Science.gov

Sample records for geological time scale

  1. Geologic time scale bookmark

    USGS Publications Warehouse

    U.S. Geological Survey

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  2. Teaching about time by understanding Geologic Time Scales: The Geological Society of America Geologic Time Scale and its history

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Walker, J. D.

    2012-12-01

    Geologic time scales, of one form or another, are used in most undergraduate geosciences courses, even including introductory physical geology or equivalent. However, satisfactory discussions of how geologic time scales originated, and how they have evolved to modern versions, are far too often conveniently or inconveniently left out of classroom discussions. Yet it is these kinds of discussions that have the potential of solidifying student appreciation of deep time and rates of geologic processes. We use the history and development of the Geological Society of America Geologic Time Scale, which reflects major developments in the fields of stratigraphy, geochronology, magnetic polarity stratigraphy, astrochronology, and chemostratigraphy, as a focus of how specific details of time scales can be used to teach about time. Advances in all of these fields have allowed many parts of the time scale to be calibrated to precisions approaching less than 0.05 %. Notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events, in both marine and terrestrial environments, include the Triassic-Jurassic, Permo-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). Many of the details, but certainly not all, can be incorporated in discussions of how we know about geologic time in the classroom. For example, we presently understand that both the end-Permian ecological crisis and the biostratigraphic Permian-Triassic boundary, as calibrated by conodonts, lie within a ca. 700 ka long normal polarity chron. The reverse to normal polarity transition at the beginning of this chron is ca. 100 ka earlier than the ecological crisis and thus slightly older than the current estimate, based on high precision U-Pb zircon age determinations, of ca. 252.4 Ma for the Permian-Triassic boundary. This polarity transition occurred during the early part of

  3. Reconciling Changes to the Geologic Time Scale, in the U.S. Geologic Names Lexicon

    NASA Astrophysics Data System (ADS)

    Soller, D. R.; Stamm, N. R.

    2014-12-01

    The U.S. Geologic Names Lexicon ("Geolex", http://ngmdb.usgs.gov/Geolex/), is a standard reference for the Nation's stratigraphic nomenclature. Geolex's content is drawn from the literature published since the late 1800's. Since that time, modifications to the geologic time scale have been significant, particularly in recent decades (e.g., the Ordovician, Carboniferous, Permian, and Quaternary), owing in part to more precise biostratigraphic zonations and advances in isotopic dating techniques. Because the definitions of geologic time intervals have been modified as more information is gathered, interpreted, and published, the geologic age of a unit as stated in a report published in, for example, 1950, may be different according to today's time scale. In order to ensure that people can search Geolex for geologic units according to today's time scale, we have updated to the modern time scale the age estimates for many geologic units. These updated age estimates are shown in Geolex's "Unit Summary" pages; the ages as originally determined are preserved in the synopsis for each publication. This presentation will focus on our methodology.

  4. Improving the Geologic Time Scale (Jean Baptiste Lamarck Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gradstein, Felix M.

    2010-05-01

    The Geologic Time Scale (GTS) provides the framework for the physical, chemical and biological processes on Earth. The time scale is the tool "par excellence" of the geological trade, and insight in its construction, strength, and limitations enhances its function and its utility. Earth scientists should understand how time scales are constructed and its myriad of physical and abstract data are calibrated, rather than merely using ages plucked from a convenient chart or card. Calibration to linear time of the succession of events recorded in the rocks on Earth has three components: (1) the standard stratigraphic divisions and their correlation in the global rock record, (2) the means of measuring linear time or elapsed durations from the rock record, and (3) the methods of effectively joining the two scales, the stratigraphic one and the linear one. Under the auspices of the International Commission on Stratigraphy (ICS), the international stratigraphic divisions and their correlative events are now largely standardized, especially using the GSSP (Global Stratigraphic Section and Point) concept. The means of measuring linear time or elapsed durations from the rock record are objectives in the EARTH TIME and GTS NEXT projects, that also are educating a new generation of GTS dedicated scientists. The U/Pb, Ar/Ar and orbital tuning methods are intercalibrated, and external error analysis improved. Existing Ar/Ar ages become almost 0.5% older, and U/Pb ages stratigraphically more realistic. The new Os/Re method has potential for directly dating more GSSP's and its correlative events. Such may reduce scaling uncertainty between the sedimentary levels of an age date and that of a stage boundary. Since 1981, six successive Phanerozoic GTS have been published, each new one achieving higher resolution and more users. The next GTS is scheduled for 2011/2012, with over 50 specialists taking part. New chapters include an expanded planetary time scale, sequence stratigraphy

  5. A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Carranza, Emmanuel John M.; Wu, Chonglong; van der Meer, Freek D.; Liu, Gang

    2011-10-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.

  6. Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Carranza, Emmanuel John M.; Wu, Chonglong; van der Meer, Freek D.

    2012-03-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the ordinal hierarchical structure of the geological time scale and to encode collected annotations of geological time scale concepts. We also developed an animated graphical view of the developed ontology, and functions for interactions between the ontology, the animation and online geological maps published as layers of OGC Web Map Service. The featured functions include automatic annotations for geological time concepts recognized from a geological map, changing layouts in the animation to highlight a concept, showing legends of geological time contents in an online map with the animation, and filtering out and generalizing geological time features in an online map by operating the map legend shown in the animation. We set up a pilot system and carried out a user survey to test and evaluate the usability and usefulness of the developed ontology, animation and interactive functions. Results of the pilot system and the user survey demonstrate that our works enhance features of online geological map services and they are helpful for users to understand and to explore geological time contents and features, respectively, of a geological map.

  7. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  8. Geologic Time.

    ERIC Educational Resources Information Center

    Albritton, Claude C., Jr.

    1984-01-01

    Discusses the historical development of the concept of geologic time. Develops the topic by using the major discoveries of geologists, beginning with Steno and following through to the discovery and use of radiometric dating. An extensive reference list is provided. (JM)

  9. Use of a Walk Through Time to Facilitate Student Understandings of the Geological Time Scale

    NASA Astrophysics Data System (ADS)

    Shipman, H. L.

    2004-12-01

    Students often have difficulties in appreciating just how old the earth and the universe are. While they can simply memorize a number, they really do not understand just how big that number really is, in comparison with other, more familiar student referents like the length of a human lifetime or how long it takes to eat a pizza. (See, e.g., R.D. Trend 2001, J. Research in Science Teaching 38(2): 191-221) Students, and members of the general public, also display such well-known misconceptions as the "Flintstone chronology" of believing that human beings and dinosaurs walked the earth at the same time. (In the classic American cartoon "The Flintstones," human beings used dinosaurs as draft animals. As scientists we know this is fiction, but not all members of the public understand that.) In an interdisciplinary undergraduate college class that dealt with astronomy, cosmology, and biological evolution, I used a familiar activity to try to improve student understanding of the concept of time's vastness. Students walked through a pre-determined 600-step path which provided a spatial analogy to the geological time scale. They stopped at various points and engaged in some pre-determined discussions and debates. This activity is as old as the hills, but reports of its effectiveness or lack thereof are quite scarce. This paper demonstrates that this activity was effective for a general-audience, college student population in the U.S. The growth of student understandings of the geological time scale was significant as a result of this activity. Students did develop an understanding of time's vastness and were able to articulate this understanding in various ways. This growth was monitored through keeping track of several exam questions and through pre- and post- analysis of student writings. In the pre-writings, students often stated that they had "no idea" about how to illustrate the size of the geological time scale to someone else. While some post-time walk responses

  10. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  11. Consistent allometric scaling of stomatal sizes and densities across taxonomic ranks and geologic time

    NASA Astrophysics Data System (ADS)

    de Boer, H. J.; Price, C. A.; Wagner-Cremer, F.; Dekker, S. C.; Veneklaas, E. J.

    2013-12-01

    Stomatal pores on plants leaves are an important link in the chain of processes that determine biosphere fluxes of water and carbon. Stomatal density (i.e. the number of stomata per area) and the size of the stomatal pore at maximum aperture are particularly relevant traits in this context because they determine the theoretical maximum diffusive stomatal conductance (gsmax) and thereby set an upper limit for leaf gas exchange. Observations on (sub)fossil leaves revealed that changes in stomatal densities are anti-correlated with changes in stomatal sizes at developmental and evolutionary timescales. Moreover, this anti-correlation appears consistently within single species, across multiple species in the extant plant community and at evolutionary time scales. The consistency of the relation between stomatal densities and sizes suggests that common mechanisms constrain the adaptation of these traits across the plant community. In an attempt to identify such potential generic constraints, we investigated the allometry between stomatal densities and sizes in the extant plant community and across geological time. As the size of the stomatal pore at maximum aperture is typically derived from the length of the stomatal pore, we considered the allometric scaling of pore length (lp) with stomatal density (Ds) as the power law: lp = k . Dsa in which k is a normalization constant and the exponent a is the slope of the scaling relation. Our null-hypothesis predicts that stomatal density and pore length scale along a constant slope of -1/2 based on a scale-invariant relation between pore length and the distance between neighboring pores. Our alternative hypothesis predicts a constant slope of -1 based on the idea that stomatal density and pore length scale along an invariant gsmax. To explore these scaling hypotheses in the extant plant community we compiled a dataset of combined observations of stomatal density and pore length on 111 species from published literature and new

  12. "Tectonic Petrameter," An Alternative Method to Teaching the Geologic Time Scale

    NASA Astrophysics Data System (ADS)

    Posner, E. S.

    2011-12-01

    I have over a decade of experience as a performance poet and am now a graduate student in the geosciences. I have created a performance poem / play script, "Tectonic Petrameter," as an alternative method of teaching the geologic time scale. "The Archean came next and it was a blast. Tectonic plates were smaller and they moved pretty fast. In an enthusiastic flash of ash, volcanic islands smashed together." The use of rhyme and rhythm presents a different and interdisciplinary approach to teaching Earth history that appeals to a wide range of learning styles and makes science fun, while clearly describing important concepts in geology and events in Earth history. "Now it's time to get down with the Coal Swamp Stomp! Tap your feet to the beat of the formation of peat like a plant plantation soaking up the bright heat." "Tectonic Petrameter" by itself is an illustrated spoken-word poem that leads audiences from all levels of scientific background on an excitingly educational journey through geologic time. I will perform my 10-minute memorized poem and present results from my ongoing study to assess the effectiveness of "Tectonic Petrameter" as a teaching tool in K-12 and introductory undergraduate classroom curricula. I propose that using "Tectonic Petrameter" as a performance piece and theatrical play script in K-12 and introductory undergraduate classrooms, as well as in broader community venues, may be an avenue for breaking down barriers related to teaching about Earth's long and complex history. Digital copies of "Tectonic Petrameter" will be made available to interested parties.

  13. The geocenter motion from decadal to geological time-scales: geophysical modelling

    NASA Astrophysics Data System (ADS)

    Greff-Lefftz, M.; Métivier, L.

    2012-04-01

    Among the coefficients of the spherical harmonics expansion of elasto-gravitational deformations, the degree-one has particular characteristics related to geodesy as well as to mechanics. It is linked to the position of the Earth centre of mass and is strongly dependent on the choice of the origin of the reference frame. We investigate here the geocenter motion, that is to say the geometric centre of the translated external surface with respect to the centre of mass, for different internal excitation sources at different time-scales. At decadal time-scale, we find that the geocenter motion induced by geostrophic pressures within the fluid core acting at both the core-mantle and inner core boundaries is at a level of 0.1 mm/yr. At secular time-scale, geocenter motions induced by post-glacial rebound have been shown to be at the level of -0.4 - 0.2 mm/yr Finally, at geological time-scale, we quantify degree-one deformations induced by internal loads within the mantle. We use a simple model in which we assume that subducted plates sink vertically through the mantle, and in which upwelling domes are stable over the last 120 Ma. We found that, although the associated geocenter secular motion is one order of magnitude smaller than the one induced by post-glacial rebound, there is a significant discrepancy of about a few hundred meters between the centre of figure and the centre of mass of the Earth. Is it possible to detect, at the present time, with geodetic measurements, such a permanent translation?

  14. Neogene and Quaternary coexisting in the geological time scale: The inclusive compromise

    NASA Astrophysics Data System (ADS)

    McGowran, Brian; Berggren, Bill; Hilgen, Frits; Steininger, Fritz; Aubry, Marie-Pierre; Lourens, Lucas; Van Couvering, John

    2009-11-01

    Removing the Tertiary and Quaternary Periods whilst conserving the Paleogene and Neogene Periods in The Geological Timescale 2004 caused a storm of protest. One response was to advocate restoring an enlarged Quaternary and consigning the Neogene to a minor role within the Tertiary. Amongst an array of practical, traditional, sentimental and anthropocentric reasons for this response, the one hard-core justification was that the rigidly nested hierarchy of the geological timescale must be preserved. The central objective of this paper is conserving the historically legitimate, Miocene-present, Neogene Period and System. There are two options for conserving the Quaternary concurrently with the Neogene: (i) an inclusive compromise in a flexible hierarchy, and (ii) an upgrading of Pliocene and Pleistocene divisions to the level of epoch. In the inclusive compromise there coexist alternative pathways through the hierarchical ranks. Thus geohistorians and biohistorians have two options for traversing the hierarchy from era to age, as in this example using the hierarchical positioning of the Calabrian Age and Stage: either Cenozoic [era]↔Neogene [period]↔Pleistocene [epoch]↔Calabrian [age], or Cenozoic [era]↔Quaternary [subera]↔Pleistocene [epoch]↔Calabrian [age]. We reaffirm that the inclusive compromise is entirely viable. In so doing we (i) challenge the necessity of the rigidly nested hierarchy, which should be capable of a little flexibility; (ii) reject all analogies of the arbitrary and conventional chronostratigraphic hierarchy with three natural biological hierarchies; (iii) reaffirm the integrity of the Neogene extending to the present; and (iv) see no reason to doubt the harmonious coexistence of the two options preserving the Quaternary and Neogene traditions in an orderly working and stable time scale. In the alternative schema conserving the Neogene, divisions of the Pliocene and Pleistocene are upgraded, so that the Late Pleistocene, Early

  15. Advances in the Geomagnetic Polarity Time Scale--Developments and Integration with the Geologic Time Scale and Future Directions (Invited)

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.

    2013-12-01

    We celebrate the 50th anniversary of the publication of the Vine-Matthews/Morley-Larochelle hypothesis (Vine and Matthews, Nature, 1963, v. 199, #4897, p. 947-949), which integrated marine magnetic anomaly data with a rapidly evolving terrestrial-based geomagnetic polarity time scale (GPTS). The five decades of research since 1963 have witnessed the expansion and refinement of the GPTS, to the point where ages of magnetochron boundaries, in particular in the Cenozoic, can be estimated with uncertainties better than 0.1%. This has come about by integrating high precision geochronology, cyclostratigraphy at different time scales, and magnetic polarity data of increased quality, allowing extension of the GPTS back into the Paleozoic. The definition of a high resolution GPTS across time intervals of major events in Earth history has been of particular interest, as a specific magnetochron boundary correlated across several localities represents a singular global datum. A prime example is the end Permian, when some 80 percent of genus-level extinctions and a range of 75 to 96 percent species- level extinctions took place in the marine environment, depending upon clade. Much our understanding of the Permian-Triassic boundary (PTB) is based on relatively slowly deposited marine sequences in Europe and Asia, yet a growing body of observations from continental sequences demonstrates a similar extinction event and new polarity data from some of these sequences are critical to refining the GPTS across the PTB and testing synchronicity of marine and terrestrial events. The data show that the end-Permian ecological crisis and the conodont calibrated biostratigraphic PTB both followed a key polarity reversal between a short interval (subchron) of reverse polarity to a considerably longer (chron) of normal polarity. Central European Basin strata (continental Permian and epicontinental Triassic) yield high-quality magnetic polarity stratigraphic records (Szurlies et al., 2003

  16. Calibration of the geologic time scale: Cenozoic and Late Cretaceous glauconite and nonglauconite dates compared

    SciTech Connect

    Craig, L.E.; Smith, A.G. ); Armstrong, R.L. )

    1989-09-01

    Revision of the 1982 time scale of Harland et al. has led to the compilation of 377 isotopic dates for calibration of the Cenozoic to Cretaceous time interval. The results show that the ages of stage boundaries based on glauconite dates are on average about 2 m.y. younger than those based on nonglauconite dates, but for many Cenozoic and Late Cretaceous stages the differences are too small to require special consideration of glauconite dates. Future work may reveal an irreducible systematic difference between glauconite and nonglauconite time scales, but the progress made so far in recognizing those glauconites likely to yield reliable dates for the Cenozoic to Late Cretaceous interval may continue to provide useful time-scale calibration points.

  17. Joint EM-NE-International Study of Glass Behavior over Geologic Time Scales

    SciTech Connect

    Ryan, Joseph V.; Ebert, W. L.; Icenhower, Jonathan P.; Schreiber, Daniel K.; Strachan, Denis M.; Vienna, John D.

    2012-03-30

    Vitrification has been chosen as the best demonstrated available technology for waste immobilization worldwide. To date, the contributions of physical and chemical processes controlling the long-term glass dissolution rate in geologic disposal remain uncertain; leading to a lack of international consensus on a glass corrosion rate law. Existing rate laws have overcome the uncertainty through conservatism, but a thorough mechanistic understanding of waste form durability in geologic environments would improve public and regulator confidence, as well as lead to cost savings if it is possible to take credit for the true durability of the waste form itself in system evaluations. To this end, six nations have joined together to formulate a joint plan for collaborative research into the mechanisms controlling the long-term corrosion of glass. This report highlights the technical program plan behind the US portion of this effort, with an emphasis on the current understanding (and limitations) of several mechanistic theories for glass corrosion. Some recent results are presented to provide an example of the ongoing research.

  18. Controls on the Stability of Atmospheric O2 over Geologic Time Scales (Invited)

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Bosak, T.

    2013-12-01

    The concentration of free oxygen in Earth's surface environment represents a balance between the accumulation of O2, due to long-term burial of organic carbon in sediments, and the consumption of O2 by weathering processes and the oxidation of reduced gases. The stability of modern O2 levels is typically attributed to a negative feedback that emerges when the production and consumption fluxes are expressed as a function of O2 concentration. Empirical studies of modern burial of organic carbon suggest that the production of O2 is a logarithmically decreasing function of the duration of time---the "oxygen exposure time (OET)"--over which sedimentary organic carbon is exposed to O2. The OET hypothesis implies that a fraction of organic matter is physically protected from anaerobic decay by its association with clay-sized mineral surface area, but susceptible to aerobic decay, either oxidatively or via free extracellular hydrolytic enzymes. By assuming that the long-term aerobic degradation is diffusion-limited, we predict the logarithmic decay of the OET curve. We note, however, that exposure to O2 may enhance not only degradation but also physical protection due to the precipitation of iron oxides and clay minerals. When the rate of transformation from the unprotected state to the protected state exceeds a small fraction of the average oxidative degradation rate, our theoretical OET curve develops a maximum at small O2 exposure times. In this case, the equilibrium O2 concentration can lose its stability. These observations may help explain major fluctuations in Earth's carbon cycle and the rise of O2 during the Proterozoic (2000--542 Ma).

  19. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Grimaud, Jean-Louis; Rouby, Delphine; Beauvais, Anicet; Christophoul, Frédéric

    2016-03-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction of two physiographic configurations of West Africa in the Paleogene. Those reconstructions show that the geometry of the drainage is stabilized by the late early Oligocene (29 Ma) and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland morphoclimatic record to offshore sedimentation since that time, particularly in the case of the Niger catchment—delta system. Mid-Eocene paleogeography reveals the antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a marginal upwarp forming a continental divide preexisted early Oligocene connection of the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage rearrangement was primarily enhanced by the topographic growth of the Hoggar hot spot swell and caused a stratigraphic turnover along the Equatorial margin of West Africa.

  20. Regional fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences

    NASA Astrophysics Data System (ADS)

    Havril, Timea; Mádl-Szönyi, Judit; Molson, John

    2016-04-01

    permeability confining formation, which facilitates buoyancy-driven flow by restricting the dissipation of heat. Over geological time, these cells were gradually overprinted by gravity-driven flow and thermal advection due to the uplift of the western part of the system. The limited thickness of the cover along the western block allowed efficient water infiltration into the system, which leads to an increased cooling effect. Further uplifting of the western part leads to a change of the main character of the flow patterns, with gravity-driven groundwater flow dominating over the effect of buoyancy-driven flow. Although cooling of the system has significantly progressed, conditions over the confined part of the system are still favorable for the development of thermal convection cells, and leads to significant heat accumulation under the confined sub-basin. The flow and heat transport simulations have helped to derive the main evolutionary characteristics of groundwater flow and heat transport patterns for the unconfined and confined parts of the region. The result is flow convergence toward the discharge zone from different sources over geological time scales. This is decisive for heat accumulation as well as for the development of a deep geothermal energy potential in confined carbonates. The research is supported by the Hungarian Research Fund.

  1. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-01

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales. PMID:18952842

  2. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales

    PubMed Central

    Hilley, George E.; Porder, Stephen

    2008-01-01

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9–4.6 × 1013 mols of Si weathered globally per year, within a factor of 4–10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4–18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01–0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO2, 1.5–3.3 × 108 tons/year of CO2 is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales. PMID:18952842

  3. Global Warming in Geologic Time

    ScienceCinema

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  4. Global Warming in Geologic Time

    SciTech Connect

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  5. Global Warming in Geologic Time

    SciTech Connect

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  6. Variations in barrier-island evolution at millennial and decadal time scales related to underlying geology, Onslow Beach, NC USA

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hood, D.; Browne, R.; Rodriguez, A. B.

    2010-12-01

    Located midway between Cape Fear and Cape Lookout, North Carolina, Onslow Beach is a 12 km-long barrier island, which historically had transgressive and stable profiles on the southern and northern ends, respectively. The northern half of the island has well-developed dunes in front of maritime forest. The southern half is low-lying and is characterized by washover fans infringing on salt marsh. By studying the underlying barrier lithology and structure, we will determine the evolution of the island at millennial time scales and in turn address whether the along-beach variations in barrier morphology and the historical shoreline-movement trends are related to the underlying geology. We collected 33 vibracores along 7 cross-shore transects spaced equally along Onslow Beach. Variations in topography were measured along these transects using an RTK-GPS. Cores collected from southern transects revealed multiple marsh-overwash sequences overlying estuarine deposits or a highly compacted unit typically composed of gray clay or brown medium to fine grained sand, possibly of Pleistocene age. The contact between this Pleistocene unit and the overlying estuarine deposits or thin peat layer represents the initial inundation of the area in response to Holocene sea-level rise. The elevation of this contact decreases towards the north along the island to a point where our coring methods could not penetrate deep enough to sample it (>4.0 m below the surface). In addition, marsh deposits sampled in the north below the island, which range from 30-120cm, were commonly found to be thicker than the marsh deposits sampled in the south, which range from 10-30 cm. These thick back-barrier units in the north preserve paleo overwash events as fining-upward sequences and likely accreted and were preserved due to the large accommodation space that the deep Pleistocene surface provided. The stratigraphy of the northern cores indicates a less stable Island in the past dominated by overwash

  7. On a coupled evolution of Earth's mantle and core: Implications for magnetic evolution over the geologic time-scale

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi

    2015-04-01

    According to the recent progress of numerical modeling of mantle convection with various realistic physical processes, we can look into possible scenarios on core-mantle evolution suggested from theoretical and experimental studies with developing a coupled core-mantle evolution model in fully dynamical mantle convection simulations. The core evolution theory that allows to generate the inner core can be treated with the thermal boundary condition at the core-mantle boundary of mantle convection simulations. Here we introduce our recent accomplishments in a coupled core-mantle evolution: 1. Influence of early Earth differentiation and 2. Importance of hydrous minerals in the deep mantle. In the presentation, we will give implications for history of heat flow across the core-mantle boundary from early to present Earth and magnetic evolution over geologic time suggested from paleomagnetism measurements.

  8. Divisions of Geologic Time - Major Chronostratigraphic and Geochronologic Units

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Names Committee

    2007-01-01

    Introduction Effective communication in the geosciences requires consistent uses of stratigraphic nomenclature, especially divisions of geologic time. A geologic time scale is composed of standard stratigraphic divisions based on rock sequences and calibrated in years (Harland and others, 1982). Over the years, the development of new dating methods and refinement of previous ones have stimulated revisions to geologic time scales. Since the mid-1990s, geologists from the U.S. Geological Survey (USGS), State geological surveys, academia, and other organizations have sought a consistent time scale to be used in communicating ages of geologic units in the United States. Many international debates have occurred over names and boundaries of units, and various time scales have been used by the geoscience community.

  9. Divisions of geologic time-major chronostratigraphic and geochronologic units

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Names Committee

    2010-01-01

    Effective communication in the geosciences requires consistent uses of stratigraphic nomenclature, especially divisions of geologic time. A geologic time scale is composed of standard stratigraphic divisions based on rock sequences and is calibrated in years. Over the years, the development of new dating methods and the refinement of previous methods have stimulated revisions to geologic time scales. Advances in stratigraphy and geochronology require that any time scale be periodically updated. Therefore, Divisions of Geologic Time, which shows the major chronostratigraphic (position) and geochronologic (time) units, is intended to be a dynamic resource that will be modified to include accepted changes of unit names and boundary age estimates. This fact sheet is a modification of USGS Fact Sheet 2007-3015 by the U.S. Geological Survey Geologic Names Committee.

  10. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms.

    PubMed

    De Blasio, Fabio Vittorio; Liow, Lee Hsiang; Schweder, Tore; De Blasio, Birgitte Freiesleben

    2015-01-21

    There are strong propositions in the literature that abiotic factors override biotic drivers of diversity on time scales of the fossil record. In order to study the interaction of biotic and abiotic forces on long term changes, we devise a spatio-temporal discrete-time Markov process model of macroevolution featuring population formation, speciation, migration and extinction, where populations are free to migrate. In our model, the extinction probability of these populations is controlled by latitudinally and temporally varying environment (temperature) and competition. Although our model is general enough to be applicable to disparate taxa, we explicitly address planktic organisms, which are assumed to disperse freely without barriers over the Earth's oceans. While rapid and drastic environmental changes tend to eliminate many species, generalists preferentially survive and hence leave generalist descendants. In other words, environmental fluctuations result in generalist descendants which are resilient to future environmental changes. Periods of stable or slow environmental changes lead to more specialist species and higher population numbers. Simulating Cenozoic diversity dynamics with both competition and the environmental component of our model produces diversity curves that reflect current empirical knowledge, which cannot be obtained with just one component. Our model predicts that the average temperature optimum at which planktic species thrive best has declined over the Neogene, following the trend of global average temperatures. PMID:25451532

  11. Constraining the Geological Time Scale for the Upper Cretaceous in the Edmonton Group: Western Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Heredia, B.; Gaylor, J. R.; Hilgen, F.; Kuiper, K.; Mezger, K.; Wijbrans, J. R.; Quidelleur, X.; Huesing, S.

    2011-12-01

    The Cretaceous period records evidence of sea-level changes, remarkably cyclic sedimentation, major perturbations in carbon cycles during anoxic events, and large scale igneous activity. Astronomically-tuned time scales are only partially consistent with recalculated Ar-Ar constraints for the Cretaceous-Paleogene (K-Pg) boundary, but differ in number and tuning of 405-kyr eccentricity related cycles. The exposures of Upper Cretaceous strata along the Red Deer River (Western Canadian Sedimentary Basin) offer a unique opportunity to examine aspects of marine, tectonic, and climatic influenced sediments. The uppermost part of the Knudsen Farm section is a well-preserved continuous section, mainly composed by climatically controlled alternations of silt and organic rich horizons, in which altered volcanic ash layers have been deposited. In this section, the K-Pg boundary has been placed at the base of a prominent coal layer (Nevis coal), approx. 24 m from the base of the c29r. We present a compilation of paleomagnetic data, chemical, colour and magnetic susceptibility proxies, and Ar-Ar, K-Ar and U-Pb (CA-TIMS) for the uppermost part of the Maastrichtian, including the base of the c29r to the K-Pg boundary and up to the lowermost Danian. High-resolution radioisotopic ages and the multi-proxy lithological and geochemical datasets are used to develop a cyclostratigraphic reconstruction of this interval, thus permitting the synchronisation of rock clocks close to the K-Pg boundary. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no [215458].

  12. Evolution of the South-East Monsoon System - An Investigation of the Dynamical Controls on the Monsoon System Over Geologic Time Scales.

    NASA Astrophysics Data System (ADS)

    Farnsworth, A.; Lunt, D. J.

    2014-12-01

    The South-East Asian monsoon is a fundamental feature in the global climate system cycling energy, moisture and momentum from tropical to extra-tropical latitudes. Societies rely extensively on precipitation during the monsoon season to sustain population centres and economic activity such as agriculture. However the current monsoon system has not always been in its current configuration varying extensively throughout geological time. However little is known about the driving factors behind its creation and evolution. A series of numerical model simulation (HadCM3L) using state of the art reconstructed paleogeographies have been employed to investigate the evolution of the S.E. Asian monsoon system for each geological stage (32 simulations in total) since the beginning of the Cretaceous. Two methodologies, i) a fixed regional precipitation signal based on the current monsoon regions modern areal extent and ii) a migrating regional construct based on the modern day monsoon regions back rotated through time are investigated. These two methodologies allow an examination of the evolution of tropical precipitation over time in the region. The large-scale processes (paleogeography, CO2) of the monsoon system and the regional dynamics (e.g. sea surface temperatures, regional atmospheric circulation, oceanic heat transport, land-sea temperature differential) that control them are also examined with numerical results compared against available proxy data. Preliminary results indicate a downward trend in global precipitation since the late Eocene with significant change at the E/O boundary. In addition, tropical precipitation (40°N - 40°S) has seen a downward trend in rainfall since the mid-Cretaceous. S.E. Asia is shown to be influenced by changes in topographical features/ location, CO2 concentrations, and the regional atmospheric circulation playing a key role in modification of the monsoon system which drive variability on tectonic time scales.

  13. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and…

  14. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  15. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological time scales

    NASA Astrophysics Data System (ADS)

    Buendíia, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2013-12-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  16. Measuring student understanding of geological time

    NASA Astrophysics Data System (ADS)

    Dodick, Jeff; Orion, Nir

    2003-09-01

    There have been few discoveries in geology more important than deep time - the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and evolutionary biology. Thus, any student that wants to master these subjects must have a good understanding of geological time. Despite its critical importance, there has been very little attention given to geological time by science education researchers. Of the work that has been done, much of it ignores the cognitive basis for students' understanding of geological time. This work addresses this gap by presenting a validation study for a new instrument - the GeoTAT (Geological Time Aptitude Test). Consisting of a series of open puzzles, the GeoTAT tested the subjects' ability to reconstruct and represent the transformation in time of a series of geological structures. Montagnero (1992, 1996) terms this ability diachronic thinking. This instrument was distributed to a population of 285 junior and senior high school students with no background in geology, as well as 58 high school students majoring in geology. A comparison of the high school (grades 11-12) geology and non-geology majors indicated that the former group held a significant advantage over the latter in solving problems involving diachronic thinking. This relationship was especially strengthened by the second year of geological study (grade 12), with the key factor in this improvement being exposure to fieldwork. Fieldwork both improved the subjects' ability in understanding the 3-D factors influencing temporal organization, as well as providing them with experience in learning about the types of evidence that are critical in reconstructing a transformational sequence.

  17. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  18. `Geologic time series' of earth surface deformation

    NASA Astrophysics Data System (ADS)

    Friedrich, A. M.

    2004-12-01

    The debate of whether the earth has evolved gradually or by catastrophic change has dominated the geological sciences for many centuries. On a human timescale, the earth appears to be changing slowly except for a few sudden events (singularities) such as earthquakes, floods, or landslides. While these singularities dramatically affect the loss of life or the destruction of habitat locally, they have little effect on the global population growth rate or evolution of the earth's surface. It is also unclear to what degree such events leave their traces in the geologic record. Yet, the earth's surface is changing! For example, rocks that equilibrated at depths of > 30 km below the surface are exposed at high elevations in mountains belts indicating vertical motion (uplift) of tens of kilometers; and rocks that acquired a signature of the earth's magnetic field are found up to hundreds of kilometers from their origin indicating significant horizontal transport along great faults. Whether such long-term motion occurs at the rate indicated by the recurrence interval of singular events, or whether singularities also operate at a higher-order scale ("mega-singularities") are open questions. Attempts to address these questions require time series significantly longer than several recurrence intervals of singularities. For example, for surface rupturing earthquakes (Magnitude > 7) with recurrence intervals ranging from tens to tens of thousands of years, observation periods on the order of thousands of years to a million years would be needed. However, few if any of the presently available measurement methods provide both the necessary resolution and "recording duration." While paleoseismic methods have the appropriate spatial and temporal resolution, data collection along most faults has been limited to the last one or two earthquakes. Geologic and geomorphic measurements may record long-term changes in fault slip, but only provide rates averaged over many recurrence

  19. Impact cratering through geologic time

    USGS Publications Warehouse

    Shoemaker, E.M.; Shoemaker, C.S.

    1998-01-01

    New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.

  20. Geologic time: The age of the Earth

    USGS Publications Warehouse

    Newman, William L.

    1977-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists and believed by some to reach back to the birth of the Solar System, is difficult if not impossible to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and man's centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  1. Once in a Million Years: Teaching Geologic Time

    ERIC Educational Resources Information Center

    Lewis, Susan E.; Lampe, Kristen A.; Lloyd, Andrew J.

    2005-01-01

    The authors advocate that students frequently lack fundamental numerical literacy on the order of millions or billions, and that this comprehension is critical to grasping key evolutionary concepts related to the geologic time scale, the origin and diversification of life on earth, and other concepts such as the national debt, human population…

  2. Heterogeneity and Scaling in Geologic Media

    SciTech Connect

    Gregory N. Boitnott; Gilles Y. Bussod; Paul N. Hagin; Stephen R. Brown

    2005-04-18

    The accurate characterization and remediation of contaminated subsurface environments requires the detailed knowledge of subsurface structures and flow paths. Enormous resources are invested in scoping and characterizing sites using core sampling, 3-D geophysical surveys, well tests, etc.... Unfortunately, much of the information acquired is lost to compromises and simplifications made in constructing numerical grids for the simulators used to predict flow and transport from the contaminated area to the accessible environment. In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. In the interest of computational efficiency, recognized heterogeneities are simplified, averaged out, or entirely ignored in spite of recent studies that recognize that: (1) Structural and lithologic heterogeneities exist on all scales in rocks. (2) Small heterogeneities influence, and can control the physical and chemical properties of rocks. In this work we propose a physically based approach for the description and treatment of heterogeneities, that highlights the use of laboratory equipment designed to measure the effect on physical properties of fine scale heterogeneities observed in rocks and soils. We then discuss the development of an integration methodology that uses these measurements to develop and upscale flow and transport models. Predictive simulations are 'calibrated' to the measured heterogeneity data, and subsequently upscaled in a way that is consistent with the transport physics and the efficient use of environmental geophysics. This methodology provides a more accurate interpretation and representation of the subsurface for both environmental engineering and remediation. We show through examples, (i) the important influence of even subtle heterogeneity in the interpreting of geophysical data, and (ii) how physically based upscaling can lead

  3. A Novel Intermediate Complexity box Model (ICBM) for Efficiently Simulating Marine C,N,P,O,S Biogeochemistry Over Geologic Time Scales: Applications for OAE Research

    NASA Astrophysics Data System (ADS)

    Romaniello, S. J.; Derry, L. A.

    2006-12-01

    Global marine redox conditions and marine nutrient status are tightly coupled on geologic timescales. Hypotheses that attempt to explain the occurrence of OAEs and/or the widespread deposition of organic-rich sediments must be dynamically plausible when viewed from the perspective of each of the major biological elements—C,N,P,O, and S. We present a new intermediate complexity box model (ICBM) capable of efficiently examining the coupled interactions of these cycles for a wide range of paleooceanographic hypotheses. Our ICBM fills a unique niche as a compromise between simple box models and more complicated EMICs and OGCMs. For computational speed, we employ a simple circulation model designed to avoid the pitfalls of early 2-3 box ocean models. In exchange, we represent the coupled major element cycles in considerable detail. This enables the biogeochemical submodel to simulate biological and chemical processes over a wide range of redox conditions, while providing efficient integration (1 My/hr). By prescribing simple representations of modern circulation and mixing, we are able to generate characteristic pelagic nutrient profiles and budgets for both the Global Ocean and the Black Sea, without changing the underlying biogeochemical model. We will present results from the simulation of several common explanations for OAEs, and discuss numerical estimates of the sensitivity and feedbacks in these hypothetical systems. Special emphasis will be placed on the interactions between global primary production, dissolved oxygen, nitrogen fixation, and anammox /denitrification.

  4. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models. PMID:22232768

  5. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  6. Geological Time on Display in Arabia Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This scene from the dust covered plains of eastern Arabia Terra portrays a range of geological time. Three craters at the center of the image capture some of this range. Two have the classic bowl-shape of small, relatively recent craters while the one just to the north has seen much more history. Its rim has been scoured away by erosion and its floor has been filled in by material likely of a sedimentary nature. The channels that wind through the scene may be the oldest features present while the relatively dark streaks scattered about could have been produced in the past few years or even months as winds remove a layer of dust to reveal darker material below.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Geological Interpretation of PSInSAR Data at Regional Scale

    PubMed Central

    Meisina, Claudia; Zucca, Francesco; Notti, Davide; Colombo, Alessio; Cucchi, Anselmo; Savio, Giuliano; Giannico, Chiara; Bianchi, Marco

    2008-01-01

    Results of a PSInSAR™ project carried out by the Regional Agency for Environmental Protection (ARPA) in Piemonte Region (Northern Italy) are presented and discussed. A methodology is proposed for the interpretation of the PSInSAR™ data at the regional scale, easy to use by the public administrations and by civil protection authorities. Potential and limitations of the PSInSAR™ technique for ground movement detection on a regional scale and monitoring are then estimated in relationship with different geological processes and various geological environments.

  8. Interpretation of time domain electromagnetic soundings near geological contacts

    SciTech Connect

    Wilt, M.J.

    1991-12-01

    Lateral changes in geology pose a serious problem in data interpretation for any surface geophysical method. Although many geophysical techniques are designed to probe vertically, the source signal invariably spreads laterally, so any lateral variations in geology will affect the measurements and interpretation. This problem is particularly acute for controlled source electromagnetic soundings because only a few techniques are available to interpret the data if lateral effects are present. In this thesis we examine the effects of geological contacts for the time domain electromagnetic sounding method (TDEM). Using two simple two-dimensional models, the truncated thin-sheet and the quarter-space, we examine the system response for several commonly used TDEM sounding configurations. For each system we determine the sensitivity to the contact, establish how to the contact anomaly may be distinguished from other anomalies and, when feasible, develop methods for interpreting the contact geometry and for stripping the contact anomaly from the observed data. Since no numerical models were available when this work was started, data were collected using scale models with a system designed at the University of California at Berkeley. The models were assembled within a table-top modeling tank from sheets or blocks of metal using air or mercury as a host medium. Data were collected with a computer-controlled acquisition system.

  9. Scaling in geology: landforms and earthquakes.

    PubMed Central

    Turcotte, D L

    1995-01-01

    Landforms and earthquakes appear to be extremely complex; yet, there is order in the complexity. Both satisfy fractal statistics in a variety of ways. A basic question is whether the fractal behavior is due to scale invariance or is the signature of a broadly applicable class of physical processes. Both landscape evolution and regional seismicity appear to be examples of self-organized critical phenomena. A variety of statistical models have been proposed to model landforms, including diffusion-limited aggregation, self-avoiding percolation, and cellular automata. Many authors have studied the behavior of multiple slider-block models, both in terms of the rupture of a fault to generate an earthquake and in terms of the interactions between faults associated with regional seismicity. The slider-block models exhibit a remarkably rich spectrum of behavior; two slider blocks can exhibit low-order chaotic behavior. Large numbers of slider blocks clearly exhibit self-organized critical behavior. Images Fig. 6 PMID:11607562

  10. Geological Time, Biological Events and the Learning Transfer Problem

    ERIC Educational Resources Information Center

    Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely

    2014-01-01

    Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…

  11. Will Somebody do the Dishes? Weathering Analogies, Geologic Processes and Geologic Time

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Wuotila, S.; Giuliani, M.

    2006-12-01

    , such as Mt. Rainier or the Grand Canyon. In the end, students completing this project gain an understanding of how geologic processes work, the time scales required, the differences between analogies and the real thing, and arguably the most important aspect, a best-practices approach to doing the dishes.

  12. Cognitive Factors Affecting Student Understanding of Geologic Time.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Presents a model that describes how students reconstruct geological transformations over time. Defines the critical factors influencing reconstructive thinking: (1) the transformation scheme, which influences the other diachronic schemes; (2) knowledge of geological processes; and (3) extracognitive factors. (Author/KHR)

  13. South Atlantic Spreading Velocities and Time Scales

    NASA Astrophysics Data System (ADS)

    Clark, S. R.; Smethurst, M. A.; Bianchi, M. C.

    2013-12-01

    Plate reconstructions based on hierarchical spherical rotations have been around for many years. For the breakup of Pangea and Gondwana, these reconstructions are based on two major sources: magnetic isochrons and geological evidence for the onset of rifting and the tightness of the fit between continents. These reconstructions imply spreading velocities and it is the changes in velocities that can be used to probe questions of the forces moving plates around. In order to calculate the velocities correctly though, the importance of the choice of geologic time scale is often ignored. In this talk, we focus on the South Atlantic and calculate the spreading velocity errors implied by the choice of time scale for three major epochs: the Cenozoic and Late Mesozoic, the Cretaceous Quiet Zone and the Late Cretaceous to the Early Jurassic. In addition, we report the spreading velocities implied through these phases by various available magnetic isochron-derived reconstructions and the geological fits for South America and Africa used by large scale global reconstruction as well as in recent papers. Finally, we will highlight the implications for the choice of the mantle reference frame on African plate velocities.

  14. Time Scales: Terrestrial

    NASA Astrophysics Data System (ADS)

    Petit, G.; Murdin, P.

    2000-11-01

    Terrestrial time is at present derived from atomic clocks. The SI second, the unit of time of the international system of units, has been defined since 1967 in terms of a hyperfine transition of the cesium atom and the best primary frequency standards now realize it with a relative uncertainty of a few parts in 1015, which makes it the most accurately measurable physical quantity. INTERNATIONAL A...

  15. Multi-scale Geological Outcrop Visualisation: Using Gigapan and Photosynth in Fieldwork-related Geology Teaching

    NASA Astrophysics Data System (ADS)

    Stimpson, Ian; Gertisser, Ralf; Montenari, Michael; O'Driscoll, Brian

    2010-05-01

    An increasing proportion of geology (and other fieldwork-related discipline) students are mobility impaired. This is partially due to the widening access agenda and the acceptance of increased numbers of students with severe medical disabilities. In the UK, the expectation of "The Special Educational Needs and Disabilities Act (2001)" (SENDA) and "The Higher Education Quality Assurance Agency" (QAA) is that institutions should, wherever possible, provide alternative experiences where comparable opportunities are available which satisfy the learning outcomes. In order to provide this alternative experience, the ways in which students observe and learn from geology in the field need to be resembled closely by, for example, viewing outcrops at different scales and from different perspectives. Whilst a series of still images at different distances could be taken, students need to be able to decide where to look in detail and 'move around' the outcrop. The Gigapan project is a website and supporting software that allows high-resolution megapixel photographic images to be combined to make gigapixel panoramas which can then be explored at many scales by zooming and panning. Photosynth is a similar project where a number of different digital photographs are combined into a 3D model in which the user can move around. Here, we show examples of both projects, which have been successfully implemented in geology teaching related to a residential undergraduate field course to classic geological areas in Pembrokeshire, South Wales. In addition to providing an alternative learning experience for mobility-impaired students on the fieldtrip, these resources could also be used for non-impaired students where circumstances such as bad weather prevents the whole cohort from visiting a key exposure on a field course. They would also allow a 'virtual' visit of exposures that are inaccessible and may be a useful learning tool for preparing students for a forthcoming field course.

  16. Understanding Evolutionary Change within the Framework of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff

    2007-01-01

    This paper focuses on a learning strategy designed to overcome students' difficulty in understanding evolutionary change within the framework of geological time. Incorporated into the learning program "From Dinosaurs to Darwin: Evolution from the Perspective of Time," this strategy consists of four scaffolded investigations in which students…

  17. Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot

    USGS Publications Warehouse

    Wells, Ray; Bukry, David; Friedman, Richard; Pyle, Douglas; Duncan, Robert; Haeussler, Peter; Wooden, Joe

    2014-01-01

    Siletzia is a basaltic Paleocene and Eocene large igneous province in coastal Oregon, Washington, and southern Vancouver Island that was accreted to North America in the early Eocene. New U-Pb magmatic, detrital zircon, and 40Ar/39Ar ages constrained by detailed field mapping, global nannoplankton zones, and magnetic polarities allow correlation of the volcanics with the 2012 geologic time scale. The data show that Siletzia was rapidly erupted 56–49 Ma, during the Chron 25–22 plate reorganization in the northeast Pacific basin. Accretion was completed between 51 and 49 Ma in Oregon, based on CP11 (CP—Coccolith Paleogene zone) coccoliths in strata overlying onlapping continental sediments. Magmatism continued in the northern Oregon Coast Range until ca. 46 Ma with the emplacement of a regional sill complex during or shortly after accretion. Isotopic signatures similar to early Columbia River basalts, the great crustal thickness of Siletzia in Oregon, rapid eruption, and timing of accretion are consistent with offshore formation as an oceanic plateau. Approximately 8 m.y. after accretion, margin parallel extension of the forearc, emplacement of regional dike swarms, and renewed magmatism of the Tillamook episode peaked at 41.6 Ma (CP zone 14a; Chron 19r). We examine the origin of Siletzia and consider the possible role of a long-lived Yellowstone hotspot using the reconstruction in GPlates, an open source plate model. In most hotspot reference frames, the Yellowstone hotspot (YHS) is on or near an inferred northeast-striking Kula-Farallon and/or Resurrection-Farallon ridge between 60 and 50 Ma. In this configuration, the YHS could have provided a 56–49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed contemporaneously on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time

  18. Experimental and geological approaches to elucidate chemical change in sporopollenin over geological time

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley; Lomax, Barry; Jardine, Phillip

    2016-04-01

    Sporopollenin is the primary biopolymer comprising the walls of sporomorphs (pollen and spores), both in extant material and found within the fossil record. Maturation processes associated with sedimentation and burial over geological timescales have long been considered to dramatically alter the chemical nature of organic material, most notably via oxidation. Here we present experimental data derived from simulated maturation, analyses of Carboniferous fossil material, and modern-day material. Our data demonstrate the core structure of sporopollenin undergoes only minor chemical adjustments at lower grades of maturation, with the over-riding chemical signature remaining identifiable as that of sporopollenin, showing strong resemblance to modern material. This modern signature can, in specific cases be preserved in the geological record, demonstrated by the near-pristine chemical composition of megaspores preserved in cave deposits of Pennsylvanian age (Carboniferous, c. 310 Ma). Conversely, the labile component associated with sporopollenin is found to readily defunctionalise and repolymerise to generate a new polyalkyl macromolecule in situ. The labile component is shown to be held in position via ester linkages; a common chemical feature observed in extant sporopollenin. This combined experimental and geological investigation provides insights into i) the preservation of chemical signatures within the fossil record, ii) considerations for sample preparation when undertaking chemical analysis of fossil sporomorphs, and iii) the long-term evolutionary stasis of sporopollenin, spanning geological time.

  19. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  20. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high

  1. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  2. Predation through geological time: evidence from gastropod shell repair.

    PubMed

    Vermeij, G J; Schindel, D E; Zipser, E

    1981-11-27

    Warm-water marine gastropods from soft-bottom habitats show an increase in the incidence of breakage-resistant shell characteristics over geological time. The hypothesis that breakage became a more important component of selection in the middle of the Mesozoic Era is supported by the finding that frequencies of breakage-induced shell repair increased from the Pennsylvanian and Triassic periods to the Cretaceous, Miocene, and Recent. PMID:17808668

  3. Linking subsurface temperature and hillslope processes through geologic time

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine; Anderson, Robert

    2015-04-01

    Many periglacial hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through time over many scales up to climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape over the geologic timescales on which such landscapes evolve, we explore the effects of slope, aspect, latitude, atmosphere, and time before present on the expected energy balance at the surface of the earth and the resulting subsurface temperature field. We begin by calculating top-of-atmosphere insolation at any time in the Quaternary, honoring the variations in orbit over Milankovitch timescales. We then incorporate spatial and temporal variations in incoming short-wave radiation on sub-daily timescales due to elevation, latitude, aspect, and shading. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. We then solve for the subsurface temperature field using a numerical model that acknowledges depth-varying material properties, water content, and phase change. With these tools we target variations in regolith production and motion over the long timescales on which periglacial hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including frost heave and creep. Our intention is not to parameterize all operative processes, but to include sufficient

  4. Kilometer-scale Roughness of Geological Units on Mars: Initial Results from MOLA Data

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    1999-03-01

    Scale dependence of the median slope is studied for a number of geological units. Similarity of km-scale roughness of Vastitas Borealis Formation subunits and the circumpolar mantling deposits suggests similarity of their origin.

  5. A Laboratory Study of Heterogeneity and Scaling in Geologic Media

    NASA Astrophysics Data System (ADS)

    Brown, S.; Boitnott, G.; Bussod, G.; Hagan, P.

    2004-05-01

    In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. We are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been characterizing the heterogeneity of a bench-size Berea sandstone block. Berea Sandstone has long been regarded as a laboratory standard in rock properties studies, owing to its uniformity and ``typical'' physical properties. We find

  6. Time scales in cognitive neuroscience

    PubMed Central

    Papo, David

    2013-01-01

    Cognitive neuroscience boils down to describing the ways in which cognitive function results from brain activity. In turn, brain activity shows complex fluctuations, with structure at many spatio-temporal scales. Exactly how cognitive function inherits the physical dimensions of neural activity, though, is highly non-trivial, and so are generally the corresponding dimensions of cognitive phenomena. As for any physical phenomenon, when studying cognitive function, the first conceptual step should be that of establishing its dimensions. Here, we provide a systematic presentation of the temporal aspects of task-related brain activity, from the smallest scale of the brain imaging technique's resolution, to the observation time of a given experiment, through the characteristic time scales of the process under study. We first review some standard assumptions on the temporal scales of cognitive function. In spite of their general use, these assumptions hold true to a high degree of approximation for many cognitive (viz. fast perceptual) processes, but have their limitations for other ones (e.g., thinking or reasoning). We define in a rigorous way the temporal quantifiers of cognition at all scales, and illustrate how they qualitatively vary as a function of the properties of the cognitive process under study. We propose that each phenomenon should be approached with its own set of theoretical, methodological and analytical tools. In particular, we show that when treating cognitive processes such as thinking or reasoning, complex properties of ongoing brain activity, which can be drastically simplified when considering fast (e.g., perceptual) processes, start playing a major role, and not only characterize the temporal properties of task-related brain activity, but also determine the conditions for proper observation of the phenomena. Finally, some implications on the design of experiments, data analyses, and the choice of recording parameters are discussed. PMID:23626578

  7. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes. PMID:27494277

  8. Testing the hydrologic utility of geologic frameworks for extrapolating hydraulic properties across large scales

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Halford, K. J.; Sweetkind, D. S.; Fenelon, J.

    2014-12-01

    The utility of geologic frameworks for extrapolating hydraulic conductivities to length scales that are commensurate with hydraulic data has been assessed at the Nevada National Security Site in highly-faulted volcanic rocks. Observed drawdowns from eight, large-scale, aquifer tests on Pahute Mesa provided the necessary constraints to test assumed relations between hydraulic conductivity and interpretations of the geology. The investigated volume of rock encompassed about 40 cubic miles where drawdowns were detected more than 2 mi from pumping wells and traversed major fault structures. Five sets of hydraulic conductivities at about 500 pilot points were estimated by simultaneously interpreting all aquifer tests with a different geologic framework for each set. Each geologic framework was incorporated as prior information that assumed homogeneous hydraulic conductivities within each geologic unit. Complexity of the geologic frameworks ranged from an undifferentiated mass of rock with a single unit to 14 unique geologic units. Analysis of the model calibrations showed that a maximum of four geologic units could be differentiated where each was hydraulically unique as defined by the mean and standard deviation of log-hydraulic conductivity. Consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation were evaluated qualitatively with maps of transmissivity. Distributions of transmissivity were similar within the investigated extents regardless of geologic framework except for a transmissive streak along a fault in the Fault-Structure framework. Extrapolation was affected by underlying geologic frameworks where the variability of transmissivity increased as the number of units increased.

  9. Approaches for the accurate definition of geological time boundaries

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  10. Students' Understanding of Large Numbers as a Key Factor in Their Understanding of Geologic Time

    ERIC Educational Resources Information Center

    Cheek, Kim A.

    2012-01-01

    An understanding of geologic time is comprised of 2 facets. Events in Earth's history can be placed in relative and absolute temporal succession on a vast timescale. Rates of geologic processes vary widely, and some occur over time periods well outside human experience. Several factors likely contribute to an understanding of geologic time, one of…

  11. Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale

    USGS Publications Warehouse

    Nykanen, V.; Raines, G.L.

    2006-01-01

    A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.

  12. Crustal-scale geological and thermal models of the Beaufort-Mackenzie Basin, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Scheck-Wenderoth, Magdalena; Kröger, Karsten; Lewerenz, Björn

    2010-05-01

    The Beaufort-Mackenzie Basin is a petroliferous province in northwest Arctic Canada and one of the best-known segments of the Arctic Ocean margin due to decades of exploration. Our study is part of the programme MOM (Methane On the Move), which aims to quantify the methane contribution from natural petroleum systems to the atmosphere over geological times. Models reflecting the potential of a sedimentary basin to release methane require well-assessed boundary conditions such as the crustal structure and large-scale temperature variation. We focus on the crustal-scale thermal field of the Beaufort-Mackenzie Basin. This Basin has formed on a post-rift, continental margin which, during the Late Cretaceous and Tertiary, developed into the foreland of the North American Cordilleran foldbelt providing space for the accumulation of up to 16 km of foreland deposits. We present a 3D geological model which integrates the present topography, depth maps of Upper Cretaceous and Tertiary horizons (Kroeger et al., 2008, 2009), tops of formations derived from interpreted 2D reflection seismic lines and 284 boreholes (released by the National Energy Board of Canada), and the sequence stratigraphic framework established by previous studies (e.g. Dixon et al., 1996). To determine the position and geometry of the crust-mantle boundary, an isostatic calculation (Airýs model) is applied to the geological model. We present different crustal-scale models combining isostatic modelling, published deep reflection and refraction seismic lines (e.g. Stephenson et al., 1994; O'Leary et al., 1995), and calculations of the 3D conductive thermal field. References: Dixon, J., 1996. Geological Atlas of the Beaufort-Mackenzie Area, Geological Survey of Canada Miscellaneous Report, 59, Ottawa, 173 pp. Kroeger, K.F., Ondrak, R., di Primio, R. and Horsfield, B., 2008. A three-dimensional insight into the Mackenzie Basin (Canada): Implications for the thermal history and hydrocarbon generation potential

  13. Geology

    NASA Technical Reports Server (NTRS)

    Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.

    1975-01-01

    Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.

  14. Stellar Evolution and its Relations to Geological Time

    NASA Astrophysics Data System (ADS)

    Croll, James

    2012-05-01

    Part I. The Impact Theory of Stellar Evolution: Consideration of the facts which support the theory, and of the light which the theory appears to cast upon the facts; 1. Probable origin of meteorites; 2. Motion of the stars, how of such different velocities, and always in straight lines; 3. Motion of the stars not due to their mutual attractions; 4. Probable origin of comets; 5. Nebulae; 6. Binary systems; 7. Sudden outbursts of stars; 8. Star clusters; 9. Age of the sun's heat - a crucial test; Part II. Evidence in Support of the Theory from the Age of the Sun's Heat: Testimony of geology and biology as to the age of the sun's heat; Testimony of geology - method employed; The average rate of denudation in the past probably not much greater than at the present; How the method has been applied; Method as applied by Professor Haughton; Method as applied by Mr Alfred R. Wallace; Method as applied directly; Evidence from 'faults'; Time required to effect the foregoing amount of denudation; Age of the earth as determined by the date of the glacial epochs; Testimony of biology; Part III. Evidence in Support of the Theory from the Pre-nebular Condition of the Universe: Professor A. Winchell on the pre-nebular condition of matter; Mr Charles Morris on the pre-nebular condition of matter; Sir William R. Grove on the pre-nebular condition of matter; Evolution of the chemical elements, and its relations to stellar evolution; Sir Benjamin Brodie on the pre-nebular condition of matter; Dr T. Sterry Hunt on the pre-nebular condition of matter; Professor Oliver Lodge on the pre-nebular condition of matter; Mr. William Crookes on the pre-nebular condition of matter; Professor F. W. Clarke on the pre-nebular condition of matter; Dr G. Johnstone Stoney on the pre-nebular condition of matter; The impact theory in relation to the foregoing theories of the pre-nebular condition of matter; Index.

  15. Stability of Rasch Scales over Time

    ERIC Educational Resources Information Center

    Taylor, Catherine S.; Lee, Yoonsun

    2010-01-01

    Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…

  16. Biotic survival in the cryobiosphere on geological scale: implication for astro/terrestrial biogeoscience

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D.

    2003-04-01

    In current opinion the most fundamental aspect of any environment, the temperature regime, acts as a regulator of all of the physical-chemical reactions and forms the basis of all biological processes. Now hard data indicate the biotic survival over geological periods from subzero temperatures (down to -27oC in permafrost and to -50oC in ice) to positive one in amber and halite. All these very different environments have, nevertheless, common features: complete isolation, stability and waterproof. In such unique physical-chemical complexes, the dehydration of macromolecules and the reorganization of membrane components apparently lead to a considerable decrease or stop of metabolic activity independently of temperature. This allowed the prolonged survival of ancient microbial lineage that realize unknown possibilities of physiological and biochemical adaptation incomparably longer than any other known habitat. The ability of microorganisms to survive on geological scale within the broad limits of natural systems forces us to redefine the spatial and temporal limits of the terrestrial and extraterrestrial biospheres and suggested that universal mechanisms of such adaptation might operate for millions of years. Among new scientific directions formed on this base, the most general is the fundamental question: how long the life might be preserved and what mechanisms could ensure survival? Because the length of lifetime cannot be reproduced, this highlights the natural storages that make possible the observation of the results of biotic survival on geological scale. Of special interest is the interaction of knowledge to understanding of the limits of the deep cold biosphere as a depository of ancient active biosignatures (biogases, biominerals, pigments, lipids, enzymes, proteins, RNA/DNA fragments) and viable cells. The last are the only known a huge mass of organisms that have retained viability over geological periods and upon thawing, renew physiological activity

  17. Scale determinants of fiscal investment in geological exploration: evidence from China.

    PubMed

    Lu, Linna; Lei, Yalin

    2013-01-01

    With the continued growth in demand for mineral resources and China's efforts in increasing investment in geological prospecting, fiscal investment in geological exploration becomes a research hotspot. This paper examines the yearly relationship among fiscal investment in geological exploration of the current term, that of the last term and prices of mining rights over the period 1999-2009. Hines and Catephores' investment acceleration model is applied to describe the scale determinants of fiscal investment in geological exploration which are value-added of mining rights, value of mining rights and fiscal investment in the last term. The results indicate that when value-added of mining rights, value of mining rights or fiscal investment in the last term moves at 1 unit, fiscal investment in the current term will move 0.381, 1.094 or 0.907 units respectively. In order to determine the scale of fiscal investment in geological exploration for the current year, the Chinese government should take fiscal investment in geological exploration for the last year and the capital stock of the previous investments into account. In practice, combination of government fiscal investment in geological exploration with its performance evaluation can create a virtuous circle of capital management mechanism. PMID:24204652

  18. A Long, Long Time Ago: Student Perceptions of Geologic Time Using a 45.6-foot-long Timeline

    NASA Astrophysics Data System (ADS)

    Gehman, J. R.; Johnson, E. A.

    2008-12-01

    In this study we investigated preconceptions of geologic time held by students in five large (50-115 students each) sections of introductory geology and Earth science courses. Students were randomly divided into groups of eleven individuals, and each group was assigned a separate timeline made from a roll of adding machine paper. Students were encouraged to work as a group to place the eleven geological or biological events where they thought they should belong on their timeline based only on their previous knowledge of geologic time. Geologic events included "Oldest Known Earth Rock" and "The Colorado River Begins to Form the Grand Canyon" while biological events included such milestones as "First Fish," "Dinosaurs go Extinct," and "First Modern Humans." Students were asked in an anonymous survey how they decided to place the events on the timeline in this initial exercise. After the eleven event cards were clipped to the timeline and marks were made to record the initial location of each event, students returned to the classroom and were provided with a scale and the correct dates for the events. Each paper timeline was 45.6 ft. long to represent the 4.56 billion years of Earth history (each one-foot-wide floor tile in the hallways outside the classroom equals 100 million years). Student then returned to their timelines and moved the event cards to the correct locations. At the end of the exercise, survey questions and the paper timelines with the markings of the original position of geologic events were collected and compiled. Analysis of the timeline data based on previous knowledge revealed that no group of students arranged all of the events in the proper sequence, although several groups misplaced only two events in relative order. Students consistently placed events further back in time than their correct locations based on absolute age dates. The survey revealed that several student groups used one "old" event such as the "First Dinosaurs Appear" or

  19. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Mónica; Vasconcelos, Crisógono; Schmid, Thomas; Dittrich, Maria; McKenzie, Judith A.; Zenobi, Renato; Rivadeneyra, Maria A.

    2008-11-01

    Microbial experiments are the only proven approach to produceexperimental dolomite under Earth's surface conditions. Althoughmicrobial metabolisms are known to induce dolomite precipitationby favoring dolomite growth kinetics, the involvement of microbesin the dolomite nucleation process is poorly understood. Inparticular, the nucleation of microbially mediated dolomiteremains a matter for investigation because the metabolic diversityinvolved in this process has not been fully explored. Hereinwe demonstrate that Halomonas meridiana and Virgibacillus marismortui,two moderately halophilic aerobic bacteria, mediate primaryprecipitation of dolomite at low temperatures (25, 35 °C).This report emphasizes the biomineralogical implications fordolomite formation at the nanometer scale. We describe nucleationof dolomite on nanoglobules in intimate association with thebacterial cell surface. A combination of both laboratory cultureexperiments and natural samples reveals that these nanoglobulestructures may be: (1) the initial step for dolomite nucleation,(2) preserved in the geologic record, and (3) used as microbialtracers through time and/or as a proxy for ancient microbialdolomite, as well as other carbonate minerals.

  20. Introduction to the time scale problem

    SciTech Connect

    Voter, A. F.

    2002-01-01

    As motivation for the symposium on extended-scale atomistic methods, I briefly discuss the time scale problem that plagues molecular dynamics simulations, some promising recent developments for circumventing the problem, and some remaining challenges.

  1. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  2. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-02-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  3. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGESBeta

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  4. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Halford, Keith; Sweetkind, Don; Fenelon, Joe

    2016-08-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity ( K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  5. The key to commercial-scale geological CO2 sequestration: Displaced fluid management

    USGS Publications Warehouse

    Surdam, R.C.; Jiao, Z.; Stauffer, P.; Miller, T.

    2011-01-01

    The Wyoming State Geological Survey has completed a thorough inventory and prioritization of all Wyoming stratigraphic units and geologic sites capable of sequestering commercial quantities of CO2 (5-15 Mt CO 2/year). This multi-year study identified the Paleozoic Tensleep/Weber Sandstone and Madison Limestone (and stratigraphic equivalent units) as the leading clastic and carbonate reservoir candidates for commercial-scale geological CO2 sequestration in Wyoming. This conclusion was based on unit thickness, overlying low permeability lithofacies, reservoir storage and continuity properties, regional distribution patterns, formation fluid chemistry characteristics, and preliminary fluid-flow modeling. This study also identified the Rock Springs Uplift in southwestern Wyoming as the most promising geological CO2 sequestration site in Wyoming and probably in any Rocky Mountain basin. The results of the WSGS CO2 geological sequestration inventory led the agency and colleagues at the UW School of Energy Resources Carbon Management Institute (CMI) to collect available geologic, petrophysical, geochemical, and geophysical data on the Rock Springs Uplift, and to build a regional 3-D geologic framework model of the Uplift. From the results of these tasks and using the FutureGen protocol, the WSGS showed that on the Rock Springs Uplift, the Weber Sandstone has sufficient pore space to sequester 18 billion tons (Gt) of CO2, and the Madison Limestone has sufficient pore space to sequester 8 Gt of CO2. ?? 2011 Published by Elsevier Ltd.

  6. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    SciTech Connect

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.

  7. Fingernail Growth and Time-Distance Rates in Geology.

    ERIC Educational Resources Information Center

    Rowland, Stephen M.

    1983-01-01

    Fingernail growth rates are easily measured over a period of a few weeks and provide opportunities for students to improve graphing skills. Fingernail growth rates are approximately the same as sea-floor spreading rates and can be used for comparing the rates of other geological processes such as tectonic uplift. (Author/JN)

  8. Review of time scales. [Universal Time-Ephemeris Time-International Atomic Time

    NASA Technical Reports Server (NTRS)

    Guinot, B.

    1974-01-01

    The basic time scales are presented: International Atomic Time, Universal Time, and Universal Time (Coordinated). These scales must be maintained in order to satisfy specific requirements. It is shown how they are obtained and made available at a very high level of precision.

  9. Kalman plus weights: a time scale algorithm

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2001-01-01

    KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.

  10. Multiple time scale methods in tokamak magnetohydrodynamics

    SciTech Connect

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  11. Time scale in quasifission reactions

    SciTech Connect

    Back, B.B.; Paul, P.; Nestler, J.

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  12. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    SciTech Connect

    Brown, Stephen R.

    2003-06-01

    Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones Stephen Brown, Gregory Boitnott, and Martin Smith New England Research In rocks and soils, the bulk geophysical and transport properties of the matrix and of fracture systems are determined by the juxtaposition of geometric features at many length scales. For sedimentary materials the length scales are: the pore scale (irregularities in grain surface roughness and cementation), the scale of grain packing faults (and the resulting correlated porosity structures), the scale dominated by sorting or winnowing due to depositional processes, and the scale of geomorphology at the time of deposition. We are studying the heterogeneity and anisotropy in geometry, permeability, and geophysical response from the pore (microscopic), laboratory (mesoscopic), and backyard field (macroscopic) scales. In turn these data are being described and synthesized for development of mathematical models. Eventually, we will perform parameter studies to explore these models in the context of transport in the vadose and saturated zones. We have developed a multi-probe physical properties scanner which allows for the mapping of geophysical properties on a slabbed sample or core. This device allows for detailed study of heterogeneity at those length scales most difficult to quantify using standard field and laboratory practices. The measurement head consists of a variety of probes designed to make local measurements of various properties, including: gas permeability, acoustic velocities (compressional and shear), complex electrical impedance (4 electrode, wide frequency coverage), and ultrasonic reflection (ultrasonic impedance and permeability). We can thus routinely generate detailed geophysical maps of a particular sample. With the exception of the acoustic velocity, we are testing and modifying these probes as necessary for use on soil samples. As a baseline study we have been

  13. Time-dependent corona models - Scaling laws

    NASA Technical Reports Server (NTRS)

    Korevaar, P.; Martens, P. C. H.

    1989-01-01

    Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.

  14. Non-parametric causal assessment in deep-time geological records

    NASA Astrophysics Data System (ADS)

    Agasøster Haaga, Kristian; Diego, David; Brendryen, Jo; Hannisdal, Bjarte

    2016-04-01

    The interplay between climate variables and the timing of their feedback mechanisms are typically investigated using fully coupled climate system models. However, as we delve deeper into the geological past, mechanistic process models become increasingly uncertain, making nonparametric approaches more attractive. Here we explore the use of two conceptually different methods for nonparametric causal assessment in palaeoenvironmental archives of the deep past: convergent cross mapping (CCM) and information transfer (IT). These methods have the potential to capture interactions in complex systems even when data are sparse and noisy, which typically characterises geological proxy records. We apply these methods to proxy time series that capture interlinked components of the Earth system at different temporal scales, and quantify both the interaction strengths and the feedback lags between the variables. Our examples include the linkage between the ecological prominence of common planktonic species to oceanographic changes over the last ~65 million years, and global interactions and teleconnections within the climate system during the last ~800,000 years.

  15. Correlations in fossil extinction and origination rates through geological time.

    PubMed Central

    Kirchner, J W; Weil, A

    2000-01-01

    Recent analyses have suggested that extinction and origination rates exhibit long-range correlations, implying that the fossil record may be controlled by self-organized criticality or other scale-free internal dynamics of the biosphere. Here we directly test for correlations in the fossil record by calculating the autocorrelation of extinction [corrected] and origination rates through time. Our results show that extinction rates are uncorrelated beyond the average duration of a stratigraphic interval. Thus, they lack the long-range correlations predicted by the self-organized criticality hypothesis. In contrast, origination rates show strong autocorrelations due to long-term trends. After detrending, origination rates generally show weak positive correlations at lags of 5-10 million years (Myr) and weak negative correlations at lags of 10-30 Myr, consistent with aperiodic oscillations around their long-term trends. We hypothesize that origination rates are more correlated than extinction rates because originations of new taxa create new ecological niches and new evolutionary pathways for reaching them, thus creating conditions that favour further diversification. PMID:10972124

  16. Correlations in fossil extinction and origination rates through geological time.

    PubMed

    Kirchner, J W; Weil, A

    2000-07-01

    Recent analyses have suggested that extinction and origination rates exhibit long-range correlations, implying that the fossil record may be controlled by self-organized criticality or other scale-free internal dynamics of the biosphere. Here we directly test for correlations in the fossil record by calculating the autocorrelation of extinction [corrected] and origination rates through time. Our results show that extinction rates are uncorrelated beyond the average duration of a stratigraphic interval. Thus, they lack the long-range correlations predicted by the self-organized criticality hypothesis. In contrast, origination rates show strong autocorrelations due to long-term trends. After detrending, origination rates generally show weak positive correlations at lags of 5-10 million years (Myr) and weak negative correlations at lags of 10-30 Myr, consistent with aperiodic oscillations around their long-term trends. We hypothesize that origination rates are more correlated than extinction rates because originations of new taxa create new ecological niches and new evolutionary pathways for reaching them, thus creating conditions that favour further diversification. PMID:10972124

  17. Modeling orbital changes on tectonic time scales

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1992-01-01

    Geologic time series indicate significant 100 ka and 400 ka pre-Pleistocene climate fluctuations, prior to the time of such fluctuations in Pleistocene ice sheets. The origin of these fluctuations must therefore depend on phenomena other than the ice sheets. In a previous set of experiments, we tested the sensitivity of an energy balance model to orbital insolation forcing, specifically focusing on the filtering effect of the Earth's geography. We found that in equatorial areas, the twice-yearly passage of the sun across the equator interacts with the precession index to generate 100 ka and 400 ka power in our modeled time series. The effect is proportional to the magnitude of land in equatorial regions. We suggest that such changes may reflect monsoonal variations in the real climate system, and the subsequent wind and weathering changes may transfer some of this signal to the marine record. A comparison with observed fluctuations of Triassic lake levels is quite favorable. A number of problems remain to be studied or clarified: (1) the EBM experiments need to be followed up by a limited number of GCM experiments; (2) the sensitivity to secular changes in orbital forcing needs to be examined; (3) the possible modifying role of sedimentary processes on geologic time series warrants considerably more study; (4) the effect of tectonic changes on Earth's rotation rate needs to be studied; and (5) astronomers need to make explicit which of their predictions are robust and geologists and astronomers have to agree on which of the predictions are most testable in the geologic record.

  18. Building 3D geological knowledge through regional scale gravity modelling for the Bowen Basin

    NASA Astrophysics Data System (ADS)

    Danis, Cara; O'Neill, Craig; Lackie, Mark

    2012-01-01

    Regional scale gravity modelling is an effective and fast way to gain geological understanding of large scale structures like the Bowen Basin. Detailed deep 3D geological knowledge has become an important component of many types of exploration and resource modelling. Current interest in the Bowen Basin for geothermal exploration highlights the need for a complete basin scale model which is compatible with thermal modelling software. The structure of the Bowen Basin is characteristic of a typical asymmetrical extensional rift basin, with up to 5km of sediment overlying the basement. By combining gravity modelling, calibrated by boreholes and seismic reflection profiles, we produce geologically reasonable 3D surfaces and structures to create a model of the Bowen Basin. This model is the final part in the completion of the 3D Sydney-Gunnedah-Bowen Basin system geological model and provides both an important framework from which detailed thermal models can be derived and a platform from which to expand with new information.

  19. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  20. Geologic Noise in Near--Surface Time--Domain Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Everett, M. E.

    2001-12-01

    Controlled--source electromagnetic induction is a geophysical technique commonly used to aid in the identification of both anthropogenic and naturally occuring features, such as unexploded ordnance or high--permeability fluid pathways, in Earth's shallow subsurface. However, electromagnetic responses are oftentimes difficult to interpret owing to the complex, multiscale heterogeneous nature of the underlying electrical conductivity structure. We show evidence here which indicates that electromagnetic responses are indeed fractal signals, reflecting a very rough distribution of electrical conductivity in the underlying Earth. Time--domain electromagnetic data collected across a section of colluvial fill in the Rio Grande Rift valley near Albuquerque, New Mexico, show that the fractal properties of the surface electromagnetic responses depend on the complexity of the causative geological structure. Similar experiments in the frequency domain suggest that the small--scale fluctuations in the electromagnetic response due to geological noise are inherently reproducible, and are not caused by random instrumental or atmospheric effects as often assumed. New approaches to modeling electromagnetic responses are required in order to take full advantage of the rich information content of near--surface electromagnetic data. This work was supported in part by the United States Department of Energy under Contract DE--AC04--94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  1. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity

  2. Time scale construction from multiple sources of information (Invited)

    NASA Astrophysics Data System (ADS)

    Malinverno, A.

    2013-12-01

    Geological age estimates are provided by diverse chronometers, such as radiometric measurements, astrochronology, and the spacing of magnetic anomalies recorded on mid-ocean ridges by seafloor spreading. These age estimates are affected by errors that can be systematic (e.g., biased radiometric dates due to imperfect assumptions) or random (e.g., imprecise recording of astronomical cycles in sedimentary records). Whereas systematic errors can be reduced by improvements in technique and calibration, uncertainties due to random errors will always be present and need to be dealt with. A Bayesian framework can be used to construct an integrated time scale that is based on several uncertain sources of information. In this framework, each piece of data and the final time scale have an associated probability distribution that describes their uncertainty. The key calculation is to determine the uncertainty in the time scale from the uncertain data that constrain it. In practice, this calculation can be performed by Monte Carlo sampling. In Markov chain Monte Carlo algorithms, the time scale is iteratively perturbed and the perturbed time scale is accepted or rejected depending on how closely it fits the data. The final result is a large ensemble of possible time scales that are consistent with all the uncertain data; while the average of this ensemble defines a 'best' time scale, the ensemble variability quantifies the time scale uncertainty. An example of this approach is the M-sequence (Late Jurassic-Early Cretaceous, ~160-120 Ma) MHTC12 geomagnetic polarity time scale (GPTS) of Malinverno et al. (2012, J. Geophys. Res., B06104, doi:10.1029/2012JB009260). Previous GPTSs were constructed by interpolating between dated marine magnetic anomalies while assuming constant or smoothly varying spreading rates. These GPTSs were typically based on magnetic lineations from one or a few selected spreading centers, and an undesirable result is that they imply larger spreading rate

  3. Evaluating Experience-Based Geologic Field Instruction: Lessons Learned from A Large-Scale Eye-Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Walders, K.; Bono, R. K.; Pelz, J.; Jacobs, R.

    2015-12-01

    A course centered on experience-based learning in field geology has been offered ten times at the University of Rochester. The centerpiece of the course is a 10-day field excursion to California featuring a broad cross-section of the geology of the state, from the San Andreas Fault to Death Valley. Here we describe results from a large-scale eye-tracking experiment aimed at understanding how experts and novices acquire visual geologic information. One ultimate goal of the project is to determine whether expert gaze patterns can be quantified to improve the instruction of beginning geology students. Another goal is to determine if aspects of the field experience can be transferred to the classroom/laboratory. Accordingly, ultra-high resolution segmented panoramic images have been collected at key sites visited during the field excursion. We have found that strict controls are needed in the field to obtain meaningful data; this often involves behavior atypical of geologists (e.g. limiting the field of view prior to data collection and placing time limits on scene viewing). Nevertheless some general conclusions can be made from a select data set. After an initial quick search, experts tend to exhibit scanning behavior that appears to support hypothesis testing. Novice fixations appear to define a scattered search pattern and/or one distracted by geologic noise in a scene. Noise sources include modern erosion features and vegetation. One way to quantify noise is through the use of saliency maps. With the caveat that our expert data set is small, our preliminary analysis suggests that experts tend to exhibit top-down behavior (indicating hypothesis driven responses) whereas novices show bottom-up gaze patterns, influenced by more salient features in a scene. We will present examples and discuss how these observations might be used to improve instruction.

  4. How Old? Tested and Trouble-Free Ways to Convey Geologic Time

    ERIC Educational Resources Information Center

    Clary, Renee

    2009-01-01

    Geologic time, or the time frame of our planet's history, is several orders of magnitude greater than general human understanding of "time." When students hear that our planet has a 4.6-billion-year history, they do not necessarily comprehend the magnitude of deep time, the huge expanse of time that has passed from the origin of Earth through the…

  5. Geological dates and molecular rates: fish DNA sheds light on time dependency.

    PubMed

    Burridge, Christopher P; Craw, Dave; Fletcher, David; Waters, Jonathan M

    2008-04-01

    Knowledge of DNA evolution is central to our understanding of biological history, but how fast does DNA change? Previously, pedigree and ancient DNA studies--focusing on evolution in the short term--have yielded molecular rate estimates substantially faster than those based on deeper phylogenies. It has recently been suggested that short-term, elevated molecular rates decay exponentially over 1-2 Myr to long-term, phylogenetic rates, termed "time dependency of molecular rates." This transition has potential to confound molecular inferences of demographic parameters and dating of many important evolutionary events. Here, we employ a novel approach--geologically dated changes in river drainages and isolation of fish populations--to document rates of mitochondrial DNA change over a range of temporal scales. This method utilizes precise spatiotemporal disruptions of linear freshwater systems and hence avoids many of the limitations associated with typical DNA calibration methods involving fossil data or island formation. Studies of freshwater-limited fishes across the South Island of New Zealand have revealed that genetic relationships reflect past, rather than present, drainage connections. Here, we use this link between drainage geology and genetics to calibrate rates of molecular evolution across nine events ranging in age from 0.007 Myr (Holocene) to 5.0 Myr (Pliocene). Molecular rates of change in galaxiid fishes from calibration points younger than 200 kyr were faster than those based on older calibration points. This study provides conclusive evidence of time dependency in molecular rates as it is based on a robust calibration system that was applied to closely related taxa, and analyzed using a consistent and rigorous methodology. The time dependency observed here appears short-lived relative to previous suggestions (1-2 Myr), which has bearing on the accuracy of molecular inferences drawn from processes operating within the Quaternary and mechanisms invoked to

  6. Observing Reality on Different Time Scales

    NASA Astrophysics Data System (ADS)

    Alyushin, Alexey

    2005-10-01

    In the first part of the paper, I examine cases of acceleration of perception and cognition and provide my explanation of the mechanism of the effect. The explanation rests on the conception of neuronal temporal frames, or windows of simultaneity. Frames have different standard durations and yield to stretching and compressing. I suggest it to be the cause of the effect, as well as the ground for differences in perceptive time scales of living beings. In the second part, I apply the conception of temporal frames to model observation in the extended time scales that reach far beyond the temporal perceptive niche of individual living beings. Duration of a frame is taken as the basic parameter setting a particular time scale. By substituting a different frame duration, we set a hypothetical time scale and emulate observing reality in a wider or a narrower angle of embracing events in time. I discuss the status of observer in its relation to objective reality, and examine how reality does change its appearance when observed in different time scales.

  7. Time scales involved in emergent market coherence

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Drożdż, S.; Speth, J.

    2004-06-01

    In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.

  8. The Laplace transform on time scales revisited

    NASA Astrophysics Data System (ADS)

    Davis, John M.; Gravagne, Ian A.; Jackson, Billy J.; Marks, Robert J., II; Ramos, Alice A.

    2007-08-01

    In this work, we reexamine the time scale Laplace transform as defined by Bohner and Peterson [M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001; M. Bohner, A. Peterson, Laplace transform and Z-transform: Unification and extension, Methods Appl. Anal. 9 (1) (2002) 155-162]. In particular, we give conditions on the class of functions which have a transform, develop an inversion formula for the transform, and further, we provide a convolution for the transform. The notion of convolution leads to considering its algebraic structure--in particular the existence of an identity element--motivating the development of the Dirac delta functional on time scales. Applications and examples of these concepts are given.

  9. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  10. Analysis of the time scales in time periodic Darcy flows

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Waluga, C.; Wohlmuth, B.; Manhart, M.

    2014-12-01

    We investigate unsteady flow in a porous medium under time - periodic (sinusoidal) pressure gradient. DNS were performed to benchmark the analytical solution of the unsteady Darcy equation with two different expressions of the time scale : one given by a consistent volume averaging of the Navier - Stokes equation [1] with a steady state closure for the flow resistance term, another given by volume averaging of the kinetic energy equation [2] with a closure for the dissipation rate . For small and medium frequencies, the analytical solutions with the time scale obtained by the energy approach compare well with the DNS results in terms of amplitude and phase lag. For large frequencies (f > 100 [Hz]) we observe a slightly smaller damping of the amplitude. This study supports the use of the unsteady form of Darcy's equation with constant coefficients to solve time - periodic Darcy flows at low and medium frequencies. Our DNS simulations, however, indicate that the time scale predicted by the VANS approach together with a steady - state closure for the flow resistance term is too small. The one obtained by the energy approach matches the DNS results well. At large frequencies, the amplitudes deviate slightly from the analytical solution of the unsteady Darcy equation. Note that at those high frequencies, the flow amplitudes remain below 1% of those of steady state flow. This result indicates that unsteady porous media flow can approximately be described by the unsteady Darcy equation with constant coefficients for a large range of frequencies, provided, the proper time scale has been found.

  11. U.S. Geological Survey Near Real-Time Dst Index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.; Friberg, P.A.; Stewart, D.C.; Lisowski, S.W.

    2011-01-01

    The operational version of the United States Geological Survey one-minute Dst index (a global geomagnetic disturbance-intensity index for scientific studies and definition of space-weather effects) uses either four- or three-station input (including Honolulu, Hawaii; San Juan, Puerto Rico; Hermanus, South Africa; and Kakioka, Japan; or Honolulu, San Juan and Guam) and a method based on the U.S. Geological Survey definitive Dst index, in which Dst is more rigorously calculated. The method uses a combination of time-domain techniques and frequency-space filtering to produce the disturbance time series at an individual observatory. The operational output is compared to the U.S. Geological Survey one-minute Dst index (definitive version) and to the Kyoto (Japan) Final Dst to show that the U.S. Geological Survey operational output matches both definitive indices well.

  12. Geologic hazard monitoring with real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Poland, M. P.; Hudnut, K. W.; Cervelli, P. F.; King, N. E.

    2009-12-01

    The USGS Earthquake and Volcano Hazards Science Centers are developing a high-rate (1-s epoch), real-time ground deformation monitoring system using data streamed from continuously recording GPS stations. We began by evaluating the ability of GPS data reduction software to recover offsets in a displacement test data set generated by offsetting a GPS antenna by measured amounts. We found that offsets as large as several meters and as small as 1 cm could be reliably resolved. Our methods and initial results were summarized in USGS Open File Report 1235 (http://pubs.usgs.gov/of/2006/1235/of2006-1235.pdf). Further evaluation of GPS software using raw data from the report and real-time GPS data were conducted after publication of the report. Based upon these results, we selected software that could produce both double difference (baseline) and single difference (point positioning) solutions. Using this software, we are now running real-time, 1-s, fixed-ambiguity, double-difference solutions for USGS deformation monitoring networks in Southern California, the San Francisco Bay Area, Long Valley, and at several Cascades volcanoes. GPS data are streamed over the Internet to processing centers in Pasadena, CA, and Vancouver, WA. Solutions are generally reliable, but we note solution gaps caused by the breakdown in the GPS data streams and intervals when baseline ambiguities are not resolved in some of the longer (>50 km) baselines. We have not yet attempted real-time point-position solutions because we lack accurate real-time satellite clock corrections. We plan to implement this technique in the future by either calculating satellite clock corrections using a network of stations or by applying corrections produced by JPL. We currently generate alarms for data gaps in the real-time GPS solutions and plan to automate displacement anomaly detection using an algorithm that removes common-mode and multi-path noise.

  13. Structure of Student Time Management Scale (STMS)

    ERIC Educational Resources Information Center

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  14. Digital Renovation of the Atlas of Mars 1:15,000,000-Scale Global Geologic Series Maps

    NASA Astrophysics Data System (ADS)

    Skinner, J. A., Jr.; Hare, T. M.; Tanaka, K. L.

    2006-03-01

    We have manually re-digitized the Viking-based 1:15M scale geologic maps using MDIM 2.1 and MOLA shaded-relief images as base images. These efforts have produced fully-registered geologic maps with structure and associated metadata.

  15. Use of geology in the interpretation of core-scale relative permeability data

    SciTech Connect

    Ringrose, P.S.; Jensen, J.L.; Sorbie, K.S.

    1996-09-01

    A number of factors, such as wettability, pore-size distribution, and core-scale heterogeneity, are known to affect the measured relative permeability in core plug samples. This paper focuses on the influence of geological structure at the laminaset scale on water-oil imbibition relative permeability curves. The endpoint positions and curve shapes vary as a function of the type of internal heterogeneity, the flow rate, and the assumptions on the pore-scale petrophysics (e.g. wettability). Interaction between the capillary forces and heterogeneity can occur at the cm-dm scale, which results in widely varying two-phase flow behavior for rocks with the same single-phase permeability. The geometry of heterogeneity as expressed in standard geological descriptions (e.g., cross-laminated, ripple-laminated, plane-laminated) can be translated into features of the expected relative permeability behavior for each rock type, thus aiding the interpretation of relative permeability data. The authors illustrate how their findings can help to interpret sets of relative permeability data from the field, using some examples from the Admire sand, El Dorado Field, Kansas.

  16. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect

    Kang, Qinjin; Lichtner, Peter C; Viswanathan, Hari S; Abdel-fattah, Amr I

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  17. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  18. Using the Geoscience Concept Inventory to Understand how Students Learn about Geologic Time

    NASA Astrophysics Data System (ADS)

    Teed, R. E.

    2009-12-01

    108 pre-service teachers completed a standardized multiple-choice test at the beginning and at the end of a ten-week introductory survey course on geology. Four of the fifteen questions dealt explicitly with geologic time. Correct student answers that the age of the Earth is known from uranium-series dating increased significantly, but only from ~0% to about 20%. However, answers that included U-series dating with other (irrelevant) sources of evidence increased from ~10% to ~70%. On the pre-test, students avoided the U-series dating in favor of incorrect, but probably more familiar, dating techniques or combinations of dating techniques. They seem to have gained familiarity with, if not an understanding of U-series dating in the class. There was no real change in students’ conceptions of what the newly-formed Earth would have looked like. Most (70% on pre-test, 65% on post-test) chose an image that looked like the modern Earth with a single continent (which they may have believed to be Pangea). Interestingly, 78% of those who chose that image on the pre-test chose it on the post-test, so they were not guessing. This is a powerful misconception and remained intact in most cases despite the work the students did in the geology class. On the other hand, most students appeared to be guessing when they answered how long Pangea took to break up. There were no significant changes in the totals for any response, but about half students changed their answers between the pre- and post-test with no significant pattern in the changes. Responses to a choice of timelines which all included the formation of the Earth, the appearances of life, dinosaurs, and humans, and the disappearance of dinosaurs, were more complex. There was an increase in the number of students who chose the correct timeline (from 20% to 42%), and a decrease in the number who chose a timeline in which all life appears at once (from 14% to 10%). In this case some misconceptions (based on incorrect answers

  19. Robust estimates of extinction time in the geological record

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. J. A.; Cooper, A.; Turney, C. S. M.; Brook, B. W.

    2012-02-01

    The rate at which a once-abundant population declines in density prior to local or global extinction can strongly influence the precision of statistical estimates of extinction time. Here we report the development of a new, robust method of inference which accounts for these potential biases and uncertainties, and test it against known simulated data and dated Pleistocene fossil remains (mammoths, horses and Neanderthals). Our method is a Gaussian-resampled, inverse-weighted McInerny et al. (GRIWM) approach which weights observations inversely according to their temporal distance from the last observation of a species' confirmed occurrence, and for dates with associated radiometric errors, is able to sample individual dates from an underlying fossilization probability distribution. We show that this leads to less biased estimates of the 'true' extinction date. In general, our method provides a flexible tool for hypothesis testing, including inferring the probability that the extinctions of pairs or groups of species overlap, and for more robustly evaluating the relative likelihood of different extinction drivers such as climate perturbation and human exploitation.

  20. Soil Hydrology Across Space And Time Scales

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Gaur, N.

    2015-12-01

    Soil moisture and hydrologic fluxes at the land surface are critical to climate feedback, hydrology, and biogeochemical cycling. Soil moisture temporal and spatial variability over catchment areas affects surface and subsurface runoff, modulates evaporation and transpiration, determines the extent of groundwater recharge and contaminant transport, and initiates or sustains feedback between the land surface and the atmosphere. At a particular point in time soil moisture content is influenced by: (1) the precipitation history, (2) the texture of the soil, which determines the water-holding capacity, (3) the slope of the land surface, which affects runoff and infiltration, and (4) the vegetation and land cover, which influences evapotranspiration and deep percolation. In other terms the partitioning of soil moisture to recharge to the groundwater, evapotranspiration to the atmosphere, and surface/subsurface runoff to the streams at different spatio-temporal scales and under different hydro-climatic conditions pose one of the greatest challenges to weather and climate prediction, water resources availability, sustainability, quality, and variability in agricultural, range and forested watersheds and hydro-climatic conditions. In this context we hypothesize that: 1) soil moisture variability is dominated by soil properties at the field scale, topographic features at the catchment/watershed scale, and vegetation characteristics and precipitation patterns at the regional scale and beyond; and 2) ensemble hydrologic fluxes (evapotranspiration, infiltration, and shallow ground water recharge) across the vadose zone at the corresponding scale can be effectively represented by one or more soil, topography, vegetation, or climate scale factors. Using ground-based and various active and passive microwave remote sensing measurements during the NASA field campaigns in the past decade we test these hypotheses. Various scaling techniques for soil moisture and soil hydrologic and

  1. A comment on the use of flushing time, residence time, and age as transport time scales

    USGS Publications Warehouse

    Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.

    2002-01-01

    Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.

  2. Broad Perspectives on Mars Landing Site Selection: Geological Factors from Centimeter to Kilometer Scales

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Golombek, M. P.

    2001-01-01

    Selection of a landing site for the '03 and later Mars surface missions represents a balance between potential science results and landing site safety. Although safety has to be the prime consideration, it is the melding together of spacecraft hazard analysis with science analysis that provides the key to understanding the nature of the surface for determining both its safety for landing and its scientific potential. Our goal here is to discuss the geological factors that go into a determination of site safety, at scales from centimeters up to kilometers, and to understand the implications for the resulting scientific return that can be expected.

  3. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  4. Deep time framework: A preliminary study of U.K. primary teachers' conceptions of geological time and perceptions of geoscience

    NASA Astrophysics Data System (ADS)

    Trend, Roger David

    2001-02-01

    As part of a continuing research program on the understanding of geological time (deep time) across society, a total of 51 in-service teachers of 7- to 11-year-old children was studied in relation to their orientations toward geoscience phenomena in general and deep time in particular. The first purpose of the research was to identify the nature of idiosyncratic conceptions of deep time: a cognitive deep time framework of pivotal geo-events. The second was to propose a curricular Deep Time Framework that may form the basis for constructivist approaches to in-service and pre-service teacher training which places deep time center stage. Three research questions were posed, addressing: (1) perceptions of geoscience phenomena and teachers' actual encounters with these in the classroom; (2) conceptions of deep time; and (3) approaches to teaching two curriculum areas (history and geology) which involve the interpretation of material evidence to reconstruct the past. Results enable the selection of 20 geoscience phenomena to be located in relation to teachers' interests and classroom encounters, those of high interest and high encounters being proposed as pivotal areas for further attention in teacher training. Results also reveal that in-service teachers conceive events in the geological past (geo-events) as having occurred in three distinct clusters: extremely ancient; moderately ancient; and less ancient. Within each category there is a strong lack of consensus on time-of-occurrence. Results suggest that primary teachers exhibit greater imagination in their teaching of history compared with geology and that aspects of deep time and past environments are not perceived as being of any great significance in the interpretation of geological specimens.

  5. Liquidity crises on different time scales

    NASA Astrophysics Data System (ADS)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  6. Multidimensional scaling of musical time estimations.

    PubMed

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence. PMID:21853763

  7. Geologic Storage at the Basin Scale: Region-Based Basin Modeling, Powder River Basin (PRB), NE Wyoming and SE Montana

    NASA Astrophysics Data System (ADS)

    Melick, J. J.; Gardner, M. H.

    2008-12-01

    Carbon capture and storage from the over 2000 power plants is estimated at 3-5 GT/yr, which requires large- scale geologic storage of greenhouse gasses in sedimentary basins. Unfortunately, determination of basin scale storage capacity is currently based on oversimplified geologic models that are difficult to validate. Simplification involves reducing the number of geologic parameters incorporated into the model, modeling with large grid cells, and treatment of subsurface reservoirs as homogeneous media. The latter problem reflects the focus of current models on fluid and/or fluid-rock interactions rather than fluid movement and migration pathways. For example, homogeneous models over emphasize fluid behavior, like the buoyancy of super-critical CO2, and hence overestimate leakage rates. Fluid mixing and fluid-rock interactions cannot be assessed with models that only investigate these reactions at a human time scale. Preliminary and conservative estimates of the total pore volume for the PRB suggest 200 GT of supercritical CO2 can be stored in this typical onshore sedimentary basin. The connected pore volume (CPV) however is not included in this estimate. Geological characterization of the CPV relates subsurface storage units to the most prolific reservoir classes (RCs). The CPV, number of well penetrations, supercritical storage area, and potential leakage pathways characterize each RC. Within each RC, a hierarchy of stratigraphic cycles is populated with stationary sedimentation regions that control rock property distributions by correlating environment of deposition (EOD) to CPV. The degree to which CPV varies between RCs depends on the geology and attendant heterogeneity retained in the fluid flow model. Region-based modeling of the PRB incorporates 28000 wells correlated across a 70,000 Km2 area, 2 km thick on average. Within this basin, five of the most productive RCs were identified from production history and placed in a fourfold stratigraphic framework

  8. Effect of geological reaction time on transformation temperature in zeolitic diagenesis

    SciTech Connect

    Sasaki, A.

    1986-01-01

    Zeolites found in the Neogene sediments in northern Japan show a vertical zonal arrangement. The zeolite zones are formed primarily by maximum temperature during burial diagenesis. The effect of geological reaction time on transformation temperature to progress in the zeolitization was studied at eight deeply drilled wells in oil-producing areas of Japan. The strata in these wells have continuously deposited under marine environments until recent time and reach geologically maximum burial depth. The geological reaction time at the upper limit of each zeolite zone was estimated from the sedimentation rate on the basis of micropaleontological datum levels and corresponds to the burial time during which the strata have subsided. The transformation temperature of zeolites was determined from the present subsurface temperature, which was obtained by the correction of bottom-hole temperature measured during a wireline log run. The transformation temperature decreases gradually with increasing geological reaction time. The transformation temperatures of silicic glass to clinoptilolite and clinoptilolite to analcime are 58 and 105/sup 0/C at 1.8 mega-annum (Ma) and 50 and 92/sup 0/C at 5 Ma. respectively. The temperature-time relation on the zeolitization in marine sediments is similar to that in thermal maturation of organic matter in sediments.

  9. Cell water dynamics on multiple time scales

    PubMed Central

    Persson, Erik; Halle, Bertil

    2008-01-01

    Water–biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the 2H spin relaxation rate in living bacteria cultured in D2O. The relaxation data, acquired in a wide magnetic field range (0.2 mT–12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that ≈85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining ≈15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 ± 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction (≈0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals. PMID:18436650

  10. Large-scale characterization of geologic formations for CO2 injection using Compressed State Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Li, J. Y.; Zhou, Q.; Birkholzer, J. T.; Kitanidis, P. K.

    2014-12-01

    Carbon dioxide (CO2) storage in deep geologic formations is gaining ground as a potential measure for climate change mitigation. Such storage projects typically operate at large scales (~km), but their performance is often governed by smaller-scale (~m) heterogeneities. The large domain sizes prohibit detailed site characterization and dense monitoring networks, leading to predictions of CO2 migration and trapping based on rough geologic models that cannot capture preferential flow. Kalman Filtering can be used to improve these prior models by assimilating available monitoring data, thereby tracking system performance and reducing prediction uncertainty. However, for large systems with fine discretization, the number of unknowns is in the order of tens of thousands or more, in which case the textbook version of the Kalman Filter has prohibitively expensive computation and storage costs. We present the Compressed State Kalman Filter (CSKF) that can be effectively used for systems with a large number of unknowns to estimate the underlying heterogeneity and to predict the state of interest (e.g., pressure and CO2 saturation). The algorithm's computational efficiency is achieved by using a low-rank approximation of the covariance matrix, as well as a Jacobian-free approach. We demonstrate the estimation and computational performance of our method in a typical CO2 storage scenario with a spatially sparse monitoring network, but with multiple datasets obtained before and during CO2 injection. Our data assimilation framework provides an efficient and practical way to characterize geological formations intended for CO2 injection and storage using monitoring data commonly collected in field applications, as well as to quantify the reduction in uncertainty brought by different types of monitoring data.

  11. A perspective on time: Loss frequencies, time scales, and lifetimes

    NASA Astrophysics Data System (ADS)

    Prather, Michael; Holmes, Christopher

    2013-04-01

    The need to describe the Earth system and its components with a quantity that has units of time is ubiquitous since the 1970s work of Bolin, Rodhe and Junge. These quantities are often used as metrics of the system to describe the duration or cumulative impact of an action, such as in global-warming and ozone-depletion potentials, as in the SPARC lifetime re-assessment. The quantity designated "lifetime" is often calculated inconsistently and/or misused when applied to the subsequent evaluations of impacts. A careful set of definitions and derivations is needed to ensure that we are reporting, publishing, and comparing the same quantities. There are many different ways to derive metrics of time, and they describe different properties of the system. Here we carefully define several of those metrics - denoted here as loss frequency, time scale, and lifetime - and demonstrate which properties of the system they describe. Three generalizable examples demonstrate (i) how the non-linear chemistry of tropospheric ozone makes simple approaches for tracking pollution in error; (ii) why the lifetime of a gas depends on the history of emissions, and (iii) when multiple reservoirs generate time scales quite separate from the traditionally defined lifetime. Proper use of the many "time" parameters in a system, however, gives a very powerful understanding of the response to anthropogenic perturbations.

  12. Deciphering Time Scale Hierarchy in Reaction Networks.

    PubMed

    Nagahata, Yutaka; Maeda, Satoshi; Teramoto, Hiroshi; Horiyama, Takashi; Taketsugu, Tetsuya; Komatsuzaki, Tamiki

    2016-03-01

    Markovian dynamics on complex reaction networks are one of the most intriguing subjects in a wide range of research fields including chemical reactions, biological physics, and ecology. To represent the global kinetics from one node (corresponding to a basin on an energy landscape) to another requires information on multiple pathways that directly or indirectly connect these two nodes through the entire network. In this paper we present a scheme to extract a hierarchical set of global transition states (TSs) over a discrete-time Markov chain derived from first-order rate equations. The TSs can naturally take into account the multiple pathways connecting any pair of nodes. We also propose a new type of disconnectivity graph (DG) to capture the hierarchical organization of different time scales of reactions that can capture changes in the network due to changes in the time scale of observation. The crux is the introduction of the minimum conductance cut (MCC) in graph clustering, corresponding to the dividing surface across the network having the "smallest" transition probability between two disjoint subnetworks (superbasins on the energy landscape) in the network. We present a new combinatorial search algorithm for finding this MCC. We apply our method to a reaction network of Claisen rearrangement of allyl vinyl ether that consists of 23 nodes and 66 links (saddles on the energy landscape) connecting them. We compare the kinetic properties of our DG to those of the transition matrix of the rate equations and show that our graph can properly reveal the hierarchical organization of time scales in a network. PMID:26641663

  13. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  14. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  15. Time sequence and time scale of intermediate mass fragment emission

    SciTech Connect

    De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Politi, G.; Wilczynski, J.

    2005-04-01

    Semiperipheral collisions in the {sup 124}Sn+{sup 64}Ni reaction at 35 MeV/nucleon were studied using the forward part of the Charged Heavy Ion Mass and Energy Resolving Array. Nearly completely determined ternary events involving projectilelike fragments (PLF), targetlike fragments (TLF), and intermediate mass fragments (IMF) were selected. A new method of studying the reaction mechanism, focusing on the analysis of the correlations between relative velocities in the IMF+PLF and IMF+TLF subsystems, is proposed. The relative velocity correlations provide information on the time sequence and time scale of the neck fragmentation processes leading to production of IMFs. It is shown that the majority of light IMFs are produced within 40-80 fm/c after the system starts to reseparate. Heavy IMFs are formed at times of about 120 fm/c or later and can be viewed as resulting from two-step (sequential) neck rupture processes.

  16. Looking Back to Move Ahead: How Students Learn Geologic Time by Predicting Future Environmental Impacts

    ERIC Educational Resources Information Center

    Zhu, Chen; Rehrey, George; Treadwell, Brooke; Johnson, Claudia C.

    2012-01-01

    This Scholarship of Teaching and Learning project discusses the effectiveness of using distance metaphor-building activities along with a case study exam to help undergraduate nonscience majors understand and apply geologic time. Using action research, we describe how a scholarly teacher integrated previously published and often-used teaching…

  17. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  18. The Treatment of Geological Time & the History of Life on Earth in High School Biology Textbooks

    ERIC Educational Resources Information Center

    Summers, Gerald; Decker, Todd; Barrow, Lloyd

    2007-01-01

    In spite of the importance of geological time in evolutionary biology, misconceptions about historical events in the history of life on Earth are common. Glenn (1990) has documented a decline from 1960 to 1989 in the amount of space devoted to the history of life in high school earth science textbooks, but we are aware of no similar study in…

  19. Large-Scale In-situ Experiments to Determine Geochemical Alterations and Microbial Activities at the Geological Repository

    NASA Astrophysics Data System (ADS)

    Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.

    2013-12-01

    The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.

  20. Geological conditions of the time of formation of impact craters on Pai-Khoi

    NASA Astrophysics Data System (ADS)

    Mashchak, M. S.

    Present-day ideas on the time of formation of the Kara and Ust-Kara astroblemes are presented, and the main features of the geological structure of Phai-Khoi (the region where these structures are located) are described. Based on an analysis of the geological conditions, a large complex of fossil fauna and diatomaceous algae, and radiological dating of tagamites and impact glasses, it is shown that the craters were formed on the Cretaceous-Paleogene boundary about 66-67 million years ago.

  1. CONSIDERATIONS FOR A REGULATORY FRAMEWORK FOR LARGE-SCALE GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE: A NORTH AMERICAN PERSPECTIVE

    EPA Science Inventory

    Large scale geologic sequestration (GS) of carbon dioxide poses a novel set of challenges for regulators. This paper focuses on the unique needs of large scale GS projects in light of the existing regulatory regimes in the United States and Canada and identifies several differen...

  2. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  3. Quantifying the imprint of geologic controls on river network topology and scaling in hydrologic response (Invited)

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, M.; Longjas, A.; Zanardo, S.; Foufoula-Georgiou, E.

    2013-12-01

    River network topology has been at the core of relating geomorphologic and hydrologic properties of landscapes, specifically in developing scaling frameworks of hydrologic fluxes. Recent studies have suggested that the topological structure of river networks might carry the signature of the underlying climatic and/or geologic controls of landscape evolution with implications for regionalization studies and network-based predictive frameworks of hydrologic response. In this study, the drainage networks of 12 sub-watersheds within the Minnesota River Basin (MRB), extracted from the National Hydrography Dataset (NHD), are analyzed in terms of statistical self-similarity in geomorphologic, topologic, and hydrologic attributes. The MRB offers a unique setting for studying fundamental processes of landscape evolution as its geologic history has left behind a still evolving landscape with propagating knickpoints, steep bluffs, strath terraces, and an impressive spatial heterogeneity in river network topology. Preliminary analysis of the MRB sub-watersheds reveals that they do not follow some of the statistical self-similarity relationships usually found in river networks such as the scaling of slopes and lengths with respect to stream order. In addition, the Tokunaga self-similarity analysis shows a wider variability of the higher-order branching parameter c ranging from 1.3 to 2.7, relative to the first-order branching parameter a, which ranges from 0.9 to 1.6. Also, as the Horton-Strahler order of the sub-watersheds increases, a different topology with more regular drainage patterns is observed with lower c values, revealing important connections between geology and network topology. We investigate the hypothesis that sub-watersheds with steeper and still actively incising channels exhibit a pronounced higher-order branching, reflected visually in highly 'feathered' networks and quantitatively in higher values of the Tokunaga parameter c. The frequency of knickpoints

  4. Progress on the development of a three-dimensional capability for simulating large-scale complex geologic processes

    SciTech Connect

    Argueello, J.G.; Stone, C.M.; Fossum, A.F.

    1998-02-01

    Significant progress has been made in developing a three-dimensional capability for predicting the mechanical response of rock over spatial and time scales of geologic interest to the Oil and Gas industry. An Advanced Computational Technology Initiative (ACTI) initiated three years ago to achieve such a computational technology breakthrough has made significant progress towards its goal by adapting and improving the unique advanced quasistatic finite element technology developed by Sandia National Laboratories to the mechanics applications important to exploration and production (E and P). This capability now gives the industry a powerful tool to help reduce risk on prospects, improve pre-project initial reserve estimates, and lower operating costs. Progress to date on this program is reported herein by presenting and discussing the enhancements and adaptations that have been made to the technology, with specific examples to illustrate their use on large E and P geomechanics problems.

  5. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2

    SciTech Connect

    Zhou, Q.; Birkholzer, J. T.

    2011-05-01

    The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

  6. Multispectral Microscopic Imager (MMI): Multispectral Imaging of Geological Materials at a Handlens Scale

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.; Nunez, J. I.; Sellar, R. G.; Gardner, P. B.; Manatt, K. S.; Dingizian, A.; Dudik, M. J.; McDonnell, G.; Le, T.; Thomas, J. A.; Chu, K.

    2011-12-01

    The Multispectral Microscopic Imager (MMI) is a prototype instrument presently under development for future astrobiological missions to Mars. The MMI is designed to be a arm-mounted rover instrument for use in characterizing the microtexture and mineralogy of materials along geological traverses [1,2,3]. Such geological information is regarded as essential for interpreting petrogenesis and geological history, and when acquired in near real-time, can support hypothesis-driven exploration and optimize science return. Correlated microtexure and mineralogy also provides essential data for selecting samples for analysis with onboard lab instruments, and for prioritizing samples for potential Earth return. The MMI design employs multispectral light-emitting diodes (LEDs) and an uncooled focal plane array to achieve the low-mass (<1kg), low-cost, and high reliability (no moving parts) required for an arm-mounted instrument on a planetary rover [2,3]. The MMI acquires multispectral, reflectance images at 62 μm/pixel, in which each image pixel is comprised of a 21-band VNIR spectrum (0.46 to 1.73 μm). This capability enables the MMI to discriminate and resolve the spatial distribution of minerals and textures at the microscale [2, 3]. By extending the spectral range into the infrared, and increasing the number of spectral bands, the MMI exceeds the capabilities of current microimagers, including the MER Microscopic Imager (MI); 4, the Phoenix mission Robotic Arm Camera (RAC; 5) and the Mars Science Laboratory's Mars Hand Lens Imager (MAHLI; 6). In this report we will review the capabilities of the MMI by highlighting recent lab and field applications, including: 1) glove box deployments in the Astromaterials lab at Johnson Space Center to analyze Apollo lunar samples; 2) GeoLab glove box deployments during the 2011 Desert RATS field trials in northern AZ to characterize analog materials collected by astronauts during simulated EVAs; 3) field deployments on Mauna Kea

  7. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  8. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  9. [Geognosy versus Geology: National Modes of Thought and Cultural Practices Concerning Space and Time in Competition].

    PubMed

    Klemun, Marianne

    2015-09-01

    Natural science investigators at the end of the eighteenth century made use of conflicting labels to position their respective preferred fields of activity in the Earth sciences. This mania for labelling marked their break with natural science and the umbrella term 'mineralogy'. In this conflict situation of specialist classifications and explanations, two terms in particular were established: geognosy and geology, which covered the very promising project of research in the areas of the 'origin of the Earth' and the 'formation of the Earth'. These and the associated research goals were subsequently accorded a dazzling career. Proceeding from the conceptual core-meaning in the formation of terms und its semantic spectrum and conceptual shifts in a time of change, my study will look at the identity and heterogeneity functions of geology and geognosy. For whereas in French and English speaking countries the term geology came to be used exclusively (geology, géologie), this was avoided in German, particularly because the term geognosy was preferred. These national differences may be explained with reference to the different cultural and national styles of science: for example the social embedding of geology in the culture of the English gentleman or the French museum culture, and the close connection of 'German' geognosy to mining. A further starting point in the analysis of the double use of both geology and geognosy in German speaking countries until 1840 is provided by the different references to temporalization and spatialization of the two terms. And we should also include the practical implications and the epistemic requirements that were bound up with the defence of geognosy in the German speaking world. PMID:26332067

  10. Earth History databases and visualization - the TimeScale Creator system

    NASA Astrophysics Data System (ADS)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  11. Time Horizon and Social Scale in Communication

    NASA Astrophysics Data System (ADS)

    Krantz, D. H.

    2010-12-01

    In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large

  12. Times Scales in Dense Granular Material

    NASA Astrophysics Data System (ADS)

    Zhang, Duan

    2005-07-01

    Forces in dense granular material are transmitted through particle contacts. The evolution of the contact stress is directly related to dynamical interaction forces between particles. Since particle contacts in a dense granular material are random, a statistical method is employed to describe and model their motions. It is found that the time scales of particle contacts determinate stress relaxation and the fluid- like or solid-like behavior of the material. Numerical simulations are performed to calculate statistical properties of particle interactions. Using results from the numerical simulations we examine the relationship between the averaged local deformation field and the macroscopic deformation field. We also examine the relationship between the averaged local interaction force and the averaged stress field in the material. Validities of the Voigt and the Reuss assumptions are examined; and extensions to these assumptions are studied. Numerical simulations show that tangential frictions between particles significantly increase the contact stress, while the direct contribution of the tangential force to the stress is small. This puzzling observation can be explained by dependency of the relaxation time on the tangential friction.

  13. Mastering the Concepts of Geologic Time: Novice Students' Understanding of the Principles of Relative Age

    NASA Astrophysics Data System (ADS)

    Speta, M.; Reid, L.

    2010-12-01

    Misconceptions can adversely affect students’ mastery of the fundamental geoscience concepts necessary for development of the knowledge base required to become a professional geoscientist. In the fall of 2009, in-class learning assessments were introduced into a large (400 student) undergraduate introductory geoscience course to help students develop expert-like problem solving skills for geologic problems. They were also designed to reveal students’ misconceptions on geoscience concepts in order to help direct the course of instruction. These assessments were based on simple, real-world scenarios that geoscientists encounter in their research. One of these assessments focused on the application of concepts of geologic time. It asked students to give the relative ages of granite, schist and shale based on a sketch of two outcrops, and to describe the reasoning behind their answer. In order to test all of the principles of relative age, the assignment had two possible solutions. A post-course analysis of student responses on these assessments was carried out using a modified constant comparative analysis method to identify common misconceptions. This analysis revealed that 61% of students failed to identify both possible solutions. Furthermore, 55% of students applied the principle of superposition to intrusive igneous and metamorphic rocks, and 18% treated the once connected outcrops as having separate geologic histories. 56% of students could not support their proposed geologic history with appropriate reasoning. These results suggest that the principles of relative geologic time that students had the greatest difficulty with were when to apply the principle of superposition and how to apply the principle of original continuity. Students also had difficulty using the principles of relative age to provide appropriate scientific reasoning for their choices.

  14. Issues of scale, location and geologic terrain related to Salt Lake City and Baltimore-Washington metropolitan areas

    USGS Publications Warehouse

    Cleaves, E.T.; Godfrey, A.E.

    2004-01-01

    Planning and development of expanding metropolitan regions require consideration of earth science issues related to issues involving scale, space (location), geologic terrain and physiographic units, and information transfer. This paper explores these matters with examples from the Salt Lake City, Utah area and Mid-Atlantic region of Baltimore-Washington that include water supply and natural hazards (earthquakes, landslides, and sinkholes.) Information transfer methods using physiographic units at national, regional, local and site scales serve to communicate relevant geologic constraint and natural resource information.

  15. Major episodes of geologic change - Correlations, time structure and possible causes

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    1993-01-01

    Published data sets of major geologic events of the past about 250 Myr (extinction events, sea-level lows, continental flood-basalt eruptions, mountain-building events, abrupt changes in sea-floor spreading, ocean-anoxic and blackshale events and the largest evaporite deposits) have been synthesized (with estimated errors). These events show evidence for a statistically significant periodic component with an underlying periodicity, formally equal to 26.6 Myr, and a recent maximum, close to the present time. The cycle may not be strictly periodic, but a periodicity of about 30 Myr is robust to probable errors in dating of the geologic events. The intervals of geologic change seem to involve jumps in sea-floor spreading associated with episodic continental rifting, volcanism, enhanced orogeny, global sea-level changes and fluctuations in climate. The period may represent a purely internal earth-pulsation, but evidence of planetesimal impacts at several extinction boundaries, and a possible underlying cycle of 28-36 Myr in crater ages, suggests that highly energetic impacts may be affecting global tectonics. A cyclic increase in the flux of planetesimals might result from the passage of the Solar System through the central plane of the Milky Way Galaxy - an event with a periodicity and mean phasing similar to that detected in the geologic changes.

  16. Large-scale geophysical and geological-prospecting earth-crust investigation using high-power electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Panchenko, V. P.

    2005-12-01

    The paper presents the concept and physical/technical prerequisites for the use of multi-megawatt electromagnetic pulses created, for instance, by autonomous MHD facilities of short-term operation (3--12 seconds), in fundamental and applied in-depth geophysical and geological research. Location of geological sites and research regions; circuits and parameters of emitting and detecting devices; unique pulse MHD facilities of 10--100 MWe capacity using solid (powder) fuel, created in Russia; conditions and methods of conducting large-scale experiments and trial methodical works, performed in the last 30 years by a cooperative group of Russian institute in various regions of Russia, Kyrghizia and Tajikistan, are described. Results of the following large-scale experiments and methodical works are presented: Oil and gas deposits' searching (Caspian depression, East Siberia); Study of electric conduction of sediments near and on the sea shelf (Kola peninsula); Electrical prospecting of ore deposits at depths of up to 10 km (Kola peninsula); Study of geo-electrical composition (section) of the earth-crust and upper mantle at the Ural (up to 40 km), and in the Baltic (up to 150 km); Forecasting of earthquakes using the effective electric resistance of earth-crust blocks up to 20 km deep (Tajikistan, Kirghizia); Seismic earth-crust "unloading", and changing the time-dependent distribution of the seismic activity under high-power electromagnetic impact; Impact on the ionosphere and spreading of ultra-low-frequency electromagnetic waves emitted by a high-power source. The possibilities and prospects of research dedicated to developing the technologies for electrical prospecting, sorting and outlining hydrocarbon deposits on the shelf, as well as to monitoring and studying the processes occurring in the earth-crust under artificial high-power electromagnetic impact in seismic regions, are discussed.

  17. First Indications of Intraplate Deformations in Central Germany from Reprocessed GNSS Time Series and Geological Data

    NASA Astrophysics Data System (ADS)

    Becker, Matthias; Leinen, Stefan; Läufer, Gwendolyn; Lehné, Rouwen

    2013-04-01

    Six years of GPS data have been reprocessed in ITRF2008 for a regional SAPOS CORS network in the federal state of Hesse with 25 stations and some anchor sites of IGS and EPN to derive accurate and consistent coordinate time series. Based on daily network solutions coordinate time series parameters like velocities, offsets in case of antenna changes and annual periodic variation have been estimated. The estimation process includes the fitting of a sophisticated stochastic model for the time series which accounts for inherent time correlation. The results are blended with geological data to verify information from geology on potential recent deformations by the geodetic analyses. Besides of some information on the reprocessing of the GNSS the results the stochastics of the derived velocity field will be discussed in detail. Special emphasis will be on the intra-plate deformation: for the horizontal component the residual velocity field after removal of a plate rotation model is presented, while for the vertical velocities the datum-induced systematic effect is removed in order to analyze the remaining vertical motion. The residual velocity field is then matched with the geology for Hesse. Correlation of both vertical and horizontal movements with major geological structures reveals good accordance. SAPOS stations with documented significant subsidence are mainly located in tertiary Graben structures such as the Lower Hessian Basin (station Kassel), the Wetterau (station Kloppenheim) or the Upper Rhine Graben (Station Darmstadt). From the geological point of view these structures are supposed to be subsiding ones. Other major geological features, i.e. the Rhenish Shield as well as the East Hessian Bunter massif are supposed to be affected by recent uplift. SAPOS stations located in these regions match the assumed movement (e.g. Weilburg, Wiesbaden, Bingen, Fulda). Furthermore SAPOS-derived horizontal movements seem to trace tectonic movements in the region, i

  18. Pore-scale imaging of geological carbon dioxide storage under in situ conditions

    NASA Astrophysics Data System (ADS)

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin J.

    2013-08-01

    While geological carbon dioxide (CO2) storage could contribute to reducing global emissions, it must be designed such that the CO2 cannot escape from the porous rock into which it is injected. An important mechanism to immobilize the CO2, preventing escape, is capillary trapping, where CO2 is stranded as disconnected pore-scale droplets (ganglia) in the rock, surrounded by water. We used X-Ray microtomography to image, at a resolution of 6.4 µm, the pore-scale arrangement and distribution of trapped CO2 clusters in a limestone. We applied high pressures and temperatures typical of a storage formation, while maintaining chemical equilibrium between the CO2, brine, and rock. Substantial amounts of CO2 were trapped, with an average saturation of 0.18. The cluster sizes obeyed a power law distribution, with an exponent of approximately -2.1, consistent with predictions from percolation theory. This work confirms that residual trapping could aid storage security in carbonate aquifers.

  19. Models of the geodynamo over geologic time and the inclination test of the GAD hypothesis

    NASA Astrophysics Data System (ADS)

    Heimpel, M. H.

    2012-12-01

    The assumption that Earth's mean magnetic field has been a geocentric axial dipole (GAD) over geologic time is fundamental to paleomagnetism and plate-tectonics. Previous models have linked inclination distributions to latitudinal heat flow variations (Bloxham, 2000). While verifying and extending those previous results, I show here that radial heat flow structure controls geomagnetic field morphology as well. The inclination test of the GAD hypothesis (Evans,1976) is used to interpret numerical dynamo models, some with latitudinally variable buoyancy flux boundary conditions and others with uniform flux boundary conditions. All of the models are chosen to be Earth-like, and at or near the polarity reversing dynamical regime. As was found in previous work, the global inclination distribution is a function of the buoyancy flux at the core-mantle boundary (CMB). However, I find here that the sign of a latitudinally quadrupolar variable flux condition is critical for dynamo stability. Enhanced polar cooling causes inclination shallowing and tends to stabilize the dynamos to reversals, while enhanced equatorial cooling destabilizes the dynamo, resulting in complex field morphology and high reversal frequency. The uniform flux models represent three convective states of the mantle and core. 1. Present era Earth - likely a typical state of the geodynamo. 2. Global convective overturn, associated with flood basalt volcanism, anomalous magnetic reversal frequency, climate change and mass extinctions. 3. Ancient Earth prior to solid inner core formation. For these uniform flux models the inclination distribution anomaly scales with the relative buoyancy flux at the CMB versus the inner core boundary. Consistent with the CALS10k model of Earth's magnetic field over the past ten millennia (Korte et al., 2011), the present era Earth-like dynamos are GAD-like, with very small time-averaged inclination anomalies. In contrast, the global overturn and ancient Earth dynamos show

  20. Time Scales, Bedforms and Bedload Transport

    NASA Astrophysics Data System (ADS)

    Dhont, B.

    2015-12-01

    Bedload transport rates in mountain streams may exhibit wide fluctuations even under constant flow conditions. A better understanding of bedload pulses is key to predict natural hazards induced by torrential activity and sediment issues in mountainous areas. Several processes such as bedforms migration, grain sorting and random particles' trajectories are evoked as the driving agents of pulse formation and development. Quantifying the effects of these processes is a difficult task. This work aims to investigate the interactions between bedload transport and bedform dynamics in steep gravel-bed rivers. Experiments are carried out in a 17-m long 60-cm wide flume inclined at an angle of 2.7%. The bed is initially flat and made of homogenous natural gravel with a mean diameter of 6 mm. We imposed 200 identical hydrographs (of 1 hr duration) at the flume inlet (the bed surface was not flattened out during these cycling floods). The input hydrograph and the input sediment discharge are nearly triangular. Bed topography is measured after each flood using ultrasound sensors while the bedload transport rate is steadily monitored at the outlet using accelerometers (accelerometers fixed on metallic plates record the impacts of the grains flowing out of the flume). For the sake of comparison, a similar experiment consisting of 19 floods of 10 hours is carried out under constant supply conditions. We show that accelerometers are a cost effective technique to obtain high-frequency bedload discharge data. Spectral analysis of the bedload timeseries is used to highlight the different time scales corresponding to different bedload transport processes. We show that long timeseries are necessary to capture the different processes that drive bedload transport, including the resilience time after a perturbation of the bed. The alternate bars that develop and migrate along the flume are found to significantly influence bedload transport rate fluctuations.

  1. An optimal modification of a Kalman filter for time scales

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2003-01-01

    The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.

  2. Basin-scale Modeling of Geological Carbon Sequestration: Model Complexity, Injection Scenario and Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.

    2013-12-01

    Geological carbon sequestration can significantly contribute to climate-change mitigation only if it is deployed at a very large scale. This means that injection scenarios must occur, and be analyzed, at the basin scale. Various mathematical models of different complexity may be used to assess the fate of injected CO2 and/or resident brine. These models span the range from multi-dimensional, multi-phase numerical simulators to simple single-phase analytical solutions. In this study, we consider a range of models, all based on vertically-integrated governing equations, to predict the basin-scale pressure response to specific injection scenarios. The Canadian section of the Basal Aquifer is used as a test site to compare the different modeling approaches. The model domain covers an area of approximately 811,000 km2, and the total injection rate is 63 Mt/yr, corresponding to 9 locations where large point sources have been identified. Predicted areas of critical pressure exceedance are used as a comparison metric among the different modeling approaches. Comparison of the results shows that single-phase numerical models may be good enough to predict the pressure response over a large aquifer; however, a simple superposition of semi-analytical or analytical solutions is not sufficiently accurate because spatial variability of formation properties plays an important role in the problem, and these variations are not captured properly with simple superposition. We consider two different injection scenarios: injection at the source locations and injection at locations with more suitable aquifer properties. Results indicate that in formations with significant spatial variability of properties, strong variations in injectivity among the different source locations can be expected, leading to the need to transport the captured CO2 to suitable injection locations, thereby necessitating development of a pipeline network. We also consider the sensitivity of porosity and

  3. LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration

    SciTech Connect

    Peters, C. A.; Dobson, P.F.; Oldenburg, C.M.; Wang, J. S. Y.; Onstott, T.C.; Scherer, G.W.; Freifeld, B.M.; Ramakrishnan, T.S.; Stabinski, E.L.; Liang, K.; Verma, S.

    2010-10-01

    LUCI, the Laboratory for Underground CO{sub 2} Investigations, is an experimental facility being planned for the DUSEL underground laboratory in South Dakota, USA. It is designed to study vertical flow of CO{sub 2} in porous media over length scales representative of leakage scenarios in geologic carbon sequestration. The plan for LUCI is a set of three vertical column pressure vessels, each of which is {approx}500 m long and {approx}1 m in diameter. The vessels will be filled with brine and sand or sedimentary rock. Each vessel will have an inner column to simulate a well for deployment of down-hole logging tools. The experiments are configured to simulate CO{sub 2} leakage by releasing CO{sub 2} into the bottoms of the columns. The scale of the LUCI facility will permit measurements to study CO{sub 2} flow over pressure and temperature variations that span supercritical to subcritical gas conditions. It will enable observation or inference of a variety of relevant processes such as buoyancy-driven flow in porous media, Joule-Thomson cooling, thermal exchange, viscous fingering, residual trapping, and CO{sub 2} dissolution. Experiments are also planned for reactive flow of CO{sub 2} and acidified brines in caprock sediments and well cements, and for CO{sub 2}-enhanced methanogenesis in organic-rich shales. A comprehensive suite of geophysical logging instruments will be deployed to monitor experimental conditions as well as provide data to quantify vertical resolution of sensor technologies. The experimental observations from LUCI will generate fundamental new understanding of the processes governing CO{sub 2} trapping and vertical migration, and will provide valuable data to calibrate and validate large-scale model simulations.

  4. Towards a stable numerical time scale for the early Paleogene

    NASA Astrophysics Data System (ADS)

    Hilgen, Frederik; Kuiper, Klaudia; Sierro, Francisco J.; Wotzlaw, Jorn; Schaltegger, Urs; Sahy, Diana; Condon, Daniel

    2014-05-01

    The construction of an astronomical time scale for the early Paleogene is hampered by ambiguities in the number, correlation and tuning of 405-kyr eccentricity related cycles in deep marine records from ODP cores and land-based sections. The two most competing age models result in astronomical ages for the K/Pg boundary that differ by ~750 kyr (~66.0 Ma of Vandenberghe et al. (2012) versus 65.25 Ma of Westerhold et al. (2012); these ages in turn are consistent with proposed ages for the Fish Canyon sanidine (FCs) that differ by ~300 kyr (28.201 Ma of Kuiper et al. (2008) versus 27.89 Ma of Westerhold et al. (2012)); an even older age of 28.294 Ma is proposed based on a statistical optimization model (Renne et al., 2011). The astronomically calibrated FCs age of 28.201 ± 0.046 Ma of Kuiper et al. (2008), which is consistent with the astronomical age of ~66.0 Ma for the K/Pg boundary, is currently adopted in the standard geological time scale (GTS2012). Here we combine new and published data in an attempt to solve the controversy and arrive at a stable nuemrical time scale for the early Paleogene. Supporting their younger age model, Westerhold et al. (2012) argue that the tuning of Miocene sections in the Mediterranean, which underlie the older FCs age of Kuiper et al. (2008) and, hence, the coupled older early Paleogene age model of Vandenberghe et al. (2012), might be too old by three precession cycles. We thoroughly rechecked this tuning; distinctive cycle patterns related to eccentricity and precession-obliquity interference make a younger tuning that would be consistent with the younger astronomical age of 27.89 Ma for the FCs of Westerhold et al. (2012) challenging. Next we compared youngest U/Pb zircon and astronomical ages for a number of ash beds in the tuned Miocene section of Monte dei Corvi. These ages are indistinguishable, indicating that the two independent dating methods yield the same age when the same event is dated. This is consistent with results

  5. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  6. Insights into soil carbon dynamics across climatic and geologic gradients from time-series and fraction-specific radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim

    2016-04-01

    Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.

  7. Time scales in Galveston Bay: An unsteady estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Hetland, Robert D.; Fringer, Oliver B.

    2016-04-01

    Estuarine time scales including the turnover, particle e-folding time, the age (calculated with a passive tracer), and residence time (calculated with Lagrangian particles) were computed using a three-dimensional hydrodynamic model of Galveston Bay, a low-flow, partially stratified estuary. Time scales were computed during a time period when river flow varied by several orders of magnitude and all time scales therefore exhibited significant temporal variability because of the unsteadiness of the system. The spatial distributions of age and residence time were qualitatively similar and increased from 15 days in a shipping channel to >45 days in the upper estuary. Volume-averaged age and residence time decreased during high-flow conditions. Bulk time scales, including the freshwater and salinity turnover times, were far more variable due to the changing river discharge and salt flux through the estuary mouth. A criterion for calculating a suitable averaging time is discussed to satisfy a steady state assumption and to estimate a more representative bulk time scale. When scaled with a freshwater advective time, all time scales were approximately equal to the advective time scale during high-flow conditions and many times higher during low-flow conditions. The mean age, Lagrangian residence, and flushing times exhibited a relationship that was weakly dependent on the freshwater advective time scale demonstrating predictability even in an unsteady, realistic estuary.

  8. Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations

    SciTech Connect

    Bandara, Uditha C.; Tartakovsky, Alexandre M.; Palmer, Bruce J.

    2011-11-01

    Geological sequestration of CO{sub 2} gas emerged as a promising solution for reducing amount of green house gases in atmosphere. A number of continuum scale models are available to describe the transport phenomena of CO{sub 2} sequestration. These models rely heavily on a phenomenological description of subsurface transport phenomena and the predictions can be highly uncertain. Pore-scale models provide a better understanding of fluid displacement processes, nonetheless such models are rare. In this work we use a Smoothed Particle Hydrodynamics (SPH) model to study pore-scale displacement and capillary trapping mechanisms of super-critical CO{sub 2} in the subsurface. Simulations are carried out to investigate the effects of gravitational, viscous, and capillary forces in terms of Gravity, Capillary, and Bond numbers. Contrary to the other published continuum scale investigations, we found that not only Gravity number but also Capillary number plays an important role on the fate of injected CO{sub 2}. For large Gravity numbers (on the order of 10), most of the injected CO{sub 2} reaches the cap-rock due to gravity segregation. A significant portion of CO{sub 2} gets trapped by capillary forces when Gravity number is small (on the order of 0.1). When Gravity number is moderately high (on the order of 1), trapping patterns are heavily dependent on Capillary number. If Capillary number is very small (less than 0.001), then capillary forces dominate the buoyancy forces and a significant fraction of injected CO{sub 2} is trapped by the capillary forces. Conversely, if Capillary number is high (higher than 0.001), capillary trapping is relatively small since buoyancy dominates the capillary forces. In addition, our simulations reveal different types of capillary trapping and flow displacement mechanisms during and after injection. In gravity dominated cases leave behind was the widespread trapping mechanism. Division was the primary trapping mechanism in viscous

  9. The geospatial relationship of geologic strata, geological fractures, and land use attained by a time-series aridity index in a semiarid region.

    PubMed

    Rodríguez-Moreno, Victor M; Kretzschmar, Thomas G; Padilla-Ramírez, J Saúl

    2015-07-01

    In a vast semiarid region of the Baja California Peninsula, remote sensing and GIS techniques were applied to moderate resolution images of Landsat 5 TM to explore the geospatial correlation among the grid aridity index (AI), shapefiles of geologic strata, land use, and geological fractures. A dataset of randomized sample points in a time-series of one hydrologic year along with vector file GIS delineated geologic fractures-including the area between their left/right parallel buffer lines-was used as mask analysis. MANOVA results were significant (p < 0.05) for geologic strata, land use, and basin. Overall results reveal the effects of soil texture on water retention on deeper soil horizons and the rate of vertical motion of rainwater. Despite the fact that geologic fractures underlie a large number of biotic communities, in both latitude and longitude gradients of the peninsula, no statistical significance was observed among the fractures themselves or the areas between their parallel buffer lines. One pulse rainfall event was documented by the AI grid maps enabling a robust vegetative response in early summer to an abnormal amount of rain provided by tropical storm Julio. AI grids appear to be useful for characterizing an ecosystem's dynamism. New options are suggested for this research strategy by expanding the number of datasets and incorporating geographic exclusion areas. PMID:26095900

  10. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  11. An integrated experimental program to understanding leakage from geologic carbon sequestration sites across scales

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Wang, S.; Liang, B.; Peters, C. A.; Fitts, J. P.; Deng, H.; Ellis, B. R.

    2012-12-01

    Leakage from the deep saline aquifers targeted in geologic carbon sequestration (GCS) is difficult to study because of heterogeneities in the structure and chemical composition of the subsurface along with the characteristically large length scales and resulting phase changes that are involved. The chemical and physical processes that govern the buoyancy driven flow of CO2 are important to understand because leakage could undermine the nominal goal of GCS to keep CO2 out of the atmosphere. Here we report on a partnership between Princeton and the University of Virginia (UVa) to study these processes experimentally across multiple length scales in both porous media and fractured caprocks. Experiments span length scales from microns to meters, and the processes studied range from geochemical reactions to the physics of flow. In this presentation, we summarize the suite of experiments that are underway and present recent findings. We seek to demonstrate that this coordinated, multi-disciplinary, multi-scale research collaboration will lead to improved understanding of the fundamental processes that may control the permanence of stored CO2. At UVa, the aim has been to characterize the interfacial properties that will impact buoyancy driven flows in porous media. Contact angle experiments at the CO2-brine-mineral interface have been carried out on silica, carbonate and clay minerals. These results will be used to inform how mineral heterogeneity influences multiphase buoyant flow through sandstones in which pore surfaces are frequently coated by diagenetic clays. Although all minerals are water wetting, the pH point of zero charge was found to be a good predictor of maximum wetting for a solid surface. When the CO2 was not in equilibrium with the brine, hysteric effects were observed as CO2 dissolved into the bulk fluid. Some of this is associated with contact line pinning on certain surfaces that may be driven by salt precipitation near the phase interface. Contact

  12. Relationship Between the Surface Area to Volume Ratio and Temperature across Geologic Time in Ostracods

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Zaroff, S.; Heim, N. A.; Payne, J.

    2014-12-01

    In 1877 Joseph Allen proposed that endothermic terrestrial organisms would have lower surface area to volume ratios (SAVR) in colder climates and higher SAVRs in warmer climates. With a smaller surface area compared to volume, organisms can retain more heat in cold climates. We tested to see if this principle applied to ostracods, a type of ectothermic marine invertebrate. We hypothesised that Allen's rule applies to ostracods, as Allen's rule has been demonstrated in frogs (Alho 2011), which are also ectotherms . We used the linear dimensions of the three major carapace axes of ostracod holotypes to estimate the SAVR. We compared ostracod SAVRs with paleotemperatures from Royer et al. (2004). We found that there was a correlation between surface area and temperature; it is a small, but statistically significant correlation (adj. R2=0.0167). This means that as temperature increased, the SAVR also increased. We also found a negative correlation between ostracod SAVR to geologic time(adj. R2=0.0114), which shows us that as time has gone on, ostracod SAVR has decreased. We then plotted the correlation coefficient of SAVR to temperature over geologic time to explore trends in the strength of Allen's rule. For most of time there was no relationship but during the Devonian, Allen's Rule did explain the trend. In short, temperature does explain some of the correlation between the SAVR and temperature, but it is likely there were other environmental factors affecting this relationship.

  13. Large-Scale Digital Geologic Map Databases and Reports of the North Coal District in Afghanistan

    USGS Publications Warehouse

    Hare, Trent M.; Davis, Philip A.; Nigh, Devon; Skinner, James A.; SanFilipo, John R.; Bolm, Karen S.; Fortezzo, Corey M.; Galuszka, Donna; Stettner, William R.; Sultani, Shafiqullah; Nader, Billal

    2008-01-01

    members of the coal team: Engineer Saifuddin Aminy (Team Leader); Engineer Gul Pacha Azizi; Engineer Abdul Haq Barakati; Engineer Abdul Basir; Engineer Mohammad Daoud; Engineer Abdullah Ebadi; Engineer Abdul Ahad Omaid; Engineer Spozmy; and Engineer Shapary Tokhi. The ongoing efforts of Engineer Mir M. Atiq Kazimi (Team leader); Engineer M. Anwar Housinzada; and Engineer Shereen Agha of the AGS Records Department to organize and catalogue the AGS material were invaluable in locating and preserving these data. The efforts of the entire AGS staff to personally preserve these data during war time, in the absence of virtually any supporting infrastructure, was truly remarkable. The efforts by the British Geological Survey (BGS) to assist the AGS in archiving these data, and the personal assistance provided by BGS (notably Robert McIntosh), to the USGS teams were also appreciated. The logistical support provided by the U.S. Embassy in Kabul, particularly the Afghanistan Reconstruction Group, was critical to the success of the USGS teams while in Afghanistan. Finally, the efforts of the Minister of the Ministry of Mines and Industries (M. Ibrahim Adel) to support the USGS coal resource assessment in Afghanistan, in both his current and former role as President of the Mines Affairs Department was vital to this effort.

  14. U. S. GEOLOGICAL SURVEY'S NATIONAL REAL-TIME HYDROLOGIC INFORMATION SYSTEM USING GOES SATELLITE TECHNOLOGY.

    USGS Publications Warehouse

    Shope, William G., Jr.

    1987-01-01

    The U. S. Geological Survey maintains the basic hydrologic data collection system for the United States. The Survey is upgrading the collection system with electronic communications technologies that acquire, telemeter, process, and disseminate hydrologic data in near real-time. These technologies include satellite communications via the Geostationary Operational Environmental Satellite, Data Collection Platforms in operation at over 1400 Survey gaging stations, Direct-Readout Ground Stations at nine Survey District Offices and a network of powerful minicomputers that allows data to be processed and disseminate quickly.

  15. On time scales and time synchronization using LORAN-C as a time reference signal

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.

  16. Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration

    SciTech Connect

    Zhou, R.; Huang, L.; Rutledge, J.T.; Fehler, M.; Daley, T.M.; Majer, E.L.

    2009-11-01

    Injection and movement/saturation of carbon dioxide (CO2) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO2-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO2 in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO2 injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO2 reservoir. Our results from field data suggest that the velocity changes caused by CO2 injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration.

  17. How Conoco uses GIS technology to map geology, geography through time

    SciTech Connect

    Foley, D.C.; Ghazi, T.Y.

    1995-05-08

    Conoco Inc.`s Advanced Exploration Organization (AEO) is in the business of studying foreign sedimentary basins from a regional perspective to evaluate their potential for petroleum exploration. Recently the company decided to focus some of the AEO`s resources on developing a global ranking system for those areas of the world where hydrocarbons might occur. AEO obtained software from the University of Texas, Arlington that rotates continents or portions of continents through time. Using the software, company geoscientists have created a series of maps, known as a PaleoAtlas, that depicts the geography and selected geological features for different periods in Phanerozoic time. In addition, the AEO has developed a software package based on ARC/INFO (ESRI Inc., Redlands, Calif.), a commercial GIS platform, to manage, integrate, and analyze those time-slice maps. Entitled PaleoAtlas Geographic Evaluation system (Pages), this software also sequences portions of the maps in a montage effect that geoscientists can use to study the geological evolution of petroleum source rocks. The paper describes the AEO project and its software.

  18. Linking Response-Time Parameters onto a Common Scale

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2010-01-01

    Although response times on test items are recorded on a natural scale, the scale for some of the parameters in the lognormal response-time model (van der Linden, 2006) is not fixed. As a result, when the model is used to periodically calibrate new items in a testing program, the parameter are not automatically mapped onto a common scale. Several…

  19. Nitrate reduction in geologically heterogeneous catchments--a framework for assessing the scale of predictive capability of hydrological models.

    PubMed

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A; Christensen, Britt S B; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril; Sørensen, Kurt I; Therrien, Rene; Thirup, Christian; Viezzoli, Andrea

    2014-01-15

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30-50 m and 2m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  20. Mars Eolian Geology at Airphoto Scales: The Large Wind Streaks of Western Arabia Terra

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    More than 27,000 pictures at aerial photograph scales (1.5-12 m/pixel) have been acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) since September 1997. The pictures are valuable for testing hypotheses about geologic history and processes of Mars. Of particular interest are eolian features connected to surface albedo patterns. This work is focused on low-albedo wind streaks, some over 100 km long, in western Arabia Terra. Each streak is widest where it originates at an impact crater (typically 25-150 km diameter). The streaks taper downwind. Within the associated craters there is a lower-albedo surface that, in nearly all observed cases, includes barchan dunes indicative of transport in the same direction as the wind streaks. Upwind of the dunes there is usually an outcrop of layered material that might have served as a source for dune sand. MOC images show that the west Arabia streaks consist of a smooth-surfaced, multiple-meters-thick, mantle (smooth at 1.5 m/pixel) that appears to be superposed on local surfaces. No dunes are present, indicating that down-streak transport of sediment via saltation and traction have not occurred. Two models might explain the observed properties: (1) the streaks consist of dark silt- and clay-sized grains deflated from the adjacent crater interiors and deposited from suspension or (2) they are remnants (protected in the lee of impact crater rims) of a formerly much larger, regional covering of low albedo, smooth-surfaced mantle. The latter hypothesis is based on observation of low albedo mantled surfaces occurring south of west Arabia in Terra Meridiani. For reasons yet unknown, a large fraction of the martian equatorial regions are covered by low albedo, mesa-forming material that lies unconformably atop eroded layered and cratered terrain. Both hypotheses are being explored via continued selective targeting of new MOC images as well as analyses of the new data.

  1. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G., Jr.

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  2. Continued Investigations of the Accretion History of Extraterrestrial Matter over Geologic Time

    NASA Technical Reports Server (NTRS)

    Farley, Kenneth

    2001-01-01

    This grant supported our ongoing project to characterize the accretion rate of interplanetary dust particles (IDPs) to Earth over geologic time using He-3 as a tracer. IDPs are derived from collisions in the asteroid belt and from disaggregation of active comets. Owing to their small size (few to few hundred micrometers diameter) these particles spiral into the sun under Poynting-Robertson drag typically in less than a few tens of kyrs. Thus IDPs must be continually resupplied to the zodiacal cloud, and because the processes of IDP production are likely to be sporadic, time variation in the IDP accretion rate to Earth is likely to be time-varying. For example, major asteroidal collisions and comet showers should greatly enhance the IDP accretion rate. Our ultimate objective (still ongoing) is to document this time variance so as to better understand the history of the solar system, the source of IDPs accreting to Earth, and the details of the mechanism by which particles are captured by Earth. To document variations in IDP accretion rate through time we use He-3 as a tracer. This isotope is in extremely low abundance in terrestrial matter, but IDPs have very high concentrations of He-3 from implantation of solar wind ions. By measuring He-3 in seafloor sediments, we can estimate the IDP accretion rate for at least the last few hundred Myrs. Under an earlier NASA grant we identified the existence of a large increase in He-3 flux in the Late Eocene (35 Myr ago), coincident with the two largest impact craters of the Cenozoic Era. The simplest interpretation of this observation is the occurrence of a shower of long period comets at that time, simultaneously increasing the impact cratering probability and accretion rate of IDPs to Earth (Farley et al., 1998). Comet showers produced by stellar perturbation of the Oort cloud should be fairly common in the geologic record, so this is not an unreasonable interpretation of our observations.

  3. Detecting separate time scales in genetic expression data

    PubMed Central

    2010-01-01

    Background Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. Results We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. Conclusions The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible. PMID:20565716

  4. 1:75K-Scale Geologic Mapping of Southwestern Melas Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Edgar, L. A.; Skinner, J. A.

    2016-06-01

    The goal of this work is to document the geologic evolution of southwestern Melas Chasma, and to place localized observations into a broader, standardized context for comparison to other similar regions within the Valles Marineris basin system.

  5. Geological environment of karst within chalk using airborne time domain electromagnetic data cross-interpreted with boreholes

    NASA Astrophysics Data System (ADS)

    Reninger, P.-A.; Martelet, G.; Lasseur, E.; Beccaletto, L.; Deparis, J.; Perrin, J.; Chen, Y.

    2014-07-01

    The ability of airborne Time Domain ElectroMagnetic (TDEM) to image plurikilometric chalk heterogeneities and its implications for the development of a karstic system is addressed in this study. A heliborne TDEM survey was conducted around Courtenay (France) over the Paris Basin Upper Cretaceous chalk. This aquifer is known as a highly weathered and karstified horizon both strongly modify chalk petrophysical properties. Numerous boreholes and one recently reprocessed seismic line were used in order to strengthen TDEM interpretations. We performed cross statistics between boreholes and the resistivity model. This allowed defining empirical resistivity ranges corresponding to the main geological formations within the area. We were therefore able to map large scale heterogeneities in the chalk over the study area. First, the TDEM method highlighted probable weathering corridors in the chalk, related to the tectonic activity, consistent with faults previously interpreted in the seismics at deeper levels. Second, it was possible to image a large scale undulating geometry in the chalk with a SW-NE orientation, this direction is consistent throughout the Paris Basin, and well defined on the cliffs of Normandy (Channel coast, north of France). This geometry has revealed two separate chalk deposits C1 and C2 in Courtenay area: C1 is more resistive than C2. The resistivity model has then been compared to piezometric measurements acquired as part of previous hydrological studies. The karstic drainage appears to be developed within C1 chalk deposit and most of the piezometric domes seem to be associated to intermediate resistivity zones in C1, interpreted as weathered. According to the results obtained from this study, we were able to suggest a geological framework for the development of Courtenay karstic system.

  6. On the nature of gravity and possible change of Earth mass during geological time

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin

    2015-04-01

    A number of circumstances can't be explained based on view of the constant force of gravity on the Earth: 1. Dimensions of fossil animals and plants. According to the laws of biomechanics of the giant dinosaurs could not move and fly. 2. The movement of continents, reliably described by A.Vegener, can only be explained on the basis of the model increasing the Earth. Gravity is only one of the fields that define the existence of the world. Field and matter are forms that can be converted into each other. Transition is described, in particular, by Poincare, perhaps not quite accurate: E = (K) mc2. There are indications of the existence of the time field (Kozyrev, 1978), which generates energy, and then the following conditional equation: T, where T is a time. Through this relationship generated energy glow of stars and planets, the mass increases. In particular, there is an increase in the mass of the Earth. This confirms the divergence of the continents and reducing the size of the animals and plants in the Earth's history. According to presented model, the size of Earth increased during 100 millions years two times in linear scale and 8 times in volume and mass scales. Understanding of general principle of space development needs collaboration of different specialists and branches of geosciences. The basis of possible scheme is: 1. The nature of gravity is not explained by science, although some of its properties are described with high accuracy, and these descriptions have predictive power. Indeed, what attracted threads of the body without physical contact? 2. The velocity of propagation of gravitational forces in the universe is many times the speed of light. Perhaps it is infinite, although it is not proven. 3. The universe is infinite, as is clear from logical calculations thinkers more ancient period. However, our universe, i.e. of the universe, available to our senses and instruments, is finite. The volume of our universe is 1070 cubic kilometers. The total

  7. An Analysis of the Understanding of Geological Time by Students at Secondary and Post-Secondary Level. Research Report

    ERIC Educational Resources Information Center

    Hidalgo, Antonio J.; Otero, Jose

    2004-01-01

    This paper addresses the concept of geological time as used by students who face tasks that demand three types of skills: to locate events in time, to order them according to time calendar, and to manage time intervals. The empirical study consisted of asking high school students as well as technical school students to carry out tasks that…

  8. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  9. Geology and mineral resource assessment of the Venezuelan Guayana Shield at 1:500,000 scale; a digital representation of maps published by the U.S. Geological Survey

    USGS Publications Warehouse

    Schruben, Paul G.; Wynn, J.C.; Gray, Floyd; Cox, D.P.; Sterwart, J.H.; Brooks, W.E.

    1997-01-01

    This CD-ROM contains vector-based digital maps of the geology and resource assessment of the Venezuela Guayana Shield originally published as paper maps in 1993 in U. S. Geological Survey Bulletin 2062, at a scale of 1:1 million and revised in 1993-95 as separate maps at a scale of 1:500,000. Although the maps on this disc can be displayed at different scales, they are not intended to be used at any scale more detailed than 1:500,000.

  10. Boundary|Time|Surface: Art and Geology Meet in Gros Morne National Park, NL, Canada

    NASA Astrophysics Data System (ADS)

    Lancaster, Sydney; Waldron, John

    2015-04-01

    Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, more ephemeral site-specific installations constructed of materials from the local environment. Despite this range of intervention, however, these works all share in a tradition of art making that situates the artwork in direct response to the surrounding landscape. Andy Goldsworthy and Richard Long, for example, both favour methods that combine elements of both sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographic, text-based, or video documentation as the only lasting indication of the works' existence. Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. For example, in Earth science, the periods of the geologic timescale - Cambrian, Ordovician, Silurian, etc. - were established by 19th century pioneers of geology at a time when they were believed to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have attempted to resolve ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland. Boundary|Time|Surface was an ephemeral sculptural installation work constructed in June 2014. The main installation work was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at Green Point in Newfoundland. The fence extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was constructed by hand (with volunteer assistance) on June 22, as the wave-cut platform was exposed by the falling tide. During the remainder of the tidal cycle

  11. Site characterisation of a basin-scale CO2 geological storage system: Gippsland Basin, southeast Australia

    NASA Astrophysics Data System (ADS)

    Gibson-Poole, C. M.; Svendsen, L.; Underschultz, J.; Watson, M. N.; Ennis-King, J.; van Ruth, P. J.; Nelson, E. J.; Daniel, R. F.; Cinar, Y.

    2008-06-01

    Geological storage of CO2 in the offshore Gippsland Basin, Australia, is being investigated by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) as a possible method for storing the very large volumes of CO2 emissions from the nearby Latrobe Valley area. A storage capacity of about 50 million tonnes of CO2 per annum for a 40-year injection period is required, which will necessitate several individual storage sites to be used both sequentially and simultaneously, but timed such that existing hydrocarbon assets will not be compromised. Detailed characterisation focussed on the Kingfish Field area as the first site to be potentially used, in the anticipation that this oil field will be depleted within the period 2015 2025. The potential injection targets are the interbedded sandstones of the Paleocene-Eocene upper Latrobe Group, regionally sealed by the Lakes Entrance Formation. The research identified several features to the offshore Gippsland Basin that make it particularly favourable for CO2 storage. These include: a complex stratigraphic architecture that provides baffles which slow vertical migration and increase residual gas trapping and dissolution; non-reactive reservoir units that have high injectivity; a thin, suitably reactive, lower permeability marginal reservoir just below the regional seal providing mineral trapping; several depleted oil fields that provide storage capacity coupled with a transient production-induced flow regime that enhances containment; and long migration pathways beneath a competent regional seal. This study has shown that the Gippsland Basin has sufficient capacity to store very large volumes of CO2. It may provide a solution to the problem of substantially reducing greenhouse gas emissions from future coal developments in the Latrobe Valley.

  12. The Handling of Hazard Data on a National Scale: A Case Study from the British Geological Survey

    NASA Astrophysics Data System (ADS)

    Royse, Katherine R.

    2011-11-01

    This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.

  13. The imprint of climate and geology on the residence times of groundwater

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.; Kollet, Stefan J.; Maher, Kate; Haggerty, Roy; Forrester, Mary Michael

    2016-01-01

    Surface and subsurface flow dynamics govern residence time or water age until discharge, which is a key metric of storage and water availability for human use and ecosystem function. Although observations in small catchments have shown a fractal distribution of ages, residence times are difficult to directly quantify or measure in large basins. Here we use a simulation of major watersheds across North America to compute distributions of residence times. This simulation results in peak ages from 1.5 to 10.5 years, in agreement with isotopic observations from bomb-derived radioisotopes, and a wide range of residence times—from 0.1 to 10,000 years. This simulation suggests that peak residence times are controlled by the mean hydraulic conductivity, a function of the prevailing geology. The shape of the residence time distribution is dependent on aridity, which in turn determines water table depth and the frequency of shorter flow paths. These model results underscore the need for additional studies to characterize water ages in larger systems.

  14. Predicting multi-scale relationships between geomorphology and bedrock geology of the rocky intertidal in Central and Northern California

    NASA Astrophysics Data System (ADS)

    Wheeler, A.; Aiello, I. W.

    2014-12-01

    Substratum geology is fundamental in shaping rocky shore morphology. Specific lithologies have various responses to wave action, tectonic features (e.g. fractures, faults) and sedimentary structures (e.g. bedding), creating distinctive weathering profiles. Along with local oceanography and climate forcing, different rock substrata create coastal morphologies that can vary distinctly between scales, ranging from mm to km. Despite the complexity of the system, qualitative observations show coastal areas with similar rock types share similar geomorphologies. Thus, a statistic relationship between geomorphology (expressed for instance by surface parameter rugosity) and geology can be envisaged. There are multiple benefits of finding such a relationship, as rocky intertidal geomorphology can be an important determinant in which organisms can settle, grow, and survive in near shore communities: allowing the prediction of geomorphologic parameters determining coastal ecology solely based on substratum geology, a crucial aspect in guiding the selection of marine protected areas. This study presents preliminary results of multi-scale geospatial surveys (cm to tens of meters) of rocky intertidal outcrops from Central to Northern California using a Terrestrial Laser Scanner. The outcrops investigated are representative of the most common igneous and sedimentary rocks in California (granitoids, conglomerates, sandstones, mudstones) and metamorphic units. The statistical analysis of the survey data support the hypothesis that surface properties can change significantly with changing scale, each rock type having distinct surface characteristics which are similar to comparable lithologies exposed at different locations. These scale dependent variations are controlled by different lithologic and structural characteristics of the outcrop in question. Our data also suggests lithologic variability within a rock unit could be a very significant factor in controlling changes in

  15. Pennsylvanian time scales and cycle periods

    SciTech Connect

    deV. Klein, G. )

    1990-05-01

    Geochronological results from central Europe indicate that the duration of Pennsylvanian time is only 19 m.y., compared to the Harland et al. and Palmer estimates of 34 m.y. Prior calculations of Pennsylvanian cycle periods from the midcontinent of North America suggesting a fit with Milankovitch orbital parameters may well be in errors; as a consequence, other mechanisms for possible eustatic sea-level changes represented in those cycles are needed. Calculation of cycle periods of 100 ka or less lack precision in stratigraphic intervals representing ages characterized by error margins of millions of years. Thus, cycle periods may be less reliable as an indicator of global process than previously considered, particularly in rocks of Paleozoic and early and middle Mesozoic age.

  16. Effect of the advent and diversification of vascular land plants on mineral weathering through geologic time

    NASA Astrophysics Data System (ADS)

    Knoll, Martin A.; Calvin James, W.

    1987-12-01

    The origin of vascular land plants in the Silurian and their subsequent diversification have had a major effect on mineral weathering through geologic tune. The presence of vascular plants reduces the stability of soil minerals through a net export of ions from soil waters and through the release of complexing organic acids by root mycorrhizae. Additional factors that dictate the nature of plant-induced mineral weathering are (1) the differences in nutrient dynamics between evergreen and deciduous species; (2) the role of specific nutrient sinks (biomass storage and secondary soil mineralization) and outputs (runoff, etc.) in plant ecosystems; and (3) the effect of long- and short-term ecosystem disturbances. First-order increases in overall mineral weathering probably took place in the middle Paleozoic and early Tertiary, following the initial colonization and diversification of land plants and the radiation of deciduous angiospenns. Second-order fluctuations would typify time intervals where paleoecosystem disturbances were maximized, such as periods of climatic instability.

  17. Rapid evaluation of time scale using an optical clock

    NASA Astrophysics Data System (ADS)

    Ido, T.; Hachisu, H.; Nakagawa, F.; Hanado, Y.

    2016-06-01

    Feasibility of steering a time scale using an optical clock is investigated. Since the high stability of optical frequency standards enables rapid evaluation of the scale interval, the requirement for the continuous operation is mitigated. Numerical simulations with the input of real calibration data by a 87Sr lattice clock indicated that the calibrations once in two weeks maintain the time scale within 5 ns level using a currently available hydrogen maser at NICT. “Optical” steering of a time scale by the intermittent calibrations frees an optical frequency standard from being dedicated to the steering, enabling other applications using the same apparatus.

  18. Do quasars evolve over cosmological time scales?

    NASA Astrophysics Data System (ADS)

    Wampler, E. J.; Ponz, D.

    Systematic biases that are redshift dependent can influence the optical discovery of quasars and the evolution laws derived from counts of quasars. New data and their interpretation for quasars brighter than MB = -24 in the Palomar Bright Quasar Survey (BQS) (Schmidt and Green, 1983) are consistent with no evolution. A comparison of BQS quasars with the brightest quasars from the CTIO Schmidt Telescope Survey (Osmer and Smith, 1980) shows that if q(0) is near zero, the comoving density of bright quasars in a Friedmann cosmology is about 15 times higher for the CTIO survey quasars (mean z of about 2.8) than for the BQS quasars (mean z of about 1.8). In this case spectral evolution is also required since the CTIO quasars have stronger CIV 1548 A lines than the BQS quasars of similar luminosity. Alternatively, if q(0) is taken to be near 1, the CTIO survey quasars would then have a lower luminosity than the BQS quasars and these data would be consistent with no evolution. Strong CIV 1548 A lines for the CTIO quasars would then fit the general correlation between absolute quasar luminosity and emission line strength (Wampler, Gaskell, Burke and Baldwin, 1984).

  19. Critical time scale of coarse-graining entropy production

    NASA Astrophysics Data System (ADS)

    Sohn, Jang-il

    2016-04-01

    We study coarse-grained entropy production in an asymmetric random walk system on a periodic one-dimensional lattice. In coarse-grained systems, the original dynamics are unavoidably destroyed, but the coarse-grained entropy production is not hidden below the critical time-scale separation. The hidden entropy production is rapidly increasing near the critical time-scale separation.

  20. Evolutionary time-scale of primate bocaviruses.

    PubMed

    Babkin, Igor V; Tyumentsev, Alexander I; Tikunov, Artem Yu; Kurilshikov, Alexander M; Ryabchikova, Elena I; Zhirakovskaya, Elena V; Netesov, Sergei V; Tikunova, Nina V

    2013-03-01

    Human bocavirus (HBoV) is associated with acute gastroenteritis in humans, occurring mostly in young children and elderly people. Four bocavirus genotypes (HBoV1-HBoV4) have been found so far. Since there were no data on the contribution of HBoV to gastroenteritis in Russia, 1781 fecal samples collected from infants hospitalized with acute gastroenteritis in Novosibirsk, Russia during one year were tested for the presence of nucleic acids from HBoV and three major gastrointestinal viruses (rotavirus A, norovirus II, and astrovirus). HBoV was detected only in 1.9% of the samples: HBoV1 was detected in 0.6% and HBoV2, in 1.3%. Complete genome sequencing of three Novosibirsk isolates was performed. An evolutionary analysis of these sequences and the available sequences of human and great apes bocaviruses demonstrated that the current HBoV genotypes diverged comparatively recently, about 60-300years ago. The independent evolution of bocaviruses from chimpanzees and gorillas commenced at the same time period. This suggests that these isolates of great apes bocaviruses belong to separate genotypes within the species of human bocavirus, which is actually the primate bocavirus. The rate of mutation accumulation in the genome of primate bocaviruses has been estimated as approximately 9×10(-4)substitutions/site/year. It has been demonstrated that HBoV1 diverged from the ancestor common with chimpanzee bocavirus approximately 60-80years ago, while HBoV4 separated from great apes bocaviruses about 200-300years ago. The hypothesis postulating independent evolution of HBoV1 and HBoV4 genotypes from primate bocaviruses has been proposed. PMID:23313830

  1. The Influence of Geologic Heterogeneity on Groundwater Salinity and Aquifer-Ocean Exchange on the Scale of the Continental Shelf

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Scott, K. C.; Koneshloo, M.; Khan, M. R.; Katie, L.

    2015-12-01

    Exchange of water between aquifers and the ocean critically affects the quality of coastal groundwater resources and modifies ocean chemistry on both short and long timescales. Fresh groundwater has been shown to exist far offshore, and this is a potential future resource. However, controls on the origin of offshore freshened groundwater and the timescale over which it responds to hydrologic change are not well known. Further, high rates of saline groundwater discharge have been observed directly nearshore and with tracers across continental shelves, but the physical explanation for these large fluxes is not well established. Steady-state variable-density groundwater flow and solute transport simulations incorporating geostatistically-generated distributions of aquifer lithology were performed to explore the role of geologic heterogeneity in large-scale coastal groundwater flow and solute transport processes. Results indicate that heterogeneity critically affects both salinity distributions and aquifer-ocean exchange. The position, size, and variability of the mixing zone are influenced by the shore-perpendicular connectivity of the geologic structure. Submarine groundwater discharge extends further offshore and is more highly variable in heterogeneous relative to equivalent homogeneous simulations, and this effect increases with connectivity. The circulation of saline groundwater is consistently higher in heterogeneous simulations relative to homogeneous regardless of aquifer connectivity, increasing up to several orders of magnitude. These simulations suggest that heterogeneous aquifers with high geologic connectivity can result in significant volumes of freshened groundwater accompanied by fresh and saline discharge tens to hundreds of kilometers offshore along the continental shelf, even under present-day equilibrium conditions. The complicated flow fields and salinity distributions resulting from geologic heterogeneity contribute to high rates of saline

  2. Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile-driven Activity

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.

    2004-01-01

    The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.

  3. Time Scale Creator - A Visualization and Database Tool for Earth History

    NASA Astrophysics Data System (ADS)

    Huang, A.; Ogg, J.

    2008-12-01

    Unravelling Earth's history requires the ability to compare biologic, lithologic, chemical, magnetic and other records from different regions. Published correlation charts provide some details, but tend to be unwieldy, difficult to update, and awkward to merge with other records. The Time Scale Creator program of the International Commission on Stratigraphy provides a suite of global and regional reference datasets (approximately 20,000 Phanerozoic datums, plus geochemical and other trends) within a visualization package. Users can append additional regional lithostratigraphic or other datasets, then create on-screen charts for any portion of the geologic time scale with any subsets of the extensive stratigraphic data. In addition to scalable-vector graphics (SVG) or PDF file output, the on-screen display contains "hot-cursor- points" which open up windows with additional information on events, zones, and URL links to external documentation. For example, a user can select from within a datapack with 50 representative stratigraphic columns spanning the British Isles, then display lithologic sections against models of global sea-level trends or adjacent to Sub-boreal ammonite zones, and the pop-up window for each formation is linked directly to the British Geologic Survey lexicon entry. Much in the way that GIS greatly enhances accessibility to spatial data, the Time Scale Creator and its temporal data are completely digital, allowing quick and easy distribution and updating. The database and visualization package are a convenient reference tool, chart-production device, and educational program.

  4. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  5. Geologically recent small-scale surface features in Meridiani Planum and Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Horne, David

    2014-05-01

    Enigmatic small scale (<1m) depositional and erosional features have been imaged at several locations in the equatorial Meridiani Planum region by the rover Opportunity. They occur in loose, dark basaltic sands partly covering exposures of light-toned bedrock. Leveed fissures are narrow, elongate, steep-sided depressions flanked by raised levees or half-cones of soil, typically 2-10 cm wide and up to 50 cm long in most cases. Some cross-cut and are therefore younger than eolian ripples thought to have last been active c. 50,000 years ago. Gutters are elongate, straight or sinuous surface depressions, typically 2-10cm wide and 1-5 cm deep, sometimes internally terraced or with a hollow near one end, and in one case seem to give way to small depositional fans downslope; they have the appearance of having been formed by liquid flow rather than by wind erosion. Leveed fissures were imaged at more than 25 locations by Opportunity between 2004 and 2013, particularly near the rims of Endurance, Erebus and Endeavour craters, but also on the plains between Santa Maria and Endeavour craters; sharply-defined gutters are less common but examples were imaged close to the rim of Endurance and on the approach to Endeavour, whereas subdued, possibly wind-softened examples are more widespread. Scrutiny of images obtained by the rover Spirit in Gusev Crater between 2004 and 2010 has so far failed to find any leveed fissures or gutters, but examples of both types of features, as well as numerous small holes suggestive of surface sediment falling into underlying voids, were imaged by the rover Curiosity in the Yellowknife Bay region of Gale Crater during 2013. Leveed fissures appear to have been formed by venting from beneath. Ground disturbance by the rover can be ruled out in many cases by the appearance of features in images taken before close approach. Blowholes seem plausible close to crater rims (where wind might enter a connected void system through a crater wall) but less so

  6. Scaling analysis of multi-variate intermittent time series

    NASA Astrophysics Data System (ADS)

    Kitt, Robert; Kalda, Jaan

    2005-08-01

    The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.

  7. Frozen in Time? Microbial strategies for survival and carbon metabolism over geologic time in a Pleistocene permafrost chronosequence

    NASA Astrophysics Data System (ADS)

    Mackelprang, R.; Douglas, T. A.; Waldrop, M. P.

    2014-12-01

    Permafrost soils have received tremendous interest due to their importance as a global carbon store with the potential to be thawed over the coming centuries. Instead of being 'frozen in time,' permafrost contains active microbes. Most metagenomic studies have focused on Holocene aged permafrost. Here, we target Pleistocene aged ice and carbon rich permafrost (Yedoma), which can differ in carbon content and stage of decay. Our aim was to understand how microbes in the permafrost transform organic matter over geologic time and to identify physiological and biochemical adaptations that enable long-term survival. We used next-generation sequencing to characterize microbial communities along a permafrost age gradient. Samples were collected from the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel near Fox, AK, which penetrates a hillside providing access to permafrost ranging in age from 12 to 40 kyr. DNA was extracted directly from unthawed samples. 16S rRNA amplicon (16S) and shotgun metagenome sequencing revealed significant age-driven differences. First, microbial diversity declines with permafrost age, likely due to long-term exposure to environmental stresses and a reduction in metabolic resources. Second, we observed taxonomic differences among ages, with an increasing abundance of Firmicutes (endospore-formers) in older samples, suggesting that dormancy is a common survival strategy in older permafrost. Ordination of 16S and metagenome data revealed age-based clustering. Genes differing significantly between age categories included those involved in lipopolysaccharide assembly, cold-response, and carbon processing. These data point to the physiological adaptations to long-term frozen conditions and to the metabolic processes utilized in ancient permafrost. In fact, a gene common in older samples is involved in cadaverine production, which could potentially explain the putrefied smell of Pleistocene aged permafrost. Coupled with soil

  8. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  9. Updating the planetary time scale: focus on Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  10. Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Nutman, A. P.

    2014-12-01

    The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth's chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial ɛHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic -time patterns are more complex, reflecting the interplay

  11. On time scale invariance of random walks in confined space.

    PubMed

    Bearup, Daniel; Petrovskii, Sergei

    2015-02-21

    Animal movement is often modelled on an individual level using simulated random walks. In such applications it is preferable that the properties of these random walks remain consistent when the choice of time is changed (time scale invariance). While this property is well understood in unbounded space, it has not been studied in detail for random walks in a confined domain. In this work we undertake an investigation of time scale invariance of the drift and diffusion rates of Brownian random walks subject to one of four simple boundary conditions. We find that time scale invariance is lost when the boundary condition is non-conservative, that is when movement (or individuals) is discarded due to boundary encounters. Where possible analytical results are used to describe the limits of the time scaling process, numerical results are then used to characterise the intermediate behaviour. PMID:25481837

  12. Liquidity Spillover in International Stock Markets through Distinct Time Scales

    PubMed Central

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918

  13. Liquidity spillover in international stock markets through distinct time scales.

    PubMed

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918

  14. Space and Time Scale Variability and Interdependencies in Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Feddes, Reinder A.

    1995-09-01

    The atmospheric, hydrologic, and terrestrial components of the earth's systems operate on different time and space scales. Resolving these scaling incongruities as well as understanding and modeling the complex interaction of land surface processes at the different scales represents a major challenge for hydrologists, ecologists and meteorologists alike. This book presents the contributions of hydrologists, meteorologists, and ecologists to the first IHP/IAHS George Kovacs Colloqium on global hydrology and climate change. It deals with time and space scale variations with reference to several topics including soil water balance, ecosystems and interaction of flow systems, and macroscale hydrologic modeling. This book will be of great use to researchers, engineers and forecasters with an interest in space and time scale variability.

  15. Coupled Evolution of the Martian Atmosphere and Crust Through Geologic Time

    NASA Astrophysics Data System (ADS)

    Hutchins, Kevin Sean

    1998-09-01

    This dissertation investigates the coupled evolution of the Martian atmosphere and crust throughout geologic time and the implications for Martian sample analysis and exobiology. Abundant geological and atmospheric evidence suggests that Mars has changed significantly throughout time. Removal of volatiles from the atmosphere may have been the trigger for the dramatic transition from that scenario to the present cold, harsh climate. Previous modeling work has shown that loss to space enriches the residual atmosphere in the heavier isotopes. Furthermore, stable isotope measurements from secondary mineral deposits within the Martian meteorites indicate exchange with an isotopically-enriched atmosphere. To investigate the Martian climate history, we developed an atmospheric evolution model for argon and neon considering a mass balance between the mantle, atmosphere, and loss to space by sputtering. Sputtering loss is particularly relevant for noble gases which have few mechanisms of escape. Due to substantial loss, our model is only capable of explaining <25% and <2.5% of the atmospheric abundance of argon and neon, respectively. Thus, sources of volatiles are required in addition to volcanic outgassing. We examined the impact of a Martian paleomagnetic field on sputtering loss. A strong magnetic field could limit sputtering loss by deflecting the solar wind around the upper atmosphere. We found that a magnetic field that persists until 1-2 Ga could affect the loss of light noble gases from the atmosphere. Nonetheless, our model predicts additional sources to balance the atmospheric volatile budgets. Therefore, we investigated outgassing from the Martian crust via groundwater circulation. We found that a crustal reservoir 5-25 km thick could satisfy the atmospheric argon budget. Recently, putative evidence of life has been purported for the Martian meteorite ALH84001. We examined the stable isotope measurements from carbonate and organic deposits found in ALH84001. Due

  16. Physical geology

    SciTech Connect

    Skinner, B.; Porter, S.

    1987-01-01

    The book integrates current thinking on processes (plate techtonics, chemical cycles, changes throughout geologic time). It is an introduction to investigations into the way the earth works, how mountains are formed, how the atmosphere, hydrosphere, crust and mantle interact with each other. Treatments on climate, paleoclimatology and landscape evolution are included, as is a discussion on how human activity affects geological interactions.

  17. Regional and Site-Scale Hydrogeologic Analyses of a Proposed Canadian Deep Geologic Repository for Low and Intermediate Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Normani, S. D.; Yin, Y.; Sykes, E. A.

    2009-05-01

    analyses can be computationally intensive, particularly for large-scale dynamic problems that couple energy, flow and mass transport. Important in the sensitivity analysis is the selection of the performance measure used to evaluate the system. The traditional metric of average water particle travel time is inappropriate for geologic units such as the Ordovician and lower Silurian where solute transport is diffusion dominant. The use of life expectancy and groundwater age is a more appropriate metric for such a system. The mean life expectancy for the DGR and base-case parameters has been estimated to be in excess of 8 million years. The analyses support the conclusion that solute transport in the Ordovician sediments is diffusion dominant.

  18. NEA Scout Solar Sail: Half-scale Fold Time Lapse

    NASA Video Gallery

    In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...

  19. Time-windows-based filtering method for near-surface detection of leakage from geologic carbon sequestration sites

    SciTech Connect

    Pan, L.; Lewicki, J.L.; Oldenburg, C.M.; Fischer, M.L.

    2010-02-28

    We use process-based modeling techniques to characterize the temporal features of natural biologically controlled surface CO{sub 2} fluxes and the relationships between the assimilation and respiration fluxes. Based on these analyses, we develop a signal-enhancing technique that combines a novel time-window splitting scheme, a simple median filtering, and an appropriate scaling method to detect potential signals of leakage of CO{sub 2} from geologic carbon sequestration sites from within datasets of net near-surface CO{sub 2} flux measurements. The technique can be directly applied to measured data and does not require subjective gap filling or data-smoothing preprocessing. Preliminary application of the new method to flux measurements from a CO{sub 2} shallow-release experiment appears promising for detecting a leakage signal relative to background variability. The leakage index of ?2 was found to span the range of biological variability for various ecosystems as determined by observing CO{sub 2} flux data at various control sites for a number of years.

  20. Kibble-Zurek mechanism and finite-time scaling

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Yin, Shuai; Feng, Baoquan; Zhong, Fan

    2014-10-01

    The Kibble-Zurek (KZ) mechanism has been applied to a variety of systems ranging from low-temperature Bose-Einstein condensations to grand unification scales in particle physics and cosmology and from classical phase transitions to quantum phase transitions. Here, we show that finite-time scaling (FTS) provides a detailed improved understanding of the mechanism. In particular, the finite time scale, which is introduced by the external driving (or quenching) and results in FTS, is the origin of the division of the adiabatic regimes from the impulse regime in the KZ mechanism. The origin of the KZ scaling for the defect density, generated during the driving through a critical point, is not that the correlation length ceases growing in the nonadiabatic impulse regime, but rather, is that it is taken over by the effective finite length scale corresponding to the finite time scale. We also show that FTS accounts well for and improves the scaling ansatz proposed recently by Liu, Polkovnikov, and Sandvik, [Phys. Rev. B 89, 054307 (2014), 10.1103/PhysRevB.89.054307]. Further, we show that their universal power-law scaling form applies only to some observables in cooling but not to heating. Even in cooling, it is invalid either when an appropriate external field is present. However, this finite-time-finite-size scaling calls for caution in application of FTS. Detailed scaling behaviors of the FTS and finite-size scaling, along with their crossover, are explicitly demonstrated, with the dynamic critical exponent z being estimated for two- and three-dimensional Ising models under the usual Metropolis dynamics. These values of z are found to give rise to better data collapses than the extant values do in most cases but take on different values in heating and cooling in both two- and three-dimensional spaces.

  1. Diffusion Time-Scale of Porous Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke

    2001-01-01

    Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.

  2. Time scale of riverine sediment transfer in East Asia: from source to sink

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yang, Shouye; Zhao, Jianxin; Bi, Lei

    2015-04-01

    River on the earth surface is like the blood vessel for human body, which transports huge nutrients from the vast continent to the deep ocean. The knowledge of the river transit process leads to better understanding of the continent weathering and earth surface evolution. However, this process, particularly its timescale, is rarely studied due to the poor geological tracer. In this regard, our work aims to reconstruct the sediment transport time in Changjiang (Yangtze River) and Taiwan rivers by mean of "Comminution Age" based on 234U/238U in the lithogenic fraction. As the largest river in Asia, Changjiang is characterized by "Large river/delta + wide shelf + huge input + slower sediment transfer + strong anthropogenic impact", while the Taiwan rivers are featured for "Mountainous river + narrow shelf + huge and rapid sediment transfer + extreme climate event". The distinct geological and topographical features in both river systems result in different sediment "source to sink" processes in terms of time scale. Our calculation shows that the sediment transport time, which is largely depended on basin topography and its weathering condition, in Changjiang basin is much longer (400 ky) than that in Taiwan river basin (120 ky). This work provides the first quantitative constraint on time scale of sediment source to sink process in East Asia, which probably sheds a new insight into weathering regime and sediment recycling in East Asia and northwest Pacific. Acknowledgments This work was supported by the Foundation of Key Laboratory of Yangtze River Water Environment (YRWEF201305), Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology (MRE201402) and the Natural Science Foundation of China (41306040; 41225020).

  3. Time scale for point-defect equilibration in nanostructures

    SciTech Connect

    Millett, Paul C.; Wolf, Dieter; Desai, Tapan; Yamakov, Vesselin

    2008-10-20

    Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.

  4. Global sedimentary geology program

    SciTech Connect

    Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.

    1986-07-01

    The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

  5. Unification of Small and Large Time Scales for Biological Evolution: Deviations from Power Law

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Stauffer, Dietrich; Kunwar, Ambarish

    2003-02-01

    We develop a unified model that describes both “micro” and “macro” evolutions within a single theoretical framework. The ecosystem is described as a dynamic network; the population dynamics at each node of this network describes the “microevolution” over ecological time scales (i.e., birth, ageing, and natural death of individual organisms), while the appearance of new nodes, the slow changes of the links, and the disappearance of existing nodes accounts for the “macroevolution” over geological time scales (i.e., the origination, evolution, and extinction of species). In contrast to several earlier claims in the literature, we observe strong deviations from power law in the regime of long lifetimes.

  6. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. PMID:26953181

  7. Russian national time scale long-term stability

    NASA Technical Reports Server (NTRS)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-01-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  8. Trends in Surface Radiation Budgets at Climatic Time Scales

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Zhang, B.; Ma, Y.

    2015-12-01

    For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of radiative balance at global scale, however, the length of available satellite records is limited due to the frequent changes in the observing systems. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave and longwave surface radiative fluxes at climatic time scales and use them to learn about their variability and trends at global scale with a focus on the tropics. An attempt will be made to learn from the comparison about possible causes of observed trends. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updated knowledge on radiative balance as compared to what is known from shorter time records.

  9. The relationship of angiosperms and oleanane in petroleum through geologic time

    SciTech Connect

    Moldowan, J.M.; Dahl, J.E.; Huizinga, B.J.; Jacobson, S.R.; Taylor, D.W.

    1993-02-01

    The biological marker oleanane has been suggested as an indicator of angiosperm (flowering plant) input into source rocks and their derived oils. Parallels should therefore be evident between the angiosperm fossil record and oleanane occurrence and abundance. A global selection of more than 50 core samples from marine rocks of different ages and from different locations was quantitatively analyzed for oleanane to determine its abundance over geologic time relative to the bacterial marker hopane. Oleanane was recognized using Metastable Reaction Monitoring (MRM) GC-MS. A parallel was observed between the oleanane/hopane ratio and angiosperm diversity in the fossil record through time. The first fossil evidence of angiosperms is during the Early Cretaceous with radiation during the Late Cretaceous and Tertiary. Occurrences of oleanane are confirmed throughout the Cretaceous system. Early-to-middle Cretaceous (Berriasian-Cenomanian) occurrences are sporadic and oleanan/hopane ratios are less than 0.07. Late Cretaceous (Turonian-Maastrichtian) oleanane/hopane ratios range up to 0.15 with higher ratios in many Tertiary samples. It appears that oleanane/hopane ratios of oils can restrict the age of their unavailable or unknown source rocks. High ratios indicate Tertiary age and lower ratios can indicate Cretaceous or Tertiary age, depending on depositional environment. While these data do not rule out pre-Cretaceous oleanane, preliminary data show that oleanane/hopane ratios for Jurassic and older rock extracts are typically below our detection limits (<0.03). While oleanane precursors are abundant in angiosperms, they also occur, rarely, in other modern plant groups. We identified oleanane in low abundances in three Early Cretaceous fossil benettitialeans, an extinct plant group (Late Triassic to Late Cretaceous) thought to be related to angiosperms. These findings suggest that oleanane could be present in low abundance in some pre-Cretaceous rocks and oils.

  10. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.

    PubMed

    Robbins, L J; Lalonde, S V; Saito, M A; Planavsky, N J; Mloszewska, A M; Pecoits, E; Scott, C; Dupont, C L; Kappler, A; Konhauser, K O

    2013-07-01

    Here, we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones, and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn-binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case, zinc's geochemical and biological evolution may be decoupled and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn-organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints on potential couplings between the

  11. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    SciTech Connect

    Stephen R. Brown; Gregory Boitnott; Gilles Y. Bussod; Paul Hagin

    2005-12-13

    In building models of the subsurface, it is generally acknowledged that the required properties are rarely known or observed at the scale of the model elements. Typically they are constrained by measurements or observations made at other scales such as smaller scale core measurements or larger scale wellbore or field tests. As a result, model parameters contain a certain level of uncertainty even in the best of cases. These values typically require adjustment to fit field observations through a process commonly referred to as calibration. The characterization of flow and transport in the vadose and saturated zones, requires a detailed knowledge of subsurface structures, flow paths, and hydrophysical properties. We have constructed a methodology and workflow that use fine-scale measurements of heterogeneity to constrain physically based models for upscaling geophysical and hydrological properties. The methodology provides a means to assign hydrophysical properties at scales more appropriate to field applications, while preserving a physical influence of fine scale heterogeneities. We start by describing millimeter-scale physical properties measurements made on the surface of a sample. Combining physical properties maps and measured parameters with effective medium models, we show that these fine-scale heterogeneities can cause saturation dependent anisotropy in several properties such as electrical conductivity, relative permeability and velocity. Finally, we demonstrate that traditional upscaling of multiphase properties such as capillary pressure leads to inaccuracies that can be avoided by employing upscaling that explicitly incorporates fine-scale heterogeneity. This methodology provides a more accurate interpretation and representation of the subsurface for both environmental and fossil fuel reservoir applications, and can be extended to the study of surface damage in man made structures such as concrete. Realistic hydrologic, geophysical and hydrochemical

  12. Multiple-time scales analysis of physiological time series under neural control

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1998-01-01

    We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.

  13. The Average Density of Extrasolar Habitable Planets Over Cosmological Time Scales

    NASA Astrophysics Data System (ADS)

    von Bloh, W.; Franck, S.; Bounama, C.; Schellnhuber, H. J.

    A general modelling scheme for assessing the suitability for life on any Earth-like ex- trasolar planet is presented. This approach is based on an integrated Earth system anal- ysis in order to calculate the habitable zone in main-sequence-star planetary systems. Within this model the evolution of the habitable zone over geological time scales is straightforward to calculate and allows an estimate of the probability that an Earth-like planet is within the habitable zone of an extrasolar planetary system. The probability depends explicitly on the time since planet formation. A new attempt by Lineweaver (2001) to estimate the formation rate of Earth-like planets over cosmological time scales is applied to calculate the average density of habitable planets as a function of time. This approach is based on a quantitative determination of metallicity from star formation rates as an ingredient for forming Earth-like planets. Combining this result with our estimations of extrasolar habitable zones yields the average density of habit- able planets over cosmological time scales. We find that there was a maximum density of habitable planets at the time of Earth's origin.

  14. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  15. Scaling properties in time-varying networks with memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  16. Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects

    PubMed Central

    Dillon, Michael E.; Frazier, Melanie R.

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes

  17. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Walthert, Lorenz; Schleppi, Patrick; Feng, Xiaojuan; Eglinton, Timothy Ian

    2016-06-01

    Soil organic matter (SOM) forms the largest terrestrial pool of carbon outside of sedimentary rocks. Radiocarbon is a powerful tool for assessing soil organic matter dynamics. However, due to the nature of the measurement, extensive 14C studies of soil systems remain relatively rare. In particular, information on the extent of spatial and temporal variability in 14C contents of soils is limited, yet this information is crucial for establishing the range of baseline properties and for detecting potential modifications to the SOM pool. This study describes a comprehensive approach to explore heterogeneity in bulk SOM 14C in Swiss forest soils that encompass diverse landscapes and climates. We examine spatial variability in soil organic carbon (SOC) 14C, SOC content and C : N ratios over both regional climatic and geologic gradients, on the watershed- and plot-scale and within soil profiles. Results reveal (1) a relatively uniform radiocarbon signal across climatic and geologic gradients in Swiss forest topsoils (0-5 cm, Δ14C = 130 ± 28.6, n = 12 sites), (2) similar radiocarbon trends with soil depth despite dissimilar environmental conditions, and (3) micro-topography dependent, plot-scale variability that is similar in magnitude to regional-scale variability (e.g., Gleysol, 0-5 cm, Δ14C 126 ± 35.2, n = 8 adjacent plots of 10 × 10 m). Statistical analyses have additionally shown that Δ14C signature in the topsoil is not significantly correlated to climatic parameters (precipitation, elevation, primary production) except mean annual temperature at 0-5 cm. These observations have important consequences for SOM carbon stability modelling assumptions, as well as for the understanding of controls on past and current soil carbon dynamics.

  18. Analysis of College Students' Ideas about Geologic Time: Questionnaires and Interviews From Four Institutions

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Libarkin, J. C.; Beilfuss, M.; Dahl, J.; Boone, W. J.

    2002-05-01

    Approximately 300 questionnaires and 50 interviews were conducted with introductory and non-science major college students from four institutions: a small elite private school, two large state schools, and one small public liberal arts college. Students were probed on a variety of topics about the Earth system, including geologic time. A number of widely held preconceptions were uncovered on all four campuses, although scientific ideas appeared with greater frequency at the single private institution. Predominate non-scientific preconceptions included: 1) "Instantaneous" creation, wherein the Earth is formed with a modern-day surface appearance, although not necessarily including life. This idea is traced to religious ideas in about half of the cases. 2) Life existed when the Earth first formed. Approximately 40-70 percent of public students and 30 percent of private students believed life existed "when the Earth was formed". This life takes a variety of forms, including simple or single-celled life, water-born life, and life essentially identical to modern. 3) Experiential preconceptions. A variety of ideas possibly garnered from books, secondary school curriculum, film, and TV were prevalent. For instance, a number of ideas about the appearance of the Earth at formation are derivative of scientific ideas, such as the idea that a supercontinent (Pangea) existed, the Earth as covered with water or ice, and that algae were present at Earth's formation. Student interviews also revealed difficulty in extrapolating scientific concepts into a future context. For example, several students correctly showed the movement of continents from the past to present, but showed no change in position when queried about the appearance of the Earth's surface well into the future.

  19. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  20. Soils and Global Change in the Carbon Cycle over Geological Time

    NASA Astrophysics Data System (ADS)

    Retallack, G. J.

    2003-12-01

    sedimentary rocks; organic matter burial is an important long-term control on CO2 levels in the atmosphere (Berner and Kothavala, 2001). The magnitudes of carbon pools and fluxes involved provide a perspective on the importance of soils compared with other carbon reservoirs ( Figure 1). (6K)Figure 1. Pools and fluxes of reduced carbon (bold) and oxidized carbon (regular) in Gt in the pre-industrial carbon cycle (sources Schidlowski and Aharon, 1992; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Before industrialization, there was only 600 Gt (1 Gt=1015g) of carbon in CO2 and methane in the atmosphere, which is about the same amount as in all terrestrial biomass, but less than half of the reservoir of soil organic carbon. The ocean contained only ˜3 Gt of biomass carbon. The deep ocean and sediments comprised the largest reservoir of bicarbonate and organic matter, but that carbon has been kept out of circulation from the atmosphere for geologically significant periods of time (Schidlowski and Aharon, 1992). Humans have tapped underground reservoirs of fossil fuels, and our other perturbations of the carbon cycle have also been significant ( Vitousek et al., 1997b; see Chapter 8.10).Atmospheric increase of carbon in CO2 to 750 Gt C by deforestation and fossil fuel burning has driven ongoing global warming, but is not quite balanced by changes in the other carbon reservoirs leading to search for a "missing sink" of some 1.8±1.3 GtC, probably in terrestrial organisms, soils, and sediments of the northern hemisphere (Keeling et al., 1982; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Soil organic matter is a big, rapidly cycling reservoir, likely to include much of this missing sink.During the geological past, the sizes of, and fluxes between, these reservoirs have varied enormously as the world has alternated between greenhouse times of high carbon content of the atmosphere, and icehouse times of low carbon content of the atmosphere. Oscillations in the atmospheric

  1. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  2. Geologic map of the east half of the Lime Hills 1:250,000-scale quadrangle, Alaska

    USGS Publications Warehouse

    Gamble, Bruce M.; Reed, Bruce L.; Richter, Donald H.; Lanphere, Marvin A.

    2013-01-01

    This map is compiled from geologic mapping conducted between 1985 and 1992 by the U.S. Geological Survey as part of the Alaska Mineral Resource Assessment Program. That mapping built upon previous USGS work (1963–1988) unraveling the magmatic history of the Alaska–Aleutian Range batholith. Quaternary unit contacts depicted on this map are derived largely from aerial-photograph interpretation. K-Ar ages made prior to this study have been recalculated using 1977 decay constants. The east half of the Lime Hills 1:250,000-scale quadrangle includes part of the Alaska–Aleutian Range batholith and several sequences of sedimentary rocks or mixed sedimentary and volcanic rocks. The Alaska–Aleutian Range batholith contains rocks that represent three major igneous episodes, (1) Early and Middle Jurassic, (2) Late Cretaceous and early Tertiary, and (3) middle Tertiary; only rocks from the latter two episodes are found in this map area. The map area is one of very steep and rugged terrain; elevations range from a little under 1,000 ft (305 m) to 9,828 ft (2,996 m). Foot traverses are generally restricted to lowermost elevations. Areas suitable for helicopter landings can be scarce at higher elevations. Most of the area was mapped from the air, supplemented by direct examination of rocks where possible. This restricted access greatly complicates understanding some of the more complex geologic units. For example, we know there are plutons whose compositions vary from gabbro to granodiorite, but we have little insight as to how these phases are distributed and what their relations might be to each other. It is also possible that some of what we have described as compositionally complex plutons might actually be several distinct intrusions.

  3. Inferring synaptic structure in presence of neural interaction time scales.

    PubMed

    Capone, Cristiano; Filosa, Carla; Gigante, Guido; Ricci-Tersenghi, Federico; Del Giudice, Paolo

    2015-01-01

    Biological networks display a variety of activity patterns reflecting a web of interactions that is complex both in space and time. Yet inference methods have mainly focused on reconstructing, from the network's activity, the spatial structure, by assuming equilibrium conditions or, more recently, a probabilistic dynamics with a single arbitrary time-step. Here we show that, under this latter assumption, the inference procedure fails to reconstruct the synaptic matrix of a network of integrate-and-fire neurons when the chosen time scale of interaction does not closely match the synaptic delay or when no single time scale for the interaction can be identified; such failure, moreover, exposes a distinctive bias of the inference method that can lead to infer as inhibitory the excitatory synapses with interaction time scales longer than the model's time-step. We therefore introduce a new two-step method, that first infers through cross-correlation profiles the delay-structure of the network and then reconstructs the synaptic matrix, and successfully test it on networks with different topologies and in different activity regimes. Although step one is able to accurately recover the delay-structure of the network, thus getting rid of any a priori guess about the time scales of the interaction, the inference method introduces nonetheless an arbitrary time scale, the time-bin dt used to binarize the spike trains. We therefore analytically and numerically study how the choice of dt affects the inference in our network model, finding that the relationship between the inferred couplings and the real synaptic efficacies, albeit being quadratic in both cases, depends critically on dt for the excitatory synapses only, whilst being basically independent of it for the inhibitory ones. PMID:25807389

  4. Multi-Scale Scratch Analysis in Qinghai-Tibet Plateau and its Geological Implications

    NASA Astrophysics Data System (ADS)

    Sun, Yanyun; Yang, Wencai; Yu, Changqing

    2016-04-01

    Multi-scale scratch analysis on a regional gravity field is a new data processing system for depicting three-dimensional density structures and tectonic features. It comprises four modules including the spectral analysis of potential fields, multi-scale wavelet analysis, density distribution inversion, and scratch analysis. The multi-scale scratch analysis method was applied to regional gravity data to extract information about the deformation belts in the Qinghai-Tibet Plateau, which can help reveal variations of the deformation belts and plane distribution features from the upper crust to the lower crust, provide evidence for the study of three-dimensional crustal structures, and define distribution of deformation belts and mass movement. Results show the variation of deformation belts from the upper crust to the lower crust. The deformation belts vary from dense and thin in the upper crust to coarse and thick in the lower crust, demonstrating that vertical distribution of deformation belts resembles a tree with a coarse and thick trunk in the lower part and dense and thin branches at the top. The dense and thin deformation areas in the upper crust correspond to crustal shortening areas, while the thick and continuous deformation belts in the lower crust indicate the structural framework of the plateau. Additionally, the lower crustal deformation belts recognized by the multi-scale scratch analysis coincide approximately with the crustal deformation belts recognized using single-scale scratch analysis. However, deformation belts recognized by the latter are somewhat rough while multi-scale scratch analysis can provide more detailed and accurate results.

  5. A methane-based time scale for Vostok ice

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.; Raymo, Maureen E.

    2003-02-01

    Tuning the Vostok methane signal to mid-July 30°N insolation yields a new ice-core gas time scale. This exercise has two rationales: (1) evidence supporting Kutzbach's theory that low-latitude summer insolation in the northern hemisphere controls the strength of tropical monsoons, and (2) interhemispheric CH 4 gradients showing that the main control of orbital-scale CH 4 variations is tropical (monsoonal) sources. The immediate basis for tuning CH 4 to mid-July insolation is the coincident timing of the most recent (pre-anthropogenic) CH 4 maximum at 11,000-10,500 calendar years ago and the most recent July 30°N insolation maximum (all ages in this paper are in calendar years unless specified as 14C years). The resulting CH 4 gas time scale diverges by as much as 15,000 years from the GT4 gas time scale (Petit et al., Nature 399 (1999) 429) prior to 250,000 years ago, but it matches fairly closely a time scale derived by tuning ice-core δ18O atm to a lagged insolation signal (Shackleton, Science 289 (2000) 1897). Most offsets between the CH 4 and δ18O atm time scales can be explained by assuming that tropical monsoons and ice sheets alternate in controlling the phase of the δ18O atm signal. The CH 4 time scale provides an estimate of the timing of the Vostok CO 2 signal against SPECMAP marine δ18O, often used as an index of global ice volume. On the CH 4 time scale, all CO 2 responses are highly coherent with SPECMAP δ18O at the orbital periods. CO 2 leads δ18O by 5000 years at 100,000 years (eccentricity), but the two signals are nearly in-phase at 41,000 years (obliquity) and 23,000 years (precession). The actual phasing between CO 2 and ice volume is difficult to infer because of likely SST overprints on the SPECMAP δ18O signal. CO 2 could lead, or be in phase with, ice volume, but is unlikely to lag behind the ice response.

  6. Trends in Surface Radiation Budgets at Climatic Time Scales

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Zhang, Banglin; Ma, Yingtao

    2015-04-01

    For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of the radiative balance at global scale, however, due to the frequent changes in the observing systems, the length of available satellite records is limited. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave, longwave and spectral surface radiative fluxes at climatic time scales and use them to learn about their variability and trends. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updates on the radiative balance as compared to what is known from shorter time records and from models.

  7. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  8. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  9. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  10. Going up in time and length scales in modeling polymers

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.

    Polymer properties depend on a wide range of coupled length and time scales, with unique macroscopic viscoelastic behavior stemming from interactions at the atomistic level. The need to probe polymers across time and length scales and particularly computational modeling is inherently challenging. Here new paths to probing long time and length scales including introducing interactions into traditional bead-spring models and coarse graining of atomistic simulations will be compared and discussed. Using linear polyethylene as a model system, the degree of coarse graining with two to six methylene groups per coarse-grained bead derived from a fully atomistic melt simulation were probed. We show that the degree of coarse graining affects the measured dynamic. Using these models we were successful in probing highly entangled melts and were able reach the long-time diffusive regime which is computationally inaccessible using atomistic simulations. We simulated the relaxation modulus and shear viscosity of well-entangled polyethylene melts for scaled times of 500 µs. Results for plateau modulus are in good agreement with experiment. The long time and length scale is coupled to the macroscopic viscoelasticity where the degree of coarse graining sets the minimum length scale instrumental in defining polymer properties and dynamics. Results will be compared to those obtained from simple bead-spring models to demonstrate the additional insight that can be gained from atomistically inspired coarse grained models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Time scales of crystal mixing in magma mushes

    NASA Astrophysics Data System (ADS)

    Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain

    2016-02-01

    Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.

  12. Time scales for molecule formation by ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  13. Dynamics symmetries of Hamiltonian system on time scales

    SciTech Connect

    Peng, Keke Luo, Yiping

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  14. Developments in real-time monitoring for geologic hazard warnings (Invited)

    NASA Astrophysics Data System (ADS)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  15. Landscape behaviour at storm and millennial time scales: How good are landscape evolution models at prediction?

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Coulthard, T. J.; Lowry, J.

    2012-12-01

    Landscape evolution models theoretically provide the ability to examine both short and long-term evolution processes. The hydrology and sediment transport components of these models have been largely based on physical principals and well understood theory yet they have not been fully assessed or employed across all environments. They have been recognised as valuable tools with which to explore the short and long-term erosional behaviour of both natural and anthropogenic landscapes. Of particular interest are anthropogenic landscapes (i.e. post-mining landscapes) which often have steeper slopes, unconsolidated materials and a higher erodibility than the undisturbed surface where these models have been used to examine the long-term erosional behaviour usually at millennial scales. Further, such landscapes often have to contain potential contaminants (i.e. radionuclides, acid generating materials) that need to be contained over geological timescales. Here two landscape evolution models (SIBERIA and CAESAR) are used to examine a proposed rehabilitation design for the ERA Ranger mine in the Northern Territory, Australia. The SIBERIA model has been developed to operate at annual timescales and has been calibrated for surface conditions at the site. CAESAR operates at sub-hourly time scales and employs hydrology and sediment characteristics in its calibration. The results demonstrate that despite the different modelling approaches, both SIBERIA and CAESAR produce similar spatial and temporal outcomes with erosion patterns (i.e. gullying) and rates very comparable. As a result of SIBERIA using annual time scales the model run time is significantly quicker than CAESAR however CAESAR can provide important information at the storm scale. Significantly, both models are sensitive to parameterisation with soils evolution (pedogenesis) and vegetation having significant influences on erosion rates. The findings demonstrate the usefulness of landscape evolution models to explore

  16. Choosing optimal exposure times for XRF core-scanning: Suggestions based on the analysis of geological reference materials

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Löwemark, Ludvig; Chang, Queenie; Lin, Tzu-Yu; Chen, Huei-Fen; Song, Sheng-Rong; Wei, Kuo-Yen

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast and nondestructive technique to assess elemental variations of unprocessed sediments. However, although the exposure time of XRF-scanning directly affects the scanning counts and total measurement time, only a few studies have considered the influence of exposure time during the scan. How to select an optimal exposure time to achieve reliable results and reduce the total measurement time is an important issue. To address this question, six geological reference materials from the Geological Survey of Japan (JLK-1, JMS-1, JMS-2, JSD-1, JSD-2, and JSD-3) were scanned by the Itrax-XRF core scanner using the Mo- and the Cr-tube with different exposure times to allow a comparison of scanning counts with absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in paleoenvironmental studies were examined for the different exposure times and X-ray tubes. The results show that for those elements with relatively high concentrations or high detectability, the correlation coefficients are higher than 0.90 for all exposure times. In contrast, for the low detectability or low concentration elements, the correlation coefficients are relatively low, and improve little with increased exposure time. Therefore, we suggest that the influence of different exposure times is insignificant for the accuracy of the measurements. Thus, caution must be taken when interpreting the results of elements with low detectability, even when the exposure times are long and scanning counts are reasonably high.

  17. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  18. Appropriate time scales for nonlinear analyses of deterministic jump systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya

    2011-06-01

    In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.

  19. Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2014-12-01

    We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.

  20. Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units

    NASA Technical Reports Server (NTRS)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2014-01-01

    We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.

  1. Earthquake triggering and large-scale geologic storage of carbon dioxide

    PubMed Central

    Zoback, Mark D.; Gorelick, Steven M.

    2012-01-01

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO2 emissions associated with coal-based electrical power generation and other industrial sources of CO2 [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185–5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO2 into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO2 repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  2. Earthquake triggering and large-scale geologic storage of carbon dioxide.

    PubMed

    Zoback, Mark D; Gorelick, Steven M

    2012-06-26

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO(2) emissions associated with coal-based electrical power generation and other industrial sources of CO(2) [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO(2) into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO(2) repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  3. Separation of Time Scales in a Quantum Newton's Cradle.

    PubMed

    van den Berg, R; Wouters, B; Eliëns, S; De Nardis, J; Konik, R M; Caux, J-S

    2016-06-01

    We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior. PMID:27314723

  4. Separation of Time Scales in a Quantum Newton's Cradle

    NASA Astrophysics Data System (ADS)

    van den Berg, R.; Wouters, B.; Eliëns, S.; De Nardis, J.; Konik, R. M.; Caux, J.-S.

    2016-06-01

    We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.

  5. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  6. Synthetic geology - Exploring the "what if?" in geology

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  7. Soils and Global Change in the Carbon Cycle over Geological Time

    NASA Astrophysics Data System (ADS)

    Retallack, G. J.

    2003-12-01

    sedimentary rocks; organic matter burial is an important long-term control on CO2 levels in the atmosphere (Berner and Kothavala, 2001). The magnitudes of carbon pools and fluxes involved provide a perspective on the importance of soils compared with other carbon reservoirs ( Figure 1). (6K)Figure 1. Pools and fluxes of reduced carbon (bold) and oxidized carbon (regular) in Gt in the pre-industrial carbon cycle (sources Schidlowski and Aharon, 1992; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Before industrialization, there was only 600 Gt (1 Gt=1015g) of carbon in CO2 and methane in the atmosphere, which is about the same amount as in all terrestrial biomass, but less than half of the reservoir of soil organic carbon. The ocean contained only ˜3 Gt of biomass carbon. The deep ocean and sediments comprised the largest reservoir of bicarbonate and organic matter, but that carbon has been kept out of circulation from the atmosphere for geologically significant periods of time (Schidlowski and Aharon, 1992). Humans have tapped underground reservoirs of fossil fuels, and our other perturbations of the carbon cycle have also been significant ( Vitousek et al., 1997b; see Chapter 8.10).Atmospheric increase of carbon in CO2 to 750 Gt C by deforestation and fossil fuel burning has driven ongoing global warming, but is not quite balanced by changes in the other carbon reservoirs leading to search for a "missing sink" of some 1.8±1.3 GtC, probably in terrestrial organisms, soils, and sediments of the northern hemisphere (Keeling et al., 1982; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Soil organic matter is a big, rapidly cycling reservoir, likely to include much of this missing sink.During the geological past, the sizes of, and fluxes between, these reservoirs have varied enormously as the world has alternated between greenhouse times of high carbon content of the atmosphere, and icehouse times of low carbon content of the atmosphere. Oscillations in the atmospheric

  8. Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Tavella, Patrizia; Thomas, Claudine

    1990-01-01

    The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.

  9. Speech Compensation for Time-Scale-Modified Auditory Feedback

    ERIC Educational Resources Information Center

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  10. Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling

    NASA Astrophysics Data System (ADS)

    Birmingham, Danny; Sen, Siddhartha

    2000-02-01

    We study the formation of Bañados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  11. Spectral decomposition of time-scales in hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Riml, Joakim

    2015-04-01

    Hyporheic exchange of heat and solute mass in streams is manifested both in form of different exchange mechanisms and their associated distributions of residence times as well as the range of time-scales characterizing the forcing boundary conditions. A recently developed analytical technique separates the spectrum of time-scales and relates the forcing boundary fluctuations of heat and solute mass through a physical model of the hydrological transport to the response of heat and solute mass. This spectral decomposition can be done both for local (point-scale) observations in the hyporhiec zone itself as well as for transport processes on the watershed scale that can be considered 'well-behaved' in terms of knowledge of the forcing (input) quantities. This paper presents closed-form solutions in spectral form for the point-, reach- and watershed-scale and discusses their applicability to selected data of heat and solute concentration. We quantify the reliability and highlight the benefits of the spectral approach to different scenarios and, peculiarly, the importance for linking the periods in the spectral decomposition of the solute response to the distribution of transport times that arise due to the multitude of exchange mechanisms existing in a watershed. In a point-scale example the power spectra of in-stream temperature is related to the power spectrum of the temperature at a specific sediment depth by means of exact solutions of a physically based formulation of the vertical heat transport. It is shown that any frequency (ω) of in-stream temperature fluctuation scales with the effective thermal diffusivity (κe) and the vertical separation distance between the pairs of temperature (ɛ) data as ω ≈ κe/(2ɛ2), which implies a decreasing weight to higher frequencies (shorter periods) with depth. Similarly on the watershed-scale one can link the watershed dispersion to the damping of the concentration fluctuations in selected frequency intervals

  12. Characterization of a binary karst aquifer using process time scales

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Wagner, Thomas

    2013-04-01

    Within "a theoretical framework for the interpretation of karst spring signals" (Covington, EGU2012-853-1) process length scales that characterize the travel distances required for damping pulses of physicochemical parameters of spring waters such as electrical conductivity and temperature were derived (Covington et al., J. Geophys. Res., 2012). These length scales can be converted to corresponding process time scales characterizing the travel times needed for damping the pulses. This is particularly convenient if the travel distance is unknown. In this case the time lag between the increase of spring discharge and subsequent physicochemical responses at the spring may provide an estimate of the travel time. In binary karst aquifers with localized recharge from a sinking stream, the recharge pulse can be directly observed and thus travel times are readily obtained from the time delay of the physicochemical spring responses. If the spring response is strongly damped travel times can be inferred from artificial tracer testing. In this work, time scales for carbonate dissolution and heat transport were used for characterizing the binary Lurbach-Tanneben karst aquifer (Austria). This aquifer receives allogenic recharge from the sinking stream Lurbach and is drained by two springs, namely the Hammerbach and the Schmelzbach. The two springs show different thermal responses to two recharge events in December 2008: Whereas the temperature of the Schmelzbach responds within one day after the flood pulse in the Lurbach, the temperature signal is strongly damped at the Hammerbach. The evaluation based on the thermal time scale thus suggests that the Schmelzbach spring is fed by conduits with hydraulic diameters at least in the order of decimetres. In contrast, the damping of the thermal responses at the Hammerbach may be due to lower hydraulic diameters and/or longer residence times. Interestingly, the Hammerbach did show thermal responses in the time before a flood event in

  13. Heterogeneity and Scaling in Geologic Media: Applications to Transport in the Vadose and Saturated Zones

    SciTech Connect

    Brown, Stephen R.

    2003-06-01

    The DOE National Laboratories have extensive environmental remediation and operations centers as well as research teams specializing in environmental problems. These organizations are concerned largely with pollution prevention, safe disposal of hazardous materials, polluted site identification and characterization, and cleanup of polluted sites. These organizations, and the private-industry subcontractors they hire, require state of the art tools and techniques for characterization and monitoring. Our research will contribute to this effort by providing descriptions of heterogeneities and scaling properties in the vadose and saturated zones with particular emphasis on flow and transport. This work will also provide an important link between some geophysical measurements and fluid transport characteristics.

  14. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 folio I-1865

    USGS Publications Warehouse

    Schruben, Paul G.

    1997-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)

  15. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 Folio I-1865

    USGS Publications Warehouse

    Schruben, Paul G.

    1996-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published by the U.S. Geological Survey (USGS), the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica in 1987 at a scale of 1:500,000 in USGS Folio I-1865. The following layers of the map are available on the CD-ROM: geology, favorable domains for selected deposit types, Bouguer gravity, isostatic gravity, mineral deposits, and rock geochemistry sample points. Some of the layers are provided in the following formats: ArcView 1 for Windows and UNIX, ARC/INFO 6.1.2 Export, Digital Line Graph (DLG) Optional, and Drawing Exchange File (DXF). This CD-ROM was produced in accordance with the ISO 9660 and Apple Computer's HFS standards.

  16. What is the timing of orbital-scale monsoon changes?

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2006-04-01

    A major (but little noted) divergence of opinion has developed among climate scientists over the orbital-scale periodicity and phasing of tropical monsoon variations. Kutzbach (1981. Monsoon climate of the early Holocene: climate experiment with Earth's orbital parameters for 9000 years ago. Science 214, 59-61) proposed that monsoons are driven by northern summer insolation at the precession period, but Clemens and Prell (1990. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments. Paleoceanography 5, 109-145; 2003. A 350,000-year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Marine Geology 201, 35-51) inferred a more complicated response tied to latent heat transfer from the Southern Hemisphere. Because tropical monsoons affect climate over a vast area, resolving this divergence is an important task for the climate community. The purpose of this note is to highlight definitive evidence from high-resolution dating of speleothem calcite that provides unambiguous support for the Kutzbach hypothesis.

  17. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  18. The Available Time Scale: Measuring Foster Parents' Available Time to Foster

    ERIC Educational Resources Information Center

    Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.

    2009-01-01

    This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…

  19. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  20. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431524

  1. Time scales and heterogeneous structure in geodynamic earth models

    PubMed

    Bunge; Richards; Lithgow-Bertelloni; Baumgardner; Grand; Romanowicz

    1998-04-01

    Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the problem of unknown initial conditions can be overcome. The pattern of lowermost mantle structure at the core-mantle boundary is controlled by subduction history, although seismic tomography reveals intense large-scale hot (low-velocity) upwelling features not explicitly predicted by the models. PMID:9525864

  2. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  3. Wavelet analysis and scaling properties of time series.

    PubMed

    Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481

  4. Brownian motion at fast time scales and thermal noise imaging

    NASA Astrophysics Data System (ADS)

    Huang, Rongxin

    This dissertation presents experimental studies on Brownian motion at fast time scales, as well as our recent developments in Thermal Noise Imaging which uses thermal motions of microscopic particles for spatial imaging. As thermal motions become increasingly important in the studies of soft condensed matters, the study of Brownian motion is not only of fundamental scientific interest but also has practical applications. Optical tweezers with a fast position-sensitive detector provide high spatial and temporal resolution to study Brownian motion at fast time scales. A novel high bandwidth detector was developed with a temporal resolution of 30 ns and a spatial resolution of 1 A. With this high bandwidth detector, Brownian motion of a single particle confined in an optical trap was observed at the time scale of the ballistic regime. The hydrodynamic memory effect was fully studied with polystyrene particles of different sizes. We found that the mean square displacements of different sized polystyrene particles collapse into one master curve which is determined by the characteristic time scale of the fluid inertia effect. The particle's inertia effect was shown for particles of the same size but different densities. For the first time the velocity autocorrelation function for a single particle was shown. We found excellent agreement between our experiments and the hydrodynamic theories that take into account the fluid inertia effect. Brownian motion of a colloidal particle can be used to probe three-dimensional nano structures. This so-called thermal noise imaging (TNI) has been very successful in imaging polymer networks with a resolution of 10 nm. However, TNI is not efficient at micrometer scale scanning since a great portion of image acquisition time is wasted on large vacant volume within polymer networks. Therefore, we invented a method to improve the efficiency of large scale scanning by combining traditional point-to-point scanning to explore large vacant

  5. A Domain Decomposition Approach for Large-Scale Simulations of Flow Processes in Hydrate-Bearing Geologic Media

    SciTech Connect

    Zhang, Keni; Moridis, G.J.; Wu, Y.-S.; Pruess, K.

    2008-07-01

    Simulation of the system behavior of hydrate-bearing geologic media involves solving fully coupled mass- and heat-balance equations. In this study, we develop a domain decomposition approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This approach partitions a simulation domain into small subdomains. The full model domain, consisting of discrete subdomains, is still simulated simultaneously by using multiple processes/processors. Each processor is dedicated to following tasks of the partitioned subdomain: updating thermophysical properties, assembling mass- and energy-balance equations, solving linear equation systems, and performing various other local computations. The linearized equation systems are solved in parallel with a parallel linear solver, using an efficient interprocess communication scheme. This new domain decomposition approach has been implemented into the TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this paper, we will demonstrate applications for the new approach in simulating field-scale models for gas production from gas-hydrate deposits.

  6. Surface charge measurements in barrier discharges on different time scales

    NASA Astrophysics Data System (ADS)

    Wild, Robert; Volkhausen, Christian; Benduhn, Johannes; Stollenwerk, Lars

    2015-09-01

    The deposition of surface charge in barrier discharges is a process that influences the ongoing discharge significantly. This contribution presents the measurement of absolute surface charge densities and their dynamics in a laterally extended setup. An electro-optic BSO crystal is used as dielectric. The absolute charge density on its surface is deduced from the change of polarisation of light passing the crystal. Using different temporal resolutions, the behavior of charge is investigated on three different time scales. The highest temporal resolution of the technique is in the order of hundreds of nanoseconds. Therefore it is possible for the first time to observe the charge deposition process during an active discharge. On the time scale of the applied voltage period (several microseconds), the conservation mechanisms of a lateral discharge pattern is investigated. For this, the influence of surface charge and metastable species in the volume is estimated. Further, the behavior of the surface charge spots on a variation of the external voltage and gas pressure is studied. Measurements on a time scale in the magnitude of seconds reveal charge decay and transport phenomena. This work was funded by the Deutsche Forschungsgemeinschaft.

  7. Differential force microscope for long time-scale biophysical measurements

    PubMed Central

    Choy, Jason L.; Parekh, Sapun H.; Chaudhuri, Ovijit; Liu, Allen P.; Bustamante, Carlos; Footer, Matthew J.; Theriot, Julie A.; Fletcher, Daniel A.

    2011-01-01

    Force microscopy techniques including optical trapping, magnetic tweezers, and atomic force microscopy (AFM) have facilitated quantification of forces and distances on the molecular scale. However, sensitivity and stability limitations have prevented the application of these techniques to biophysical systems that generate large forces over long times, such as actin filament networks. Growth of actin networks drives cellular shape change and generates nano-Newtons of force over time scales of minutes to hours, and consequently network growth properties have been difficult to study. Here, we present an AFM-based differential force microscope with integrated epifluorescence imaging in which two adjacent cantilevers on the same rigid support are used to provide increased measurement stability. We demonstrate 14 nm displacement control over measurement times of 3 hours and apply the instrument to quantify actin network growth in vitro under controlled loads. By measuring both network length and total network fluorescence simultaneously, we show that the average cross-sectional density of the growing network remains constant under static loads. The differential force microscope presented here provides a sensitive method for quantifying force and displacement with long time-scale stability that is useful for measurements of slow biophysical processes in whole cells or in reconstituted molecular systems in vitro. PMID:17477674

  8. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  9. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    SciTech Connect

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  10. Sublinear scaling for time-dependent stochastic density functional theory

    SciTech Connect

    Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran

    2015-01-21

    A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.

  11. Thermal lens measurements in liquids on a submicrosecond time scale

    SciTech Connect

    Isak, S. J.; Komorowski, S. J.; Merrow, C. N.; Poston, P. E.; Eyring, E. M.

    1989-03-01

    The use of the thermal lens method is shown to be quite suitable for kinetic studies of quenching on a submicrosecond time scale. The lower limit of time resolution that can be achieved is determined by the acoustic transit time, /tau//sub /ital a//, in the medium. A thermal lens signal with a 100-ns time constant due to the quenched triplet state of benzophenone is readily measured. The thermal lens method is superior to the photoacoustic (PA) method in the breadth of the accessible time range, and in the significantly fewer measurements required to obtain accurate data, including no requirement for a reference sample; it is also less sensitive to geometrical and laser power requirements than is the PA method.

  12. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices. PMID:23716006

  14. Tailored real-time scaling of heteronuclear couplings

    NASA Astrophysics Data System (ADS)

    Schilling, Franz; Glaser, Steffen J.

    2012-10-01

    Heteronuclear couplings are a valuable source of molecular information, which is measured from the multiplet splittings of an NMR spectrum. Radiofrequency irradiation on one coupled nuclear spin allows to modify the effective coupling constant, scaling down the multiplet splittings in the spectrum observed at the resonance frequency of the other nuclear spin. Such decoupling sequences are often used to collapse a multiplet into a singlet and can therefore simplify NMR spectra significantly. Continuous-wave (cw) decoupling has an intrinsic non-linear offset dependence of the scaling of the effective J-coupling constant. Using optimal control pulse optimization, we show that virtually arbitrary off-resonance scaling of the J-coupling constant can be achieved. The new class of tailored decoupling pulses is named SHOT (Scaling of Heteronuclear couplings by Optimal Tracking). Complementing cw irradiation, SHOT pulses offer an alternative approach of encoding chemical shift information indirectly through off-resonance decoupling, which however makes it possible for the first time to achieve linear J scaling as a function of offset frequency. For a simple mixture of eight aromatic compounds, it is demonstrated experimentally that a 1D-SHOT {1H}-13C experiment yields comparable information to a 2D-HSQC and can give full assignment of all coupled spins.

  15. Statistical Analysis of Sensor Network Time Series at Multiple Time Scales

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Donnellan, A.

    2013-12-01

    Modern sensor networks often collect data at multiple time scales in order to observe physical phenomena that occur at different scales. Whether collected by heterogeneous or homogenous sensor networks, measurements at different time scales are usually subject to different dynamics, noise characteristics, and error sources. We explore the impact of these effects on the results of statistical time series analysis methods applied to multi-scale time series data. As a case study, we analyze results from GPS time series position data collected in Japan and the Western United States, which produce raw observations at 1Hz and orbit corrected observations at time resolutions of 5 minutes, 30 minutes, and 24 hours. We utilize the GPS analysis package (GAP) software to perform three types of statistical analysis on these observations: hidden Markov modeling, probabilistic principle components analysis, and covariance distance analysis. We compare the results of these methods at the different time scales and discuss the impact on science understanding of earthquake fault systems generally and recent large seismic events specifically, including the Tohoku-Oki earthquake in Japan and El Mayor-Cucupah earthquake in Mexico.

  16. Radio-isotopic calibration of the Late Eocene - Early Oligocene geomagnetic polarity time scale

    NASA Astrophysics Data System (ADS)

    Sahy, Diana; Fischer, Anne U.; Condon, Daniel J.; Terry, Dennis O.; Hiess, Joe; Abels, Hemmo; Huesing, Silja K.; Kuiper, Klaudia F.

    2013-04-01

    The Geomagnetic Polarity Time Scale (GPTS) has been the subject of several revisions over the last few decades, with a trend toward increasing reliance on astronomically tuned age models over traditional radio-isotopic calibration. In the 2012 Geological Time Scale (GTS12) a comparison between radio-isotopic and astronomical age models for the GPTS yielded partially divergent results, with discrepancies of up to 0.4 Myr in the age of magnetic reversals around the Eocene - Oligocene transition (Vandenberghe et al., 2012). Radio-isotopic constraints on the age of Late Eocene - Early Oligocene magnetic reversals are available from two key sedimentary successions which host datable volcanic tuffs: the marine record of the Umbria-Marche basin in Italy, and the terrestrial White River Group of North America, however concerns have been raised regarding both the accuracy of dates obtained from these successions, and the reliability of their magnetic polarity records (Hilgen and Kuiper, 2009). Here we present a fully integrated radio-isotopic and magnetostratigraphic dataset from the Late Eocene - Early Oligocene North American terrestrial succession with the aim of assessing the accuracy and precision of numerical ages derived from the GPTS. We developed a magnetic polarity record for two partially overlapping sections: Flagstaff Rim in Wyoming and Toadstool Geologic Park in Nebraska, which together provide coverage for the time interval between 36-31 Myr (C16n.2n - C12n) and calibrated this record using an age model based on 14 Pb/U weighted mean ID-TIMS dates obtained on zircons from primary air fall tuffs. The uncertainty of our age model includes random and systematic components for all radio-isotopic tie-points, as well as estimated uncertainties in the stratigraphic position of both the magnetic reversals and the dated tuffs. Our Pb/U dates are 0.4 - 0.8 Myr younger than previously published Ar/Ar data (Swisher and Prothero,1990, recalculated to 28.201 Myr for Fish

  17. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability. PMID:26041272

  18. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  19. Entropy Production of Nanosystems with Time Scale Separation

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-ichi; Tang, Lei-Han

    2016-08-01

    Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.

  20. Entropy Production of Nanosystems with Time Scale Separation.

    PubMed

    Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-Ichi; Tang, Lei-Han

    2016-08-12

    Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables. PMID:27563943

  1. Long-term variation time scales in OJ 287

    NASA Astrophysics Data System (ADS)

    Fan, Jun-Hui; Liu, Yi; Qian, Bo-Chun; Tao, Jun; Shen, Zhi-Qiang; Zhang, Jiang-Shui; Huang, Yong; Wang, Jin

    2010-11-01

    The light curve data from 1894 to 2008 are compiled for the BL Lacertae object OJ 287 from the available literature. Periodicity analysis methods (the Discrete Correlation Function-DCF, the Jurkevich method, the power spectral (Fourier) analysis, and the CLEANest method) are performed to search for possible periodicites in the light curve of OJ 287. Significance levels are given for the possible periods. The analysis results confirm the existence of the 12.2±0.6 yr time scale and show a hint of a ~53 yr time scale. The 12.2±0.6 yr period is used as the orbital period to investigate the supermassive binary black hole system parameters.

  2. Sub-diffusive scaling with power-law trapping times

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Tang, Lei-Han

    2014-07-01

    Thermally driven diffusive motion of a particle underlies many physical and biological processes. In the presence of traps and obstacles, the spread of the particle is substantially impeded, leading to subdiffusive scaling at long times. The statistical mechanical treatment of diffusion in a disordered environment is often quite involved. In this short review, we present a simple and unified view of the many quantitative results on anomalous diffusion in the literature, including the scaling of the diffusion front and the mean first-passage time. Various analytic calculations and physical arguments are examined to highlight the role of dimensionality, energy landscape, and rare events in affecting the particle trajectory statistics. The general understanding that emerges will aid the interpretation of relevant experimental and simulation results.

  3. Three-dimensional inversion of travel time data for structurally complex geology

    SciTech Connect

    Pereyra, V. ); Wright, S.J. )

    1990-08-01

    Modeling and inversion techniques for the seismic prospecting problem are described. A concisely-parametrized geological model of the site under study is constructed, and the forward problem'' of simulating the effects of shots on this model is solved by ray-tracing. We then use constrained optimization techniques to choose values for the model parameters so that the predicted response to the shots matches the observed response in either the least-squares or least {ell}{sub 1} sense. Numerical experience is reported. 14 refs., 2 figs., 8 tabs.

  4. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  5. Adaptive Haar transforms with arbitrary time and scale splitting

    NASA Astrophysics Data System (ADS)

    Egiazarian, Karen O.; Astola, Jaakko T.

    2001-05-01

    The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.

  6. Biogenic Calcium Phosphate Transformation in Soils over Millennium Time Scales

    SciTech Connect

    Sato, S.; Neves, E; Solomon, D; Liang, B; Lehmann, J

    2009-01-01

    Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, {Beta}-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Conclusions - Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.

  7. Time scale interactions and the coevolution of humans and water

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Blöschl, Günter

    2015-09-01

    We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.

  8. Backpropagation and ordered derivatives in the time scales calculus.

    PubMed

    Seiffertt, John; Wunsch, Donald C

    2010-08-01

    Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research. PMID:20615808

  9. Scale dependence of the directional relationships between coupled time series

    NASA Astrophysics Data System (ADS)

    Shirazi, Amir Hossein; Aghamohammadi, Cina; Anvari, Mehrnaz; Bahraminasab, Alireza; Rahimi Tabar, M. Reza; Peinke, Joachim; Sahimi, Muhammad; Marsili, Matteo

    2013-02-01

    Using the cross-correlation of the wavelet transformation, we propose a general method of studying the scale dependence of the direction of coupling for coupled time series. The method is first demonstrated by applying it to coupled van der Pol forced oscillators and coupled nonlinear stochastic equations. We then apply the method to the analysis of the log-return time series of the stock values of the IBM and General Electric (GE) companies. Our analysis indicates that, on average, IBM stocks react earlier to possible common sector price movements than those of GE.

  10. Scale and time dependence of serial correlations in word-length time series of written texts

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  11. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    SciTech Connect

    Hamido, Aliou; Frapiccini, Ana Laura; Piraux, Bernard; Eiglsperger, Johannes; Madronero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick

    2011-07-15

    We present an ab initio approach to solving the time-dependent Schroedinger equation to treat electron- and photon-impact multiple ionization of atoms or molecules. It combines the already known time-scaled coordinate method with a high-order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time-scaled coordinate method, namely, that the scaled wave packet stays confined and evolves smoothly toward a stationary state, of which the squared modulus is directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multiresolution techniques like, for instance, wavelets are the most appropriate ones to represent the scaled wave packet spatially. The approach is illustrated in the case of the interaction of a one-dimensional model atom as well as atomic hydrogen with a strong oscillating field.

  12. A reconnaissance method for delineation of tracts for regional-scale mineral-resource assessment based on geologic-map data

    USGS Publications Warehouse

    Raines, G.L.; Mihalasky, M.J.

    2002-01-01

    The U.S. Geological Survey (USGS) is proposing to conduct a global mineral-resource assessment using geologic maps, significant deposits, and exploration history as minimal data requirements. Using a geologic map and locations of significant pluton-related deposits, the pluton-related-deposit tract maps from the USGS national mineral-resource assessment have been reproduced with GIS-based analysis and modeling techniques. Agreement, kappa, and Jaccard's C correlation statistics between the expert USGS and calculated tract maps of 87%, 40%, and 28%, respectively, have been achieved using a combination of weights-of-evidence and weighted logistic regression methods. Between the experts' and calculated maps, the ranking of states measured by total permissive area correlates at 84%. The disagreement between the experts and calculated results can be explained primarily by tracts defined by geophysical evidence not considered in the calculations, generalization of tracts by the experts, differences in map scales, and the experts' inclusion of large tracts that are arguably not permissive. This analysis shows that tracts for regional mineral-resource assessment approximating those delineated by USGS experts can be calculated using weights of evidence and weighted logistic regression, a geologic map, and the location of significant deposits. Weights of evidence and weighted logistic regression applied to a global geologic map could provide quickly a useful reconnaissance definition of tracts for mineral assessment that is tied to the data and is reproducible. ?? 2002 International Association for Mathematical Geology.

  13. Is there a break in scaling on centennial time scale in Holocene temperature records?

    NASA Astrophysics Data System (ADS)

    Nilsen, Tine; Rypdal, Kristoffer; Fredriksen, Hege-Beate

    2015-04-01

    A variety of paleoclimatic records have been used to study scaling properties of past climate, including ice core paleotemperature records and multi-proxy reconstructions. Records extending further back in time than the Holocene are divided into glacial/interglacial segments before analysis. The methods used to infer the scaling include the power spectral density (Lomb-Scargle periodogram and standard periodogram), detrended fluctuation analysis, wavelet variance analysis and the Haar fluctuation function. All the methods have individual strengths, weaknesses, uncertainties and biases, and for this reason it is useful to compare results from different methods when possible. Proxy-based reconstructions have limited spatial and temporal coverage, and must be used and interpreted with great care due to uncertainties. By elaborating on physical mechanisms for the actual climate fluctuations seen in the paleoclimatic temperature records as well as uncertainties in both data and methods, we demonstrate the possible pitfalls that may lead to the conclusion that the variability in temperature time series can be separated into different scaling regimes. Categorizing the Earth's surface temperature variability into a «macroweather» and "climate" regime has little or no practical meaning since the different components in the climate system are connected and interact on all time scales. Our most important result is that a break between two different scaling regimes at time scales around one century cannot be identified in Holocene climate. We do, however, observe departures from scaling, which can be attributed to variability such as a single internal quasi-periodic oscillation, an externally forced trend, or a combination of factors. If two scaling regimes are claimed to be present in one single time series, both regimes must be persistent. We show that the limited temporal resolution/length of the records significantly lowers the confidence for such persistence. A total of

  14. Time scale hierarchies in the functional organization of complex behaviors.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K

    2011-09-01

    Traditional approaches to cognitive modelling generally portray cognitive events in terms of 'discrete' states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent's disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time). PMID:21980278

  15. Time scaling of tree rings cell production in Siberia

    NASA Astrophysics Data System (ADS)

    Popkova, Margarita; Babushkina, Elena; Tychkov, Ivan; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    It is assumed that an annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. But often that relations are non-linear. The process-based tree-ring VS-model can be used to resolve the critical processes linking climate variables to tree-ring formation. This work describes a new block of VS-model which allows to estimate a cell production in tree rings and transfer it into time scale based on the simulated integral growth rates of the model. In the algorithm of time identification for cell production we used a integral growth rates simulated by the VS-model for each growing season. The obtained detailed approach with a calculation of the time of each cell formation improves significantly the date accuracy of new cell formation in growing season. As a result for each cell in the tree-ring we estimate the temporal moment of the cell production corresponded to the seasonal growth rate in the same time scale. The approach was applied and tested for the cell measurements obtained for Scots pine (Pinus sylvestris) for the period 1964-2013 in Malaya Minusa river (Khakassia, South Siberia). The work was supported by the Russian Science Foundation (RSF # 14-14-00219)

  16. Flow excursion time scales in the advanced neutron source reactor

    SciTech Connect

    Sulfredge, C.D.

    1995-04-01

    Flow excursion transients give rise to a key thermal limit for the proposed Advanced Neutron Source (ANS) reactor because its core involves many parallel flow channels with a common pressure drop. Since one can envision certain accident scenarios in which the thermal limits set by flow excursion correlations might be exceeded for brief intervals, a key objective is to determine how long a flow excursion would take to bring about a system failure that could lead to fuel damage. The anticipated time scale for flow excursions has been examined by subdividing the process into its component phenomena: bubble nucleation and growth, deceleration of the resulting two-phase flow, and finally overcoming thermal inertia to heat up the reactor fuel plates. Models were developed to estimate the time required for each individual stage. Accident scenarios involving sudden reduction in core flow or core exit pressure have been examined, and the models compared with RELAP5 output for the ANS geometry. For a high-performance reactor like the ANS, flow excursion time scales were predicted to be in the millisecond range, so that even very brief transients might lead to fuel damage. These results should prove useful whenever one must determine the time involved in any portion of a flow excursion transient.

  17. Time Scale Hierarchies in the Functional Organization of Complex Behaviors

    PubMed Central

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K.

    2011-01-01

    Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time). PMID:21980278

  18. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale.

    PubMed

    Yang, Yu; Saiers, James E; Xu, Na; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Barnett, Mark O

    2012-06-01

    The risk stemming from human exposure to actinides via the groundwater track has motivated numerous studies on the transport of radionuclides within geologic environments; however, the effects of waterborne organic matter on radionuclide mobility are still poorly understood. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to cotransport hexavalent uranium (U) within water-saturated sand columns. Relative breakthrough concentrations of U measured upon elution of 18 pore volumes increased from undetectable levels (<0.001) in an experiment without HAs to 0.17 to 0.55 in experiments with HAs. The strength of the HA effect on U mobility was positively correlated with the hydrophobicity of organic matter and NMR-detected content of alkyl carbon, which indicates the possible importance of hydrophobic organic matter in facilitating U transport. Carbon and uranium elemental maps collected with a scanning transmission X-ray microscope (STXM) revealed uneven microscale distribution of U. Such molecular- and column-scale data provide evidence for a critical role of hydrophobic organic matter in the association and cotransport of U by HAs. Therefore, evaluations of radionuclide transport within subsurface environments should consider the chemical characteristics of waterborne organic substances, especially hydrophobic organic matter. PMID:22533547

  19. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  20. The Role of Time-Scales in Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  1. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  2. Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution

    SciTech Connect

    Bottiglieri, M.; Godano, C.; Lippiello, E.; Arcangelis, L. de

    2010-04-16

    The interevent time distribution characterizes the temporal occurrence in seismic catalogs. Universal scaling properties of this distribution have been evidenced for entire catalogs and seismic sequences. Recently, these universal features have been questioned and some criticisms have been raised. We investigate the existence of universal scaling properties by analyzing a Californian catalog and by means of numerical simulations of an epidemic-type model. We show that the interevent time distribution exhibits a universal behavior over the entire temporal range if four characteristic times are taken into account. The above analysis allows us to identify the scaling form leading to universal behavior and explains the observed deviations. Furthermore, it provides a tool to identify the dependence on the mainshock magnitude of the c parameter that fixes the onset of the power law decay in the Omori law.

  3. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    NASA Astrophysics Data System (ADS)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  4. Mesozoic cyclostratigraphy, the 405-kyr orbital eccentricity metronome, and the Astronomical Time Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Hinnov, L.; Ogg, J. G.

    2009-12-01

    Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.

  5. Ti diffusion in quartz inclusions: implications for metamorphic time scales

    NASA Astrophysics Data System (ADS)

    Spear, Frank S.; Ashley, Kyle T.; Webb, Laura E.; Thomas, Jay B.

    2012-12-01

    Quartz inclusions in garnet from samples collected from the staurolite zone in central New England are zoned in cathodoluminescence (CL). The CL intensity is interpreted to be a proxy for Ti concentration and the zoning attributed to Ti diffusion into the quartz grains driven by Ti exchange between quartz and enclosing garnet as a function of changing temperature. The CL zoning has been interpreted using a numerical diffusion model to constrain the time scales over which the diffusion has occurred. Temperature-time histories are sensitive to the presumed peak temperature but not to other model parameters. The total time of the metamorphic heating and cooling cycle from around 450 °C to the peak temperature (550-600 °C) back to 450 °C is surprisingly short and encompasses only 0.2-2 million years for peak temperatures of 600-550 °C. The metamorphism was accompanied by large-scale nappe and dome formation, and it is suggested that this occurred as a consequence of in-sequence thrusting resulting in a mid-crustal ductile duplex structure.

  6. Role of relaxation time scale in noisy signal transduction.

    PubMed

    Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K

    2015-01-01

    Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500

  7. Role of Relaxation Time Scale in Noisy Signal Transduction

    PubMed Central

    Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K

    2015-01-01

    Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500

  8. Time scale algorithms for an inhomogeneous group of atomic clocks

    NASA Technical Reports Server (NTRS)

    Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.

    1993-01-01

    Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.

  9. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers. PMID:21930569

  10. An Introductory-Geology Exercise on the Polar-Reversal Time Scale.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1986-01-01

    Presents a three-part exercise which provides undergraduates with opportunities to work with data related to the earth's magnetic field. Includes student materials for activities in determining the history of the earth's magnetic field, in finding the general pattern of declination, and for looking for a polar reversal history. (ML)

  11. Modelling the ecological-functional diversification of marine Metazoa on geological time scales.

    PubMed

    Bush, Andrew M; Novack-Gottshall, Philip M

    2012-02-23

    The ecological traits and functional capabilities of marine animals have changed significantly since their origin in the late Precambrian. These changes can be analysed quantitatively using multi-dimensional parameter spaces in which the ecological lifestyles of species are represented by particular combinations of parameter values. Here, we present models that describe the filling of this multi-dimensional 'ecospace' by ecological lifestyles during metazoan diversification. These models reflect varying assumptions about the processes that drove ecological diversification; they contrast diffusive expansion with driven expansion and niche conservatism with niche partitioning. Some models highlight the importance of interactions among organisms (ecosystem engineering and predator-prey escalation) in promoting new lifestyles or eliminating existing ones. These models reflect processes that were not mutually exclusive; rigorous analyses will continue to reveal their applicability to episodes in metazoan history. PMID:21813550

  12. Geophysical investigation for the evaluation of the long-time safety of repositories and underground disposals in deep geological formations

    NASA Astrophysics Data System (ADS)

    Just, A.; Salinar Group

    2003-04-01

    The performance assessment of underground disposal facilities is an indispensable premise to ensure that repositories fulfil the requirements for permanent and safe disposal of hazardous waste. The geological barrier is supposed to be a virtually impermeable host formation like rock salt. The efficiency of the barrier is endangered by the presence of risk zones such as faults or fractures particularly with regard to water-bearing host rocks. Thus the evaluation of the long-time safety of the geological barrier has to be carried out with a minimum of invasion of the future host formation and a maximum of spatial coverage and resolution. Especially geophysical methods are suitable to investigate the geological barrier due to their non-destructive character and spatial information content. Three research projects supported by the German Federal Ministry of Education and Research (BMBF) are engaged in the design and enhancement of a complex geophysical measuring and evaluation system for the investigation of problem zones of the geological barrier in rock salt. The benefit of the combination of high-performance geophysical measuring techniques as seismics, DC-geoelectrics, ground penetrating radar (GPR), electromagnetics and sonar together with strong knowledge of regional salt geology is to increase essentially the reliability of the interpretation of underground measurements. The measuring methods and interpretation tools for host rock characterisation were applied, developed and improved in a flat salt seam structure of an inoperative salt mine in the Lower Harz region. The joint interpretation of the underground geophysical measurements revealed a by-then unknown wet zone, which was tectonically affected. With the scope of refining the complex geophysical measuring and evaluation system and transferring the precedingly acquired experiences to another type of host formation, an operating potassium salt mine in the vicinity of Hannover/Germany was chosen as a new

  13. Scaling in a Continuous Time Model for Biological Aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.; Thomas, G. L.

    In this paper, we consider a generalization to the asexual version of Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ-functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.

  14. Time-Dependent Earthquake Forecasts on a Global Scale

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.; Graves, W. R.

    2014-12-01

    We develop and implement a new type of global earthquake forecast. Our forecast is a perturbation on a smoothed seismicity (Relative Intensity) spatial forecast combined with a temporal time-averaged ("Poisson") forecast. A variety of statistical and fault-system models have been discussed for use in computing forecast probabilities. An example is the Working Group on California Earthquake Probabilities, which has been using fault-based models to compute conditional probabilities in California since 1988. An example of a forecast is the Epidemic-Type Aftershock Sequence (ETAS), which is based on the Gutenberg-Richter (GR) magnitude-frequency law, the Omori aftershock law, and Poisson statistics. The method discussed in this talk is based on the observation that GR statistics characterize seismicity for all space and time. Small magnitude event counts (quake counts) are used as "markers" for the approach of large events. More specifically, if the GR b-value = 1, then for every 1000 M>3 earthquakes, one expects 1 M>6 earthquake. So if ~1000 M>3 events have occurred in a spatial region since the last M>6 earthquake, another M>6 earthquake should be expected soon. In physics, event count models have been called natural time models, since counts of small events represent a physical or natural time scale characterizing the system dynamics. In a previous research, we used conditional Weibull statistics to convert event counts into a temporal probability for a given fixed region. In the present paper, we move belyond a fixed region, and develop a method to compute these Natural Time Weibull (NTW) forecasts on a global scale, using an internally consistent method, in regions of arbitrary shape and size. We develop and implement these methods on a modern web-service computing platform, which can be found at www.openhazards.com and www.quakesim.org. We also discuss constraints on the User Interface (UI) that follow from practical considerations of site usability.

  15. Alignment of Noisy and Uniformly Scaled Time Series

    NASA Astrophysics Data System (ADS)

    Lipowsky, Constanze; Dranischnikow, Egor; Göttler, Herbert; Gottron, Thomas; Kemeter, Mathias; Schömer, Elmar

    The alignment of noisy and uniformly scaled time series is an important but difficult task. Given two time series, one of which is a uniformly stretched subsequence of the other, we want to determine the stretching factor and the offset of the second time series within the first one. We adapted and enhanced different methods to address this problem: classical FFT-based approaches to determine the offset combined with a naïve search for the stretching factor or its direct computation in the frequency domain, bounded dynamic time warping and a new approach called shotgun analysis, which is inspired by sequencing and reassembling of genomes in bioinformatics. We thoroughly examined the strengths and weaknesses of the different methods on synthetic and real data sets. The FFT-based approaches are very accurate on high quality data, the shotgun approach is especially suitable for data with outliers. Dynamic time warping is a candidate for non-linear stretching or compression. We successfully applied the presented methods to identify steel coils via their thickness profiles.

  16. Deep Time Framework: A Preliminary Study of U.K. Primary Teachers' Conceptions of Geological Time and Perceptions of Geoscience.

    ERIC Educational Resources Information Center

    Trend, Roger David

    2001-01-01

    Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)

  17. The earth's angular momentum budget on subseasonal time scales

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Marcus, S. L.; Steppe, J. A.; Hide, R.

    1992-01-01

    Irregular length of day (LOD) fluctuations on time scales of less than a few years are largely produced by atmospheric torques on the underlying planet. Significant coherence is found between the respective time series of LOD and atmospheric angular momentum (AAM) determinations at periods down to 8 days, with lack of coherence at shorter periods caused by the declining signal-to-measurement noise ratios of both data types. Refinements to the currently accepted model of tidal earth rotation variations are required, incorporating in particular the nonequilibrium effect of the oceans. The remaining discrepancies between LOD and AAM in the 100- to 10-day period range may be due to either a common error in the AAM data sets from different meteorological centers, or another component of the angular momentum budget.

  18. Quaternary geologic map of Minnesota

    NASA Technical Reports Server (NTRS)

    Goebel, J. E.

    1977-01-01

    The Quaternary Geologic Map of Minnesota is a compilation based both on the unique characteristics of satellite imagery and on the results of previous field investigations, both published and unpublished. The use of satellite imagery has made possible the timely and economical construction of this map. LANDSAT imagery interpretation proved more useful than expected. Most of the geologic units could be identified by extrapolating from specific sites where the geology had been investigated into areas where little was known. The excellent geographic registry coupled with the multi-spectral record of these images served to identify places where the geologic materials responded to their ecological environment and where the ecology responded to the geologic materials. Units were well located on the map at the scale selected for the study. Contacts between till units could be placed with reasonable accuracy. The reference points that were used to project delineations between units (rivers, lakes, hills, roads and other features), which had not been accurately located on early maps, could be accurately located with the help of the imagery. The tonal and color contrasts, the patterns reflecting geologic change and the resolution of the images permitted focusing attention on features which could be represented at the final scale of the map without distraction by other interesting but site-specific details.

  19. Global Geologic Map of Europa

    NASA Technical Reports Server (NTRS)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  20. Nonlinear Dynamics of Extended Hydrologic Systems over long time scales

    NASA Astrophysics Data System (ADS)

    Lall, Upmanu

    2014-05-01

    We often view our knowledge of hydrology and hence of nature as intransient, at least over the time scales over which we study processes we wish to predict and understand. Over the last few decades, this assumption has come under question, largely because of the vocal expression of a changing climate, but also the recurrent demonstration of significant land use change, both of which significantly affect the boundary conditions for terrestrial hydrology that is our forte. Most recently, the concepts of hydromorphology and social hydrology have entered the discussion, and the notion that climate and hydrology influence human action, which in turn shapes hydrology, is being recognized. Finally, as a field, we seem to be coming to the conclusion that the hydrologic system is an open system, whose boundaries evolve in time, and that the hydrologic system, at many scales, has a profound effect on the systems that drive it -- whether they be the ecological and climatic systems, or the social system. What a mess! Complexity! Unpredictability! At a certain level of abstraction, one can consider the evolution of these coupled systems with nonlinear feedbacks and ask what types of questions are relevant in terms of such a coupled evolution? What are their implications at the planetary scale? What are their implications for a subsistence farmer in an arid landscape who may under external influence achieve a new transient hydro-ecological equilibrium? What are the implications for the economy and power of nations? In this talk, I will try to raise some of these questions and also provide some examples with very simple dynamical systems that suggest ways of thinking about some practical issues of feedback across climate, hydrology and human behavior.

  1. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  2. Surface Radiation Budget Variability at Climatic Time Scales

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Ma, Y.; Nussbaumer, E.

    2014-12-01

    Information on Earth Radiation Balance is needed at climatic time scales for enabling assessment of variability and trends in the forcing functions of the climate system. Satellite observations have been instrumental for advancing the understanding of such balance at global scale; yet, the length of available records does not meet climatic needs. Major issues hindering such efforts are related to the frequent changes in satellite observing systems, including the specification of the satellite instruments, and changes in the quality of atmospheric inputs that drive the inference schemes. In this paper we report on an effort to synthesize estimates of shortwave, longwave and spectral surface radiative fluxes by fusing observations from numerous satellite platforms that include MODIS observations. This information was obtained in the framework of the MEaSURES and NEWS programs; it will be evaluated against ground observations and compared to independent satellite and model estimates. Attention will be given to updates on our knowledge on the radiative balance as compared to what is known from shorter time records.

  3. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  4. Global Precipitation Analyses at Monthly to 3-HR Time Scales

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric

    2002-01-01

    Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropica1 Rainfall Measuring Mission) tropical data set. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1deg latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will soon be available for the entire TRMM period (January 1998- present). A real-time version of this merged product is being produced and is available at 0.25deg latitude-longitude resolution over the latitude range from 50degN-50degS. Images from this data set can be seen at the U.S. TRMM web site (trmm.gsfc.nasa.gov). Examples will be shown, including its use in monitoring flood conditions and relating weather-scale events to climate variations.

  5. Critical time scales for advection-diffusion-reaction processes

    NASA Astrophysics Data System (ADS)

    Ellery, Adam J.; Simpson, Matthew J.; McCue, Scott W.; Baker, Ruth E.

    2012-04-01

    The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J.BIOJAU0006-349510.1016/j.bpj.2010.07.045 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.051906 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/47.2.193 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

  6. Continent-scale global change attribution in European birds - combining annual and decadal time scales.

    PubMed

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper; Tøttrup, Anders P; Chylarecki, Przemysław; Jiguet, Frédéric; Lehikoinen, Aleksi; Noble, David G; Reif, Jiri; Schmid, Hans; van Turnhout, Chris; Burfield, Ian J; Foppen, Ruud; Voříšek, Petr; van Strien, Arco; Gregory, Richard D; Rahbek, Carsten

    2016-02-01

    Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys. PMID:26486804

  7. The Time Scale of Recombination Rate Evolution in Great Apes.

    PubMed

    Stevison, Laurie S; Woerner, August E; Kidd, Jeffrey M; Kelley, Joanna L; Veeramah, Krishna R; McManus, Kimberly F; Bustamante, Carlos D; Hammer, Michael F; Wall, Jeffrey D

    2016-04-01

    We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  8. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  9. Evolution of views on Quaternary stratigraphic scales worked out in the Geological Institute, Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Vangengeim, E. A.

    2010-12-01

    The Pliocene and Quaternary stratigraphic schemes of Russia elaborated during the last 60 years by the scientists of the Department of Quaternary Geology (presently the Laboratory of the Quaternary Stratigraphy) of the Geological Institute, RAS, are analyzed. Principles of compilation of the schemes, taxonomic rank of subdivisions, and the problem of the lower boundary of the Quaternary, are discussed. All the schemes are based on mammal paleontology of East European continental sediments and on correlation with the West European faunas.

  10. Variations in solar Lyman alpha irradiance on short time scales

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1992-01-01

    Variations in solar UV irradiance at Lyman alpha are studied on short time scales (from days to months) after removing the long-term changes over the solar cycle. The SME/Lyman alpha irradiance is estimated from various solar indices using linear regression analysis. In order to study the nonlinear effects, Lyman alpha irradiance is modeled with a 5th-degree polynomial as well. It is shown that the full-disk equivalent width of the He line at 1083 nm, which is used as a proxy for the plages and active network, can best reproduce the changes observed in Lyman alpha. Approximately 72 percent of the solar-activity-related changes in Lyman alpha irradiance arise from plages and the network. The network contribution is estimated by the correlation analysis to be about 19 percent. It is shown that significant variability remains in Lyman alpha irradiance, with periods around 300, 27, and 13.5d, which is not explained by the solar activity indices. It is shown that the nonlinear effects cannot account for a significant part of the unexplained variation in Lyman alpha irradiance. Therefore, additional events (e.g., large-scale motions and/or a systematic difference in the area and intensity of the plages and network observed in the lines of Ca-K, He 1083, and Lyman alpha) may explain the discrepancies found between the observed and estimated irradiance values.

  11. Multi-scale gravity field modeling in space and time

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2016-04-01

    The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.

  12. Fireballs: Detonation Initiation on the Microsecond Time Scale

    NASA Astrophysics Data System (ADS)

    Kassoy, D. R.; Wojciechowski, K.

    2003-11-01

    A mathematical model is developed for detonation initiation following a time and spatially resolved burst of thermal power from an external source into a spherical target of reactive gas. The objective is to produce a detonation in or near the target with the least possible energy input. Source heating occurs on a sub-microsecond time scale, short compared to the acoustic time of the millimeter-sized target. This leads to a period of near inertial confinement, where the pressure rises with temperature, the density change is very small and local Mach number is extremely subsonic. As a result the thermal enegy change is maximized while the induced kinetic energy is minimized. The large temperature increase within the localized high pressure spot initiates a high activation energy, exothermic reaction which spreads hypersonically from the maximum temperature point. The chemical front is co-located with a large localized pressure gradient, responsible for rapid gas acceleration. A detonation appears at the edge of target, in the form of a strong shock with a coupled reaction zone. The evolutionary process differs fundamentally from that in a DDT and that in a traditional model of direct initiation.

  13. Response time of large-scale electrochromic devices

    SciTech Connect

    Randin, J.P.

    1990-12-31

    The studies related to electrochromic phenomena performed in the seventies were mainly aimed at the development of information displays. Such applications require small electrode sizes, i.e. with active surface areas of between about 0.01 to 10 cm{sup 2}. The development of large information devices and chiefly smart windows require much larger switching areas. This paper deals with the influence of increasing the active surface area on the response time. The latter depends on both properties of the cell components (transparent conducting layer, electrochromic film, electrolyte and counter electrode) and structure of the cell (size, shape, gap, resistivity of the busbar). Experimental devices were constructed with given components and cell geometry. The effect of a series resistance arisen mainly from the cell size was investigated and explained by the effect of the additional series resistance on the response time of a diffusion-controlled process. The study indicates that the scaling-up of WO{sub 3} devices will be limited by an increase of the response time with increasing active area.

  14. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.

    PubMed

    Shirota, Minori; van Limbeek, Michiel A J; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-12

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate. PMID:26918994

  15. Dynamic Leidenfrost Effect: Relevant Time and Length Scales

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; van Limbeek, Michiel A. J.; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2016-02-01

    When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.

  16. X-ray signatures: New time scales and spectral features

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1977-01-01

    The millisecond bursts from Cyg X-1 are investigated and the overall chaotic variability for the bulk of the Cyg X-1 emission is compared to that of Sco X-1, showing that the essential character is remarkably similar (i.e. shot noise) although the fundamental time scales involved differ widely, from a fraction of a second (for Cyg X-1) to a fraction of a day (for Sco X-1). Recent OSO-8 observations of spectra features attributable to iron are reviewed. In particular, line emission is discussed within the context of a model for thermal radiation by a hot evolved gas in systems as different as supernova remnants and clusters of galaxies. Newly observed spectral structure in the emission from the X-ray pulsar Her X-1 is reported.

  17. Control of Systems With Slow Actuators Using Time Scale Separation

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vehram; Nguyen, Nhan

    2009-01-01

    This paper addresses the problem of controlling a nonlinear plant with a slow actuator using singular perturbation method. For the known plant-actuator cascaded system the proposed scheme achieves tracking of a given reference model with considerably less control demand than would otherwise result when using conventional design techniques. This is the consequence of excluding the small parameter from the actuator dynamics via time scale separation. The resulting tracking error is within the order of this small parameter. For the unknown system the adaptive counterpart is developed based on the prediction model, which is driven towards the reference model by the control design. It is proven that the prediction model tracks the reference model with an error proportional to the small parameter, while the prediction error converges to zero. The resulting closed-loop system with all prediction models and adaptive laws remains stable. The benefits of the approach are demonstrated in simulation studies and compared to conventional control approaches.

  18. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  19. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?

    PubMed

    Kay, Richard F

    2015-01-01

    Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South

  20. U.S. Geological Survey Real-Time River Data Applications

    USGS Publications Warehouse

    Morlock, Scott E.

    1998-01-01

    Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.

  1. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    SciTech Connect

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial

  2. Forecasting decadal and shorter time-scale solar cycle features

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi

    2016-07-01

    Solar energetic particles and magnetic fields reach the Earth through the interplanetary medium and affect it in various ways, producing beautiful aurorae, but also electrical blackouts and damage to our technology-dependent economy. The root of energetic solar outputs is the solar activity cycle, which is most likely caused by dynamo processes inside the Sun. It is a formidable task to accurately predict the amplitude, onset and peak timings of a solar cycle. After reviewing all solar cycle prediction methods, including empirical as well as physical model-based schemes, I will describe what we have learned from both validation and nonvalidation of cycle 24 forecasts, and how to refine the model-based schemes for upcoming cycle 25 forecasts. Recent observations indicate that within a solar cycle there are shorter time-scale 'space weather' features, such as bursts of various forms of activity with approximately one year periodicity. I will demonstrate how global tachocline dynamics could play a crucial role in producing such space weather. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  3. Lunar Crater Rays Point to a New Lunar Time Scale

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2004-09-01

    The Lunar Time Scale should be reevaluated -- suggest remote sensing studies of lunar crater rays by B. Ray Hawke (University of Hawaii) and colleagues at the University of Hawaii, NovaSol, Cornell University, National Air and Space Museum, and Northwestern University. These scientists have found that the mere presence of crater rays is not a reliable indicator that the crater is young, as once thought, and that the working definition of the Copernican/Eratosthenian (C/E) boundary should be reconsidered. The team used Earth-based spectral and radar data with FeO, TiO2, and optical maturity maps derived from Clementine UVVIS images to determine the origin and composition of selected lunar ray segments. They conclude that the optical maturity parameter, which uses chemical analyses of lunar samples as its foundation, should be used to redefine the C/E boundary. Under this classification, the Copernican System would be defined as the time required for an immature surface to reach full optical maturity.

  4. Observing real time motion of nano-scale objects

    NASA Astrophysics Data System (ADS)

    van de Vondel, Joris; Timmermans, Matias; Samuely, Tomás; Raes, Bart; Serrier-Garcia, Lise; Moshchalkov, Victor

    2015-03-01

    The dynamics of nanoscale objects is a very interesting field of research with a strong technological impact. Still, the combination of a technique resolving (sub)nanometer particles within a time frame relevant to observe dynamics is a very challenging task. Due to the inherent atomic-scale resolution, scanning tunneling microscopy (STM) is an ideal candidate to achieve this goal. Nevertheless, in most physical systems the dynamic events of the objects under investigation cannot be resolved by conventional STM image acquisition and will only reveal an average trace of the moving object. This is why a strong drive exists to develop new functionalities of STM, which allow studying dynamic events at the nanoscale. We address this issue, for vortex matter in NbSe2, by driving the vortices using an ac magnetic field and probing the induced periodic tunnel current modulations. Our results reveal different dynamical modes of the driven vortex lattice. In addition, by extending a known functionality of STM, (i.e. the `Lazy Fisherman' technique) we can use single pixel information to obtain the overall dynamics of the vortex lattice with submillisecond time resolution and subnanometer spatial resolution. This work is supported by the FWO and the Methusalem funding of the Flemish government.

  5. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. PMID:23978652

  6. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  7. Cat herding on a global scale - the challenge of building a vocabulary for the geology of Europe with compatibility to a global ontology

    NASA Astrophysics Data System (ADS)

    Asch, Kristine

    2010-05-01

    The OneGeology Europe (1G-E) project is delivering a web accessible, semantically and technically interoperable geological dataset for the whole of Europe at a 1 : 1 million scale, and attempting to make as much progress as possible in harmonising that dataset. The initiative is based on the foundation of geological data held by each geological survey in Europe. These data differ considerably with respect to their content, description and geometry. To make these data interoperable is a substantial task and OneGeology-Europe Work Package 3 is delivering, as the essential foundation, the terms and classification system - the 1G-E Geology Data Specification (Asch et al., in preparation). This is going to include a vocabulary to describe lithology, age and genesis of the rocks and the tectonic structures and the term definitions and relations. This specification will be the base for the Geological Surveys participating in OneGeology-Europe to describe the geology of their country within the project. However, Europe is not an island, neither are the rocks of Europe unique, and the vocabulary is being developed on the base of the existing vocabulary of the global IUGS-CGI Concept Definition Task Group: a global group of experts which is developing a vocabulary for the GeoSciML model. As a result of scrutiny of the existing global base and examination of the needs of European geology, new terms were added, new concepts introduced, definitions altered and adapted. The outcome is that what is being developed to describe the geology of Europe is going to be a part of what can be used to describe geological units globally. However, the challenges in patricular regarding "Lithology" are considerable. An example for the terminology of sedimentary rock types would be the definition of "arenite: is it a "pure" sandstone with less than 10 % matrix or a type of clastic sedimentary rock with sand grain size and less than 10 or 15% matrix (depending on the reference). This then leads

  8. Time-Scales of the Variability of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Barnston, Anthony G.

    1996-05-01

    In this study the time-scales of variability of several weather elements are explored by season and location across the globe, emphasizing the Northern Hemisphere and especially the USA. The resulting description is useful because regions that exhibit low frequency variability (i.e. longer periods than the 2-5 days synoptic-scale) are assumed to be related more directly to changes in boundary conditions (e.g. anomalies of ENSO-related sea-surface temperature [SST], snow cover, etc.). Therefore, this low frequency variability may be predictable at greater ranges than those for which numerical weather prediction is helpful.New as well as established measures of persistence and frequency dependence are used and intercompared. In particular, the standard deviation of the differences between adjacent period means, when compared over a range of period lengths, reflects both autocorrelation and (if applicable) cycle time. Frequency dependence is thereby summarized with minimal computation.The geographical distribution of the amplitude (amount of variability depends largely on latitude and the upstream geographical environment (i.e. higher latitude and continentality of upstream environment tend to increase variability). At most locations, variability is greatest (lowest) during the cold (warm) seasons of the year. The geographical distribution of the dominant frequencies of variability are examined by season for Northern Hemisphere sea-level pressure and 700 hPa geopotential height, and USA surface temperature and precipitation. It is demonstrated that the dominant frequencies tend to vary in parallel across all four fields.In general, weather variables are found to vary at relatively low frequency (long periods) at high latitudes and, to a lesser extent, at subtropical latitudes. At mid-latitude, low frequency variability prevails most over the blocking regions in the eastern and central North Pacific and North Atlantic oceans. High frequency variability occurs in the

  9. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China

    USGS Publications Warehouse

    Zhang, X.; Cawood, Peter A.; Wilde, S.A.; Liu, R.; Song, H.; Li, W.; Snee, L.W.

    2003-01-01

    The Cangshang gold deposit of the northwestern Jiaodong Peninsula contains reserves of greater than 50 tonnes (t) and is developed by the largest open pit gold mine in China. This deposit is a Jiaojia-style (i.e. disseminated-and-veinlet) deposit. It is controlled by the San-Cang fault zone, which trends ???040?? and dips 40-75??SE at the mine site. The main (no. 1) orebody lies between a hanging wall of Precambrian metamorphic rocks (mainly amphibolite) of the Fenzishan Group and a footwall composed of the Mesozoic Linglong granitoid. The ore zone is mainly composed of pyritized, sericitized and silicified granitoid, which has undergone variable degrees of cataclasis. SHRIMP U-Pb dating of zircon indicates that the protolith of the hanging wall amphibolite was formed at 2530 ?? 17 Ma and underwent metamorphism at 1852 ?? 37 Ma. The footwall granodiorite has been dated at 166 ?? 4 Ma, whereas zircons from the ore zone yield a younger age of 154 ?? 5 Ma. Cathodoluminescence images of zircons from the granodiorite and ore zone show oscillatory zonation indicative of an igneous origin for both and the ages of these zircons, therefore, are all interpreted to be representative of magmatic crystallization. Dating of sericite by 40Ar-39Ar has been used to directly determine the timing of formation of the Cangshang deposit, providing the first time absolute age on formation of the Jiaojia-style gold deposits. The well-defined age of 121.3 ?? 0.2 Ma provides the precise timing of gold mineralization at the Cangshang deposit. This age is consistent with those of Linglong-style (vein type) gold mineralization, also from the north-western Jiaodong Peninsula, at between 126 and 120 Ma. Therefore, our work indicates that both styles of gold deposits in the Jiaodong Peninsula were formed during the same mineralization event.

  10. Kilometer-scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    1999-09-01

    Martian surface slopes were calculated at baselines from 0.4 to 25 km using profiles obtained by the Mars Orbiter Laser Altimeter (MOLA) instrument during the aerobraking phase of the Mars Global Surveyor mission. Median slope is proposed as a characteristic measurement of the typical surface roughness at each corresponding scale. Median slope is favored over RMS slope because it is not influenced by the small number of higher slopes at the upper end of the slope-frequency distribution tail. Median slope complements interquartile scale roughness characterization in that it is more sensitive to smaller baseline slopes. A map of the median slope of the northern hemisphere is presented. Median slopes and their scale dependences are used to characterize typical kilometer-scale roughness for a set of geologic units mapped in the northern hemisphere. This analysis demonstrates that many individual units and groups of units are characterized by distinctive surface slopes and that these characteristics are sufficiently different that they hold promise for use in the definition and characterization of units. Characterization of the slope properties of geologic units provides information useful in the interpretation of their origin and evolution. For example, the generally smooth topography of the diverse Vastitas Borealis Formation subunits is dominated by about 3 km, 0.3° steep features almost indistinguishable in Viking images. The roughness characteristics of this unit differ from those of other geologic units on Mars and suggest some distinctive process(es) of formation and/or modification of kilometer-scale topography common for all subunits. The similarity of roughness characteristics of the several highland plateau units suggests that kilometer-scale topography was largely inherited from the period of heavy bombardment. The northern polar cap and layered terrains are largely very smooth at small scale. The long, steep-sloped tails of the slope

  11. Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford

    2008-01-01

    This report describes the instrumentation and platforms used to make the measurements; the methods used to process, apply quality-control criteria, and archive the data; the data storage format, and how the data are released and distributed. The report also includes instructions on how to access the data from the online database at http://stellwagen.er.usgs.gov/. As of 2016, the database contains about 5,000 files, which may include observations of current velocity, wave statistics, ocean temperature, conductivity, pressure, and light transmission at one or more depths over some duration of time.

  12. Science at the Time-scale of the Electron

    NASA Astrophysics Data System (ADS)

    Murnane, Margaret

    2010-03-01

    Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths < 1nm, have brightened considerably. These advances are possible by taking nonlinear optics techniques to an extreme, and are the direct result of a new ability to manipulate electrons on the fastest, attosecond, time-scales of our natural world. My talk will discuss new experimental data that demonstrates high harmonic generation of laser-like, fully coherent, 10 attosecond duration, soft x-ray beams at photon energies around 0.5keV. Several applications will also be discussed, including making a movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).

  13. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kassoy, Dr. David R; Kuehn, Jeffery A; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2008-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gasdynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  14. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect

    Kuehn, Jeffery A; Kassoy, Dr. David R; Nabity, Mr. Matthew W.; Clarke, Dr. John F.

    2006-01-01

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A nonlinear transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gas dynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  15. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  16. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event

    NASA Astrophysics Data System (ADS)

    Vithanage, M.; Engesgaard, P.; Jensen, K. H.; Illangasekare, T. H.; Obeysekera, J.

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8 m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  17. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for

  18. Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    PubMed Central

    Shamir, Maoz; Ghitza, Oded; Epstein, Steven; Kopell, Nancy

    2009-01-01

    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. PMID:19412531

  19. California Real Time Network: Test Bed for Mitigation of Geological and Atmospheric Hazards within a Modern Data Portal Environment

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2008-12-01

    Global geological and atmospheric hazards such as earthquakes, volcanoes, tsunamis, landslides, storms and floods continue to wreak havoc on the lives of millions of people worldwide. High precision geodetic observations of surface displacements and atmospheric water vapor are indispensable tools in studying natural hazards along side more traditional seismic and atmospheric measurements. The rapid proliferation of dense in situ GPS networks for crustal deformation studies such as the Earthscope Plate Boundary Observatory provides us with unique data sets. However, the full information content and timeliness of these observations have not been fully developed, in particular at higher frequencies than traditional daily continuous GPS position time series. Nor have scientists taken full advantage of the complementary nature of space-based and in situ observations in forecasting, assessing and mitigating natural hazards. The primary operating mode for in situ GPS networks has been daily download of GPS data sampled at a 15-30 s sample rate, and the production of daily position time series or hourly tropospheric zenith delay estimates. However, as continuous GPS networks are being upgraded to provide even higher-frequency information approaching the sampling rates (1-50 Hz) of modern GPS receivers, and with a latency of less than 1 second, new data processing approaches are being developed. Low-latency high-rate measurements are being applied to earthquake source modeling, early warning of natural hazards (geological and atmospheric), and structural monitoring. Since 2002, more than 80 CGPS stations in southern California have been upgraded to a 1 Hz sample rate, including stations from the SCIGN and PBO networks, and several large earthquakes have been recorded. The upgraded stations comprise the California Real Time Network (CRTN - http://sopac.ucsd.edu/projects/realtime/). This prototype network provides continuous 1 Hz (upgradable to 10 Hz at some stations) GPS

  20. Correlation Between Ecospace and Metabolic Rate of Marine Organisms Through Geologic Time

    NASA Astrophysics Data System (ADS)

    Duong, C.; Tenorio, A.; Heim, N. A.; Payne, J.

    2015-12-01

    Marine organisms are the most abundant fossils scientists have discovered in the fossil record. Various factors affect the survival rate of individual organisms and entire genera including metabolic rate, genetic diversity, environmental availability, and ecology. We however chose to focus our attention on studying mean metabolic rates in correlation to life modes. A marine organism's life mode is determined by three criteria: tiering, motility, and feeding mechanism. We believe an organism's life mode has an effect on its survivorship, especially since ecospace is the "primary determinant of routine metabolic rate for marine organisms" (Seibel & Drazen 2007). Using the metabolic equation, we were able to plot metabolic rate changes for various life modes over time. Seibel and Drazen (2007) explain that "metabolic variation in the ocean results from interspecific differences in ecological energy demand," thus allowing us to hypothesize that with different combinations of life modes, different marine organisms will have varying metabolic rates. To further compare our data, we created a heatmap to show the change in metabolic rates over the last 540 million years. Based on the collection of data, metabolic rates of marine organisms have shown an increasing trend. When analyzing ecospaces, pelagic (living in the water column), free moving organisms have relatively high metabolic rates in comparison to other modes of tiering. In other life modes, there's a general trend of genera maintaining a stabilized and moderate metabolic rate that is neither extremely high nor low.

  1. An integrated multi-scale hydrogeological model for performance and safety assessment of French geological high level and long live radwaste disposal in clay formation

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, H.; Cornaton, F. J.; Kerrou, J.

    2009-12-01

    A deep geological repository of high level and long live radwaste requires sound understanding of the far field and near field groundwater flow and transport properties. Andra, French National radioactive waste management Agency is developing since last 15 years, an integrated multi-scale hydrogeological model of whole Paris basin of 200'000 Km2 area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse / Haute Marne clay site of about 250 Km2 area in the eastern part of Paris basin that was chosen for the emplacement of a repository. Callovo-Oxfordian as host formation is a clay layer characterized by very low permeability, a mean thickness of 130 m at about 500 m depth and is embedded by calcareous formations as aquifers (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petrophysic modeling of the Paris basin and is accounting for the sound structural, geological, hydrogeological and geochemical data in an integrated way. At Paris basin scale, the model is a multilayer system of 27 layers (hydrogeological units) from Trias to Tertiary. A refinement at local scale of the site defines 27 hydro-geological units from Trias to Portlandian within an area of 1800 Km2. Based on sound data acquisition from borehole and seismic campaigns performed by Andra, regional faults, minor and diffuse fractures are considered. A structural and petrophysical representation of the transition zone between the Paris basin scale and site scale, as well as a better handling of surface flow boundary conditions are considered. Finite element flow and transport simulator Ground Water code (GW) is used to solve for groundwater flow at steady-state in a 1.8 Million nodes model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 5

  2. Geologic Mapping of V-19

    NASA Technical Reports Server (NTRS)

    Martin, P.; Stofan, E. R.; Guest, J. E.

    2009-01-01

    A geologic map of the Sedna Planitia (V-19) quadrangle is being completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program, and will be submitted for review by September 2009.

  3. Time scales for the decay of induced large-scale magnetic fields in the Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Russell, C. T.; Elphic, R. C.

    1984-01-01

    Observations made with the aid of a magnetometer on the Pioneer Venus Orbiter have shown large-scale horizontal magnetic fields in the dayside ionosphere of Venus. According to Cloutier and Daniell (1981), the observed magnetic structures may be quasi-steady features produced by an ionospheric current system driven by solar wind interaction. Russell et al. (1983) have suggested that the altitude profiles of the horizontal field on different orbits exhibit a pattern which can be interpreted as phases in the temporal evolution of an initial state in which the ionosphere was permeated with magnetosheath-like fields. The present investigation is concerned with the argument in favor of a temporal versus spatial explanation for some of the observed field structure. A calculation indicates that the diffusion time for ionospheric fields is long enough to justify attributing the observed fields to the 'memory' of the Venus ionosphere in certain regions.

  4. Cat herding on a global scale - the challenge of building a vocabulary for the geology of Europe with compatibility to a global ontology

    NASA Astrophysics Data System (ADS)

    Asch, Kristine

    2010-05-01

    The OneGeology Europe (1G-E) project is delivering a web accessible, semantically and technically interoperable geological dataset for the whole of Europe at a 1 : 1 million scale, and attempting to make as much progress as possible in harmonising that dataset. The initiative is based on the foundation of geological data held by each geological survey in Europe. These data differ considerably with respect to their content, description and geometry. To make these data interoperable is a substantial task and OneGeology-Europe Work Package 3 is delivering, as the essential foundation, the terms and classification system - the 1G-E Geology Data Specification (Asch et al., in preparation). This is going to include a vocabulary to describe lithology, age and genesis of the rocks and the tectonic structures and the term definitions and relations. This specification will be the base for the Geological Surveys participating in OneGeology-Europe to describe the geology of their country within the project. However, Europe is not an island, neither are the rocks of Europe unique, and the vocabulary is being developed on the base of the existing vocabulary of the global IUGS-CGI Concept Definition Task Group: a global group of experts which is developing a vocabulary for the GeoSciML model. As a result of scrutiny of the existing global base and examination of the needs of European geology, new terms were added, new concepts introduced, definitions altered and adapted. The outcome is that what is being developed to describe the geology of Europe is going to be a part of what can be used to describe geological units globally. However, the challenges in patricular regarding "Lithology" are considerable. An example for the terminology of sedimentary rock types would be the definition of "arenite: is it a "pure" sandstone with less than 10 % matrix or a type of clastic sedimentary rock with sand grain size and less than 10 or 15% matrix (depending on the reference). This then leads

  5. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.

    2012-04-01

    Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated

  6. Collisional Time Scales in the Kuiper Disk and Their Implications

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.

  7. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  8. 3-D imaging of large scale buried structure by 1-D inversion of very early time electromagnetic (VETEM) data

    USGS Publications Warehouse

    Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.

    2001-01-01

    A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.

  9. Milankovitch time-scale record of unsteady fault slip, Salsomaggiore thrust, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Gunderson, K. L.; Anastasio, D. J.; Pazzaglia, F. J.

    2011-12-01

    In many active orogens geodetic (10^1 yr) and geologic (10^6 yr) rates of shortening do not agree, indicating unsteadiness in wedge strain partitioning or in plate boundary stresses, neither of which are well understood. Our research explores fault unsteadiness in the temporal gap between geodesy and geology. We present the 10^4-10^5 yr resolution, Pliocene-recent, unsteady slip history of the Salsomaggiore thrust, a blind thrust coring an anticline at the modern-day mountain front in the Northern Apennines, Italy. We do this by using progressively deformed marine and continental growth strata exposed on the forelimb of the growing anticline where the subsurface growth strata and fault geometries are constrained by seismic and well data. We integrate lithostratigraphic, magnetostratigraphic, and rock-magnetic cyclostratigraphic methods to construct a high-resolution chronology for the growth section. The integration of these methods allow us to reconstruct the slip history of the Salsomaggiore thrust at multiple timescales and document unsteady behavior at each scale. We use fault-related fold modeling to invert forelimb growth strata geometries for fault slip. The long-term average slip rate on the Salsomaggiore thrust is ~0.3 mm/yr during the last ~7 Myr; however, the thrust was essentially inactive during the Messinian - early Pliocene time, while shortening was accommodated on a more foreland thrust. In contrast, the fault was active between 3.2-2.5 Ma, exhibiting an average slip rate of ~0.6-0.7 mm/yr, followed by an acceleration to ~0.8-1.0 mm/yr between 2.5-1.0 Ma. Finally, a deceleration to < 0.5 mm/yr in the last 1.0 Myr occurred. A detailed look at the time period between 3.0-1.8 Ma using the high-resolution, rock-magnetic cyclostratigraphic chronology reveals unsteady fault-related folding on orbital timescales (23 kyr precession and 41 kyr obliquity frequencies). Modeling of the angular unconformities observed in this part of the section reveal fault

  10. A new set of qualitative reliability criteria to aid inferences on palaeomagnetic dipole moment variations through geological time

    NASA Astrophysics Data System (ADS)

    Biggin, Andrew; Paterson, Greig

    2014-10-01

    Records of reversal frequency support forcing of the geodynamo over geological timescales but obtaining these for earlier times (e.g. the Precambrian) is a major challenge. Changes in the measured virtual (axial) dipole moment of the Earth, averaged over several millions of years or longer, also have the potential to constrain core and mantle evolution through deep time. There have been a wealth of recent innovations in palaeointensity methods, but there is, as yet, no comprehensive means for assessing the reliability of new and existing dipole moment data. Here we present a new set of largely qualitative reliability criteria for palaeointensity results at the site mean level, which we term QPI in reference to the long-standing Q criteria used for assessing palaeomagnetic poles. These represent the first attempt to capture the range of biasing agents applicable to palaeointensity measurements and to recognise the various approaches employed to obviate them. A total of 8 criteria are proposed and applied to 312 dipole moment estimates recently incorporated into the PINT global database. The number of these criteria fulfilled by a single dipole moment estimate (the QPI value) varies between 1 and 6 in the examined dataset and has a median of 3. Success rates for each of the criteria are highly variable, but each criterion was met by at least a few results. The new criteria will be useful for future studies as a means of gauging the reliability of new and published dipole moment estimates.

  11. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  12. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  13. Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales

    NASA Astrophysics Data System (ADS)

    Zu, Qi-hang; Zhu, Jian-qing

    2016-08-01

    The paper focuses on studying the Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales. First, the Hamilton equations of nonholonomic nonconservative systems on time scales are established, which is based on the Lagrange equations for nonholonomic systems on time scales. Then, based upon the quasi-invariance of Hamilton action of systems under the infinitesimal transformations with respect to the time and generalized coordinate on time scale, the Noether identity and the conserved quantity of nonholonomic nonconservative systems on time scales are obtained. Finally, an example is presented to illustrate the application of the results.

  14. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    SciTech Connect

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Vargas-Johnson, Javier; Gonzalez-Nicolas, Ana; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods

  15. Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo.

    PubMed

    Christov, Ivan P

    2009-05-21

    Here we study the dynamics of many-body quantum systems using the time-dependent quantum Monte Carlo method where the evolution is described by ensembles of particles and guide waves. The exponential time scaling inherent to the quantum many-body problem is reduced to polynomial-time computation by solving concurrently a set of coupled Schrodinger equations for the guide waves in physical space and a set of first-order equations for the Monte Carlo walkers. We use effective potentials to account for the local and nonlocal quantum correlations in time-varying fields, where for fermionic states an exchange "hole" is introduced explicitly through screened Coulomb potentials. The walker distributions for the ground states of para- and ortho-helium reproduce well the statistical properties, such as the electron-pair density function, of the real atoms. Our predictions for the dipole response and the ionization of an atom exposed to strong ultrashort optical pulse are in good agreement with the exact results. PMID:19391581

  16. Effect of the thermal gradient variation through geological time on basin modeling; a case study: The Paris basin

    NASA Astrophysics Data System (ADS)

    Amir, L.; Martinez, L.; Disnar, J. R.; Vigneresse, J.-L.; Michels, R.; Guillocheau, F.; Robin, C.

    2005-05-01

    Many studies investigated the thermal modeling of the Paris basin for petroleum interests during the 1970s. Most of the softwares developed by oil companies or research centers were based on the assumption of a constant thermal gradient. In order to take into consideration the variation of the thermal gradient during basin evolution, we developed the TherMO's Visual Basic 1D program. We applied our model to twenty boreholes located along a cross-section roughly running EW over 150 km in the center of the Paris basin. The numerical results were calibrated with organic matter maturity data. TherMO's simulates the amount of heat provided to the sedimentary organic matter. The heat parameter simulated shows lateral variation along the cross-section. It decreases from Rambouillet to Trou Aux Loups boreholes (87-66 mW/m 2) at about 100 km more to the east whereas the heat flux value simulated is 73 mW/m 2 in St. Loup borehole. The mean thermal gradient calculated for liassic horizons at 87 My for the Rambouillet well is 50.4 °C/km. This value is similar to previously published results. By integrating the calculation of the thermal gradients and conductivities related to the burial of each stratigraphic sequence, our approach points out variations in the thermal regimes the sedimentary organic matter (SOM) has been subjected to through geological time.

  17. Incorporating Watershed-Scale Groundwater/Surface Water Interactions to Better Understand How ENSO/PDO Teleconnections Affect Streamflow Variability in Geologically Complex, Semiarid, Snow-Dominated Mountainous Watersheds

    NASA Astrophysics Data System (ADS)

    Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.

    2014-12-01

    In the Southwestern U.S., warm anomalies in the El Nino-Southern Oscillation (ENSO) are associated with increased probability of wetter than normal winter precipitation. For semiarid, snow-dominated mountainous watersheds, teleconnections, such as ENSO, may strongly affect the magnitude and timing of snowmelt pulses in streamflow. In examining stream-gage data, an implicit assumption is made that all the streamflow generation processes operative within the watershed are captured by the stream gage. However, zones of strong groundwater discharge to the stream alternating with zones of strong recharge from the stream may emerge in geologically complex watersheds. The spatial complexity of these groundwater/surface water interactions may not be captured in the stream-gage discharge data. This may not be a problem in watersheds where streamflow is generated primarily by shallow, fast runoff processes. In that case, changes associated with ENSO can be quickly apparent in streamflow (i.e., an increase in snowpack associated with warm ENSO anomalies will quickly translate to increases in daily and peak streamflow). However, the spatial complexity of groundwater/surface water interactions creates a problem in geologically complex watersheds where interactions with deep, regional groundwater are present. In this case, we test the hypothesis that the combined effect of complex geology and deep groundwater interactions creates phase shifts between peak snowpack, onset and peak of snowmelt pulses, and teleconnection indices. Using time-series analysis, the relationships between teleconnections, and metrics for snowpack and streamflow are evaluated for selected watersheds in New Mexico, Arizona, and Colorado. A phase shift (lag) is observed between the Oceanic Nino Index (ONI) and onset and peak of snowmelt pulses in streamflow in snow-dominated watersheds with complex geology across scales of 50 to 1600 km2. Additionally, strong relationships between teleconnections and

  18. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

  19. Results from the New IGS Time Scale Algorithm (version 2.0)

    NASA Astrophysics Data System (ADS)

    Senior, K.; Ray, J.

    2009-12-01

    Since 2004 the IGS Rapid and Final clock products have been aligned to a highly stable time scale derived from a weighted ensemble of clocks in the IGS network. The time scale is driven mostly by Hydrogen Maser ground clocks though the GPS satellite clocks also carry non-negligible weight, resulting in a time scale having a one-day frequency stability of about 1E-15. However, because of the relatively simple weighting scheme used in the time scale algorithm and because the scale is aligned to UTC by steering it to GPS Time the resulting stability beyond several days suffers. The authors present results of a new 2.0 version of the IGS time scale highlighting the improvements to the algorithm, new modeling considerations, as well as improved time scale stability.

  20. Input-output description of linear systems with multiple time-scales

    NASA Technical Reports Server (NTRS)

    Madriz, R. S.; Sastry, S. S.

    1984-01-01

    It is pointed out that the study of systems evolving at multiple time-scales is simplified by studying reduced-order models of these systems valid at specific time-scales. The present investigation is concerned with an extension of results on the time-scale decomposition of autonomous systems to that of input-output systems. The results are employed to study conditions under which positive realness of a transfer function is preserved under singular perturbation. Attention is given to the perturbation theory for linear operators, the multiple time-scale structure of autonomous linear systems, the input-output description of two time-scale linear systems, the positive realness of two time-scale systems, and multiple time-scale linear systems.

  1. Asymptotic stability on slow time scales from periodic systems

    SciTech Connect

    Persek, S.C.

    1981-08-01

    Asymptotic stability for a periodic system of ordinary differential equations with a small parameter is shown to follow from the stability of the corresponding iterated-average system. Applications are made to biological systems experiencing varying seasonal factors, to large scale dynamical systems that are principally irrotational and to nuclear reactor dynamics. 7 refs.

  2. Analysis of Geological Structures

    NASA Astrophysics Data System (ADS)

    Price, Neville J.; Cosgrove, John W.

    1990-08-01

    A knowledge of structural geology is fundamental to understanding the processes by which the earth's crust has evolved. It is a subject of fundamental importance to students of geology, experienced field geologists and academic researchers as well as to petroleum and mining engineers. In contrast to many structural textbooks which dwell upon geometrical descriptions of geological structures, this book emphasises mechanical principles and the way in which they can be used to understand how and why a wide range of geological structures develop. Structures on all scales are considered but the emphasis of the book is on those that can be seen on the scale of hand specimen or outcrop. Drawing on their considerable teaching experience the authors present a coherent and lucid analysis of geological structures which will be welcomed by a wide variety of earth scientists.

  3. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    NASA Astrophysics Data System (ADS)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  4. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  5. Elevation contours of the bedrock surface, North Platte 1- by 2-degree Quadrangle, Nebraska, digitized from a published 1:250,000-scale geologic map

    USGS Publications Warehouse

    Zelt, Ronald B.

    1995-01-01

    A geologic map showing the configuration of the bedrock surface for the North Platte, Nebraska, 1- by 2-degree quadrangle was published at a scale of 1:250,000 in 1991. This report describes the conversion of the bedrock-surface elevation map into a digital geographic data set and includes those data at a nominal scale of 1:500,000. A film separation of the published elevation contours was scanned to produce a file of digital graphics data. The digital graphics data were processed further to produce a digital geographic data set. Geographic feature attributes and data-set documentation also are included in the digital data set. The digital geographic data are formatted for distribution in accordance with the Spatial Data Transfer Standard approved by the U.S. National Institute of Standards and Technology.

  6. Importance of field scientific learning at the time of elementary and junior high school. - Introduction of geological field learning in Shimane Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.

    2014-12-01

    Importance of the scientific field learning is increasing since the disaster by the Tohoku-Earthquake and Tsunami at the 11th March 2011, in Japan. Effective enforcement of the environmental education from a kindergarten to a University student is very important educational tool for protecting future earth's environment. Practice of the geological field study at the time of elementary and junior high school is very important. This study reports the present situation and the practice example of field scientific learning of Japan. Particularly, I report practice of the geological field education in a class of Shimane prefecture. I point out that "Consciousness (In)", "knowledge (About)", and "action (For)" are important three factors not only environmental education but also geological field education (e.g. Matsumoto, 2014). However, the practice rate of field geological learning at the elementary and junior high school is very low in Japan (Miyashita and Matsumoto, 2010). I introduce the effective method of increasing the practice rate of field geological study. I discuss about pedagogy which improves especially a student's scientific literacy.

  7. Investigating catchment-scale hysteretic behaviour of nutrients at annual and individual storm time-resolutions.

    NASA Astrophysics Data System (ADS)

    Lloyd, Charlotte; Freer, Jim; Johnes, Penny; Collins, Adrian

    2013-04-01

    The European Water Framework Directive (WFD) requires that all water bodies should be maintained at, or raised to, good ecological status, driven by improved integrated catchment management. Therefore, it is necessary to implement cost-effective mitigation strategies to reduce pollution from nutrients and improve overall water quality. If successful mitigation strategies are to be designed then it is imperative that catchment scale responses to environmental and anthropogenic changes are better understood. Against this background, this presentation investigates changes in hysteretic behaviours of nutrients in response to different environmental drivers using high resolution monitoring techniques. Observations of hysteretic behaviour can provide insights into the dominant flow pathways of pollutants. Therefore, monitoring changes in nutrient hysteresis can provide a useful tool for detecting regime differences or changes within and between catchments. In the UK, the Demonstration Test Catchment (DTC) project has been set up to monitor evidence for improving water quality problems arising specifically from diffuse pollution from agriculture using targeted mitigation experiments and high resolution monitoring. This research platform provides an opportunity to compare storm-driven nutrient behaviour between catchments which have differing geologies, as well as how these behaviours evolve on a seasonal and annual basis. The monitoring to date has included a period of drought, directly followed by extreme wet conditions in the UK and therefore offers opportunities to assess the effect of differences in antecedent conditions on monitored nutrient response to rainfall events. The study compares the hysteretic behaviour of nutrients, including nitrogen and phosphorus species as well as sediment from a number of storm events of varying magnitudes throughout the 2011-2012 monitoring period in the Hampshire Avon catchment as part of the DTC programme. The investigation focuses

  8. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    SciTech Connect

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  9. Fractal scaling properties in nonstationary heartbeat time series

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.

    1996-06-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, we find that for subjects at high risk of sudden death (e.g. congestive heart failure patients) these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiological models of systems that appear to be ``hetero-dynamic'' rather than ``homeo-static.''

  10. Fractal scaling properties in nonstationary heartbeat time series

    SciTech Connect

    Peng, C. |; Havlin, S. |; Stanley, H.E.; Goldberger, A.L. |

    1996-06-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, we find that for subjects at high risk of sudden death (e.g. congestive heart failure patients) these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiological models of systems that appear to be {open_quote}{open_quote}hetero-dynamic{close_quote}{close_quote} rather than {open_quote}{open_quote}homeo-static.{close_quote}{close_quote} {copyright} {ital 1996 American Institute of Physics.}

  11. Light storage on the time scale of a minute

    NASA Astrophysics Data System (ADS)

    Dudin, Y. O.; Li, L.; Kuzmich, A.

    2013-03-01

    Light storage on the minute scale is an important capability for future scalable quantum information networks spanning intercontinental distances. We employ an ultracold atomic gas confined in a one-dimensional optical lattice for long-term light storage. The differential ac Stark shift of the ground-level microwave transition used for storage is reduced to a sub-Hz level by the application of a magic-valued magnetic field. The 1/e lifetime for storage of coherent states of light is prolonged up to 16 s by a microwave dynamic decoupling protocol.

  12. Time Evolution of Galaxy Scaling Relations in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Kobayashi, Chiaki

    2016-08-01

    We predict the evolution of galaxy scaling relationships from cosmological, hydrodynamical simulations, that reproduce the scaling relations of present-day galaxies. Although we do not assume co-evolution between galaxies and black holes a priori, we are able to reproduce the black hole mass-velocity dispersion relation. This relation does not evolve, and black holes actually grow along the relation from significantly less massive seeds than have previously been used. AGN feedback does not very much affect the chemical evolution of our galaxies. In our predictions, the stellar mass-metallicity relation does not change its shape, but the metallicity significantly increases from z ˜ 2 to z ˜ 1, while the gas-phase mass-metallicity relation does change shape, having a steeper slope at higher redshifts (z ≲ 3). Furthermore, AGN feedback is required to reproduce observations of the most massive galaxies at z ≲ 1, specifically their positions on the star formation main sequence and galaxy mass-size relation.

  13. Thomson scattering on a 20-psec time scale.

    PubMed

    Baldis, H A; Walsh, C J; Benesch, R

    1982-01-15

    A technique for high resolution Thomson scattering is discussed. By coupling a spectrograph to a streak camera with high sensitivity detectors, time and spectrally resolved scattered signals are obtained. Time resolutions down to 20 psec have been achieved, with the primary limitation on this figure coming from temporal dispersion in the spectrograph. The results of some laser plasma interaction experiments designed to study plasma instabilities are presented. PMID:20372444

  14. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  15. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  16. Fossils, Facies and Geologic Time: Active Learning Yields More Expert-Like Thinking in a Large Class for Senior Science Students

    NASA Astrophysics Data System (ADS)

    Sutherland, S.; Jones, F. M.

    2012-12-01

    Teaching and assessing concepts involving the relationships between deep time and the Earth System can be challenging. This is especially true in elective courses for senior general science students who should be starting to think more like experts, but lack background knowledge in geology. By comparing student activities and work, both before and after introducing active learning strategies, we show that increased maturity of thinking about geological time was achieved in the science elective "Earth and Life through Time" taken by 150 upper level general science students. Student demographics were very similar in 2010 and 2011 allowing comparison of data from a consistent end of term survey, classroom observations, and test or exercise questions used in both years. Students identified the workload as greater in 2011, yet they also gave the course a stronger overall rating of excellence. Also, students in 2011 felt assessments and homework were more appropriate and expressed a nearly unanimous preference for group versus solo class work. More objective indicators of improvement include item analysis on test questions which shows increased difficulty and discrimination without compromising overall scores. The wide variety of changes introduced in 2011 do make it difficult to rigorously ascribe specific causes for improvement in how students think about geologic time. However the shift towards more sophisticated thinking involving skills rather than recall can be demonstrated by comparing geological interpretations produced by students in early and improved versions of exercises. For example, labs have always involved basic identification of rocks and fossils. Now, the new in-class group-based activities enable students to use data to establish the relative history of a geologic section, including environments, ages of known materials, and time spans of materials missing at unconformities. In addition to activities, specific exam questions and corresponding results

  17. Clustering of time-evolving scaling dynamics in a complex signal.

    PubMed

    Saghir, Hamidreza; Chau, Tom; Kushki, Azadeh

    2016-07-01

    Complex time series are widespread in physics and physiology. Multifractal analysis provides a tool to study the scaling dynamics of such time series. However, the temporal evolution of scaling dynamics has been ignored by traditional tools such as the multifractal spectrum. We present scaling maps that add the time dimension to the study of scaling dynamics. This is particularly important in cases in which the dynamics of the underlying processes change in time or in applications that necessitate real-time detection of scaling dynamics. In addition, we present a methodology for automatic clustering of existing scaling regimes in a signal. We demonstrate the methodology on time-evolving correlated and uncorrelated noise and the output of a physiological control system (i.e., cardiac interbeat intervals) in healthy and pathological states. PMID:27575136

  18. Modelling financial markets with agents competing on different time scales and with different amount of information

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Johannes; Andersen, Jørgen Vitting

    2006-05-01

    We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.

  19. Clustering of time-evolving scaling dynamics in a complex signal

    NASA Astrophysics Data System (ADS)

    Saghir, Hamidreza; Chau, Tom; Kushki, Azadeh

    2016-07-01

    Complex time series are widespread in physics and physiology. Multifractal analysis provides a tool to study the scaling dynamics of such time series. However, the temporal evolution of scaling dynamics has been ignored by traditional tools such as the multifractal spectrum. We present scaling maps that add the time dimension to the study of scaling dynamics. This is particularly important in cases in which the dynamics of the underlying processes change in time or in applications that necessitate real-time detection of scaling dynamics. In addition, we present a methodology for automatic clustering of existing scaling regimes in a signal. We demonstrate the methodology on time-evolving correlated and uncorrelated noise and the output of a physiological control system (i.e., cardiac interbeat intervals) in healthy and pathological states.

  20. Time scales of variability associated with Nordeste precipitation

    SciTech Connect

    Sperber, K.R. ); Hameed, S. . Inst. for Terrestrial and Planetary Atmospheres)

    1991-06-01

    The Northeast section of Brazil, called the Nordeste, experiences flood and drought regimes as the norm rather than the exception. This region receives its principal dose of precipitation during March--April, subsequent to regions to the west and north due to its proximity to the southern Atlantic subtropical high. A weakening of this anticyclone and strengthening of its counterpart in the northern Atlantic during this season results in the farthest southward penetration of the ITCZ and the Nordeste rainy season. Fluctuations in the large-scale circulation of the atmosphere, such as ENSO, modulate the track of the ITCZ causing the interannual drought or flood conditions that plague this region. Empirical studies have shown that Nordeste rainfall is related to the sea-surface temperature (SST) in the tropical Atlantic Ocean. 16 refs., 4 figs.

  1. Microsecond-Scale Timing Precision in Rodent Trigeminal Primary Afferents

    PubMed Central

    Bale, Michael R.; Campagner, Dario; Erskine, Andrew

    2015-01-01

    Communication in the nervous system occurs by spikes: the timing precision with which spikes are fired is a fundamental limit on neural information processing. In sensory systems, spike-timing precision is constrained by first-order neurons. We found that spike-timing precision of trigeminal primary afferents in rats and mice is limited both by stimulus speed and by electrophysiological sampling rate. High-speed video of behaving mice revealed whisker velocities of at least 17,000°/s, so we delivered an ultrafast “ping” (>50,000°/s) to single whiskers and sampled primary afferent activity at 500 kHz. Median spike jitter was 17.4 μs; 29% of neurons had spike jitter < 10 μs. These results indicate that the input stage of the trigeminal pathway has extraordinary spike-timing precision and very high potential information capacity. This timing precision ranks among the highest in biology. PMID:25878266

  2. Scaling of expected survival time in a stochastic harvesting model

    NASA Astrophysics Data System (ADS)

    Hastings, Harold; Radin, Michael; Wiandt, Tamas

    We explore the dynamics of modified version of a standard fishery model (Gordon-Schafer-Munro), with additive and multiplicative noise, under a quota-based harvest. A harvest quota induces an effective strong Allee effect (a positive unstable steady state population level, below which populations die out), with expected survival time following generalized Ornstein-Uhlenbeck dynamics. In particular, for additive noise, the expected survival time is exponential in s3/σ2, where s is the difference between stable and unstable steady state populations and σ the noise level. Thus survival time depends sensitively upon harvest quota (which determines steady state population), perhaps a warning to avoid future collapses such as that of the Atlantic cod fishery.

  3. Space Charge Models for Particle Tracking on Long Time Scales

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P; Potts III, Robert E

    2013-01-01

    In order to efficiently track charged particles over long times, most tracking codes use either analytic charge distributions or particle-in-cell (PIC) methods based on fast Fourier transforms (FFTs). While useful for theoretical studies, analytic distribution models do not allow accurate simulation of real machines. PIC calculations can utilize realistic space charge distributions, but these methods suffer from the presence of discretization errors. We examine the situation for particle tracking with space charge over long times, and consider possible ideas to improve the accuracy of such calculations.

  4. Random time-scale invariant diffusion and transport coefficients.

    PubMed

    He, Y; Burov, S; Metzler, R; Barkai, E

    2008-08-01

    Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement delta2[over ] of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that delta2[over ] differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable delta2[over ]. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed. PMID:18764430

  5. Probing Single-Photon Ionization on the Attosecond Time Scale

    SciTech Connect

    Kluender, K.; Dahlstroem, J. M.; Gisselbrecht, M.; Fordell, T.; Swoboda, M.; Guenot, D.; Johnsson, P.; Mauritsson, J.; L'Huillier, A.; Caillat, J.; Maquet, A.; Taieeb, R.

    2011-04-08

    We study photoionization of argon atoms excited by attosecond pulses using an interferometric measurement technique. We measure the difference in time delays between electrons emitted from the 3s{sup 2} and from the 3p{sup 6} shell, at different excitation energies ranging from 32 to 42 eV. The determination of photoemission time delays requires taking into account the measurement process, involving the interaction with a probing infrared field. This contribution can be estimated using a universal formula and is found to account for a substantial fraction of the measured delay.

  6. Environmental Geology

    ERIC Educational Resources Information Center

    Passero, Richard N.

    1978-01-01

    1977 was a year of continued and expanding efforts in the application of the geosciences to land-use planning, especially as they relate to geologic hazards, and elucidating the role of geology in public policy. The work of environmental geological programs is reviewed. (Author/MA)

  7. Computer Response Time Measurements of Mood, Fatigue and Symptom Scale Items: Implications for Scale Response Time Uses.

    ERIC Educational Resources Information Center

    Ryman, David H.; And Others

    1988-01-01

    Describes study conducted with U.S. Marine Corps enlisted personnel to measure response time to computer-administered questionnaire items, and to evaluate how measurement of response time might be useful in various research areas. Topics addressed include mood states; the occurrence of straight lining; and experimental effects of sleep loss and…

  8. Time Scales in the JPL and CfA Ephemerides

    NASA Technical Reports Server (NTRS)

    Standish, E. M.

    1998-01-01

    Over the past decades, the IAU has repeatedly attempted to correct its definition of the basic fundamental argument used in the emphemerides. Finally, they have defined a time system which is physically possible, according to the accepted standard theory of gravitation.

  9. Brain connectivity at different time-scales measured with EEG

    PubMed Central

    Koenig, T; Studer, D; Hubl, D; Melie, L; Strik, W.K

    2005-01-01

    We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks. PMID:16087445

  10. Time-scale bias in evidence for anthropogenic acceleration of soil erosion and floodplain accretion

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Hoffmann, T.; Sadler, P.; Kaplan, J. O.; Chiverrell, R. C.; Erkens, G.; von Blanckenburg, F.

    2014-12-01

    The claim that humans modify the landscape more dramatically than any previous geological agent has impacts for river restoration, conservation and models of both nutrient- and carbon-cycling. This view of extreme sediment mobilization driven by human activities is largely based on data, which unfortunately are measured over discrepant timescales that can introduce bias. Comparing denudation rates discerned from cosmogenic nuclides as 'baseline' or 'natural' rates with continent-scale sediment export rates over modern timescales reveals that most cosmogenic nuclide-based erosion rates are faster than human-impacted rates of sediment yield [1]. One explanation for relatively low recent continental sediment yields is that the eroded sediment may be accumulating and stored for an uncertain duration in swelling floodplains and deltas. We present a global compilation of Holocene floodplain accumulation rates. Rates measured over the last ~100 years are faster than those averaged over ~1000 years, which in turn are faster than those for the last ~10000 years. Floodplain sediment accumulation measurements, however, are taken at discreet cores or bank exposures, and this introduces both temporal and spatial bias. Vertical accumulation rates are calculated by dividing thickness of sediment by the time-span of accumulation for discrete packages of sediment. Thus, time integrates from the present to a past datum provided by 14C measurements for buried organics (or other chronological tools). We argue that the pattern of rate increase in sedimentation over time is related to infilling behavior of all floodplains and not specifically tied to the supply of (anthropogenic) sediment. The apparent acceleration in sedimentation rates appears globally synchronous over 8000-year timescales, despite diachronous human and land use histories. Moreover, some rate acceleration pre-dates significant human land use. When the effect/bias of averaging time is accounted for, recent accumulation

  11. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the

  12. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.

    PubMed

    Seiffertt, John; Sanyal, Suman; Wunsch, Donald C

    2008-08-01

    The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research. PMID:18632378

  13. Recent Geologic Mapping Results for the Polar Regions of Mars

    NASA Technical Reports Server (NTRS)

    tanaka, K. L.; Kolb, E. J.

    2008-01-01

    The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.

  14. Impact of Natural Organic Matter on Uranium Transport through Saturated Geologic Materials: From Molecular to Column Scale

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Saiers, J. E.; Xu, N.; Shuh, D.; Tyliszczak, T.; Barnett, M.

    2011-12-01

    The transport of radionuclides within geologic environments is of considerable concern. Actinides migrate in association with mineral particles and organic matter that occur naturally in nearly all groundwaters. The role of mineral colloids in facilitating radionuclide transport has been reported in numerous studies, but the effects of waterborne organic matter on radionuclide mobility have received less attention. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to co-transport uranium (U) within water-saturated sand columns. We also measured kinetics of U desorption from the HAs in separate experiments by using a novel, continuously stirred flow system (CSFS). Maximum relative breakthrough concentrations of U in our column experiments increased from undetectable levels (<0.001) in the absence of HAs to 0.17 to 0.54 with HAs. The strength of the HA effect on U mobility was positively correlated with the NMR-detected content of paraffinic carbon and the hydrophobicity of HAs, which indicates the importance of hydrophobic organic matter in facilitating U transport. Consistently, near-edge X-ray absorption fine structure (NEXAFS) spectra coupled with scanning transmission X-ray microscopy (STXM) show that bound U was concentrated in micro areas of the HA that were composed of more hydrophobic carbon. Further analyses of the breakthrough data together with the data from the CSFS experiments revealed that the rates of U desorption from the HAs decreased with decreasing hydrophobicity of the HAs. This finding suggests that U association with hydrophilic moieties of the HAs was irreversible or very-slowly reversible, possibly due to the formation of strong, inner-sphere surface complexes. Using information gleaned from the CSFS experiments on U-HA interactions, model simulations for U and HA transport indicate that colloidal HAs may play a more important role than dissolved HAs in mobilizing and

  15. Constraining Slab Sinking on a Whole-Mantle Scale: Quantitative Integration of Surface and Sub-Surface Observations from Geophysics and Geology

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Mihalynuk, M. G.

    2014-12-01

    How rapidly slabs sink, which trajectories they follow, and how they deform in the process, presents an inferential challenge to geophysics. Mantle rheologies remain highly uncertain, and seismic tomography can merely offer present-day snapshots of a process defined by temporal evolution. Thus observational constraints on slab sinking have tended to remain non-unique. Subduction zones are complex litho-consumers whose time-variant activity can be reconstructed from geological observations on paleo-arcs, but the association of arcs to their subducted, tomographically imaged lithosphere is iffy. Except for young slabs that can be reliably linked with coeval paleo-arc activity a priori, deeper geological time information cannot be exploited with certainty. As long as slab geometries remain "undated", few constraints on slab sinking behavior and hence mantle rheology can be extracted. Sigloch & Mihalynuk (2013) demonstrated a quantitative method to tighten constraints on slab sinking in the lower mantle by investigating the least ambiguous slab geometries observed. Extremely massive and almost vertical slab walls should have been deposited by vertical sinking beneath (intra-oceanic) trenches that remained stationary for a long time (~100 m.y.). We showed how this hypothesis of vertical sinking can be tested quantitatively and successfully, making only minimal assumptions on mantle rheology, and with proper error propagation for all observations (tomography, plate reconstructions, geology). Here the discussion of sinking trajectories and rates is extended to more challenging geometries. Dipping slabs in the lower mantle, and laterally extensive "stagnant slabs" in the transition zone can also be rendered dateable and trackable by (re-)investigation of their paleo-trenches. We discuss examples and link to recent geodynamic modeling of viscous sheet sinking. Reference: Sigloch K & Mihalynuk MG (2013), Intra-oceanic subduction shaped the assembly of Cordilleran North

  16. Inducing and Probing Attosecond-Time-Scale Electronic Wavefunction Beating

    NASA Astrophysics Data System (ADS)

    Ott, Christian; Raith, Philipp; Pfeifer, Thomas

    2010-03-01

    Much of the current interest in the field of ultrafast science focuses on the observation of attosecond dynamics of electronic wavepackets. These experiments typically require attosecond pulses either for pumping or probing such dynamics and/or are limited to observing electronic states embedded in the ionization continuum of atoms. Here, we present numerical evidence---based on solutions of the time-dependent Schr"odinger equation for a 1-dimensional model atom---that a pump--probe scheme with two few-cycle femtosecond laser pulses provides interferometric access to sub-femtosecond electron wavepacket dynamics. Both continuum- and bound-state electronic wavepacket interference can be simultaneously observed by recording and analyzing time-delay dependent interferences in the ATI spectrum of an atom. Both dipole-allowed and forbidden electronic transition information can be extracted from the data, making this approach a versatile and comprehensive spectroscopic method for probing the bound electronic level structure of an atom.

  17. Sub-Daily Runoff Simulations with Parameters Inferred at the Daily Time Scale

    NASA Astrophysics Data System (ADS)

    Reynolds, J. E.; Xu, C. Y.; Seibert, J.; Halldin, S.

    2015-12-01

    Concentration times in small and medium-sized watersheds (~100-1000 km2) are commonly less than 24 hours. Flood-forecasting models then require data at sub-daily time scales, but time-series of input and runoff data with sufficient lengths are often only available at the daily time scale, especially in developing countries. This has led to a search for time-scale relationships to infer parameter values at the time scales where they are needed from the time scales where they are available. In this study, time-scale dependencies in the HBV-light conceptual hydrological model were assessed within the generalized likelihood uncertainty estimation (GLUE) approach. It was hypothesised that the existence of such dependencies is a result of the numerical method or time-stepping scheme used in the models rather than a real time-scale-data dependence. Parameter values inferred showed a clear dependence on time scale when the explicit Euler method was used for modelling at the same time steps as the time scale of the input data (1 to 24 h). However, the dependence almost fully disappeared when the explicit Euler method was used for modelling in 1-hour time steps internally irrespectively of the time scale of the input data. In other words, it was found that when an adequate time-stepping scheme was implemented, parameter sets inferred at one time scale (e.g., daily) could be used directly for runoff simulations at other time scales (e.g., 3 h or 6 h) without any time scaling and this approach only resulted in a small (if any) model performance decrease, in terms of Nash-Sutcliffe and volume-error efficiencies. The overall results of this study indicated that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.

  18. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect

    Not Available

    2011-06-22

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  19. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  20. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2015-10-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  1. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2016-07-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  2. Status of 1:24,000-Scale Geologic Mapping of Basin Strata Exposed in Central Hadriacus Cavi, Mars

    NASA Astrophysics Data System (ADS)

    Skinner, J. A.; Fortezzo, C. M.

    2016-06-01

    We describe a "type" cross-section of the major groups of stratified units in central Hadriacus Cavi, Mars, discuss the range of potential stratigraphic interpretations, and review how these details will translate to the final 1:24,000 scale map.

  3. A Cool Business: Trapping Intermediates on the submillisecond time scale

    NASA Astrophysics Data System (ADS)

    Yeh, Syun-Ru

    2004-03-01

    The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 microseconds. In the microfluidic silicon mixer, seven vertical pillars with 10 micrometer diameter are arranged perpendicular to the flow direction and in a staggered fashion in the 450 picoliter mixing chamber to enhance turbulent mixing. The mixed solution jet, with a cross-section of 10 micrometer by 100 micrometer, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/sec. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultra-fine powder. The ultra-fine frozen powder exhibits excellent spectral quality, high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead-time of the mixer (20 microseconds) and the first observable point for this coupled device was determined to be 50 microseconds, which is approximately two orders of magnitude faster than commercially available instruments. Several new applications of this device in ultra-fast biological reactions will be presented. Acknowledgements: This work is done in collaboration with Dr. Denis Rousseau and is supported by the NIH Grants HL65465 to S.-R.Y. and GM67814 to D.L.R.

  4. Stimulated Brillouin scattering in picosecond time scales: Experiments and modeling

    SciTech Connect

    Baldis, H.A.; Villeneuve, D.M.; La Fontaine, B.; Enright, G.D. ); Labaune, C.; Baton, S.; Mounaix, P.; Pesme, D. ); Casanova, M. ); Rozmus, W. )

    1993-09-01

    This paper presents an experimental and theoretical study of stimulated Brillouin scattering (SBS) in laser produced plasma using a laser pump with a duration of 8--10 psec. The experiments were performed in a preformed plasma to minimize the flow velocity and have the same plasma conditions over a large range of laser intensities. The reflectivity was then compared to theoretical results over an intensity range of 10[sup 13]--2[times]10[sup 15] W/cm[sup 2]. A short pulse was used so that the SBS was in the temporally growing regime and saturation was not an issue.

  5. Radiometric Dating in Geology.

    ERIC Educational Resources Information Center

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  6. Simultaneous storm time equatorward and poleward large-scale TIDs on a global scale

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke; Yamazaki, Yosuke; Seemala, Gopi

    2016-07-01

    We report on the first simultaneous observations of poleward and equatorward traveling ionospheric disturbances (TIDs) during the same geomagnetic storm period on a global scale. While poleward propagating TIDs originate from the geomagnetic equator region, equatorward propagating TIDs are launched from the auroral regions. On a global scale, we use total electron content observations from the Global Navigation Satellite Systems to show that these TIDs existed over South American, African, and Asian sectors. The American and African sectors exhibited predominantly strong poleward TIDs, while the Asian sector recorded mostly equatorward TIDs which crossed the geomagnetic equator to either hemisphere on 9 March 2012. However, both poleward and equatorward TIDs are simultaneously present in all three sectors. Using a combination of ground-based magnetometer observations and available low-latitude radar (JULIA) data, we have established and confirmed that poleward TIDs of geomagnetic equator origin are due to ionospheric electrodynamics, specifically changes in E × B vertical drift after the storm onset.

  7. Using stable isotopes to estimate and compare mean residence times in contrasting geologic catchments (Attert River, NW Luxembourg)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, N.; Fenicia, F.; Frentress, J.; Wrede, S.; Pfister, L.

    2012-04-01

    In recent years, stable isotopes have been increasingly used to characterize important aspects of catchment hydrological functioning, such as water storage dynamics, flow pathways and water sources. These characteristics are often synthesized by the Mean Residence Time (MRT), which is a simple catchment descriptor that employ the relation of distinct stable isotopic signatures in the rainfall input and streamflow output of a catchment that are significantly dampened through sub-surface propagation. In this preliminary study, MRT was estimated in the Attert River catchment (NW Luxembourg), where previous studies have shown that lithology exerts a major control on runoff generation. The Attert catchment lies at the transition zone of contrasting bedrock lithology: the Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the south of the catchment. As a consequence of differing lithologic characteristics, hydrological processes change across scales. The schistose catchments exhibit a delayed shallow groundwater component, sandstone catchments have slow-responding year-round groundwater component, whereas flashy runoff regimes prevails in the marly catchments. Under these circumstances, the MRTs are expected to vary significantly according to lithology, and provide additional understanding in internal catchment processes and their scale dependencies. In order to test this, bi-weekly monitoring of rainfall and discharge stable water isotope composition (oxygen-18 and deuterium) has been carried out since 2007 in 10 nested sub-catchments ranging in size from 0.4 to 247 km2 in the Attert catchment. MRT was estimated using different lumped convolution integral models and sine wave functions with varying transit times distributions (TTDs). TTDs were evaluated through calibration. Further research efforts will deal with the application of conceptual models to simulate and compare TTD, using

  8. Isopachs of Quaternary deposits, Fremont 1- by 2- degree Quadrangle and part of Omaha Quadrangle, Nebraska, digitized from a published 1:250,000-scale geologic map

    USGS Publications Warehouse

    Zelt, R.B.; Patton, E.J.

    1995-01-01

    A geologic map showing the isopachs of Quaternary deposits in the Fremont and part of the Omaha, Nebraska, 1- by 2-degree quadrangles was published at a scale of 1:250,000 in 1975 (Burchett and others, 1975). This report describes the conversion of Quaternary thickness data into a digital geographic data set. A film separation of the published isopachs was scan-digitized and processed to produce digital geographic data. Geographic feature attributes and data-set documentation also are included in the digital data set. The digital data set are formatted for distribution with accordance with the Spatial Data Transfer Standard approved by the U.S. National Institute of Standards and Technology.

  9. Time scale of the largest imaginable magnetic storm

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2013-01-01

    The depression of the horizontal magnetic field at Earth's equator for the largest imaginable magnetic storm has been estimated (Vasyliūnas, 2011a) as -Dst ~ 2500 nT, from the assumption that the total pressure in the magnetosphere (plasma plus magnetic field perturbation) is limited, in order of magnitude, by the minimum pressure of Earth's dipole field at the location of each flux tube. The obvious related question is how long it would take the solar wind to supply the energy content of this largest storm. The maximum rate of energy input from the solar wind to the magnetosphere can be evaluated on the basis either of magnetotail stress balance or of polar cap potential saturation, giving an estimate of the time required to build up the largest storm, which (for solar-wind and magnetospheric parameter values typical of observed superstorms) is roughly between ~2 and ~6 h.

  10. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed. PMID:22380071

  11. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  12. Advances in planetary geology

    SciTech Connect

    Not Available

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  13. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  14. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  15. The Bichromatic Optical Force on the Atomic Life- time Scale

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2013-05-01

    Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.

  16. Scale (in)variance in a unified diffusion model of decision making and timing.

    PubMed

    Simen, Patrick; Vlasov, Ksenia; Papadakis, Samantha

    2016-03-01

    Weber's law is the canonical scale-invariance law in psychology: when the intensities of 2 stimuli are scaled by any value k, the just-noticeable-difference between them also scales by k. A diffusion model that approximates a spike-counting process accounts for Weber's law (Link, 1992), but there exist surprising corollaries of this account that have not yet been described or tested. We show that (a) this spike-counting diffusion model predicts time-scale invariant decision time distributions in perceptual decision making, and time-scale invariant response time (RT) distributions in interval timing; (b) for 2-choice perceptual decisions, the model predicts equal accuracy but faster responding for stimulus pairs with equally scaled-up intensities; (c) the coefficient of variation (CV) of decision times should remain constant across average intensity scales, but should otherwise decrease as a specific function of stimulus discriminability and speed-accuracy trade-off; and (d) for timing tasks, RT CVs should be constant for all durations, and RT skewness should always equal 3 times the CV. We tested these predictions using visual, auditory and vibrotactile decision tasks and visual interval timing tasks in humans. The data conformed closely to the predictions in all modalities. These results support a unified theory of decision making and timing in terms of a common, underlying spike-counting process, compactly represented as a diffusion process. (PsycINFO Database Record PMID:26461957

  17. A search for short time scale TeV variability in Mkn501

    NASA Astrophysics Data System (ADS)

    Carson, Michael; McKernan, Barry; Yaqoob, Tahir; Fegan, David

    1999-06-01

    We analyse Whipple TeV gamma-ray data from active states of Mkn501 for short time scale variability using the new Excess Pair Fraction (EPF) method. No evidence is found for significant variability on time scales less than 10 minutes.

  18. Addition of random run FM noise to the KPW time scale algorithm

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2002-01-01

    The KPW (Kalman plus weights) time scale algorithm uses a Kalman filter to provide frequency and drift information to a basic time scale equation. This paper extends the algorithm to three-state clocks nd gives results for a simulated eight-clock ensemble.

  19. Time Matters: Increasing the Efficiency of Antarctic Marine Geology and Paleoceanography Expeditions by Providing Improved Sediment Chronology

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Domack, E. W.; Shevenell, A.; Subt, C.

    2015-12-01

    To maximize the areal extent of Antarctic sedimentary records of past deglaciation, it is necessary to ensure more sediment cores can be adequately dated. Antarctic margin sediment is challenging to date due to the lack of preserved calcium carbonate, but the records contained in these sediments readily recount the history of deglaciation. Recent and continued development of new chronological methods for Antarctic margin sediments have allowed better use of the efforts of marine geological coring expeditions to the region. The development of Ramped PyrOx radiocarbon dating has allowed us to 1. improve dates in deglacial sediments where no carbonate is preserved, 2. date glacial sediments lying below the tills marking the last glaciation, and 3. compile core chronologies into a regional framework of ice shelf collapse that has eluded many marine geology campaigns over the last few decades. These advances in a fundamental aspect of geological sciences will put the U.S. and international community on a better foothold to interpret the past as it relates to our warming future. We will present these advances in chronology as well as the science that is enabled by them, while arguing that the future of Antarctic marine science also depends on investments in shore-based technologies that come at a relatively low cost.

  20. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The Interchange No. NCC2-5149 deals with the emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. To build such devices and subsystems, one needs to model the entire chip. PICs are useful for building components for integrated optical transmitters, integrated optical receivers, optical data storage systems, optical interconnects, and optical computers. For example, the current commercial rate for optical data transmission is 2.5 gigabits per second, whereas the use of shorter pulses to improve optical transmission rates would yield an increase of 400 to 1000 times. The improved optical data transmitters would be used in telecommunications networks and computer local-area networks. Also, these components can be applied to activities in space, such as satellite to satellite communications, when the data transmissions are made at optical frequencies. The research project consisted of developing accurate computer modeling of electromagnetic wave propagation in semiconductors. Such modeling is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Presently, there are no computer codes that could provide this modeling. Current codes do not solve the full vector, nonlinear, Maxwell's equations, which are required for these short pulses and also current codes do not solve the semiconductor Bloch equations, which are required to accurately describe the material's interaction with femtosecond pulses. The research performed under NCC2-5149 solves the combined Maxwell's and Bloch's equations.

  1. Variability Trends in QSOs Over Monthly Time Scales

    NASA Astrophysics Data System (ADS)

    Fleming, B. T.; Kennefick, J.

    2005-12-01

    Variation in quasar magnitude from night to night can reveal long term variability trends as well as have a greater chance of detecting sudden luminosity changes than a typical long-term variability survey. In this study, five quasars with a range of properties were observed approximately every other night over 40 days using the 24" NFO webscope in Silver City, NM. Three 200 second exposure images were taken in both the R and V color filters each observation. Two passbands were used so that the data could be correlated to support findings. The images were stacked and processed using IRAF and SExtractor. Differential photometry using field stars was utilized. The five quasars were selected so that as large a range of redshift and absolute magnitude observable by the NFO webscope was represented. They are: (1) MRK 0877 with z=0.1124, (2) 3C-334 a RQQ with z=0.5551, (3) HS 1603+3820 a very luminous, very distant QSO with z=2.51, and two quasars from the QUEST survey (J1507-0202 and J1507-0207) which were selected because they both showed evidence of magnitude variations during the QUEST1 survey. Two of the observed quasars showed no significant variability. 3C-334 displayed a sudden apparent magnitude jump in both passbands, with Δ mR = 0.5602 ± 0.0474, corresponding to an increase of 6.62E+11 solar luminosities on June 21st. The magnitude returned to previous levels by the next observation. QUEST 1507-0202 and MRK 0877 suggested evidence of small long term variability over the 40 day study. Future observations revealing significant changes in magnitude corresponding to these trends may lead to the conclusion that these slow long-term variations can be detected over a 40 day time period with frequent observations. Funding was provided through an Arkansas Space Center grant.

  2. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.

  3. Detecting abrupt climate changes on different time scales

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István

    2011-10-01

    Two concepts are introduced for detecting abrupt climate changes. In the first case, the sampling frequency of climate data is high as compared to the frequency of climate events examined. The method is based on a separation of trend and noise in the data and is applicable to any dataset that satisfies some mild smoothness and statistical dependence conditions for the trend and the noise, respectively. We say that an abrupt change occurs when the first derivative of the trend function has a discontinuity and the task is to identify such points. The technique is applied to Northern Hemisphere temperature data from 1850 to 2009, Northern Hemisphere temperature data from proxy data, a.d. 200-1995 and Holocene δ18O values going back to 11,700 years BP. Several abrupt changes are detected that are, among other things, beneficial for determining the Medieval Warm Period, Little Ice Age and Holocene Climate Optimum. In the second case, the sampling frequency is low relative to the frequency of climate events studied. A typical example includes Dansgaard-Oeschger events. The methodology used here is based on a refinement of autoregressive conditional heteroscedastic models. The key element of this approach is the volatility that characterises the time-varying variance, and abrupt changes are defined by high volatilities. The technique applied to δ18O values going back to 122,950 years BP is suitable for identifying DO events. These two approaches for the two cases are closely related despite the fact that at first glance, they seem quite different.

  4. The Relationship between a Distribution of Submarine Groundwater Discharge and a Local-scale Coastal Geology and Topography in Northern Japan

    NASA Astrophysics Data System (ADS)

    Honda, H.; Sugimoto, R.; Shoji, J.; Tominaga, O.; Kobayashi, S.; Taniguchi, M.

    2014-12-01

    Submarine groundwater discharge (SGD) has been recognized as an important pathway for material transport to the marine environment. Submarine fresh groundwater discharge will occur wherever an aquifer is hydraulically connected with the sea and the water table is above sea level. The driving force behind this process is the hydraulic gradient from the upland region of a watershed to the surface water discharge location at the coast. Permeability also affects the rate of recharge into an aquifer and discharge into a sea. In the present study, we thus evaluated the SGD impact on the two locations in eastern (Yuza) and western (Otsuchi) side of the northern Japan to clarify the relationship between the coastal distribution of SGD and the local-scale coastal geology and topography. We applied 222Rn monitoring survey with the dual-loop system (Dimova et al. 2009) to assess the local-scale impact of SGD. In the Yuza area, abundant spring discharges are present around the coast at the terminus of volcanic lava flows. We conducted the continuous 222Rn monitoring at boat speeds of < 2 knots along the coast for a few kilometers scale assessment. Moreover, at the two contrastive specific sites (Kamaiso beach and Shonai dune) where are different properties of geology and topography, the continuous 222Rn monitoring using a rubber boat at speeds of 1 m per 20 seconds was done for a few hundred meters scale assessment. As a result, 222Rn activity clearly showed the higher impact of SGD on the Kamaiso beach compared to the Shonai dune. In the Otsuchi area, on the other hand, 222Rn monitoring survey was also done at boat speeds of < 2 knots in Otsuchi Bay and Funakoshi Bay in same tidal conditions (2 hours before lowest tide), because there are negligible influence of tidal changes on 222Rn concentrations in the Pacific coast of Japan. 222Rn concentrations in Otsuchi Bay were significantly higher than those in Funakoshi Bay. Although the Otsuchi Bay and Funakoshi Bay is adjacent

  5. Empirical study on structural properties in temporal networks under different time scales

    NASA Astrophysics Data System (ADS)

    Chen, Duanbing

    2015-12-01

    Many network analyzing methods are usually based on static networks. However, temporal networks should be considered so as to investigate real complex systems deeply since some dynamics on these systems cannot be described by static networks accurately. In this paper, four structural properties in temporal networks are empirically studied, including degree, clustering coefficient, adjacent correlation, and connected component. Three real temporal networks with different time scales are analyzed in this paper, including short message, telephone, and router networks. Moreover, structural properties of these temporal networks are compared with that of corresponding static aggregation networks in the whole time window. Some essential differences of structural properties between temporal and static networks are achieved through empirical analysis. Finally, the effect of structural properties on spreading dynamics under different time scales is investigated. Some interesting results such as turning point of structure evolving time scale corresponding to certain spreading dynamics time scale from the point of view of infected scale are achieved.

  6. Real-time data assimilation for large-scale systems: The spectral Kalman filter

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, Hojat; Kokkinaki, Amalia; Li, Judith Yue; Darve, Eric; Kitanidis, Peter K.

    2015-12-01

    The Kalman Filter (KF) is a data assimilation method that has been widely used for estimating spatially varying unknown states evolving in time. Recently, KF methods have shown potential for tracking CO2 plumes injected in deep geologic formations. Such real-time estimation would serve as an early warning system for leakage incidents. However, for the large number of unknowns of such large systems, KF methods are impractical, because updating the huge state covariance matrix is computationally expensive. Low rank approximation methods have been devised to overcome this problem; these methods assume a low rank of the covariance matrix, which they approximate by smaller matrices. The approximation error is small for smooth functions, but may be larger for more complex physical problems, potentially leading to filter divergence and inaccurate state estimates. We present the Spectral Kalman Filter (SpecKF), a new algorithm that utilizes the exact covariance matrix. Thus it avoids the approximation error and does so in a computationally efficient way, which is specially important for systems with large numbers of unknowns. The computational speed-up of the SpecKF is achieved by updating cross-covariance matrices instead of the larger covariance matrices. The benefit can be considerable, especially in large systems, because the computational complexity of the SpecKF scales with the number of measurements, as opposed to the effective rank of the covariance matrix in low-rank KFs or the number of ensemble members in ensemble methods. We investigate the accuracy and performance of the SpecKF for a diffusion problem with random perturbations, and for a more complex case of CO2 injection in a homogeneous two-dimensional domain. Our results show that the SpecKF reduces greatly the computational cost compared to the original KF algorithm, and that it can provide higher accuracy than the Ensemble Kalman Filter (EnKF) with the same or even smaller computational cost. Finally, we

  7. Effect of bedrock permeability on stream base flow mean transit time scaling relationships: 2. Process study of storage and release

    NASA Astrophysics Data System (ADS)

    Hale, V. Cody; McDonnell, Jeffrey J.; Stewart, Michael K.; Solomon, D. Kip; Doolitte, Jim; Ice, George G.; Pack, Robert T.

    2016-02-01

    In Part 1 of this two-part series, Hale and McDonnell (2016) showed that bedrock permeability controlled base flow mean transit times (MTTs) and MTT scaling relations across two different catchment geologies in western Oregon. This paper presents a process-based investigation of storage and release in the more permeable catchments to explain the longer MTTs and (catchment) area-dependent scaling. Our field-based study includes hydrometric, MTT, and groundwater dating to better understand the role of subsurface catchment storage in setting base flow MTTs. We show that base flow MTTs were controlled by a mixture of water from discrete storage zones: (1) soil, (2) shallow hillslope bedrock, (3) deep hillslope bedrock, (4) surficial alluvial plain, and (5) suballuvial bedrock. We hypothesize that the relative contributions from each component change with catchment area. Our results indicate that the positive MTT-area scaling relationship observed in Part 1 is a result of older, longer flow path water from the suballuvial zone becoming a larger proportion of streamflow in a downstream direction (i.e., with increasing catchment area). Our work suggests that the subsurface permeability structure represents the most basic control on how subsurface water is stored and therefore is perhaps the best direct predictor of base flow MTT (i.e., better than previously derived morphometric-based predictors). Our discrete storage zone concept is a process explanation for the observed scaling behavior of Hale and McDonnell (2016), thereby linking patterns and processes at scales from 0.1 to 100 km2.

  8. [The Project on a Large Scale in its first times: time for a recall].

    PubMed

    Bassinello, Greicelene Aparecida Hespanhol; Bagnato, Maria Helena Salgado

    2009-01-01

    In this work we rebuilt the first attempts on the creation of the Program of Formation on a Large Scale of Elementary and High School people for basic health services. We examined the Program of Formation on a Large Scale from its beginning, being supported by documentary sources, such as Izabel dos Santos's interview, which filled in all the meanings of this experience. In the investigations, we went trough the purpose and the procedures of the proposal on a national scale. According to our point of view, this experience acquired a wider meaning of qualification: in which the focal point of the work, as a condition to workers' formation process, constituted as a methodological-pedagogical purpose of qualification at the work environment in order to obtain a critical professional. PMID:19768343

  9. Proportional hazards regression in epidemiologic follow-up studies: an intuitive consideration of primary time scale.

    PubMed

    Cologne, John; Hsu, Wan-Ling; Abbott, Robert D; Ohishi, Waka; Grant, Eric J; Fujiwara, Saeko; Cullings, Harry M

    2012-07-01

    In epidemiologic cohort studies of chronic diseases, such as heart disease or cancer, confounding by age can bias the estimated effects of risk factors under study. With Cox proportional-hazards regression modeling in such studies, it would generally be recommended that chronological age be handled nonparametrically as the primary time scale. However, studies involving baseline measurements of biomarkers or other factors frequently use follow-up time since measurement as the primary time scale, with no explicit justification. The effects of age are adjusted for by modeling age at entry as a parametric covariate. Parametric adjustment raises the question of model adequacy, in that it assumes a known functional relationship between age and disease, whereas using age as the primary time scale does not. We illustrate this graphically and show intuitively why the parametric approach to age adjustment using follow-up time as the primary time scale provides a poor approximation to age-specific incidence. Adequate parametric adjustment for age could require extensive modeling, which is wasteful, given the simplicity of using age as the primary time scale. Furthermore, the underlying hazard with follow-up time based on arbitrary timing of study initiation may have no inherent meaning in terms of risk. Given the potential for biased risk estimates, age should be considered as the preferred time scale for proportional-hazards regression with epidemiologic follow-up data when confounding by age is a concern. PMID:22517300

  10. Existence and exponential stability of positive almost periodic solution for Nicholson's blowflies models on time scales.

    PubMed

    Li, Yongkun; Li, Bing

    2016-01-01

    In this paper, we first give a new definition of almost periodic time scales, two new definitions of almost periodic functions on time scales and investigate some basic properties of them. Then, as an application, by using a fixed point theorem in Banach space and the time scale calculus theory, we obtain some sufficient conditions for the existence and exponential stability of positive almost periodic solutions for a class of Nicholson's blowflies models on time scales. Finally, we present an illustrative example to show the effectiveness of obtained results. Our results show that under a simple condition the continuous-time Nicholson's blowflies model and its discrete-time analogue have the same dynamical behaviors. PMID:27468397

  11. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  12. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research

    USGS Publications Warehouse

    Leach, D.L.; Bradley, D.; Lewchuk, Michael T.; Symons, David T. A.; De Marsily, G.; Brannon, J.

    2001-01-01

    Remarkable advances in age dating Mississippi Valley-type (MVT) lead-zinc deposits provide a new opportunity to understand how and where these deposits form in the Earth's crust. These dates are summarized and examined in a framework of global tectonics, paleogeography, fluid migration, and paleoclimate. Nineteen districts have been dated by paleomagnetic and/or radiometric methods. Of the districts that have both paleomagnetic and radiometric dates, only the Pine Point and East Tennessee districts have significant disagreements. This broad agreement between paleomagnetic and radiometric dates provides added confidence in the dating techniques used. The new dates confirm the direct connection between the genesis of MVT lead-zinc ores with global-scale tectonic events. The dates show that MVT deposits formed mainly during large contractional tectonic events at restricted times in the history of the Earth. Only the deposits in the Lennard Shelf of Australia and Nanisivik in Canada have dates that correspond to extensional tectonic events. The most important period for MVT genesis was the Devonian to Permian time, which corresponds to a series of intense tectonic events during the assimilation of Pangea. The second most important period for MVT genesis was Cretaceous to Tertiary time when microplate assimilation affected the western margin of North America and Africa-Eurasia. There is a notable paucity of MVT lead-zinc ore formation following the breakup of Rodinia and Pangea. Of the five MVT deposits hosted in Proterozoic rocks, only the Nanisivik deposit has been dated as Proterozoic. The contrast in abundance between SEDEX and MVT lead-zinc deposits in the Proterozoic questions the frequently suggested notion that the two types of ores share similar genetic paths. The ages of MVT deposits, when viewed with respect to the orogenic cycle in the adjacent orogen suggest that no single hydrologic model can be universally applied to the migration of the ore fluids

  13. Evolution in time and scales of the stability of heart interbeat rate

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, R.; Guzmán-Vargas, L.; Reyes-Ramírez, I.; Angulo-Brown, F.

    2010-12-01

    We approach heart interbeat rate by observing the evolution of its stability on scales and time, using tools for the analysis of frequency standards. In particular, we employ the dynamic Allan variance, which is used to characterize the time-varying stability of an atomic clock, to analyze heart interbeat time series for normal subjects and patients with congestive heart failure (CHF). Our stability analysis shows that healthy dynamics is characterized by at least two stability regions along different scales. In contrast, diseased patients exhibit at least three different stability regions; over short scales the fluctuations resembled white-noise behavior whereas for large scales a drift is observed. The inflection points delimiting the first two stability regions for both groups are located around the same scales. Moreover, we find that CHF patients show lower variation of the stability in time than healthy subjects.

  14. The space-time variability and scaling of climate data, climate models and their converge as functions of space-time scale

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Elias, Lydia

    2014-05-01

    Climate models are evaluated by comparing them with other models and (when possible), with climate data: one attempts to match the data and numerics as closely as possible pixel by pixel, time step by time step- i.e. deterministically. As a consequence very little attention has been paid to understanding the space-time statistical properties of the models and data. There is little understanding of the convergence of the model and data to their 'climates' and to each other. In the time domain, there is no objective definition of the distinction between weather and climate in the spatial domain, there is corresponding lack of understanding of climate regions. In order to overcome this, we systematically study the statistics of fluctuations (primarily of temperature but also precipitation and pressure) as function of space and time. For both data and models, we find that in space, that fluctuations increase up to about 5000 km before starting to decrease; this quantitatively defines the typical size of regional climates. In time, we find that fluctuations decrease out to about 10-30 years in the industrial epoch, out to 50 -100 years in the pre-industrial epoch and then starts to increase; this defines the difference between 'macroweather' and the climate. Applying fluctuation analysis to longer time scales, we examine last millennium simulations from four GCMs, we show that control runs only reproduce macroweather. When various (reconstructed) climate forcings are included, in the recent (industrial) period they show global fluctuations strongly increasing at scales >_10-30 yr, which is quite close to the observations. However, in the preindustrial period we find that the multicentennial variabilities are too weak and by analysing the scale dependence of solar and volcanic forcings, we argue that these forcings are unlikely to be sufficiently strong to account for the multicentennial and longer-scale temperature variability. A likely explanation is that the models

  15. Volcanic and geologic database projects of the Geological Survey of Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Takarada, S.; Nakano, S.; Hoshizumi, H.; Itoh, J.; Urai, M.; Nishiki, K.

    2009-12-01

    Geological Survey of Japan (GSJ) is presently implementing the GEO-DB project, which aims to integrate all kinds of geological information in GSJ. GSJ published more than 50 CD-ROM series and established more than 20 databases at the Research Information Database (RIO-DB) of the National Institute of Advanced Industrial Science and Technology (AIST). Presently, four volcanic databases are open to the public: (1) Quaternary volcano database (RIO-DB), (2) Active volcano database (RIO-DB), and (3) ASTER satellite image database of major volcanoes. The Quaternary volcano database contains information such as volcanic type, history, age and pictures of more than 300 Quaternary volcanoes in Japan. More detailed volcanic information will be added to the database in the near future. The active volcano database contains information of active volcanoes in Japan such as the catalog of eruptive events during the last 10,000 years and geological maps of active volcanoes. The ASTER satellite image database provides sequential ASTER satellite image datasets of major volcanoes in the world. Collaboration between Quaternary and active volcano databases and the VOGRIPA project is the next important activity at the Geological Survey of Japan. The Geological Survey of Japan introduced the Integrated Geological Map Database (GeoMapDB) in 2006. The GeoMapDB is based on a WebGIS technology, which makes it possible to browse, overlay and search geological maps online. The database contains geological maps with scales ranging from 1:2 million to 1:25,000. Links to aforementioned volcanic database and active fault database in RIO-DB are also available. OneGeology is an international initiative of the geological surveys of the world and a flagship project of the ‘International Year of Planet Earth’. It aims to create dynamic geological map of the world available at the world wide web. Geological Surveys from 109 countries of the world are participating in this project. The Geological

  16. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology

    NASA Astrophysics Data System (ADS)

    Bemis, Sean P.; Micklethwaite, Steven; Turner, Darren; James, Mike R.; Akciz, Sinan; Thiele, Sam T.; Bangash, Hasnain Ali

    2014-12-01

    This contribution reviews the use of modern 3D photo-based surface reconstruction techniques for high fidelity surveys of trenches, rock exposures and hand specimens to highlight their potential for paleoseismology and structural geology. We outline the general approach to data acquisition and processing using ground-based photographs acquired from standard DSLR cameras, and illustrate the use of similar processing approaches on imagery from Unmanned Aerial Vehicles (UAVs). It is shown that digital map and trench data can be acquired at ultra-high resolution and in much shorter time intervals than would be normally achievable through conventional grid mapping. The resulting point clouds and textured models are inherently multidimensional (x, y, z, point orientation, colour, texture), archival and easily transformed into orthorectified photomosaics or digital elevation models (DEMs). We provide some examples for the use of such techniques in structural geology and paleoseismology while pointing the interested reader to free and commercial software packages for data processing, visualization and 3D interpretation. Photogrammetric models serve to act as an ideal electronic repository for critical outcrops and observations, similar to the electronic lab book approach employed in the biosciences. This paper also highlights future possibilities for rapid semi-automatic to automatic interpretation of the data and advances in technology.

  17. Cooling and exhumation of continents at billion-year time scales

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Perron, T.; Mahan, K. H.; Dudas, F. O.

    2011-12-01

    Hat Block collided at ~1.8 Ga. Rutile U-Pb data from multiple xenoliths, each exhumed from a different depth within the crustal column reveal a range of dates that varies as a function of xenolith residence depth. The shallowest mid- to lower crustal xenoliths (~25 km) cooled first, yielding the youngest dates and yet cooled at rates between 0.1-0.25 °C/Ma over 500 My or more. Deeper xenoliths record cooling at progressively younger times at similar rates and time-scales. From orogony to eruption of xenoliths onto the surface, the lithospheric thermal history constructed using this technique may exceed a billion years. Combining this cooling history with a lithosphere thermal model yields an estimate for the average integrated rate of craton erosion between 0.00-<0.0025 km/Ma across the orogen; a range far lower than the geologically recent to present day rates for continental erosion (<0.005-0.1 km/Ma). This marks the first ever determination of continental exhumation rates on time-scales that approach the age of the continents themselves and has implications for secular cooling of the asthenosphere.

  18. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  19. The record of the Amazon craton in two supercontinents: Paleomagnetic and geological constraints for Mesoproterozoic to Paleozoic times

    NASA Astrophysics Data System (ADS)

    Tohver, E.

    2008-05-01

    The Amazon craton plays a fundamental role in the evolution of two supercontinents, the late Mesoproterozoic Rodinia, the break-up of which led to thethe late Neoproterozoic-early Paleozoic formation of Gondwana. A recent review of the paleomagnetic database for South America and Africa highlights the different role of the principal elements of western Gondwana elements Amazonia, conjoined with West Africa, versus the more centrally- located pieces of Gondwana; -Congo-São Francisco, Kalahari, the Rio de Plata, and the accreted terranes of the Arabia-Nubia shield. Whereas the Amazon-West Africa conjoined craton appears to have been alongside Laurentia within the framework of Rodinia, the other "central Gondwana" cratons were not part of Rodinia. New paleomagnetic data from the SW Amazon craton demonstrate the transpressive evolution of the Grenvillian collision, which resulted in thousands of kilometers of along-strike between the Amazon and Laurentia cratons. Portions of Amazonian crust stranded within the North American craton, notably the Blue Ridge province of the southern Appalachians, is evidence for this long-lived motion. An extensive review of recent thermochronological data from the North American Grenville Province and new data from the SW Amazon belts of "Grenvillian" age reveals the effects of differential post-orogenic exhumation. Restoration of this exhumation gives us a crustal-scale cross-section of the synorogenic structure, marked by thrust-related imbrication on the North American side, and large-scale, strike-slip faults on the Amazon side. It is this asymmetric structure that accounts for the differences in tectonic style between the two cratons. The timing of the break-up of Rodinia is still mostly unconstrained by geochronological data from rift-related sediments from the Amazon side. The Paraguai belt that marks the SE margin of the Amazon craton is a curved, fold-and-thrust belt that affected the late Neoproterozoic-Cambrian sediments that

  20. Engineering Geology

    ERIC Educational Resources Information Center

    Hatheway, Allen W.

    1978-01-01

    Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)

  1. Super-transient scaling in time-delay autonomous Boolean network motifs

    NASA Astrophysics Data System (ADS)

    D'Huys, Otti; Lohmann, Johannes; Haynes, Nicholas D.; Gauthier, Daniel J.

    2016-09-01

    Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.

  2. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  3. Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain

    NASA Astrophysics Data System (ADS)

    Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.

    2008-04-01

    We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34±0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.

  4. Scaling behavior of the first arrival time of a random-walking magnetic domain.

    PubMed