Sample records for geology wall-rock alteration

  1. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    USGS Publications Warehouse

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (< 1-5 km) deposits. Individual deposits are a composite of syngenetic massive sulphide and underlying epigenetic stockwork-vein mineralization. The massive sulphide occurs as concordant tabular, lenticular, or saucer-shaped bodies in pillow lavas and pillow-lava breccia; massive lava flows, hyalcoclastite, tuff, and bedded radolarian chert are less commonly associated rock types. These massive sulphide zones are as much as 700 m long, 200 m wide, and 50 m thick. The pipe-, funnel-, or keel-shaped stockwork zone may extend to a dehpth of 1 km in the sheeted-dike complex. Several deposits in Cyprus are confined to grabens or the hanging wall of premineralization normal faults. Polymetallic massive sulphide deposits and active hydrothermal vents at medium- to fast-rate spreading centres (the East Pacific Rise at lat. 21??N, the Galapagos Spreading Centre at long. 86??W, the Juan de Fuca Ridge at lat. 45??N., and the Southern Trough of Guaymas Basin, Gulf of California) have interdeposit spacings on a scale of tens or hundreds of metres, and are spatially associated with structural ridges or grabens within the narrow (< 5 km) axial valleys of the rift zones. Although the most common substrate for massive sulphide accumulations is stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase sills. Mound-like massive sulphide deposits, as much as 30 m wide and 5m high, occur over actively discharging vents on the East Pacific Rise, and many of these deposits serve as the base for narrow chimneys and spires of equal or greater height. Sulphides on the Juan de Fuca Ridge appear to form more widespread blanket deposits in the shallow axial-valley depression. The largest deposit found to date, along the axial ridge of the Galapagos Spreading Centre, has a tabular form and a length of 1000 m, a width of 200 m, and a height of 30 m. The sulphide assemblage in both massive and vein mineralization in Cyprus type deposits is characteristically simple: abundant pyrite or, less commonly, pyrrhotite accompanied by minor marcasite, chalcopyrite

  2. Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process

    USGS Publications Warehouse

    Getahun, A.; Reed, M.H.; Symonds, R.

    1996-01-01

    Intensely altered wall rock was collected from high-temperature (640??C) and low-temperature (375??C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375??C; (b) cooling of the 1987 gas from 870 to 100??C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100??C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640??C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375??C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides (magnetite), sulfates (anhydrite) and halides (halite). The cooling calculations produce: (a) anhydrite, halite, sylvite; (b) Cu, Mo, Fe and Zn sulfides; (c) Mg fluoride at high temperature (> 370??C); (d) chlorides, fluorides and sulfates of Mn, Fe, Zn, Cu and Al at intermediate temperature (170-370??C); and (e) hydrated sulfates, liquid sulfur, crystalline sulfur, hydrated sulfuric acid and water at low temperature ( 0.41 (> 628??C). This is followed by precipitation of sulfates of Fe, Cu, Pb, Zn and Al at lg/a ratios between 0.41 and -0.4 (628-178??C). At a lg/r ratio of < - 0.4 (178??C), anhydrous sulfates are replaced by their hydrated forms and hygroscopic sulfuric acid forms. At these low g/a ratios, hydrated sulfuric acid becomes the dominant phase in the system. Comparison of the thermochemical modeling results with the natural samples suggests that the alteration assemblages include: (1) minerals that precipitate from direct cooling of the volcanic gas; (2) phases that form by volcanic gases mixing with air; and (3) phases that form by volcanic gas-air-rock reaction. A complex interplay of the three processes produces the observed mineral zoning. Another implication of the numerical simulation results is that most of the observed incrustation and sublimate minerals apparently formed below 700??C.

  3. Wall rock alteration, Atud gold mine, Eastern Desert, Egypt: processes and P?T?X CO 2 conditions of metasomatism

    Microsoft Academic Search

    Hassan Z. Harraz

    1999-01-01

    The Atud gold mine, central Eastern Desert of Egypt, is located in an intrusive metagabbro-diorite complex that abutts the conglomerate-greywacke-slate series of the Pan-African Belt in Egypt. Gold-bearing quartz veins occur as fracture filling in the Neoproterozoic dioritic rocks and along their contacts with the metagabbro. Gold mineralisation is associated with discrete metasomatic alteration zones around shear zones and quartz-carbonate

  4. Heat-model analysis of wall rocks below a diabase sill in Huimin Sag, China compared with thermal alteration of mudstone to carbargilite and hornfels and with increase of vitrinite reflectance

    Microsoft Academic Search

    Dayong Wang; Xiancai Lu; Xuejun Zhang; Shijin Xu; Wenxuan Hu; Liangshu Wang

    2007-01-01

    This paper presents an application of heat flow modeling in a study on the thermal alteration of the underlying sedimentary rocks caused by an isolated intrusive sill in Huimin Sag, Bohai Bay Basin, China. It is found that during the cooling of the sill, the assignment of the heat transferred into its both sides can be acquired according to the

  5. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  6. A mechanism for high wall-rock velocities in rockbursts

    USGS Publications Warehouse

    McGarr, A.

    1997-01-01

    Considerable evidence has been reported for wall-rock velocities during rockbursts in deep gold mines that are substantially greater than ground velocities associated with the primary seismic events. Whereas varied evidence suggests that slip across a fault at the source of an event generates nearby particle velocities of, at most, several m/s, numerous observations, in nearby damaged tunnels, for instance, imply wall-rock velocities of the order of 10 m/s and greater. The common observation of slab buckling or breakouts in the sidewalls of damaged excavations suggests that slab flexure may be the mechanism for causing high rock ejection velocities. Following its formation, a sidewall slab buckles, causing the flexure to increase until the stress generated by flexure reaches the limit 5 that can be supported by the sidewall rock. I assume here that S is the uniaxial compressive strength. Once the flexural stress exceeds S, presumably due to the additional load imposed by a nearby seismic event, the slab fractures and unflexes violently. The peak wall-rock velocity v thereby generated is given by v=(3 + 1-??2/2)1 2 S/?????E for rock of density ??, Young's modulus E, and Poisson's ratio ??. Typical values of these rock properties for the deep gold mines of South Africa yield v= 26 m/s and for especially strong quartzites encountered in these same mines, v> 50m/s. Even though this slab buckling process leads to remarkably high ejection velocities and violent damage in excavations, the energy released during this failure is only a tiny fraction of that released in the primary seismic event, typically of magnitude 2 or greater.

  7. Constraints on magma-wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs

    NASA Astrophysics Data System (ADS)

    Sottili, G.; Taddeucci, J.; Palladino, D. M.

    2010-04-01

    Cored bombs, a kind of pyroclast consisting of a lithic core surrounded by a chilled shell of juvenile material, record the thermal interaction of magma with wall rocks. We performed textural analysis of cored bombs, solid-melt heat-transfer theoretical modelling, and high-temperature coating experiments to put temporal and intensity constraints on the thermal interaction of potassic magma feeder systems with carbonate wall rocks during explosive eruptions in the Quaternary, Colli Albani Volcanic District (Roman Province). It appears that the degree of thermal alteration of lithic cores records the duration of magma-core heat transfer, whereas the core/shell size ratio records the initial entrainment temperature of the lithic fragment. Both parameters appear to vary significantly with the eruptive style, magnitude and vent location. Specifically, small-scale (~ 0.1-1 km 3 DRE) hydromagmatic eruptions show magma-core heat-transfer durations of 0.1-10 s and entrainment temperatures in the range of 100-300 °C in the case of a monogenetic maar located in the Colli Albani peripheral area, while entrainment temperature is as high as to 800 °C for a polygenetic maar in a high-enthalpy geothermal system at the margins of the main Colli Albani magma chamber. A large-scale (~ 30 km 3 DRE) caldera-forming explosive event shows magma-core heat-transfer duration in the order of 10 2-10 3 s and temperature of 100-500 °C at the initial magma-wall rock contact. On these grounds, we derived the cooling rate of magmas as a function of the initial temperature, mass and size distribution of lithic clasts entrained. Magma cooling by lithic entrainment may have occurred on the same time-scale as that of eruptive pulses (seconds to hours), implying that lithic entrainment may effect changes in magma physico-chemical properties on a short time-scale and, consequently, affect eruptive conduit dynamics.

  8. Sulfide solubilities in Alteration-controlled Systems

    USGS Publications Warehouse

    Hemley, J.J.; Meyer, C.; Hodgson, C.J.; Thatcher, A.B.

    1967-01-01

    Solubilities of sphalerite (ZnS) and galena (PbS) were determined at 300?? to 500??C and 1000 bars total pressure in a chemical environment buffered by silicate mineral equilibria. Chloride solutions and muscovite-bearing assemblages characteristic of hydrothermal wall-rock alteration were used; weak acidities at temperature were therefore involved. The metal concentrations encountered tended to be higher than those observed in high bisulfide-H2S systems at neutral to weakly basic pH used in most previous experimentation; the chemical conditions of the work, although not completely satisfactory, are geologically more realistic than previous experimentation done in the basic-pH region.

  9. Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development

    NASA Astrophysics Data System (ADS)

    Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.

    2009-05-01

    Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.

  10. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  11. Global geologic context for rock types and surface alteration on Mars

    USGS Publications Warehouse

    Wyatt, M.B.; McSween, H.Y., Jr.; Tanaka, K.L.; Head, J. W., III

    2004-01-01

    Petrologic interpretations of thermal emission spectra from Mars orbiting spacecraft indicate the widespread occurrence of surfaces having basaltic and either andesitic or partly altered basalt compositions. Global concentration of ice-rich mantle deposits and near-surface ice at middle to high latitudes and their spatial correlation with andesitic or partly altered basalt materials favor the alteration hypothesis. We propose the formation of these units through limited chemical weathering from basalt interactions with icy mantles deposited during periods of high obliquity. Alteration of sediments in the northern lowlands depocenter may have been enhanced by temporary standing bodies of water and ice. ?? 2004 Geological Society of America.

  12. Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures

    Microsoft Academic Search

    P. Persoff; K. Pruess

    1995-01-01

    A laboratory flow apparatus was used to visualize and measure two-phase gas-liquid flows in natural rough-walled rock fractures. Experiments at carefully controlled flow rate and pressure conditions have been performed using a natural fracture and three transparent fracture replicas. Two-phase flow exhibited persistent instabilities with cyclic pressure and flow rate variations even under conditions of constant applied boundary conditions. Visual

  13. The Hall (Nevada moly) molybdenum deposit, Nye County, Nevada: Geology, alteration, mineralization and geochemical dispersion

    NASA Astrophysics Data System (ADS)

    Shaver, S. A.

    At Hall, each of two molybdenum bearing, quartz monzonite porphyry stocks underwent continuous inward crystallization which was interrupted by the successively deeper release of hydrothermal fluids to form a concentrically zoned stock, three stacked orebodies, and overlapping zones of alteration mineralization. Each pulse progressed in time from albitic to potassic to greisen alteration, with later veins closing the pulse. Based on fluid inclusions, early (potassic) veins formed from high temperature, moderate salinity, nonboiling fluids under lithostatic pressure; later (base metal) veins formed from lower temperature, high salinity, probably boiling fluids under hydrostatic pressure. Differences between quartz monzonite type and climax type porphyry molybdenum deposits in geology, alteration, mineralization, and geochemical dispersion are consistent with greater depths of emplacement of the quartz monzonite type deposits.

  14. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an

  15. Geology

    SciTech Connect

    Reidel, Stephen P.

    2008-01-17

    This chapter summarizes the geology of the single-shell tank (SST) farms in the context of the region’s geologic history. This chapter is based on the information in the geology data package for the SST waste management areas and SST RFI Appendix E, which builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  16. The stable isotope geochemistry of acid sulfate alteration

    USGS Publications Warehouse

    Rye, R.O.; Bethke, P.M.; Wasserman, M.D.

    1992-01-01

    Acid sulfate wall-rock alteration, characterized by the assemblage alunite + kaolinite + quartz ?? pyrite, results from base leaching by fluids concentrated in H2SO4. Requisite amounts of H2SO4 can be generated by different mechanisms in three principal geologic environments: 1) by atmospheric oxidation of sulfides in the supergene environment, 2) by atmospheric oxidation at the water table in the steam-heated environment of H2S released by deeper, boiling fluids, and 3) by the disproportionation of magmatic SO2 to H2S and H2SO4 during condensation of a magmatic vapor plume at intermediate depths in magmatic hydrothermal environments in silicic and andesitic volcanic terranes. In addition, coarse vein alunite may form in a magmatic steam environment. -from Authors

  17. Magma dynamics and wall-rock composition control the environmental impact of magmatic events

    NASA Astrophysics Data System (ADS)

    Arndt, N.; Ganino, C.; Pêcher, A.; Chauvel, C.; Zhou, M.; Tornos, F.

    2010-12-01

    A key control on the destructive consequences of the emplacement of large igneous provinces such as Siberia and Deccan is the type of sedimentary rock in basins beneath the flood basalts. Contact metamorphism around intrusions in carbonates (dolostones or limestones), sulphates (evaporites), coal or organic-rich shale generates large quantities of greenhouse and toxic gases (CO2, CH4, SO2) which subsequently vent to the atmosphere and cause global warming and mass extinctions. Recently we demonstrated that the release of sediment-derived gases had a far greater impact on the environment than the emission of magmatic gases. Here we compare the effects of contact metamorphism of different types of carbonated sediments. We estimate that about 220 kg of CO2 were released per ton of metamorphosed dolomite in Sichuan basin around the plumbing system of Emeishan large igneous province in China. New structural studies show that during emplacement of the main intrusion, multiple generations of mafic dykes invaded the marbles of the lower metamorphic aureole. These dykes reacted extensively with the marble, and the magma actively assimilated wall-rock dolostone, a process that potentially released the entire CO2 budget of the assimilated carbonate, or 477 kg/ton. We compare this result with a second case, the Aguablanca intrusion in Spain, where mafic magma intruded limestones and shales. Contact metamorphism of pure limestone produced very little CO2 (less than 50 kg of CO2 per ton of pure limestone) whereas, in impure dolostones, the presence of silica or clay allowed the formation of calc-silicate minerals and strongly increased the CO2 yield, to140 kg CO2 per ton. In contrast, studies by Svensen and coworkers of sills in the Karoo province reveal lower rates of emission, mainly from decomposition of hydrocarbons around passively emplaced intrusions. Therefore, to understand the full impact on environment of the release of thermogenic gases during a major magmatic event, we need to take into account both the types of wall rock and dynamics of magma emplacement.

  18. Using empirical geological rules to reduce structural uncertainty in seismic interpretation of faults

    Microsoft Academic Search

    Brett Freeman; Peter J. Boult; Graham Yielding; Sandy Menpes

    2010-01-01

    Good seismic interpretation of faults should include a workflow that checks the interpretation against known structural properties of fault systems. Estimates of wall-rock strains provide one objective means for discriminating between correct and incorrect structural interpretations of 2D and 3D seismic data – implied wall-rock strain should be below a geologically plausible maximum. We call this the strain minimisation approach. Drawing

  19. The Hall (Nevada moly) molybdenum deposit, Nye County, Nevada: Geology, alteration, mineralization and geochemical dispersion

    Microsoft Academic Search

    S. A. Shaver

    1984-01-01

    At Hall, each of two molybdenum bearing, quartz monzonite porphyry stocks underwent continuous inward crystallization which was interrupted by the successively deeper release of hydrothermal fluids to form a concentrically zoned stock, three stacked orebodies, and overlapping zones of alteration mineralization. Each pulse progressed in time from albitic to potassic to greisen alteration, with later veins closing the pulse. Based

  20. Search for Fullerenes in Geological Carbonaceous Samples Altered by Experimental Lightning

    Microsoft Academic Search

    Ota Frank; Jan Jehli?ka; V?ra Hamplová

    2003-01-01

    Three rocks with different organic carbon content, graptolitic shale, metamorphosed black schist and bituminous coal, have been subjected to high?energy electric impulses of current amplitudes comparable to lightnings that form fulgurites. Search for fullerenes has been done directly on altered surfaces using infrared spectroscopy. Toluene extractable material from altered samples has been investigated by means of high?performance liquid chromatography (HPLC)

  1. Wall rock-magma interactions in Etna, Italy, studied by U-Th disequilibrium and rare earth element systematics

    SciTech Connect

    Villemant, B. (Universite Paris 6 (France) CNRS URA 196, Paris (France)); Michaud, V.; Metrich, N. (LPS/CEA-CNRS, Gif-sur-Yvette (France))

    1993-03-01

    [sup 230]Th/[sup 238]U disequilibria have been studied in xenoliths and associated lavas of the 1892 and 1989 eruptions of Etna. Most xenoliths are out of secular equilibrium within 1 [sigma] errors and have lower [sup 230]Th/[sup 232]Th ratios than their host magmas. Siliceous and peraluminous xenoliths display large ranges of Th/U ratios for similar [sup 230]Th/[sup 232]Th values, which are interpreted in terms of Th isotopic rehomogenization. The siliceous xenoliths have also suffered thorium and uranium enrichments, which are best explained by chemical diffusion between xenolith melts and differentiated magmas. Estimates of thorium self-diffusivities and [sup 230]Th-[sup 238]U disequilibria give age constraints on these events corresponding to the last major volcanic event of Etna at 14 ka (formation of the elliptic crater caldera). These results suggest that magma storage in superficial and long-lived magma chambers favors the thorium isotopic homogenization of wall rocks by a thermal effect. Chemical diffusion of uranium and thorium and isotopic homogenization between siliceous melts of wall rocks and differentiated magmas may significantly modify the initial thorium isotopic compositions. Such contamination processes could explain the large variations of the [sup 230]Th/[sup 232]Th initial ratios of Etna magmas. 33 refs., 7 figs., 1 tab.

  2. Natural geological responses to anthropogenic alterations of the naples bay estuarine system

    E-print Network

    Fielder, Bryan Robert

    2009-05-15

    The Naples Bay Estuarine System, situated in southwest Florida, has undergone extensive modifications caused directly and indirectly by anthropogenic influences. These alterations include the substitution of mangrove-forested shorelines...

  3. Natural geological responses to anthropogenic alterations of the naples bay estuarine system 

    E-print Network

    Fielder, Bryan Robert

    2009-05-15

    The Naples Bay Estuarine System, situated in southwest Florida, has undergone extensive modifications caused directly and indirectly by anthropogenic influences. These alterations include the substitution of mangrove-forested ...

  4. Opportunity In Situ Geologic Context of Aqueous Alteration Along Offsets in the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Arvidson, R. E.; Farrand, W. H.; Golombek, M. P.; Grant, J. A.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.

    2015-01-01

    Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops.

  5. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler ''sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light. A set of two-phase flow experiments has been performed which has proven the viability of the basic experimental design, while also suggesting further improvements in the apparatus. Preliminary measurements are presented for single-phase permeability to liquid, and for relative permeabilities in simultaneous flow of liquid and gas.

  6. Initial Melting and wall-rock flux-melting of a wet multi-component mantle and its implications for the formation of MORB

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Hasenclever, J.

    2013-12-01

    We explore several simple scenarios for wet melting of a heterogeneous multi- component mantle. In our melting formulation the mantle is viewed as a mixture consisting of a heterogeneously depleted peridotite matrix with embedded veins of fertile peridotite and/or geochemically enriched pyroxenite. These lithological units differ in their mineral composition but are assumed to have diffusively equilibrated both their water/hydrogen content and temperature over the hundreds of millions to billions of years prior to entering a melting region. During the melting process, however, only thermal but not chemical (water) equilibrium is assumed between the lithologies, which is a reasonable assumption for veins with thicknesses on the order of few tens to few hundreds of meters, a thermal diffusivity of 10^-6 m^2/s and a diffusivity of hydrogen of less than 3*10^-9 m^2/s. The thermodynamic formulation of the multi-component melting process, during which all components have to share thermal energy, is based on Phipps Morgan (2001). The wet melting parameterization by Katz et al. (2003) has been included in the thermodynamic formulation by modifying its solidus-depletion-dependence and treating water partitioning during melting as partitioning of a trace element with a D-value like that of Ce. Usually, fractional melting with a small trapped melt fraction is assumed. We will mostly discuss results from 1-D model calculations, which represent the idealized decompression of a multi-component mantle rising underneath a mid-ocean ridge. Melt-migration is assumed to occur as vertical ascent within each column. We have also extended the formulation to examine the effects of rising melts on 'flux-melting' the wall-rock through which they migrate. We are still testing to see if this mechanism can be the reason why ridge melts almost always have major element chemistries in equilibrium with a peridotitic mantle, while the incompatible trace elements in EMORB reflect the influence of volumetrically small heterogeneities within the heterogeneous source. We hypothesize that rising melt will cause rapid and limited flux-melting in adjacent wall-rock as long as the melt+wall-rock system generates a larger equilibrium melt volume than the initial local melt volume, and that the preferred amount of local flux-melting is equal to the maximum amount of potential local flux-melting. (e.g., the volume fraction of wall-rock that interacts with melt is the fraction that maximizes the productivity of flux-melting.) As local flux-melting consumes latent-heat, wall-rock flux melting also reduces shallower melt-productivity of the assemblage. Since the hydrogen diffusion rate is too low to equilibrate the water contents of veins and surrounding matrix within the melting zone, dry and wet lithologies can coexist next to each other. Considering the dehydration related increase in viscosity for each lithology, the aggregate viscosity remains low until the last (most depleted) major lithology starts to melt -- e.g. until the most refractory harzburgites cross their wet solidus.

  7. Subseafloor hydrothermal alteration during the Early Proterozoic at Garpenberg, Central Sweden

    NASA Astrophysics Data System (ADS)

    Vivallo, W.

    1985-01-01

    The Early Proterozoic sulfide deposit at Garpenberg is located in the metallogenetic province of central Sweden. It is a strata-bound massive sulfide deposit contained in a supracrustal sequence of mainly acid metavolcanic rocks. Stratiform Zn-Pb-Cu mineralization is underlain by Cu-bearing stockwork ore and an extensive alteration zone. The sulfide ores and their altered wall rocks were formed by subseafloor hydrothermal activity. The alteration pattern observed in the wall rocks of this deposit is consistent with a hydrothermal system where the fluid consists mainly of seawater and a high water/rock mass ratio predominates. The hydrothermal activity caused the destruction of the primary mineralogy, mainly feldspars, and a general redistribution of the chemical elements in the altered wall rocks which were principally depleted in Ca, Na and Eu and enriched in Mg. Eu was redeposited with the ore metals near or at the seafloor and Ca was deposited as limestone. Most of the major and trace elements show large mobility during the alteration; only Ti, Zr, Y and REE (excluding Eu) behaved as relatively immobile elements.

  8. Predicting long-term geochemical alteration of wellbore cement in a generic geological CO 2 confinement site: Tackling a difficult reactive transport modeling challenge

    NASA Astrophysics Data System (ADS)

    Gherardi, Fabrizio; Audigane, Pascal; Gaucher, Eric C.

    2012-02-01

    SummaryThe safety of the future CO 2 geological storage is largely dependent on the integrity of existing surrounding wells. Well integrity is of major concern in confinement sites where the number of abandoned wells is particularly high, such as it often occurs in depleted gas and/or oil fields. The degradation of the cement filling of these wells is a key issue to insure the confinement of the CO 2. Laboratory experiments are unable to produce data for long periods of interaction; therefore, numerical modeling stands as a powerful means to predict the long-term evolution of the cement plugs, and to assess well integrity and leakage risk for the confining system. We thus present the results of a set of numerical simulations that predict the evolution of fluid chemistry and mineral alteration in the cement of an idealized abandoned wellbore at the top of the Dogger aquifer in Paris Basin, France, where CO 2 geological disposal is currently under consideration. A continuum-based reactive transport formulation has been adopted which accounts for multi-component reactivity under water saturated and diffusion-controlled mass transfer conditions. Simplified two-dimensional models have been applied to simulate the complex geochemical interactions occurring at the interfaces between cement, aquifer and caprock domains. The simulations predict a two-stage evolution of the cement porous matrix, after interaction with acid fluids from reservoir: (i) a first, "clogging" stage, characterized by a decrease in porosity due to calcite precipitation, and (ii) a second stage of porosity reopening, related to the disappearance of primary cement phases, and the re-dissolution of secondary minerals, such as zeolites. Overall, the interaction with acid fluids causes a severe mineralogical alteration of the cement and the development of a carbonated, low-porosity layer near the reservoir interface. As the caprock imposes a high partial pressure of CO 2, some mineralogical alteration of the cement is promoted also at the interface with the caprock. This pattern of reaction results in a large increase in porosity that might lead to the formation of vertical ascent route for reservoir fluids.

  9. Geology, alteration, and magmatic-hydrothermal history of The Geysers felsite -- potential applications for exploration and development

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. (Univ. of Utah Research Institute, Salt Lake City, UT (United States))

    1993-01-01

    The [open quotes]felsite[close quotes] is a shallow, young, granitic intrusive body centrally located within and beneath. The Geysers steam field. The field and the felsite are coaxial, and hydrothermal alteration effected by hot-water dominated geothermal systems antedating the modern steam reservoir shows systematic vertical zonation with respect to the pluton. The research summarized in this communication was undertaken both to clarify the role of the pluton in reservoir evolution, and to characterize critical felsite-specific controls on the fields's deep porosity and permeability. The felsite comprises at least three major intrusive phases. Two are high-silica granites probably older than 1.3 Ma. The third is granodiorite (1 Ma), temporally and chemically equivalent to overlying extrusive dacites of the Clear Lake volcanic field. All three intrusive phases are too old to be heat sources for the modern steam field, but probably were the heat engines for the prior liquid-dominant systems. Younger, deeper magmatic heat sources are strongly implied for the current vapor-dominated regime. Porosity in the felsite is provided by: (1) Extensively mineralized fractures and breccias, probably of both tectonic and high-temperature hydrothermal origin; and (2) miarolitic cavities in the upper levels of the pluton. The latter could be analogous to calcite-dissolution cavities in overlying metagraywacke -- they could serve as storage sites for the fields's liquid water reserves. Porosity in these fractures, breccias, and vugs in partially occluded by hydrothermal vein minerals deposited in prior hotwater-dominated systems --tourmaline, ferroaxinite, quartz, potassium feldspar, epidote, actinolite, prehnite, and many others. Such secondary mineralization conceptually could serve as an excellent exploration guide to potentially productive portions of the felsite beyond the field's present boundaries.

  10. A fractured roman glass block altered for 1800 years in seawater: Analogy with nuclear waste glass in a deep geological repository

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurelie; Gin, Stephane; Libourel, Guy

    2008-11-01

    Fractured archaeological glass blocks altered 1800 years in seawater are investigated because of their morphological analogy with vitrified nuclear waste. They provide an opportunity for understanding glass alteration in variable confined media (cracks), by studying an actual ancient system in a known stable natural environment. Characterization of the crack network from two-dimensional trace maps (length, alteration thickness, orientation) allows us to determine the three-dimensional geometric parameters (crack density, fracture ratio) and the percentage of alteration, using stereological relations. This methodology could be applied to nuclear glass. From a representative archaeological glass block, we showed that the surface developed by the cracks is 86 ± 27 times greater than the geometric surface but the volumetric alteration is 12.2 ± 4.1%, which is only 12 times greater than the volumetric alteration of the block periphery (about 1 vol%). This unexpected low value is explained by the large variation of the alteration thicknesses in the different types of cracks in relation with their location in the block. The alteration thickness is usually smaller in the internal zone than in the border zone. The alteration layers resulted from three main mechanisms (interdiffusion, glass dissolution, and secondary phase precipitation) leading to two different alteration products (a sodium-depleted layer and mainly a Mg-smectite). Geometric parameters such as the glass surface area/solution volume ratio and transport parameters (renewal of the alteration solution) strongly affected the glass dissolution kinetics. The confined conditions and the diffusive transport of reactive species favor low alteration kinetics. The precipitation of secondary phases also results in sealing of the cracks. Consequently, although it is not known if subcritical crack growth occurred, internal cracks account for only a minor contribution to the overall alteration. These results improve our understanding of alteration in cracks for assessing the predominant physical and chemical parameters that must be considered in long-term nuclear glass modeling.

  11. Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: A process of fluid ? wall?rock interaction?

    Microsoft Academic Search

    P. A. Polito; Y. Bone; J. D. A. Clarke; T. P. Mernagh

    2001-01-01

    The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron?rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid?inclusion populations with a wide range of compositions in

  12. Geologic Maps

    NSDL National Science Digital Library

    Russell Graymer

    This web site provides an introduction to geologic maps. Topics covered include what is a geologic map, unique features of geologic maps, letter symbols, faults, and strike and dip. Users may click to view colored geologic maps, the geologic map of the United States and the geologic relief map of the United States.

  13. Geology, alteration and mesothermal Au-Ag-mineralization associated with a volcanic-intrusive complex at Mt. Shamrock-Mt. Ophir, SE Queensland

    NASA Astrophysics Data System (ADS)

    Williams, P. J.

    1991-04-01

    Au-Ag mineralization in the Mt-Shamrock — Mt. Ophir area of SE Queensland is related to a geographically-isolated calc-alkaline igneous centre consisting of high level plutonic and minor intrusions emplaced into the eroded remains of a silicic volcanic ediface and its basement. Mineralization occurs in both the igneous rocks and in the Permian siltstone country rocks and is controlled by a NE-trending structure parallel to Late Triassic lineaments. This structure is unrelated to, and younger than the exposed intrusions. Au-Ag-As-rich, Cu-Mo-poor mineralization occurs in breccias and veinlet networks within pervasively altered rocks characterized by silicification and H (sericite), CO2 (calcite-ankerite), Na (albite), B (tourmaline), and S (pyrite) metasomatism. Secondary mineral compositions suggest that most of this alteration occurred at temperatures between 350 ° and 400 °C. The alteration was complex in detail and characterized by multiple hydrothermal events and space and/or time variations of physico-chemical conditions. Although some of these features are similar to prophyry deposits the chemical character of the alteration and mineralization is not typical of Cu-Mo-Au porphyries and has more in common with tectonometamorphic Au deposits formed at considerably greater depths.

  14. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  15. Geologic Explorations

    NSDL National Science Digital Library

    Alec Bodzin

    2002-04-01

    Geologic Explorations allows learners to explore a variety of unique geological formations of Utah using Quicktime Virtual Reality (QTVR) panoramas and digital still imagery. Spectacular panoramas and striking images capture Utah's unique geology and invite students to explore and learn interesting facts and concepts central to the study of geology.

  16. Geologic Maps

    NSDL National Science Digital Library

    Geologic Maps are unique in that they show the distribution of geologic features on a landscape through specific symbols and colors. The United States Geological Survey's (USGS) site Geologic Maps provides visitors with a good introduction to these concepts, which include the unique features of a geologic map; the meaning of their lines, colors, and symbols; the location of faults; and more. Anyone working with geologic maps or just interested in learning a little about cartography or geology will find this site easy to explore and full of good information.

  17. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Dosso, Stan E.

    2015-04-01

    On geological timescales there is a temperature dependent feedback that means that increased degassing of CO2 into the atmosphere leads to increased CO2 drawdown into rocks stabilizing Earth's climate. It is widely considered that this thermostat largely comes from continental chemical weathering. An alternative, or additional, feedback comes from dissolution of seafloor basalt in low-temperature (tens of °C), off-axis, hydrothermal systems. Carbonate minerals precipitated in these systems provide strong evidence that increased bottom water temperature (traced by their O-isotopic compositions) leads to increased basalt dissolution (traced by their Sr-isotopic compositions). Inversion of a simple probabilistic model of fluid-rock interaction allows us to determine the apparent activation energy of rock dissolution in these systems. The high value we find (92 ± 7 kJmol-1) indicates a strong temperature dependence of rock dissolution. Because deep-ocean temperature is sensitive to global climate, and the fluid temperature in the upper oceanic crust is strongly influenced by bottom water temperature, increased global temperature must lead to increased basalt dissolution. In turn, through the generation of alkalinity by rock dissolution, this leads to a negative feedback on planetary warming; i.e. off-axis, hydrothermal systems play an important role in the planetary thermostat. Changes in the extent of rock dissolution, due to changes in bottom water temperature, also lead to changes in the flux of unradiogenic Sr into the ocean. The decreased flux of unradiogenic Sr into the ocean due to the cooling of ocean bottom water over the last 35 Myr is sufficient to explain most of the increase in seawater 87Sr/86Sr over this time.

  18. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,

  19. International Geology

    ERIC Educational Resources Information Center

    Hoover, Linn

    1977-01-01

    Briefly discusses recent international programs in various areas of geology, including land-use problems, coping with geological hazards, and conserving the environment while searching for energy and mineral resources. (MLH)

  20. Environmental Geology

    ERIC Educational Resources Information Center

    Dunn, James R.

    1977-01-01

    Discusses ways that geologic techniques can be used to help evaluate our environment, make economic realities and environmental requirements more compatible, and expand the use of geology in environmental analyses. (MLH)

  1. Geological images

    NSDL National Science Digital Library

    Marli Bryant Miller

    This site from Marli Bryant Miller, a professor at the University of Oregon, presents images of geological features from around the world. Photographs of glacial features, igneous and metamorphic rocks and processes, and structural geology are featured.

  2. Archeological Geology

    ERIC Educational Resources Information Center

    Rapp, George

    1977-01-01

    Describes the rapid expansion of archeological geology, especially in the area of archeological excavations, where geologists use dating techniques and knowledge of geological events to interpret archeological sites. (MLH)

  3. Structural Geology

    NSDL National Science Digital Library

    Created by the University of Nebraska-Lincoln, this site describes the basics of structural geology with text and images. The page includes the discussion of stress, strain, strike and dip, faults, folds, mountain building, erosion, economic geology, and environmental geology. This is a nice introduction to the basic topics in geology. Images from the field help to enhance the topics on the site. Instructors can use this resource to help create or simply enhance their curriculum.

  4. Geological Time

    NSDL National Science Digital Library

    "Why do engineers need to know about geologic time?" That question is answered in this resource from the University of Saskatchewan's Department of Civil and Geological Engineering. Provided here is a discussion of the concepts of geological time; relative dating methods, such as correlation; and absolute dating methods, such as radiometric methods. Diagrams and charts are included to demonstrate these complex concepts.

  5. Infrared spectral identification of metasomatic alteration minerals and its implication to gold exploration in Shihu Gold Deposit, Hebei Province, P.R. China

    NASA Astrophysics Data System (ADS)

    Liu, Jiacheng; Yao, Yuzeng; Wang, Yingpeng; Yuan, Zhou

    2014-11-01

    Hydrothermal alteration is of great importance for mineral exploration, especially the blind ore-hunting due to its larger scale and special zonation compared to the ore bodies. Infrared spectral identification of metasomatic alteration minerals can be done with little or no sample preparation and quantitative result can be obtained. In this paper, 65 wall-rock samples of several horizontal and vertical profiles were selected from Shihu Gold deposit in Hebei Province to do reflectance spectrum measurements by means of rough surface, smooth section and powder with portable ASD FieldSpec®3 spectrometer. ViewspecPro software was used to preprocess the spectrum, and metasomatic alteration minerals were spectrally discriminated by SII (Spectral International Inc) Specmin software package with wavelength of 1100~2500nm. The results shows that: (1) among all the three spectral libraries embedded in SPECMIN software, i.e., ASD, USGS and JPL, ASD spectral library is more suitable for the spectral hydrothermal alteration minerals identification in Shihu Gold Deposit; (2) the observed mineral zonation from wall-rock gneiss to ore-body indicates obvious downtrend of amphibole, chlorite, sericite, carbonate and barite, which is consistent with the microscopic and XRD results; (3) spectral identification of metasomatic alteration minerals is theoretically feasible, which is economic and convenient, and most important of all, the result can be quantitative or semi-quantitative. The results are helpful and successfully applied to the further mineral exploration in Shihu Gold Deposit.

  6. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.

  7. Utah Geology

    NSDL National Science Digital Library

    Utah Geological Survey's Web site, Utah Geology, offers a variety of interesting geological information about the state. Good descriptions, illustrations, and photographs can be accessed on earthquakes and hazards, dinosaurs and fossils, rocks and minerals, oil and energy, and more. For example, the Rocks and Minerals page contains everything from how to stake a mining claim to downloadable summaries of mineral activity in the state. There is quite a bit of information within the site, and anyone interested in geology will find themselves exploring these pages for quite a while.

  8. North Cascades Geology: Geologic Time

    NSDL National Science Digital Library

    This article describes the period of geologic time spanned by the rocks of the North Cascades area of Washington. Users can access a simplified geologic time scale that provides links to geologic events in the North Cascades region. These include the deposition of various terranes, periods of intrusion and metamorphism, the beginning of the Cascade volcanic arc, and periods of major glaciation. Links to related materials are also provided.

  9. Geological gyrocompass

    NASA Astrophysics Data System (ADS)

    McKeown, M. H.; Beason, S. C.

    1988-08-01

    The geological gyrocompass is an accurate, portable instrument useful for geologic mapping and surveying which employs an aircraft gyrocompass, strike reference bars, a pair of sights and levelling devices for horizontally levelling the instrument. A clinometer graduated in degrees indicates the dip of the surface being measured.

  10. Yosemite Geology

    NSDL National Science Digital Library

    The National Park Service maintains the Yosemite National Park Web site and the corresponding Geology page. This Web site gives an overview of the geologic history of the site, tells how the Sierra Nevada range formed, explains the basics of granitic rock, shows how glaciers carved out the canyons, and much more.[JAB

  11. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect

    Holt, R.M.; Powers, D.W. (IT Corporation (USA))

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  12. Geologic Time

    NSDL National Science Digital Library

    William L. Newman

    1997-01-01

    The Earth is very old -- 4.5 billion years or more -- according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  13. Geologic time

    USGS Publications Warehouse

    Newman, William L.

    2000-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  14. Geologic History

    NSDL National Science Digital Library

    Philip Medina

    This unit introduces younger students to the concept of relative versus absolute time and how geologists determine the age of geologic events and features. Topics include the laws that determine relative age (superposition, cross-cutting relationships, included fragments, and others), and how to re-construct the geologic history of an area using these relationships. There is also information on geologic correlation and the use of index fossils to determine relative age. The section on absolute time discusses some ways of measurement (tree rings, radioactive dating) and introduces the concepts of natural selection and mass extinctions. A vocabulary and downloadable, printable student worksheets are provided.

  15. Schoolyard Geology

    NSDL National Science Digital Library

    This set of lessons provides teachers with ideas on how to turn their schoolyards into a rich geologic experience that students will find familiar, easily accessible, and personally relevant. The three lesson plans feature materials on mapping, rock descriptions and geologic interpretations, ages of rocks, and dinosaur tracks. Lesson 1, "Map Your Schoolyard," teaches students what maps are, what they are used for, and some symbols used on maps (north arrow, scale bar, legend, etc.). Lesson 2, "Rock Stories," illustrates how to make geologic observations and what important properties of rocks to look for. Lesson 3, "GeoSleuth Schoolyard," teaches students that geology is a lot like detective work, in which geologists infer the sequence and timing of events by collecting evidence and making observations. Relevant California state science standards are also listed.

  16. Structural Geology

    NASA Astrophysics Data System (ADS)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  17. Geologic Time

    NSDL National Science Digital Library

    Timothy Heaton

    This site contains 24 questions on the topic of geologic time, which covers dating techniques and unconformities. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit their answers and are provided immediate feedback.

  18. Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.

    2012-04-01

    Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated gravitational forces and seismic activity - an important geologic process on Vesta that significantly alters the morphology of geologic features and adds to the complexity of its geologic history. In general, Vesta's geology is more like the Moon and rocky planets than other asteroids.

  19. Teaching Geology

    NSDL National Science Digital Library

    The study of geology at the University of Colorado has a long and distinguished history, and in recent years they have also become increasingly interested in providing online teaching resources in the field. Educators will be glad to learn about this site's existence, as they can scroll through a list of interactive demonstrations that can be utilized in the classroom. Specifically, these demonstrations include a shaded interactive topographical map of the western United States, a magnetic field of the Earth, and several animated maps of various National Park sites. The site comes to a compelling conclusion with the inclusion of the geology department's slide library, which can be used without a password or registration.

  20. Physical Geology

    NSDL National Science Digital Library

    Stephen Nelson

    This Tulane University course covers the nature of the Earth, the development of its surficial features, and the results of the interaction of chemical, physical, and biological factors on the planet. Lecture notes are about energy and minerals; igneous, metamorphic and sedimentary rocks; weathering and soils; geologic time; mass wasting; streams; groundwater; wind action and deserts; oceans; deformation of rock; earthquakes and the interior of the Earth; global tectonics; planetary changes; and glaciers.

  1. Geologic Time

    NSDL National Science Digital Library

    This Classroom Connectors lesson plan discusses the characteristics of geologic time, including the law of superposition, fossil preservation, casts and molds, and various events through the history of the Earth. The site provides goals, objectives, an outline, time required, materials, activities, and closure ideas for the lesson. The Classroom Connectors address content with an activity approach while incorporating themes necessary to raise the activity to a higher cognition level. The major motivation is to employ instructional strategies that bring the students physically and mentally into touch with the science they are studying.

  2. Illinois State Geological Survey

    NSDL National Science Digital Library

    The Illinois State Geological Survey (ISGS) homepage provides information on geologic mapping, earthquakes, fossils, groundwater, wetlands, glacial geology, bedrock geology, and Lake Michigan geology. Educational materials include field trip guides, short publications on Illinois geology for students and teachers, online tours, single-page maps, and a geologic column. Other materials include databases and collections of GIS data, well records, drill cores, and mining information; a bibliography of Illinois geology; online maps and data; and information on water and land use, resource development, and geologic hazards.

  3. Geological Time Scale

    NSDL National Science Digital Library

    This document describes how geologic time is approached in discussions of geologic topics. The uses of relative time and absolute time are compared, and a geologic time scale is provided to represent both concepts. References are provided.

  4. Geologic Technician New Curriculum

    ERIC Educational Resources Information Center

    Karp, Stanley E.

    1970-01-01

    Describes a developing two-year geologic technician program at Bakersfield College in which a student may major in five areas - geologic drafting, land and legal, geologic assistant, engineering or paleontology. (RR)

  5. Geology of Wisconsin

    NSDL National Science Digital Library

    Steven Dutch

    1997-09-10

    This site contains geologic maps of Wisconsin including relief and topography maps; maps of the bedrock geology and elevation, Pleistocene geology, thickness of unconsolidated deposits, and soils; and atlases of geologic history. There is information on: rock types, Paleozoic formations, and the Pleistocene and Precambrian history of Wisconsin; how to obtain a geologic map of personal property; the Niagara Escarpment; castellated mounds; geologic field localities; and unusual weather events in Wisconsin. There is also a data table on earthquakes in Wisconsin.

  6. Geologic Mapping on Mars

    NSDL National Science Digital Library

    Germari De Villiers

    This lab is part of a Lunar and Planetary Geology course offered to both geology and non-geology majors, and it involves basic geological mapping of an area within the Tyrrhena Patera region on Mars. Students are encouraged to work in groups to prepare a geological map from a photomosaic map and to interpret the geologic stratigraphy from a geological map of the greater area. This activity reinforces mapping skills as well as group work skills, and aims to teach students more about Martian stratigraphy and geology through a hands-on activity.

  7. Geologic investigations

    SciTech Connect

    Orkild, P.P. [Geological Survey, Denver, CO (USA); Baldwin, M.J.; Townsend, D.R. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    The Climax stock is a composite granitic intrusive of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes rocks of Paleozoic and Precambrian age. Tertiary volcanic rocks, consisting of ash-flow and ash-fall tuffs, and tuffaceous sedimentary rocks overlie the sedimentary rocks and the stock. Erosion has removed much of the Tertiary volcanic rocks. Hydrothermal alteration of quartz monzonite and granodiorite is found mainly along joints and faults and varies from location to location. The Paleozoic carbonate rocks have been thermally and metasomatically altered to marble and tactite as much as 457 m (1500 ft) from the contact with the stock, although minor discontinuous metasomatic effects are noted in all rocks out to 914 m (3000 ft). Three major faults which define the Climax area structurally are the Tippinip, Boundary and Yucca faults. North of the junction of the Boundary and Yucca faults, the faults are collectively referred to as the Butte fault. The dominant joint sets and their average attitudes are N 32{degrees} W, 22{degrees} NE; N 60{degrees} W, vertical and N 35{degrees} E, vertical. Joints in outcrop are weathered and generally open, but in subsurface, the joints are commonly filled and healed with secondary minerals. 12 refs., 6 figs., 1 tab.

  8. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  9. Old Geology and New Geology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 28 May 2003

    Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.

    Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Colorado Geological Survey

    NSDL National Science Digital Library

    The Colorado Geological Survey (CGS) is an agency of state government within the Department of Natural Resources whose mission is to help reduce the impact of geologic hazards on the citizens of Colorado, to promote the responsible economic development of mineral and mineral fuel resources, to provide geologic insight into water resources, and to provide geologic advice and information to a variety of constituencies. This site contains extensive information about Colorado geology such as maps, a geologic time scale for the state, program information, and state field trip information. This site hosts the Avalanche Information Center which contains avalanche forecasting and education center details. Publications report on geologic hazards, land use, environmental geology, mineral resources, oil, gas, coal, geologic mapping and earthquake information for the state. There are online editions of RockTalk, which is a quarterly newsletter published by the Colorado Geological Survey dealing with all aspects of geology throughout the state of Colorado. Links are provided for more resources.

  11. Geologic Maps and Mapping

    NSDL National Science Digital Library

    This portal provides access to resources on geologic mapping, and to sources of geologic maps. There is an introduction to geologic mapping, which summarizes its principles and practices, and a history of United States Geological Survey (USGS) mapping activities from 1879 to the present, as well as links to papers on the values and hazards associated with geologic maps and mapping. Online sources of maps include the USGS Geologic Map Database, other federal map products (FEDMAP), state geological survey products (STATEMAP), and university map products (EDMAP).

  12. Tennessee Division of Geology

    NSDL National Science Digital Library

    This is the homepage of the Geology Division of the Tennessee Department of Environment and Conservation. It provides information on the division's programs, including geologic hazards research, public service, education programs, basic and applied research on geology and mineral resources, publication of geologic information, permitting of oil and gas wells, and regulation of Tennessee's oil and gas industry. Materials include a catalog of publications, maps, geologic bulletins, and the Public Information series of pamphlets; the Geology Division Newsletter; and information on the state's mineral industry. There is also a section on the Gray Fossil Site, an unusual assemblage of fossils and sedimentary geology encountered during road construction near the town of Gray, Tenessee.

  13. Vermont Geological Survey

    NSDL National Science Digital Library

    The Vermont Geological Survey, also known as the Division of Geology and Mineral Resources in the Department of Environmental Conservation, conducts surveys and research relating to the geology, mineral resources and topography of the State. This site provides details about the states geology with a downloadable state geologic map and key, state rock information, gold in Vermont, fossils found in the state, bedrock mapping details, stream geomorphology, the Champlain thrust fault, earthquakes, radioactive waste and links for additional information.

  14. Glossary of Geologic Terms

    NSDL National Science Digital Library

    This page from Iowa State University presents a general glossary of geologic terms. The site would be a good reference for geology coursework. This glossary of geologic terms is based on the glossary in Earth: An Introduction to Geologic Change, by S. Judson and S.M. Richardson (Englewood Cliffs, NJ, Prentice Hall, 1995). Where possible, definitions conform generally, and in some cases specifically, to definitions given in Robert L Bates and Julia A Jackson (editors), Glossary of Geology, 3rd ed., American Geological Institute, Alexandria, Virginia, 1987.

  15. Principles of Historical Geology Geology 331

    E-print Network

    Kammer, Thomas

    of a valley can be correlated. · This principle is used to trace coal seams from one mountain to the next in West Virginia. #12;Original Lateral Continuity #12;Geology Field Camp in the Badlands of South Dakota Rocks #12;James Hutton, 18th Century founder of Geology #12;Siccar Point, Scotland, where Hutton

  16. Utah Geological Survey: Teaching Geology Resources

    NSDL National Science Digital Library

    From Arches National Park to the towering cliffs at Castle Rock Campground, Utah has some remarkable geology on display. The Utah Geological Survey decided to draw on these fantastic "outdoor laboratories" and create a set of resources designed for science educators. While some of the resources are geared towards users in Utah, many of the sections contain helpful overviews that will help all educators remain on a steady foundation of geologic knowledge. One key area on the site is the "Earthquakes & Geologic Hazards" section. Here, visitors can find well-composed and straight forward summaries on topics like liquefaction, ground cracks, and fault lines. Moving on to the "Teacher Resources" area, visitors will find the delightful "Glad You Asked" articles and the very useful "Teacher's Corner" column which provides information on reading a stone wall and geologic stretching.

  17. GSA Geologic Time Scale

    NSDL National Science Digital Library

    1999-01-01

    This Geological Society of America (GSA) site contains a detailed geologic time scale as an educational resource. It may be downloaded to a larger size, and includes all Eras, Eons, Periods, Epochs and ages as well as magnetic polarity information.

  18. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  19. Geologic spatial analysis

    SciTech Connect

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  20. South Dakota Geological Survey

    NSDL National Science Digital Library

    The mission of the geological survey is to conduct geologic studies, hydrologic studies, and research, and to collect, correlate, preserve, interpret, and disseminate information, leading to a better understanding of the geology and hydrology of South Dakota. Information includes maps of relief, geology, ground water, and earthquakes; projects such as well testing, hydrology, and aquifers; and searchable databases, such as lithologic logs, digital base, and water quality. Links are provided for more information.

  1. Louisiana Geological Survey

    NSDL National Science Digital Library

    The Louisiana Geological Survey, located at Louisiana State University, developed this website to promote its goal to provide geological and environmental data that will allow for environmentally sound natural resource development and economic decisions. Users can find general information about the Survey's mission, staff, plan, and history. The website features the research and publications of the Basin Research, Cartographic, Coastal, Geologic Mapping, and Water and Environmental sections. Researchers can discover stratigraphic charts of Louisiana, information on lignite resources, and other geologic data.

  2. South Carolina Geological Survey

    NSDL National Science Digital Library

    The South Carolina Geological Survey (SCGS) homepage contains information about state mapping, education and outreach programs, and recent news. For educators, there is the Earth Science education series of publications which includes presentations and page-size graphics on such topics as earthquakes, plate tectonics, geologic time, fossils, and others. Other materials include information on mineral resources, links to organizations in and about South Carolina geology, the South Carolina core repository, the Geologic Map of South Carolina, and others.

  3. Iowa Geological Survey Bureau

    NSDL National Science Digital Library

    The Iowa Geological Survey Bureau (GSB) homepage contains: general information about the geology of Iowa; the Natural Resources Geographic Information System, which is a collection of databases on geology and water wells; and information about GSB staff, geologic studies, water monitoring programs, and services. There are maps, photographs, general interest articles, technical abstracts, lists of available publications, and an on-line book about the natural resource history of Iowa.

  4. Geological Survey Program

    NSDL National Science Digital Library

    If your research or interests lie in the geology of South Dakota, then the state's Geological Survey Program Web site is for you. Offered are online publications and maps, a geologic reference database, a lithologic logs database, digital base maps, a water quality database, and several other quality information sources worth checking out.

  5. Structural geology report: Spent Fuel Test - Climax Nevada Test Site

    SciTech Connect

    Wilder, D.G.; Yow, J.L. Jr.

    1984-10-01

    We performed underground mapping and core logging in the Climax Stock, a granitic intrusive at the Nevada Test Site, as part of a major field test to determine the feasibility of using granitic or crystalline rock for the underground storage of spent fuel from a nuclear reactor. This mapping and logging identified more than 2500 fractures, over 1500 of which were described in enough detail to allow statistical analyses and orientation studies to be performed. We identified eight joint sets, three major shear sets, and a fault zone within the Spent Fuel Test - Climax (SFT-C) portion of the Stock. Joint sets identified within the SFT-C and elsewhere in the Stock correlated well. The orientations of joint sets identified by other investigators were consistent with our findings, indicating that the joint sets are persistent and have a relatively uniform orientation throughout a major portion of the Stock. The one joint set not seen elsewhere in the Stock is healed and the wall rock is altered, implying that healed joints were not included in the mapping criteria used by other investigators. The shear sets were distinguished from the joint sets by virtue of crushed minerals, continuous clay infilling, and other evidences of shearing, and from faults by the lack of offsetting. Previous investigators working mainly in the Pile Driver Drifts identified two of the shear sets. The third set, being nearly parallel to these Drifts had not been identified previously. The fault zone identified at the far (Receiving Room) end of the project is oriented approximately N45{sup 0}E-75{sup 0}SE, similar to both the Boundary and Shaft Station Faults. We have, therefore, concluded that the Receiving Room Fault is one of a series of normal faults that occur within the Climax Stock and that are possibly related, in both age and genesis, to the Boundary Fault. 52 refs., 26 figs., 11 tabs.

  6. Geology and geochemistry of the Mendejin plutonicrocks, Mianeh, Iran

    NASA Astrophysics Data System (ADS)

    Somarin, A. Karimzadeh

    2006-10-01

    The Mendejin pluton is located in the Mianeh area, NW Iran, 550 km from Tehran. This pluton is probably of Oligo-Miocene age and is the result of extensive magmatism which occurred during and after the Alpine Orogeny. Similar plutons are common in the Alborz-Azarbaijan structural zone of Iran, and it is likely that there are concealed plutons related to this extensive Cenozoic magmatism, but due to their youth and low rates of erosion they have not yet been exposed. The Mendejin pluton is a composite body made up of four types of plutonic rocks: pink tonalite, grey tonalite, diorite and aplite. The pink tonalite is porphyritic and contains phenocrysts of plagioclase, K-feldspar and hornblende in a groundmass consisting of quartz, plagioclase, K-feldspar, hornblende, zircon, monazite, leucoxene, apatite and hematite. The grey porphyritic tonalite has more biotite, pyroxene and pyrite and less accessory phases compared with the pink tonalite. The diorite has a microporphyritic texture with phenocrysts of plagioclase, hornblende and augite. This rock also occurs as xenoliths in the Mendejin pluton. The aplitic dykes are the youngest magmatic products at Mendejin. The Mendejin tonalite contains more Cl, As, S, Cu, Ni and Zn than the global granite. These rocks are of I-type, peraluminous and calc-alkaline, with medium to high potassium, and were formed as part of a volcanic arc. The Mendejin pluton contains up to 8 ppb gold and could potentially have been the source of an economic gold deposit by leaching of Au from wall rocks and deposition in extensive hydrothermally altered marginal zones.

  7. Arkansas Geological Survey

    NSDL National Science Digital Library

    The Arkansas Geological Survey (AGS) homepage aims to develop and provide knowledge of the geology and hydrogeology of the State, and to stimulate development and effective management and utilization of the mineral, fossil-fuel, and water resources of Arkansas while protecting the environment. The AGC collects and disperses geologic data consisting of geologic maps, historical data concerning resources, and various datasets concerning water, fossil-fuel, and mineral resources of Arkansas. The site contains publications that can be ordered, sections about Arkansas geology, a list of mineral producers of Arkansas, and reports on mineral resources.

  8. Virtual-Geology.Info

    NSDL National Science Digital Library

    At virtual-geology.info, Roger Suthren, a professor at Oxford Brookes University, offers educational materials on geologic phenomena throughout the world. Users can take virtual field trips to study the geology of Scotland, Alaska, and France. In the Regional Geology link, visitors can view wonderful pictures of the volcanoes of Germany, Italy, France, and Greece. Educators can find images of sediments and sedimentary rocks which can be used in a variety of classroom exercises. The website supplies descriptions and additional educational links about sedimentology and environmental geology.

  9. Geology of Kentucky

    NSDL National Science Digital Library

    This website contains geologic maps of Kentucky, with a discussion of geologic time in regards to the rocks, minerals, fossils, and economic deposits found there. There are also sections that describe strata and geologic structures beneath the surface (faults, basins, and arches), the structural processes (folding and faulting) that create stratigraphic units, the geomorphology of the state, geologic information by county, a general description of geologic time, fossil, rocks, and minerals of Kentucky, and a virtual field trip through Natural Bridges State Park. Links are provided for further information.

  10. Ohio Geological Survey

    NSDL National Science Digital Library

    This is the homepage of the Ohio Geological Survey. Materials available through the site include a variety of publications, particularly the Survey's reports, bulletins, information circulars, guidebooks, and many others. There is an extensive selection of maps, including topographic maps in several scales, and downloadable geologic maps of several themes (drift thickness, bedrock geology, karst areas, glacial geology, and many others), as well as digital maps and data. The interactive maps section features online map viewers of abandoned mines, earthquake epicenters, surficial geology, geology of Lake Erie, and others. The educational resources page has links to the 'Hands On Earth' series of activities, GeoFacts (short bulletins on Ohio geological topics), nontechnical educational leaflets, field guides, and links to other publications, rock and mineral clubs, educational associations, and related websites. There is also a link to the Ohio Seismic Network, a network of seismograph stations located at colleges, universities, and other institutions that collects and disseminates information about earthquakes in Ohio.

  11. Making a Geologic Cross Section Name _____________________________ Geology 100 Harbor Section

    E-print Network

    Harbor, David

    of cross section A for help) 2. What symbols represent these formations and in what geologic time periodsp. 1 Making a Geologic Cross Section Name _____________________________ Geology 100 ­ Harbor Section Your task is to complete a cross section of geologic structures from a geologic map. Please do

  12. Geologic Time: Online Edition

    NSDL National Science Digital Library

    1997-10-09

    Offered by the United States Geological Survey (USGS) as a general interest publication, this site is an online edition of a text by the same name, offering a concise overview of the concepts associated with the age of the Earth. The online edition was revised in October of 1997 to reflect current thinking on this topic. Section headers are Geologic Time, Relative Time Scale, Major Divisions of Geologic Time, Index Fossils, Radiometric Time Scale, and Age of the Earth.

  13. The Geology of Virginia

    NSDL National Science Digital Library

    From the College of William of Mary Department of Geology comes the Geology of Virginia Web site. From the Appalachian Plateau to the coastal plain, visitors can explore the geology and physical characteristics of the diverse landscape of the commonwealth of Virginia through simple descriptions and well designed graphics. Even if you don't live in the area, the site does a good job of capturing the interest of anyone looking for quality material on the presented subjects.

  14. Image Gallery for Geology

    NSDL National Science Digital Library

    Allen Glazner

    These images of geologic phenomena are used to supplement introductory geology classes at the University of North Carolina at Chapel Hill. The images are categorized under plutonic, volcanic and sedimentary rocks; structural geology; weathering; and coastlines. There are photographs of different kinds of volcanoes; lavas and pyroclastic rocks; volcanic hazards; different types of sedimentary rocks and sedimentary structures; folds and faults; beach processes; and barrier islands.

  15. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.O. (Oslo Univ. (Norway))

    1989-01-01

    This book presents an introduction to sedimentology as well as petroleum geology. It integrates both subjects, which are closely related but mostly treated separately. The author covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis. Principles of stratigraphy, seismic stratigraphy and basin modelling forms the base for the part on petroleum geology. Subjects discussed include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Introductions to well logging and production geology are given.

  16. Understanding Geologic Maps

    NSDL National Science Digital Library

    Cara Burberry

    This is an exercise in which students are reintroduced to geologic maps and encouraged to "deconstruct" the map into constituent elements in order to understand the geologic history of the area. The preceding lectures in the course have recapitulated material that the students have covered in Introduction to Physical Geology. During class, the students work through the maps that were part of lab exercises in the Intro level course, so that basic concepts are recalled (superposition, cross-cutting relationships, basic faults and folds). The final product is a geologic history of this map area.

  17. Geologic Mapping Exercise

    NSDL National Science Digital Library

    Andrew Smith

    This exercise is designed to simulate how a basic geological investigation of a site takes place. A basic geological investigation includes familiarizing yourself with the unconsolidated sediments, rocks, structural geology, and groundwater present at your site. As part of this exercise you will have to properly identify a variety of rock types and sediments, create maps that represent data you collected at each location, and complete a basic report of your findings (optional). Once completed, this exercise should give students a basic understanding of how the various concepts used throughout the semester are applied in the real world in the form of a geological investigation.

  18. Sulfur and oxygen isotope study of the Vermont copper belt: evidence of seawater hydrothermal alteration and sulfate reduction in a high-grade metamorphic terrane

    SciTech Connect

    Shanks, W.C. III; Woodruff, L.G.; Slack, J.F.

    1985-01-01

    Massive sulfide deposits of the Orange County copper district, in east-central Vermont, consist of stratiform lenses of pyrrhotite, chalcopyrite, and minor sphalerite within amphibolite-facies rocks of Early Devonian (.) age. The deposits occur at several different stratigraphic levels. The two largest, Elizabeth and Ely, are in quartz-mica schists of the Gile Mountain Formation; the Pike Hill deposit occurs in calcareous quartz-mica schist of the underlying Waits River Formation. Two small deposits (Orange and Gove) are within the Standing Pond Volcanics, a thin tholeiitic amphibolite near the Gile Mountain-Waits River contact. The Elizabeth deposit in particularly distinctive, and contains a suite of unusual wall rocks rich in quartz, carbonate, muscovite, amphibole, phlogopite, tourmaline, spessartine, and sodic plagioclase. Sulfur isotope values at Elizabeth and Ely of 5.1 to 9.1 per thousands contrast with values for Gove (1.9 to 4.2) and Pike Hill (1.5 to 4.6). Disseminated sulfides in amphibolites of the Standing Pond Volcanics have sulfur isotope values in the range -0.1 to 1.7 per thousands, typical of MORB. These data require sulfur contributions to massive sulfide deposits both from basalt and from contemporaneous seawater sulfate sources. Whole-rock (carbonate free) oxygen isotope analyses of host lithologies range from 7.9 per thousands (Standing Pond Volcanics) to 19.9 per thousands (Waits River Formation). Detailed sampling of Elizabeth wall rocks (including those high in B, Na, Mg, Al, Si, Mn) yields a narrow range of oxygen isotope values (11.1 to 14.1); heavier values correlate with higher silica contents. Isotopically light wallrock lithologies are probably due to premetamorphic seawater hydrothermal alteration.

  19. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1981-01-01

    This second issue in a new series intended to serve the planetary geology community with a form for quick and thorough communications includes (1) a catalog of terrestrial craterform structures for northern Europe; (2) abstracts of results of the Planetary Geology Program, and (3) a list of the photographic holdings of regional planetary image facilities.

  20. Petroleum geology of Tunisia

    Microsoft Academic Search

    P. F. Burollet; A. B. Ferjami; F. Mejri

    1990-01-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example

  1. External Resource: Geologic Time

    NSDL National Science Digital Library

    1900-01-01

    This NASA sponsored webpage, Center for Educational Technologies, teaches students about Geologic Time. The age of Earth is so long compared to all periods of time that we humans are familiar with, it has been given a special name: Geologic time. The age

  2. Geologic time scale bookmark

    USGS Publications Warehouse

    U.S. Geological Survey

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  3. National Geologic Map Database

    NSDL National Science Digital Library

    1997-01-01

    The National Geologic Map Database (NGMDB) is an Internet-based system for query and retrieval of earth-science map information, created as a collaborative effort between the USGS and the Association of American State Geologists. Its functions include providing a catalog of available map information; a data repository; and a source for general information on the nature and intended uses of the various types of earth-science information. The map catalog is a comprehensive, searchable catalog of all geoscience maps of the United States, in paper or digital format. It includes maps published in geological survey formal series and open-file series, maps in books, theses and dissertations, maps published by park associations, scientific societies, and other agencies, as well as publications that do not contain a map but instead provide a geological description of an area (for example, a state park). The geologic-names lexicon (GEOLEX) is a search tool for lithologic and geochronologic unit names. It now contains roughly 90% of the geologic names found in the most recent listing of USGS-approved geologic names. Current mapping activities at 1:24,000- and 1:100,000-scale are listed in the Geologic Mapping in Progress Database. Information on how to find topographic maps and list of geology-related links is also available.

  4. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  5. Geology of Caves

    NSDL National Science Digital Library

    This webpage of the United States Geological Survey (USGS) and National Park Service (NPS) describes the geology and features of caves. It discusses cave formation, features, minerals found in caves, uses of caves, and various investigations of caves. There is an educational activity on karst topography formation, and links for additional information.

  6. California Geological Survey - Landslides

    NSDL National Science Digital Library

    California Geological Survey

    This page from the CA Geological Survey (CGS) presents information on landslides as well as maps and products of various past and present CGS programs to map and respond to landslides in the state of California, including the Forest and Watershed Geology Program, the Seismic Hazards Zonation Program, the Caltrans Highway Corridor Mapping project, and the Landslide Map Index.

  7. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  8. Earth Sciences Geology Option

    E-print Network

    Kurapov, Alexander

    Earth Sciences with Geology Option Geological sciences focus on understanding the Earth, from its, mountain building, land surface evolution, and mineral resource creation over the Earth's 4.6 billion-year history. A geologist contributes to society through the discovery of earth resources, such as metals

  9. Layer Cake Geology

    NSDL National Science Digital Library

    John Wagner

    This classroom activity uses a cake to demonstrate geologic processes and introduce geologic terms. Students will learn how folds and faults occur, recognize the difference in behavior between brittle and ductile rocks, and attempt to predict structures likely to result from application of various forces to layered rocks. They will also attempt to interpret 'core samples' to determine subsurface rock structure.

  10. Earthquakes and Geology

    NSDL National Science Digital Library

    David Ozsvath

    In this activity, students investigate the relationship between intensity of ground motion and type of rock or alluvium, as seen in the 1994 Northridge, California earthquake. They will examine a map of Mercalli intensity, a cross-section showing geologic structures and rock types, and a map of surficial geology, and answer questions pertaining to amplification of ground motion and S-wave velocities.

  11. Glossary of geology

    SciTech Connect

    Bates, R.L.; Jackson, J.A.

    1987-01-01

    This third edition of the Glossary of Geology contains approximately 37,000 terms, or 1,000 more than the second edition. New entries are especially numerous in the fields of carbonate sedimentology, hydrogeology, marine geology, mineralogy, ore deposits, plate tectonics, snow and ice, and stratigraphic nomenclature. Many of the definitions provide background information.

  12. British Geological Survey: Learning

    NSDL National Science Digital Library

    The British Geological Survey (BGS) has a wealth of information about the earth sciences, and they are quite willing to share it with others. This page contains information and resources for anyone interested in geology for educational or leisure purposes, and it is contained with four sections. First up is "Popular geology", which includes "Britain beneath our feet", an interactive atlas of geology, resources, and land quality. This section also contains graphics about climate change and earthquakes. The second section is titled "Educational resources". Here visitors can ask scientists at the BGS specific questions and they can also download several free posters. The third section is called "Educational news and events" and it features upcoming events at the BGS and links to their free magazine, "Earthwise". The site is rounded out by the fourth section titled "From the BGS Archives". Here visitors can view historic geological photographs and also view field sketches and watercolors by Alexander Henry Green, the celebrated Victorian geologist.

  13. Wyoming State Geological Survey

    NSDL National Science Digital Library

    This agency's mission is to study, examine, and seek an understanding of the geology, mineral resources, and physical features of the State; to prepare, publish, and distribute reports and maps of Wyoming's geology, mineral resources, and physical features; and to provide information, advice, and services related to the geology, mineral resources, and physical features of the State. This site contains details and reports about metals in Wyoming, earthquakes and other hazards, coal, industrial minerals, uranium, oil and gas. The field trip section contains details about various areas to visit with students and gives a general geologic description. There is also a searchable bibliography with publications about Wyoming geology. Links are provided for additional resources.

  14. Virtual Tour of Maine Geology

    NSDL National Science Digital Library

    This selection of slide shows provides a photographic tour of Maine geology. Users can choose slide shows on surficial, bedrock, and coastal geology; fossils, geologic hazards, groundwater and wells; or mineral collecting, mining, and quarrying.

  15. Essential Elements of Geologic Reports.

    ERIC Educational Resources Information Center

    Webb, Elmer James

    1988-01-01

    Described is a report outline for geologic reports. Essential elements include title; abstract; introduction; stratigraphy; petrography; geochemistry; petrology; geophysics; structural geology; geologic history; modeling; economics; conclusions; and recommendations. (Author/CW)

  16. Roadside Geology of Yosemite Valley

    NSDL National Science Digital Library

    A virtual geology field trip to Yosemite Valley. Includes a geologic map of Yosemite, numerous large pictures of the area and discussion of geological events and natural disasters which have occurred in Yosemite.

  17. Thermal maturity patterns (conodont color alteration index and vitrinite reflectance) in Upper Ordovician and Devonian rocks of the Appalachian basin: a major revision of USGS Map I-917-E using new subsurface collections: Chapter F.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.

    2014-01-01

    The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they clos

  18. Geologic effects of hurricanes

    NASA Astrophysics Data System (ADS)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes include beach erosion, dune erosion, inlet formation from flood and ebb surge, landscape changes through tree destruction by wind and nearshore channeling and sedimentation resulting from ebb surge. Multi-decadal wet and dry cycles in West Africa seem to be associated with increases (wet periods) and decreases (dry periods) in the frequency of Atlantic Coast landfalling hurricanes. Coastalzone population and development has increased markedly in a time of low hurricane frequency in the 24 year dry cycle from1970 to the present. However, no previous climatic cycle in this century has exceeded 26 years. We may entering a multi-decadal cycle of greater hurricane activity, placing these highly urbanized shorelines in considerable danger.

  19. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  20. Formation evaluation: Geological procedures

    SciTech Connect

    Whittaker, A.

    1985-01-01

    This volume goes beyond a discussion of petroleum geology and the techniques of hydrocarbon (oil and gas) logging as a reservoir evaluation tool. It provides the logging geologist with a review of geological techniques and classification systems that will ensure the maximum development of communicable geological information. Contents include: 1. Introduction--cuttings recovery, cutting sampling, core sampling, rock classification; 2. Detrital rocks--classification, description; 3. Carbonate rocks--classification, description; 4. Chemical rocks-introduction, siliceous rocks, ferruginous rocks, aluminous rocks, phosphatic rocks, aluminous rocks, carbonaceous rocks; 5. Igneous and metamorpbic rocks; Appendix; References and Index.

  1. Journal of Geology

    NSDL National Science Digital Library

    From the University of Chicago Press's Journals Division, the Journal of Geology is currently available online free of charge (note: subscription fees may soon apply, but no initiation date is provided). This first-rate technical journal, which publishes "research and theory in geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences" has been in print form since 1893. All of the 1999 issues of the Journal of Geology electronic edition are available here. Internet users can access full-text articles with internal links to references and figures (html, .pdf. .ps).

  2. Pattern Alteration: Principles of Pattern Alteration

    E-print Network

    2006-02-09

    or more inches larger than the high bust measurement. Fit across the upper chest is a wiser choice because of the difficulty of altering the upper chest, neck and shoulder areas. 2... in pinpointing areas usually needing alterations. To measure the pattern pieces Measure each pattern piece at points that correspond with body measurements. For example, if your full hip measurement was taken 10 inches below the waist, measure the pattern...

  3. Geology and Human Health

    NSDL National Science Digital Library

    The link between geology and human health may not seem obvious, but it many ways geology can affect public health in a variety of crucial ways. Certainly, the relationship between geological factors and water and air quality is one that continues to interest policy makers and others. This site explores these issues, and it was created by the people at Carleton College's Professional Development for Geoscience Faculty initiative. Here visitors can make use of a wide range of educational and supporting materials, including classroom activities, key visualizations, and collections of external links. First-time users may wish to start at the "Resources for Educators" area, which includes a brief overview titled "Essential components of geology and human health" and several helpful posters. The remaining materials can be viewed in sections that include "Bookshelf", "Visualizations", and "Internet Resources".

  4. Devil's Tower Geology

    NSDL National Science Digital Library

    National Park Service (NPS)

    This site from the National Park Service briefly addresses the geology of Devil's Tower. The evolution of various theories on the formation of the tower are discussed. A slide show of the emplacement of the tower is also available.

  5. Bedrock Geology Mapping Exercise

    NSDL National Science Digital Library

    Jim Miller

    This field mapping and map-making exercise is a capstone project for a course on Geological Maps. Over a weekend (~12 hours of field work), students collect lithologic and structural data from outcrops scattered over a one square mile area. Back in the classroom, students digitally compile their field data (outcrop, structure measurements, traverse locations) into ArcMAP. They infer geologic linework (faults and contacts) and units from this data in ArcMAP and then export these data layers into Illustrator. In Illustrator, they add ancillary map components (a cross section, description of map units, correlation diagram, map symbol legend,...) to create a final map at a 1:10,000 scale. Their maps are printed out on 11"x17" paper and saved as a pdf file. This exercise helps the students to appreciate how field data is collected and how these geologic facts are interpretively organized into a four-dimensional picture that is a geologic map.

  6. Experiencing Structural Geology

    ERIC Educational Resources Information Center

    Davis, George H.

    1978-01-01

    Describes an undergraduate structural geology course that incorporates field lab time and research. Lectures, outside readings, and in-class experimentation are coordinated with the field work to prepare a scientific report. (MA)

  7. Stratigraphy and structural geology

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Wilhelms, D. E.; Greeley, R.; Guest, J. E.

    1976-01-01

    The immediate goal of stratigraphy and structural geology is to reduce the enormous complexity of a planetary surface to comprehensible proportions by dividing the near-surface rocks into units and mapping their distribution and attitude.

  8. Economic Geology and Education

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Presents tabulated data of questionnaire responses from 207 colleges. More than 30 groups of data are included relating to various aspects of geology programs including enrollment, student and faculty data and courses. (PR)

  9. External Resource: Geology Jeopardy

    NSDL National Science Digital Library

    1900-01-01

    This interactive Geology Jeopardy game can by used by the individual to review concepts in earth science or in the classroom as a classroom activity. Topics: rocks, minerals, topography, plate tectonics, weathering, erosion, astronomy, meteorology.

  10. North Dakota Geological Survey

    NSDL National Science Digital Library

    This is the homepage of the North Dakota Geological Survey. Site materials include information on the state's oil, gas and coal resources, maps, publications, and regulations. The paleontology page features educational articles, information on fossil collecting, articles about fossil exhibits, and information on the state fossil collection. The state GIS hub creates and distributes digital spatial data that conforms to national mapping standards. The teaching tools page includes illustrations and descriptions of rocks and minerals found in the state, as well as information on meteorites and newsletter articles about teaching North Dakota geology. There are also links to landslide maps, surficial geology maps, and links to other survey publications such as reports, bulletins, field studies, other geological and topographic maps, and information on groundwater resources.

  11. Interactive Geologic Timeline Activity

    NSDL National Science Digital Library

    Environmental Literacy and Inquiry Working Group at Lehigh University

    In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

  12. Digital Geology of Idaho

    NSDL National Science Digital Library

    2012-02-17

    If you have ever wanted to learn about the geology of Idaho, this site is a great way to explore everything from Coeur d'Alene to the Sawtooth Mountains. This digital version of a course offered at Idaho State University systematically divides Idaho geology into a set of different teaching modules. The modules cover topics like the Idaho Batholith, the Columbia River Basalts, and the Lake Bonneville Flood. Each module contains maps, charts, diagrams, and photographs that illuminate the various geological processes that have formed, and continue to form, in each region of the state. Many of the modules also have fly-throughs that superimpose color-coded geology on 3-D topographic maps to provide a graphic visualization Idaho's rivers. Additionally, the site contains slide shows and a set of teaching exercises.

  13. USGS Geologic Hazards

    NSDL National Science Digital Library

    The Geologic Hazards section of the US Geological Survey (USGS) conducts research into the causes of geological phenomena such as landslides and earthquakes. The homepage connects visitors to the Geologic Hazards team's three main areas of endeavor. Geomagnetism provides links to the National Geomagnetic Information Center; Magnetic Observatories, Models, and Charts; and the Geomagnetic Information Node, which receives geomagnetic observatory data from around the world. The Landslide group studies the "causes and mechanisms of ground failure" to prevent "long-term losses and casualties." Their section provides links to the program and information center, publications, events, and current projects. The Earthquakes department hosts a wealth of information, including neotectonics, engineering seismology, and paleoseismology. Interactive maps are also provided.

  14. Manitoba Geological Survey

    NSDL National Science Digital Library

    This site offers materials on Manitoba geology and minerals, mining and mineral exploration, a Digital Elevation Model of Southern Manitoba (DEMSM) landforms including oblique views, an interactive GIS map gallery of minerals and geology, a study of paleofloods in the Red River Basin including photographs illustrating how scientists delineated the paleofloods, and information on the Manitoba Protected Areas Initiative. Some maps and reports are available to download.

  15. Geologic Time Discussion Analogies

    NSDL National Science Digital Library

    Noah Fay

    The slides provide a fun way of discussing the immensity of geologic time and help to grasp the age of the earth, the time gaps between major geologic events, and the relative minuteness of humans time on earth. After the discussion with the class, students are given opportunity to develop their own analogies using "everyday" things (other than the calendar and money examples used in this activity).

  16. Interpreting Geologic Sections

    NSDL National Science Digital Library

    Paul Morris

    Athro, Limited is a for-profit corporation that publishes high school and college level biology, earth science, and geology course supplements and independent learning materials on the Web. This site provides instruction in interpreting the order of events in three hypothetical and one real geological section. For each section there is a list of events and an animation of the history of the section once the student has decided on the order of events.

  17. USGS: Geology in the Parks

    NSDL National Science Digital Library

    The US Geological Survey Geology in the Parks Web site is a cooperative project of the USGS Western Earth Surface Processes Team and the National Park Service. This extensive site covers geologic maps, plate tectonics, rocks and minerals, geologic time, US geologic provinces, park geology of the Mojave, Sunset Crater, Lake Mead, North Cascades, Death Valley, Yosemite National Park, and much more. Descriptions, graphics, photographs, and animations all contribute to this informative and interesting Web site making it a one stop, all encompassing, resource for everything geology and US national park related.

  18. Illustrated Glossary of Geologic Terms

    NSDL National Science Digital Library

    Provided by the Geology Department at Iowa State University, this handy illustrated glossary of geological terms is an excellent quick reference resource for students. Continuously upgraded with links to illustrations and text, this geological lexicon is based on the glossary in the textbook Earth: An Introduction to Geological Change by S. Judson and S.M. Richardson. Alphabetical tabs and internal links to related terms let users move quickly around this useful aid for geology students.

  19. A Formative Assessment of Geologic Time for High School Earth Science Students

    NSDL National Science Digital Library

    2004-05-01

    Earth science courses typically include the concept of geological time. The authors of this study attempt to move past traditional assessment practices and develop a formative assessment of students' understanding of the construction of the geologic time scale and how it is interpreted. Through this approach students are challenged to conceptualize the geologic time scale by comparing it to a student-produced time scale for an older adult's life. This formative assessment allows the teacher to alter instruction based on students' feedback in order to maximize student understanding of geologic time.

  20. Geology By Lightplane

    NSDL National Science Digital Library

    Maher, Louis J.

    In 1966, Professor Louis J. Maher of the University of Wisconsin-Madison's Department of Geology and Geophysics piloted a department-owned Cessna over the continental US taking photos for use in his geology courses. As Maher flew, his trusty co-pilot and graduate assistant, Charles Mansfield, snapped the photos. The resulting collection is an assortment of breathtaking images of classic geological features, now available online for noncommercial use by educators (download via FTP). Maher gives us birds-eye views of structural features in Wyoming's Wind River Range, sedimentary strata in Arches National Park and the Grand Canyon, glacial landscapes in Northern Minnesota, and ancient lava flows in Arizona, to name just a few.

  1. The geology of Ganymede

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    1982-01-01

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  2. Minnesota Geological Survey

    NSDL National Science Digital Library

    Established in 1872 by the State of Minnesota as part of the University of Minnesota, the Minnesota Geological Survey (MGS) serves the people of Minnesota by providing systematic geoscience information to support the stewardship of water, land, and mineral resources. This rather lovely digital collection brings together a record of all items published by the MGS since its creation. Here, visitors will find documents, reports, maps, and GIS data for online viewing or downloading as well. The thematic collections here include the Aeromagnetic Map Series, the annual reports of the Minnesota Geological and Natural History Survey, and the wonderful county atlas series. Visitors with a penchant for geology, natural history, and geography will find much to enjoy here.

  3. Sedimentology and petroleum geology

    SciTech Connect

    Bjorlykke, K.

    1989-01-01

    In this introduction to sedimentology and petroleum geology the subjects, which are closely related but mostly treated separately, are integrated. The first part covers the basic aspects of sedimentology, sedimentary geochemistry and diagenesis, including brief discussions of flow in rivers and channels, types of sediment transport, lake and river deposits, deltas (river-dominated, tide-dominated, and wave-dominated) and the water budget. Principles of stratigraphy, seismic stratigraphy and basin modeling form the basis for the last part on petroleum geology. Here subjects include the composition of kerogen and hydrocarbons, theories of migration and trapping of hydrocarbons and properties of reservoir rocks. Finally, short introductions to well logging and production geology are given.

  4. Global sedimentary geology program

    SciTech Connect

    Ginsburg, R.N.; Clifton, H.E.; Weimer, R.J.

    1986-07-01

    The Society of Economic Paleontologists and Mineralogists, in collaboration with the International Association of Sedimentologists and the International Union of Geological Sciences Committee on Sedimentology, is developing a new international study under the provisional title of Global Sedimentary Geology Program (GSGP). Initially, three research themes are being considered: (1) event stratigraphy-the documentation of examples of mass extinctions, eustatic fluctuations in sea level, major episodes of volcanisms, and changes in ocean composition; (2) facies models in time and space-an expansion of the existing data base of examples of facies models (e.G., deltas, fluvial deposits, and submarine fans) and global-scale study of the persistence of facies at various times in geologic history; and (3) sedimentary indices of paleogeography and tectonics-the use of depositional facies and faunas in paleogeography and in assessing the timing, locus, and characteristics of tectonism. Plans are being developed to organize pilot projects in each of these themes.

  5. Geological fakes and frauds

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  6. Geology for Everyone

    NSDL National Science Digital Library

    This Geological Survey of Ireland website can increase the public's excitement about geology by offering simple, straightforward materials on the basics of geology. The website is divided into numerous themes such as Volcanoes, Rocks, Caves, and the Water Cycle. The links from each of the headings introduce the topic with simple descriptions and remarkable pictures and offer easy experiments when applicable. Students and educators can take virtual tours of the Ox Mountains, Killiney Beach, and other Irish landscapes. Everyone should visit the Landscapes for the Living link, which offers outstanding images of the diverse landscapes of Europe. While some of the themes are currently under construction, including Planet Earth, Plate Tectonics, and Earthquakes, the authors indicate that these materials will be added in the near future.

  7. Roping Geologic Time

    NSDL National Science Digital Library

    Randall Richardson

    After having talked about the geologic time scale (Precambrian: prior to 570 Ma; Paleozoic: 570-245 Ma; Mesozoic: 245-65 Ma; Cenozoic: 65 Ma - Present), I ask for two volunteers from the class to hold a rope that is 50 feet long. I say that one end is the beginning of the Earth (4.6 billion years ago), and the other is today. I then give out 16 clothes pins and ask various students to put a cloths pin on the 'time line' at various 'geologic events'. For example, I ask them to put one where the dinosaurs died out (end of the Mesozoic). They almost invariably put it much too old (65 Ma is less than 2% of Earth history!). Then I ask them to put one on their birthday (they now laugh). Then I ask them to put one where we think hominoids (humans) evolved (~3-4 Ma), and they realize that we have not been here very long geologically. Then I ask them to put one at the end of the Precambrian, where life took off in terms of the numbers of species, etc. They are amazed that this only represents less than 15% of Earth history. Throughout the activity I have a quiz going on where the students calculate percentages of Earth History for major geologic events, and compare it to their own ages. On their time scale, the dinosaurs died only about two 'months' ago! The exercise is very effective at letting them get a sense of how long geologic time is, and how 'recently' some major geologic events happened when you consider a time scale that is the age of the earth.

  8. Petroleum development geology

    SciTech Connect

    Dickey, P.A.

    1986-01-01

    An overview of geological concepts and reservoir engineering practices as they apply to the field of development (production) geology is presented. The author touches on nearly every aspect of the field in the 21 chapters of the book. He summarizes the basic depositional origin, sedimentary characteristics, and petrology of hydrocarbon-bearing rocks. He discusses physical properties, origin, and migration of subsurface oil and gas, oil field water, and their behavior, including subsurface pressures and fluid mechanics. Also covered are various methods of estimating reserves, the major tools of the trade and their limitations, and case histories.

  9. Introduction to Geology

    NSDL National Science Digital Library

    Jagoutz, Oliver

    If you are having difficulty remembering the details of the Earth's geological structure or the nature of major minerals and rock types, you can consult this excellent introductory course offered as part of MIT's OpenCourseWare initiative. The materials are drawn from Professors Perron and Jagoutz's 2011 "Introduction to Geology" course, and they include a number of lecture notes, available for download in PDF file format. The course is designed for undergraduates, though anyone can benefit from examining the materials. Visitors can make their way through lecture notes that cover metamorphic rocks, rock deformation, earthquakes, and the formation of continents.

  10. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  11. Characterizing the Groundwater-Surface Water Interactions in Different Subsurface Geologic Environments Using Geochemical and Isotopic Analyses

    E-print Network

    Long, Molly

    2014-12-31

    Shallow aquifers located near streams can be affected by groundwater contamination as a result of recharge from surface water; however, stream stage variation, subsurface geology, and seasonal changes can alter the magnitude of groundwater...

  12. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-print Network

    Harbor, David

    in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part of this task is developing a skill for thinking in 3-D shows the rocks that occur at the surface (or just below the soil) and is usually printed on top

  13. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A wide variety of topics on planetary geology are presented. Subjects include stratigraphy and geomorphology of Copernicus, the Mamers valle region, and other selected regions of Mars and the Moon. Crater density and distribution are discussed for Callisto and the lunar surface. Spectroscopic analysis is described for Europa and Ganymede.

  14. IDAHO FLUVIAL GEOLOGY

    EPA Science Inventory

    Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

  15. Geology by Lightplane

    NSDL National Science Digital Library

    Louis J. Maher

    This site is a collection of aerial images of US geological features. Detailed 2000-pixel-wide JPEG versions of these photos (averaging 1MB in size and suitable for video projection or for slides) can be down-loaded from an FTP site. There are also text captions for the photographs.

  16. Geologic evolution of Arizona

    Microsoft Academic Search

    J. P. Penny; S. J. Reynolds

    1989-01-01

    Seven years in the making, the 35 papers in this volume summarize the stratigraphic, structural, and tectonic evolution of Arizona from Precambrian through Quaternary time. Intended as a compendium of current knowledge of Arizona geology, the papers synthesize previous work with new data, ideas, and concepts as well as identifying unresolved problems for future research. Emphasis is placed on the

  17. Geological processes and evolution

    USGS Publications Warehouse

    Head, J.W.; Greeley, R.; Golombek, M.P.; Hartmann, W.K.; Hauber, E.; Jaumann, R.; Masson, P.; Neukum, G.; Nyquist, L.E.; Carr, M.H.

    2001-01-01

    Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

  18. Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    Included are a teacher's guidebook and two filmstrips, "Geology of Wisconsin," and associated materials. The following are described: outline of objectives; suggested use of the filmstrips and guidebook; outline of the filmstrip content; four pages of illustrations suitable for duplication; a test for each filmstrip; and a list of additional…

  19. Soviet geology, 1976

    Microsoft Academic Search

    V. A. Vakhrameyev

    1976-01-01

    The geological history of the Jurassic period shows that the most abrupt change in physiogeographical, and particularly in climatic, conditions occured not at its lower or upper limit but at the boundary between the middle and late epochs. This is shown especially clearly by a study of the lacustral and continental sediments which form such a significant feature of the

  20. Geological and Inorganic Materials.

    ERIC Educational Resources Information Center

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  1. Dinosaur Paleobiology Geology 331

    E-print Network

    Kammer, Thomas

    Dinosaur Paleobiology Geology 331 Paleontology #12;Dinosaurs are popular with the public #12;Jack Horner, Montana State Univ. #12;Field Work in Montana #12;A dinosaur "drumstick" in its field jacket. #12;Abundant vascular canals in dinosaur bone support the warm- blooded theory #12;Thin section of dinosaur

  2. Geological impacts on nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  3. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  4. Appendix E: Geology

    SciTech Connect

    Reidel, Steve; Chamness, Mickie A.

    2008-01-17

    This appendix provides a detailed description of geology under the Central Plateau of the Hanford Site, emphasizing the areas around tank farms. It is to be published by client CH2M HILL Hanford Group, Inc., as part of a larger, multi-contractor technical report.

  5. American Geological Institute Homepage

    NSDL National Science Digital Library

    This is the homepage of the American Geological Institute (AGI). Visitors can access information about geoscience education, public policy, environmental geoscience, careers in geoscience, publications, news articles, and events. Materials presented here include databases, curriculum materials, legislation and appropriations information, and an image bank.

  6. Geological Time Machine

    NSDL National Science Digital Library

    Allen Collins

    This University of California site provides an interactive geologic time scale to explore the history of the Earth. Beginning in the Precambrian Eon (4.6 million years ago) and ending today (Holocene Epoch), each Epoch, Period, Era, and Eon are covered. Information provided includes ancient life, dates, descriptions of major events, localities, tectonics, and stratigraphy. Links to additional resources are also available.

  7. Analysis of geological events

    Microsoft Academic Search

    K. L. Burns

    1975-01-01

    Geological events, such as emplacement of granite or growth of slaty cleavage, may be ordered into a sequence by two methods. One is to assign each event a place in a time scale, such as years before the present, which amounts to assigning events an age designation from the set of real numbers. In ordering such a list, the algebra

  8. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  9. Geology Fieldnotes: Noatak National Monument

    NSDL National Science Digital Library

    This feature discusses the geologic framework, history, tectonic setting, and soil and rock types of Northwest Alaska, as seen in the Noatak National Monument. Links are also provided to maps, visitor information, and to geological and conservation organizations.

  10. Geology of California. Second Edition

    SciTech Connect

    Norris, R.M.; Webb, R.W.

    1990-01-01

    Two introductory chapters familiarize readers with basic geologic concepts. The following chapters describe the geology of each of California's 11 geomorphic provinces; the San Andreas fault and offshore geology are discussed in two separate chapters. Four appendices acquaint readers with technical words and terms, common minerals and rocks in California, geologic time, and geologic theories that pertain to California. During the 1960s evidence collected from the east Pacific sea floor off the western coast of North America gave scientists supporting data for Alfred Wegener's 1910 theory of continental drift. In addition to the confirmation of continental drift, since the 1960s scientists have discovered paleomagnetism, sea-floor spreading, exotic and suspect terranes, and polar wandering. These important concepts have had far reaching effects about how we understand the geology of California and how this region has evolved through geologic time. Improved investigative procedures enable earth scientists to comprehend previously puzzling aspects of California's geology.

  11. Geology of the Colorado Plateau

    NSDL National Science Digital Library

    Colorado Plateau Field Institute

    This web page provides a general description of the geology of the Colorado Plateau. Topics include information about the various geologic environments and processes active during the Precambrian and the Paleozoic, Mesozoic and Cenozoic Eras.

  12. Geologic Map of the Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Gardner, J. N.; Reneau, S. L.; Kelley, S. A.; Kempter, K. A.; Lawrence, J. R.

    2011-12-01

    Valles caldera is famous as the type locality of large resurgent calderas (Smith and Bailey, 1968), the location of a classic 260-300 °C liquid-dominated geothermal system (Goff and Gardner, 1994), and the site of a long-lived late Pleistocene lake (Fawcett et al., 2011). We have published a detailed color geologic map of the Valles caldera and surrounding areas at 1:50,000 scale obtainable from New Mexico Bureau of Geology and Mineral Resources (geoinfo.nmt.edu/publications/maps/geologic/gm/79/). The new Valles map has been compiled from all or parts of nine 1:24,000 geologic maps completed between 2004 and 2008 (Bland, Cerro del Grant, Jarosa, Jemez Springs, Polvadera Peak, Redondo Peak, Seven Springs, Valle San Antonio, and Valle Toledo). Our map provides more detailed geology on the resurgent dome, caldera collapse breccias, post-caldera lava and tuff eruptions, intracaldera sedimentary and lacustrine deposits, and precaldera volcanic and sedimentary rocks than previous maps and incorporates recent stratigraphic revisions to the geology of the Jemez Mountains volcanic field. Three cross sections supported by surface geology, geophysical data and deep borehole logs (?4500 m) show an updated view of the caldera interior, depict a modern interpretation of caldera collapse and resurgence, and provide caldera-wide subsurface isotherms (?500 °C). A 30 page booklet included with the map contains extensive rock descriptions for 162 stratigraphic units and figures showing physiographic features, structural relations between Valles (1.25 Ma) and the earlier, comparably sized Toledo caldera (1.62 Ma), correlation charts of map units, and the distribution of pre- and post-caldera hydrothermal alteration styles, including recently documented zeolite-type alteration. Finally, the booklet includes a generalized model showing our interpretation of intracaldera structure and subjacent magma chambers, and relations of Valles to earlier Quaternary-Precambrian units.

  13. The Geological Society Web Shop

    NSDL National Science Digital Library

    The Geological Society has launched an on-line bookshop, through which both Fellows and non-Fellows of the Society can purchase Geological Society books. Visitors can select books listed under the following headings: Tectonics, Economic Geology, Environmental, Petrology, Stratigraphy, Marine Studies, and Geophysics. The Geological Society Web Shop can be browsed or searched by keyword. Information on opening an account and purchasing books is available at the site.

  14. Pattern Alteration: Lengthening & Shortening

    E-print Network

    2006-08-04

    , and E-373, Personal Measurement Chart, for basic alteration instructions. A garment needs lengthening if major fi tting points, such as the waist or hem line ride up evenly around the body or fall too short for comfort. You might also want... ................................................................................................................................................................................. Basic lengthening and shortening On the Personal Measurement Chart, determine the amount of alteration you need from line 7, shoulder to waist; line 13, skirt length; line 17, side length; and/or line 11-b, sleeve length. Do this alteration on front...

  15. Structural Geology: Deformation of Rocks

    E-print Network

    Kammer, Thomas

    . · Rocks deform when applied stress exceeds rock strength. Deformation may be ductile flow or brittleStructural Geology: Deformation of Rocks Geology 200 Geology for Environmental Scientists #12;Major of Maine #12;Chevron folds in brittle rocks. An example of angle parallel folding. #12;Angle parallel

  16. Geologic Map of New Jersey

    NSDL National Science Digital Library

    This map displays the sedimentary rocks of the Cenozoic, Mesozoic, and Paleozoic eras as well as the igneous and metamorphic rocks of the Mesozoic and Precambrian eras. There is a pagesize copy of the geologic map, a brief description of the geology and physiographic provinces of New Jersey, and information on bedrock geologic maps of New Jersey (in CD-ROM format).

  17. The Second Flowering of Geology.

    ERIC Educational Resources Information Center

    Cloud, Preston

    1983-01-01

    Discusses two "golden" ages in geological investigations/inquiry. The first, extending from the late eighteenth century through the early nineteenth century, established geology as a science based on naturalistic principles. The second, beginning after World War II, is characterized by advances in geological specialities and explanations based on…

  18. Ordering Geologic Events and Interpreting Geologic History: The Grand Canyon

    NSDL National Science Digital Library

    Jennifer Wenner

    This activity is designed to help students recognize the connections among things like rock identification and map reading with the "story" that these things can tell us in terms of geologic history. Students have already learned about using observation to identify rocks and the principles of interpreting geologic cross-sections. The activity gives students practice in rock ID, topo map reading, geologic map reading and the aspects of geologic time. Students work with rock samples and a geologic map of the Grand Canyon to interpret a history for the area.

  19. USGS National Geologic Map Database: State-wide Geologic Maps

    NSDL National Science Digital Library

    This search tool provides descriptions and availability information for geologic maps of the 50 States, the District of Columbia, and Puerto Rico. These geologic maps are published by a variety of organizations, including State geologic agencies, the U.S. Geological Survey (USGS), universities, and private companies. Title, date, scale, publisher, series (where applicable), and basic ordering information is provided for each map. A place name search and an advanced search using geologic themes, areas, publishers and other criteria allow for more specific queries to the database.

  20. Geologic Maps and Geologic Structures: A Texas Example

    NSDL National Science Digital Library

    Roger Steinberg

    This Historical Geology lab exercise is an accompaniment to lab class instruction about geologic structures (folding and faulting) and geologic maps. It also serves as an excellent introduction to the Geology of the state of Texas. "Coloring" geologic maps, an important part of the exercise, may seem like a very elementary learning technique. But this lab engages students actively, and since the subject is often already somewhat familiar to them, emphasizing both the geology and geography of Texas, students receive it enthusiastically. This activity could be adapted to other regions, since most states have color 8 1/2 by 11 geologic maps available. A color map could be scanned and modified in Photoshop to create a simplified black and white version as was done in the assignment handout.

  1. Geology of the Caribbean

    USGS Publications Warehouse

    Dillon, William P.; Edgar, N.T.; Scanlon, K.M.; Klitgord, Kim D.

    1987-01-01

    The Venezuelan and Colombian basins are located on the Caribbean Plate whilst the Yucatan basin is on the North American Plate. The processes occurring at the boundaries between the Caribbean Plate and the adjacent North American, South American and Cocos Plates, and the resulting surface features and patterns of volcanic and earthquake activity are described. Most of the Caribbean area is floored by atypical oceanic crust and its most valuable main geologic resources identified so far are petroleum, together with sand and gravel. Geological research is being carried out with techniques for broad-range swath imaging of the seafloor, such as GLORIA, and for directly measuring the movement between plates. -J.G.Harvey

  2. Algebra, Geology and Economics

    NSDL National Science Digital Library

    Dowse, Mary

    The American Mathematical Association of Two-Year Colleges (AMATYC) has compiled a collection of mathematics resources related to various subjects and disciplines. â??Math Across the Community College Curriculumâ? is the title of the collection, which includes great math resources and applications for educators and students alike. In this particular resource, concepts from algebra, geology and economics are intertwined to create two dynamic activities for students. The projects, created by Mary Dowse, Tom Gruszka, and George Muncrief of Western New Mexico University, include both general learning objectives and subject specific objectives for what students will learn through the completion of the activities. The first activity focuses on the mathematics of economics, and the second activity focuses on geology and graphing. These activities can be easily adapted for use in the classroom, and are also useful for students who are looking for extra practice with these concepts.

  3. Maryland Geological Survey

    NSDL National Science Digital Library

    The Maryland Geological Survey (MGS) provides excellent information about the geology of the Old Line State, along with public reports and updates on various ongoing projects. The homepage features live earthquake data and maps that deal with oyster habitat restoration projects, fact sheets, and new reports on lead concentrations in well water across the state. The Publications area contains dozens of maps (such as that of the "Maryland Gold District") and links to Popular Publications such as "Caves of Maryland" and "Baltimore Building Stones Tour." The Data section is also quite useful, offering a number of informative data sets on sediment distribution in the Chesapeake Bay and Baltimore Harbor. Finally, the Education area contains an "Ask a Geologist" link that's quite useful for getting answers to Earth-based queries.

  4. Geology of Britain Viewer

    NSDL National Science Digital Library

    If you've ever wanted to wander from John O'Groats to the Cotswolds without leaving your desk, this most wonderful website is for you. Created by the British Geological Survey, the Geology of Britain viewer helps interested parties learn more about the landforms in their backyards. After opening the viewer, visitors can click on an area of interest to look at everything from possible earthquake threats to rock layers to soil composition and more. Visitors should note that they can zoom in on the map and also use place names to refine their searches via the Go to Location button. Additionally, the basemap can be modified to show satellite photographs or various street maps as overlays. Finally, the site contains walking guides for several regions of Britain that might be helpful for those with a penchant for perambulation.

  5. The encyclopedia of applied geology

    SciTech Connect

    Finkl, C.W.

    1984-01-01

    This compendium of engineering geology data includes contributions by experts from many countries. Topics center around the field of engineering geology, with special focus on landscapes, earth materials, and the ''management'' of geological processes. How to use geology to serve man is given particular attention. More than 80 entries deal with hydrology, rock structure monitoring, soil mechanics, and engineering geology. Facts are provided on earth science information and sources, electrokinetics, forensic geology, geogryology, nuclear plant siting, photogrammetry, tunnels and tunneling, urban geomorphology, and well data systems. This guide explains the geology of alluvial plains, arid lands, beaches and coasts, delataic plains, cold regions, glacial landscapes, and urban environments. Detailed analyses are given of the geotechnical properties of caliche, clay, duricrust, soil, laterite, marine sediments, and rocks.

  6. Greater Yellowstone Geology

    NSDL National Science Digital Library

    Mountain Prairie Institute

    This site features a collection of papers and maps about the Yellowstone hotspot by Dr. Ken Pierce of the Northern Rocky Mountain Science Center, an expert in the field. Papers on this site address topics such as Yellowstone glaciation, tracking the hotspot, the Yellowstone plume head, and a seven-day field trip guide to the quaternary geology and ecology of the Greater Yellowstone Ecosystem. Each downloadable paper map is listed with a brief description and a full citation.

  7. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  8. Coastal Geological Processes

    NSDL National Science Digital Library

    Coastlines are places of continuous, often dramatic geological activity. They change daily and seasonally, but especially over long time periods. This interactive feature discusses the forces that help shape coastal landforms like cliffs and beaches. Topics include waves, tides, and currents; weathering, erosion, and deposition; and other factors, such as the activity of organisms and human modifications. A background essay and discussion questions are included.

  9. Comprehending Geologic Time

    NSDL National Science Digital Library

    You can use this calculator to create your own metaphor for geologic time. The history of the could be the the distance from your home to school - you can figure out where dinosaurs would be on the trip. Or the history of time could be the length of a class - and you could figure how much of the class you have to sit through before intelligence appears.

  10. Geology - Plate Tectonics

    NSDL National Science Digital Library

    Visitors to this site can learn about the theory of plate tectonics, the history of its development, and the mechanisms that drive the formation, movement, and destruction of continents and tectonic plates. A selection of animations depicts the movements of crustal plates and continents through time. Each animation is accompanied by an interactive time scale that provides links to descriptions of the geology and paleontology of the selected era or period.

  11. Geologic Cross Sections

    NSDL National Science Digital Library

    Sharon Browning

    For this project, students must select a several hundred kilometer long section of Earth's surface, ideally crossing one or more major plate boundaries and research all major tectonic events to construct a cross section. Students should also take into account other factors like age of the ocean floor, average elevation and gravity anomalies across their area. The purpose is to demonstrate the geologic/tectonic history of their cross section and present it in a clear, concise summary.

  12. The Geology of Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  13. Integrating geology and perforating

    SciTech Connect

    Araujo, P.F. de [Petrobras, Rio de Janeiro (Brazil); Souza Padilha, S.T.C. de [Schlumberger Wireline and Testing, Rio de Janeiro (Brazil)

    1997-02-01

    Perforating is a very common well completion operation. Usually, it is considered to be as simple as making holes in casing. Actually, perforating is one of the most critical tasks for establishing a path from reservoir rock to borehole form which hydrocarbons can flow to surface. The objective of this article is to relate perforating technology with geological aspects and completion type to determine the best shooting equipment (gun type, charge and differential pressure) to perform the most efficient perforating job. Several subjects related to formation geology are taken into account for a shooting job, such as: compressive strength, reservoir pressure and thickness, lithology type, porosity and permeability, ratio between horizontal and vertical permeabilities, and fluid type. Gun geometry used in the oil industry incorporates several parameters, including shot density, hole entrance diameter, gun phase and jet penetration. API tests are done on perforating guns to define applicability and performance. A new geometrical parameter is defined as the relative angle of the jet, which is the angle between the jet tunnel and formation dip. GEOCAN is a methodology which relates geology to gun geometry and type to define the most efficient gun system for perforated completions. It uses the intelligent perforating technique with the SPAN (Schlumberger Perforating Analysis) program to confirm optimum gun choice.

  14. Mapping hydrothermal alteration in Yellowstone National Park using magnetic methods

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2010-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Hydrothermal alteration in YNP has been mapped with field observations and remote-sensing imagery, but these methods can only detect alteration at the ground surface. Magnetic surveys are useful for detecting buried hydrothermal alteration as demonstrated by a recent high-resolution aeromagnetic survey in YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity, suggesting large volumes of demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although results of this aeromagnetic survey were of relatively high resolution, they were insufficient for more detailed mapping of alteration. In September 2008, we collected ground magnetic profiles in four hydrothermal areas within YNP (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser, and Smoke Jumper Hot-springs). These measurements were performed using a cesium-vapor magnetometer along several 4-5 km long transects crossing hydrothermal features. In addition, we collected gravity data to characterize the subsurface geologic structures. We also performed magnetic susceptibility, magnetic remanence and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. Ground magnetic profiles acquired over unaltered areas display large-amplitude short-wavelength anomalies due to the existence of many shallow contrasts of magnetization in the volcanic substratum. In contrast, the short-wavelength anomaly signal is of very low amplitude in altered areas supporting demagnetization of the shallow volcanic basement. These new geophysical and physical property data are being used to map the distribution of rock density and magnetic properties, model the subsurface geometry of altered areas and investigate the relationship of these areas with structures such as contacts, faults, and fractures that may facilitate the circulation of hydrothermal fluids.

  15. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  16. THE ROLE OF LITHOLOGY AND ALTERATION ON PERMEABILITY AND FLUID FLOW IN THE YELLOWSTONE GEOTHERMAL SYSTEM, WYOMING

    Microsoft Academic Search

    Patrick Dobson; Jeffrey Hulen; Timothy J. Kneafsey; Ardyth Simmons

    Cores from two of the 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Matrix permeability measurements and petrographic examination of the core were used to evaluate the effects of lithology and hydrothermal alteration on permeability. The intervals studied

  17. geology.com

    NSDL National Science Digital Library

    2006-01-01

    This clearinghouse features an extensive selection of maps, imagery, news articles, and other Earth science resources. Highlights include an interactive map of meteor impact structures, an interactive map showing the highest points in the 50 states, and a state-by-state directory of imagery, maps, and links to geological information. There are also listings for imagery for U.S. cities and the continents, a map of the most dangerous volcanoes in the U.S., a mineral identification chart, and information on stream discharge monitoring.

  18. Geologic Mapping of Vesta

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  19. Geologic mapping of Vesta

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

  20. Geological Survey of Tanzania

    NSDL National Science Digital Library

    The United Republic of Tanzania was formed in 1964 by the merger of Tanganyika and Zanzibar and is located on the eastern coast of Africa between the Great Lakes of the Rift Valley. Tanzania has a diverse mineral resource base that includes gold and base metals, diamond-bearing kimberlites, nickel, cobalt, copper, coal resources, and a variety of industrial minerals and rocks such as kaolin, graphite, and dimension stone. This web site was created by the Mineral Resources Department (MRD), a subsidiary of the Ministry of Energy and Minerals, and contains basic information about the country's logistical environment, mineral sector policy, geological database, and more.

  1. Geological considerations for lunar telescopes

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1988-01-01

    The geological features of the Moon that may be advantageous for astronomical observations are listed and described. The Moon's geologic environment offers wondrous opportunities for astronomy and presents fascinating challenges for engineers designing telescope facilities on the lunar surface. The geologic nature of the stark lunar surface and the Moon's tenuous atmosphere are summarized. The Moon as a stable platform is described as is its atmosphere, surface temperatures, its magnetic field, its regolith, and its crater morphologies.

  2. Geology of Mojave National Preserve

    NSDL National Science Digital Library

    This website of the United States Geological Survey (USGS) and the National Park Service (NPS) highlights the geology of the Mojave National Preserve in California. It includes a field trip describing areas of interest at the preserve, as well as a geologic time scale describing the history and development of this area. Processes that shaped this region include volcanism, tectonics, faulting, erosion, deposition, spreading, intrusions, and glaciation. There is a geologic map of the area with units and a legend, and links to maps and technical papers.

  3. Oncogenic alterations of metabolism

    Microsoft Academic Search

    Chi V. Dang; Gregg L. Semenza

    1999-01-01

    Over seven decades ago, classical biochemical studies showed that tumors have altered metabolic profiles and display high rates of glucose uptake and glycolysis. Although these metabolic changes are not the fundamental defects that cause cancer, they might confer a common advantage on many different types of cancers, which allows the cells to survive and invade. Recent molecular studies have revealed

  4. Petroleum geology of Tunisia

    SciTech Connect

    Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))

    1990-05-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

  5. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  6. Geology of the Spirit landing site in Gusev crater

    NASA Astrophysics Data System (ADS)

    Golombek, M.; Athena Science Team

    Spirit, the first Mars Exploration Rover, successfully landed in a low albedo portion of Gusev crater at 14.5692S, 175.4729E. The landing site is a generally low relief somewhat rocky plain dominated by shallow circular depressions and low ridges. Hills ˜ 2 km to the east are over 100 m high and the rim of a 200 m diameter crater form the horizon 240 m to the northeast. The shallow circular depressions generally have rocky rims and smooth soil filled centers and may be secondary impact craters. The red soils appear to be cemented fines and sand (coarse and fine) and granules have been sorted into aeolian bedforms (many appear to be ripples with coarser granules at their crests). The albedo of the landing site is ˜ 0.19 likely due to the removal of bright, fine grained dust via dust devils. Preliminary rock counts suggest ˜ 5% of the surface is covered by rocks (varies by a factor of two in the scene), which is substantially less than at any of the three previous landing sites, although the size-frequency distribution follows a similar exponential. Boulder and cobbles are rare; the largest rock within 10 m of the lander is only ˜ 0.3 m diameter and there are substantially more pebbles <0.04 m diameter. Most of these characteristics (a safe and trafficable surface generally similar in reddish color to the three previous landing sites albeit with substantially fewer rocks) were correctly predicted from remote sensing data and models during landing site selection. Most rocks appear angular and many appear fractured and/or fragmented, consistent with impact ejecta, although more rounded rocks may also be present. Many small rocks appear embedded and cemented in the soil, suggestive of a crusted gravel armor or lag. The redder patination along the base of some rocks may be a former soil horizon and argues for net deflation at the site. A vast majority of the rocks appear dark, fine grained, and pitted. Many appear to be ventifacts, with flutes and grooves formed by impacting sand in saltation. Most rocks appear coated with dust and some lighter toned (``white'') rocks may have a thick rind of dust or soil. The chemistry and mineralogy of the rocks described elsewhere (and the pits as vesicles) appear to be consistent with olivine basalts and the soil appears similar to soil elsewhere on Mars. No clear evidence of fluvial or lacustrine activity has been identified and observations made during the first 6 weeks by Spirit argue the surface is dominated by impact and eolian processes. At the time of writing (sol 50), the rover is traversing northeast to a 200 m diameter crater to sample the ejecta and inspect interior deposits and wall rocks for a better understanding of the geologic history.

  7. Geological assessing of urban environments with a systematic mapping survey: The 1:5000 urban geological map of Catalonia

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pi, Roser; Cirés, Jordi; de Paz, Ana; Berástegui, Xavier

    2010-05-01

    The ground features of urban areas and the geologic processes that operate on them are, in general, strongly altered from their natural original condition as a result of anthropogenic activities. Assessing the stability of the ground, the flooding areas, and, the health risk as a consequence of soil pollution, are, among others, fundamental topics of urban areas that require a better understanding. The development of systematic urban geological mapping projects provides valuable resources to address these issues. Since 2007, the Institut Geologic de Catalunya (IGC) runs an urban geological mapping project, to provide accurate geologic information of county capitals and towns of more than 10000 inhabitants of Catalonia. The urban zones of 131 towns will be surveyed for this project, totalizing an area of about 2200 km2 to be mapped in 15 years. According to the 2008 census, the 82 % of the population of Catalonia (7.242.458 inhabitants) lives in the areas to be mapped in this project. The mapping project integrates in a GIS environment the following subjects: - Data from pre-existing geotechnical reports, historical geological and topographical maps and, from historical aerial photographs. - Data from available borehole databases. - Geological characterization of outcrops inside the urban network and neighbouring areas. - Geological, chemical and physical characterisation of representative rocks, sediments and soils. - Ortophotographs (0.5 m pixel size) and digital elevation models (5 meter grid size) made from historical aerial photographs, to depict land use changes, artificial deposits and geomorphological elements that are either hidden or destroyed by urban sprawl. - Detailed geological mapping of quaternary sediments, subsurface bedrock and artificial deposits. - Data from subsurface prospection in areas with insufficient or confuse data. - 3D modelling of the main geological surfaces such as the top of the pre-quaternary basement. All the gathered data is harmonised and stored it in a database. The analysis of the database allows to compile and print the 1:5000 scale urban geological map according to the 1:5000 topographic grid of Catalonia. The map is composed by a principal map, geologic cross sections and several complementary maps, charts and tables. Regardless of the geological map units, the principal map also includes the main artificial deposits (such as infilled river valleys and road embankments), very recent or current superficial deposits, contours of outcropping areas, structural data and other relevant information gathered in stations, sampling points, boreholes indicating the thickness of artificial deposits and the depth of the pre-quaternary basement, contour lines of the top of the pre-quaternary basement surface and, water level data. The complementary maps and charts may change depending on the gathered data, the geological features of the area and the urban typology. However, the most representative complementary maps that includes the printed urban map are the quaternary subsurface bedrock map and the isopach map of thickness of quaternary and anthropogenic deposits. The map also includes charts and tables of relevant physical and chemical parameters of the geological materials, harmonised downhole lithological columns from selected boreholes, and, photographs and figures illustrating the geology of the mapped area and how urbanisation has changed the natural environment. The object of this systematic urban mapping survey is to provide a robust database to be used in targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal in the future.

  8. National Cooperative Geologic Mapping Program

    NSDL National Science Digital Library

    2012-06-13

    The National Cooperative Geologic Mapping Program (NCGMP) is "the primary source of funds for the production of geologic maps in the United States." The NCGMP was created by the National Geologic Mapping Act of 1992 and its work includes producing surficial and bedrock geologic map coverage for the entire country. The program has partnered with a range of educational institutions, and this site provides access to many of the fruits of this partnership, along with educational materials. The place to start here is the What's a Geologic Map? area. Here visitors can read a helpful article on this subject, authored by David R. Soller of the U.S. Geological Survey. Moving on, visitors can click on the National Geologic Map Database link. The database contains over 88,000 maps, along with a lexicon of geologic names, and material on the NCGMP's upcoming mapping initiatives. Those persons with an interest in the organization of the NCGMP should look at the Program Components area. Finally, the Products-Standards area contains basic information on the technical standards and expectations for the mapping work.

  9. Pennsylvania's contribution to petroleum geology

    Microsoft Academic Search

    Dickey

    1989-01-01

    John F. Carll of the Second Geological Survey of Pennsylvania laid the foundations of both petroleum geology and reservoir engineering. J. P. Lesley, director of the Second Survey, had introduced structure contours when he was working in the anthracite fields. He pointed out that the great oil fields of Pennsylvania were in the only part of the state where there

  10. Geologic History of Western US

    NSDL National Science Digital Library

    Ronald Blakey

    This web-site is a presentation showing graphically the Proterozoic and Phanerozoic geologic history of the Southwestern United States. There is a text file providing a brief narrative of the geologic history, which links to map graphics for each period. The graphics contain a scale and have labeled features to better understand what is happening as time progresses.

  11. GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING

    E-print Network

    Geological Engineering Soils and Weak Rocks 3 2 CIVL 408 Geo-Environmental Engineering 3 2 CIVL 410GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING 2013-2014 Prior to registering for courses, students-thesis) students registered in Geo. Eng. Constrained Elective Credits (9) Note: Consult with Grad Supervisor

  12. Photomicrography in the Geological Sciences.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes the conversion of a standard biological brightfield microscope for examination of thin sections and characterize, in detail, the use of both black and white and color photomicrography in the geological sciences. Several illustrative examples on the use of transmitted and reflected polarized-light microscopy to solve geological problems…

  13. The Geophysical Revolution in Geology.

    ERIC Educational Resources Information Center

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  14. Pattern Alteration: Hollow Chest 

    E-print Network

    2006-08-04

    - tern at the same point. You can correct hollow chest problems in clothing with c alterations. Figure 1. Hollow chest Figure 2. Pin excess amount 2... the pat- tern and perpendicular to the center front or to the lengthwise grainline. 3. Draw a vertical line from the shoulder cutting line (about 1 inch or 2.5 cm from the armhole). The line will run to the horizontal line parallel to the length- wise...

  15. Remote sensing aids geologic mapping.

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1973-01-01

    Remote sensing techniques have been applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is to be used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area. Regional and local geologic mapping can be aided by the proper application of remote sensing techniques. Conventional color and color infrared photos contain a large amount of easily-extractable general geologic information and are easily used by geologists untrained in the field of remote sensing. Other kinds of sensor data used in this study, with the exception of SLAR imagery, were generally found to be impractical or unappropriate for broad-scale general geologic mapping.

  16. Essentials of Geology

    NSDL National Science Digital Library

    Marshak, Stephen

    From subduction to the world of hot spot volcanoes, this online resource for students and teachers of geology will please users with its fun and useful animations, crossword puzzles, and well-written articles. The site was designed to complement a textbook created by W.W. Norton, but many of the materials can be used as stand-alone exercises. Visitors will want to begin by looking through the visually enticing animations, which cover the Earth's magnetic field, the spread of the sea floor, and the formation of ocean crust. All told, there are over sixty animations, and teachers may wish to recommend them to students. Additionally, visitors should note that they can also browse through the materials offered on the site by clicking on the chapter listings located near the top of the screen. It's hard to pass up a crossword puzzle, and visitors may find themselves spending more time there than at any other part of the site.

  17. Geology of National Parks

    NSDL National Science Digital Library

    Have you ever wondered what it would be like to take a historic tour of the Colorado River Canyon? Wonder no more, as this site from the U.S. Geological Survey makes just such a sojourn possible. Drawing on thousands of historic and contemporary photographs, views, documents, and other items, the USGS has created these fine 3D and photographic tours of dozens of national parks. On the site, visitors will find an alphabetical list of the parks, along with links to the 3D image galleries, standard image galleries, and selected online field guides. There's a great deal to recommend here, but visitors should definitely look at the stereograph images from the Powell Survey Expeditions of the Colorado River from 1871 and 1872 (in the "Other park-related resources" section) and the guidebook titled "Where's the San Andreas Fault?" Along with providing entertaining edification, this site might also spark some ideas for an upcoming trip.

  18. Geological consequences of superplumes

    SciTech Connect

    Larson, R.L. (Univ. of Rhode Island, Narragansett (United States))

    1991-10-01

    Superplumes are suggested to have caused the period of constant normal magnetic polarity in mid-Cretaceous time (124-83 Ma) and, possibly, the period of constant reversed polarity in Pennsylvania-Permian time (323-248 Ma). These times coincide with increases in world temperature, deposition of black shales, oil generation, and eustatic sea level in the mid-Cretaceous, and increased coal generation and gas accumulation in the Pennsylvanian-Permian, accompanied by an intracratonic Pennsylvanian transgression of epicontinental seas. These geologic anomalies are associated with episodes of increased world-wide ocean-crust production and mantle outgassing, especially of carbon and nutrients. These superplumes originated just above the core-mantle boundary, significantly increased convection in the outer core, and stopped the magnetic field reversal process for 41 m.y. in the Cretaceous and 75 m.y. in Pennsylvanian-Permian time.

  19. Geology of Brunei deltas, exploration status updated

    SciTech Connect

    Schreurs, J. [Brunei Shell Petroleum Co.Sdn. Bhd., Seria (Brunei Darussalam)

    1997-08-04

    This article summarizes the petroleum geology of Negara Brunei Darussalam, the smallest but oil and gas richest country in Northwest Borneo. The paper describes the exploration history, Brunei geology, structural geology, main hydrocarbon reservoirs, seals, formation pressures, and current exploration.

  20. Geology Fieldnotes: Grand Canyon National Park, Arizona

    NSDL National Science Digital Library

    Visitors can access park geology information, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Grand Canyon's geologic history, structural geology, and features a question-and-answer section about the canyon. The history of the canyon as a park and environmental issues surrounding it are also discussed. A geologic cross section of the canyon showing the various rock layers is included.

  1. Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of Landsat digital data. [mapping of hydrothermally altered volcanic rocks

    NASA Technical Reports Server (NTRS)

    Ballew, G.

    1977-01-01

    The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.

  2. Geology of the Jabal Riah area, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Wells, J.D.

    1982-01-01

    The Jabal Riah area is in the southern part of the Jibal al Hamdah quadrangle (lat 19?00'00'' to 19?07'S0'' N., long 45?37'30'' to 43?45'00' E.) in the southeastern Precambrian Shield, Asir Province, Kingdom of Saudi Arabia. The Jabal Mahanid group of ancient gold mines, which is part of the Jabal Ishmas-Wadi Tathlith gold belt, is in the west-central part of the area. Rocks in the Jabal Riah area consist of Precambrian layered metasedimentary and metavolcanic rocks intruded by Precambrian igneous rocks. The metamorphic rocks are, from oldest to youngest, interlayered hornblende and biotite schist, quartz-biotite schist, hornblende schist, serpentinite, and chlorite schist. The igneous rocks are, from oldest to youngest, diorite-gabbro including dikes, granodiorite, monzogranite-granodiorite, leucocratic quartz porphyry, rhyolite, and aplite and pegmatite dikes. A large area of jasper replaces serpentinite. On the valley floors, recent alluvium and pediment deposits overlie the bedrock. The structure of the area is dominated by a dome centered over the eastern border of the area; leucocratic quartz porphyry forms the core of the dome. Minor folds and faults are present. The Jabal Mahanid group of ancient gold mines is on a northwest-trending vein system, and major ancient mine areas are found where the system splits or changes direction. The veins consist of zones of brecciated and crushed rock, which are generally less than 0.5 m wide but may be as wide as 1 m. These zones contain quartz and calcite stringers and commonly are along hornblende schist-serpentinite contacts; however, they also cut both units. Most aplite, pegmatite, and quartz dikes in the area are thin and discontinuous and are intruded along the vein trend. Similar veins, at the same stratigraphic interval, have been found beyond the northeastern part of the map area. The veins contain detectable gold and silver (median gold, approximately 0.14 ppm; median silver, approximately 1 ppm). Gold and silver are most abundant in calcium-rich rocks and veins; silver was not detected in igneous rocks. Altered wall-rock zones are mineralized as much as 10 m away from the veins. Away from the Jabal Mahanid vein-system, silver was detected in the jasper. Gold and silver were detected in minor brecciated and sheared structures and in metasedimentary rocks. Gold was detected in sericitized margins of the leucocratic quartz porphyry, in unaltered rhyolite, and in aplite dikes. The presence of unusual amounts of gold and silver over a wide area is indicated by the ancient gold mines along veins at or near the hornblende schist-serpentinite contact in the map area and to the south in the Hajrah-Hamdah area and by the widespread evidence of precious metals in igneous rocks and other vein structures. A domed-shaped area, approximately 30 km in diameter, is outlined by the hornblende schist-serpentinite contact and has leucocratic quartz prophyry in the middle. Additional study of this area might reveal economic concentrations of gold and silver.

  3. Geology of Earth's Moon

    NSDL National Science Digital Library

    First, researchers at the University of California, San Diego discuss the importance of studying earthquakes on the moon, also known as moonquakes, and the Apollo Lunar Seismic Experiment (1). Users can discover the problems scientists must deal with when collecting the moon's seismic data. The students at Case Western Reserve University created the second website to address three missions the Institute of Space and Astronautical Science (ISAS) has planned between now and 2010, including a mission to the moon (2). Visitors can learn about the Lunar-A probe that will be used to photograph the surface of the moon, "monitor moonquakes, measure temperature, and study the internal structure." Next, the Planetary Data Service (PDS) at the USGS offers users four datasets that they can use to create an image of a chosen area of the moon (3). Each dataset can be viewed as a basic clickable map; a clickable map where users can specify size, resolution, and projection; or an advanced version where visitors can select areas by center latitude and longitude. The fourth site, produced by Robert Wickman at the University of North Dakota, presents a map of the volcanoes on the moon and compares their characteristics with those on earth (4). Students can learn how the gravitational forces on the Moon affect the lava flows. Next, Professor Jeff Ryan at the University of South Florida at Tampa supplies fantastic images and descriptive text of the lunar rocks obtained by the Apollo missions (5). Visitors can find links to images of meteorites, terrestrial rocks, and Apollo landings as well. At the Science Channel website, students and educators can find a video clip discussing the geologic studies on the moon along with videos about planets (6). Users can learn about how studying moon rocks help scientists better understand the formation of the earth. Next, the Smithsonian National Air and Space Museum presents its research of "lunar topography, cratering and impacts basins, tectonics, lava flows, and regolith properties" (7). Visitors can find summaries of the characteristics of the moon and the main findings since the 1950s. Lastly, the USGS Astrogeology Research Program provides archived lunar images and data collected between 1965 and 1992 by Apollo, Lunar Orbiter, Galileo, and Zond 8 missions (8). While the data is a little old, students and educators can still find valuable materials about the moon's topography, chemical composition, and geology.

  4. Altered States of Consciousness

    PubMed Central

    Butts, June Dobbs

    1978-01-01

    Medicine, sex, and religion are presented as related areas of human thought and behavior in which people traditionally have sought temporary release from daily living. In essence, these areas represent a search for altered states of consciousness. The harmful way is through drug addiction. Five common characteristics are cited for the three areas. Examples of their universality are traceable by their omnipresence and their appearance in most childhood games—especially those taking on sexual nuances—which are usually hidden from adults. If Eastern knowledge and control of bodily processes were geared to Western technology, mankind would benefit. PMID:712866

  5. Geol 102 Historical Geology The Geologic Timescale 2012

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2012 EON ERA PERIOD (Special Units) EPOCH Range.332 Oligocene 33.9 - 23.03 Eocene 56.0 - 33.9 Paleocene 66.0 - 56.0 Cretaceous 145.0 - 66.0 Jurassic 201.3 - 145.0 Triassic 252.2 - 201.3 Permian 298.9 - 252.2 Pennsylvanian Sub-period 323.2 - 298.9 Mississippian Sub-period

  6. Geol 102 Historical Geology The Geologic Timescale 2009

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2009 EON ERA PERIOD (Special Units) EPOCH Range.5 - 55.8 Mesozoic Cretaceous 145.5 - 65.5 Jurassic 199.6 - 145.5 Triassic 251.0 - 199.6 Paleozoic Permian 299.0 - 251.0 Carboniferous Pennsylvanian Sub-period 318.1 - 299.0 Mississippian Sub-period 359

  7. Geol 102 Historical Geology The Geologic Timescale 2011

    E-print Network

    Holtz Jr., Thomas R.

    Geol 102 Historical Geology The Geologic Timescale 2011 EON ERA PERIOD (Special Units) EPOCH Range 65.5 - 55.8 Mesozoic Cretaceous 145.5 - 65.5 Jurassic 201.5 - 145.5 Triassic 252.3 - 201.5 Paleozoic Permian 299.0 - 252.3 Carboniferous Pennsylvanian Sub-period 318.1 - 299.0 Mississippian Sub-period 359

  8. Geologic evolution of Trail Ridge eolian heavy-mineral sand and underlying peat, northern Florida

    SciTech Connect

    Force, E.R.; Rich, F.J.

    1989-01-01

    Trail Ridge ilmenite-ore sand is eolian in origin. Underlying freshwater-swamp peats are the same age, and sand impurities in peat record the approach of the dune. The original alteration state of detrital heavy minerals is preserved in the peat also. This book discusses the geologic evolution of Trail Ridge eolian heavy-mineral sand and underlying peat.

  9. Coordinated CRISM and Opportunity Observations to Characterize the Mineralogy and Geologic History of Meridiani Planum Outcrops

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2011-12-01

    The Opportunity Mars Exploration Rover has traversed over 30 km across Meridiani Planum since January 2004, acquiring numerous remote sensing and in-situ measurements of rocks and soils at dozens of locations. Over the past year Mars Reconnaissance Orbiter CRISM (0.362 to 3.92 micrometer imaging spectrometer) observations have been used to directly support planning of Opportunity traverses and locations for detailed remote sensing and in-situ measurements. As part of these coordinated observations CRISM's gimbaled optics have been used to spatially oversample acquisition of image data in the along-track direction (ATO or along track oversampled observations). This new acquisition mode allows sharpening the spatial detail from the normal ~18 m/pixel observations to values as small as ~6 m/pixel, with due formal consideration of the decrease in S/N with decreasing pixel sizes for retrieval of the 544 band spectra for each pixel. CRISM ATO observations show that mono-hydrated sulfates, most likely kieserite, outcrop on the walls of Victoria crater and the southeastern rim of Santa Maria crater. Unfortunately, the Victoria identifications are on the opposite side of the crater relative to where Opportunity made measurements of Victoria wall rocks. On the other hand, Opportunity was directed to Santa Maria's southeastern rim based on CRISM spectral reflectance data, spending the last solar conjunction period acquiring long-duration in-situ measurements of outcrop that likely carries the mono-hydrated sulfate signature. Additional ATO data collected over the relatively fresh, 2.3 km wide Ada crater located in southeastern Meridiani Planum show a similar mono-hydrated sulfate signature, implying that these deposits are widespread. Further, ATO observations allow detailed mapping of extensive hydrated sulfates in Botany Bay immediately to the south of Cape York, a rim segment of the largely buried, Noachian age Endeavour crater. Opportunity will cross these hydrated bedrock exposures on the way to Cape York outcrops. We will report on results from Opportunity's measurements on Victoria, Santa Maria, and Ada craters, together with measurements within Botany Bay, focusing on the synergistic use of Opportunity and CRISM observations to understand the mineralogy and geologic history of Meridiani Planum.

  10. Coyote Creek Geologic Map

    NSDL National Science Digital Library

    Timothy R. Walsh

    Students are required to make field observations, collect data and then create a detailed geologic map and report for a small area (approximately 1 sq. mile) on the edge of the Tularosa Basin in south central New Mexico. The study area is located within the Tularosa NE quadrangle, but maps from the Cat Mountain quadrangle to the East are also useful. Gently dipping carbonate and siliciclastic beds, igneous intrusions, bioherms and a normal fault are present in the study area along Coyote Creek, a few miles north of Tularosa, NM. The creek generally runs parallel to dip, allowing relatively easy access to inclined strata. Bioherm(s) are present in the lower section. Several dikes are present running both parallel and perpendicular to sedimentary bed strike. One is very non-resistant to weathering, creating unusual troughs as it passes through the carbonate bioherms. A sill is present in the upper section and a N/S trending normal fault roughly parallels strike of sedimentary beds.

  11. Petroleum geology of Kuwait

    SciTech Connect

    Youash, Y.

    1988-01-01

    The extremely large oil reserves in Kuwait result from the presence of all conditions necessary for hydrocarbon generation, migration, entrapment, and preservation, which can be ascribed to an exceptionally large trap volume in a simple geological setting and a late expulsion and migration from a huge area of thermally mature source rocks. The Lower and middle Cretaceous sequence of Kuwait is among the world's richest hydrocarbon habitats. The depositional history is dominated by sedimentation on a very stable broad platform characterized by quiescence as reflected by a continuous deposition in a slowly subsiding sea bottom. The reservoirs are composed of thick sandstone of the Wara, Burgan, and Zubar formations. In addition to these, Mauddud Limestone forms a good reservoir in the northern fields and, in the south, the oolitic limestone of the Lower Cretaceous in Greater Burgan, Umm Gudair, and Minagish fields contains substantial hydrocarbon deposits. The sandstone reservoirs are the world's largest over 1,500 ft (450 m) in thickness of perfect reservoir quality and composed of well-sorted, medium to coarse-grained sands that were deposited in a littoral or on the edge of a deltaic and coastal environment. The source rocks are mostly likely the same reservoir rocks, particularly with downdip more shaly development of widespread thermally mature organic rich facies juxataposed with a carbonate-sandstone shelf.

  12. Uranium geology of Bulgaria

    SciTech Connect

    Not Available

    1993-02-01

    Three major uranium districts containing several deposits, plus 32 additional deposits, have been identified in Bulgaria, all of which are detailed geologically in this article. Most of the deposits are located in the West Balkan mountains, the western Rhodope mountains, and the Thracian Basin. A few deposits occur in the East Balkan, eastern Rhodope and Sredna Gora mountains. The types of deposits are sandstone, vein, volcanic, and surficial. Sandstone deposits are hosted in Permian and Tertiary sediments. In early 1992, fifteen deposits were being exploited, of which roughly 70 percent of the uranium produced was being recovered using in-situ leaching (ISL) methods. The remainder was being recovered by conventional underground mining, except for one small deposit that utilized open-pit methods. Fifteen other Bulgarian deposits had been exhausted, while five deposits were still in the exploration stage. Uranium production began in Bulgaria in 1946, and cumulative production through 1991 exceeded 100 million pounds equivalent U3O8. Current annual production is on the order of one million pounds equivalent U3O8, about 750 thousand pounds of which are recovered by ISL operations.

  13. GeologicBoulderMap Writtenandeditedby

    E-print Network

    Patterson, William P.

    has a composition closer to a granodiorite than a granite. Similarly, the granite used for the stairs at the entrance to the Thorvaldson Building is also granodioritic in composition. Glossary of Geological Terms

  14. Terrestrial and Lunar Geological Terminology

    NASA Technical Reports Server (NTRS)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  15. Tethys geology and tectonics revisited

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1991-01-01

    Tethys, a medium sized icy satellite of Saturn, was imaged by both Voyager 1 and 2 spacecraft at sufficiently high resolution to allow some geologic analysis. One fairly complete and several brief descriptions of Tethys' geology have been given. Partial results are given herein of a new analysis of Tethys' geology done as part of a comparative tectonic and cryovolcanic study of the saturnian satellites. A new geologic sketch map of Tethys' north polar area is given. This map is based on a sequence of images transformed to a polar stereographic projection at the same scale. The images present the same area under different illuminations, each of which brings out different features. A new global map is in progress.

  16. GEOLOGY, August 2009 715 INTRODUCTION

    E-print Network

    Poulsen, Chris J.

    GEOLOGY, August 2009 715 INTRODUCTION The late Paleozoic ice age was Earth's most extensive continentality, and reduced greenhouse gases primed the late Paleozoic paleoenvironment for glaciation. The ice that late Paleozoic depositional environments were largely controlled by glacioeustasy (Crowell, 1978

  17. Geology in Our Everyday Lives.

    ERIC Educational Resources Information Center

    Mirsky, Arthur

    1989-01-01

    Discusses methods to help the public recognize the geologic aspect of societal problems. Suggests using methods that will arouse immediate interest and demonstrate relevance in direct and personal ways. (MVL)

  18. A primer in lunar geology

    NASA Technical Reports Server (NTRS)

    Greeley, R. (editor); Schultz, P. H. (editor)

    1974-01-01

    Primary topics in lunar geology range from the evolution of the solar system to lunar photointerpretation, impact crater formation, and sampling to analyses on various Apollo lunar landing site geomorphologies.

  19. Physical Geology on the Fringe

    NSDL National Science Digital Library

    Dr. Robert C. Thomas, The University of Montana Western Summary This 3-week field trip includes a 5-day field excursion that explores the geology and cultural history of the Khumbu region of Nepal, the famous ...

  20. JiTT - Geologic Dating

    NSDL National Science Digital Library

    Laura Guertin

    1) How are zircons formed? 2) Which of the following statements describes relative geologic dating? a) the Triceratops and Tyrannosaurus rex went extinct at the same time b) dinosaurs came later than horseshoe ...

  1. Internet Community for Geological Engineers

    NSDL National Science Digital Library

    A site containing multiple resources for geological engineers. Contains current news headlines in oil, energy, and mining; information on borehole breakouts, hydraulic fracturing, core discing, pressurized slot testing, nuclear high level waste disposal, and water infrastructure security.

  2. Perspectives in geology. Circular 525

    SciTech Connect

    Not Available

    1982-01-01

    The papers in this symposium present diverse perspectives in geology, mineral resources, paleontology, and environmental concerns. Papers within the scope of EDB have been entered individually into the data base. (ACR)

  3. Central American geologic map project

    SciTech Connect

    Dengo, G.

    1986-07-01

    During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

  4. Remote sensing aids geologic mapping

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr.; Marrs, R. W.

    1972-01-01

    Remote sensing techniques were applied to general geologic mapping along the Rio Grande rift zone in central Colorado. A geologic map of about 1,100 square miles was prepared utilizing (1) prior published and unpublished maps, (2) detailed and reconnaissance field maps made for this study, and (3) remote sensor data interpretations. The map is used for interpretation of the complex Cenozoic tectonic and geomorphic histories of the area.

  5. Q&A: Geological historian

    NASA Astrophysics Data System (ADS)

    Witze, Alexandra

    2015-04-01

    The first geological map of a nation was made 200 years ago by British surveyor William Smith; the rediscovery of a first-edition copy in the archives of the Geological Society of London was announced last month (see go.nature.com/oogpht). As researchers gather for a conference to celebrate the anniversary of the 1815 chart of England and Wales, John Henry, chair of the society's history group, talks about the map and its pioneering creator.

  6. Geological Surveys Bureau Browse Area

    NSDL National Science Digital Library

    Offered by the Iowa Geological Survey Bureau, the Browse Area page is a great collection of articles, photos, and maps about the state's geology geared especially to the public. Topics include Age of Dinosaurs in Iowa, Landscape Features, Satellite Image, Field Travels of Early Iowa Geologists, Meteorites in Iowa's History, Oil Exploration, and much more. This is a wonderful example of how government can provide informative and fun sites to the public without going overboard with high-end and complicated Web design.

  7. Geology Field Trips as Performance Evaluations

    ERIC Educational Resources Information Center

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  8. Quaternary geologic map of Minnesota

    NASA Technical Reports Server (NTRS)

    Goebel, J. E.

    1977-01-01

    The Quaternary Geologic Map of Minnesota is a compilation based both on the unique characteristics of satellite imagery and on the results of previous field investigations, both published and unpublished. The use of satellite imagery has made possible the timely and economical construction of this map. LANDSAT imagery interpretation proved more useful than expected. Most of the geologic units could be identified by extrapolating from specific sites where the geology had been investigated into areas where little was known. The excellent geographic registry coupled with the multi-spectral record of these images served to identify places where the geologic materials responded to their ecological environment and where the ecology responded to the geologic materials. Units were well located on the map at the scale selected for the study. Contacts between till units could be placed with reasonable accuracy. The reference points that were used to project delineations between units (rivers, lakes, hills, roads and other features), which had not been accurately located on early maps, could be accurately located with the help of the imagery. The tonal and color contrasts, the patterns reflecting geologic change and the resolution of the images permitted focusing attention on features which could be represented at the final scale of the map without distraction by other interesting but site-specific details.

  9. Health benefits of geologic materials and geologic processes

    USGS Publications Warehouse

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  10. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  11. Geology Fieldnotes: Petrified Forest National Park, Arizona

    NSDL National Science Digital Library

    Petrified Forest National Park was established to preserve large deposits of petrified wood and to prevent removal of the wood by the public. Site featues include park geology information, maps, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the park's geologic history, structural geology, petrified wood, and dinosaur fossils. The maps section includes a map of the park itself and the surrounding area.

  12. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs. The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and others, 2003). Studies of hydrothermal alteration in the Osceola Mudflow are being used to bett

  13. Underground mining and deep geologic disposal - Two compatible and complementary activities

    SciTech Connect

    Rempe, N.T.

    1995-12-31

    Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

  14. The Necessity of Geologic Disposal

    SciTech Connect

    R. Linden

    2004-07-01

    Nuclear wastes are the radioactive byproducts of nuclear power generation, nuclear weapons production, and other uses of nuclear material. Experts from around the world agree that deep geologic disposal of nuclear waste in a mined repository is the most environmentally sound means of removing these potential sources of radiation from interaction with the biosphere. Of the 360 millirem of background radiation received annually by the average American, from both natural and man-made sources, less than 1 millirem results from the nuclear fuel cycle. Spent nuclear fuel and high-level radioactive waste, destined for geologic disposal, are located at 126 sites in 39 states. The proposed repository site at Yucca Mountain, Nevada, is far more isolated from the general population than any sites where these radioactive materials are presently located. Only solid forms of high-level wastes will be transported for disposal in a geologic repository. For more than 50 years, nuclear materials have been safely transported in North America, Europe, and Asia, without a single significant radiation release. Since the 1950s, select panels from the National Academy of Sciences-National Research Council and interagency advisory groups, and international experts selected by the OECD/Nuclear Energy Agency, have examined the environmental, ethical, and intergenerational aspects of nuclear waste disposal, plus alternatives to geologic disposal. All have concluded that deep geologic disposal in a mined repository is clearly the preferred option. The concept of deep geologic disposal is based on the analogy to ore deposits, which are formed deep within the Earth's crust, commonly remain isolated from the biosphere for millions to billions of years, and are, generally, extremely difficult to detect. Before selecting the unsaturated tuffs at Yucca Mountain, DOE evaluated salt formations, basalts, and both crystalline and sedimentary rocks. Other nations generating nuclear power also plan to use deep geologic disposal, and are evaluating sites in granites, argillaceous rocks, and salt formations.

  15. Geologic application of thermal inertia imaging using HCMM data

    NASA Technical Reports Server (NTRS)

    Paley, H. N.; Kahle, A. B. (principal investigators)

    1980-01-01

    The feasibility of using thermal inertia, inferred from remotely sensed temperature data, to complement LANDSAT reflectivity data for reconnaissance geologic mapping and mineral exploration is under investigation. The bulk of HCMM data tapes was received and processed, and a thermal inertia image of one data set was made. Additional areas of interest were identified on the HCMM photographic products and data tapes were ordered for these areas. During analysis of selected subareas, various sedimentary rock units were distinguished in the Death Valley, California test site and areas of altered rock were identified in the Cuprite/Goldifield, Nevada test site.

  16. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon the aqueous alteration of lunar materials and simulants (e.g., Keller and Huang, 1971; Eick et al., 1996). Lunar basalts are void of water and highly reduced, hence, these materials are initially very reactive when exposed to water under oxidizing conditions.

  17. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta quadrangle. They deserve detailed surface investigation followed if needed by exploration at depth.

  18. Bedrock Geologic Map of Maine

    NSDL National Science Digital Library

    In this activity students study a map of bedrock geology which describes the types of rocks that exist in a given area. It shows these rock units as well as their known and inferred contacts. Consideration is also given to folding, faulting, unconformities, and similar rock relationships. These features are often included in bedrock geology maps. Students study the legend and scale and become aware of the other information that is included on the map such as the stratigraphic column, list of formations, and inset map of metamorphic grade. Students then locate their city or town and draw a 40-mile diameter circle around it and identify all the symbols inside the circle and the age of the various rocks. Student question sheets are available at this site. Although this activity was written for a map of Maine, it will work in any state where geological maps are available.

  19. Physical Geology: Idaho Field Trip

    NSDL National Science Digital Library

    Simon Kattenhorn

    This optional field trip is designed to augment the in-class learning experience in introductory physical geology by providing students the opportunity to see firsthand local geological features and understand their context in the long-term tectonic evolution of the western United States. The university is conveniently located in a portion of the American west where a plethora of geological features are readily accessible over a total field trip duration of 6 hours. Over a total of 6 field stops, students are presented with an opportunity to observe features relevant to topics learned in class involving rock types, volcanic features (lava flows and ash fall deposits), faults and folds, mass wasting features, catastrophic flood deposits (Bonneville and Missoula floods), and loess deposits.

  20. Nevada Bureau of Mines and Geology

    NSDL National Science Digital Library

    The Nevada Bureau of Mines and Geology (NBMG) is a research unit of the Mackay School of Mines at the University of Nevada, Reno and is the state geological survey. Scientists at NBMG conduct research and publish reports on mineral resources and various aspects of general, environmental, and engineering geology for the state of Nevada. There are on-line publications available to download, geologic maps, K-12 educational resources for teaching about Nevada geology, and a photo and image archive of the state. Links are provided for further information about the state and general geology resources.

  1. Pattern Alteration: Bodice Back Width

    E-print Network

    2006-03-24

    If the back bodice of a garment is too tight or too loose because of a wide or narrow back, the pattern can be altered to make the garment fit better. This publication gives instructions on altering the bodice back width of patterns to solve...

  2. Ageismus – Sprachliche Diskriminierung des Alters

    Microsoft Academic Search

    Undine Kramer

    Daniel Sanders, einer der bedeutendsten Lexikografen des 19. Jahrhunderts, wertete für sein Wörterbuch Quellen seit der Lutherzeit aus und\\u000a vermerkt im Wörterbuchartikel zu alt eine „bald lobende, bald tadelnde“ Bedeutung des Adjektivs. Sein Zeit- und Berufsgenosse Jacob Grimm benennt in seiner Rede über das Alter die zeitgenössischen Synonyme zu alt und Alter: „aus einheimischen schriftstellern liesze sich eine lange reihe

  3. Detecting Altered Fingerprints Jianjiang Feng

    E-print Network

    Ross, Arun Abraham

    Detecting Altered Fingerprints Jianjiang Feng Dept.of Automation Tsinghua University Beijing, China.ross@mail.wvu.edu Abstract--The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law en identification by purposely altering their fingerprints. Available fingerprint quality assessment software cannot

  4. A Geological Wonder: Niagara Falls

    NSDL National Science Digital Library

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 9-12. It focuses on the geological history of the Niagara Falls area, as well as the physical and geological processes that have formed this region. It includes objectives, materials, procedures, discussion questions, evaluation ideas, performing extensions, suggested readings, and vocabulary. There are videos available to order which complement this lesson, audio vocabulary, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  5. Geology Programs and Disciplinary Accreditation

    NSDL National Science Digital Library

    Robert Corbett

    2001-03-01

    This report raises the question of whether accreditation may be coming to the geology discipline, and attempts to quantify the positions on accreditation of academic department heads/chairs. The study makes a distinction between institutional and specialized (or disciplinary) accreditation and explores attitudes toward both types. Results of the analysis are presented with a discussion of two methods of data interpretation, a multivariate analysis technique and the Chi square test for heterogeneity or independence. The report concludes that there is currently insufficient support for establishing disciplinary accreditation in geology.

  6. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-print Network

    Harbor, David

    The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility of this task is developing a skill for thinking in 3-D. Check your answers as you finish each section. You shows the rocks that occur at the surface (or just below the soil) and is usually printed on top

  7. Vascular alterations in schwannoma

    PubMed Central

    Papiez, Joseph; Rojiani, Mumtaz V; Rojiani, Amyn M

    2014-01-01

    Schwannomas or neurilemmoma are benign peripheral nerve sheath tumors, which most frequently occur at the cerebellopontine angle. This morphologic study examines vascular alterations in these tumors, comparing them to other benign spindle cell neoplasms of the nervous system, while correlating these findings with evidence of vascular permeability. Thirty-four nervous system spindle cell neoplasms, sixteen schwannomas, nine fibroblastic/transitional meningiomas and nine peripheral neurofibromas were stained with H&E, Prussian-blue stain, and immunoreacted for factor VIII-related antigen and interstitial albumin. Schwannomas had focal clusters of vascular proliferation including groups of small thin-walled vessels, as well as larger vessels with extensive hyalinization. Neurofibromas and meningiomas almost uniformly had modest numbers of well-defined, thin walled individual vessels. Free hemosiderin and hemosiderin-laden macrophages were frequently identified in schwannomas. Prussian-blue stain for iron revealed focal or fairly widespread positivity in almost all schwannomas, only one meningioma and none of the neurofibromas. Immunoreaction for albumin demonstrated leakage of vascular proteins into the interstitium confirming tumor vessel permeability in schwannomas. Neither neurofibromas nor meningiomas displayed any detectable interstitial albumin. The above findings confirm a degree of reactive proliferation of vessels in schwannoma along with functional deficits in their vascular integrity with permeability to protein and blood. The presence of hyalinized vessels, hemosiderin, both free and within macrophages, and more readily evident Prussian blue staining, may provide an additional diagnostic clue in discriminating between histologically similar spindle cell lesions. The study however raises the possibility that these changes likely precede or facilitate the degenerative ‘ancient change’ seen in some schwannoma. PMID:25120781

  8. Vascular alterations in schwannoma.

    PubMed

    Papiez, Joseph; Rojiani, Mumtaz V; Rojiani, Amyn M

    2014-01-01

    Schwannomas or neurilemmoma are benign peripheral nerve sheath tumors, which most frequently occur at the cerebellopontine angle. This morphologic study examines vascular alterations in these tumors, comparing them to other benign spindle cell neoplasms of the nervous system, while correlating these findings with evidence of vascular permeability. Thirty-four nervous system spindle cell neoplasms, sixteen schwannomas, nine fibroblastic/transitional meningiomas and nine peripheral neurofibromas were stained with H&E, Prussian-blue stain, and immunoreacted for factor VIII-related antigen and interstitial albumin. Schwannomas had focal clusters of vascular proliferation including groups of small thin-walled vessels, as well as larger vessels with extensive hyalinization. Neurofibromas and meningiomas almost uniformly had modest numbers of well-defined, thin walled individual vessels. Free hemosiderin and hemosiderin-laden macrophages were frequently identified in schwannomas. Prussian-blue stain for iron revealed focal or fairly widespread positivity in almost all schwannomas, only one meningioma and none of the neurofibromas. Immunoreaction for albumin demonstrated leakage of vascular proteins into the interstitium confirming tumor vessel permeability in schwannomas. Neither neurofibromas nor meningiomas displayed any detectable interstitial albumin. The above findings confirm a degree of reactive proliferation of vessels in schwannoma along with functional deficits in their vascular integrity with permeability to protein and blood. The presence of hyalinized vessels, hemosiderin, both free and within macrophages, and more readily evident Prussian blue staining, may provide an additional diagnostic clue in discriminating between histologically similar spindle cell lesions. The study however raises the possibility that these changes likely precede or facilitate the degenerative 'ancient change' seen in some schwannoma. PMID:25120781

  9. The Concise Geologic Time Scale

    Microsoft Academic Search

    James G. Ogg; Gabi Ogg; Felix M. Gradstein

    2008-01-01

    This concise handbook presents a summary of Earth's history over the past 4.5 billion years as well as a brief overview of contemporaneous events on the Moon, Mars and Venus. The authors have been at the forefront of chronostratigraphic research and initiatives to create an international geologic time scale for many years, and the charts in this book present the

  10. INTERPLANETARY CORRELATION OF GEOLOGIC TIME

    Microsoft Academic Search

    Eugene M. Shoemaker; Robert J. Hackman; Richard E. Eggleton

    Aaieroid impact has produced a significant number of medium- and large-sized craters on the earth In comparatively recent geologic time, and the rate of impact can be Interpreted to have remained fairly steady for at least the last half-billion years. By extrapolation of this rate, the lunar maria are found from the number and distribution of superimposed primary impact craters

  11. A Geologic Time Scale 2004

    Microsoft Academic Search

    Felix M. Gradstein; James G. Ogg; Alan G. Smith

    2005-01-01

    A successor to A Geologic Time Scale 1989 (Cambridge, 1990), this volume introduces the theory and methodology behind the construction of the new time scale, before presenting the scale itself in extensive detail. An international team of over forty stratigraphic experts develops the most up-to-date international stratigraphic framework for the Precambrian and Phanerozoic eras. A large wallchart summarizing the time

  12. Dr. Bob's Geologic Time Page

    NSDL National Science Digital Library

    Bob Jorstad

    2001-05-14

    This is a collection of mnemonic devices to aid in learning the various periods and epochs of the geologic time scale which the author has assembled from a variety of contributors. Contributor email addresses are included. There are also mnemonic devices for Moh's hardness scale and for stratigraphic sequences from the Canyonlands-San Juan River area and the Grand Canyon.

  13. Natural Selection and Geology 230

    E-print Network

    Kammer, Thomas

    ;Natural Selection · The theory of natural selection was proposed by Charles Darwin in 1859, in his book;Darwin drew an analogy between artificial selection and natural selection. Here we see dog breedsNatural Selection and Evolution Geology 230 Fossils and Evolution #12;The Study of Evolution

  14. Geological controls on reservoir properties

    Microsoft Academic Search

    Kaldi

    1988-01-01

    The Midale field produces oil from the lower, middle, and upper zone carbonates of the Mississippian Midale beds. Like many older fields with declining production, the Midale reservoir is a prime candidate for enhance recovery operations. Therefore, recent geological investigations in this field have been directed toward detailed characterization of the rocks in terms of their potential response to the

  15. Measuring geologic time on Mars

    Microsoft Academic Search

    Peter T. Doran; Steven L. Forman; Neil C. Sturchio; Stephen M. Clifford; Dimitri A. Papanastassiouje

    2000-01-01

    Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity, slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how

  16. GEOLOGY, August 2008 663 INTRODUCTION

    E-print Network

    Gilli, Adrian

    GEOLOGY, August 2008 663 INTRODUCTION Putative nanobacterial fossils and grainy textures have been confocal laser scanning microscopy (CLSM), scanning electron microscope equipped with cryogenic preparation to distinguish actual structures from arti- facts due to the sample preparation processes. CLSM and cryo

  17. Reading the Landscape--Geologically.

    ERIC Educational Resources Information Center

    Melvin, Ruth

    1982-01-01

    Although the landscape may be examined without background information, one's appreciation increases by using resources to interpret changing landscapes. Many geologic maps and road guides have been published for this purpose. The use of one such guide is described and sources of specific guides and maps are included. (Author/JN)

  18. GEOLOGY, July 2010 623 INTRODUCTION

    E-print Network

    Maloof, Adam

    -bodied Ediacaran organisms and the calcified animals Cloudina and Namacalathus (e.g., Knoll et al., 2006). DuringGEOLOGY, July 2010 623 INTRODUCTION At the end of the Ediacaran Period, ca. 542 Ma (Bowring et al the ensuing Nemakit-Daldynian Stage of the early Cambrian, animals began to dig deeper burrows and new

  19. Seismic Methods in Submarine Geology

    Microsoft Academic Search

    E. C. Bullard; T. F. Gaskell

    1938-01-01

    PROF. MAURICE EWING has shown that it is possible to use the seismic method for investigating submarine geology, and has used the method to show that, in the continental shelf off the coast of Virginia, many thousands of feet of sediments overlie the Palæozoic or pre-Cambrian rocks.

  20. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  1. GEOLOGY, April 2011 399 INTRODUCTION

    E-print Network

    GEOLOGY, April 2011 399 INTRODUCTION The Early Cretaceous Epoch was an impor- tant time by a major uncon- formity, commonly called the sub-Cretaceous unconformity, which is present from the south has been hampered by the fact that the tectonic and sedimentary records from this time period

  2. US Geological Survey Fact Sheets

    NSDL National Science Digital Library

    The US Geological Survey (USGS) Fact Sheets Web site summarizes research and investigations done by the agency and provides details about particular activities. The sheets are organized by theme, including resources, hazards, environment, information management, by individual state, and by scientific discipline. The fact sheets give basic summations of the research and provide links to more detailed pages for those seeking further information.

  3. GEOLOGY, May 2008 427 INTRODUCTION

    E-print Network

    , and in some cases location of earthquakes can be stress-forecast by monitoring swarm activity with shearGEOLOGY, May 2008 427 INTRODUCTION In a comprehensive review of earthquake pre- diction, Geller earthquakes can be predicted. Previous attempts at earthquake prediction inves- tigated the earthquake source

  4. Historical Geology Online Laboratory Manual

    NSDL National Science Digital Library

    Pamela Gore

    1982-01-01

    The laboratories in this manual cover the following topics: rocks and minerals, weathering of rocks and the formation of sediment, sedimentary rocks and structures, depositional sedimentary environments, sand sieve analysis, relative dating, stratigraphy and lithologic correlation, fossils on the Internet, invertebrate macrofossils, microfossils, preservation, biostratigraphy, evolution, vertebrate paleontology, and interpreting geologic history from maps.

  5. Weird Geology: The Devil's Tower

    NSDL National Science Digital Library

    Lee Krystek

    This page features a brief introduction to the several theories about the geological processes that formed Devil's Tower, which rises 1,267 feet above the nearby Belle Fourche River and is still considered a sacred place by some Native American Tribes. Information on climbing the tower as well as images and a cross section are provided.

  6. BELLCOMM, INC. GEOLOGIC CHARACTERISTICS OF

    E-print Network

    Rathbun, Julie A.

    BELLCOMM, INC. GEOLOGIC CHARACTERISTICS OF THE NINE LUNAR LANDING MISSION SITES RECOMMENDED BY THE GROUP FOR LUNAR EXPLORATION PLANNING May 31, 1968 TR-68-340-1 Farouk EI-Baz Work performed for Office Landing Site for Hyginus Crater and Rille. . . . . . . Proposed Landing Site in the Littrow Area 12

  7. Geological record of atmospheric evolution

    Microsoft Academic Search

    James C. Walker

    1988-01-01

    The geological history of the atmosphere can be deduced and explored by a combination of theory and observation. The data against which theoretical results can be tested are contained in the sedimentary rock records and include isotopic compositions, trace element concentrations, sediment volumes, and mineralogy. This approach has been followed to study atmospheric evolution, and it is supported by several

  8. A Nontraditional Geology Field Trip.

    ERIC Educational Resources Information Center

    Locke, William Willard

    1989-01-01

    Describes the design and logistics of a one-month, 1600 km bicycle tour field trip in which the travel, not the stops, is the major teaching tool. Provides a map and a summarized itinerary of the geology experience of southern California and Nevada. (RT)

  9. GEOLOGY, April 2011 315 INTRODUCTION

    E-print Network

    Stern, Robert J.

    GEOLOGY, April 2011 315 INTRODUCTION The Gulf of Mexico opened as the western- most arm of). In spite of this general understanding about when and how it opened, the Gulf of Mexico is a rare example rocks (Lock and Duex, 1996; Ren et al., 2009). The Five Islands of southern Louisiana are part of seven

  10. Geological rhythms and cometary impacts

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Strothers, R. B.

    1984-01-01

    Time series analysis reveals two dominant, long-term periodicities approximately equal to 32 and 260 million years in the known series of geological and biological upheavals during the Phanerozoic Eon. The cycles of these episodes agree in period and phase with the cycles of impact cratering on Earth, suggesting that periodic comet impacts strongly influence Earth processes.

  11. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  12. An Appalachian Project for Beginning Geology

    ERIC Educational Resources Information Center

    Connally, G. Gordon

    1971-01-01

    Describes an integrated five week, self-pacing project for instruction on geologic maps. Each student collects samples, and uses a topographic quadrangle and a generalized geologic map of the Valley and Ridge Province of Pennsylvania. (PR)

  13. Geology Fieldnotes: Kobuk Valley National Park

    NSDL National Science Digital Library

    This feature discusses the geology, landforms, glacial history, soils, and mineral resources of Kobuk Valley National Park. Links are provided to maps, visitor information, a history of gold prospecting in the area, and to related geology and conservation organizations.

  14. United States Geological Survey Geospatial Information Response

    E-print Network

    Torgersen, Christian

    1 United States Geological Survey Geospatial Information Response is comprised of numerous components within the United States Geological Survey (USGS requirements and deactivation process in supporting natural hazards events. 1.2 Scope

  15. GeoSciML version 3: A GML application for geologic information

    NASA Astrophysics Data System (ADS)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

  16. Stratigraphy and geologic history of Mercury

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  17. Extreme Events in the Geological Past

    Microsoft Academic Search

    Jürgen Herget

    Many Xevents in the geological past exceeded the strengths and intensities observed for modern-day natural events. The number\\u000a of extraordinary events that occurred in the geological past is of course much larger than the number we witness today because\\u000a the geological timescale covers millions of years. This contribution focuses on these Xevents from earth’s geological history,\\u000a including selected examples from

  18. Tour of Park Geology: Oldest Rocks

    NSDL National Science Digital Library

    This park geology site provides links to tours of individual National Parks, Monuments, and Recreation Areas with the oldest known rocks. The parks are divided at this site into East and West. Where appropriate, for each park, links are provided to park geology, maps, photographs, geologic research, visitor information, multimedia resources, and teacher features (resources for teaching geology using National Park examples). Parks listed include: Voyaguers National Park, Keweenaw National Historic Park, Lake Meade National Recreation Area, and many more.

  19. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  20. Geology Fieldnotes: Great Basin National Park, Nevada

    NSDL National Science Digital Library

    This Great Basin National Park site contains park geology information, park maps, visitor information, and teacher features (educational resources and links for teaching geology using National Park examples). The park geology section discusses the region's biogeography, glacial history, and the Lehman Caves. A park map and a features/relief map of the Great Basin National Park are included.

  1. The Geologic Story of the Ocoee River

    NSDL National Science Digital Library

    The United States Geological Survey (USGS) highlights the geology of the Ocoee River, in the scenic Cherokee National Forest of southeastern Tennessee. This report covers the geologic history of the area, from 750 million years ago (Precambrian) to the present. Uses of the river, from dams to mining, are also discussed.

  2. Tour of Park Geology: Human Use Sites

    NSDL National Science Digital Library

    This National Park Service (NPS) site provides links to geolgy field notes about National Parks, National Monuments, and National Recreation Areas having to do with geology and human use (such as mining). Information includes geology, photographs, multimedia tools, park maps, visitor information, geologic research, and additional links. Parks covered include Klondike Gold Rush National Historic Park, Alibates Flint Quarries National Monument, and more.

  3. Learning Geologic Time in the Field.

    ERIC Educational Resources Information Center

    Thomas, Robert C.

    2001-01-01

    Describes a method used to teach the concept of geologic time to introductory geology students using an inquiry-based approach. Students work in teams to obtain rock samples that are used to interpret the geologic history of a region. (SAH)

  4. Measuring student understanding of geological time

    Microsoft Academic Search

    Jeff Dodick; Nir Orion

    2003-01-01

    There have been few discoveries in geology more important than deep time - the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and evolutionary biology. Thus, any student that

  5. Geological carbon sequestration: critical legal issues

    E-print Network

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  6. Measuring Student Understanding of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology, and…

  7. Geology Fieldnotes: Cape Krusenstern National Monument, Alaska

    NSDL National Science Digital Library

    This site provides geologic information, maps, and visitor information for Cape Krusenstern National Monument. The geologic discussion covers the setting, history, bedrock geology, and glacial history of the monument. There is also a discussion of the area's major soil types and occurrence of permafrost. Other materials include links to related websites and general information on the monument's educational and interpretive programs.

  8. 11 Years Engineering Geology Fieldwork in

    E-print Network

    Hack, Robert

    ;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 2 What did we Produce ? Why did we ? #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 3 happy #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 4 Why keep

  9. Physical Geology Notes and Visual Aids

    NSDL National Science Digital Library

    Steve Dutch

    This site contains notes, graphics, presentations and slides for a variety of physical geology topics, including geologic maps, volcanoes, mass-wasting, ground water, landforms, rock types, fossils and evolution, glaciers, geologic time, erosion, metamorphism, earthquakes, plate tectonics, and Earth resources.

  10. Mechanisms of slope failure in Valles Marineris, Mars D.P. Neuffer1,2

    E-print Network

    Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineering/172, Mackay School of Earth in the large relief exposures (up to 8 km) of basaltic wall rock and soft interior layered deposits (ILDs). Eleven landslides, including eight circular failures, were mapped in the ILDs. Two wall rock landslide

  11. The Marine Geology Program of the US Geological Survey

    NASA Astrophysics Data System (ADS)

    Edgar, N. T.

    The U.S. Geological Survey and charged it with the responsibility for the classification of public lands and examination of the geologic structure, mineral resources and products of the national domain. The national domain for seabed resources was extended to 200 nautical miles offshore. This United States Exclusive Economic Zone (EEZ), a marine domain surrounding the continental U.S., Hawaii, and U.S. related islands, constitutes an area about one and two thirds larger than the size of the onshore area. In this vast domain lie resources of immense importance to the Nation: an estimated 35 percent of the economically recoverable oil and gas yet to be found in the United States; major resources of strategic metals like cobalt, manganese, and nickel in seafloor crusts, pavements, and modules; massive sulfide deposits actively forming today; and major concentrations of heavy minerals in nearshore sand bodies.

  12. Pattern Alteration: Protruding Hip Bone 

    E-print Network

    2006-08-04

    People with very thin figures typically have to alter their clothing for protruding hip bones. This is because diagonal wrinkles radiate from the hip bones. This well-illustrated publication shows how to correct this problem ...

  13. Multistage hydrothermal silicification and Fe-Tl-As-Sb-Ge-REE enrichment in the Red Dog Zn-Pb-Ag district, northern Alaska: Geochemistry, origin, and exploration applications

    USGS Publications Warehouse

    Slack, J.F.; Kelley, K.D.; Anderson, V.M.; Clark, J.L.; Ayuso, R.A.

    2004-01-01

    Geochemical analyses of major, trace, and rare earth elements (REE) in more than 200 samples of variably silicified and altered wall rocks, massive and banded sulfide, silica rock, and sulfide-rich and unmineralized barite were obtained from the Main, Aqqaluk, and Anarraaq deposits in the Red Dog Zn-Pb-Ag district of northern Alaska. Detailed lithogeochemical profiles for two drill cores at Aqqaluk display an antithetic relationship between SiO2/Al2O3 and TiO2/Zr which, together with textural information, suggest preferential silicification of carbonate-bearing sediments. Data for both drill cores also show generally high Tl, Sb, As, and Ge and uniformly positive Eu anomalies (Eu/Eu* > 1.0). Similar high Tl, Sb, As, Ge, and Eu/Eu* values are present in the footwall and shallow hanging wall of Zn-Pb-Ag sulfide intervals at Anarraaq but are not as widely dispersed. Net chemical changes for altered wall rocks in the district, on the basis of average Al-normalized data relative to unaltered black shales of the host Kuna Formation, include large enrichments (>50%) of Fe, Ba, Eu, V, S, Co, Zn, Pb, Tl, As, Sb, and Ge at both Red Dog and Anarraaq, Si at Red Dog, and Sr, U, and Se at Anarraaq. Large depletions (>50%) are evident for Ca at both Red Dog and Anarraaq, for Mg, P, and Y at Red Dog, and for Na at Anarraaq. At both Red Dog and Anarraaq, wall-rock alteration removed calcite and minor dolomite during hydrothermal decarbonation reactions and introduced Si, Eu, and Ge during silicification. Sulfidation reactions deposited Fe, S, Co, Zn, Pb, Tl, As, and Sb; barite mineralization introduced Ba, S, and Sr. Light REE and U were mobilized locally. This alteration and mineralization occurred during Mississippi an hydrothermal events that predated the Middle Jurassic-Cretaceous Brookian orogeny. Early hydrothermal silicification at Red Dog took place prior to or during massive sulfide mineralization, on the basis of the dominantly planar nature of Zn-Pb veins, which suggests filling of fractures that developed in previously lithified rock. Uniformly low Ca and Mg and uniformly negative Ce anomalies in highly siliceous Red Dog wall rocks reflect hydrothermal decarbonation reactions and pervasive silicification owing to conductive cooling of oxidized metalliferous fluids. Similar Ca and Mg depletions are evident at Anarraaq but generally lack associated silicification, possibly because temperatures of the hydrothermal fluids were too low (<180??C) or because the thermal contrast between the fluids and wall rocks was smaller owing to the greater depth of alteration and mineralization there, compared with Red Dog. Chalcophile element anomalies (Fe, Zn, Pb, Tl, As, Sb) in wall rocks at both Red Dog and Anarraq are attributed to sulfidation reactions, coeval with subsurface Zn-Pb-Ag mineralization, during the mixing of oxidized metalliferous fluids with H2S-rich fluids derived locally within the Kuna Formation. Sedimentary wall rocks in the Red Dog district are characterized by a distinctive suite of geochemical anomalies, especially for Zn, Pb, Tl, As, Sb, Ge, and Eu/Eu*. At the Aqqaluk deposit, wall rocks without visible sphalerite or galena (<300 ppm Zn + Pb) have anomalous Eu/Eu*, Tl, Sb, and As for up to ???100 m stratigraphically below Zn-rich silica rock. At Anarraaq, the Tl anomaly is most extensively developed, and enrichment relative to unaltered black shale of the Kuna Formation is present up to 62 m above the highest Zn-Pb sulfide zones. The magnitude of the enrichment and systematic behavior of Tl in the district make Tl a promising geochemical exploration guide for Red Dog-type Zn-Pb-Ag deposits elsewhere. ?? 2004 by Economic Geology.

  14. Geology and Metal Contents of the Ruttan volcanogenic massive sulfide deposit, northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Barrie, C. Tucker.; Taylor, Craig; Ames, Doreen E.

    2005-03-01

    The Paleoproterozoic Ruttan Cu-Zn volcanogenic massive-sulfide (VMS) deposit is a large, relatively low grade, bimodal-siliciclastic type deposit in the Rusty Lake volcanic belt of northern Manitoba. The deposit contained over 82.8 million tonnes of massive sulfide, of which 55.7 million tonnes were mined from 1973 to 2002. The deposit consists of a series of moderately to steeply dipping, south-facing lenses that extend along strike at the surface for 1.1 km and to a depth of 1.0 km. These lenses occur within a steeply dipping, bimodal volcanic, volcaniclastic and siliciclastic sequence. In the immediate mine area, transitional calc-alkalic to high-silica (tholeiitic), felsic, and intermediate volcanic/volcaniclastic rocks of the Mine Sequence are host to, and intercalated with, the massive-sulfide lenses. Transitional tholeiitic to calc-alkalic basalt and andesite are present in the footwall sequence, approximately 500 m down-section from the ore horizon. The overlying rocks are predominantly fine-grained volcaniclastics and siliciclastics, but include polyfragmental agglomerate that contains mafic bombs and scoriaceous felsic fragments. Syn-depositional felsic and mafic dikes, sills, and apophyses are ubiquitous throughout the Mine Sequence, including the ore lenses, indicating continued, near-vent magmatism, and volcanism during ore formation. Fabrics in altered hostrocks have consistent, down-plunge stretching lineations to the SSE that suggest the deposit has been elongated by a factor of ~1.2-1.5; otherwise, the deposit is remarkably undeformed. Syn- and post-depositional faults in the mine area have relatively minor displacements up to tens of meters. Proximal (within 200 m) footwall rocks exhibit moderate to strong chloritization, characterized by the upper greenschist to lower amphibolite facies assemblages that include cordierite-almandine-andalusite-sillimanite-biotite ± staurolite ± anthophyllite ± talc, and local silicification. The proximal hanging wall rocks are characterized by sericite ± gahnite alteration, which is restricted to within approximately 75 m of the uppermost lenses. Additional gangue minerals are anhydrite and carbonate minerals (siderite, dolomite, ankerite, and calcite), as well as chlorite, sericite, biotite, talc, and quartz. Carbonate (excluding siderite), potassium feldspar, silicification and epidotization are common distal alteration zones in the footwall to the Mine Sequence several kilometers to the northeast. There are three principal groups of massive sulfide lenses; the East lenses, the West lenses, and the Western Anomaly lenses to the far west. In general, Cu is relatively enriched at the stratigraphic base and in the center of the deposit, whereas Zn is enriched upsection and at the outer margins. Some of the Zn-rich ore exhibits primary mineralogical layering. Parts of the West and Western Anomaly lenses show two layers with Cu-rich bases and Zn-rich tops. The massive sulfide is typically 10-40-m thick; one area along the margin of the main lenses is over 130-m thick and may represent deposition adjacent to a syn-depositional fault. The main sulfide phases are pyrite, pyrrhotite, chalcopyrite, sphalerite, and galena, with tetrahedrite as the most abundant trace phase. Gahnite is ubiquitous in the chlorite-rich assemblages adjacent to the ore lenses. The average base, precious and trace metal contents estimated from Cu and Zn concentrates, and from millhead grades and recoveries. Metals easily transported as chloride and bisulfide complexes in hydrothermal fluids including: Pb, Ag, In, Cu, Cd, Au, and Zn are enriched by 1.5-2.5 orders of magnitude in comparison to the bulk continental crust. Other elements such as Sn, Mo, and As are at near-crustal concentrations, whereas Mn, Ga, and Co are significantly depleted in comparison to the crust. Calculated metal concentrations in the average hydrothermal fluid based on the average metal contents are comparable to, or higher than those measured at sediment covered ridge hydrothermal systems, which precipitate much of their me

  15. Marine Geology: Research Beneath the Sea

    NSDL National Science Digital Library

    Another informative offering from the US Geological Survey is the Marine Geology: Research Beneath the Sea Web site. Visitors can read about the agency's Marine Geology program which "strives to increase our understanding of the geology of the lands covered by water." Topics include methods and equipment used for the research, plate tectonics, resources in the marine realm, predicting effects of marine processes, new frontiers, and even images of marine geology. This interesting and unique site does a good job of explaining and educating the public on this important segment of the agency's research.

  16. Environmentally alterable additive genetic effects Root Gorelick*

    E-print Network

    Gorelick, Root

    Environmentally alterable additive genetic effects Root Gorelick* School of Life Sciences, Arizona environmentally alterable additive genetic variance confounds prediction of evolutionary trajectories, but (1 phenotypically plastic than animals. Conclusion: Environmentally alterable additive genetic effects place

  17. Geologic Sequestration Studies with Hawaiian Picrites

    NASA Astrophysics Data System (ADS)

    Johnson, K. T.; McGrail, B. P.; Schaef, H. T.

    2010-12-01

    Capturing and storing anthropogenic carbon dioxide in deep geologic formations is a potential CO2 mitigation solution being studied to reduce adverse effects of increasing greenhouse gas concentrations on the global climate. Basalt formations, widespread globally, are currently being considered as a long term storage option. Because combustion gas streams often contain impurities, it is also important to consider contaminants (e.g., SO2, N2, and O2) that could be co-injected with CO2. Injecting to depths greater than 800 m, these CO2 gas mixtures will reside as water-wet supercritical fluids in contact with the basalt reservoir rocks. Here we examine reaction products resulting from exposing Hawaiian picrite basalts to water equilibrated with scCO2, water bearing scCO2, and mixtures containing gaseous sulfur compounds. Hawaiian basalts in this study were fresh, vesicular, and olivine(fo68)-rich (20+vol%). Basalts, crushed or in large pieces, were exposed to wet supercritical fluid and aqueous dissolved gases for 80 to 550 days at 100 bar and 50°-100°C. Post-reacted basalt in the pure scCO2 system showed the least amount of reactivity. Carbonate precipitates formed discrete circular coatings on the olivine grain surfaces after 550 days of exposure to the aqueous dissolved CO2. However, the olivine surface was significantly altered in just 80 days after exposure to wet scCO2 containing 1% SO2. The most reactive basalt components were olivine grains, with surfaces dominated by cracks and precipitates of Mg-S compounds (Fig.1). Chemistry determined by SEM-EDS indicated the cracked surface was depleted in Mg and rich in Si. Minor amounts of sulfur were detected in this leached layer as well. Exposed olivine interiors were found to have the original olivine chemistry. Surface precipitates associated with the olivine crystals include hexahydrite (MgSO4?6H2O), magnesium thiosulfate hydrate (MgS2O3?6H2O), along with three different hydrated sulfite phases. These types of experiments illustrate the potential basalt formations hold for long term storage of CO2 and the importance of understanding supercritical phase chemical reactions involved in geologic carbon sequestration. Expanding on this work, research in collaboration with Yale scientists on the CO2 storage potential of a wide range of rocktypes will commence in Fall, 2010. Figure 1. SEM microphotograph of reacted olivine surface (HW496) after 85 days exposure to wet scCO2 containing ~1% SO2 (10 MPa and 50°C).

  18. Shock compression of geological materials

    NASA Astrophysics Data System (ADS)

    Kirk, Simon; Braithwaite, Chris; Williamson, David; Jardine, Andrew

    2013-06-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition and microstructure was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information, as the material is fully dense, in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to a granular material and we show how it can be described using shock compaction models.

  19. Shock compression of geological materials

    NASA Astrophysics Data System (ADS)

    Kirk, S.; Braithwaite, C.; Williamson, D.; Jardine, A.

    2014-05-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  20. Geologic studies: Executive summary report

    SciTech Connect

    Popenoe, P.

    1994-01-01

    The general objectives of the geological oceanography program in 1976-1977 were to (1) measure the rate, direction, and forcing mechanisms of sediment mobility over the sea bed, and to monitor resultant changes in bottom morphology or texture; (2) determine the concentration, distribution, and flux of suspended particulate matter in the water column; (3) determine the vertical distribution of trace metals in the near-surface sediment at selected locations; (4) evaluate potential geological hazards to oil and gas development due to surficial and intermediate depth structure and mass sediment transport events; (5) identify and evaluate the distribution and significance of outcrop and reefal structures; and (6) support the activities of the chemical/biological contractor by obtaining information on sediment texture and composition, particularly as it relates to the physical, biological, and chemical processes of the shelf. The report presents a summation of principal findings and conclusions from this initial effort.

  1. Geological Time Capsule Part I

    NSDL National Science Digital Library

    This brief review of Earth history starts with the Archeozoic Period and goes through the Devonian Period. It explains time divisions and that the basic unit of geologic time is the period, which comprises two or more epochs, and that an era consists of two or more periods. The site goes on to explain what was happening in regard to plate tectonics and organic evolution in each of the periods through the Devonian Period.

  2. Perkins Geology Museum Digital Archive

    NSDL National Science Digital Library

    This online database contains thousands of digital images from the collections of the University of Vermont's Perkins Geology Museum. The collection emphasizes material from Vermont, but it also includes rock and mineral specimens, maps, slides, thin sections, and photographs from around the world. It can be browsed by type (rocks, minerals, fossils, or thin sections) or searched by keyword and locality. Each image is accompanied by brief metadata, including title, file name and catalog number, image resolution, and locality (where available).

  3. Geological exploration from orbital altitudes

    USGS Publications Warehouse

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  4. Geology of Badlands National Park

    NSDL National Science Digital Library

    National Park Service (NPS)

    This page is an introduction to the 75 million years of accumulation and intermittent periods of erosion that has resulted in the Badlands National Park. The history of the Oglicene beds of the Park, one of the world's richest vertebrate fossil sites, is also described. A downloadable PDF that describes the erosion that is responsible for the geology of the Park in more detail is linked to the site.

  5. Dione's spectral and geological properties

    USGS Publications Warehouse

    Stephan, K.; Jaumann, R.; Wagner, R.; Clark, R.N.; Cruikshank, D.P.; Hibbitts, C.A.; Roatsch, T.; Hoffmann, H.; Brown, R.H.; Filiacchione, G.; Buratti, B.J.; Hansen, G.B.; McCord, T.B.; Nicholson, P.D.; Baines, K.H.

    2010-01-01

    We present a detailed analysis of the variations in spectral properties across the surface of Saturn's satellite Dione using Cassini/VIMS data and their relationships to geological and/or morphological characteristics as seen in the Cassini/ISS images. This analysis focuses on a local region on Dione's anti-saturnian hemisphere that was observed by VIMS with high spatial resolution during orbit 16 in October 2005. The results are incorporated into a global context provided by VIMS data acquired within Cassini's first 50 orbits. Our results show that Dione's surface is dominated by at least one global process. Bombardment by magnetospheric particles is consistent with the concentration of dark material and enhanced CO2 absorption on the trailing hemisphere of Dione independent of the geology. Local regions within this terrain indicate a special kind of resurfacing that probably is related to large-scale impact process. In contrast, the enhanced ice signature on the leading side is associated with the extended ejecta of the fresh impact crater Creusa (???49??N/76??W). Although no geologically active regions could be identified, Dione's tectonized regions observed with high spatial resolution partly show some clean H2O ice implying that tectonic processes could have continued into more recent times. ?? 2009 Elsevier Inc. All rights reserved.

  6. Geologic mapping using thermal images

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Kahle, A. B.; Palluconi, F. D.; Schieldge, J. P.

    1984-01-01

    Thermal radiance data from the Heat Capacity Mapping Mission (HCMM) satellite has been used to measure surface reflectance data and to provide additional material composition information through remote sensing. The primary goal was to investigate the utility of HCMM data for geologic applications. Three techniques were used for displaying and combining thermal and visible near infrared (VNIR) data for two desert areas in southern California (Trona and Pisgah): color additive composites (CAC) for day and night IR and day VNIR, principal components, and calculation of thermal inertia images. The HCMM thermal data were more effective than Landsat data in producing separation of compositionally different areas including volcanic and intrusive rocks. The satellite CAC data produced an image for a 1 x 2 degree area, and the color picture was enlarged to a scale of 1:250,000. Playa composition, moisture content, presence of standing water, and vegetation cover were displayed in a variety of colors according to physical characteristics. Areas such as sand dunes were not distinguishable because of the coarse 500-mm HCMM resolution. HCMM thermal data have shown a new dimension to geologic remote sensing, and future satellite missions should allow the continued development of the thermal infrared data for geology.

  7. Planetary Geology and Geophysics Program

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2004-01-01

    Geological mapping and topical studies, primarily in the southern Acidalia Planitia/Cydonia Mensae region of Mars is presented. The overall objective was to understand geologic processes and crustal history in the northern lowland in order to assess the probability that an ocean once existed in this region. The major deliverable is a block of 6 1:500,000 scale geologic maps that will be published in 2004 as a single map at 1:1,000,000 scale along with extensive descriptive and interpretive text. A major issue addressed by the mapping was the relative ages of the extensive plains of Acidalia Planitia and the knobs and mesas of Cydonia Mensae. The mapping results clearly favor a younger age for the plains. Topical studies included a preliminary analysis of the very abundant small domes and cones to assess the possibility that their origins could be determined by detailed mapping and remote-sensing analysis. We also tested the validity of putative shorelines by using GIs to co-register full-resolution MOLA altimetry data and Viking images with these shorelines plotted on them. Of the 3 proposed shorelines in this area, one is probably valid, one is definitely not valid, and the third is apparently 2 shorelines closely spaced in elevation. Publications supported entirely or in part by this grant are included.

  8. Geology and tectonics of Japanese islands: A review - The key to understanding the geology of Asia

    NASA Astrophysics Data System (ADS)

    Wakita, Koji

    2013-08-01

    The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts. The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction-accretion, paired metamorphism, arc volcanism, back-arc spreading and arc-arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous-Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1-2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc-arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc-arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.

  9. Preliminary bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Werdon, Melanie B.; Bleick, Heather A.

    2010-01-01

    This 1:500,000-scale geologic map depicts the bedrock geology of Seward Peninsula, western Alaska, on the North American side of the Bering Strait. The map encompasses all of the Teller, Nome, Solomon, and Bendeleben 1:250,000-scale quadrangles, and parts of the Shishmaref, Kotzebue, Candle, and Norton Bay 1:250,000-scale quadrangles (sheet 1; sheet 2). The geologic map is presented on Sheet 1. The pamphlet includes an introductory text, unit descriptions, tables of geochronologic data, and an appendix containing conodont (microfossil) data and a text about those data. Sheet 2 shows metamorphic and tectonic units, conodont color alteration indices, key metamorphic minerals, and locations of geochronology samples listed in the pamphlet.

  10. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  11. Geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran

    Microsoft Academic Search

    A. Zarasvandi; S. Liaghat; M. Zentilli

    2005-01-01

    This paper describes the petrology, mineralogy, alteration, structural characteristics, and geological evolution of the Darreh-Zerreshk and Ali-Abad copper deposits within the central Iranian volcano-plutonic belt, Yazd Province, central Iran. Intrusions in this area, a result of subduction magmatism, range in composition from quartzmonzodiorite to granite, yet copper-molybdenum porphyry—type mineralization is restricted to quartzmonzodioritic to granodioritic plutons. The mineralizing intrusions cut

  12. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet

    Microsoft Academic Search

    Zhiming Yang; Zengqian Hou; Noel C. White; Zhaoshan Chang; Zhenqing Li; Yucai Song

    2009-01-01

    Porphyry deposits are usually thought to form from subduction-related calc-alkaline magmas in magmatic arc settings, although some porphyry deposits also occur in post-collisional extensional settings. The post-collisional deposits remain poorly understood. Here we describe the igneous geology, alteration mineralogy and mineralization history of Qulong, a newly-discovered porphyry Cu–Mo deposit in southern Tibet that belongs to the post-collisional class. The deposit

  13. Lithologic discrimination and alteration mapping from AVIRIS Data, Socorro, New Mexico

    NASA Technical Reports Server (NTRS)

    Beratan, K. K.; Delillo, N.; Jacobson, A.; Blom, R.; Chapin, C. E.

    1993-01-01

    Geologic maps are, by their very nature, interpretive documents. In contrasts, images prepared from AVIRIS data can be used as uninterpreted, and thus unbiased, geologic maps. We are having significant success applying AVIRIS data in this non-quantitative manner to geologic problems. Much of our success has come from the power of the Linked Windows Interactive Data System. LinkWinds is a visual data analysis and exploration system under development at JPL which is designed to rapidly and interactively investigate large multivariate data sets. In this paper, we present information on the analysis technique, and preliminary results from research on potassium metasomatism, a distinctive and structurally significant type of alteration associated with crustal extension.

  14. Medical Geology - Special Initiative of the International Union of Geological Scientists

    NSDL National Science Digital Library

    International Working Group on Medical Geology

    This is the official home page of the International Working Group on Medical Geology, a special initiative of the International Union of Geological Sciences. The group was organized to improve communication among the various disciplines concerned with diseases caused by geological factors, as well as promote the development of educational materials, literature, and further research and programs that address the issue of medical geology. This site provides links to information about current research, meetings, and other activities of the International Medical Geology Association; books, reports, brochures and other literature for sale or download; membership opportunities and discussion groups; outreach and education; a glossary of medical, geological, chemical, and biological terms, and much more.

  15. Inflammasome Activation by Altered Proteostasis*

    PubMed Central

    Shin, Jin Na; Fattah, Elmoataz Abdel; Bhattacharya, Abhisek; Ko, Soyoung; Eissa, N. Tony

    2013-01-01

    The association between altered proteostasis and inflammatory disorders has been increasingly recognized, but the underlying mechanisms are not well understood. In this study, we show that deficiency of either autophagy or sequestosome 1 (p62 or SQSTM) led to inflammasome hyperactivation in response to LPS and ATP in primary macrophages and in mice in vivo. Importantly, induction of protein misfolding by puromycin, thapsigargin, or geldanamycin resulted in inflammasome activation that was more pronounced in autophagy- or p62-deficient macrophages. Accumulation of misfolded proteins caused inflammasome activation by inducing generation of nonmitochondrial reactive oxygen species and lysosomal damage, leading to release of cathepsin B. Our results suggest that altered proteostasis results in inflammasome activation and thus provide mechanisms for the association of altered proteostasis with inflammatory disorders. PMID:24178293

  16. GEOLOGY, February 2011 171 INTRODUCION

    E-print Network

    Briner, Jason P.

    climate (e.g., Bri- ner and Kaufman, 2008; Thackray, 2008). Within the western United States, ages- son et al., 2005). This discrepancy has led to the hypothesis that westerly atmospheric flow was altered by the NorthAmerican ice sheets, affect- ing the spatial and temporal pattern of moisture delivery

  17. Maine Geological Survey: Online Educational Materials

    NSDL National Science Digital Library

    2009-12-08

    The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.

  18. Maine Geological Survey: Online Educational Materials

    NSDL National Science Digital Library

    The Maine Geological Survey (MGS) has crafted a fine set of materials for those interested in learning more about the state's natural history via virtual tours, lesson plans, and maps. First up is the Virtual Tour of Maine Geology, which includes photographs of bedrock geology, geologic hazards, mineral collecting, and surficial geology. The Lesson Plans area contains 51 lessons, including "Igneous Rock Identification" and "Composition of Topsoil." A number of MGS maps are available online in the Maps and Publications area. The site includes a Bibliography of Maine Geology, which contains over 12,000 references. Additionally, the site contains a link to the MGS publications page, which has official state of Maine wall maps available for purchase.

  19. National Park Service: Tour of Park Geology

    NSDL National Science Digital Library

    The tour of Park geologic resources includes pages specific to individual National Parks, Monuments, Recreation Areas, Preserves, Seacoasts, Reserves, and Recreation Areas. These pages are indexed by park name, state, or by one of the following topics: basin and range, caves, Colorado Plateau, fossils, glaciers, hot springs, human use, mountain building, oldest rocks, plate tectonics, river systems, sand dunes, shoreline geology, or volcanoes. Organization of each of the pages typically follows a NPS template with categories for park geology, maps, photographs, geologic research, related links, visitor information, multimedia, and "teacher features" (educational resources and links for teaching geology with National Park examples.) Common subjects that are addressed at various park sites include: minerals, rocks, fossils, cave and karst systems, coastlines, glaciers, volcanoes, faults, landforms, landslides, structures, fluvial systems, sediments, soils, stratigraphic relations, processes that form or act on geologic features and their chemical compositions, and the history of the planet and its life forms.

  20. Geologic Provinces of the United States

    NSDL National Science Digital Library

    Mary Leech

    This site provides all information, instructions, downloadable materials, and links to online materials for an exercise developed for use in a Geology of the National Parks course. Using the provided maps, groups of 3 to 6 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and the rock types. As a result of this exercise, students will become familiar and comfortable with reading maps and legends, learn basic rock types and how geologic time is divided, define geologic provinces that will form an outline for learning the geology of the U.S., and be able to discuss the maps they create based on what they've learned. This exercise is intended for one of the first class meetings of the quarter or semester and ideally students will approach this exercise without much or any prior knowledge of the geology of the United States.

  1. Connecting Soils and Glacial Geology

    NSDL National Science Digital Library

    Holly Dolliver

    The goal of this activity is to provide students an opportunity to connect soil science to surficial geology by using a Soil Surveys. By the end of the activity, students should be able to use a Soil Survey to identify and interpret landforms and surficial features. This activity can be adapted to variety of process (ex. eolian deposits, glacial deposits, bedrock weathering, etc.). County-level soil surveys are available in both paper and online formats for the majority of the United States. Designed for a geomorphology course Has minimal/no quantitative component

  2. Observations and Measurements in Geology

    NSDL National Science Digital Library

    Stacey Cochiara

    This activity allows students to see several key geologic concepts that they will learn in greater detail later in the semester. They compare densities of two different blocks, which serve as proxies for the differences between oceanic and continental crust, and this provides an example of isostasy. They determine sedimentation rates and deduce what type of changes in environment can affect these rates. They determine the relative ages of two different Martian surfaces. Students also get to see hand samples of rock and mineral specimens, and compare hardness and relative sorting. These topics allow students exposure to several different concepts that they will develop a greater appreciation of throughout their courses.

  3. Ore metals through geologic history.

    PubMed

    Meyer, C

    1985-03-22

    The ores of chromite, nickel, copper, and zinc show a wide distribution over geologic time, but those of iron, titanium, lead, uranium, gold, silver, molybdenum, tungsten, and tin are more restricted. Many of the limitations to specific time intervals are probably imposed by the evolving tectonic history of Earth interacting with the effects of the biomass on the evolution of the earth's s surface chemistry. Photosynthetic generation of free oxygen and "carbon" contributes significantlly to the diversity of redox potentials in both sedimentary and igneous-related processes of ore formation, influencing the selection of metals at the source, during transport, and at the site of ore deposition. PMID:17777763

  4. Geology Fieldnotes: Capitol Reef National Park, Utah

    NSDL National Science Digital Library

    This Capitol Reef National Park site contains park geology information, park maps, photographs, visitor information, and a teacher feature (resources for teaching geology with National Park examples). Geologic data includes descriptions of the Waterpocket Fold, a monocline formed in the Laramide Orogeny and made of sedimentary rock. Also covered is erosion, and details about the Cathedral Valley outcrop of gypsum. This formation is Permian to Cretaceous in age (270-80 million years old).

  5. Safer Science: Geology--Rock Solid Safety

    NSDL National Science Digital Library

    Ken Roy

    2008-03-01

    Although perceived as having a lower level of safety issues compared to chemistry or biology laboratories, Earth-space science and geology classes have their share of challenges. In fact, a number of safety concerns exist, which need to be addressed for a safe and educational experience in the geology laboratory. The following "starter" list addresses safety issues to consider with regard to common geology laboratory activities and fieldwork, as well as how to deal with other issues.

  6. Engineering geology of the Centerville, Texas landslides 

    E-print Network

    Clary, James Heath

    1975-01-01

    ENGINEERING GEOLOGY OF THE CENTERVILLEe TEXAS LANDSLIDES A Thesis JAMES HEATH CLARY Submitted to the Graduate College of Texas NN University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1975 Major... Subject: Geology ENGINEERING GEOLOGY OF THE CENTERVILLE, TEXAS LANDSLIDES A Thesis by JAMES HEATH CLARY Approved as to style and content by: J 7 (Chairman of Committee) (Head of Department) (Member) (Member) December 1/75 111 Engineering...

  7. Geological and geothermal investigations for HCMM-derived data. [hydrothermally altered areas in Yerington, Nevada

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Prelat, A. E.; Kirk, R. (principal investigators)

    1981-01-01

    An attempt was made to match HCMM- and U2HCMR-derived temperature data over two test sites of very local size to similar data collected in the field at nearly the same times. Results indicate that HCMM investigations using resolutions cells of 500 m or so are best conducted with areally-extensive sites, rather than point observations. The excellent quality day-VIS imagery is particularly useful for lineament studies, as is the DELTA-T imagery. Attempts to register the ground observed temperatures (even for 0.5 sq mile targets) were unsuccessful due to excessive pixel-to-pixel noise on the HCMM data. Several computer models were explored and related to thermal parameter value changes with observed data. Unless quite complex models, with many parameters which can be observed (perhaps not even measured (perhaps not even measured) only under remote sensing conditions (e.g., roughness, wind shear, etc) are used, the model outputs do not match the observed data. Empirical relationship may be most readily studied.

  8. Altered Vision Near the Hands

    ERIC Educational Resources Information Center

    Abrams, Richard A.; Davoli, Christopher C.; Du, Feng; Knapp, William H., III; Paull, Daniel

    2008-01-01

    The present study explored the manner in which hand position may affect visual processing. We studied three classic visual attention tasks (visual search, inhibition of return, and attentional blink) during which the participants held their hands either near the stimulus display, or far from the display. Remarkably, the hands altered visual…

  9. Pattern Alteration: Bodice Back Width 

    E-print Network

    2006-03-24

    or lap as needed. Tape the pattern in place (Fig. 10). To complete either alteration: 6. Redraw the shoulder seam and cutting lines to straight lines. Redraw the lower edge to a smooth cut- ting line (Figs. 9 and 10). Kimono or dolman sleeve bodice...

  10. California Geological Survey-Educational Resources Center

    NSDL National Science Digital Library

    2007-01-01

    How do we understand the Earth and its complexity? It's a crucial question in our age. Fortunately, the California Geological Survey is interested in these matters. The Survey's Educational Resources Center site features California geology maps, teachers' aids, and "California Geology 101." This last resource is an interactive index of online geologic field trip guides and related sites. The resources include an exploration of the 1906 San Francisco Earthquake, replies to questions posed by the "Earthquake DOC," and a glossary of rock and mineral terminology. The maps should not be missed either, as they include a fault activity map of California and a detailed map of the Golden State's geomorphic provinces.

  11. Provincial geology and the Industrial Revolution.

    PubMed

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology. PMID:16697043

  12. Geology Fieldnotes: Fossil Butte National Monument, Wyoming

    NSDL National Science Digital Library

    Fossil Butte National Monument preserves a 50-million year old bed of Eocene limestone that contains one of the richest fossil deposits in the world. Site features include park geology information, photographs of fossils, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The park geology section discusses the Monument's geologic history and fossil beds, focusing on the conditions that created the fossil-rich region and on the history of fossil collection in the area. A map of the Monument is also included.

  13. Geology Fieldnotes: Badlands National Park, South Dakota

    NSDL National Science Digital Library

    Badlands National Park, located in southwestern South Dakota, consists of 244,000 acres of sharply eroded buttes, pinnacles and spires blended with the largest, protected mixed grass prairie in the United States. Features include information on park geology, maps, photographs, visitor information, links to related publications, and lesson plans for teaching geology with National Park examples. The park geology section discusses the Park's geologic history during the Eocene and Oligocene epochs and the rich fossil deposits found there. Maps of the park and the surrounding area are included.

  14. Geologic review. Better regulation through interagency cooperation

    USGS Publications Warehouse

    Johnston, John E.; Rives, James D.; Soileau, David M.

    1989-01-01

    The Geologic Review procedure was developed by the Louisiana Geological Survey (LGS) in 1982 for the Louisiana Coastal Management Division. It consists of a thorough review of oil and gas well applications involving impact to environmentally sensitive areas such as wetlands. The applicant attends a meeting with a geologist and a petroleum engineer from the LGS who review the relevant geologic, engineering and economic data and make a recommendation as to the technical and economic feasibility of reducing or avoiding environmental impact by either moving the well to a geologically equivalent location, directionally drilling the well, or accessing the proposed location by a different access route or methodology than that proposed.

  15. Geology Fieldnotes: Dinosaur National Monument, Colorado / Utah

    NSDL National Science Digital Library

    Dinosaur National Monument preserves a fossil bone deposit containing the bones of hundreds of dinosaurs, which was once enclosed in the sands of an ancient river. Features of the site include park geology information, maps, photographs, related links, visitor information, multimedia resources, and resources for teaching geology with National Park examples. The geology section discusses the park's geologic history and fossil beds. A park map of the Monument is included, and the photo album section contains drawings of some of the dinosaur species found at the Monument's Dinosaur Quarry.

  16. Geology of Lake Mead National Recreation Area

    NSDL National Science Digital Library

    This website of the United States Geological Survey (USGS) and National Park Service (NPS) highlights the geologic history of Lake Mead National Recreation Area in Nevada and Arizona. From the Precambrian (1.8 billion years ago) until the present, the Lake Mead region has been shaped by collisions, uplift, erosion, volcanic activity, submergence, extension, and sedimentation. This site covers these major events and when they occurred in the Lake Mead area. There are links to information about geologic maps, geologic time, rocks and minerals, plate tectonics, and other Lake Mead information sources.

  17. Learning Assessment #5 - Geologic Time (2011)

    NSDL National Science Digital Library

    Leslie Reid

    Given a schematic cross-section and some background information about numerical ages, Part 1 of this activity asks students to give the relative time sequence of 14 geological events. In Part 2, students must provide numerical age brackets for a number of geologic events and/or rock units. In Part 3, students are asked to explain their reasoning for their age bracket assignments in part 2, including the principles of relative age they employed. Students are provided with a copy of the geologic time scale (2009, Geological Society of America) to assist them in completing this activity.

  18. Magma dynamics and wall-rock composition control the environmental impact of magmatic events

    Microsoft Academic Search

    N. Arndt; C. Ganino; A. Pêcher; C. Chauvel; M. Zhou; F. Tornos

    2010-01-01

    A key control on the destructive consequences of the emplacement of large igneous provinces such as Siberia and Deccan is the type of sedimentary rock in basins beneath the flood basalts. Contact metamorphism around intrusions in carbonates (dolostones or limestones), sulphates (evaporites), coal or organic-rich shale generates large quantities of greenhouse and toxic gases (CO2, CH4, SO2) which subsequently vent

  19. Open-system Behavior during Pluton^Wall-rock Interaction as Constrained from a Study of

    E-print Network

    Lee, Cin-Ty Aeolus

    plagioclase with anomalously high anorthite content, textures indi- cating replacement of plagioclase of the pluton converted alkali feldspar components into anorthite-rich plagioclase, releasing Na and K, which

  20. Mars exploration rover geologic traverse by the spirit rover in the plains of Gusev crater, Mars

    USGS Publications Warehouse

    Crumpler, L.S.; Squyres, S.W.; Arvidson, R.E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; DesMarais, D.J.; Farmer, J.D.; Fergason, R.; Golombek, M.P.; Grant, F.D.; Grant, J.A.; Greeley, R.; Hahn, B.; Herkenhoff, K.E.; Hurowitz, J.A.; Knudson, A.T.; Landis, G.A.; Li, R.; Maki, J.; McSween, H.Y.; Ming, D.W.; Moersch, J.E.; Payne, M.C.; Rice, J.W.; Richter, L.; Ruff, S.W.; Sims, M.; Thompson, S.D.; Tosca, N.; Wang, A.; Whelley, P.; Wright, S.P.; Wyatt, M.B.

    2005-01-01

    The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts. ?? 2005 Geological Society of America.

  1. Physical Geology: Principles and Perspectives

    NASA Astrophysics Data System (ADS)

    Skehan, James W.

    1984-04-01

    Textbooks on physical geology have proliferated over the past 20 years or more, during which time most fields have undergone a subject matter explosion. The challenge of authoring such a textbook is to accurately summarize the most important factual and theoretical results and to present the material in a pedagogically attractive and meaningful manner. The authors mainly have met that challenge.Basically, I could teach the course quite happily using this book as the text. An attractive feature is that the authors have summarized those aspects o f the science with which I am most familar in a generally acceptable and interesting manner. This includes excellent line drawings and block diagrams calculated to be very helpful to the student. Those chapters dealing with areas of the authors' scientific expertise are understandably stronger and smoother than some others. A useful perspective for the beginning student and teacher is an explicit discussion of geology as a science with a comparison and contrast of methods and results in relation to other fields of science.

  2. Geological considerations in hazardouswaste disposal

    USGS Publications Warehouse

    Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.

    1981-01-01

    Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.

  3. Elements of Australian petroleum geology

    SciTech Connect

    Masters, C.D.; Scott, E.W.

    1986-05-01

    The petroleum geology of Australia reflects the existence of a large cratonic block broken away from India and Antarctica in the early Mesozoic and early Tertiary that has resulted in a rifted passive-margin character on the northwestern, western, and southern boundaries of the continent. Pre-breakup paleozoic sediments are widely distributed but commonly not deeply buried nor particularly thick, and hence contribute minimally to petroleum resource occurrence. Like their Asian neighbors, much of Australian petroleum geology is nonmarine and associated with marginal rift basins. The small Gippsland basin on the southeastern coast, which is responsible for more than 90% of oil and 28% of the gas discovered in Australia, derives its petroleum from nonmarine Eocene to Cretaceous graben-fill sediments, sealed and buried by Oligocene marine shales. The most active play in Australia is in the Eromanga depression of the Great Artesian basin, where nonmarine oil is trapped stratigraphically in small fields in Jurassic and Cretaceous sandstones. These Mesozoic sediments are sag-fill deposits above the Permian-Triassic Cooper basin, and are responsible for some 12% of the gas reserves in Australia. Offshore of the western coast, graben basins filled with late Paleozoic to Mesozoic sediments are prolific and gas-prone - 55% of reserves - owing to coaly source rocks. North Sea-type, Upper Jurassic grabens off the northwestern coast of Australia contain Kimmeridgian hot shales, but developmental drilling, following the initial Jabiru discovery, has yet to demonstrate large reserves.

  4. Visible Geology: an interactive visualization program for creating and exploring geologic block models

    NSDL National Science Digital Library

    Rowan Cockett

    Visible Geology is an interactive visualization program where you can create and explore your own geologic block models. The goal of the program is to allow a learning environment that, with the focus of a teacher, provides students with a moment of geologic discovery.

  5. Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1

    E-print Network

    Polly, David

    Geol G308 Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1 hosts information about paleontology and geology in Indiana, copies of lecture slides and handouts for this course, but for anyone who is interested in Indiana's "deep history". Description G308 Paleontology

  6. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  7. Rock alteration in an experimentally imposed temperature gradient

    SciTech Connect

    Charles, R.W.

    1980-01-01

    Rock alteration in a dynamic (circulating) hydrothermal system can be applied to any geologic system with mobile fluids. Some examples are geothermal energy extraction, ore mineral extraction, and radioactive waste isolation. While isothermal systems yield important results, polythermal (i.e., temperature gradient) systems more closely model reactions of fluid moving through a rock reservoir. The above examples will generally involve temperature gradients across the rock reservoir. A controlled temperature gradient circulation system was developed to help define these rock-fluid reactions. Six fine grained prisms are placed along the axis of a 113 cm pressure vessel. The prisms are at 72, 119, 161, 209, 270, and 310{degrees}C under flow conditions of 4 cc/min. at 1/3 kbar total pressure. In this experiment a granodiorite was reacted with initially distilled water.

  8. Geology of the Fargo-Moorehead Region

    NSDL National Science Digital Library

    Donald P. Schwert

    This is a website created by University of North Dakota - Fargo faculty member Dr. Donald Schwert detailing the urban geology of the region surrounding Fargo, ND and Moorhead, MN. There is a good deal of information about the soils in the area, the Red River which flows North through the area, and the geologic history of why things are the way they are.

  9. Metaphor for the geologic time scale

    NSDL National Science Digital Library

    Cara Thompson

    This assignment serves as an introduction to the geologic time scale and to help students visualize the long time intervals between major events in Earth's history. The assignment encourages students to choose a metaphor for geologic time, research major events throughout Earth' history, and calculate how much (cumulative) of their metaphor each time interval represents.

  10. Yellowstone Geologic System Database (GeoGIS)

    NSDL National Science Digital Library

    University of Utah's Yellowstone Geophysics Research Group

    This website provides access to a broad collection of geographical, geological, and geophysical data for the Yellowstone/Snake River Plain volcanic system. Data types include physical geography, geology, geophysics, geodesy, regional models, and hazards. Information may be downloaded from lists of data, and links are provided to the original sources.

  11. Geologic Mapping of the Moon - Copernicus Crater

    NSDL National Science Digital Library

    This is a lesson about the Moon's Copernicus Crater. Learners will use observation to make their own geologic map of the Crater. They then identify crater features in a photogeologic image and use those observations to color their map with the appropriate geologic units.

  12. A Graphical Approach to Quantitative Structural Geology.

    ERIC Educational Resources Information Center

    De Paor, Declan G.

    1986-01-01

    Describes how computer graphic methods can be used in teaching structural geology. Describes the design of a graphics workstation for the Apple microcomputer. Includes a listing of commands used with software to plot structures in a digitized form. Argues for the establishment of computer laboratories for structural geology classes. (TW)

  13. Probabilistic reconstruction of geologic facies Laura Guadagninia

    E-print Network

    Tartakovsky, Daniel M.

    Probabilistic reconstruction of geologic facies Laura Guadagninia , Alberto Guadagninia,*, Daniel M for probabilistic reconstruction of boundaries between geologic facies. We apply our general approach to multiple be used to estimate the statistics of a facies' geometry. These data are further combined with other types

  14. Abstracts for the Planetary Geology Field Conference

    NASA Technical Reports Server (NTRS)

    Greeley, R. (editor); Black, D.

    1977-01-01

    The conference was to foster a better understanding of the volcanic history of the planets through the presentation of papers and through field trips to areas on the basalt plains of Idaho that appear to be analogous to some planetary surfaces. Papers include discussions of the volcanic geology of the Snake River Plain, general volcanic geology, and aspects of volcanism on the terrestrial planets.

  15. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  16. Monterey Bay National Marine Sanctuary: Geology

    NSDL National Science Digital Library

    This reference describes the general geologic setting of the Monterey Bay National Marine Sanctuary. Topics include the physiography, geology and tectonics (structure, stratigraphy, mass wasting, and earthquake activity) of the Bay. There is also information on ground water, cold seeps, coastal erosion, and economic resources (petroleum, mineral resources, and building materials).

  17. Geology Fieldnotes: Rocky Mountain National Park, Colorado

    NSDL National Science Digital Library

    In addition to offering visitor information, photographs, and links, this site traces the geologic history of this park to its beginnings as sedimentary rocks 1-2 billion years ago (Precambrian). It covers episodes of mountain building and erosion, the presence of dinosaurs and volcanoes, and glaciation, ending with the park's present geological state.

  18. Geology Fieldnotes: Isle Royale National Park, Michigan

    NSDL National Science Digital Library

    This National Park Service (NPS) website examines the geology of Isle Royale National Park in Michigan. It looks at the geologic history of this archipelago, beginning 1.2 billion years ago and progressing through volcanics, rock formations and copper deposits, to the Ice Age. There are links to park maps, visitor information, and additional resources.

  19. US Geological Survey World Energy Project

    NSDL National Science Digital Library

    The World Energy Project's Website holds a wide collection of data including province assessment reports and maps showing geology, oil and gas fields, and geologic provinces (Africa, Arabian Peninsula, South Asia, South America, Former Soviet Union, Asia Pacific Region, and Iran). Finally, a report ranks the world's oil and gas provinces by known petroleum volumes.

  20. GEOLOGICAL SURVEY OF CANADA OPEN FILE 7037

    E-print Network

    Patterson, Timothy

    GEOLOGICAL SURVEY OF CANADA OPEN FILE 7037 Total arsenic concentrations of lake sediments near. Hadlari, and H. Falck 2012 #12;GEOLOGICAL SURVEY OF CANADA OPEN FILE 7037 Total arsenic concentrations of lake sediments near the City of Yellowknife, Northwest Territories J.M. Galloway1 , H. Sanei1 , R

  1. CEE Track: Geological Engineering (ABET Accredited)

    E-print Network

    Bou-Zeid, Elie

    CEE Track: Geological Engineering (ABET Accredited) Class of 2014 BSE Math & Science Requirements. This requirement may be waived for students who scored 5 on AP STAT. MAE 305 Mathematics in Engineering I Additional Science Requirements (1 course) GEO 203 Geology, or EEB 211 Biology of Organisms, or MOL 215

  2. A megastructural end to Geologic Time

    Microsoft Academic Search

    R. B. Cathcart

    1983-01-01

    Futuristic nuclear waste disposal projects may have profound implications for the development of Anthropogeomorphology; namely, institution of an Anthropic Rock Cycle within the earth. Some time prior to 12,000 A.D., by construction of a preliminary Dyson heliosphere in the Solar System, Geologic Time could be artificially terminated and the geologic record eventually erased. Here, a new mechanical means of planetary

  3. Determining probabilities of geologic events and processes

    Microsoft Academic Search

    R. L. Hunter; C. J. Mann; R. M. Cranwell

    1985-01-01

    The Environmental Protection Agency has recently published a probabilstic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one change in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events

  4. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...at a minimum the following: (1) A description of the geology of the proposed permit and adjacent areas down to and including...mining. The description shall include the areal and structural geology of the permit and adjacent areas, and other parameters...

  5. 30 CFR 780.22 - Geologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...at a minimum the following: (1) A description of the geology of the proposed permit and adjacent areas down to and including...mining. The description shall include the areal and structural geology of the permit and adjacent areas, and other parameters...

  6. Altered states: psychedelics and anesthetics.

    PubMed

    Icaza, Eduardo E; Mashour, George A

    2013-12-01

    The psychedelic experience has been reported since antiquity, but there is relatively little known about the underlying neural mechanisms. A recent neuroimaging study on psilocybin revealed a pattern of decreased cerebral blood flow and functional disconnections that is surprisingly similar to that caused by various anesthetics. In this article, the authors review historical examples of psychedelic experiences induced by general anesthetics and then contrast the mechanisms by which these two drug classes generate altered states of consciousness. PMID:24061599

  7. Buccal alterations in diabetes mellitus

    PubMed Central

    2010-01-01

    Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a) increased concentration of mucin and glucose; b) impaired production and/or action of many antimicrobial factors; c) absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d) bad taste; e) oral candidiasis f) increased cells exfoliation after contact, because of poor lubrication; g) increased proliferation of pathogenic microorganisms; h) coated tongue; i) halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a) tongue alterations, generally a burning mouth; b) periodontal disease; c) white spots due to demineralization in the teeth; d) caries; e) delayed healing of wounds; f) greater tendency to infections; g) lichen planus; h) mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present. PMID:20180965

  8. Alaska Division of Geological and Geophysical Surveys

    NSDL National Science Digital Library

    This is the homepage of Alaska's geological and geophysical survey, the agency responsible for collecting and distributing information about the state's geologic resources and hazards. Materials include numerous downloadable geologic publications, geophysical, geochemical, and GIS datasets, maps, photos, and news articles. The 'Guide to Alaska Geologic and Mineral Information', a document available at the site, is a source for basic and specialized research into the geology of Alaska, and the resources and issues involved in exploration for metallic mineral deposits in Alaska. It is designed to give users a broad overview of the many resources available to them from library facilities and holdings to State and Federal agencies that publish research and oversee mining and exploration activities to online databases, publications, and catalogs.

  9. Geologic Heritage in the National Parks

    NSDL National Science Digital Library

    2013-03-22

    What is geologic heritage, you ask? In short, it "encompasses the significant geologic features, landforms, and landscapes characteristic of our Nation." The National Park Service has a special program to document these sites and to provide the public with resources about these unique destinations. The materials here are divided into four featured programs: Fossil Resources, Geologic Heritage Conservation, Park Geology Tour, and Cave and Karst Resources. Using the Park Geology Tour, visitors can search through thematic areas such as glaciers, fossils, and plate tectonics to find highlights from a vast array of National Park units. The Cave and Karst Resources program brings together resources on some of the over 4,900 caves in the National Park system, along with detailed photo galleries, newsletters, and brochures. Finally, under Fossil Resources visitors can find information about National Fossil Day and even helpful lesson plans for teachers.

  10. Measuring Geologic Time on Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Recent images from Mars show compelling evidence of near-surface flowing water, aeolian activity slope processes, and ice cap evolution that underscores the dynamic geologic history of the planet. Establishing an accurate chronology for Martian planetary features is critical for addressing fundamental questions about the evolution of the planet's surface and atmosphere and the differentiation of its interior. For example, how long was standing water on the surface? If life did evolve on Mars, did it occur before or after the evolution of life on Earth? These are arguably some of the most profound questions currently being asked by the planetary science community. Yet answers will not be forthcoming without an absolute chronology of Mars history, enabling the construction of a timescale comparable to Earth's. Discussion of methods for establishing such a chronology is particularly timely in light of new missions to Mars that are being planned to return in situ measurements or samples to Earth.

  11. Geological remote sensing in Africa

    NASA Technical Reports Server (NTRS)

    Sabins, Floyd F., Jr.; Bailey, G. Bryan; Abrams, Michael J.

    1987-01-01

    Programs using remote sensing to obtain geologic information in Africa are reviewed. Studies include the use of Landsat MSS data to evaluate petroleum resources in sedimentary rock terrains in Kenya and Sudan and the use of Landsat TM 30-m resolution data to search for mineral deposits in an ophiolite complex in Oman. Digitally enhanced multispectral SPOT data at a scale of 1:62,000 were used to map folds, faults, diapirs, bedding attitudes, and stratigraphic units in the Atlas Mountains in northern Algeria. In another study, SIR-A data over a vegetated and faulted area of Sierra Leone were compared with data collected by the Landsat MSS and TM systems. It was found that the lineaments on the SIR-A data were more easily detected.

  12. Geologic research at The Geysers

    SciTech Connect

    Hulen, J.B.; Moore, J.N.; Nielson, D.L. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-10

    Geologic research at The Geysers vapor-dominated geothermal field during the past year has yielded new information on the nature of steam-reservoir porosity and permeability; the origin of the caprock; mechanisms of lateral sealing; the evolution of The Geysers hydrothermal system; and specific reservoir controls in and immediately above {open_quotes}the felsite{close_quotes}, an hypabyssal, batholith-sized pluton largely responsible for The Geysers` existence. Our research has shown that (1) fluid conduits above the felsite may be dominantly vuggy, high-angle hydrothermal veins; (2) latest-stage hydrothermal calcite in such veins may seal them at the margins of the steam reservoir; mixed-layer clays are probably the corresponding seals in the caprock; (3) steam entries in the felsite are concentrated along the top of the youngest intrusive phase in the pluton - a 1 m.y.-old granodiorite; (4) steam entries in the felsite show a negative correlation with massive borosilicate enrichments.

  13. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...false Calculating CO2 geologic sequestration. 98.443 Section 98.443...GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.443 Calculating CO2 geologic sequestration. You must calculate the...

  14. 40 CFR 98.443 - Calculating CO2 geologic sequestration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...false Calculating CO2 geologic sequestration. 98.443 Section 98.443...GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.443 Calculating CO2 geologic sequestration. You must calculate the...

  15. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  16. Geology and religion in Portugal

    PubMed Central

    Carneiro, Ana; Simoes, Ana; Diogo, Maria Paula; Mota, Teresa Salomé

    2013-01-01

    This paper addresses the relationship between geology and religion in Portugal by focusing on three case studies of naturalists who produced original research and lived in different historical periods, from the eighteenth to the twentieth century. Whereas in non-peripheral European countries religious themes and even controversies between science and religion were dealt with by scientists and discussed in scientific communities, in Portugal the absence of a debate between science and religion within scientific and intellectual circles is particularly striking. From the historiographic point of view, in a country such as Portugal, where Roman Catholicism is part of the religious and cultural tradition, the influence of religion in all aspects of life has been either taken for granted by those less familiar with the national context or dismissed by local intellectuals, who do not see it as relevant to science. The situation is more complex than these dichotomies, rendering the study of this question particularly appealing from the historiographic point of view, geology being by its very nature a well-suited point from which to approach the theme. We argue that there is a long tradition of independence between science and religion, agnosticism and even atheism among local elites. Especially from the eighteenth century onwards, they are usually portrayed as enlightened minds who struggled against religious and political obscurantism. Religion—or, to be more precise, the Roman Catholic Church and its institutions—was usually identified with backwardness, whereas science was seen as the path to progress; consequently men of science usually dissociated their scientific production from religious belief.

  17. CASP: Geological exploration and research

    SciTech Connect

    Macdonald, D.I.M.; Scott, R.A. [Cambridge Arctic Shelf Programme (United Kingdom)

    1995-08-01

    The Cambridge Arctic Shelf Programme (CASP) is an independent, non-profit-making geological research organization based in the University of Cambridge. It originated in 1948 as Cambridge Spitsbergen Expeditions, and was incorporated as CASP in 1975. Initially, support came from companies with an interest in Svalbard and the Barents Shelf. Since then, CASP has greatly increased its scope, diversifying to new areas of research outside the Arctic and to new methods of data presentation. CASP now offers a unique programme of research, specialising in field- and literature-based studies of remote areas. Projects are currently being undertaken in the Arctic, Russia, China, East Greenland and Eastern Europe; all projects involve fieldwork and ail involve collaboration with research groups in other institutions. Most projects are oriented towards sedimentology, stratigraphy, tectonics, basin analysis and regional geology. CASP has a unique status: it shares elements in common with universities (undertaking long-term research programmes for eventual publication), consultancies (carrying out applied projects oriented towards hydrocarbon exploration and production) and national surveys (compiling and managing large datasets). Individual projects are funded by annual subscription from interested companies, with research material being supplied on a non-exclusive basis. Input and feedback from subscribers is welcomed, and an annual consortium meeting is organised for each project. As a non-profit-making Organization with low overheads, all additional income raised for a project is used to develop the research programme. CASP projects are supported by an outstanding library/information centre and linguistic expertise (Russian and Chinese), and these facilities are available to subscribing companies.

  18. Phosphoinositides alter lipid bilayer properties

    PubMed Central

    Hobart, E. Ashley; Koeppe, Roger E.; Andersen, Olaf S.

    2013-01-01

    Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ?1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments. PMID:23712549

  19. Acidic Alteration Environments at Valles Marineris, Noctis Labyrinthus and Mawrth Vallis

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Weitz, Catherine M.; Flahaut, Jessica; Gross, Christoph; Horgan, Briony

    2015-04-01

    Unique surface materials have been discovered at Valles Marineris, Noctis Labyrinthus, Mawrth Vallis, and elsewhere that have CRISM features distinct from those of any known minerals. Typically these unusual sites are found in light-toned outcrops or interior layered deposits associated with phyllosilicates and/or sulfates. We term these units "doublet" materials because they exhibit a doublet absorption in CRISM spectra between 2.2 and 2.3 µm. We are investigating the spectral signatures of these outcrops compared to lab spectra of minerals, mixtures and alteration products. We're also evaluating the stratigraphy of these unique alteration phases compared with neighboring phyllosilicate and sulfate units. A similar 2.2-2.3 µm doublet has been observed in spectra taken of acid altered clays produced in the laboratory. The band centers and relative intensities of these Martian doublet features vary greatly suggesting that a process such as acid weathering could be acting on OH-bearing minerals to produce altered phases that differ depending on the type of substrate, water/rock ratio, solution chemistry, and duration of aqueous processes. Because these unique materials occur in many regions across a range of times on Mars, acidic alteration may have been a key process at local and regional scales throughout Martian geologic history. Constraining the types of acidic alteration that have taken place on Mars will assist in defining the aqueous geochemistry at these sites.

  20. Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of LANDSAT digital data

    NASA Technical Reports Server (NTRS)

    Ballew, G.

    1977-01-01

    The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.

  1. Correlated alteration effects in CM carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael E.

    1996-07-01

    Three parameters are proposed to determine the relative extent of alteration in CM chondrites. The mineralogic alteration index monitors the relative progress of coupled substitutions in the progressive alteration of cronstedtite to Mg-serpentine and increases with increasing alteration. To calculate values of this index, an algorithm has been developed to estimate the average matrix phyllosilicate composition in individual CM chondrites. The second parameter is the volume percent of isolated matrix silicates, which decreases with progressive alteration due to mineral hydration. Finally, the volume percent of chondrule alteration monitors the extent of chondrule phyllosilicate production and increases as alteration proceeds. These parameters define the first CM alteration scale that relies on multiple indicators of progressive alteration. The following relative order of increasing alteration is established by this model: Murchison ? Bells < Pollen ? Murray < Mighei < Nogoya < Cold Bokkeveld. The relative degree of aqueous processing Cochabamba and Boriskino experienced is less precisely constrained, although both fall near the middle of this sequence. A comparison between the mineralogic alteration index and literature values for the whole-rock chemistry of CM chondrites reveals several correlations. A positive, nearly linear correlation between bulk H content and progressive CM alteration suggests an approximately constant production rate of new phyllosilicates relative to the mineralogical transition from cronstedtite to Mg-serpentine. The abundance of trapped planetary 36Ar decreases systematically in progressively altered CM chondrites, suggesting the wholesale destruction of primary noble gas carrier phase (s) by aqueous reactions. Because low temperature fluid-rock reactions are generally associated with large isotopic mass fractionation factors, we also compared our model predictions with ?18O values for bulk CM samples. Although some of these data are poorly resolved, the order of increasing ?18O values approximates the order of increasing alteration predicted by our model parameters. Multiple correlations between diverse alteration parameters strongly suggest that (a) different CM chondrites experienced similar kinds of processes and conditions, and (b) CM materials experienced in situ alteration on the CM parent body or bodies.

  2. Correlated Alteration Effects in CM Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Zolensky, Michael E.; Browning, Lauren B.; McSween, Harry Y., Jr.

    1996-01-01

    Three parameters are proposed to determine the relative extent of alteration in CM chondrites. The mineralogic alteration index monitors the relative progress of coupled substitutions in the progressive alteration of cronstedtite to Mg-serpentine, and increases with increasing alteration. To calculate values of this index, an algorithm has been developed to estimate the average matrix phyllosilicate composition in individual CM chondrites. The second parameter is the volume percent of isolated matrix silicates, which decreases with progressive alteration due to mineral hydration. Finally, the volume percent of chondrule alteration monitors the extent of chondrule phyllosilicate production, and increases as alteration proceeds. These parameters define the first CM alteration scale that-relies on multiple indicators of progressive alteration. The following relative order of increasing alteration is established by this model: Murchison less than or equal to Bells less than Pollen less than or equal to Murray less than Mighei less than Nogoya less than Cold Bokkeveld. Bulk delta18O values generally increase with progressive alteration, providing additional support for this sequence. The relative degree of aqueous processing Cochabamba and Boriskino experienced is less precisely constrained, although both fall near the middle of this sequence. A comparison between the mineralogic alteration index and literature values of the whole-rock chemistry of CM chondrites reveals several correlations. For example, a positive, nearly linear correlation between bulk H content and progressive CM alteration suggests an approximately constant production rate of new phyllosilicates relative to the mineralogical transition from cronstedtite to Mg-serpentine. Furthermore, the abundance of trapped planetary Ar-36 decreases systematically in progressively altered CM chondrites, suggesting the wholesale destruction of primary noble gas carrier phase(s) by aqueous reactions. Multiple correlations between diverse alteration parameters indicate that different CM chondrites probably experienced the same kinds of processes and conditions during in situ parent body alteration.

  3. Sedimentary reservoir oxidation during geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Lammers, Laura N.; Brown, Gordon E.; Bird, Dennis K.; Thomas, Randal B.; Johnson, Natalie C.; Rosenbauer, Robert J.; Maher, Katharine

    2015-04-01

    Injection of carbon dioxide into subsurface geologic reservoirs during geologic carbon sequestration (GCS) introduces an oxidizing supercritical CO2 phase into a subsurface geologic environment that is typically reducing. The resulting redox disequilibrium provides the chemical potential for the reduction of CO2 to lower free energy organic species. However, redox reactions involving carbon typically require the presence of a catalyst. Iron oxide minerals, including magnetite, are known to catalyze oxidation and reduction reactions of C-bearing species. If the redox conditions in the reservoir are modified by redox transformations involving CO2, such changes could also affect mineral stability, leading to dissolution and precipitation reactions and alteration of the long-term fate of CO2 in GCS reservoirs. We present experimental evidence that reservoirs with reducing redox conditions are favorable environments for the relatively rapid abiotic reduction of CO2 to organic molecules. In these experiments, an aqueous suspension of magnetite nanoparticles was reacted with supercritical CO2 under pressure and temperature conditions relevant to GCS in sedimentary reservoirs (95-210 °C and ?100 bars of CO2). Hydrogen production was observed in several experiments, likely caused by Fe(II) oxidation either at the surface of magnetite or in the aqueous phase. Heating of the Fe(II)-rich system resulted in elevated PH2 and conditions favorable for the reduction of CO2 to acetic acid. Implications of these results for the long-term fate of CO2 in field-scale systems were explored using reaction path modeling of CO2 injection into reservoirs containing Fe(II)-bearing primary silicate minerals, with kinetic parameters for CO2 reduction obtained experimentally. The results of these calculations suggest that the reaction of CO2 with reservoir constituents will occur in two primary stages (1) equilibration of CO2 with organic acids resulting in mineral-fluid disequilibrium, and (2) gradual dissolution of primary minerals promoting significant CO2 reduction through the release of Fe(II). The reduction of CO2 is identified as a new trapping mechanism that could significantly enhance the long-term stability of GCS reservoirs. Identification of reservoir characteristics that promote CO2 redox transformations could be used as an additional factor in screening geologic reservoirs for GCS.

  4. Geologic and structural map of eastern Asia

    SciTech Connect

    Letouzey, J.; Sage, L.

    1986-07-01

    A synthesis of the onshore and offshore geologic data of eastern Asia, prepared by the Institut Francais du Petrole (IFP), has allowed the construction of geologic and structural maps for this region. These maps include three color sheets (scale = 1:2.5 million) and three plates of geologic and structural cross sections. Located between lat. 4/sup 0/ and 35/sup 0/N, and long. 106/sup 0/ and 132/sup 0/E, the maps cover the following geographic areas: East and South China Sea, Sulu Sea, West Philippine basin and onshore neighboring terrains, Kyushu and Ryukyu Islands, the China margin, Taiwan Island, Vietnam, North West Borneo, and the Philippines. The maps synthesize seismic interpretations, oil well data, geologic work in south Japan, Taiwan, Borneo, and the Philippines, and recent data published between 1976 and 1985. Twenty-four geologic cross sections (scale = 1:1.25 million, vertical exaggeration x 6) intersect ocean margins, important basins, and the different structural domains. They are based on seismic profiles, well data, and available onshore and offshore geologic data. These cross sections show basement composition and structures, different tectonic and sedimentary domains, and the structure and thickness of different sedimentary deposits (such as age, unconformities, and geologic structures). Maps and cross sections will be published in early 1987.

  5. Geology Before Pluto: Pre-encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity in the form of tectonics and cryo-volcanism.

  6. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the prospects for endogenic activity in the form of tectonics and cryovolcanism.

  7. Mapping Vesta: A Geological Overview

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Yingst, R.; Williams, D. A.; Schenk, P.; Neukum, G.; Mottola, S.; Buczkowski, D.; O'Brien, D. P.; Garry, W. B.; Blewett, D. T.; Denevi, B. W.; Roatsch, T.; Preusker, F.; Nathues, A.; Sierks, H.; Sykes, M. V.; De sanctis, M.; McSween, H. Y.; Keller, H. U.; Marchi, S.

    2011-12-01

    Observations from the Dawn (Russell et al., 2007) spacecraft enabled deriva-tion of 4Vesta's shape, facilitated mapping of the surface geology and pro-vided the first evidence for Vesta's geological evolution. The Dawn mission is equipped with a framing camera (FC), a visible and infrared mapping spectrometer (VIR) and a gamma-ray and neutron detector (GRaND). So far science data are collected during the approach to the asteroid and protoplanet Vesta, a circular polar orbit at an altitude of 2700 km providing ~ 230 m/pix camera resolution and a lower orbit, at 700 km altitude with a camera resolu-tion of ~ 65 m/pixel. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, regolith and prob-able volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting possible buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest candi-date crater, a ~460 km depression at the south pole, has been shown to con-tain an incomplete inward facing cuspate scarp, and a large central mound surrounded by unusual complex arcuate ridge and groove patterns. Although asymmetric in general form, these characteristics do not contradict an impact origin but may also allow endogenic processes like convective downwelling or hybrid modification of an impact. Rapid rotation of Vesta during impact may explain some anomalous features (Jutzi and Asphaug, 2010). A set of large equatorial troughs may be related to the formation process of the south polar structure or due to stress caused by changes of the rotational axis. The crater size frequency and the chronology function is derived from the lunar chronology, scaled to impact frequencies modeled for Vesta according to (Bottke et al., 1994) and (O'Brien and Sykes, 2011). The northern hemi-sphere is heavily cratered by a large variety of ancient degraded and fresh sharp craters. Preliminary crater counts indicate only small differences in absolute surface model ages between the northern region and the south polar structure.

  8. Geologic map + fault mechanics problem set

    NSDL National Science Digital Library

    John Singleton

    This exercise requires students to answer some questions about stress and fault mechanics that relate to geologic maps. In part A) students must draw a cross section and Mohr circles and make some calculations to explain the slip history and mechanics of two generations of normal faults. In part B) students interpret the faulting history and fault mechanics of the Yerington District, Nevada, based on a classic geologic map and cross section by John Proffett. keywords: geologic map, cross section, normal faults, Mohr circle, Coulomb failure, Andersonian theory, frictional sliding, Byerlee's law

  9. The Geologic Story of Yosemite Valley

    NSDL National Science Digital Library

    N. Huber

    This website of the United States Geological Survey (USGS) and the National Park Service (NPS) discusses the geology of Yosemite Valley in California, beginning 100 million years ago with the formation of the granite rocks found in this park and continuing with jointing, exfoliation, and erosion through ice and water. Bedrock Geology includes details about the formation, classification, and descriptions of the plutonic bedrock. It also discusses the relationship of landforms to rock composition and structure and their role in shaping the Yosemite valley.

  10. Circadian Disorganization Alters Intestinal Microbiota

    PubMed Central

    Voigt, Robin M.; Forsyth, Christopher B.; Green, Stefan J.; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H.; Turek, Fred W.; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  11. Global Warming in Geologic Time

    ScienceCinema

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  12. Geological controls on reservoir properties

    SciTech Connect

    Kaldi, J.G.

    1988-01-01

    The Midale field produces oil from the lower, middle, and upper zone carbonates of the Mississippian Midale beds. Like many older fields with declining production, the Midale reservoir is a prime candidate for enhance recovery operations. Therefore, recent geological investigations in this field have been directed toward detailed characterization of the rocks in terms of their potential response to the movement of various fluids. The reservoir was thus divided into flow units. Dividing was done by first detailing the depositional and diagenetic lithofacies. Next, quantitative data, including porosity and permeability measurements, pore geometry, and mercury injection capillary pressure curves, were generated for each lithofacies. From these analyses, comparing aspect ratios (pore to pore-throat relationships), coordination numbers (throats per pore), and recovery efficiencies (S/sub max/ - S/sub or/ on drainage and imbibition MICP curves) is possible, thereby determining flow units. The lower zone constitutes flow unit 1, made up of lime packstones to wackestones, locally having a vuggy texture where late-stage replacive anhydrites have been dissolved. Middle zone carbonates comprise 4 additional flow units. Upper zone carbonates (flow unit 6) are uniformly microcrystalline dolomites with a pervasive nonfabric selective microfracture system. Reservoir properties in the Midale reservoir are defined by the behavior of individual flow units; these, in turn, are controlled mainly by the rocks' sedimentary and diagenetic history.

  13. Stochastic Representation of Sedimentary Geology

    NASA Astrophysics Data System (ADS)

    Elmouttie, M. K.; Krähenbühl, G.; Poropat, G. V.; Kelso, I.

    2014-03-01

    Discrete fracture network representations of discontinuities in rock masses have been shown to be useful in capturing heterogeneity in rock mass properties. Providing computational efficiency in the resulting simulations and analyses is attained, these fracture representations can be combined with structural modelling and sampling algorithms. Multiple fracture network realisations can be generated and the resulting rock mass properties interrogated. Statistical analyses based on fracture connectivity, block size distribution and slope stability can be performed and provide results defined in terms of confidence intervals. For sedimentary geology consisting of dense bedding, equivalent medium continuum methods have traditionally been used in preference to discrete fracture representations due to the large numbers of structures involved and resulting computational complexity. In this paper, it is shown that stochastic representation of these layers can be employed. An analytical solution to accommodate bedding given an assumed block size distribution has been derived. Using this formulation, polyhedral modelling has been used to investigate the influence of bedding on block formation and block size distributions using field data. It is shown that the analysis is both computationally efficient and can capture truncation of size distribution by such layers without numerical methods.

  14. (abstract) Topographic Signatures in Geology

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Evans, Diane L.

    1996-01-01

    Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.

  15. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  16. Global Warming in Geologic Time

    SciTech Connect

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  17. Map Showing Geology, Oil and Gas Fields and Geologic Provinces of Africa, Ver. 2.0

    NSDL National Science Digital Library

    Ahlbrandt, Thomas S.

    The US Geological Survey offers the Map Showing Geology, Oil and Gas Fields and Geologic Provinces of Africa Web site and report. The agency's goal for the pieces includes assessing the undiscovered and technically recoverable oil and gas resources of the world. The site includes various descriptions of what the map depicts and how data was processed using Geographic Information Systems. Once the interactive map is activated, users can search and click the map of Africa to view geologic provinces, oil and gas fields, as well as the various surface geological classifications. Although the interface is a bit cumbersome and works best with a fast Internet connection, the unique information provided should draw the attention of those interested in geology. [JAB

  18. OneGeology-Europe - The Challenges and progress of implementing a basic geological infrastructure for Europe

    NASA Astrophysics Data System (ADS)

    Asch, Kristine; Tellez-Arenas, Agnes

    2010-05-01

    OneGeology-Europe is making geological spatial data held by the geological surveys of Europe more easily discoverable and accessible via the internet. This will provide a fundamental scientific layer to the European Plate Observation System Rich geological data assets exist in the geological survey of each individual EC Member State, but they are difficult to discover and are not interoperable. For those outside the geological surveys they are not easy to obtain, to understand or to use. Geological spatial data is essential to the prediction and mitigation of landslides, subsidence, earthquakes, flooding and pollution. These issues are global in nature and their profile has also been raised by the OneGeology global initiative for the International Year of Planet Earth 2008. Geology is also a key dataset in the EC INSPIRE Directive, where it is also fundamental to the themes of natural risk zones, energy and mineral resources. The OneGeology-Europe project is delivering a web-accessible, interoperable geological spatial dataset for the whole of Europe at the 1:1 million scale based on existing data held by the European geological surveys. Proof of concept will be applied to key areas at a higher resolution and some geological surveys will deliver their data at high resolution. An important role is developing a European specification for basic geological map data and making significant progress towards harmonising the dataset (an essential first step to addressing harmonisation at higher data resolutions). It is accelerating the development and deployment of a nascent international interchange standard for geological data - GeoSciML, which will enable the sharing and exchange of the data within and beyond the geological community within Europe and globally. The geological dataset for the whole of Europe is not a centralized database but a distributed system. Each geological survey implements and hosts an interoperable web service, delivering their national harmonized geological data. These datasets are registered in a multilingual catalogue, who is one the main part of this system. This catalogue and a common metadata profile allows the discovery of national geological and applied geological maps at all scapes, Such an architecture is facilitating re-use and addition of value by a wide spectrum of users in the public and private sector and identifying, documenting and disseminating strategies for the reduction of technical and business barriers to re-use. In identifying and raising awareness in the user and provider communities, it is moving geological knowledge closer to the end-user where it will have greater societal impact and ensure fuller exploitation of a key data resource gathered at huge public expense. The project is providing examples of best practice in the delivery of digital geological spatial data to users, e.g. in the insurance, property, engineering, planning, mineral resource and environmental sectors. The scientifically attributed map data of the project will provide a pan-European base for science research and, importantly, a prime geoscience dataset capable of integration with other data sets within and beyond the geoscience domain. This presentation will demonstrate the first results of this project and will indicate how OneGeology-Europe is ensuring that Europe may play a leading role in the development of a geoscience spatial data infrastructure (SDI) globally.

  19. Estimating the social value of geologic map information: A regulatory application

    USGS Publications Warehouse

    Bernknopf, R.L.; Brookshire, D.S.; McKee, M.; Soller, D.R.

    1997-01-01

    People frequently regard the landscape as part of a static system. The mountains and rivers that cross the landscape, and the bedrock that supports the surface, change little during the course of a lifetime. Society can alter the geologic history of an area and, in so doing, affect the occurrence and impact of environmental hazards. For example, changes in land use can induce changes in erosion, sedimentation, and ground-water supply. As the environmental system is changed by both natural processes and human activities, the system's capacity to respond to additional stresses also changes. Information such as geologic maps describes the physical world and is critical for identifying solutions to land use and environmental issues. In this paper, a method is developed for estimating the economic value of applying geologic map information to siting a waste disposal facility. An improvement in geologic map information is shown to have a net positive value to society. Such maps enable planners to make superior land management decisions.

  20. Spatial relations of the fracture intersections, hydrothermal alterations and the aeroradiometric measurements for selected areas at the North Eastern Desert, Egypt and their health risk considerations

    Microsoft Academic Search

    Adel ElFouly

    This study investigates the relation among secondary fractures associated with main fault systems and the hydrothermal alterations, iron enrichments, lithologic variations and the intensity of the aeroradiometric measurements in the study areas. The surface geology of the selected areas is dominated by basement exposures flanked by younger sedinentary formations ranging from Mesozoic to Tertiary in age. Granites- granodiorites, metavolcanics and

  1. Reports of planetary geology program, 1980. [Bibliography

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler); Kosters, E. C. (compiler)

    1980-01-01

    This is a compilation of abstracts of reports which summarize work conducted in the Planetary Geology Program. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  2. Significant achievements in the planetary geology program

    NASA Technical Reports Server (NTRS)

    Head, J. W. (editor)

    1984-01-01

    Recent developments in planetology research are summarized. Important developments are summarized in topics ranging from solar system evolution, comparative planetology, and geologic processes active on other planetary bodies, to techniques and instrument development for exploration.

  3. Statutory and Administrative Law for Geology Courses.

    ERIC Educational Resources Information Center

    Gutstadt, Allan

    1986-01-01

    Federal, state, and local statutory law is created by legislative bodies, administrative law by government agencies. Describes the nature of these laws and recommends that both statutory and administrative law be included in courses on legal aspects of geology. (JN)

  4. A LONG, LONG time ago: geologic timescales

    NSDL National Science Digital Library

    Elizabeth Johnson

    Each student randomly picks a card with a geologic event (written description and an image) on it. A timeline has 11 events, not including the formation of the Earth and today. Students attach their event where they think it should go on a 45.5' timeline (in the hallway) made out of paper adding tape and mark the location on the timeline. They return to the classroom and receive a list of age dates for each event. Each group figures out the scale (1 foot = 100 million years) and then moves their events to the correct locations. Students are asked how the position of the events changed, and answer other questions that reinforce the difference between human timescales and geologic timescales. The powerpoint file below contains a template for making geologic event labels for the index cards. Instructors can tailor the geologic event list to fit their course.

  5. CRAIG M. BETHKE Department of Geology

    E-print Network

    Bethke, Craig

    VITA CRAIG M. BETHKE Department of Geology University of Illinois 1301 West Green Street Urbana. Undergraduate interns (paid positions only): Jason Dotterer, Arkady Epshteyn, Andrew Rassi, Rachel Rassi, Tamar

  6. Christopher U.S. Geological Survey

    E-print Network

    desalinization loop in Chula Vista, California. Hydrologist U.S. Geological Survey, Tucson, Arizona. May 2000-controlled rivers. · Analyzed debris flows and debris-flow processes in arid and mountainous regions from convective

  7. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  8. Geomorphology in North American Geology Departments, 1971

    ERIC Educational Resources Information Center

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  9. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R.E.; Squyres, S.W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D.W.; Morris, R.V.; Bell, J.F., III; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K.E.; Johnson, J.R.; Klingelhofer, G.; McEwen, A.; Rice, J.W., Jr.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  10. Alteration patterns and structural controls of the El Espino IOCG mining district, Chile

    NASA Astrophysics Data System (ADS)

    Lopez, G. P.; Hitzman, M. W.; Nelson, E. P.

    2014-02-01

    The El Espino IOCG mining district is characterized by several mineralized bodies the largest of which is the El Espino deposit, which has an estimated geologic resource of 123 Mt at 0.66 % Cu and 0.24 g/t Au. Mineralized bodies are distributed in a 7 × 10 km2 area throughout a 1,000-m vertical section. They range from single veins to stockworks and breccias to manto-type deposits. The ore bodies are hosted primarily by volcanic, volcaniclastic, and sedimentary rocks of the Early Cretaceous Arqueros and Quebrada Marquesa formations, with a few mineralized zones within Late Cretaceous dioritic intrusions. The fault and vein architecture shows that El Espino IOCG system was localized within a dilatational jog along a major transtensional dextral fault system. Sodic alteration (albite) is the most extensive style of alteration in the district, and it is bounded by major NS-NNE trending faults. Sodic-calcic (epidote-albite) alteration occurs at deep to medium elevations (1,000-500 m) and grades inward into calcic alteration. Calcic alteration surrounds dioritic intrusions of the Llahuin plutonic suite. Significant iron oxides are associated with later calcic alteration associations (actinolite-epidote-hematite). The upper portions of the alteration system (0-500 m) display hydrolytic alteration associations with abundant hematite. Hydrolytic veins are feeders to zones of manto-type alteration and mineralization within favorable volcano-sedimentary lithologies that formed El Espino deposit. Sulfides are largely confined to calcic and hydrolytic alteration associations. Hydrothermal fluids responsible for hematite and sulfide mineralization had salinities between 32 and 34 wt% NaCleq and temperature of approximately 425 °C at an estimated depth of 3-4 km. Geochronological U-Pb and 40Ar/39Ar data indicate that hydrothermal alteration was coeval with magmatic intrusive activity. One particular dioritic intrusion (88.5 Ma) preceded the calcic stage (88.4 Ma), which was accompanied by iron oxide copper and gold mineralization. Hydrolytic alteration, related to economic iron oxide copper and gold mineralization, came immediately after at 87.9 Ma.

  11. The Human side of geologic hazards

    NSDL National Science Digital Library

    Renee Faatz

    Students are asked to respond in a way they choose (as a class) to a geologic or weather related hazard. They begin with a study of the event, its causes and local effects. They then research the needs of the people affected. They research charities that serve the population affected. They choose a response (again, as a class). They educate the campus community about the geology/geography of the event, the needs and solicit donations.

  12. Volcanic geology of Tyrrhena Patera, Mars

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Crown, D. A.

    1990-05-01

    Consideration is given to the geology of Tyrrhena Patera, a large low-relief volcano in the southern cratered highlands of Mars. The general geology of Tyrrhena Patera is outlined and models for the formation of the volcano are described. Models derived from studies of terrestrial pyroclastic flows are applied to deposits at Tyrrhena Patera, showing that the characteristics of the deposits are consistent with an origin by the emplacement of gravity-driven ash flows generated by hydromagmatic or magmatic explosive eruptions.

  13. Geology Fieldnotes: Grand Teton National Park, Wyoming

    NSDL National Science Digital Library

    This National Park Service resource includes information about geology, park maps, visitor information, photographs, and links to other sites about this park. Geologic information spans the entire history of the park, beginning 2.5 billion years ago (Precambrian) to the present. Details about the different rock types and their formation, mountain building through plate tectonics and the Laramide Orogeny, formation of valleys and canyons, volcanism in the area, and erosion by glaciers are all covered.

  14. Comparison Charts of Geological Processes: Terrestrial Planets

    NSDL National Science Digital Library

    This chart presents information on the geological processes (volcanism, impact cratering, tectonics, and gradation) that have affected the Earth, Moon, and the terrestrial planets. Students compare the effects these processes have had on the Moon and planets. There is also a blank chart and a sheet of notes on the geological processes that may be used in conjunction with this chart. This chart is one of the activities for the Exploring Planets in the Classroom's Introduction to the Solar System.

  15. Microcomputer Geologic well data management system

    Microsoft Academic Search

    1984-01-01

    A well data management system, geoGRAM, is used to store historical well data and current data from geologic studies of the Rocky Mountain area. The program is a state-of-the-art data-base management system with the ease of use required by the geologist with limited computer experience. It allows the geologist to design map data files to suit the geology of the

  16. Geologic studies in Alaska by the U.S. Geological Survey during 1985

    USGS Publications Warehouse

    Bartsch-Winkler, S., (Edited By); Reed, K.M.

    1986-01-01

    This circular contains short reports about many of the geologic studies carried out in Alaska by the U.S. Geological Survey and cooperating agencies in 1985. The topics cover a wide range in scientific and economic interest. Separate bibliographic listings of published reports are included. These listings are: (1) data releases and folio components derived from the Alaska Mineral Resource Assessment Program, (2) reports on Alaska released in U.S. Geological Survey publications in 1985, and (3) reports about Alaska by U.S. Geological Survey authors in various scientific journals in 1985.

  17. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  18. Geologic Map of the Deer Point Quadrangle Garfield County, Utah

    E-print Network

    Seamons, Kent E.

    Geologic Map of the Deer Point Quadrangle Garfield County, Utah Nicholaus David Driscoll A thesis Reserved #12;ABSTRACT Geologic Map of the Deer Point Quadrangle, Garfield County, Utah Nicholaus D. Driscoll Department of Geological Sciences, BYU Master of Science A new geologic map of the Deer Point 7

  19. Geology Fieldnotes: Lake Mead National Recreation Area, Nevada/Arizona

    NSDL National Science Digital Library

    This Lake Mead National Recreation Area site contains park geology information, maps, photographs, visitor information, and teacher features (resources for teaching geology using national park examples). Park Geology is a guided tutorial, covering two billion years of geologic time from the Precambrian through the Cenozoic.

  20. Geology Fieldnotes: Death Valley National Park, California/Nevada

    NSDL National Science Digital Library

    This Death Valley National Park site contains park geology information, park maps, photographs, visitor information, and teacher features (resources for teaching geology using National Park examples). The Park Geology section contains an exaggerated cross-section showing the vertical rise within Death Valley. A link is provided to Death Valley's expanded geology page.

  1. Scientists Debate Whether the Anthropocene Should Be a New Geological Epoch

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    By about 2017 or 2018, scientists probably will have determined whether or not the Earth has entered into the "Anthropocene" epoch. Although many people are convinced that we are already living in the Anthropocene, that's the estimate for when a scientific review process could culminate in officially designating this potential new epoch of the Quaternary Period (roughly the past 2.6 million years) signified by profound human alteration to geological conditions and processes. The epoch would encompass—for the time being—a sliver of geological time separate rom the Holocene (roughly 12,000 years ago to the present), starting from perhaps the beginning of the Industrial Revolution, the end of World War II, or some other date determined to be a good marker to designate the beginning of the Anthropocene.

  2. Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya

    NASA Astrophysics Data System (ADS)

    Saadi, N. M.; Watanabe, K.; Imai, A.; Saibi, H.

    2008-06-01

    In this study, we successfully integrated geological data, potential field data, and remote sensing data with the aim of investigating and improving our knowledge of the structural setting of the Eljufra area, northwestern Libya. SPOT-5 panchromatic band and digital elevation models (DEM) were used to construct surface shaded maps, and gravity and aeromagnetic surveys were used to provide information on subsurface structures and the nature of intrusive bodies. The results revealed that the prevailing trend of lineaments is NNW-SSE and NNE-SSW. A Bouguer anomaly map revealed that horst and graben blocks occur inside the large graben. An analytic signal method was applied to the aeromagnetic data to estimate locations and the minimum depths to the contact. A comparison of gravity and magnetic data provided information on hydrothermally altered basalt and sediment density. An anticlinal structure was detected in the western part of the study area. The effects of faults on basalt rocks indicated geological time for volcanic activity.

  3. GeoKansas: A Place to Learn About Kansas Geology

    NSDL National Science Digital Library

    Liz Brosius

    This website, part of the Kansas Geological Survey (KGS), contains educational information about Kansas geology, including images of geology from around the state, details about field trips, and a glossary with hundreds of geologic terms and various geologic places of interest sorted by region. Kansas Rocks describes various rocks by name and where they are found and Kansas Fossils describes fossil types and locations. Geo Topics describes various issues and subjects relating to state geology such as the age of the Earth, geologic time, rock nomenclature, an ID table for Kansas minerals with Mohs hardness scale, and coal, lead and zinc mining within the state.

  4. OneGeology-Europe Plus Initiative

    NASA Astrophysics Data System (ADS)

    Capova, Dana; Kondrova, Lucie

    2014-05-01

    The Geological Surveys of the European countries hold valuable resources of geological data but, to discover, understand and use this data efficiently, a good level of standardization is essential. The OneGeology-Europe project had the aim of making geological maps at a scale 1:1M from Europe discoverable and accessible, available under a common data license and described by multilingual metainformation. A harmonized specification for basic geological map data was developed so that significant progress towards harmonizing the datasets was achieved. Responsibility for the management of the OneGeology-Europe portal has been taken by EuroGeoSurveys and provided by CGS and BRGM. Of the 34 members of EuroGeoSurveys (EGS), only 20 participated in the OneGeology-Europe project (Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Sweden, Spain, United Kingdom), so the European area was not completely covered. At the 33rd General Meeting and Directors Workshop in 2012 it was therefore decided to establish a successor initiative OneGeology Europe Plus (1G-E+) with the purpose of extending the coverage by geological maps at a scale of 1:1 M to all the EGS member countries (including Albania, Austria, Bulgaria, Croatia, Cyprus, Greece, Iceland, Lithuania, Malta, Romania, Russia, Switzerland, Turkey, Ukraine) and also, if possible, to the other European countries (Belorussia, Bosnia and Herzegovina, Faeroe Islands, Kosovo, Latvia, Macedonia, Moldavia, Montenegro, Serbia). In order to achieve the desired result, it has been necessary for the new GSOs who intend to supply the additional 1G-E standardized services to carry out the work using their own staff and resources. The technical guidance and other support have been provided by the 1G-E+ Technical Support Team, funded from the internal budgets of their respective surveys. The team is coordinated by the Czech Geological Survey (CGS) working with the Bureau de Recherches Géologiques et Minières (BRGM), the British Geological Survey (BGS), the Geological Survey of Denmark and Greenland (GEUS) and the Geological Survey of Slovenia (GeoZS). The Geological Survey of the Netherlands (TNO) decided to provide financial support for the initiative. The Technical Support Team has been providing the technical advice required to enable the inclusion of geological maps from new countries in the 1G-E Portal using the standards developed and accepted for 1G-E. Cookbooks, on-line help and a helpdesk are provided during the work. A technical workshop was organized at which all the technical steps required to reach the target solution were presented and discussed. All newcomers must agree the existing common license that was created for downloading the 1G-E data. It should be emphasized that the results will be displayed as part of the 1G-E project and metadata/portal infrastructures. The process is still ongoing because the harmonization work for most of the countries involved has been a demanding process. Some countries are facing difficulties because of the lack of expert personnel or insufficient resources of data. Despite some problems, the 1G-E+ initiative and the work involved has contributed to effective networking and technical cooperation between the GSOs across the wider European region.

  5. Altered mental status and fever

    PubMed Central

    Ajayi, Tokunbo; Bhatia, Ashmeet; Lambl, Barbara; Altamimi, Sarah

    2013-01-01

    West Nile virus (WNV) is still the most common cause of neuroinvasive arboviral disease in the USA with a case death of 10–30%. We are reporting a case of a 61-year-old woman with a history of Crohn's disease, fibromyalgia treated with chronic steroid therapy that presented with a day history of fever, confusion and lethargy. She had a lumbar puncture which was notable for lymphocytosis and was positive for WNV. She initially was treated with broad-spectrum antibiotics, which were subsequently discontinued when the diagnosis of WNV neuroinvasive disease (WNND) was made. A high index of suspicion is needed to diagnose WNND, and this should be suspected in elderly immunocompromised patient presenting with altered mental status and lumbar puncture suggestive of aseptic meningitis. Recent study has showed that there is genetic variation in the interferon response pathway which is associated with both risk for symptomatic WNV infection and disease progression. PMID:23813996

  6. Window to 'Clovis's' Altered Past

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Spirit shows a rock outcrop dubbed 'Clovis.' The rock was discovered to be softer than other rocks studied so far at Gusev Crater after the rover easily ground a hole (center) into it with its rock abrasion tool. An analysis of the interior of the hole with the rover's alpha particle X-ray spectrometer found higher concentrations of sulfur, bromine and chlorine compared to basaltic, or volcanic, rocks at Gusev. This might indicate that Clovis was chemically altered, and that fluids once flowed through the rock depositing these elements. Spirit's solar panels can be seen in the foreground. This image was taken by the rover's navigation camera on sol 205 (July 31, 2004).

  7. Petroleum geology of East Siberia

    SciTech Connect

    Clarke, J.W.

    1986-05-01

    The unmetamorphosed geologic section of the East Siberian region consists of upper Proterozoic clastic and carbonate sediments; Cambrian evaporites, carbonates, and black shales; Ordovician to permian clastic and carbonate sediments; Triassic basaltic flows and intrusives; and Jurassic and Cretaceous clastic sediments. During the Cambrian, a barrier reef extended across the region. Salt and anhydrite were deposited in the vast lagoon to the southwest behind this reef. The structure is typical of platforms; broad, gentle warps are complicated by smaller highs. The total area of East Siberia that is potentially favorable for oil and gas is 3.23 million km/sup 2/ (1.24 million mi/sup 2/). Deposits in the Lena-Tunguska province are in stratigraphic traps in Proterozoic to Cambrian clastic and carbonate sediments sealed by Cambrian salt and in anticlinal structures in areas of salt tectonics. Source beds seem to be Proterozoic. Pools in the Khatanga-Vilyuy province are in anticlines in Triassic, Jurassic, and Cretaceous clastic sedimentary rocks. Source beds are Permian carbonaceous shale. Most discoveries have been of gas; however, several fields have oil rings. The traps appear to have been filled by oil at one time. Undiscovered recoverable petroleum resources of East Siberia are assessed, at 90% probability, within the range of 2.2-14.6 billion bbl of oil and 72-278 tcf of gas. Mean estimates are 7.3 billion bbl of oil and 158 tcf of gas, respectively. Gas-hydrate deposits in the Lena-Vilyuy province, where permafrost is more than 400 m thick, are estimated to contain 27 tcf of possibly recoverable gas.

  8. Tethys - Geological and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Jaumann, Ralf; Wagner, Roland; Clark, Roger N.; Cruikshank, Dale P.; Dalle Ore, Cristina; Brown, Robert H.; Giese, Bernd; Roatsch, Thomas; Matson, Dennis; Baines, Kevin H.; Filacchione, Gianrico; Capaccione, Fabrizio; Burratti, Bonnie J.; Nicholson, Phil D.; Rodriguez, Sebastian

    2015-04-01

    Despite the spectral dominance of H2O ice on Tethys' surface, distinct spectral variations derived by the Cassini VIMS instrument could be detected. The ice infrared absorption strengths are very different from what was expected from the visible albedo derived from Voyager and Cassini camera data. Although on Tethys, the major ice absorptions at 1.5 and 2µm are general stronger on the leading hemisphere of the satellite similar to that seen on the neighboring satellites Dione and Rhea, the detailed mapping shows a more complex pattern. Two relatively narrow N/S trending bands enriched in H2O ice of relatively large particle size separate the Saturn-facing and the anti-Saturnian hemisphere. The largest impact crater Odysseus (33°N/129°W) is included in the N/S trending band of deeper H2O absorptions on the leading hemisphere, whereas the geologically older and fourth largest impact crater Penelope (11°S/249°W) is excluded from the 'icy' band on the trailing hemisphere - supporting an exogenic origin of these bands. The oval shaped dark albedo unit observed by Voyager in the equatorial region of Tethys' leading hemisphere, which could be related to magnetospheric 'dust' impacting the surface, exhibits slightly surpressed H2O ice absorptions compared to their surrounding regions. Variations in the spectral slope from the visible to the ultra-violet wavelength range are similar to the variations observed by Cassini ISS. The spectral slope is steepest (i.e. the effect of an ultra-violet absorber other than H2O ice is strongest) on the leading as well on the trailing hemisphere. No spectral properties could be exclusively associated with Tethys' extended graben system Ithaca Chasma. Local variations, i.e. local deepening of H2O ice absorptions, are mostly related to several probably fresh impact craters and to locations where topographic slope is high like crater walls. However, only a few such fresh impact craters could be observed.

  9. Geologic and mineralogic controls on acid and metal-rich rock drainage in an alpine watershed, Handcart Gulch, Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Caine, Jonathan S.; Lowers, Heather A.

    2012-01-01

    The surface and subsurface geology, hydrothermal alteration, and mineralogy of the Handcart Gulch area was studied using map and drill core data as part of a multidisciplinary approach to understand the hydrology and affects of geology on acid-rock drainage in a mineralized alpine watershed. Handcart Gulch was the locus of intense hydrothermal alteration that affected an area of nearly 3 square kilometers. Hydrothermal alteration and accompanied weak mineralization are spatially and genetically associated with small dacite to low-silica rhyolite stocks and plugs emplaced about 37-36 Ma. Felsic lithologies are commonly altered to a quartz-sericite-pyrite mineral assemblage at the surface, but alteration is more variable in the subsurface, ranging from quartz-sericite-pyrite-dominant in upper core sections to a propylitic variant that is more typical in deeper drill core intervals. Late-stage, hydrothermal argillic alteration [kaolinite and(or) smectite] was superimposed over earlier-formed alteration assemblages in the felsic rocks. Smectite in this late stage assemblage is mostly neoformed resulting from dissolution of chlorite, plagioclase, and minor illite in more weakly altered rocks. Hydrothermally altered amphibolites are characterized by biotitic alteration of amphibole, and subsequent alteration of both primary and secondary biotite to chlorite. Whereas pyrite is present both as disseminations and in small veinlets in the felsic lithologies, it is mostly restricted to small veinlets in the amphibolites. Base-metal sulfides including molybdenite, chalcopyrite, sphalerite, and galena are present in minor to trace amounts in the altered rocks. However, geologic data in conjunction with water geochemical studies indicate that copper mineralization may be present in unknown abundance in two distinct areas. The altered rocks contain an average of 8 weight percent fine pyrite that is largely devoid of metals in the crystal structure, which can be a significant source of trace metals in other areas with acid rock drainage. Thus, elevated base-metal concentrations in the trunk stream and discrete springs in the study area, as determined in previous studies, are likely derived from discrete metal-rich sources, rather than the abundant pyrite veins or disseminations. Pyrite is oxidized in nearly all outcrops examined. Drill core data show that zones of pyrite oxidation range in depth from 100 meters below the surface at higher elevations to just a few meters depth at the lowest elevations in the study area. However, discrete pyrite oxidation zones are present in drill core to depths of several hundred meters below the pervasive near-surface oxidation zones. These deeper discrete oxidation zones, which are present where fresh pyrite predominates, are spatially associated with fractures, small faults, and breccias. Quartz-sericite-pyrite-altered rocks containing unoxidized pyrite likely have the highest acid-generating capacity of all alteration assemblages in the study area. Hydrothermal alteration has left these rocks base-cation leached and thus acid-neutralizing potential is negligible. In contrast, propylitic-altered felsic rocks commonly contain trace to minor calcite and abundant chlorite, which provide some amount of acid-neutralization despite the presence of a few percent pyrite.

  10. Role of geology in diamond project development

    NASA Astrophysics Data System (ADS)

    Jakubec, Jaroslav

    2004-09-01

    For a mining operation to be successful, it is important to bring fundamental and applied science together. The mining engineer needs to understand the importance of geology, mineralogy and petrography, and how projects can benefit from the data collected during the exploration and pre-exploration stage. Geological scientists also need to understand the process of project development from the exploration stage through mine design and operation to mine closure. Kimberlite pipe or dyke emplacement, geology and petrology/mineralogy are three areas that illustrate how information obtained from the geological studies could directly influence the mining method selection and the project strategy and design. Kimberlite emplacement is one of the fundamental processes that rely on knowledge of the kimberlite body geology. Although the importance of the emplacement model is commonly recognized in the resource geology, mining engineers do not always appreciate its importance to the mine design. The knowledge of the orebody geometry, character of the contact zones, internal structures and distribution of inclusions could directly influence pit wall stability (thus strip ratio), underground mining method selection, dilution, treatability, and the dewatering strategy. Understanding the internal kimberlite geology mainly includes the geometry and character of individual phases, and the orientation and character of internal structures that transect the rock mass. For any mining method it is important to know "where the less and where the more competent rocks are located" to achieve stability. On the other hand, the detailed facies studies may not be important for the resource and mine design if the rock types have similar physical properties and diamond content. A good understanding of the kimberlite petrology and mineralogy could be crucial not only to the treatability (namely diamond damage and liberation), but also to the pit wall and underground excavation stability, support design, mine safety (mudrush risk assessment) and mine dewatering. There is no doubt that a better understanding of the kimberlite and country rock geology has a direct impact on the safety and economics of the mining operations. The process of mine design can start at the beginning of kimberlite discovery by incorporating the critical geological information without necessarily increasing the exploration budget. It is important to appreciate the usefulness of fundamental geological research and its impact on increased confidence in the mine design. Such studies should be viewed as worthwhile investments, not as cost items.

  11. 28 CFR 36.404 - Alterations: Elevator exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Alterations: Elevator exemption. 36.404 Section...Alterations § 36.404 Alterations: Elevator exemption. (a) This section does not require the installation of an elevator in an altered facility...

  12. 28 CFR 36.404 - Alterations: Elevator exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Alterations: Elevator exemption. 36.404 Section...Alterations § 36.404 Alterations: Elevator exemption. (a) This section does not require the installation of an elevator in an altered facility...

  13. 28 CFR 36.404 - Alterations: Elevator exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Alterations: Elevator exemption. 36.404 Section...Alterations § 36.404 Alterations: Elevator exemption. (a) This section does not require the installation of an elevator in an altered facility...

  14. 28 CFR 36.404 - Alterations: Elevator exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Alterations: Elevator exemption. 36.404 Section...Alterations § 36.404 Alterations: Elevator exemption. (a) This section does not require the installation of an elevator in an altered facility...

  15. 28 CFR 36.404 - Alterations: Elevator exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Alterations: Elevator exemption. 36.404 Section...Alterations § 36.404 Alterations: Elevator exemption. (a) This section does not require the installation of an elevator in an altered facility...

  16. Altered sexual health after childbirth: Part 2.

    PubMed

    O'Malley, Deirdre; Smith, Valerie

    2013-02-01

    In Part I of this two part series the possible risk factors for altered sexual health after childbirth were explored. In further emphasising the importance of this topic in maternity care provision, Part 2 considers the potential causes of altered postpartum sexual health; mode of birth and perineal trauma are discussed, and the routine postnatal consultation as an opportunity to identify altered sexual health patterns and to counsel women accordingly, are examined. PMID:23461233

  17. Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Kargel, Jeffrey S.

    2005-01-01

    The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are "painted" into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would produce steeper thermal gradients than in pure ice. If there are salt-rich layers inside the crust, forming salt beds over the seafloor or a briny eutectic crust, for instance, the high thermal gradients may promote endogenic geological activity. On the seafloor, bedded salt accumulations may exhibit high thermochemical gradients. Metamorphic and magmatic processes and possible niches for thermophilic life at shallow suboceanic depths result from the calculated thermal profiles, even if the ocean is very cold.

  18. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico

    Microsoft Academic Search

    Van Hart

    2003-01-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of

  19. Can the Balmy Pliocene Predict Geologic timeline spiral courtesy of the U.S. Geological Survey

    E-print Network

    Can the Balmy Pliocene Predict Geologic timeline spiral courtesy of the U.S. Geological Survey 20.AthanasiosKoutavas,CUNYCollegeofStatenIsland the past appears to be the only way we can see how climate responded over a long enough time span

  20. Investigating the Geologic Time Scale: Creating posters to Display Trends in Geologic Time

    NSDL National Science Digital Library

    kim Atkins

    This observational inquiry activity involving careful descriptions of rocks and fossil including age will be used to create a scalar accurate geologic time scale. Students will observe and learn that the geologic time scale was created based on changes in fossil, rock, and atmospheric changes.

  1. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  2. Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology

    E-print Network

    Nimmo, Francis

    Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology F, dynamics Tides, solid body Pluto Triton a b s t r a c t We investigate the origins of Triton's deformed by obliquity tides, which arise because of its inclination. In contrast, Pluto is unlikely to be experiencing

  3. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    USGS Publications Warehouse

    Evan E. Thoms and Ralph A. Haugerud

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  4. Geologic datasets for weights of evidence analysis in northeast Washington: 1. geologic raster data

    USGS Publications Warehouse

    Boleneus, David E.; Causey, J. Douglas

    2000-01-01

    This dataset contains the combination of geology data (geologic units, faults, folds, and dikes) from 6 1:100,000 scale digital coverages in eastern Washington (Chewelah, Colville, Omak, Oroville, Nespelem, Republic). The data was converted to an Arc grid in ArcView using the Spatial Analyst extension.

  5. Geological Storage of CO2 from Power Niels Peter Christensen, Geological Survey of Denmark and

    E-print Network

    Geological Storage of CO2 from Power Generation Niels Peter Christensen, Geological Survey of Denmark and Greenland (GEUS) Abstract Carbon Capture and Storage (CCS) is capable of contributing in new coal- and gas-fired power plants, along with renewable energy infrastructure. There is also a need

  6. Bedrock Geologic Map of Maine and Surficial Geologic Map of Maine

    NASA Astrophysics Data System (ADS)

    Lyons, J. B.

    For the tectonic, structural, or surficial geologist, a geologic map is the ultimate document, encompassing within its bounds a concise display of the current status of geologic information for the region that it embraces. Because the state of Maine, areally, is half of the New England region, the new bedrock and surficial maps of that state, produced under the direction of State Geologist Walter Anderson with the collaboration of 13 bedrock area compilers, 12 surficial areal compilers, and aided by funding from the U.S. Department of Energy and the Maine Geological Survey, are important contributions to our knowledge of this portion of the northern Appalachian Mountains. These maps follow closely upon recently published bedrock maps of Massachusetts (E.-A. Zen et al., U.S. Geological Survey, Washington, D.C., 1983) and Connecticut U. Rodgers, Connecticut Geological and Natural History Survey, Hartford, 1985). Revisions of maps for the other New England states are in progress.

  7. Geologic and Mineral Resource Map of Afghanistan

    USGS Publications Warehouse

    Doebrich, Jeff L.; Wahl, Ronald R.; With Contributions by Ludington, Stephen D.; Chirico, Peter G.; Wandrey, Craig J.; Bohannon, Robert G.; Orris, Greta J.; Bliss, James D.; Wasy, Abdul; Younusi, Mohammad O.

    2006-01-01

    Data Summary The geologic and mineral resource information shown on this map is derived from digitization of the original data from Abdullah and Chmyriov (1977) and Abdullah and others (1977). The U.S. Geological Survey (USGS) has made no attempt to modify original geologic map-unit boundaries and faults as presented in Abdullah and Chmyriov (1977); however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. Labeling of map units has not been attempted where they are small or narrow, in order to maintain legibility and to preserve the map's utility in illustrating regional geologic and structural relations. Users are encouraged to refer to the series of USGS/AGS (Afghan Geological Survey) 1:250,000-scale geologic quadrangle maps of Afghanistan that are being released concurrently as open-file reports. The classification of mineral deposit types is based on the authors' interpretation of existing descriptive information (Abdullah and others, 1977; Bowersox and Chamberlin, 1995; Orris and Bliss, 2002) and on limited field investigations by the authors. Deposit-type nomenclature used for nonfuel minerals is modified from published USGS deposit-model classifications, as compiled in Stoeser and Heran (2000). New petroleum localities are based on research of archival data by the authors. The shaded-relief base is derived from Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data having 85-meter resolution. Gaps in the original SRTM DEM dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). The marginal extent of geologic units corresponds to the position of the international boundary as defined by Abdullah and Chmyriov (1977), and the international boundary as shown on this map was acquired from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af) in September 2005. Non-coincidence of these boundaries is due to differences in the respective data sources and to inexact registration of the geologic data to the DEM base. Province boundaries, province capital locations, and political names were also acquired from the AIMS Web site in September 2005. The AIMS data were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Version 2 differs from Version 1 in that (1) map units are colored according to the color scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org), (2) the minerals database has been updated, and (3) all data presented on the map are also available in GIS format.

  8. Geology Before Pluto: Pre-encounter Considerations

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey

    2014-05-01

    Jeffrey M. Moore (NASA Ames) and the New Horizons Science Team Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e. those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the prospects for endogenic activity in the form of tectonics and cryo-volcanism.

  9. Impact, and its implications for geology

    NASA Astrophysics Data System (ADS)

    Marvin, Ursula B.

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.

  10. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  11. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. (Texas A M Univ., College Station, TX (United States))

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  12. Modeling wetland loss in coastal Louisiana: Geology, geography, and human modifications

    NASA Astrophysics Data System (ADS)

    Cowan, James H.; Turner, R. Eugene

    1988-11-01

    Habitat change in coastal Louisiana from 1955/6 to 1978 was analyzed to determine the influence of geological and man-made changes on landscape patterns within 7.5 min quadrangle maps. Three quantitative analyses were used: principal components anlaysis, multiple regression analysis, and cluster analysis. Regional differences in land loss rates reflect variations in geology and the deltaic growth/decay cycles, man-induced chages in hydrology (principally canal dredging and spoil banking), and land-use changes (principally urbanization and agricultural expansion). The coastal zone is not homogeneous with respect to these variables and the interaction between causal factors leading to wetland loss is therefore locally variable and complex. The relationship between wetland loss, hydrologic changes, and geology can be described with statistically meaningful results, even though these data are insufficient to precisely quantify the relationship. However, these data support the hypothesis that the indirect impacts of man-induced changes (hydrologic and land use) may be as influential as the direct impacts resulting in converting wetlands to open water (canals) or modified (impounded) habitat. Three regions within the Louisiana coastal zone can be defined, based on the potential causal factors used in the analyses. The moderate (mean = 22%) wetland loss rates in region 1 are a result of relatively high canal density and developed area in marshes which overlie sediments of moderate age and depth; local geology acts, in this case, to lessen indirect impacts. On the other hand, wetland loss rates in region 2 are high (mean = 36%), despite fewer man-induced impacts; the potential for increased wetland loss due to both direct and indirect effects of man's activity in these areas is high. Conversely, wetland loss (mean = 20%) in region 3 is apparently least influenced by man's activity in the coastal zone because of sedimentary geology (old, thin sediments), even though these areas have already experienced significant direct habitat alteration and wetland loss.

  13. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    NASA Astrophysics Data System (ADS)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.

  14. Geologic coal assessment: The interface with economics

    USGS Publications Warehouse

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  15. Geology of the Apollo 17 site

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.

    1992-01-01

    The Apollo 17 landing site was unique in several aspects: (1) it was the only site that was not selected from telescopic-based geologic interpretation--interest in the site was generated by the visual observations of Al Worden, Apollo 15 Command Module pilot, who interpreted dark-haloed craters as possible cinder cones; (2) instead of 20-m-resolution photographs, as was the norm for all earlier missions, this site had Apollo 15 panoramic camera photography coverage that had 2-m resolution; and (3) it had a geologist-astronaut aboard who was intimately involved in all stages of planning and mission operation, and was also instrumental in the design of a long-handled sample bag holder that eliminated the need for crew to dismount before collecting a sample, which then permitted sampling between major stations. Details of site geology, sample description, and geologic synthesis of the site as viewed from studies through 1976 are summarized.

  16. U.S. Geological Survey Photographic Library

    NSDL National Science Digital Library

    Over its long history, the U.S. Geological Survey has taken many, many, photographs. In the course of their various geological studies and explorations, persons in their employ have documented volcanic explosions, mining projects, and dams. This website contains 30,000 photographs from 1868 to the present, and many of these images have never been published in any form. New users can get started by clicking one of the subject areas on the left-hand side of the homepage. These areas include "Earthquakes", "Mines, Mills, Quarries", and "Mount St. Helens". Visitors can also perform basic keyword searches, and they might wish to try out words like "dolomite", "karst", or "Colorado". Also, the site has an excellent "Portrait Gallery", which contains images of famed geological pioneers, such as Chares Van Hise.

  17. The Evolution of Dinosaurs Over Geologic Time

    NSDL National Science Digital Library

    This lesson plan asks high school students to combine their knowledge of evolution, geologic time, and dinosaurs into a discussion of how these three topics overlap with regard to dinosaur evolution in the Cretaceous period. Students will read about the work of paleontologist Paul Sereno and list the dinosaurs he has discovered as well as the locations in which they were found and the time periods in which they lived; review the periods of geologic time; review the theory of evolution and write a paragraph explaining how geographic isolation would contribute to the evolutionary process; write paragraphs describing the changes to the continental layout of the Earth during the Cretaceous period; write paragraphs relating geological changes to dinosaur evolution during the Cretaceous period; and create posters or computer presentations illustrating the Earth during the Cretaceous period and the evolution processes of dinosaur species during this time.

  18. Origins of Niagara: A Geological History

    NSDL National Science Digital Library

    Rick Berketa

    This site describes the geologic history and current hydrologic and cultural concerns associated with the natural resources of the Niagara region. Many topics are discussed, including the birth of Niagara Falls, the Wisconsin Glacier, rocks and sedimentary deposits, and the future of the falls. Hyperlinks connect one to related histories and facts concerning the Niagara Glen, Devil's Hole, the Niagara River Water Diversion Treaty, and two geologic tables: the Rock of Ages Chart and the Silurian Era Rock Chart. There are thumbnail photos dispersed throughout this document, which display geologic features such as a knick point, a gorge, and strata. A link connects to Thunder Alley, a comprehensive web site about Niagara Falls, of which this site is a part.

  19. Planetary Geology: Goals, Future Directions, and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Planetary exploration has provided a torrent of discoveries and a recognition that planets are not inert objects. This expanded view has led to the notion of comparative planetology, in which the differences and similarities among planetary objects are assessed. Solar system exploration is undergoing a change from an era of reconnaissance to one of intensive exploration and focused study. Analyses of planetary surfaces are playing a key role in this transition, especially as attention is focused on such exploration goals as returned samples from Mars. To assess how the science of planetary geology can best contribute to the goals of solar system exploration, a workshop was held at Arizona State University in January 1987. The participants discussed previous accomplishments of the planetary geology program, assessed the current studies in planetary geology, and considered the requirements to meet near-term and long-term exploration goals.

  20. Geologic time: The age of the Earth

    USGS Publications Warehouse

    Newman, William L.

    1977-01-01

    The Earth is very old 4 1/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists and believed by some to reach back to the birth of the Solar System, is difficult if not impossible to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth's age is locked up in its rocks, and man's centuries-old search for the key led to the beginning and nourished the growth of geologic science.

  1. USGS Coastal and Marine Geology Infobank

    NSDL National Science Digital Library

    This clearinghouse provides organized access to U.S. Geological Survey (USGS) coastal and marine data and metadata. The facilities section features material on Coastal and Marine Geology (CMG) regional centers such as maps and information about staff, facilities, labs, research libraries and archives. The Atlas includes maps for specific geographic areas and information about specific types of data within the area such as bathymetry, gravity, magnetics, sampling, and others. The Field Activities section provides information about specific data collection activities (date, place, crew, equipment used, data collected, publications). The Field Activity Collection System (FACS) provides information about field activities (overviews, crew lists, equipment lists, and events). The "Geology School" provides general, broad-based information about earth science concepts, processes and terminology, indexed to keywords. There is also a set of links to additional databases, software tools and viewers, and to related topics.

  2. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  3. Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration.

    USGS Publications Warehouse

    Rejebian, V.A.; Harris, A.G.; Huebner, J.S.

    1987-01-01

    Experimental and field data are used to extend the utility of conodonts as semi-quantitative thermal indices into the regimes of regional and contact metamorphism, as well as hydrothermal alteration. These experiments approximate the type of Colour Alteration Indices mixture characteristically found in conodonts recovered from hydrothermally altered rocks. These data indicate that CAI values of 6 to 8 cannot be used to assess precise temperatures of hydrothermally altered rocks but may serve as useful indicators of potential mineralization. - from Authors

  4. Altered States of Consciousness and Alcohol.

    ERIC Educational Resources Information Center

    Jones, Ben Morgan; And Others

    This document contains the reports of research at a symposium on "Altered States of Consciousness and Alcohol." The participants primarily agreed that alcohol induces an altered state of consciousness similar to other drugs, but that this phenomenon has not been explicitly stated due to the current interest in newer and more novel drugs. The…

  5. Altered Books in Art Therapy with Adolescents

    ERIC Educational Resources Information Center

    Chilton, Gioia

    2007-01-01

    This article examines how altered books can be used in art therapy with adolescents. An altered book is a published book that has been changed into a new work of visual art through various art processes such as painting, drawing, collage, writing, and embellishment. Books are discussed as an art canvas on which to provide stimulation, structure,…

  6. Textures of Secondary Alteration Zones in Nakhla

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Wentworth, S. J.; Longazo, T. G.; Thomas-Keprta, K.; Gibson, E. K.

    2001-01-01

    Textures of secondary minerals in cracks in Nakhla are described and illustrated with high resolution Scanning Electron Microscopy (SEM) and BSE. Some Nakhla textures resemble alteration textures of glass in seafloor basalts. Criteria for inorganic vs. biogenic alteration are discussed. Additional information is contained in the original extended abstract.

  7. Geology Fieldnotes: Yellowstone National Park, Wyoming/Idaho/Montana

    NSDL National Science Digital Library

    This Yellowstone National Park site contains park geology information, photographs, related links, visitor information, multimedia resources, and teacher features (resources for teaching geology with National Park examples). The park geology section discusses the Park's geologic history, structural geology, and describes many of the geologic sites and wildlife found in the park. It describes the sites found on the routes from Old Faithful to Mammoth Springs (East Thumb, Old Faithful, Midway, Lower, and Norris geysers, geyser basins, Gibbon Falls), Mammoth Springs to Tower Junction and the Canyon (Undine Falls, Lava Creek, Lamar Valley, Hayden Valley), and at the Yellowstone Lake area (West Thumb and Grant Village).

  8. Divisions of Geologic Time: Major Chronostratigraphic and Geochronologic Units

    NSDL National Science Digital Library

    This geologic time scale, developed by the United States Geological Survey (USGS) Geologic Names Committee, provides the most up-to-date ages for all the geologic periods and presents recently adopted new names for some of the oldest divisions of geologic time. It is available as a downloadable, printable USGS fact sheet that includes the time-scale graphic, a brief description of the changes, and a discussion of how the time scale's color shemes relate to geologic maps. References and a citation for the publication are provided.

  9. Signature of hydrothermal alteration in ground-magnetic surveys at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.; McPhee, D. K.

    2011-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Although hydrothermal alteration in YNP has been extensively studied with field observations, remote-sensing imagery, and core drilling, the volume and geometry of hydrothermal systems at depth remain poorly constrained. Magnetic surveys can help to investigate buried hydrothermal alteration as demonstrated by the high-resolution aeromagnetic survey of YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity. This suggests large volumes of buried demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although the interpretation of magnetic anomalies is non-unique, Finn and Morgan (2002) used these magnetic lows to estimate a minimum volume of buried altered rock assuming complete demagnetization of the substratum. This aeromagnetic survey was of relatively high resolution (flight line spacing < 500 m and flight elevation <350 m above ground), but it was insufficient for detailed mapping of individual thermal areas. In order to obtain a closer look at several areas, we performed ground-based magnetic surveys within YNP using a cesium-vapor magnetometer along 4-5 km long transects crossing four thermal areas (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser Basin, and Smoke Jumper Hot-springs). We also performed a detailed survey over an area of about 800 m x 500 m around Lone Star Geyser. We also collected gravity data to help characterize the subsurface geologic structures and performed magnetic susceptibility, magnetic remanence, and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. The long magnetic transects show that magnetic anomalies are damped in altered areas suggesting a significant decrease in the magnetization of shallow volcanic units. The detailed magnetic map of the Lone Star Geyser displays a pronounced negative anomaly centered on the geyser mound and other hot-springs indicating demagnetization directly associated with the hydrothermal plumbing system. These surveys will be used to model the geometry of the demagnetized volcanic substratum associated with hydrothermal alteration.

  10. Geology Fieldnotes: Ice Age National Scientific Preserve

    NSDL National Science Digital Library

    This National Park Service (NPS) site gives information on the Ice Age National Scientific Preserve in Wisconsin, including geology, park maps, a photo album, and other media (books, videos, CDs). There is also a selection of links to other geologic and conservation organizations, and to information for visitors. This preserve contains a wealth of glacial features associated with the most recent Pleistocene continental glaciation including drumlins, kames, kettles, moraines, erratics, and eskers. It also contains a segment of the Ice Age National Scenic Trail, a 1000-plus mile hiking and backpacking trail that passes through this unique glacial landscape.

  11. Reports of Planetary Geology Program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (compiler)

    1981-01-01

    Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.

  12. Preliminary geologic mapping of Arsia Mons, Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.

    1991-01-01

    Geologic mapping of the Tharsis Montes at a scale of 1:500,000 was recently initiated as part of the Mars Geologic Mapping Program of NASA. Detailed mapping of the three large shield volcanoes and their surroundings will help to clarify the sequence of events which led to the formation of these features, as well as provide a basis for comparing the complex histories of the three related yet distinctive volcanic centers. Preliminary mapping of Arsia Mons at a scale of 1:2 M was carried out in preparation for detailed mapping. A map is presented along with a discussion of its contents.

  13. A generalized geologic map of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.

  14. Western Regional Coastal and Marine Geology - Introduction

    NSDL National Science Digital Library

    Until now, studies that involve the ocean floor have been at a disadvantage due to an almost complete lack of accurate marine base maps. Materials presented here serve to introduce the Pacific Seafloor Mapping Project, an endeavour by the United States Geological Survey to produce high-resolution base maps of the sea floor. These maps are intended for use in identifying areas of erosion and deposition on the continental shelf, locating areas of geologic hazards, and locating pathways for movement of sediment and pollutants.

  15. The Slippery Slope of Litigating Geologic Hazards

    NSDL National Science Digital Library

    David Ozsvath

    Based on a lawsuit brought against the County of Los Angeles by homeowners suing over damage caused by the Portuguese Bend Landslide, this case study teaches students principles of landslide movement while illustrating the difficulties involved with litigation resulting from natural hazards. Students first read a fictitious newspaper article (based on the actual events), then receive details about the geologic setting and landslide characteristics. With this information, the students are then asked to evaluate the possible causes of the disaster. The case was developed for use in a non-majors’ introductory course in environmental geology.

  16. The Galilean Satellite Geological Mapping Program, 1983

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1984-01-01

    The Galilean Satellite Geological Mapping Program was established to illuminate detailed geologic relations on the four large satellites of Jupiter. The program involves about 40 investigators from various universities, reseach institutes, and government offices in the United Sttes, England, Germany, and Italy. A total of 24 researchers have been assigned to map 10 quadrangles on Ganymede, 15 to map 6 quadrangles on Io, and 3 to map 2 quadrangles on Europa. All maps are at a scale of 1:5 million except for three of the Io maps, where high-resolution pictures permitted compilation of selected areas at larger scales.

  17. Geoscape Vancouver: Living with our Geological Landscape

    NSDL National Science Digital Library

    This site is about the geology and dynamic landscape of the Vancouver, British Columbia area. The people of Vancouver live where the Fraser River breaches the coastal mountains to reach the inland sea of the Strait of Georgia. This landscape is underlain by a variety of earth materials and is continually shaped by earth processes - a geological landscape or geoscape. The processes include colliding crustal plates and mountain-building, earthquakes, volcanic eruptions, landslides, and the work of water, and past glaciers. References are given to printed and web resources for additional information.

  18. Arabian plate hydrocarbon geology and potential

    SciTech Connect

    Beydoun, Z.R.

    1991-01-01

    This book provides a thought-provoking, succinct presentation of the geologic evolution and hydrocarbon potential of the world's most prolific petroleum province. The fascinating subjects discussed and documented include: What are the unique geologic factors that make the Middle East such a prolific province Where are the future Mesozoic and Tertiary plays What is the virtually untapped potential of the Paleozoic section What are the play potentials for underexplored areas such as Jordan, Syria, Yemen How are deeper drilling results shaping and modifying concepts of the Arabian plate history and pointing the way to future hydrocarbon targets

  19. Geologic Time: the History of Earth

    NSDL National Science Digital Library

    This interactive tutorial provides students with an overview of Earth's history and its relation to geologic time. Topics include the age of the Earth, the use of timelines, and the concepts of relative and actual age. Once these topics have been covered, their applications to rocks and fossils are explained through the concepts of superposition (oldest rocks on the bottom), the use of fossils to determine relative age, and the use of radiometric dating to determine absolute age. There is also an interactive geologic time scale where students can find descriptions of what the Earth was like by clicking on the various eons, eras, or periods.

  20. Keck Consortium Structual Geology Slide Set

    NSDL National Science Digital Library

    The Keck Geology Consortium Structural Geology Slide Set was compiled by H. Robert Burger, Smith College with the support of the W. M. Keck Foundation, Los Angeles. The database was developed by the Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC, Canada. The CD-ROM comprises 100 high resolution photographs of structural features ranging from microscopic to aerial photograph scale. This web site provides a preview of the set (at a significantly lower resolution). It is intended for teaching use.