shock, E.

    2012-12-01

    In situ carbonation of mantle peridotites serves as a natural analog to engineered mineral carbonation for geological CO2 capture and storage. For example, mantle peridotite in the Samail Ophiolite, Oman naturally captures and stores about 5x104 tons of atmospheric CO2 per year as carbonate minerals, and has been doing so for the past 50,000 years [Kelemen et al., 2011]. Our reaction path modeling of this system shows that the natural process is limited by subsurface availability of dissolved inorganic carbon, and that the rate of CO2 mineralization could be enhanced by a factor of 16,000 by injecting CO2 into the peridotite aquifer at 2 km depth and a fugacity of 100 bars. Injecting CO2 into mafic or ultramafic rock formations has been presumed difficult, as fractured crystalline rocks typically have low porosity and permeability; however these factors have yet to be comprehensively studied. To determine the actual value of these hydrogeological factors, this winter we carried out a multifaceted study of deep boreholes (up to 350m) in the mantle peridotite and the Moho transition zone of the Samail Ophiolite. A suite of physical and chemical parameters were collected, including slug tests for hydraulic conductivity, geophysical well logs for porosity and hydraulic conductivity, drill chips for extent and composition of secondary mineralization, and water and dissolved gas samples for chemical composition. All of these factors combine to provide a comprehensive look at the chemical and physical processes underlying natural mineral carbonation in mantle peridotites. Understanding the natural process is critical, as mineral carbonation in ultramafic rocks is being explored as a permanent and relatively safe option for geologic carbon sequestration. While injectivity in these ultramafic formations was believed to be low, our slug test and geophysical well log data suggest that the hydraulic conductivity of fractured peridotites can actually be fairly high - up to

  8. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks. PMID:24840090

  9. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance.

    PubMed

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g(-1) at 30 mA g(-1) and ∼420 mAh g(-1) at 30 A g(-1), which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  10. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-06-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ~1,100 mAh g-1 at 30 mA g-1 and ~420 mAh g-1 at 30 A g-1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage.

  11. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance

    PubMed Central

    Chao, Dongliang; Zhu, Changrong; Yang, Peihua; Xia, Xinhui; Liu, Jilei; Wang, Jin; Fan, Xiaofeng; Savilov, Serguei V.; Lin, Jianyi; Fan, Hong Jin; Shen, Ze Xiang

    2016-01-01

    Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructures, in which a maximized extrinsic pseudocapacitance contribution is identified and verified by kinetics analysis. The graphene foam supported tin(II) sulfide nanoarray anode delivers a high reversible capacity of ∼1,100 mAh g−1 at 30 mA g−1 and ∼420 mAh g−1 at 30 A g−1, which even outperforms its lithium-ion storage performance. The surface-dominated redox reaction rendered by our tailored ultrathin tin(II) sulfide nanostructures may also work in other layered materials for high-performance sodium-ion storage. PMID:27358085

  12. Geologic framework for the national assessment of carbon dioxide storage resources: Arkoma Basin, Kansas Basins, and Midcontinent Rift Basin study areas: Chapter F in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Buursink, Marc L.; Craddock, William H.; Blondes, Madalyn S.; Freeman, Phillip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2013-01-01

    2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Upper Cambrian to Mississippian sedimentary rocks within the Arkoma Basin study area, and two SAUs in Upper Cambrian to Mississippian sedimentary rocks within the Kansas Basins study area. The Arkoma Basin and Kansas Basins are adjacent with very similar geologic units; although the Kansas Basins area is larger, the Arkoma Basin is more structurally complex. The report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are usually provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information herein was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. The Midcontinent Rift Basin study area was not assessed, because no suitable storage formations meeting our size, depth, reservoir quality, and regional seal guidelines were found. Figures in this report show study area boundaries along with the SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one-square mile and are

  13. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  14. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  15. Predicting CO2 Plume Evolution during Geologic Storage with Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Ma, W.; Jafarpour, B.; Qin, S.

    2013-12-01

    A major risk associated with geologic storage of CO2 is leakage from various pathways such as abandoned wells, faults and compromised seal layers. Extensive efforts must go into site characterization and selection to avoid regions with high leakage potential as well as post-injection monitoring activities to evaluate and predict the evolution of the injected CO2 plume for risk mitigating purposes. Monitoring systems also provide important data that can be used to infer the hydraulic properties of the storage aquifer. Here, we investigate the feasibility of estimating aquifer heterogeneity from monitoring measurements during CO2 injection with the Ensemble Kalman Filter (EnKF). We examine the performance of the EnKF in identifying heterogeneous aquifer permeability distributions, predicting the CO2 plume evolution and possible leakage from an abandoned well, and quantification of the associated uncertainties in each case. We consider a high-resolution three-dimensional aquifer model with extreme heterogeneity in both horizontal and vertical hydraulic conductivity. The extreme heterogeneity consists of preferential flow path and barriers that constrain the upward and lateral displacement of the CO2 plume in the aquifer, making it difficult to predict the movement of the CO2 plume. Using this model, we investigate the contribution of various monitoring data types, including pressure, saturation and time-lapse seismic data to estimation of aquifer hydraulic conductivity. The estimation results suggest that with a proper design of the filter, the EnKF can provide promising estimates of the aquifer hydraulic properties and long-term displacement and fate of the CO2 plume, which is critical for risk assessment and mitigation.

  16. Dynamics and design of systems for geological storage of dissolved CO2

    NASA Astrophysics Data System (ADS)

    Pool, Maria; Carrera, Jesus; Vilarrasa, Victor; Silva, Orlando; Ayora, Carlos

    2013-12-01

    The standard approach for geologic storage of CO2 consists of injecting it as a supercritical CO2 phase. This approach places stringent requirements on the caprock, which must display: (1) high entry pressure to prevent the buoyancy driven upwards escape of CO2; (2) low permeability to minimize the upwards flux of brine displaced by the CO2; and (3) high strength to ensure that pressure build up does not cause caprock failure. We propose an alternative approach for cases when the above requirements are not met. The approach consists of extracting brine from the storage formation and then re-injecting it so that it mixes with CO2 at depth in the injection well. Mixing at depth reduces the pressure required for brine and CO2 at the surface. This CO2-saturated brine will sink to the aquifer bottom because it is denser than resident brine, which eliminates the risk of buoyant escape of CO2. The method is particularly favorable when the aquifer dips, because CO2-saturated brine will tend to flow downslope. We perform two- and three-dimensional numerical simulations to study how far upslope the extraction well needs to be located to ensure a very long operation without CO2 ever breaking through. Several sets of simulations were carried out to evaluate the effect of slope, temperature, pressure and CO2 concentration, which is significantly reduced if flue gas (i.e., without capture) is mixed with the brine. We analyze energy requirements to find that the system requires high permeability to be viable, but its performance is improved by taking advantage of the thermal energy of the extracted brine.

  17. Application of Heat Capacity Mapping Mission data to regional geologic analysis for mineral and energy resource evaluation

    NASA Technical Reports Server (NTRS)

    Watson, K. (Principal Investigator); Hummer-Miller, S.; Knepper, D. H., Jr.; Krohn, M. D.; Podwysocki, M. H.; Pohn, H. H.; Raines, G. L.; Rowan, L. C.

    1983-01-01

    Heat Capacity Mapping Mission thermal-inertia images of a diversity of terrains and geologic settings were examined in conjunction with topographic, geologic, geophysical, and LANDSAT data. The images were found to have attributes similar to bedrock maps. In the Cascades region, two new features were identified and a method was developed to characterize regional terranes using linear feature data. Two northeast-trending Lineaments were discovered in the Overthrust Belt of Montana and Idaho. The longer of the two extends from the Idaho-Oregon border, through the Idaho batholith and across the Lewis thrust. It coincides, along segments, with mapped faults and an aeromagnetic pattern change. A major lineament crossing the Colorado Plateau and the Southern Rocky Mountians was detected on several thermal-inertial images and evidence was found for the existence of a geologic discontinuity. Vegetation-covered areas in Richfield and the Silver City quadrangle (Arizona and New Mexico) displayed thermal-inertia differences within heavily vegetation areas although no apreciable correlation was found between vegetation cover and thermal inertia. Resistant ridges and knolls have high thermal inertias and thermal-inertia contrasts occurred at lithologic and fault contacts. In the heavy vegetated Pinaleno Mountains, Arizona, a Lithologic unit obscured on LANDSAT MSS data due to the vegetation cover, exhibited a thermal-inertia contrast with its surroundings.

  18. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  19. Effects of storage and cooking on the antioxidant capacity of laying hen eggs.

    PubMed

    Nimalaratne, Chamila; Schieber, Andreas; Wu, Jianping

    2016-03-01

    The aromatic amino acids and carotenoids are the major contributors to the antioxidant properties of egg yolk. This study aimed to evaluate the effect of simulated retail storage and domestic cooking on the antioxidant activity as well as on the aromatic amino acid and carotenoid contents in ordinary table eggs, omega 3/lutein (n-3/lutein) enriched eggs, and eggs from heritage chicken breeds. The oxygen radical scavenging capacity (ORAC) was the highest in n-3/lutein enriched eggs (161.4μmolTE/gsample), while eggs from heritage white leghorns (HW) showed the lowest levels (127.6μmolTE/gsample). Six weeks of storage at refrigerated temperature did not change the ORAC values, as well as the contents of free amino acid, carotenoid, and malondialdehyde (MDA) in egg yolk. Boiling and frying however, significantly reduced the ORAC value, and the contents of free amino acid, lutein and zeaxanthin, and increased the MDA content in eggs. Our results showed that the antioxidant activity is stable during six weeks of simulated retail storage. PMID:26471533

  20. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    PubMed

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased. PMID:26304379

  1. Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity.

    PubMed

    Li, Weihan; Yang, Zhenzhong; Li, Minsi; Jiang, Yu; Wei, Xiang; Zhong, Xiongwu; Gu, Lin; Yu, Yan

    2016-03-01

    Red phosphorus (P) have been considered as one of the most promising anode material for both lithium-ion batteries (LIBs) and (NIBs), because of its high theoretical capacity. However, natural insulating property and the large volume expansion of red P during cycling lead to poor cyclability and low rate performance, which prevents its practical application. Here, we significantly improves both lithium storage and sodium storage performance of red P by confining nanosized amorphous red P into the mesoporous carbon matrix (P@CMK-3) using a vaporization-condensation-conversion process. The P@CMK-3 shows a high reversible specific capacity of ∼ 2250 mA h g(-1) based on the mass of red P at 0.25 C (∼ 971 mA h g(-1) based on the composite), excellent rate performance of 1598 and 624 mA h g(-1) based on the mass of red P at 6.1 and 12 C, respectively (562 and 228 mA h g(-1) based on the mass of the composite at 6.1 and 12 C, respectively) and significantly enhanced cycle life of 1150 mA h g(-1) based on the mass of red P at 5 C (500 mA h g(-1) based on the mass of the composite) after 1000 cycles for LIBs. For Na ions, it also displays a reversible capacity of 1020 mA h g(-1) based on the mass of red P (370 mA h g(-1) based on the mass of the composite) after 210 cycles at 5C. The significantly improved electrochemical performance could be attributed to the unique structure that combines a variety of advantages: easy access of electrolyte to the open channel structure, short transport path of ions through carbon toward the red P, and high ionic and electronic conductivity. PMID:26866666

  2. Using the Choquet integral for screening geological CO2 storage sites

    SciTech Connect

    Zhang, Y.

    2011-03-01

    For geological CO{sub 2} storage site selection, it is desirable to reduce the number of candidate sites through a screening process before detailed site characterization is performed. Screening generally involves defining a number of criteria which then need to be evaluated for each site. The importance of each criterion to the final evaluation will generally be different. Weights reflecting the relative importance of these criteria can be provided by experts. To evaluate a site, each criterion must be evaluated and scored, and then aggregated, taking into account the importance of the criteria. We propose the use of the Choquet integral for aggregating the scores. The Choquet integral considers the interactions among criteria, i.e. whether they are independent, complementary to each other, or partially repetitive. We also evaluate the Shapley index, which demonstrates how the importance of a given piece of information may change if it is considered by itself or together with other available information. An illustrative example demonstrates how the Choquet integral properly accounts for the presence of redundancy in two site-evaluation criteria, making the screening process more defensible than the standard weighted-average approach.

  3. Experimental determination of trace element mobility in UK North Sea sandstones under conditions of geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Offshore UK geological formations have the capacity to store > 100 years' worth of UK CO2 output from industry and power generation, if utilised for carbon capture and storage (CCS) schemes. During CO2 storage or CO2-Enhanced Oil Recovery (CO2-EOR), formation waters may be produced at the surface to be disposed of into the marine environment. Laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution. Of relevance to the UK context, eight of these elements are specifically identified as potentially hazardous to the marine environment: As, Cd, Cr, Cu, Hg, Ni, Pb, Zn. Batch experiments using simple borosilicate flasks sat on heating mantles were used in this study to determine concentrations of these 8 elements which could be leached from selected North Sea sandstones with bubbled CO2 and saline solutions, at formation temperatures. These concentration data were compared with produced water data from current UK offshore hydrocarbon extraction activities. The comparison showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2. The origin of the increased trace element concentrations was investigated using sequential leaching experiments. A six step method of increasingly aggressive leaching was developed, based on modification of methods outlined by Tessier et al

  4. Geologic framework for the national assessment of carbon dioxide storage resources: Alaska North Slope and Kandik Basin, Alaska: Chapter I in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Craddock, William H.; Buursink, Marc L.; Covault, Jacob A.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven N.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    For each SAU in both of the basins, we discuss the areal distribution of suitable CO2 sequestration reservoir rock. We also characterize the overlying sealing unit and describe the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net thickness, porosity, permeability, and groundwater salinity. Case-by-case strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are presented. Although assessment results are not contained in this report, the geologic information included herein was employed to calculate the potential storage volume in the various SAUs. Lastly, in this report, we present the rationale for not conducting assessment work in fifteen sedimentary basins distributed across the Alaskan interior and within Alaskan State waters.

  5. Streamline-based Simulation of Geological CO2 Storage: Otway Case-Study

    NASA Astrophysics Data System (ADS)

    Lazaro Vallejo, Lorena; Dance, Tess; Cinar, Yildiray; Laforce, Tara

    2010-05-01

    -based simulators have the advantage of solving transport equations in 1D, which decreases the CPU (Central Processing Unit) time without losing accuracy. The current in-house streamline-based simulator has been extended to include compressibility. This 3-component (hydrocarbon, carbon dioxide and brine) 2-phase (aqueous and hydrocarbon) research code allows the CO2 to dissolve in both aqueous and hydrocarbon phase, water to dissolve in the hydrocarbon phase and assumes that hydrocarbons only exist in the hydrocarbon phase. The extended compressible streamline simulator will be used to simulate Huff and Push injection in the different geological scenarios taken from the Otway Project. A detailed study will be carried out to optimise the injection scheme and understand how reservoir variability can influence CO2 trapping. Streamline simulations will be compared against commercial simulations (ECLIPSE) regarding convergence of results and simulation times. 1. R Qi, T C LaForce and M J Blunt, "Design of carbon dioxide storage in aquifers," International Journal of Greenhouse Gas Control 3 195-205 (2009). 2. Website accessed on 14th January 2010: http://www.co2crc.com.au/otway/

  6. Pragmatic consideration of geologic carbon storage design based upon historic pressure response to oil and gas production in the southern San Joaquin basin

    NASA Astrophysics Data System (ADS)

    Jordan, P. D.

    2015-12-01

    Annual CO2 emissions from large fixed sources in the southern San Joaquin Valley and vicinity in California are about 20 million metric tons per year (MMT/Y). Cumulative net fluid production due to oil and gas extracted from below the minimum depth for geologic carbon storage (taken as 1,500 m) was 1.4 billion m3 at reservoir conditions as of 2010. At an average CO2 storage density of 0.5 metric tons per m3, this implies 35 years of storage capacity at current emission rates just to refill the vacated volume, neglecting possible reservoir consolidation. However, the production occurred from over 300 pools. The production rate relative to average pressure decline in the more productive pools analyzed suggests they could receive about 2 MMT/Y raising the field average pressure to nearly the fracturing pressure. This would require well fields as extensive as those used for production, instead of the single to few wells per project typically envisioned. Even then, the actual allowable injection rate to the larger pools would be less than 2 MMT/Y in order to keep pressures at the injection well below the fracture pressure. This implies storing 20 MMT/Y would require developing storage operations in tens of pools with hundreds, if not over a thousand, wells. This utilization of one of the basins with the most storage capacity in the state would result in reducing the state's fixed source emissions by only one eighth relative to current emissions. The number of fields and wells involved in achieving this suggests a different strategy might provide more capacity at similar cost. Specifically, staging wells that initially produce water in the vicinity of fewer injection wells could result in both more storage. This water could be directed to a shallower zone, or supplied to the surface at a similar cost. The commencement of ocean water desalination in the state indicates the economics of water supply might support treating this water for beneficial use, particularly if it

  7. Geologic framework for the national assessment of carbon dioxide storage resources: Columbia Basin of Oregon, Washington, and Idaho, and the Western Oregon-Washington basins: Chapter D in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Blondes, Madalyn S.; Cahan, Steven M.; DeVera, Christina A.; Freeman, P.A.; Lohr, Celeste D.

    2013-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of three storage assessment units (SAUs) in Eocene and Oligocene sedimentary rocks within the Columbia, Puget, Willapa, Astoria, Nehalem, and Willamette Basins of Oregon, Washington, and Idaho, and focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are provided to illustrate geologic factors critical to the assessment. The designated sealing unit in the Columbia Basin is tentatively chosen to be the ubiquitous and thick Miocene Columbia River Basalt Group. As a result of uncertainties regarding the seal integrity of the Columbia River Basalt Group, the SAUs were not quantitatively assessed. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on the cell maps.

  8. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.

    PubMed

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  9. Depression storage capacities of different ideal pavements as quantified by a terrestrial laser scanning-based method.

    PubMed

    Nehls, T; Menzel, M; Wessolek, G

    2015-01-01

    Rainfall partition on paved urban surfaces is governed to a great extent by depression storage. This is especially the case for small rainfall events, which are often ignored in urban hydrology. If storage, infiltration and evaporation (important for urban heat island mitigation), rather than storm water run-off, are of interest, high-resolution simulations with exact values for depression storage capacities are required. Terrestrial laser scanners deliver fast, high-resolution surveys of pavement surface morphology. The depression storage capacity can be quantified from 3D points by generating digital elevation models and applying cut-and-fill algorithms in a geographic information system. The method was validated using a test model. It was possible to quantify depressions with a depth of at least 1.4 × 10(-3) m and a surface of at least 15 × 10(-6) m(2) with an uncertainty below 30%. Applying this method, the depression storage capacities for 11 ideal, typical pavement designs were found to vary from 0.07 to 1.4 mm. Realistic urban pavements must also be surveyed, as cracks and puddles from their use history can have a major impact on the depression storage capacities and thus on infiltration, evaporation and, finally, the annual run-off. PMID:25812095

  10. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.; Members Of The Crius Project

    2011-12-01

    Dissolution of CO2 in brines is a prime mechanism for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they likely depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. The injected CO2 was spiked with isotopically enriched noble gases at the start of injection. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. The noble gas spikes were detected at producing wells within days of injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretation of the water chemistry is complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution with either dissolution or precipitation of calcite. The precipitation of calcite driven by the rise in pH consequent on dissolution of silicates is as predicted by previous modelling (Knaus et al., 2005, Chemical Geology) and as observed in natural analogue systems (Kampman et al., 2009, Earth Planetary Science Letters). A key question is the extent to which the rates of dissolution are controlled by the surface reaction rates of the minerals versus the rate at which CO2 can dissolve in formation brines. Simple flow

  11. Climate controls how ecosystems size the root zone storage capacity at catchment scale

    NASA Astrophysics Data System (ADS)

    Gao, H.; Hrachowitz, M.; Schymanski, S. J.; Fenicia, F.; Sriwongsitanon, N.; Savenije, H. H. G.

    2014-11-01

    The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response, and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale SR from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived SR coincided with model-derived estimates. These estimates of parameter SR can be used to constrain hydrological, climate, and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10-40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality, and runoff ratio.

  12. Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage

    SciTech Connect

    Wang, Yunhui; Meng, Zhaoshun; Liu, Yuzhen; You, Dongsen; Wu, Kai; Lv, Jinchao; Wang, Xuezheng; Deng, Kaiming; Lu, Ruifeng E-mail: rflu@njust.edu.cn; Rao, Dewei E-mail: rflu@njust.edu.cn

    2015-02-09

    Based on density functional theory and the first principles molecular dynamics simulations, a three-dimensional B-doped graphene-interconnected framework has been constructed that shows good thermal stability even after metal loading. The average binding energy of adsorbed Li atoms on the proposed material (2.64 eV) is considerably larger than the cohesive energy per atom of bulk Li metal (1.60 eV). This value is ideal for atomically dispersed Li doping in experiments. From grand canonical Monte Carlo simulations, high hydrogen storage capacities of 5.9 wt% and 52.6 g/L in the Li-decorated material are attained at 298 K and 100 bars.

  13. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  14. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications. PMID:27478888

  15. Modeled Differential Muon Flux Measurements for Monitoring Geological Storage of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Naudet, C. J.; Gluyas, J.

    2012-12-01

    Recently, we published the first, theoretical feasibility study of the use of muon tomography to monitor injection of supercritical carbon dioxide into a geological storage reservoir for carbon storage (Kudryavtsev et al., 2012). Our initial concept showed that attenuation of the total muon downward flux, which is controlled effectively by its path-length and the density of the material through which it passes, could quantify the replacement in a porous sandstone reservoir of relatively dense aqueous brine by less dense supercritical carbon dioxide (specific gravity, 0.75). Our model examined the change in the muon flux over periods of about one year. However, certainly, in the initial stages of carbon dioxide injection it would be valuable to examine its emplacement over much shorter periods of time. Over a year there are small fluctuations of about 2% in the flux of high energy cosmic ray muons, because of changes in pressure and temperature, and therefore density, of the upper atmosphere (Ambrosio, 1997). To improve precision, we developed the concept of differential muon monitoring. The muon flux at the bottom of the reservoir is compared with the incident flux at its top. In this paper we present the results of three simulations. In all of them, as in our previous modeling exercise, we assume a 1000 sq. m total area of muon detectors, but in this case both above and below a 300 m thick sandstone bed, with 35% porosity, capped by shale and filled initially with a dense brine (specific gravity, 1.112). We assume high sweep efficiency, since supercritical CO2 and water are miscible, and therefore that 80% of the water will be replaced over a period of injection spanning 10 years. In the first two cases the top of the reservoir is at 1200 m and the overburden is either continuous shale or a 100m shale horizon beneath a sandstone aquifer, respectively. In the third case, which is somewhat analogous to the FutureGen 2.0 site in Illinois (FutureGen Industrial

  16. A Capacity Design Method of Distributed Battery Storage for Controlling Power Variation with Large-Scale Photovoltaic Sources in Distribution Network

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiro; Sawa, Toshiyuki; Gunji, Keiko; Yamazaki, Jun; Watanabe, Masahiro

    A design method for distributed battery storage capacity has been developed for evaluating battery storage advantage on demand-supply imbalance control in distribution systems with which large-scale home photovoltaic powers connected. The proposed method is based on a linear storage capacity minimization model with design basis demand load and photovoltaic output time series subjective to battery management constraints. The design method has been experimentally applied to a sample distribution system with substation storage and terminal area storage. From the numerical results, the developed method successfully clarifies the charge-discharge control and stored power variation, satisfies peak cut requirement, and pinpoints the minimum distributed storage capacity.

  17. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    PubMed

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. PMID:25916410

  18. Modeling the Long-Term Isolation Performance of Natural and Engineered Geologic CO2 Storage Sites

    SciTech Connect

    Johnson, J W; Nitao, J J; Morris, J P

    2004-07-26

    Long-term cap rock integrity represents the single most important constraint on the long-term isolation performance of natural and engineered geologic CO{sub 2} storage sites. CO{sub 2} influx that forms natural accumulations and CO{sub 2} injection for EOR/sequestration or saline-aquifer disposal both lead to concomitant geochemical alteration and geomechanical deformation of the cap rock, enhancing or degrading its seal integrity depending on the relative effectiveness of these interdependent processes. This evolution of cap-rock permeability can be assessed through reactive transport modeling, an advanced computational method based on mathematical models of the coupled physical and chemical processes catalyzed by the influx event. Using our reactive transport simulator (NUFT), supporting geochemical databases and software (SUPCRT92), and distinct-element geomechanical model (LDEC), we have shown that influx-triggered mineral dissolution/precipitation reactions within typical shale cap rocks continuously reduce microfrac apertures, while pressure and effective-stress evolution first rapidly increase then slowly constrict them. For a given shale composition, the extent of geochemical enhancement is nearly independent of key reservoir properties (permeability and lateral continuity) that distinguish saline aquifer and EOR/sequestration settings and CO{sub 2} influx parameters (rate, focality, and duration) that distinguish engineered disposal sites and natural accumulations, because these characteristics and parameters have negligible impact on mineral reaction rates. In contrast, the extent of geomechanical degradation is highly dependent on these reservoir properties and influx parameters, because they effectively dictate magnitude of the pressure perturbation. Specifically, initial geomechanical degradation has been shown inversely proportional to reservoir permeability and lateral continuity and proportional to influx rate. As a result, while the extent of

  19. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak

    PubMed Central

    Vilarrasa, Victor; Carrera, Jesus

    2015-01-01

    Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501

  20. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak.

    PubMed

    Vilarrasa, Victor; Carrera, Jesus

    2015-05-12

    Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164-10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501

  1. Solvothermal and electrochemical synthetic method of HKUST-1 and its methane storage capacity

    NASA Astrophysics Data System (ADS)

    Wahyu Lestari, Witri; Adreane, Marisa; Purnawan, Candra; Fansuri, Hamzah; Widiastuti, Nurul; Budi Rahardjo, Sentot

    2016-02-01

    A comparison synthetic strategy of Metal-Organic Frameworks, namely, Hongkong University of Techhnology-1 {HKUST-1[Cu3(BTC)]2} (BTC = 1,3,5-benzene-tri-carboxylate) through solvothermal and electrochemical method in ethanol:water (1:1) has been conducted. The obtained material was analyzed using powder X-ray diffraction, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA) and Surface Area Analysis (SAA). While the voltage in the electrochemical method are varied, ranging from 12 to 15 Volt. The results show that at 15 V the texture of the material has the best degree of crystallinity and comparable with solvothermal product. This indicated from XRD data and supported by the SEM image to view the morphology. The thermal stability of the synthesized compounds is up to 320 °C. The shape of the nitrogen sorption isotherm of the compound corresponds to type I of the IUPAC adsorption isotherm classification for microporous materials with BET surface area of 629.2 and 324.3 m2/g (for solvothermal and electrochemical product respectively) and promising for gas storage application. Herein, the methane storage capacities of these compounds are also tested.

  2. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs. PMID:24738450

  3. Impure CO2 geological storage: Preliminary laboratory experiments at ambient conditions

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Wei, N.; Wang, Y.; Zhang, C.; Bonneville, A.

    2011-12-01

    The cost of carbon capture is related to the purity of the CO2 and subsequent removal of the impurities may be costly. For several sites, it is likely to be more cost effective if impure CO2 is injected, although non-condensable impurities may reduce storage capacity and increase the injection pressure. The feasibility of co-sequestration of CO2 with a certain level of impurity has not been experimentally studied in much detail due to severe limitations associated with visualization and sampling at high pressure and temperature conditions. A series of intermediate-scale experiments has been conducted in a 100-cm-long, 20-cm-high, and 5-cm-wide intermediate-scale flow cell studying the effects of N2 and H2S impurities on CO2 transport in initially brine-saturated porous media. Homogeneous and simple layered heterogeneous systems were used to evaluate pH behavior, measure water and gas pressures, and analyze the gas composition at several locations. A multiphase code was used to compare simulation results for equilibrium dissolution conditions with experimental results. Although these preliminary analogue experiments were conducted at ambient pressure and temperature, the provide insight in the behavior of injected multi-component gas in initially saturated porous media.

  4. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  5. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    SciTech Connect

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  6. May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.

    2016-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.

  7. Climatic and Landscape Controls on Storage Capacity of Urban Stormwater Control Measures (SCMs): Implications for Stormwater-Stream Connectivity

    NASA Astrophysics Data System (ADS)

    Fanelli, R. M.; Prestegaard, K. L.; Palmer, M.

    2015-12-01

    Urbanization alters watershed hydrological processes; impervious surfaces increase runoff generation, while storm sewer networks increase connectivity between runoff sources and streams. Stormwater control measures (SCMs) that enhance stormwater infiltration have been proposed to mitigate these effects by functioning as stormwater sinks. Regenerative stormwater conveyances structures (RSCs) are an example of infiltration-based SCMs that are placed between storm sewer outfalls and perennial stream networks. Given their location, RSCs act as critical nodes that regulate stormwater-stream connectivity. Therefore, the storage capacity of a RSC structure may exert a major control on the frequency, duration, and magnitude of these connections. This project examined both hydrogeological and hydro-climatic factors that could influence storage capacity of RSC structures. We selected three headwater (5-48 ha) urban watersheds near Annapolis, Maryland, USA. Each watershed is drained by first-order perennial streams and has been implemented with a RSC structure. We conducted high-frequency precipitation and stream stage monitoring below the outlet of each RSC structure for a 1-year period. We also instrumented one of the RSC structures with groundwater wells to monitor changes in subsurface storage over time. Using these data, we 1) identified rainfall thresholds for RSC storage capacity exceedance; 2) quantified the frequency and duration of connectivity when the storage capacity of each RSC was exceeded; and 3) evaluated both event-scale and seasonal changes in groundwater levels within the RSC structure. Precipitation characteristics and antecedent precipitation indices influenced the frequency and duration of stormwater-stream connections. We hypothesize both infiltration limitations and storage limitations of the RSCs contributed to the temporal patterns we observed in stormwater-stream connectivity. We also observed reduced storage potential as contributing area and

  8. Assessment of the Geologic Carbon Dioxide Storage Resources of the Clinton, Medina, and Tuscarora Formations in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Doolan, C.

    2013-12-01

    The U.S. Geological Survey (USGS) has completed an assessment of the geologic carbon dioxide (CO2) storage potential within the Appalachian Basin. This assessment was performed as part of the USGS national assessment of geologic CO2 storage resources in which individual sedimentary basins are divided into storage assessment units (SAUs) based on geologic characteristics such as lithology, porosity, permeability, reservoir depth, formation water salinity, and the presence of a regional sealing formation. This study focuses on the assessment of the Clinton, Medina and Tuscarora Formations storage assessment unit (SAU) that covers an area of 48.9 million acres in eastern Kentucky and Ohio, West Virginia, northern and western Pennsylvania, and southwestern New York. The areal extent of the SAU is defined on the western boundary by the 100 foot isopach contour of the combined Rochester and Rose Hill Shales that acts as the regional sealing formation and is defined by the 3,000 foot depth to top contour of the Clinton and Tuscarora Formations elsewhere. Depth-to-top and isopach contours were derived from IHS Energy Group, 2011 data for over 25,000 unique boreholes located throughout the area of the SAU. The Clinton, Medina and Tuscarora Formations SAU is composed of the porous intervals of the Lower to Middle Silurian strata that is bounded by the underlying Ordovician age Queenston Shale, and the overlying Silurian age Rochester and Rose Hill Shales. Porous intervals were deposited in a variety of wave and tidal dominated environments as a result of a Lower Silurian shoreline that prograded southeast to northwest. Porous units in the Tuscarora Formation in southwestern and central Pennsylvania and West Virginia are predominantly fine to medium grained sands of alluvial plain facies and those of the Clinton and Medina Formations in southwestern New York, northeastern Pennsylvania, eastern Ohio and northeastern Kentucky are typically fine grained quartzarenites deposited

  9. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J.; McGuire, A. David; Hastings, Alan; Schimel, David S.

    2012-09-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U · τE · ?, where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  10. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  11. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  12. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    NASA Astrophysics Data System (ADS)

    Picotti, Stefano; Carcione, José M.; Gei, Davide; Rossi, Giuliana; Santos, Juan E.

    2012-06-01

    We develop a petro-elastical numerical methodology to compute realistic synthetic seismograms and analyze the sensitivity of the seismic response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us to estimate the distribution and saturation of CO2 during the injection process. The gas properties, as a function of the in-situ pressure and temperature conditions, are computed with the Peng-Robinson equation of state, taking into account the absorption of gas by brine. Wave attenuation and velocity dispersion are based on the mesoscopic loss mechanism, which is simulated by an upscaling procedure to obtain an equivalent viscoelastic medium corresponding to partial saturation at the mesoscopic scale. Having the equivalent complex and frequency-dependent bulk (dilatational) modulus, we include shear attenuation and perform numerical simulations of wave propagation at the macroscale by solving the viscoelastic differential equations using the memory-variable approach. The pseudo-spectral modeling method allows general material variability and provides a complete and accurate characterization of the reservoir. The methodology is used to assess the sensitivity of the seismic method for monitoring the CO2 geological storage at the Atzbach-Schwanestadt depleted gas-field in Austria. The objective of monitoring is the detection of the CO2 plume in the reservoir and possible leakages of CO2. The leakages are located at different depths, where the CO2 is present as gaseous, liquid and supercritical phases. Even though the differences can be very subtle, this work shows that seismic monitoring of CO2 from the surface is possible. While the identification of shallow leakages is feasible, the detection of the plume and deep leakages, located in the caprock just above the injection formation, is more difficult, but possible by using

  13. Passive microseismic monitoring at an Australian CO2 geological storage site

    NASA Astrophysics Data System (ADS)

    Siggins, Anthony

    2010-05-01

    Passive microseismic monitoring at an Australian CO2 geological storage site A.F. Siggins1 and T. Daley2 1. CO2CRC at CSIRO Earth Science and Resource Engineering, Clayton, Victoria, Australia 2. Lawrence Berkeley National Labs, Berkeley, CA, USA Prior to the injection of CO2, background micro-seismic (MS) monitoring commenced at the CO2CRC Otway project site in Victoria, south-eastern Australia on the 4th of October 2007. The seismometer installation consisted of a solar powered ISS MS™ seismometer connected to two triaxial geophones placed in a gravel pack in a shallow borehole at 10m and 40 m depth respectively. The seismometer unit was interfaced to a digital radio which communicated with a remote computer containing the seismic data base. This system was designed to give a qualitative indication of any natural micro-seismicity at the site and to provide backup to a more extensive geophone array installed at the reservoir depth of approximately 2000m. During the period, October to December 2007 in excess of 150 two-station events were recorded. These events could all be associated with surface engineering activities during the down-hole installation of instruments at the nearby Naylor 1 monitoring well and surface seismic weight drop investigations on site. Source location showed the great majority of events to be clustered on the surface. MS activity then quietened down with the completion of these tasks. Injection of a CO2 rich gas commenced in mid March 2008 continuing until late August 2009 with approximately 65,000 tonnes being injected at 2050m depth in to a depleted natural gas formation. Only a small number of subsurface MS events were recorded during 2008 although the monitoring system suffered from long periods of down-time due to power supply failures and frequent mains power outages in the region. In March 2009 the surface installation was upgraded with new hardware and software. The seismometer was replaced with a more sensitive ISS 32-bit GS

  14. A Preliminary Geomorphological Analysis of Water storage capacity: The Providence Watershed, California

    NASA Astrophysics Data System (ADS)

    Chamorro, A.; Giardino, J. R.; Vitek, J. D.

    2011-12-01

    The Critical Zone of Earth, as defined by NSF in 2007, is series of systems that extend from the top of the canopy to the bottom of the aquifer. The soil system has been used as the primary connection between the various systems. Knowledge of water storage capacity is essential for predicting water availability in the critical zone. Soil depth is one of the most important parameters used to study water storage capacity. Unfortunately, it is challenging to obtain an accurate representation of the degree of spatial variability of soil depth in a watershed. To obtain this data requires extensive and expensive surveys, which can be compounded in forested regions. We make the assumption that soil depth is a function of surface and subsurface geomorphological processes. The Providence Watershed, which is a Critical Zone Center (CZO) is located in the Southern Sierra Nevada of California. The Providence Watershed is ~ 2.8 km2. The general trend of the watershed is northeast and ranges in elevation from 1,700 m to 2,100 m. The dominant vegetation cover is coniferous. In this area, we compiled indices from LIDAR imagery and compared these to hand-auguring profiles collected along Ground Penetrating Radar (GPR) transects. Auguring profiles exist at a spacing of 123 m. The depths of these profiles varied from 0.5 to 7.0 m. We correlated the auguring data with nine indices. None of the correlations, which ranged from -0.50 to 0.21 (Pearson product-moment), were strong. The most significant finding of this study strengthens the important role that GPR can provide to capture the spatial heterogeneity present. GPR lines complimentary to geomorphological mapping can be used as an approach to obtain more accurate results in soil depth and bedrock topography mapping. The appropriate scale of work, however, depends on the understanding of the scale of processes controlling soil formation and erosion. This work is part of the collaborative effort of the Southern Sierra Critical Zone

  15. Loading Capacities for Uranium, Plutonium and Neptunium in High Caustic Nuclear Waste Storage Tanks Containing Selected Sorbents

    SciTech Connect

    OJI, LAWRENCE

    2004-11-16

    In this study the loading capacities of selected actinides onto some of the most common sorbent materials which are present in caustic nuclear waste storage tanks have been determined. Some of these transition metal oxides and activated carbons easily absorb or precipitate plutonium, neptunium and even uranium, which if care is not taken may lead to unwanted accumulation of some of these fissile materials in nuclear waste tanks during waste processing. Based on a caustic synthetic salt solution simulant bearing plutonium, uranium and neptunium and ''real'' nuclear waste supernate solution, the loading capacities of these actinides onto iron oxide (hematite), activated carbon and anhydrous sodium phosphate have been determined. The loading capacities for plutonium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 3.4 0.22 plus or minus and 5.5 plus or minus 0.38 microgram per gram of sorbent. The loading capacity for plutonium onto a typical nuclear waste storage tank sludge solids was 2.01 microgram per gram of sludge solids. The loading capacities for neptunium onto granular activated carbon and iron oxide (hematite) in a caustic synthetic salt solution were, respectively, 7.9 plus or minus 0.52 and greater than 10 microgram per gram of sorbent. The loading capacity for neptunium onto a typical nuclear waste storage tank sludge solids was 4.48 microgram per gram of sludge solids. A typical nuclear waste storage tank solid material did not show any significant affinity for uranium. Sodium phosphate showed significant affinity for both neptunium and uranium, with loading capacities of 6.8 and 184.6 plus or minus 18.5 microgram per gram of sorbent, respectively.

  16. Numerical Study of Artificial Seal Formation to Remedy Leakage from Geological CO2 Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Ito, T.; Tanaka, H.; Xu, T.

    2011-12-01

    In the Carbon dioxide Capture and Storage (CCS), the CO2 is captured from emission source and stored into geological reservoirs at a depth below 800 m. The injected CO2 is less dense than water, and as a result, it tends to migrate upward. For trapping to inhibit the upward migration of CO2, the reservoirs should be covered with a sufficiently impermeable seal, i.e. caprock. However, the caprock may contain imperfections such as faults and fractures which will play a role of a high permeability path to arise leakage of the injected CO2 from the reservoirs. Pressurization with the injected CO2 can create fissures that may transmit CO2 through the caprock (Zoback and Zinke, 2002). Preparing for such risk of CO2 leakage through pre-existing and/or induced fractures, the International Energy Agency (IEA) has pointed out the importance of establishing a ready-to-use strategy for remediation of leakage from CO2 storage reservoirs (IEA, 2007). As one possibility to realize the strategy, we have proposed a concept to use an aqueous solution (Ito et al., 2006). The solution will have a sufficiently-low viscosity for passing through even small aperture, and it will not impact formation permeability as long as the solution is left as it is. When the solution encounters dissolved CO2, precipitation will occur due to chemical reaction. As a result, the permeability will be reduced by filling the pores and fractures in the rocks with the precipitates. In the present study, we demonstrated first this idea through laboratory experiments simulating subsurface condition at 1000 m deep, i.e. 10 MPa and 40 deg. C, and using a silicate solution reacting with CO2. In this case, the solution - CO2 reaction will produce precipitates of amorphous silica. The results of laboratory experiments show that the present method led to a 99 % permeability reduction in a glass-bead artificial rock even its initially-high permeability of few darcy. Such reduction of permeability was reproduced

  17. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis?

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    1999-01-01

    In a recent address at the California Science Center in Los Angeles, Vice President Al Gore articulated a Digital Earth Vision. That vision spoke to developing a multi-resolution, three-dimensional visual representation of the planet into which we can roam and zoom into vast quantities of embedded geo-referenced data. The vision was not limited to moving through space, but also allowing travel over a time-line, which can be set for days, years, centuries, or even geological epochs. A working group of Federal Agencies, developing a coordinated program to implement the Vice President's vision, developed the definition of the Digital Earth as a visual representation of our planet that enables a person to explore and interact with the vast amounts of natural and cultural geo-referenced information gathered about the Earth. One of the challenges identified by the agencies was whether the technology existed that would be available to permanently store and deliver all the digital data that enterprises might want to save for decades and centuries. Satellite digital data is growing by Moore's Law as is the growth of computer generated data. Similarly, the density of digital storage media in our information-intensive society is also increasing by a factor of four every three years. The technological bottleneck is that the bandwidth for transferring data is only growing at a factor of four every nine years. This implies that the migration of data to viable long-term storage is growing more slowly. The implication is that older data stored on increasingly obsolete media are at considerable risk if they cannot be continuously migrated to media with longer life times. Another problem occurs when the software and hardware systems for which the media were designed are no longer serviced by their manufacturers. Many instances exist where support for these systems are phased out after mergers or even in going out of business. In addition, survivability of older media can suffer from

  18. Processing and storage effects on monomeric anthocyanins, percent polymeric color and antioxidant capacity of processed black raspberry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of processing and 6 mo of storage on total monomeric anthocyanins, percent polymeric color, and antioxidant capacity of black raspberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Tot...

  19. Climate controls how ecosystems size the root zone storage capacity at catchment scale

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Schymanski, Stan; Fenicia, Fabrizio; Sriwongsitanon, Nutchanart; Savenije, Hubert

    2015-04-01

    The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale SR from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived SR coincided with model-derived estimates. These estimates of parameter SR can be used to constrain hydrological, climate and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10-40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality and runoff ratio. This adaptation of ecosystems to climate could be explored for prediction in ungauged basins. We found that implementing the MCT-derived SR without recalibration has dramatically increased hydrological model transferability.

  20. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xu, Zongxue; Singh, Vijay P.

    2016-09-01

    The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.

  1. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  2. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    SciTech Connect

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  3. Water storage capacity exceedance controls the timing and amount of runoff generated from Arctic hillslopes in Alaska, USA

    NASA Astrophysics Data System (ADS)

    Rushlow, C. R.; Godsey, S.

    2014-12-01

    Within the hydrologic community, there is a growing recognition that different runoff generation mechanisms can be unified within a "fill-and-spill" or storage exceedance paradigm. However, testing this unifying paradigm requires observing watersheds at a variety of scales under their full range of storage conditions, which are difficult to observe on typical human timescales in most environments. Polar watersheds underlain by continuous permafrost provide an opportunity to address these issues, because their total capacity for water storage follows a consistent annual cycle of expansion and contraction as a direct consequence of the extreme seasonality of solar energy availability. Cryotic conditions usually limit water storage to the surface snowpack and frozen soils, but summer warming allows the shallow subsurface to progressively thaw, providing a dynamic storage reservoir that is the convolved expression of several factors, including substrate hydrologic properties, watershed structure, and stochastic precipitation. We hypothesize that the amount of remaining water storage capacity in the system directly controls the amount and timing of runoff production for a given input. We test this prediction for six hillslope watersheds in Arctic Alaska over the 2013 and 2014 summer seasons from snowmelt in May through plant senescence in mid-August. We compare water table position to runoff produced from a given storm event or series of storm events. We find that no runoff is produced until a threshold water table position is exceeded; that is, as seasonal storage changes, runoff depends on watershed storage capacity exceedance. Preliminary results suggest that once that threshold is met, hydrologic response is proportional to storage exceedance. Thus, runoff production from Arctic hillslopes can be modeled from the surface energy balance and a reasonable estimate of shallow subsurface material properties. If storage exceedance is the key control on water export from

  4. Multivariate Geostatistical Analysis of Uncertainty for the Hydrodynamic Model of a Geological Trap for Carbon Dioxide Storage. Case study: Multilayered Geological Structure Vest Valcele, ROMANIA

    NASA Astrophysics Data System (ADS)

    Scradeanu, D.; Pagnejer, M.

    2012-04-01

    The purpose of the works is to evaluate the uncertainty of the hydrodynamic model for a multilayered geological structure, a potential trap for carbon dioxide storage. The hydrodynamic model is based on a conceptual model of the multilayered hydrostructure with three components: 1) spatial model; 2) parametric model and 3) energy model. The necessary data to achieve the three components of the conceptual model are obtained from: 240 boreholes explored by geophysical logging and seismic investigation, for the first two components, and an experimental water injection test for the last one. The hydrodinamic model is a finite difference numerical model based on a 3D stratigraphic model with nine stratigraphic units (Badenian and Oligocene) and a 3D multiparameter model (porosity, permeability, hydraulic conductivity, storage coefficient, leakage etc.). The uncertainty of the two 3D models was evaluated using multivariate geostatistical tools: a)cross-semivariogram for structural analysis, especially the study of anisotropy and b)cokriging to reduce estimation variances in a specific situation where is a cross-correlation between a variable and one or more variables that are undersampled. It has been identified important differences between univariate and bivariate anisotropy. The minimised uncertainty of the parametric model (by cokriging) was transferred to hydrodynamic model. The uncertainty distribution of the pressures generated by the water injection test has been additional filtered by the sensitivity of the numerical model. The obtained relative errors of the pressure distribution in the hydrodynamic model are 15-20%. The scientific research was performed in the frame of the European FP7 project "A multiple space and time scale approach for the quantification of deep saline formation for CO2 storage(MUSTANG)".

  5. Spent fuel test-climax: a test of geologic storage of high-level waste in granite

    SciTech Connect

    Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

    1981-01-01

    A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

  6. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    SciTech Connect

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  7. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.

    2012-04-01

    Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated

  8. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    SciTech Connect

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a

  9. Our trial to develop a risk assessment tool for CO2 geological storage (GERAS-CO2GS)

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Sakamoto, Y.; Komai, T.

    2012-12-01

    We will introduce our researches about to develop a risk assessment tool named 'GERAS-CO2GS' (Geo-environmental Risk Assessment System, CO2 Geological Storage Risk Assessment System) for 'Carbon Dioxide Geological Storage (Geological CCS)'. It aims to facilitate understanding of size of impact of risks related with upper migration of injected CO2. For gaining public recognition about feasibility of Geological CCS, quantitative estimation of risks is essential, to let public knows the level of the risk: whether it is negligible or not. Generally, in preliminary hazard analysis procedure, potential hazards could be identified within Geological CCS's various facilities such as: reservoir, cap rock, upper layers, CO2 injection well, CO2 injection plant and CO2 transport facilities. Among them, hazard of leakage of injected C02 is crucial, because it is the clue to estimate risks around a specific injection plan in terms of safety, environmental protection effect and economy. Our risk assessment tool named GERAS-CO2GS evaluates volume and rate of retention and leakage of injected CO2 in relation with fractures and/or faults, and then it estimates impact of seepages on the surface of the earth. GERAS-CO2GS has four major processing segments: (a) calculation of CO2 retention and leakage volume and rate, (b) data processing of CO2 dispersion on the surface and ambient air, (c) risk data definition and (d) evaluation of risk. Concerning to the injection site, we defined a model, which is consisted from an injection well and a geological strata model: which involves a reservoir, a cap rock, an upper layer, faults, seabed, sea, the surface of the earth and the surface of the sea. For retention rate of each element of CO2 injection site model, we use results of our experimental and numerical studies on CO2 migration within reservoirs and faults with specific lithological conditions. For given CO2 injection rate, GERAS-CO2GS calculates CO2 retention and leakage of each segment

  10. Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material.

    PubMed

    Park, Eunjun; Yoo, Hyundong; Lee, Jaewoo; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu

    2015-07-28

    SiOx-based materials attracted a great deal of attention as high-capacity Li(+) storage materials for lithium-ion batteries due to their high reversible capacity and good cycle performance. However, these materials still suffer from low initial Coulombic efficiency as well as high production cost, which are associated with the complicated synthesis process. Here, we propose a dual-size Si nanocrystal-embedded SiOx nanocomposite as a high-capacity Li(+) storage material prepared via cost-effective sol-gel reaction of triethoxysilane with commercially available Si nanoparticles. In the proposed nanocomposite, dual-size Si nanocrystals are incorporated into the amorphous SiOx matrix, providing a high capacity (1914 mAh g(-1)) with a notably improved initial efficiency (73.6%) and stable cycle performance over 100 cycles. The highly robust electrochemical and mechanical properties of the dual-size Si nanocrystal-embedded SiOx nanocomposite presented here are mainly attributed to its peculiar nanoarchitecture. This study represents one of the most promising routes for advancing SiOx-based Li(+) storage materials for practical use. PMID:26132999

  11. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins

    NASA Astrophysics Data System (ADS)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-12-01

    Societies and economies are challenged by variable water supplies. Water storage infrastructure, on a range of scales, can help to mitigate hydrological variability. This study uses a water balance model to investigate how storage capacity can improve water security in the world’s 403 most important river basins, by substituting water from wet months to dry months. We construct a new water balance model for 676 ‘basin-country units’ (BCUs), which simulates runoff, water use (from surface and groundwater), evaporation and trans-boundary discharges. When hydrological variability and net withdrawals are taken into account, along with existing storage capacity, we find risks of water shortages in the Indian subcontinent, Northern China, Spain, the West of the US, Australia and several basins in Africa. Dividing basins into BCUs enabled assessment of upstream dependency in transboundary rivers. Including Environmental Water Requirements into the model, we find that in many basins in India, Northern China, South Africa, the US West Coast, the East of Brazil, Spain and in the Murray basin in Australia human water demand leads to over-abstraction of water resources important to the ecosystem. Then, a Sequent Peak Analysis is conducted to estimate how much storage would be needed to satisfy human water demand whilst not jeopardizing environmental flows. The results are consistent with the water balance model in that basins in India, Northern China, Western Australia, Spain, the US West Coast and several basins in Africa would need more storage to mitigate water supply variability and to meet water demand.

  12. Experimental study of soil water storage capacity on rocky slopes in the Negev Highlands, Israel

    NASA Astrophysics Data System (ADS)

    Hikel, Harald; Kuhn, Nikolaus; Schwanghart, Wolfgang

    2010-05-01

    - February) were analyzed. Based on experiments, analysis of rainfall records, soil properties and infiltration rates, it was possible to estimate the recurrence interval of events generating sufficient runoff to wet soil patches to a degree that is suitable for plant growth. The preliminary results indicate that a minimum effective rainfall amount of 2.5 mm in the soil patch contribution area is required to saturate soil patches with water. Such low rainfall events are relatively frequent in this region of the Negev, indicating that there is potential to frequently fill soil pore volume. The storage capacity of the soil is particularly relevant for plant water supply during periods without rain. Our results therefore show that the impact of climate change in drylands can only be predicted by taking the soil water storage capacity into account. The study also illustrates how rainfall simulation experiments and the analysis of meteorological records can be combined as a tool for the assessment of environmental change.

  13. Effects of reduction in porosity and permeability with depth on storage capacity and injectivity in deep saline aquifers: A case study from the Mount Simon Sandstone aquifer

    USGS Publications Warehouse

    Medina, C.R.; Rupp, J.A.; Barnes, D.A.

    2011-01-01

    The Upper Cambrian Mount Simon Sandstone is recognized as a deep saline reservoir that has significant potential for geological sequestration in the Midwestern region of the United States. Porosity and permeability values collected from core analyses in rocks from this formation and its lateral equivalents in Indiana, Kentucky, Michigan, and Ohio indicate a predictable relationship with depth owing to a reduction in the pore structure due to the effects of compaction and/or cementation, primarily as quartz overgrowths. The regional trend of decreasing porosity with depth is described by the equation: ??(d)=16.36??e-0.00039*d, where ?? is the porosity and d is the depth in m. The decrease of porosity with depth generally holds true on a basinwide scale. Bearing in mind local variations in lithologic and petrophysical character within the Mount Simon Sandstone, the source data that were used to predict porosity were utilized to estimate the pore volume available within the reservoir that could potentially serve as storage space for injected CO2. The potential storage capacity estimated for the Mount Simon Sandstone in the study area, using efficiency factors of 1%, 5%, 10%, and 15%, is 23,680, 118,418, 236,832, and 355,242 million metric tons of CO2, respectively. ?? 2010 Elsevier Ltd.

  14. Evaluation of Impacts of Permeability and Porosity of Storage Formations on Leakage Risk of Deep Groundwater and Carbon Dioxide Due to Geologic Carbon Dioxide Storage

    NASA Astrophysics Data System (ADS)

    Lee, S.; Park, J. Y.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of analysis modeling was performed using a behavior prediction model and a leakage risk analysis model to evaluate quantitatively impacts of hydrogeologic properties (intrinsic permeability and porosity) of storage formations (reservoir rocks) on leakage risk of deep groundwater (brine) and carbon dioxide (CO2) due to geologic CO2 storage. In this study, an abandoned well and a fault are considered as leakage pathways for deep groundwater and CO2 leakage from a storage formation into an overlying near-surface aquifer. A series of prediction modeling of behavior of deep groundwater and CO2 in the storage formation was performed first using a behavior prediction model TOUGH2 (Pruess et al., 1999, 2012) to obtain spatial and temporal distributions of the pressure, temperature, and saturation of deep groundwater and CO2 as well as the mass fraction (solubility) of CO2 in deep groundwater along the upper boundary of the storage formation beneath the overlying cap rock. These spatial and temporal distributions are used as input data in the next leakage risk analysis modeling. A series of analysis modeling of leakage risk of deep groundwater and CO2 through either the abandoned well or the fault was then performed using a leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that CO2 injection can cause deep groundwater (brine) and CO2 (both free fluid and aqueous phases) leakage into the overlying near-surface aquifer through either the abandoned well or the fault. In that case, brine leaks first, aqueous phase of CO2 then leaks, and free fluid phase of CO2 leaks finally, whereas their leakage rates and amounts through the fault is much greater than those through the abandoned well. The analysis modeling results also reveal that the leakage rate and amount of deep groundwater are almost independent of permeability and porosity of the storage formation. However, the leakage rate and amount of CO2 are dependent on and inversely

  15. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  16. A method for determination of heat storage capacity of the mold materials using a differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Ol'khovik, E.

    2016-04-01

    The article proposes a method for determining of the heat storage capacity of the mould materials. Modern materials for mouldsare made using a variety of technologies, and the manufacturers of binders and additives ensure thermal properties of certain materials only when using a certain recipe. In practice, for management of the casting solidification process (creation of the volume or directed mode) it is favorable to apply various technological methods, including modification of one of the important properties of the casting mould, which is heat storage capacity. A rather simple technique based on the application of the differential thermal analysis was developed for its experimental definition. The obtained data showed a possibility of industrial application of the method.

  17. Effect of modeling factors on the dissolution-diffusion-convection process during CO2 geological storage in deep saline formations

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    2013-06-01

    It is well known that during CO2 geological storage, density-driven convective activity can significantly accelerate the dissolution of injected CO2 into water. This action could limit the escape of supercritical CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells, consequently increasing permanence and security of storage. First, we investigated the effect of numerical perturbation caused by time and grid resolution and the convergence criteria on the dissolution-diffusion-convection (DDC) process. Then, using the model with appropriate spatial and temporal resolution, some uncertainty parameters investigated in our previous paper such as initial gas saturation and model boundaries, and other factors such as relative liquid permeability and porosity modification were used to examine their effects on the DDC process. Finally, we compared the effect of 2D and 3D models on the simulation of the DDC process. The above modeling results should contribute to clear understanding and accurate simulation of the DDC process, especially the onset of convective activity, and the CO2 dissolution rate during the convection-dominated stage.

  18. Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity

    NASA Astrophysics Data System (ADS)

    Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina

    2015-04-01

    Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology

  19. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.; Carmichael, Robert T.; Mayhorn, Ebony T.; Fisher, Andrew R.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  20. Evaluation of CO2 migration and formation storage capacity in the Dalders formations, Baltic Sea - Preliminary analysis by means of models of increasing complexity

    NASA Astrophysics Data System (ADS)

    Niemi, Auli; Yang, Zhibing; Tian, Liang; Jung, Byeongju; Fagerlund, Fritjof; Joodaki, Saba; Pasquali, Riccardo; O'Neill, Nick; Vernon, Richard

    2014-05-01

    We present preliminary data analysis and modeling of CO2 injection into selected parts of the Dalders Monocline and Dalders Structure, formations situated under the Baltic Sea and of potential interest for CO2 geological storage. The approach taken is to use models of increasing complexity successively, thereby increasing the confidence and reliability of the predictions. The objective is to get order-of-magnitude estimates of the behavior of the formations during potential industrial scale CO2 injection and subsequent storage periods. The focus has been in regions with best cap-rock characteristics, according to the present knowledge. Data has been compiled from various sources available, such as boreholes within the region. As the first approximation we use analytical solutions, in order to get an initial estimate the CO2 injection rates that can be used without causing unacceptable pressure increases. These preliminary values are then used as basis for more detailed numerical analyses with TOUGH2/TOUGH2-MP (e.g. Zhang et al, 2008) simulator and vertical equilibrium based (e.g. Gasda et al, 2009) models. With the numerical models the variations in material properties, formation thickness etc., as well as more processes such as CO2 dissolution can also be taken into account. The presentation discusses results from these preliminary analyses in terms of estimated storage capacity, CO2 and pressure plume extent caused by various injection scenarios, as well as CO2 travel time after the end of the injection. The effect of factors such as number of injection wells and the positioning of these, the effect of formation properties and the boundary conditions are discussed as are the benefits and disadvantages of the various modeling approaches used. References: Gasda S.E. et al, 2009. Computational Geosciences 13, 469-481. Zhang et al, 2008. Report LBNL-315E, Lawrence Berkeley National Laboratory.

  1. Energy storage capacity of reversible liquid-phase Diels Alder reaction between maleic anhydride and 2- methyl furan

    SciTech Connect

    Sparks, B.G.; Poling, B.E.

    1983-07-01

    Calorimetry was used to determine the heat of reaction and equilibrium constant at 318 K for the reaction between maleic anhydride (A) and 2-methyl furan (B). The values were-60 kJ/gmol and 614 cm/sup 3//gmol, respectively. The motivation for this work was to find a single phase-reacting system that could be used to store solar energy. Thus, the energy storage capacity was calculated for a mixture of A and B, both initially at 7 kmol/m/sup 3/, in dioxane. The maximum apparent heat capacity of 7.37 J/cm/sup 3/ X K occurred at 334 K. This maximum value is 76% higher than the heat capacity of pure water.

  2. An Information Storage and Retrieval System for Biological and Geological Data. Interim Report.

    ERIC Educational Resources Information Center

    Squires, Donald F.

    A project is being conducted to test the feasibility of an information storage and retrieval system for museum specimen data, particularly for natural history museums. A pilot data processing system has been developed, with the specimen records from the national collections of birds, marine crustaceans, and rocks used as sample data. The research…

  3. Characteristics of storage related capacity loss in Ni/H2 cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari

    1993-01-01

    The changes in the capacity, voltage and pressure profile of flight configuration Ni/H2 cells when they are stored for extended periods is examined. The Ni/H2 cells exhibit capacity fade phenomenon regardless of their design when they are stored at room temperature. Capacity loss also occurs if old cells (5 years old) are stored in a very low rate trickle charge (C/200 rate) condition. A periodic recharge technique leads to pressure rise in the cells. Conventional trickle charge (C/100 rate) helps in minimizing or eliminating the second plateau which is one of the characteristics of the capacity fade phenomenon.

  4. Isotopic Approaches to Evaluate the Fate of Injected CO2 in Two Geological Storage Projects in Mature Oilfields in Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Johnson, G.; Nightingale, M.; Maurice, S.; Raistrick, M.; Taylor, S.; Hutcheon, I.; Perkins, E.

    2008-12-01

    Monitoring and verification of CO2 storage is an essential component of geological storage projects. We present evidence from two enhanced oil recovery projects in Canada that geochemical and isotopic techniques can be successfully used to trace the fate of injected CO2. Geochemical and isotopic data for fluids and gases obtained from multiple wells at the International Energy Agency Greenhouse Gas Weyburn CO2 Monitoring and Storage Project (Saskatchewan, Canada) and from the Penn West Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot (Alberta, Canada) were collected before and throughout the CO2 injection phase. Carbon isotope ratios of injected CO2 in the Weyburn project were significantly lower than those of background CO2 in the reservoir. In contrast, carbon isotope ratios of injected CO2 at Penn West's Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot were markedly higher than those of background CO2. After commencement of CO2 injection, the concentrations and carbon isotope values of CO2 and HCO3- in fluids and gases repeatedly obtained from monitoring wells were determined. Increasing CO2 and HCO3- concentrations in concert with carbon isotope values trending towards those of the injected CO2 revealed effective solubility and ionic trapping of injected CO2 at several monitoring wells at both study sites. In addition, changes in the oxygen isotope values of reservoir fluids provided independent evidence for dissolution of injected CO2 in the produced waters. We conclude that geochemical and isotopic monitoring techniques can play an essential role in verification of CO2 storage provided that the isotopic composition of the injected CO2 is distinct.

  5. 3D Seismic Characterization of the Research Facility for Geological Storage of CO2: Hontomín (Burgos, Spain)

    NASA Astrophysics Data System (ADS)

    Alcalde, J.; Martí, D.; Calahorrano, A.; Marzan, I.; Ayarza, P.; Carbonell, R.; Perez-Estaun, A.

    2011-12-01

    A technological research facility dedicated to the underground geological storage of CO2 is currently being developed by the Spanish research program on Carbon Capture and Storage (CCS) in Hontomin (Burgos, North of the Iberian Peninsula) This research program is being developed by the CIUDEN Foundation. CIUDEN is an initiative of 3 Spanish state departments (Science & Innovation, Environment and Industry). An extensive multidisciplinary site characterization phase has been carried out, including a multi-seismic data acquisition experiment. Within this effort a 36 km2 academic-oriented 3D seismic reflection survey was acquired in summer 2010. The aim of data acquisition effort are to provide high resolution images of the subsurface of the storage complex, constrain a baseline model for all the disciplines involved in the project. The main acquisition characteristics of this survey included: a mixed source (Vibroseis & explosive , 74% and 26% of the source points, respectively); 5000 shot points, distributed along 22 source lines (separated 250 m), 22 lines of receivers (separated 275 m); shot and receiver spacing along the source and receiver lines was of 25 m; this resulted in a nominal CDP-fold of 36 traces, with 13 m2 bins. This 3D-data was fully processed until migration. The main features within the processing sequence include static correction calculation, frequency filtering, trace amplitude equalization, rms velocity modeling, FK-domain filtering, 3D deconvolution, dip move-out corrections, residual static calculation and pre and post stack migration. The final high-resolution 3D-volume allowed to characterize the main tectonic structure of the dome complex, the fault system of the area and the feasibility of the reservoir for the storage. The target reservoir is a saline aquifer placed at 1400, approximately, within Lower Jurassic carbonates (Lias); the main seal is formed by inter-layered marls and marly limestones from Early to Middle Jurassic (Dogger

  6. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    SciTech Connect

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  7. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    SciTech Connect

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  8. Risk assessment of geo-microbial assosicated CO2 Geological Storage

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Sakamoto, Y.; Higashino, H.; Mayumi, D.; Sakata, S.; Kano, Y.; Nishi, Y.; Nakao, S.

    2014-12-01

    If we maintain preferable conditions for methanogenesis archaea during geological CCS, we will be able to abate greenhouse gas emission and produce natural gas as natural energy resource at the same time. Assuming Bio-CCS site, CO2 is injected from a well for to abate greenhouse gas emission and cultivate methanogenic geo-microbes, and CH4 is produced from another well. The procedure is similar to the Enhanced Oil/Gas Recovery (EOR/EGR) operation, but in Bio-CCS, the target is generation and production of methane out of depleted oil/gas reservoir during CO2 abatement. Our project aims to evaluate the basic practicability of Bio-CCS that cultivate methanogenic geo-microbes within depleted oil/gas reservoirs for geological CCS, and produce methane gas as fuel resources on the course of CO2 abatement for GHG control. To evaluate total feasibility of Bio-CCS concept, we have to estimate: CH4 generation volume, environmental impact along with life cycle of injection well, and risk-benefit balance of the Bio-CCS. We are modifying the model step by step to include interaction of oil/gas-CO2-geomicrobe within reservoir more practically and alternation of geo-microbes generation, so that we will be able to estimate methane generation rate more precisely. To evaluate impacts of accidental events around Bio-CCS reservoir, we estimated CO2 migration in relation with geological properties, condition of faults and pathways around well, using TOUGH2-CO2 simulator. All findings will be integrated in to it: cultivation condition of methanogenic geo-microbes, estimation method of methane generation quantities, environmental impacts of various risk scenarios, and benefit analysis of schematic site of Bio-CCS.

  9. Earthquake triggering and large-scale geologic storage of carbon dioxide

    PubMed Central

    Zoback, Mark D.; Gorelick, Steven M.

    2012-01-01

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO2 emissions associated with coal-based electrical power generation and other industrial sources of CO2 [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185–5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO2 into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO2 repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  10. Earthquake triggering and large-scale geologic storage of carbon dioxide.

    PubMed

    Zoback, Mark D; Gorelick, Steven M

    2012-06-26

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO(2) emissions associated with coal-based electrical power generation and other industrial sources of CO(2) [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO(2) into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO(2) repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  11. Technology Assessment of High Capacity Data Storage Systems: Can We Avoid a Data Survivability Crisis

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shaffer, F.; Palm, N.; Salmon, E.; Raghavan, S.; Kempster, L.

    1998-01-01

    The density of digital storage media in our information-intensive society increases by a factor of four every three years, while the rate at which this data can be migrated to viable long-term storage has been increasing by a factor of only four every nine years. Meanwhile, older data stored on increasingly obsolete media, are at considerable risk. When the systems for which the media were designed are no longer serviced by their manufacturers (many of whom are out of business), the data will no longer be accessible. In some cases, older media suffer from a physical breakdown of components - tapes simply lose their magnetic properties after a long time in storage. The scale of the crisis is compatible to that facing the Social Security System. Greater financial and intellectual resources to the development and refinement of new storage media and migration technologies in order to preserve as much data as possible.

  12. Effect of harvest date on the nutritional quality and antioxidant capacity in 'Hass' avocado during storage.

    PubMed

    Wang, Meng; Zheng, Yusheng; Khuong, Toan; Lovatt, Carol J

    2012-11-15

    The effect of harvest date on nutritional compounds and antioxidant activity (AOC) in avocado (Persea americana Mill. cv Hass) fruit during storage was determined. The fruits were harvested at seven different dates and ripened at 25 °C following 21 or 35 days of cold storage. The results indicated that the phenolic and glutathione contents were increased and the ascorbic acid content was not significantly different in early harvested fruit (January to March), and the phenolic, ascorbic acid and glutathione contents were increased slightly and then decreased on late harvested fruit (April to June). Similar trends were observed in the changes of AOC. Furthermore, AOC in early harvested fruit after storage for 35 days was much higher than that in late harvested fruit after storage for 21 days. Therefore, avocado can be harvested earlier for economic benefits according to the market and can keep high nutritional value for human health benefits. PMID:22868147

  13. Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Velichkin, V. I.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Tagirov, B. R.

    2010-08-01

    The production of enriched uranium used in nuclear weapons and fuel for atomic power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually increases by 35-40 kt. To date, more than 1.6 Mt DU has accumulated in the world. The main DU mass is stored as environ-mentally hazardous uranium hexafluoride (UF6), which is highly volatile and soluble in water with the formation of hydrofluoric acid. To ensure safe UF6 storage, it is necessary to convert this compound in chemically stable phases. The industrial reprocessing of UF6 into U3O8 and HF implemented in France is highly expensive. We substantiate the expediency of long-term storage of depleted uranium hexafluoride in underground repositories localized in limestone. On the basis of geochemical data and thermodynamic calculations, we show that interaction in the steel container-UF6-limestone-groundwater system gives rise to the development of a slightly alkaline reductive medium favorable for chemical reaction with formation of uraninite (UO2) and fluorite (CaF2). The proposed engineering solution not only ensures safe DU storage but also makes it possible to produce uraninite, which can be utilized, if necessary, in fast-neutron reactors. In the course of further investigations aimed at safe maintenance of DU, it is necessary to study the kinetics of conversion of UF6 into stable phases, involving laboratory and field experiments.

  14. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    SciTech Connect

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the

  15. Locating and quantifying greenhouse gas emissions at a geological CO2 storage site using atmospheric modeling and measurements

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Etheridge, David M.; Leuning, Ray; Loh, Zoe M.; Jenkins, Charles R.; Yee, Eugene

    2014-09-01

    The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway Project is Australia's first demonstration of the geological storage of carbon dioxide (CO2), where about 65,000 metric tons of fluid consisting of 92% CO2 and 8% methane (CH4) by mass have been injected underground. As part of the project objective of developing methodologies to detect, locate, and quantify potential leakage of the stored fluid into the atmosphere, we formulate an inverse atmospheric model based on a Bayesian probabilistic framework coupled to a state-of-the-art backward Lagrangian particle dispersion model. A Markov chain Monte Carlo method is used for efficiently sampling the posterior probability distribution of the source parameters. Controlled experiments used to test the model involved releases of the injected fluid from one of the nearby wells and were staggered over 1 month. Atmospheric measurements of CO2 and CH4 concentrations were taken at two stations installed in an upwind-downwind configuration. Modeling both the emission rate and the source location using the concentration measurements from only two stations is difficult, but the fact that the emission rate was constant, which is not an unrealistic scenario for potential geological leakage, allows us to compute both parameters. The modeled source parameters compare reasonably well with the actual values, with the CH4 tracer constraining the source better than CO2, largely as a result of its 6 times higher signal-to-noise ratio. The results lend confidence in the ability of atmospheric techniques to quantify potential leakage from CO2 storage as well as other source types.

  16. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  17. National Geochemical Database, U.S. Geological Survey RASS (Rock Analysis Storage System) geochemical data for Alaska

    USGS Publications Warehouse

    Bailey, E.A.; Smith, D.B.; Abston, C.C.; Granitto, Matthew; Burleigh, K.A.

    1999-01-01

    This dataset contains geochemical data for Alaska produced by the analytical laboratories of the Geologic Division of the U.S. Geological Survey (USGS). These data represent analyses of stream-sediment, heavy-mineral-concentrate (derived from stream sediment), soil, and organic material samples. Most of the data comes from mineral resource investigations conducted in the Alaska Mineral Resource Assessment Program (AMRAP). However, some of the data were produced in support of other USGS programs. The data were originally entered into the in-house Rock Analysis Storage System (RASS) database. The RASS database, which contains over 580,000 data records, was used by the Geologic Division from the early 1970's through the late 1980's to archive geochemical data. Much of the data have been previously published in paper copy USGS Open-File Reports by the submitter or the analyst but some of the data have never been published. Over the years, USGS scientists recognized several problems with the database. The two primary issues were location coordinates (either incorrect or lacking) and sample media (not precisely identified). This dataset represents a re-processing of the original RASS data to make the data accessible in digital format and more user friendly. This re-processing consisted of checking the information on sample media and location against the original sample submittal forms, the original analytical reports, and published reports. As necessary, fields were added to the original data to more fully describe the sample preparation methods used and sample medium analyzed. The actual analytical data were not checked in great detail, but obvious errors were corrected.

  18. Effects of electrode and cell design variables on capacity fading of a Ni/H2 cell on storage

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Verzwyvelt, S. A.

    A study is made of the capacity fading behavior on storage of nickel electrodes in a Ni/H2 cell as a function of the electrode and cell design parameters. The design variables included two different types of the nickel sinter substrate of the nickel electrode, two different processes of active material impregnation, and two levels of KOH concentration and hydrogen pressure under which the electrode is stored in a Ni/H2 cell. The results show that the hydrogen pressure and type of active material impregnation processes have strong effects on the rate of capacity fading. The capacity fading was faster under 100 psig of hydrogen pressure than under vacuum. Electrodes made by an aqueous bath impregnation process show slower fading than the one made by an alcoholic bath impregnation process. Variations in substrate structure has a moderate effect on the rate, while the effect of KOH concentration is not pronounced. Migration of cobalt in the active material and change of discharge voltages were observed with the nickel electrodes which had substantial capacity fading. A possible mechanism of the cobalt migration, change of the crystallographic structure of the active material, and a possible capacity fading mechanism are discussed.

  19. Theory and practice: bulk synthesis of C3B and its H2- and Li-storage capacity.

    PubMed

    King, Timothy C; Matthews, Peter D; Glass, Hugh; Cormack, Jonathan A; Holgado, Juan Pedro; Leskes, Michal; Griffin, John M; Scherman, Oren A; Barker, Paul D; Grey, Clare P; Dutton, Siân E; Lambert, Richard M; Tustin, Gary; Alavi, Ali; Wright, Dominic S

    2015-05-11

    Previous theoretical studies of C3B have suggested that boron-doped graphite is a promising H2- and Li-storage material, with large maximum capacities. These characteristics could lead to exciting applications as a lightweight H2-storage material for automotive engines and as an anode in a new generation of batteries. However, for these applications to be realized a synthetic route to bulk C3B must be developed. Here we show the thermolysis of a single-source precursor (1,3-(BBr2)2C6H4) to produce graphitic C3B, thus allowing the characteristics of this elusive material to be tested for the first time. C3B was found to be compositionally uniform but turbostratically disordered. Contrary to theoretical expectations, the H2- and Li-storage capacities are lower than anticipated, results that can partially be explained by the disordered nature of the material. This work suggests that to model the properties of graphitic materials more realistically, the possibility of disorder must be considered. PMID:25810151

  20. The role of storage capacity in coping with intra-annual runoff variability on a global scale

    NASA Astrophysics Data System (ADS)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-04-01

    Intra-annual variability poses a risk to water security in many basins as runoff is unevenly distributed over the year. Areas such as Northern Africa, Australia and the South-Western USA are characterized by a high coefficient of variability of monthly runoff. Analyzing the global risk of water scarcity, this study examines 680 basin-country units (BCUs) (403 river basins divided by country borders). By calculating the water balance for each BCU, the interplay of runoff on the one hand and domestic, industrial and environmental water needs on the other hand is shown. In contrast to other studies on average water scarcity, this work focuses on variability of water supply as metrics based on annual average water availability and demand can underestimate the risk of scarcity. The model is based on the assumption that each country-basin with sub-basins and tributaries can be treated as one single reservoir with storage capacity aggregated over that BCU. It includes surface runoff and the possibility to withdraw groundwater as water supply. The storage capacity of each BCU represents the ability to transfer water from wet months to dry months in order to buffer and cope with intra-annual water supply variability and to meet total water demand. Average monthly surface runoff per country-basin for the period 1979 to 2012 is derived from outcomes of the hydrological model Mac-PDM. Mac-PDM is forced with monthly ERAI-Interim reanalysis climate data on a one degree resolution. Groundwater withdrawal capacity, total water demand and storage capacity are taken from the IMPACT model provided by the International Food Research Institute (IFPRI). Storage refers to any kind of surface reservoir whose water can be managed and used for human activities in the industrial, domestic and agricultural sectors. Groundwater withdrawal capacity refers to the technological capacity to pump water rather than the amount of groundwater available. Total water demand includes consumptive water

  1. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.

    PubMed

    Yang, Jun; Sudik, Andrea; Wolverton, Christopher; Siegel, Donald J

    2010-02-01

    Widespread adoption of hydrogen as a vehicular fuel depends critically upon the ability to store hydrogen on-board at high volumetric and gravimetric densities, as well as on the ability to extract/insert it at sufficiently rapid rates. As current storage methods based on physical means--high-pressure gas or (cryogenic) liquefaction--are unlikely to satisfy targets for performance and cost, a global research effort focusing on the development of chemical means for storing hydrogen in condensed phases has recently emerged. At present, no known material exhibits a combination of properties that would enable high-volume automotive applications. Thus new materials with improved performance, or new approaches to the synthesis and/or processing of existing materials, are highly desirable. In this critical review we provide a practical introduction to the field of hydrogen storage materials research, with an emphasis on (i) the properties necessary for a viable storage material, (ii) the computational and experimental techniques commonly employed in determining these attributes, and (iii) the classes of materials being pursued as candidate storage compounds. Starting from the general requirements of a fuel cell vehicle, we summarize how these requirements translate into desired characteristics for the hydrogen storage material. Key amongst these are: (a) high gravimetric and volumetric hydrogen density, (b) thermodynamics that allow for reversible hydrogen uptake/release under near-ambient conditions, and (c) fast reaction kinetics. To further illustrate these attributes, the four major classes of candidate storage materials--conventional metal hydrides, chemical hydrides, complex hydrides, and sorbent systems--are introduced and their respective performance and prospects for improvement in each of these areas is discussed. Finally, we review the most valuable experimental and computational techniques for determining these attributes, highlighting how an approach that

  2. Spatial variation of storage capacity and winter recession in the alpine Poschiavino catchment / Switzerland

    NASA Astrophysics Data System (ADS)

    Floriancic, Marius; Smoorenburg, Maarten; Margreth, Michael; Naef, Felix

    2015-04-01

    Better understanding of the spatial variability of recession and storage dynamics in alpine catchments may improve low flow estimation. Especially in areas with little gauging information, mapping water storing sediments and rocks may help identifying areas responsible for sustaining baseflow during low flow periods. In alpine catchments, low flow occurs during winter, because groundwater recharge from precipitation or snowmelt is limited. This provides good opportunities for research on storage behavior. We present a dataset of winter discharge measurements and water chemistry analyses in the alpine Poschiavino River, a 14km² watershed in southeast Switzerland with strongly contrasting subcatchments. To explore how low flow recession relates to the spatial organization of storage potential, geomorphology and sediment type were mapped. From 7 measurement campaigns throughout winter season 2013/14 we derived recession curves for various nested subcatchments. To identify different contributing sources, the discharge measurements were complemented with ion composition analyses of stream water and continuous hourly electric conductivity measurements. This dataset allowed identifying areas contributing during low flow periods and estimating the storage potential of different subcatchments. We found substantial variation in the contribution of different subcatchments from 54mm to 200mm in four months. The spatial variation of discharge and different drainage time scales in the various subcatchments could be attributed to storage properties like thickness of the sediment deposits. Contribution from areas with thick sediment cover is significantly higher than from parts with less deep deposits. However the spatial resolution of research was limited because of complicated subsurface flow paths. Topographic catchment borders did not always correspond to the hydrological ones. This first study on the relation of low flow recession and storage potential represents an

  3. Graphene Enhances Li Storage Capacity of Porous Single-crystalline Silicon Nanowires

    SciTech Connect

    Wang, X.; Han, W.

    2010-12-01

    We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO{sub 3} etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g{sup -1} that is much higher than the 1256 mAh g{sup -1} of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

  4. New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2

    SciTech Connect

    Hammack, R.W.; Veloski, G.A.

    2007-09-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys.

  5. Sr-isotopic constraints on brine-mineral reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Kampman, N.; Dubacq, B.; Galy, A.; Bickle, M. J.; Ballentine, C. J.; Zhou, Z.; Crius Team

    2011-12-01

    Reactions between CO2-charged brines and minerals in reservoirs used for geological carbon storage may either enhance the storage of CO2 by precipitating carbonate minerals and increasing dissolution of CO2 in brines or allow migration of CO2 by corroding cap rocks. However the nature and rates of such reactions are too poorly constrained for reliable modelling of the impact of the reactions. This study attempts to infer the nature and rates of such reactions by sampling brines during a phase of CO2 injection for enhanced oil recovery in a small oil field. The interpretation of the fluid-mineral reactions from changes in the water chemistry is complicated by the previous history of the field and re-injection of produced water prior to injection of CO2. Anion (Cl, F, Br, I) and stable isotope ratios (δ18O, D/H) primarily track fluid sources and fluid mixing. Cation concentrations and Sr-isotopic compositions reflect both mixing of injected waters and fluid mineral reactions (Fig. 1). The variations in Sr-isotopic ratios are interpreted to reflect the relative inputs from dissolution of unradiogenic carbonate minerals and radiogenic silicate minerals. It is notable that Sr-isotopic ratios decrease after CO2 breakthrough as Sr concentrations continue to rise implying, increased carbonate dissolution although increases in Na, K and Si also require dissolution of silicate minerals.

  6. Charge/discharge characteristics of high-capacity methane adsorption storage systems

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.; Tiller, A.J. ); Gauthier, S.W. )

    1990-01-01

    The physical and economic barriers restricting a broad acceptance of natural gas as an alternative fuel in the transportation market have proven to be formidable. In order to succeed in the marketplace, systems for storing, dispensing, and utilizing natural gas which are low-cost, lightweight, compact, and efficient must be developed and evaluated. Experiments and numerical modeling indicate that methane storage and delivery are enhanced by low flow rates, high pressures, and designs with low adsorbent-to-cylinder mass ratios. When the adsorbent-to-cylinder mass ratio is greater than 0.3, systems behavior changes from near isothermal to adiabatic. Incorporation and utilization of in-situ thermal energy storage (TES) aids heat management, maintains near isothermal conditions and improves overall performance. TES thermally buffers the charging and discharging of an adsorbent system at or near the phase change temperature of the TES media thereby, enhancing storage and delivery of methane. 1 ref., 7 figs., 3 tabs.

  7. Solid solution barium-strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    NASA Astrophysics Data System (ADS)

    Bialy, Agata; Jensen, Peter B.; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-01

    Metal halide ammines are very attractive materials for ammonia absorption and storage-applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35-50% barium and 65-50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia.

  8. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    NASA Astrophysics Data System (ADS)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  9. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.

    PubMed

    Vermeulen, Paul; van Thiel, Emile F M J; Notten, Peter H L

    2007-01-01

    In the search for hydrogen-storage materials with a high gravimetric capacity, Mg(y)Ti((1-y)) alloys, which exhibit excellent kinetic properties, form the basis for more advanced compounds. The plateau pressure of the Mg--Ti--H system is very low (approximately 10(-6) bar at room temperature). A way to increase this pressure is by destabilizing the metal hydride. The foremost effect of incorporating an additional element in the binary Mg--Ti system is, therefore, to decrease the stability of the metal hydride. A model to calculate the effect on the thermodynamic stability of alloying metals was developed by Miedema and co-workers. Adopting this model offers the possibility to select promising elements beforehand. Thin films consisting of Mg and Ti with Al or Si were prepared by means of e-beam deposition. The electrochemical galvanostatic intermittent titration technique was used to obtain pressure-composition isotherms for these ternary materials and these isotherms reveal a reversible hydrogen-storage capacity of more than 6 wt. %. In line with the calculations, substitution of Mg and Ti by Al or Si indeed shifts the plateau pressure of a significant part of the isotherms to higher pressures, while remaining at room temperature. It has been proven that, by controlling the chemistry of the metal alloy, the thermodynamic properties of Mg-based hydrides can be regulated over a wide range. Hence, the possibility to increase the partial hydrogen pressure, while maintaining a high gravimetric capacity creates promising opportunities in the field of hydrogen-storage materials, which are essential for the future of the hydrogen economy. PMID:17879246

  10. The magma storage capacity of Mt. Etna's feeding system constrained by four decades of alkali enrichment in erupted lavas

    NASA Astrophysics Data System (ADS)

    Allard, Patrick; Corsaro, Rosanna; Métrich, Nicole

    2015-04-01

    Deciphering the magma plumbing system of volcanoes is fundamental to improved understanding of their behaviour and forecasting of their eruptions. Mount Etna, in Sicily, is one of the most active basaltic volcanoes on Earth, built upon a 20-km thick continental crust at the collision boundary between the African and Eurasian plates. Seismic tomography and inversion of natural seismic data have revealed a complex feeding system that includes a huge vertical plutonic body and magma ponding zones in coincidence with the main lithological discontinuities in the crust (at ca. 8-10 km and 2-3 km depth b.s.l.). However, limitations in spatial resolution hamper accurate size estimate of these magma ponding zones. Here we use the remarkable trend of alkali enrichment observed in Etnean lavas since the early seventies and their cumulated erupted volumes to provide an updated estimate of the magma storage capacity of the volcano feeding system. The temporal evolution of K2O/Th and Rb/Th ratios - unaffected by magma differentiation processes - tracks the replenishment of Etna's plumbing system by a new, more alkaline trachybasaltic magma that has gradually mixed with the former resident magma. In a few occasions (e.g. 1974, 1998, 2001-2002) this new magma could reach the surface without pre-eruptive homogeneization in the mixing cell, producing highest eruption rates. Such variations indicate a complex storage system, made of sills and dykes, in which long-term mixing processes but also separate storage or upraise of some magma batches can happen. Combining with the co-erupted magma volumes, we estimate an overall magma storage capacity beneath Etna that is larger than previously inferred from radioactive disequilibria in lavas or SO2 gas fluxes. Our new estimate could be usefully compared with the results from recent seismic tomography realized within the framework of the European MED-SUV project (Mediterranean Supersite Volcanoes).

  11. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  12. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  13. The optimal retailer's ordering policies with trade credit financing and limited storage capacity in the supply chain system

    NASA Astrophysics Data System (ADS)

    Yen, Ghi-Feng; Chung, Kun-Jen; Chen, Tzung-Ching

    2012-11-01

    The traditional economic order quantity model assumes that the retailer's storage capacity is unlimited. However, as we all know, the capacity of any warehouse is limited. In practice, there usually exist various factors that induce the decision-maker of the inventory system to order more items than can be held in his/her own warehouse. Therefore, for the decision-maker, it is very practical to determine whether or not to rent other warehouses. In this article, we try to incorporate two levels of trade credit and two separate warehouses (own warehouse and rented warehouse) to establish a new inventory model to help the decision-maker to make the decision. Four theorems are provided to determine the optimal cycle time to generalise some existing articles. Finally, the sensitivity analysis is executed to investigate the effects of the various parameters on ordering policies and annual costs of the inventory system.

  14. Ab initio Design of Ca-Decorated Organic Frameworks for High Capacity Molecular Hydrogen Storage with Enhanced Binding

    SciTech Connect

    Sun, Y. Y.; Lee, K.; Kim, Y. H.; Zhang, S. B.

    2009-01-01

    Ab initio calculations show that Ca can decorate organic linkers of metal-organic framework, MOF-5, with a binding energy of 1.25 eV. The Ca-decorated MOF-5 can store molecular hydrogen (H{sub 2}) in both high gravimetric (4.6 wt %) and high volumetric (36 g/l) capacities. Even higher capacities (5.7 wt % and 45 g/l) can be obtained in a rationally designed covalent organic framework system, COF-{alpha}, with decorated Ca. Both density functional theory and second-order Moller-Plesset perturbation calculations show that the H{sub 2} binding in these systems is significantly stronger than the van der Waals interactions, which is required for H{sub 2} storage at near ambient conditions.

  15. High pressure gas storage capacities. Example of a solution using filament windings

    NASA Technical Reports Server (NTRS)

    Phan, A.; Lamalle, J.

    1981-01-01

    The use of epoxy resin fiber glass and economic factors affecting the choice of materials for gas storage are discussed. The physical nature of the filament windings are described together with the results obtained. It is demonstrated that a substantial reduction in mass and an enhanced level of safety can be assured at a competitive cost by storing gases in this way.

  16. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    SciTech Connect

    Mohamed, Eddaoudi; Zaworotko, Michael; Space, Brian; Eckert, Juergen

    2013-05-08

    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  17. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

    2010-06-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  18. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    SciTech Connect

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  19. Electrochemical performance and capacity degradation mechanism of single-phase La-Mg-Ni-based hydrogen storage alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Li, Yuan; Han, Da; Yang, Shuqin; Chen, Xiaocui; Zhang, Lu; Han, Shumin

    2015-12-01

    La-Mg-Ni-based hydrogen storage alloys are a promising candidate for the negative electrode materials of nickel metal hydride batteries. However, their fast capacity degradation hinders them from more extensive application. In this study, the electrochemical performance and capacity degradation mechanism of single-phase La2MgNi9, La3MgNi14 and La4MgNi19 alloys are studied from the perspective of their constituent subunits. It is found that the rate capability and cycling stability of the alloy electrodes increase with higher [LaNi5]/[LaMgNi4] subunit ratio, while the discharge capacity shows a reverse trend. Degradation study shows that the inter-molecular strains in the alloys are the main reason that leads to the fast capacity degradation of La-Mg-Ni-based alloys. The strains are caused by the difference in the expansion/contraction properties between [LaNi5] and [LaMgNi4] subunits during charge/discharge which is mainly observed in the H-dissolved solid solution instead of hydride. It is also found that the strains can be relieved by adjusting [LaNi5]/[LaMgNi4] subunit ratio of the alloys, thus achieving less pulverization and oxidation, and better cycling stability. We expect our findings can inspire new thoughts on improving the electrochemical performance of La-Mg-Ni-based alloys by tuning their superlattice structures.

  20. Stochastic injection-strategy optimization for the preliminary assessment of candidate geological storage sites

    NASA Astrophysics Data System (ADS)

    Cody, Brent M.; Baù, Domenico; González-Nicolás, Ana

    2015-09-01

    Geological carbon sequestration (GCS) has been identified as having the potential to reduce increasing atmospheric concentrations of carbon dioxide (CO2). However, a global impact will only be achieved if GCS is cost-effectively and safely implemented on a massive scale. This work presents a computationally efficient methodology for identifying optimal injection strategies at candidate GCS sites having uncertainty associated with caprock permeability, effective compressibility, and aquifer permeability. A multi-objective evolutionary optimization algorithm is used to heuristically determine non-dominated solutions between the following two competing objectives: (1) maximize mass of CO2 sequestered and (2) minimize project cost. A semi-analytical algorithm is used to estimate CO2 leakage mass rather than a numerical model, enabling the study of GCS sites having vastly different domain characteristics. The stochastic optimization framework presented herein is applied to a feasibility study of GCS in a brine aquifer in the Michigan Basin (MB), USA. Eight optimization test cases are performed to investigate the impact of decision-maker (DM) preferences on Pareto-optimal objective-function values and carbon-injection strategies. This analysis shows that the feasibility of GCS at the MB test site is highly dependent upon the DM's risk-adversity preference and degree of uncertainty associated with caprock integrity. Finally, large gains in computational efficiency achieved using parallel processing and archiving are discussed.

  1. Exemplifying the Effects of Parameterization Shortcomings in the Numerical Simulation of Geological Energy and Mass Storage

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Tilmann Pfeiffer, Wolf; Schäfer, Dirk

    2016-04-01

    Numerical simulations of hydraulic, thermal, geomechanical, or geochemical (THMC-) processes in the subsurface have been conducted for decades. Often, such simulations are commenced by applying a parameter set that is as realistic as possible. Then, a base scenario is calibrated on field observations. Finally, scenario simulations can be performed, for instance to forecast the system behavior after varying input data. In the context of subsurface energy and mass storage, however, these model calibrations based on field data are often not available, as these storage actions have not been carried out so far. Consequently, the numerical models merely rely on the parameter set initially selected, and uncertainties as a consequence of a lack of parameter values or process understanding may not be perceivable, not mentioning quantifiable. Therefore, conducting THMC simulations in the context of energy and mass storage deserves a particular review of the model parameterization with its input data, and such a review so far hardly exists to the required extent. Variability or aleatory uncertainty exists for geoscientific parameter values in general, and parameters for that numerous data points are available, such as aquifer permeabilities, may be described statistically thereby exhibiting statistical uncertainty. In this case, sensitivity analyses for quantifying the uncertainty in the simulation resulting from varying this parameter can be conducted. There are other parameters, where the lack of data quantity and quality implies a fundamental changing of ongoing processes when such a parameter value is varied in numerical scenario simulations. As an example for such a scenario uncertainty, varying the capillary entry pressure as one of the multiphase flow parameters can either allow or completely inhibit the penetration of an aquitard by gas. As the last example, the uncertainty of cap-rock fault permeabilities and consequently potential leakage rates of stored gases into

  2. Characterization of the Hontomín Research Facility for Geological Storage of CO2: 3D Seismic Imaging Results

    NASA Astrophysics Data System (ADS)

    Alcalde, J.; Martí, D.; Juhlin, C.; Malehmir, A.; Calahorrano, A.; Ayarza, P.; Pérez-Estaún, A.; Carbonell, R.

    2012-04-01

    A technological research facility dedicated to the underground geological storage of CO2 is currently being developed by the Spanish research program on Carbon Capture and Storage (CCS) in Hontomin (Burgos). This research program is being developed by the CIUDEN Foundation, an initiative launched by 3 Spanish state departments (Science & Innovation, Environment and Industry). An extensive multidisciplinary site characterization phase has been carried out, including a multiseismic data acquisition experiment. Within this effort, a 36 km2 3D seismic reflection survey was acquired in the summer of 2010. Its aim was to provide high resolution images of the subsurface of the storage complex, as well as to provide a baseline model for all the disciplines involved in the project. The target reservoir is a saline aquifer located at 1400 m, approximately, within Lower Jurassic carbonates (Lias). The main seal is formed by inter-layered marls and marly limestones of Early to Middle Jurassic age (Dogger and Lias). The main acquisition characteristics of the survey included (1) a mixed source of vibroseis and explosives with 74% and 26% of each used, respectively, (2) 5000 source points distributed along 22 source lines (separated 250 m) and (3) 22 lines of receivers (separated 275 m). Shot and receiver spacing along the source and receiver lines was 25 m, resulting in a nominal CDP-fold of 36 for 13 m2 bins. The 3D-data have been fully processed to post stack migration. The most critical processing steps included static correction calculations, time variant frequency filtering, rms velocity analysis, F-XY deconvolution, dip move-out correction, residual statics calculations and post stack migration. The final high-resolution 3D-volume shows the shape and depth of the primary reservoir-seal system, the main faults of the area and the secondary reservoir-seal sequence. It allows us to characterize the main tectonic structure of the dome complex, the fault system of the area and

  3. Effect of deboning time and cold storage on water-holding capacity of chicken breast meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-holding capacity (WHC) is a very important qualitative characteristic of meat and directly affects the yield of further processed meat and consumer acceptance of bagged pre-packaged fresh meat. Boneless skinless chicken breast meat for further processing and consumer usage is commonly deboned...

  4. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    ERIC Educational Resources Information Center

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  5. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.

    PubMed

    Luo, Chao; Xu, Yunhua; Zhu, Yujie; Liu, Yihang; Zheng, Shiyou; Liu, Ying; Langrock, Alex; Wang, Chunsheng

    2013-09-24

    Selenium-impregnated carbon composites were synthesized by infusing Se into mesoporous carbon at a temperature of 600 °C under vacuum. Ring-structured Se8 was produced and confined in the mesoporous carbon, which acts as an electronic conductive matrix. During the electrochemical process in low-cost LiPF6/EC/DEC electrolyte, low-order polyselenide intermediates formed and were stabilized by mesoporous carbon, which avoided the shuttle reaction of polyselenides. Exceptional electrochemical performance of Se/mesoporous carbon composites was demonstrated in both Li-ion and Na-ion batteries. In lithium-ion batteries, Se8/mesoporous carbon composite cathodes delivered a reversible capacity of 480 mAh g(-1) for 1000 charge/discharge cycles without any capacity loss, while in Na-ion batteries, it provided initial capacity of 485 mAh g(-1) and retained 340 mAh g(-1) after 380 cycles. The Se8/mesoporous carbon composites also showed excellent rate capability. As the current density increased from 0.1 to 5 C, the capacity retained about 46% in Li-ion batteries and 34% in Na-ion batteries. PMID:23944942

  6. Impaired Semantic Knowledge Underlies the Reduced Verbal Short-Term Storage Capacity in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Peters, Frederic; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-01-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor…

  7. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gor, G.; Prevost, J.

    2013-12-01

    Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013

  8. Prediction of Groundwater Quality Changes in Response to CO2 Leakage from Deep Geological Storage

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Apps, J. A.; Zhang, Y.; Xu, T.; Birkholzer, J. T.

    2008-12-01

    If carbon dioxide stored in deep saline aquifers were to leak into overlying aquifer containing potable groundwater, the intruding CO2 would lower groundwater pH and could enhance the solubility of hazardous inorganic constituents present in the aquifer minerals. As an effort to evaluate risks associated with geologic sequestration of CO2, this work assesses these potential effects using reactive transport modeling. A systematic geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States provided the prerequisites for reactive transport modeling. For example, galena (under reducing conditions) and cerussite (under oxidizing conditions) control aqueous Pb (lead) whereas arsenopyrite component in pyrite controls aqueous As (arsenic) generally under reducing conditions. Reactive transport simulations are performed which focus on the chemical evolution of Pb and As in the groundwater after the intrusion of CO2. The simulations use representative mineralogies for shallow potable aquifers in the USA and two measured mineralogies for deep confined aquifers. The resulting concentrations of Pb and As in the groundwater are then compared to the EPA specified health- based limits for drinking water. A significant increase of aqueous Pb and As occurs, although in most situations they remain below health-based limits. Sensitivity studies are also conducted for variation in hydrological, geochemical and mineralogical conditions and several critical parameters. The results indicate that aquifers containing more carbonate (through pH buffer) and clay minerals (by adsorption) are less vulnerable to CO2 intrusion. Adsorption/desorption from minerals surface significantly impact the mobilization of Pb and As. Adsorption dampens the effect of galena and arsenopyrite dissolution by removing Pb and As from aqueous phase under reducing conditions. Under oxidizing condition desorption is primarily responsible for increasing the

  9. Vadose Zone Remediation of CO2 Leakage from Geologic CO2 Storage Sites

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Benson, Sally M.

    2004-03-03

    In the unlikely event that CO2 leakage from deep geologic CO2 sequestration sites reaches the vadose zone, remediation measures for removing the CO2 gas plume may have to be undertaken. Carbon dioxide leakage plumes are similar in many ways to volatile organic compound (VOC) vapor plumes, and the same remediation approaches are applicable. We present here numerical simulation results of passive and active remediation strategies for CO2 leakage plumes in the vadose zone. The starting time for the remediation scenarios is assumed to be after a steady-state CO2 leakage plume is established in the vadose zone, and the source of this plume has been cut off. We consider first passive remediation, both with and without barometric pumping. Next, we consider active methods involving extraction wells in both vertical and horizontal configurations. To compare the effectiveness of the various remediation strategies, we define a half-life of the CO2 plume as a convenient measure of the CO2 removal rate. For CO2 removal by passive remediation approaches such as barometric pumping, thicker vadose zones generally require longer remediation times. However, for the case of a thin vadose zone where a significant fraction of the CO2 plume mass resides within the high liquid saturation region near the water table, the half-life of the CO2 plume without barometric pumping is longer than for somewhat thicker vadose zones. As for active strategies, results show that a combination of horizontal and vertical wells is the most effective among the strategies investigated, as the performance of commonly used multiple vertical wells was not investigated.

  10. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  11. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  12. Geological storage of CO2 within the oceanic crust by gravitational trapping

    NASA Astrophysics Data System (ADS)

    Marieni, Chiara; Henstock, Timothy J.; Teagle, Damon A. H.

    2013-12-01

    rise of atmospheric carbon dioxide (CO2) principally due to the burning of fossil fuels is a key driver of anthropogenic climate change. Mitigation strategies include improved efficiency, using renewable energy, and capture and long-term sequestration of CO2. Most sequestration research considers CO2 injection into deep saline aquifers or depleted hydrocarbon reservoirs. Unconventional suggestions include CO2 storage in the porous volcanic lavas of uppermost oceanic crust. Here we test the feasibility of injecting CO2 into deep-sea basalts and identify sites where CO2 should be both physically and gravitationally trapped. We use global databases to estimate pressure and temperature, hence density of CO2 and seawater at the sediment-basement interface. At previously suggested sites on the Juan de Fuca Plate and in the eastern equatorial Pacific Ocean, CO2 is gravitationally unstable. However, we identify five sediment-covered regions where CO2 is denser than seawater, each sufficient for several centuries of anthropogenic CO2 emissions.

  13. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    NASA Astrophysics Data System (ADS)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  14. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes.

    PubMed

    Lechthaler, Silvia; Robert, Elisabeth M R; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  15. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    PubMed Central

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  16. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    PubMed

    Lian, Cheng; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-10-19

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors. PMID:27546561

  17. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    NASA Astrophysics Data System (ADS)

    Kucharski, Timothy J.; Ferralis, Nicola; Kolpak, Alexie M.; Zheng, Jennie O.; Nocera, Daniel G.; Grossman, Jeffrey C.

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol-1, and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  18. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain. PMID:24755597

  19. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-07-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.

  20. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    SciTech Connect

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  1. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    PubMed Central

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-01-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. PMID:26201747

  2. Chemical, mineralogical and molecular biological characterization of the rocks and fluids from a natural gas storage deep reservoir as a baseline for the effects of geological hydrogen storage

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Kasina, Monika; Weigt, Jennifer; Merten, Dirk; Pudlo, Dieter; Würdemann, Hilke

    2014-05-01

    Planned transition to renewable energy production from nuclear and CO2-emitting power generation brings the necessity for large scale energy storage capacities. One possibility to store excessive energy produced is to transfer it to chemical forms like hydrogen which can be subsequently injected and stored in subsurface porous rock formations like depleted gas reservoirs and presently used gas storage sites. In order to investigate the feasibility of the hydrogen storage in the subsurface, the collaborative project H2STORE ("hydrogen to store") was initiated. In the scope of this project, potential reactions between microorganism, fluids and rocks induced by hydrogen injection are studied. For the long-term experiments, fluids of natural gas storage are incubated together with rock cores in the high pressure vessels under 40 bar pressure and 40° C temperature with an atmosphere containing 5.8% He as a tracer gas, 3.9% H2 and 90.3% N2. The reservoir is located at a depth of about 2 000 m, and is characterized by a salinity of 88.9 g l-1 NaCl and a temperature of 80° C and therefore represents an extreme environment for microbial life. First geochemical analyses showed a relatively high TOC content of the fluids (about 120 mg l-1) that were also rich in sodium, potassium, calcium, magnesium and iron. Remarkable amounts of heavy metals like zinc and strontium were also detected. XRD analyses of the reservoir sandstones revealed the major components: quartz, plagioclase, K-feldspar, anhydrite and analcime. The sandstones were intercalated by mudstones, consisting of quartz, plagioclase, K-feldspar, analcime, chlorite, mica and carbonates. Genetic profiling of amplified 16S rRNA genes was applied to characterize the microbial community composition by PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results indicate the presence of microorganisms belonging to the phylotypes alfa-, beta- and gamma

  3. Reactivity of rock and well in a geological storage of CO2 : role of co-injected gases

    NASA Astrophysics Data System (ADS)

    Renard, S.; Sterpenich, J.; Pironon, J.

    2009-04-01

    The CO2 capture and geological storage from high emitting sources (coal and gas power plants) is one of a panel of solutions proposed to reduce the global greenhouse gas emissions. Different pre- , post- or oxy-combustion capture processes are now available to separate associated gases (SOx, NOx, etc…) and the CO2. However, complete purification of CO2 is unachievable for cost reasons as well as for CO2 surplus of emissions due to the separation processes. By consequence, a non-negligible part (more or less 5%) of these gases, called "annex gases", could be co-injected with the CO2. Their impact on the chemical stability of reservoir rocks, caprocks and wells has to be evaluated before any large scale injection procedure. Physico-chemical transformations could modify mechanical and injectivity properties of the site and possibly alter storage safety. One of the aims of the CCS pilot project leaded by TOTAL at Lacq (France) is to develop, through a real case study, a methodology for a long-term safe storage qualification. Greenhouse gases are captured from an oxy-combustion power plant, transported along 30 km to the carbonate reservoir of Rousse at around 4500 m in depth. The study presented here is focused on laboratory simulations of geochemical interactions between the reservoir rock (fractured dolomite), the caprock (marl) and the injected CO2 with some potential annex gases. In the same time, experiments are performed on the reactivity of reference minerals such as calcite, dolomite, muscovite, quartz and pyrite to better understand the implication of each phase on bulk rock reactivity. Moreover, well reactivity is observed through specific steel and cement used by petroleum industry. Two annex gases (SO2 and NO) have been selected.. Their reactivity is compared to that of N2 considered as an inert annex gas from a chemical point of view. Solid samples are placed in 1cm3 gold capsules in presence or not of water with a salinity of 25 NaCl g/l. Gases are

  4. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme

    PubMed Central

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ′E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ′E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  5. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme.

    PubMed

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ'E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ'E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  6. Ab initio study of the structures and hydrogen storage capacity of (H2)nCH4 compound

    NASA Astrophysics Data System (ADS)

    Wang, Minghui; Cheng, Xinlu; Ren, Dahua; Zhang, Hong; Tang, Yongjian

    2015-05-01

    The hydrogen-rich compound (H2)nCH4 (for n = 1, 2, 3, 4) or for short (H2)nM is one of the most promising hydrogen storage materials. The (H2)4M molecule is the best hydrogen-rich compound among the (H2)nM structures and it can reach the hydrogen storage capacity of 50.2 wt.%. However, the (H2)nM always requires a certain pressure to remain stable. In this work, we first investigated the binding energy of the different structures in (H2)nM and energy barrier of H2 rotation under different pressures at ambient temperature, applying ab initio methods based on van der Waals density functional (vdW-DF). It was found that at 0 GPa, the (H2)nM is not stable, while at 5.8 GPa, the stability of (H2)nM strongly depends on its structure. We further investigate the Raman spectra of (H2)nM structures at 5.8 GPa and found the results were consistent with experiments. Excitingly, we found that boron nitride nanotubes (BNNTs) and graphite and hexagonal boron nitride (h-BN) can be used to store (H2)4M, which give insights into hydrogen storage practical applications.

  7. Developing a Comprehensive Risk Assessment Framework for Geological Storage CO2

    SciTech Connect

    Duncan, Ian

    2014-08-31

    The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO₂; risks of well blowouts; risk that CO₂ will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO₂ will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO2 based enhanced oil recovery (CO2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO2 pipelines have been widely used in papers and reports on risk of CO2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO2 releases from pipelines or wells are arguably the highest risk aspects of CO2 enhanced oil recovery (CO2-EOR), carbon capture

  8. External electric field: An effective way to prevent aggregation of Mg atoms on γ-graphyne for high hydrogen storage capacity

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhang, Hong; Cheng, Xin-Lu; Tang, Yong-Jian

    2016-05-01

    In this article, we investigate the hydrogen storage capacity of Mg-decorated γ-graphyne (Mg-G) based on DFT calculations. Our results indicate that an external electric field can effectively prevent Mg atoms aggregating on γ-graphyne sheet. The Mg-G, after electric field (F = 0.05 V/nm) treatment, can store up to ten H2 molecules and the hydrogen storage capacity is 10.64 wt%, with the average adsorption energy of 0.28 eV/H2. Our calculations demonstrate that Mg-G is a potential material for hydrogen storage with high capacity and might motivate active experimental efforts in designing hydrogen storage media.

  9. Dissolution of CO2 in Brines and Mineral Reactions during Geological Carbon Storage: AN Eor Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.

    2015-12-01

    Dissolution of CO2 in formation brines is likely to be a major process which stabilises stored CO2 on longer time scales and mitigates CO2 migrating through storage complexes. However very little is known about the likely rates of CO2 dissolution as CO2 flows through natural heterogeneous brine filled reservoirs. Here we report the results of sampling fluids over 6 months after a phase of CO2 injection commenced for enhanced oil recovery coupled with injection of isotopically enriched 3He and 129Xe. Modelling of the changes in fluid chemistry has previously been interpreted to indicate significant dissolution of silicate minerals where fluids remained close to saturation with calcite. These calculations, which are based on modal decomposition of changes in cation concentrations, are supported by changes in the isotopic compositions of Sr, Li and Mg. Analysis of Sr-isotopic compositions of samples from outcrops of the Frontier Formation, which forms the reservoir sampled by the EOR experiment, reveals substantial heterogeneity. Silicate mineral compositions have 87Sr/86Sr ratios between 0.709 and 0.719 whereas carbonate cements have values around 0.7076. Calculation of CO2 dissolution based on simplified 2-D flow models shows that fluids likely sample reservoir heterogeneities present on a finer scale with CO2 fingers occupying the most permeable horizons and most water flow in the adjacent slightly less permeable zones. Smaller time scale variations in 87Sr/86Sr ratios are interpreted to reflect variations in flow paths on small length scales driven by invading CO2.

  10. Rock Physics Analysis for the Characterization of the Geological CO2 Storage Prospect in Southwestern Ulleung Basin, Korea

    NASA Astrophysics Data System (ADS)

    Min, G.; Han, J.; Lee, M.; Keehm, Y.

    2014-12-01

    We performed rock physical analysis for the characterization of the CO2 storage site in Ulleung basin, Korea. We obtained the characteristics of target formation from the previous work, which contains comprehensive analyses on key horizons and stratigraphy. After verifying the previous work with well-log data, we performed rock physics modeling to obtain the interrelations between reservoir properties and seismic property for key units, such as shale volume-impedance and porosity-impedance relations. We applied the relations to inverted acoustic impedance from 3D seismic data, and obtained 3D distribution maps for shale volume and porosity. We found around 10-meter-thick cap rock unit (Unit 2-3) and two reservoir units (Unit 3-1 & 3-2) with thickness of a few hundred meters. Unit 2-3 has consistently high shale volume throughout the study area, which implies that it can be a good cap rock. Unit 3-1 and 3-2 seem to be good reservoir layers and their average sand thicknesses are 60 m and 150 m, respectively. From this preliminary analysis, the pore volume of the sand intervals of two reservoirs units is estimated to be 20 billion cubic meters. If we assume that one percent of sand pore volume can be replaced by injected CO2, the injectable amount of CO2 would be 136 million metric tonne. Acknowledgements: This work was supported by "Development of Technology for CO2 Marine Geological Storage" funded by the Ministry of Oceans and Fisheries, Korea (No. 20052004), and "Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant" funded by the Ministry of Trade, Industry & energy (No. 20132010201760).

  11. Fully-coupled hydrogeophysical inversion of surface deformation measurements for the monitoring of geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Stadler, G.

    2011-12-01

    The In Salah project in Algeria has shown that CO2 injection into deep saline aquifers leads to measurable and transient deformation of the surface. Time-series measurements of surface deformation with PS-InSAR and GPS are a promising monitoring tool for geological CO2 storage. These measurements have to be integrated with other observations to extract quantitative information about the properties of the reservoir and to constrain the evolution of the pressure distribution in the subsurface. This data integration requires a fully-coupled hydrogeophysical inversion for the reservoir parameters, based on a geomechanical and hydrological process model. As a first step, we formulate a fully-coupled hydrogeophysical inverse problem to infer the permeability distribution in a quasi-static poroelastic model. In this approach, the misfit between model prediction and observed surface deformation and hydrological data is minimized under the constraint given by the poroelastic equations. The resulting least-squares optimization problem is solved using a Newton method, which uses derivatives computed efficiently through the adjoint poroelastic equations. Both state and adjoint equations are solved with a discretely consistent fully-coupled continuous Galerkin spatial discretization and implicit time integration. The state equation has been benchmarked against the analytic solution to the Mandel-Cryer problem and a modified Mandel-Cryer problem is used to test our inverse formulation. Finally, we discuss the ability of surface deformation measurements to constrain the permeability distribution in a CO2 storage reservoir. In a numerical study we analyze how well lateral permeability variations can be retrieved from a combination of surface deformation and hydrological data.

  12. Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage.

    PubMed

    Yeoh, Wei Keat; Ali, Asgar

    2017-02-01

    Ultrasound treatment at different power output (0, 25 and 29W) and exposure time (10 and 15min) was used to investigate its effect on the phenolic metabolism enzymes, total phenolic content and antioxidant capacity of fresh-cut pineapple. Following ultrasound treatment at 25 and 29W, the activity of phenylalanine ammonia lyase (PAL) was increased significantly (P<0.05) by 2.0 and 1.9-fold, when compared to control. Meanwhile, both the activity of polyphenol oxidase (PPO) and polyphenol peroxidase (POD) in fresh-cut pineapple was significantly (P<0.05) lower than control upon subjected to ultrasound treatment. In the present study, induction of PAL was found to significantly (P<0.001) correlate with higher total phenolic content and thus higher antioxidant capacity in fresh-cut pineapple. Results suggest that hormetic dosage of ultrasound treatment can enhance the activity of PAL and total phenolic content and hence the total antioxidant capacity to encounter with oxidative stress. PMID:27596416

  13. Promising Rapid Access High-Capacity Mass Storage Technique For Diagnostic Information Utilizing Optical Disc

    NASA Astrophysics Data System (ADS)

    Colby, R. L.; Bartuska, A. J.; Herzog, D. G.

    1982-01-01

    The optical disc has become a new technique for mass digital data storage of X-ray images from examinations and films in todays hospitals. Up to 36,000 X-ray images can be stored on one side of a 12-inch disc by melting holes 0.015 mils in size in an ablative material such as tellerium with a laser beam. This unique characteristic makes the disc suitable for storage and retrieval of X-rays in a record and playback system in either a single disc or multiple disc "jukebox" configuration. Doctors, nurses, technicians and other hospital personnel can call up a particular X-ray in less than 0.6 of a second in an on-line single disc system and up to less than 6 seconds in an on-line "jukebox" system. The jukebox is configured to hold up to 100 discs, thus storing 3,600,000 X-rays in hospitals with a bed size of greater than 500. The estimated exposed films on file in those hospitals is 327,400,000 and the estimated annual X-ray exams are 44,300. Thus, a single disc system could be used for an all electronic X-ray scanning system for annual X-ray exams. The jukebox configuration, which has expansion capability for servicing multiple simultaneous user request, can be applied to large archival mass storage. These systems could store the existing exposed films in hospitals with bed size greater than 500 at record and playback data rates of 50 Mb/s with access times of less than 15 seconds.

  14. Methane Adsorption on Aggregates of Fullerenes: Site-Selective Storage Capacities and Adsorption Energies

    PubMed Central

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-01-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118–281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane–methane and fullerene–methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes. PMID:23744834

  15. Developing Radioactive Carbon Isotope Tagging for Monitoring, Verification and Accounting in Geological Carbon Storage

    NASA Astrophysics Data System (ADS)

    Ji, Yinghuang

    pressurized CO2 tagged with our tracer. The laboratory scale evaluation demonstrated the accuracy and effectiveness of our tracer loops and injection system. The 14C/12C ratio we achieved in the high pressure flow loop was at the part per trillion level, and deviation between the experimental result and theoretical expectation was 6.1%. Third, a field test in Iceland successfully demonstrated a similar performance whereby 14CO2 tracer could be injected in a controlled manner into a CO2 stream at the part per trillion level over extended periods of time. The deviation between the experimental result and theoretical expectation was 7.1%. In addition the project considered a laser-based 14C detection system. However, the laser-based 14C detection system was shown to possess inadequate sensitivity for detecting ambient levels of 14CO2. Alternative methods for detecting 14C, such as saturated cavity absorption ring down spectroscopy and scintillation counting may still be suitable. In summary, the project has defined the foundation of carbon-14 tagging for the monitoring, verification, and accounting of geological carbon sequestration.

  16. The Role of Water Activity and Capillarity in Partially Saturated Porous Media at Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Matteo, E. N.; Dewers, T. A.; Wang, Y.

    2012-12-01

    The activity of water in supercritical CO2 may affect performance of geologic CO2 storage, including CO2 injectivity, and shrink-swell properties and sealing efficiency of clayey caprocks. We present a pore-scale unit cell model of water film adsorption and capillary condensation as an explicit function of water activity in supercritical CO2. This model estimates water film configuration in slit to other pore shapes with edges and corners. With the model, we investigate water saturation in porous media in mineral-CO2-water systems under different water activities. Maximum water activities in equilibrium with an aqueous phase are significantly less than unity due to dissolution of CO2 in water (i.e., the mole fraction of water in the aqueous phase is much less than one) and variable dissolved salt concentration. The unit cell approach is used to upscale from the single pore to the core-sample-scale, giving saturation curves as a function of water activity in the supercritical phase and the texture of the porous media. We evaluate the model and the importance of water activity through ongoing small angle neutron scattering experiments and other column experiments, which investigate shrink-swell properties and capillarity under realistic in situ stresses. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Mechanism for high hydrogen storage capacity on metal-coated carbon nanotubes: A first principle analysis

    SciTech Connect

    Lu, Jinlian; Xiao, Hong; Cao, Juexian

    2012-12-15

    The hydrogen adsorption and binding mechanism on metals (Ca, Sc, Ti and V) decorated single walled carbon nanotubes (SWCNTs) are investigated using first principle calculations. Our results show that those metals coated on SWCNTs can uptake over 8 wt% hydrogen molecules with binding energy range -0.2--0.6 eV, promising potential high density hydrogen storage material. The binding mechanism is originated from the electrostatic Coulomb attraction, which is induced by the electric field due to the charge transfer from metal 4s to 3d. Moreover, we found that the interaction between the H{sub 2}-H{sub 2} further lowers the binding energy. - Graphical abstract: Five hydrogen molecules bound to individual Ca decorated (8, 0) SWCNT : a potential hydrogen-storage material. Highlights: Black-Right-Pointing-Pointer Each transition metal atom can adsorb more than four hydrogen molecules. Black-Right-Pointing-Pointer The interation between metal and hydrogen molecule is electrostatic coulomb attraction. Black-Right-Pointing-Pointer The electric field is induced by the charge transfer from metal 4s to metal 3d. Black-Right-Pointing-Pointer The adsorbed hydrogen molecules which form supermolecule can further lower the binding energy.

  18. Design Considerations for Financing a National Trust to Advance the Deployment of Geologic CO2 Storage and Motivate Best Practices

    SciTech Connect

    Dooley, James J.; Trabucchi, Chiara; Patton , Lindene

    2010-03-01

    This paper explores how the flawed, widely held public policy view of an ever growing risk associated with long-term carbon dioxide (CO2) storage profoundly influences the public policy dialogue about how to best address the long term risk profile for geologic storage. In order to accomplish this, the authors present evidence from the rapidly emerging science and engineering of CO2 storage which demonstrates that, with proper site characterization and sound operating practices, retention of stored CO2 will increase with time thus invalidating the premise of an ever growing risk. The authors focus on key issues of fit, interplay, and scalability associated with a trust fund funded by a hypothetical $1/tonCO2 tipping fee for each ton of CO2 stored in the United States under WRE450 and WRE550 climate policies. The authors conclude there is no intrinsic value in creating a trust fund predicated solely on collecting a fixed fee that is not mapped to site-specific risk profiles. If left to grow unchecked, a trust fund that is predicated on a constant stream of annual payments unrelated to the site’s risk profile could result in the accumulation of hundreds of billions to more than a trillion dollars in real terms contributing to significant opportunity cost of capital. Further, rather than mitigating the financial consequences of long-term CCS risks, this analysis suggests a blanket $1/tonCO2 tipping fee may increase the probability and frequency of long-term risk by eliminating financial incentives for sound operating behavior and site selection criteria – contribute to moral hazard. At a minimum, effective use of a trust fund requires: (1) strong oversight regarding site selection and fund management, and (2) a clear process by which the fund is periodically valued and funds collected are mapped to the risk profile of the pool of covered CCS sites. Without appropriate checks and balances, there is no a priori reason to believe that the amount of funds held in trust

  19. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model

  20. Optimizing accuracy of determinations of CO₂ storage capacity and permanence, and designing more efficient storage operations: An example from the Rock Springs Uplift, Wyoming

    SciTech Connect

    Bentley, Ramsey; Dahl, Shanna; Deiss, Allory; Duguid, Andrew; Ganshin, Yuri; Jiao, Zunsheng; Quillinan, Scott

    2015-12-01

    At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO₂ storage permanence. The assurance of safe and permanent storage of CO₂ at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic

  1. Anion Exchange Capacity As a Mechanism for Deep Soil Carbon Storage in Variable Charge Soils

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; James, J. N.; Ciol, M.; Harrison, R. B.

    2014-12-01

    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. To increase our understanding of the effects of variable-charge on soil organic matter stabilization, deep sampling is under way at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Samples have been taken to a depth of 3 m at eight depth intervals. In addition to analyzing total soil C, these soils will be analyzed to determine functional groups present, cation exchange capacity, anion exchange capacity, and non-crystalline mineral content. These data will be analyzed to determine any correlations that may exist between these mineralogical characteristics, total soil C, and types of functional groups stored at depth. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C.

  2. Potential for in situ carbonation of peridotite for geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Matter, J.; Streit, L.; Rudge, J.; Spiegelman, M.

    2008-12-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low temperature alteration can probably be enhanced to develop a significant sink for atmospheric CO2. Formation of solid carbonate minerals in situ constitutes an important alternative that should be explored. It may be less costly than ex situ mineral carbonation involving transport of solid reactants, grinding, heat treatment, and reaction in pressurized vessels. It is certainly safer and much easier to monitor than storage of super-critical CO2 fluid in pore space at depth. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of approx 26,000 years, and are not 30 to 95 million years old as previously believed. These data and reconnaissance mapping show that 10,000 to 100,000 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman [1]. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and - particularly - increased temperature at depth. Our simple 1D thermal models suggest that, after an initial heating step, CO2 injected at 25 or 30°C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume more than 1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe and permanent method to store atmospheric CO2 [1]. In the appropriate PTX regime, solid volume changes associated with peridotite carbonation may induce reaction driven cracking as well as exothermic heating. If cracks expose fresh, new surface area to sustain continued reaction, carbonation rates could accelerate over time. Alternatively, if cracking is too slow

  3. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    PubMed Central

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  4. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    PubMed

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. PMID:26970098

  5. Analytical Verification of Outlet Devices Capacity of LUBACHÓW Storage Reservoir on the Bystrzyca River

    NASA Astrophysics Data System (ADS)

    Machajski, Jerzy; Olearczyk, Dorota

    2013-06-01

    The Lubachów storage reservoir was built in the 1920's. It is equipped with a relatively complex outlet installation, operating in variable hydraulic regime. The discharge deviations curves elaborated by German engineers for individual devices, after verification turned out to be burdened with a comparatively big error. This concerns especially the front spillway as well as intermediate outlets, and to a smaller degree the bottom outlets. The authors made a detailed analytical verification of the outlet installations and found great deviations from the currently valid discharge curves for these devices. Based on the analysis of conditions of computational discharges passage through the reservoir, they proved a high potential threat of water flow over the dam crest.

  6. Test results for a high capacity cryocooler with internal thermal storage

    NASA Astrophysics Data System (ADS)

    Bertele, Ted; Glaister, Dave; Gully, Wilfred; Hendershott, Paul; Levenduski, Robert; Marquardt, Eric; Wilson, Colin

    2012-06-01

    Ball Aerospace and Redstone Aerospace are developing a space cryocooler for cooling complex optical systems whose loads are intermittent. An example of such a system would be an Earth observation satellite that images for only a fraction of its orbit. If a cooler can store refrigeration during the lull and provide it when the system is active, the cooler can be considerably smaller than one sized to provide the full load continuously. Our cooler provides two stages of refrigeration, a stage of intermittent cooling at 35 K for a focal plane assembly and a stage of continuous cooling at 85 K for the surrounding thermal shields. The cooler provides the intermittent cooling by collecting liquid neon in a unique internal thermal storage tank and forwarding it to the focal plane when the heat loads are high. Our paper presents extensive performance data for neon at 35 K. It carries 2 W at 35 K for 30 minutes plus the 8.5 W of continuous cooling at 85 K for less than 300 W DC power. It is ready to cool again in an hour. For contrast, the same hardware was filled with nitrogen and tested at 82 K. It carries 5 W for 25 minutes plus 15 W of continuous cooling at 130 K for less than 220 W DC power. It is ready to cool again in a little over an hour. The system has many features for space system compatibility. Because the storage is located within an active control loop, the cooler can maintain the 35 K interface temperature to better than ± 0.1 K. Because it circulates liquid it can be located remotely, which solves many compatibility issues. And with careful liquid management, it can work in any orientation and in 0-g. In this paper our flight like equipment will be described, and its continuing evolution to flight will be discussed.

  7. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    SciTech Connect

    Bialy, Agata; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  8. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    NASA Astrophysics Data System (ADS)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  9. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    SciTech Connect

    Gupalo, T; Milovidov, V; Prokopoca, O; Jardine, L

    2002-12-27

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide sufficient information to make an estimate of the suitability of locating a radioactive waste (R W) underground isolation facility at the Nizhnekansky granitoid massif

  10. Structure and oxygen storage/release capacities of Dy1-xYxMnO3+δ (0 <= x <= 1)

    NASA Astrophysics Data System (ADS)

    Remsen, S.; Dabrowski, B.; Chmaissem, O.; Kolesnik, S.; Mais, J.

    2010-03-01

    Synthesis, oxygen storage/release capacities (OSC), oxygen absorption/desorption rates, and structural properties of Dy1-xYxMnO3+δ (0 <= x <= 1) have been studied by x-ray and neutron powder diffraction, dilatometry, and thermogravimetric analysis. These materials have been found to have excellent reversible OSC at low-temperatures of 200 - 375 C and various oxygen partial-pressures, making them potential candidates for oxygen sorbents in novel gas separation methods such as thermal swing absorption and thermal-automatic recovery processes. The OSC of the Dy1-xYxMnO3+δ system relies on the difference in oxygen content of a reversible phase transitions between hexagonal P63cm (δ = 0) and a previously unreported stable phases of this system (0 < δ < 0.5) and pyrochlore Fd3m [δ = 0.50, Subramanian et al. J. Solid State Chem. 72, 24 (1988)].

  11. The EPQ model under conditions of two levels of trade credit and limited storage capacity in supply chain management

    NASA Astrophysics Data System (ADS)

    Chung, Kun-Jen

    2013-09-01

    An inventory problem involves a lot of factors influencing inventory decisions. To understand it, the traditional economic production quantity (EPQ) model plays rather important role for inventory analysis. Although the traditional EPQ models are still widely used in industry, practitioners frequently question validities of assumptions of these models such that their use encounters challenges and difficulties. So, this article tries to present a new inventory model by considering two levels of trade credit, finite replenishment rate and limited storage capacity together to relax the basic assumptions of the traditional EPQ model to improve the environment of the use of it. Keeping in mind cost-minimisation strategy, four easy-to-use theorems are developed to characterise the optimal solution. Finally, the sensitivity analyses are executed to investigate the effects of the various parameters on ordering policies and the annual total relevant costs of the inventory system.

  12. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  13. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    PubMed Central

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  14. Dual hybrid strategy towards achieving high capacity and long-life lithium storage of ZnO

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Cao, Minhua

    2016-02-01

    In this work, we propose a facile and efficient strategy for mitigating capacity fading of ZnO by co-hybridization of cobalt (Co) and N-doped carbon (C-N). The ZnO-based hybrid (ZnO/Co/C-N) is prepared by calcining metal-organic frameworks (MOFs) under a vacuum condition. In view of the unique microstructure of MOFs used in our case, the resultant hybrid displays a three dimensional (3D) spherical morphology with abundant pore structure. The electrochemical tests indicate that the ZnO/Co/C-N nanospheres exhibit excellent cycling stability, high specific capacity, and good rate capability. This work proposes a facile strategy for the synthesis of nanomaterials with unique microstructure, desired composition and high surface area, endowing an excellent lithium storage performance. The current route is convenient and cost-effective, and therefore it is highly promising for scaled-up production. Moreover, the method we adopted may be extended to synthesize other porous nanomaterials with desired composition.

  15. Comparative modeling of fault reactivation and seismicity in geologic carbon storage and shale-gas reservoir stimulation

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Rinaldi, Antonio; Cappa, Frederic

    2016-04-01

    The potential for fault reactivation and induced seismicity are issues of concern related to both geologic CO2 sequestration and stimulation of shale-gas reservoirs. It is well known that underground injection may cause induced seismicity depending on site-specific conditions, such a stress and rock properties and injection parameters. To date no sizeable seismic event that could be felt by the local population has been documented associated with CO2 sequestration activities. In the case of shale-gas fracturing, only a few cases of felt seismicity have been documented out of hundreds of thousands of hydraulic fracturing stimulation stages. In this paper we summarize and review numerical simulations of injection-induced fault reactivation and induced seismicity associated with both underground CO2 injection and hydraulic fracturing of shale-gas reservoirs. The simulations were conducted with TOUGH-FLAC, a simulator for coupled multiphase flow and geomechanical modeling. In this case we employed both 2D and 3D models with an explicit representation of a fault. A strain softening Mohr-Coulomb model was used to model a slip-weakening fault slip behavior, enabling modeling of sudden slip that was interpreted as a seismic event, with a moment magnitude evaluated using formulas from seismology. In the case of CO2 sequestration, injection rates corresponding to expected industrial scale CO2 storage operations were used, raising the reservoir pressure until the fault was reactivated. For the assumed model settings, it took a few months of continuous injection to increase the reservoir pressure sufficiently to cause the fault to reactivate. In the case of shale-gas fracturing we considered that the injection fluid during one typical 3-hour fracturing stage was channelized into a fault along with the hydraulic fracturing process. Overall, the analysis shows that while the CO2 geologic sequestration in deep sedimentary formations are capable of producing notable events (e

  16. Site Characterization for CO2 Geologic Storage and Vice Versa -The Frio Brine Pilot as a Case Study

    SciTech Connect

    Doughty, Christine

    2006-02-14

    Careful site characterization is critical for successfulgeologic sequestration of CO2, especially for sequestration inbrine-bearing formations that have not been previously used for otherpurposes. Traditional site characterization techniques such asgeophysical imaging, well logging, core analyses, interference welltesting, and tracer testing are all valuable. However, the injection andmonitoring of CO2 itself provides a wealth of additional information.Rather than considering a rigid chronology in which CO2 sequestrationoccurs only after site characterization is complete, we recommend thatCO2 injection and monitoring be an integral part of thesite-characterization process. The advantages of this approach arenumerous. The obvious benefit of CO2 injection is to provide informationon multi-phase flow properties, which cannot be obtained from traditionalsitecharacterization techniques that examine single-phase conditions.Additionally, the low density and viscosity of CO2 compared to brinecauses the two components to flow through the subsurface differently,potentially revealing distinct features of the geology. Finally, tounderstand sequestered CO2 behavior in the subsurface, there is nosubstitute for studying the movement of CO2 directly. Making CO2injection part of site characterization has practical benefits as well.The infrastructure for surface handling of CO2 (compression, heating,local storage) can be developed, the CO2 injection process can bedebugged, and monitoring techniques can be field-tested. Prior to actualsequestration, small amounts of CO2 may be trucked in. Later, monitoringaccompanying the actual sequestration operations may be used tocontinually refine and improve understanding of CO2 behavior in thesubsurface.

  17. Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    SciTech Connect

    Joel Sminchak

    2011-09-30

    The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States Department of Energy (U.S. DOE)/National Energy Technology Laboratory (NETL) program on innovative and advanced technologies and protocols for monitoring/verification/accounting (MVA), simulation, and risk assessment of CO{sub 2} sequestration in geologic formations. The overall objective of the project is to develop a simulation framework for regional geologic CO{sub 2} storage infrastructure along the Arches Province of the Midwestern U.S.

  18. CO{sub 2} Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena - From Pore-scale Processes to Macroscale Implications -

    SciTech Connect

    Santamarina, J. Carlos

    2013-05-31

    Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO{sub 2} emissions and the potential for global warming. Geological CO{sub 2} storage aims to mitigate the global warming problem by sequestering CO{sub 2} underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO{sub 2} geological storage. This research explores coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO{sub 2} geological storage. In particular, the research: Explores spatial patterns in mineral dissolution and precipitation (comprehensive mass balance formulation); experimentally determines the interfacial properties of water, mineral, and CO{sub 2} systems (including CO{sub 2}-water-surfactant mixtures to reduce the CO{sub 2}- water interfacial tension in view of enhanced sweep efficiency); analyzes the interaction between clay particles and CO{sub 2}, and the response of sediment layers to the presence of CO{sub 2} using specially designed experimental setups and complementary analyses; couples advective and diffusive mass transport of species, together with mineral dissolution to explore pore changes during advection of CO{sub 2}-dissolved water along a rock fracture; upscales results to a porous medium using pore network simulations; measures CO{sub 2} breakthrough in highly compacted fine-grained sediments, shale and cement specimens; explores sealing strategies; and experimentally measures CO{sub 2}-CH{sub 4} replacement in hydrate-bearing sediments during. Analytical, experimental and numerical results obtained in this study can be used to identify optimal CO{sub 2} injection and reservoir-healing strategies to maximize the efficiency of CO{sub 2} injection