Science.gov

Sample records for geomembrane steel sheet

  1. Use of a geomembrane steel sheet pile verticle barrier to curtail organic seepage

    SciTech Connect

    Guglielmetti, J.L.; Butler, P.B.

    1997-12-31

    At a Superfund site in Delaware, contaminated groundwater, seeping out of a riverbank, produced a visible sheen on the river. As part of an emergency response action, a geomembrane steel sheet pile vertical barrier system was installed to contain the sheen and contaminated soil and sediments. The response action presented an engineering challenge due to the close proximity manufacturing facilities, steep riverbank slopes, tidal fluctuations, high velocity river flow, and underground and overhead interferences. A unique vertical containment barrier was developed to stabilize the riverbank slope, curtail sheens on the river, and prevent groundwater mounding behind the vertical barrier. In addition, the cost-effective vertical barrier enables natural chemical and biological processes to contain the organic seepage without requiring a groundwater extraction system.

  2. FREEZE-THAW CYCLING AND COLD TEMPERATURE EFFECTS ON GEOMEMBRANE SHEETS AND SEAMS. Project summary

    EPA Science Inventory

    The effects of freeze-thaw cycling on the tensile strength of 19 geomembranes and 31 different seam types were investigated. The study was performed in three parts using different test conditions. Part I involved incubating unconfined specimens in freeze-thaw cycles and then per...

  3. Armored Geomembrane Cover Engineering

    PubMed Central

    Foye, Kevin

    2011-01-01

    Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers. PMID:21776229

  4. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  5. 10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet is in possession of Ball State University, Drawings and Documents Archive, COllege of Architecture and Planing, Ball State University, Muncie, Indiana, 47306 - Kidner Bridge, Spanning Mississinewa River at County Road 700 South, Upland, Grant County, IN

  6. Magnetic sheet steel lamination detection, phase 1

    NASA Astrophysics Data System (ADS)

    Carignan, F. J.; Syniuta, W. D.

    1980-08-01

    Research to assess the feasibility of a nondestructive magnetic inspection technique for detecting defective sheet steel is reported. A major problem in the deep drawing and stamping industry is the failure of sheet steel due to laminations which occur when the steel is formed into various shapes or processed further. A continuous nondestructive testing method was developed based upon differences in magnetic properties of acceptable steel and defective steel. The technique assumes an increase in the magnetic hardness of the defect compared to the base material. Experimental results obtained with the artificial flaw demonstrate that it is possible to sense magnetic differences in sheet steel if the differences are large enough. However, as the differences in magnetic hardness diminish, or where thin surface defects or internal laminations occur, detection becomes increasingly difficult. Moreoever, it has not been established that all sheet steel defects are magnetically harder than unflawed material. It was concluded that the technique, which can detect only some flaws and is incapable of detecting many important defects, would be only marginally useful.

  7. Geomembrane special study. [UMTRA Project

    SciTech Connect

    Not Available

    1988-07-01

    The objective of the Geomembrane Special Study was to asses the suitability of geomembranes in Uranium Mill Tailings Remedial Action (UMTRA) Project pile designs. Geomembranes, also called flexible membrane liners, are made of polymer resins and are thermoplastic materials. Part of the special study was to evaluate regulatory compliance and acceptability issues. This study was proposed because of the extensive use of geomembranes in hazardous waste site remedial actions and their accepted use in Resource Conservation and Recovery Act (RCRA) cells as both covers and liners to limit infiltration, or as part of leachate collection systems. This study has reviewed the recent geomembrane literature focusing on: (1) longevity; (2) performance; (3) constructibility; and (4) quality control/quality assurance considerations. In addition to these technical considerations, regulatory compliance and acceptability concerns were also evaluated. This report describes the results of the literature review, including correspondence with manufacturers, resin producers, experts in the field, and long-term major users. 12 refs., 2 tabs.

  8. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J.; Matlock, D.K.; VanTyne, C.J.

    1992-09-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  9. Formability of type 304 stainless steel sheet

    SciTech Connect

    Coubrough, G.J. . Rocky Flats Plant); Matlock, D.K.; VanTyne, C.J. )

    1992-01-01

    Punch-stretch tests to determine formability of type 304 stainless steel sheet were conducted using a hemispherical dome test. Sheets of 19.1 mm width and 177.8 mm width were stretched on a 101.6 mm diameter punch at punch rates between 0.042 to 2.12 mm/s with three lubricant systems: a mineral seal oil, thin polytetrafluoroethelyne sheet with mineral seal oil, and silicone rubber with mineral seal oil. The resulting strain distributions were measured and the amount of martensite was determined by magnetic means. Increasing lubricity resulted in more uniform strain distributions while increased punch rates tended to decrease both strain and transformation distributions. High forming limit values were related to the formation of high and uniformly distributed martensite volume fractions during deformation. The results of this study are interpreted with an analysis of the effects of strain and temperature on strain induced martensite formation in metastable austenitic stainless steels.

  10. INSPECTION TECHNIQUES FOR THE FABRICATION OF GEOMEMBRANE FIELD SEAMS

    EPA Science Inventory

    Geomembranes employed to overlay the excavation for landfills must be seamed together at the site of the landfill. o ensure the integrity of the containment system of the landfill, these sheets or blankets must be carefully seamed. he methods in present, common use are extrusion ...

  11. TECHNIQUES FOR THE FABRICATION OF GEOMEMBRANE FILLED SEAMS

    EPA Science Inventory

    Geomembranes employed to overlay the excavation for landfills must be seamed together on-site at the landfill. To ensure the integrity of the containment system of the landfill, these sheets or blankets must be carefully seamed. Present methods in common use are: extrusion fil...

  12. Local Laser Heat Treatments of Steel Sheets

    NASA Astrophysics Data System (ADS)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    In this work UHS structural and abrasion resistant (AR) steels were heat treated with a single 4 kW Yb: YAG-laser beam. Aim of the softening heat treatments was to enhance the formability locally with minimized strength lose. 1.8 mm thick B24CR boron steel was used for hardening tests. Study presents the possibilities and limitations in laser processing showing that a single laser beam is suitable for heat treating of sheets through the whole cross-section up to the thickness of 6 mm. In the case of the 6 mm thick sheets, the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the center of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. The 10 mm thick sheet was heat treated separately on the both surfaces by heating to a lower temperature range to produce a shallow tempered layer. The tensile and bendability tests as well as hardness measurements indicated that laser heat treatment can be used to highly improve the bendability locally without significant strength losses. Laser process has been optimized by transverse scanning movement and with a simple FE-model.

  13. 116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Photocopied August 1978. NEW INTERLOCKING STEEL SHEET PILING AT PENSTOCK 52 IN THE FALL OF 1926. THE PILES FOR SUPPORTING THE HORIZONTAL ELEMENTS OF THE NEW FOREBAY APRON ARE IN PLACE BETWEEN THE NEW SHEET PILING AND THE FOREBAY WALL. VISIBLE BEYOND THE NEW SHEET PILING IS THE TIMBER SHEET PILING DRIVEN IN 1903 BY VON SCHON TO PREVENT WASHOUTS. (1006) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  14. 6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING LOADED ON THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  15. 5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING REMOVED FROM THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  16. Zinc coated sheet steel for press hardening

    NASA Astrophysics Data System (ADS)

    Ghanbari, Zahra N.

    Galvanized steels are of interest to enhance corrosion resistance of press-hardened steels, but concerns related to liquid metal embrittlement have been raised. The objective of this study was to assess the soak time and temperature conditions relevant to the hot-stamping process during which Zn penetration did or did not occur in galvanized 22MnB5 press-hardening steel. A GleebleRTM 3500 was used to heat treat samples using hold times and temperatures similar to those used in industrial hot-stamping. Deformation at both elevated temperature and room temperature were conducted to assess the coating and substrate behavior related to forming (at high temperature) and service (at room temperature). The extent of alloying between the coating and substrate was assessed on undeformed samples heat treated under similar conditions to the deformed samples. The coating transitioned from an α + Gamma1 composition to an α (bcc Fe-Zn) phase with increased soak time. This transition likely corresponded to a decrease in availability of Zn-rich liquid in the coating during elevated temperature deformation. Penetration of Zn into the substrate sheet in the undeformed condition was not observed for any of the processing conditions examined. The number and depth of cracks in the coating and substrate steel was also measured in the hot-ductility samples. The number of cracks appeared to increase, while the depth of cracks appeared to decrease, with increasing soak time and increasing soak temperature. The crack depth appeared to be minimized in the sample soaked at the highest soak temperature (900 °C) for intermediate and extended soak times (300 s or 600 s). Zn penetration into the substrate steel was observed in the hot-ductility samples soaked at each hold temperature for the shortest soak time (10 s) before being deformed at elevated temperature. Reduction of area and elongation measurements showed that the coated sample soaked at the highest temperature and longest soak time

  17. Computational Strategies for Polymer Coated Steel Sheet Forming Simulations

    SciTech Connect

    Owen, D. R. J.; Andrade Pires, F. M.; Dutko, M.

    2007-05-17

    This contribution discusses current issues involved in the numerical simulation of large scale industrial forming processes that employ polymer coated steel sheet. The need for rigorous consideration of both theoretical and algorithmic issues is emphasized, particularly in relation to the computational treatment of finite strain deformation of polymer coated steel sheet in the presence of internal degradation. Other issues relevant to the effective treatment of the problem, including the modelling of frictional contact between the work piece and tools, low order element technology capable of dealing with plastic incompressibility and thermo mechanical coupling, are also addressed. The suitability of the overall approach is illustrated by the solution of an industrially relevant problem.

  18. Nd:YAG laser welding of coated sheet steel

    SciTech Connect

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires of various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.

  19. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  20. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  1. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect

    1998-04-01

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  2. Constitutive modelling of dual phase steel sheet and tube

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    Automobile manufacturers are currently striving to improve vehicle fuel efficiency through reduction of vehicle weight. Dual phase steels are good candidates for automotive bodies due to their high strength-to-weight ratio, and good formablity and weldability. As part of a project on the interaction between forming and crashworthiness, constitutive parameters of a dual phase steel were determined for both sheet and tube stock in order to support analysis of the tube response throughout forming processes and in crash simulations. Stress - strain data was collected at a quasi-static rate as well as rates from 0.1 to 1500 s - 1. The intermediate strain rate response was captured using an instrumented falling weight tensile tester (35 100 s - 1), while a tensile split Hopkinson bar (500 1500 s - 1) was used to capture the high-rate response. This range of strain rates is typical of the rates seen in a crash simulation. Tests were also performed at higher temperatures (150°C and 300°C) at rates of 500 and 1500 s - 1 to capture the thermal softening response. The dual phase steel sheet and tube show an appreciable amount of strain rate sensitivity throughout the complete range of strain rates. It also exhibited a large amount of thermal softening. The thermal sensitivity is identical for the sheet and tube. Fits to the Johnson-Cook constitutive model were obtained from the experimental results.

  3. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.; Kato, T.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  4. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  5. FIELD STUDIES OF GEOMEMBRANE INSTALLATION TECHNIQUES

    EPA Science Inventory

    Fourteen construction sites where geomembranes were being installed were visited to observe subgrade preparation and liner installation techniques. These sites were visited during a study conducted for the U.S. EPA, Solid and Hazardous Waste Research Division. The sites included ...

  6. STRESS CRACK TESTING OF POLYETHYLENE GEOMEMBRANES

    EPA Science Inventory

    The sensitivity of high density polyethylene (HDPE) geomembranes to stress cracking is evaluated under accelerated conditions at a constant stress. he test specimens are according to ASTM D-1822, and are of the dumbbell shape with a constant length in the central section. he acce...

  7. License plate cosmetic corrosion test of automotive coated steel sheet

    SciTech Connect

    Townsend, H.E.; Simpson, M.W.; McCune, D.C.

    1999-04-01

    A new standard laboratory test (SAE J2334) for evaluation of the cosmetic corrosion resistance of autobody steel sheet has been developed through the joint efforts of the Society of Automotive Engineers Automotive Corrosion Prevention Committee (SAE/ACAP) and the Auto/Steel Partnership (A/SP) Corrosion Task Force. Results from this test gave an excellent correlation with those of on-vehicle tests conducted for 5 years in Canada at St. John`s, Newfoundland, and Montreal, Quebec. To determine how results of the Canadian tests related to environments in the United States, racks of identical materials were mounted on the front license plate brackets of cars driven in various locations in the US snowbelt, including Bethlehem, Pennsylvania; Detroit, Michigan, and Chardon, Ohio. After 4 years to 5 years, these tests showed the US environments produced less scribe creep and more red rust than those conducted in Canada. Similar rankings were obtained for the scribe creep resistance of the various coated steel sheet products when compared at equivalent amounts of corrosion. However, the ranking of materials changed at longer exposure times in Canada, and for that reason, it was concluded that the 5-year Canadian results used in the development of the SAE J2334 test provided a better real-world performance standard.

  8. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  9. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  10. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... group response to its notice of institution (75 FR 30437, June 1, 2010) was adequate and that the... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  11. Fe-Zn Alloy Coating on Galvannealed (GA) Steel Sheet to Improve Product Qualities

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Guin, Akshya Kumar; Raju, Pankaj; Manna, Manindra; Dutta, Monojit; Venugopalan, T.

    2014-09-01

    Galvannealed steel sheets (GA) have become the mainstream steel sheet for automobile applications because of their superior corrosion resistance, paintability, and weldability. To impart specific properties, different coatings on GA steel sheet were reported to improve properties further. In this context, we have developed an electroplating process (flash coating) for bright and adherent Fe-Zn alloy coating on GA steel sheet to enhance performances such as weldability, frictional behavior, phosphatability, and defect coverage. A comparative study with bare GA steel sheet was carried out for better elastration. The electroplating time was reduced below 10 s for practical applicability in an industrial coating line by modulating the bath composition. Electroplating was performed at current density of 200-500 A/m2 which yielded with higher cathode current efficiency of 85-95%. The performance results show that Fe-10 wt.% Zn-coated GA steel sheet (coating time 7 s) has better spot weldability, lower dynamic coefficient of friction (0.06-0.07 in lubrication), and better corrosion resistance compared to bare GA steel sheet. Uniform phosphate coating with globular crystal size of 2-5 µm was obtained on Fe-Zn flash-coated GA steel sheet. Hopeite was the main phosphate compound (77.9 wt.%) identified along with spencerite (13.6 wt.%) and phosphophyllite (8.5 wt.%).

  12. 76 FR 13357 - Stainless Steel Sheet and Strip in Coils From Mexico; Correction Notice to Amended Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico; Correction Notice to... administrative review for stainless steel sheet and strip in coils from Mexico. See Stainless Steel Sheet and..., 76 FR 9542 (February 18, 2011) (Amended Final Results). The Amended Final Results states...

  13. ELECTRICAL RESPONSE OF A LEAK IN A GEOMEMBRANE LINER

    EPA Science Inventory

    A leak in a geomembrane lined impoundment or landfill has a characteristic electrical response. imulate the waste material, the liner, and the soil under the liner by infinite horizontal layers and express the secondary potential for a leak in the geomembrane liner in terms of a ...

  14. Magnetic properties of 6.5% silicon steel sheets under PWM voltage excitation

    SciTech Connect

    Namikawa, M.; Ninomiya, H.; Tanaka, Y.; Takada, Y.

    1998-07-01

    Power losses of 6.5% silicon steel sheets under PWM (Pulse Width Modulation) voltage excitation were examined. The PWM wave was composed of a 50Hz fundamental wave, a 16kHz carrier frequency wave and some other higher harmonics. It was found that the power losses of the inductor cores were much larger than those of the transformer cores when the cores were driven by a PWM inverter, although such a great difference was not observed under sinusoidal voltage excitation. Power losses of the inductor made of 6.5% silicon steel sheets and conventional grain oriented 3% silicon steel sheets under PWM voltage excitation were also investigated. It was found that the power losses of the inductor made of 6.5% silicon steel sheets were reduced by more than 30% compared to those of the inductor made of grain oriented 3% silicon steel sheets. This was because the grain oriented 3% silicon steel sheets had higher losses at higher harmonics found in the PWM excitation. Therefore, it was clearly shown that 6.5% silicon steel sheet was a suitable material for the inductor under PWM voltage excitation.

  15. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  16. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-01

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  17. Improvement of formability of high strength steel sheets in shrink flanging

    NASA Astrophysics Data System (ADS)

    Hamedon, Z.; Abe, Y.; Mori, K.

    2016-02-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.

  18. Bainitic stabilization of austenite in low alloy sheet steels

    NASA Astrophysics Data System (ADS)

    Brandt, Mitchell L.

    The stabilization of retained austenite in 'triple phase' ferrite/bainite/austenite sheet steels by isothermal bainite transformation after intercritical annealing has been studied in 0.27C-1.5Si steels with 0.8 to 2.4Mn. Dilatometric studies show that cooling rates comparable to CAPL processing result in approximately 30% conversion of austenite to epitaxial ferrite, but the reaction can be suppressed by the faster cooling rate of salt bath quenching. Measured isothermal transformation kinetics at 350 to 450sp°C shows a maximum overall rate near 400sp°C. X-ray diffraction shows that the amount of austenite retained from 400sp°C treatment peaks at 3 minutes but the carbon content increases monotonically to a saturation level. The stability of austenite in this type of steel has been quantified for the first time by direct measurement of the characteristic Msbsps{sigma} temperature. With variations in processing conditions and test temperatures, the tensile uniform ductility has been correlated with the amount and stability of retained austenite, while maintaining a constant 3% flow of 83 ksi. Consistent with previous transformations plasticity studies an optimal austenite stability is found at approximately 10 K above the Msbsps{sigma} temperature, demonstrating a maximum uniform ductility of 44% for an austenite content of 16%. Correlations indicate that desired uniform ductility levels of 20 to 25% could be achieved with only approximately 5% austenite if stability is optimized by placing Msbsps{sigma} 10 K below ambient temperature. Measured uniform ductility in plane strain tension shows similar trends with processing conditions, but models predict that stress state effects will shift the Msbsps{sigma} temperature approximately 5 K higher than that for uniaxial tension. The measured dependence of Msbsps{sigma} on austenite composition and particle size has been modeled via heterogeneous nucleation theory. The composition dependence is consistent with

  19. Assessment of damage to geomembrane liners by shredded scrap tires

    SciTech Connect

    Reddy, K.R.; Saichek, R.E.

    1998-12-01

    This paper presents the results of a field and laboratory study performed to assess damage to the geomembrane liner caused by using shredded scrap tires as a leachate drainage layer material in landfills. The field testing was performed to assess the damage that occurred to the geomembrane liner during construction and included nine tests conducted with different combinations of tire chip size and thickness, both with a geotextile and without a geotextile overlying the geomembrane, and under different loading conditions. The laboratory testing was performed to characterize the shredded tires, particularly their size distribution, hydraulic conductivity, compressibility, and chemical resistance. The laboratory testing also included performing simulation testing to determine the extent of damage that occurs to the geomembrane liner by the shredded tires under long-term waste-loading conditions. the damage that occurred to the geomembrane liners in both field tests and simulated laboratory tests was determined by visual observations as well as by conducting multi-axial tension tests, wide strip tension tests, and water vapor transmission tests on the exhumed geomembrane samples. Based on these results, a 0.46-m thick layer of secondary shred tire chips, with an average size of 7.6 cm, placed over a 543-g/m{sup 2} geotextile installed over a geomembrane liner using low-ground-pressure (<58 kPa) equipment was determined to provide adequate protection in the geomembrane liner during construction. The degree of protection offered under long-term loading conditions depends on the normal stress and the random orientation of the shredded tire chips at the geomembrane interface.

  20. Transport of organic contaminants in geomembranes under stress

    SciTech Connect

    Xiao, S. ); Moresoli, C. . Dept. of Chemical Engineering); Burczyk, A. ); Pintauro, P.; De Kee, D. . Dept. of Chemical Engineering)

    1999-07-01

    The transport properties of aqueous solutions of benzene, dichloromethane, and trichloroethylene through extended polyvinyl chloride and high-density polyethylene geomembranes are investigated. It is found that extension enhances the permeation rates of the penetrants through polyvinyl chloride geomembranes, and the opposite effect is found in the case of high-density polyethylene. This difference in response is attributed to the type of structural change, which occurred as a result of the extension. The diffusivities of a mixture of the three organic solvents through the geomembranes are also determined.

  1. Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses

    NASA Astrophysics Data System (ADS)

    Liu, Wenning; Sun, Xin; Ruokolainen, Robert; Gayden, Xiaohong

    2007-05-01

    Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.

  2. The Effect of Local Heating by Laser Irradiation for Aluminum, Deep Drawing Steel and Copper Sheets in Incremental Sheet Forming

    NASA Astrophysics Data System (ADS)

    Lehtinen, Pekka; Väisänen, Tapio; Salmi, Mika

    Incremental sheet forming is a technique where a metal sheet is formed into a product usually by a CNC-controlled (Computer Numerical Control) round tipped tool. The part is formed as the tool indents into the sheet and follows a contour of the desired product. In single point incremental forming (SPIF) there is no need for tailored tools and dies, since the process requires only a CNC machine, a clamping rig and a simple tool. The effect of applying local heating by laser irradiation from the bottom side of the metal sheet is investigated with a SPIF approach. Using a laser light source for local heating should increase the material ductility and decrease material strength, and thus, increase the formability. The research was performed using 0.50-0.75 mm thick, deep drawing steel, aluminum and copper sheets. The forming was done with a round tipped tool, whose tip diameter was 4 mm. In order to achieve selective heating, a 1 kW fiber laser was attached to a 3-axis stepper motor driven CNC milling machine. The results show that the applied heating increased the maximum achievable wall angle of aluminum and copper products. However, for the steel sheets the local heating reduced the maximum achievable wall angle and increased the surface roughness.

  3. Application technologies for effective utilization of advanced high strength steel sheets

    SciTech Connect

    Suehiro, Masayoshi

    2013-12-16

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  4. Application technologies for effective utilization of advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Suehiro, Masayoshi

    2013-12-01

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  5. Determination of the plasticity of N18K9M5T maraging steel thin sheet

    SciTech Connect

    Shishov, V.F.

    1985-08-01

    This paper investigates the value of the nominal elongation of N18K9M5T maraging steel in relation to sheet thickness, structure of steel, and the specimen type. The characteristics of strength and plasticity determined in testing of cylindrical and flat specimens of the investigated steel is presented. The authors conclude that the total elongation of N18K9M5T maraging steel is its abnormally high capacity for plastic deformation in the formation of the neck. To obtain closer values of elongation in testing N18K9M5T steel thin sheet of different thicknesses, it is desirable to use specimens in which the ratio b/sub 0//alpha/sub 0/ is less than or equal to 4:1.

  6. Dynamic Material Property Measurement of Steel Thin Sheets using Laser-Based Ultrasonics

    NASA Astrophysics Data System (ADS)

    Nagata, Y.; Yamada, H.; Hashiguchi, S.; Lim, C. S.; Park, H. C.; Huh, H. J.; Kang, M. K.; Oh, K. J.

    2014-06-01

    A material property measurement system for steel sheets using laser-based ultrasonics was developed. The system consists of a pulsed Nd:YAG laser for ultrasonic generation and multi-channel interferometer coupled with a CW single frequency laser for ultrasonic detection. The system can measure the frequency of the S1 Lamb wave mode of zero group velocity (S1f) as well as the longitudinal resonance frequencies without ablative damage to the steel surface. It was confirmed that Poisson's ratio could be directly obtained by combining the measured S1f value and the longitudinal resonance frequencies. To evaluate the applicability of this system in an actual steel production setting, the system was installed in hot rolling pilot plant that produces steel samples. As a result, it was demonstrated that the system can measure dynamic changes in Poisson's ratio values within steel sheets, even in the hot rolling pilot plant environment. Material property data, such as Poisson's ratio, during the thin sheet production process will be very useful for manufacturing high value-added steel, such as sheets with uniform quality.

  7. Failure Behavior of Three-Steel Sheets Resistance Spot Welds: Effect of Joint Design

    NASA Astrophysics Data System (ADS)

    Pouranvari, M.; Marashi, S. P. H.

    2012-08-01

    There is a lack of comprehensive understanding concerning failure characteristics of three-steel sheet resistance spot welds. In this article, macro/microstructural characteristics and failure behavior of 1.25/1.25/1.25 mm three-sheet low carbon steel resistance spot welds are investigated. To evaluate the mechanical properties of the joint, the tensile-shear test was performed in three different joint designs. Mechanical performance of the joint was described in terms of peak load, energy absorption, and failure mode. The critical weld nugget size required to insure pullout failure mode was obtained for each joint design. It was found that the joint design significantly affects the mechanical properties and the tendency to fail in the interfacial failure mode. It was also observed that stiffer joint types exhibit higher critical weld size. Fusion zone size along sheet/sheet interface proved to be the most important controlling factor of spot weld peak load and energy absorption.

  8. 78 FR 14270 - Stainless Steel Sheet and Strip in Coils From Mexico: Notice of Settlement of NAFTA Proceedings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... FR 40560 (July 27, 1999) (notice of amended LTFV determination and antidumping duty order) (Order... sunset review. See Stainless Steel Sheet and Strip in Coils from Germany, Italy and Mexico, 76 FR 49450... 25, 2010. \\1\\ Stainless Steel Sheet and Strip in Coils from Mexico, 71 FR 76978 (December 22,...

  9. Development of aluminium-clad steel sheet by roll-bonding for the automotive industry

    SciTech Connect

    Buchner, M.; Buchmayr, B.; Bichler, Ch.; Riemelmoser, F.

    2007-04-07

    The objective of the present work is a basic study of production, modelling and validation of sheet composites of AA6xxx-automotive alloy and IF-steel. In this context the influence of surface preparation, pre-heating temperature of aluminium and steel plate, and thickness reduction on the bond strength of the composites as well as on the formation of intermetallic interface layers is analysed by shear tests and metallographic evaluations of the interface.

  10. Hole expansion in a variety of sheet steels

    NASA Astrophysics Data System (ADS)

    Comstock, R. J.; Scherrer, D. K.; Adamczyk, R. D.

    2006-12-01

    Expanding pierced holes is a common forming practice and problems during these operations are not unusual. A damczyk and Michal have previously developed an equation for maximum hole expansion of HSLA steels, for holes in the sheared then deburred condition. This paper expands the work of the above authors. Nineteen ferritic, ferritic stainless, and austenitic stainless steels were evaluated for hole expansion using various hole-edge conditions. It was found that the behavior of steels having finished holes is very different than those tested in the as-sheared condition. Relationships between hole expansion and tensile-mechanical properties were developed for both conditions.

  11. Standard specification for steel, sheet, carbon, for pressure vessels. ASTM standard

    SciTech Connect

    1998-09-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.19 on Sheet Steel and Strip. Current edition approved Jun. 10, 1998. Published September 1998. Originally published as A 414-71. Last previous edition A 414/A 414M-97. Copyright American Society for Testing and Materials (ASTM), 100 Barr Harbor Drive, West Conshohocken, PA, 19428, USA. This document is available from NTIS under license from ASTM.

  12. Perforation corrosion and its mechanism on galvanized steel sheets on vehicles

    SciTech Connect

    Fujita, Sakae

    1998-12-31

    Mechanism of perforation corrosion on vehicles in the area where deicing salts are dispersed on roads in winter was investigated, using the Gumbel probability plots of the maximum depth of corrosion inside the lapped portion and quantitative analyses of crystalline compositions of the iron rusts which formed on the steel panels of vehicles. It was estimated that perforation occurred in 7 years for zincrometal steel sheet and more than 14 years for galvanized steel sheet with zinc coating weight of 120g/m{sup 2} in the crevice of lapped panel. The composition of the rust in the lapped portion of galvanized steel panels was mainly amorphous at the initial stage of corrosion and moves towards the high content of ({gamma}-FeOOH+Fe{sub 3}O{sub 4}) regions of the non-galvanized parts. Zinc corrosion product prevented the redox reaction of the iron rust and performed as corrosion inhibitor of steel in laboratory simulation tests. Perforation mechanism on vehicles in real environments will be also discussed in the following stages; (1) corrosion of zinc layer, (2) galvanic corrosion of zinc, (3) corrosion of steel under zinc corrosion product, (4) corrosion of steel.

  13. 76 FR 18518 - Stainless Steel Sheet and Strip in Coils From Mexico: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Investigation; Opportunity To Request Administrative Review, 75 FR 38074 (July 1, 2010). On July 30, 2010... Reviews and Deferral of Initiation of Administrative Review, 75 FR 53274 (August 31, 2010). Rescission of... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico: Rescission...

  14. 76 FR 46323 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ..., 2010 (75 FR 30437) and determined on September 7, 2010 that it would conduct a full review (75 FR 59744... 27, 2010 (75 FR 81308). The hearing was held in Washington, DC, on May 25, 2011, and all persons who... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and...

  15. Description of anisotropy and the Bauschinger effect on various types of steel sheets

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-05-01

    To describe the anisotropy of sheets a sixth-order polynomial type 3D yield function is proposed. The yield function is constructed as a sum of several components of the Cazacu-Barlat function (2001) which was derived as an extension of the J2-J3 Drucker yield criterion (1949) to orthotropy using the linear transformation of the stress deviator. In this framework of modeling, the convexity of the yield locus is perfectly guaranteed. The model was validated by comparing the numerical predictions of planar anisotropy of r-values and flow stress directionality, as well as the shape of yield loci, with the corresponding experimental data on several types of steel sheets (high r-valued IF steel and SPCE, and high strength steel sheets of 440-980MPa TS grades). For most of steel sheets, the model of the sum of two J2 components, which involve eight anisotropic coefficients, is sufficient for the description of their anisotropies. For the description of the Bauchinger effect and cyclic workhardening characteristic, Yoshida-Uemori kinematic hardening model (2002a, 2002b, 2003) was employed, which includes a new proposal to describe non-saturation type workhardening.

  16. 75 FR 30437 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request for... Kingdom (64 FR 40555- 40570). On August 6, 1999, Commerce issued countervailing duty orders on imports of stainless steel sheet and strip in coils from France, Italy, and Korea (64 FR 42923-42925). Following...

  17. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  18. Quantitative prediction of deformed austenite and transformed ferrite texture in hot-rolled steel sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Tomida, T.; Mohles, V.

    2015-04-01

    A model to quantitatively predict ferrite (α) textures in hot-rolled steel sheets has been developed. In this model, the crystal plasticity model, called “Grain Interaction model (GIA)”, and the transformation texture model, called “Double K-S relation (DKS)”, are linked together. The deformed austenite (γ) texture is predicted by GIA with taking not only the standard {111}<110> slip system but also non-octahedral slip systems into account. Then the transformed a texture is calculated by DKS, in which a nucleated α prefers to have orientation relationship near the Kurdjumov-Sachs relation with both of two neighboring γ grains. For validation, single pass hot-rolling tests on a C-Si-Mn steel were carried out. The comparison between the predicted and the experimental textures shows that the linked model (GIA & DKS) can lead to a remarkable reproduction of the texture of hot-rolled steel sheets.

  19. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    NASA Technical Reports Server (NTRS)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  20. Experimental optimisation of the gas-assisted laser cutting of thick steel sheets

    SciTech Connect

    Malikov, A G; Orishich, Anatolii M; Shulyat'ev, Viktor B

    2009-06-30

    We report on the experimental optimisation of the oxygen-assisted CO{sub 2} laser cutting of low-carbon sheet steel 5 to 25 mm in thickness. It is shown that the cut edge roughness is minimal when the energy input per unit volume of the material removed and the incident beam power per unit sheet thickness remain constant at {approx}20 J mm{sup -3} and {approx}200 W mm{sup -1}, respectively, over the entire range of sheet thicknesses examined. The corresponding Peclet number is Pe = 0.5. These results can be used to determine the optimal beam power and cutting speed for a particular sheet thickness. At sufficiently large thicknesses, the conditions that ensure the minimum roughness can be written in the form of relations between nondimensional parameters. (interaction of laser radiation with matter. laser plasma)

  1. Reducing the Variability of HSLA Sheet Steels (TRP 9807)

    SciTech Connect

    Dr. Anthony J. DeArdo

    2004-03-12

    The sensitivity of the yield strength of a 70 ksi HSLA steel to changes in processing variables was investigated using a laboratory hot-rolling mill. Along with a detailed examination of the hot-rolled microstructures, auxiliary experiments were conducted to determine how the decomposition of the austenite phase and the occurrence of ultra-fine precipitate formation could account for the yield strength variability. A set of guidelines was recommended for the reduction of the yield strength variability.

  2. STRESS CRACKING BEHAVIOR OF HDPE GEOMEMBRANES AND ITS PREVENTION

    EPA Science Inventory

    Geomembranes made from high density polyethylene (HOPE) have a high percent crystallinity and are therefore of concern with regard to stress cracking. A review of the literature plus our field exhuming of various sites-of-opportunity gave rise to twenty-five (25) situations wh...

  3. PROCEEDINGS OF THE WORKSHOP GEOMEMBRANE SEAMING: DATA ACQUISITION AND CONTROL

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Risk Reduction Engineering Laboratory, in cooperation with the Geosynthetic Research Institute, sponsored a workshop on Geomembrane Wedge Welding Seaming: ata Acquisition and Control on April 22, 1993. he workshop was held at the Andrew ...

  4. EVALUATION OF GEOMEMBRANE SEAMS EXPOSED TO SELECTED ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    The integrity of a geomembrane installation is no better than its seaming system. In an attempt to learn more about the strength and durability of presently available seaming systems, the Municipal Environmental Research Laboratory of the United States Environmental Protection Ag...

  5. GEOMEMBRANE ANCHORAGE BEHAVIOR USING A LARGE SCALE PULLOUT APPARATUS

    EPA Science Inventory

    The terminus of most geomembrane lined facilities, e.g., landfills, surface impoundments and waste piles, is via a small horizontal runout distance and then into a shallow anchor trench. hile several analytic models are available for such a design, common practice is usually base...

  6. Thirty year atmospheric corrosion performance of 55% aluminum-zinc alloy-coated sheet steel

    SciTech Connect

    Townsend, H.E.; Borzillo, A.R.

    1996-04-01

    In 1964, a series of aluminum-zinc (Al-Zn) alloy coatings were applied to steel sheet on a laboratory continuous hot-dip coating pilot line. The coated sheets were exposed in outdoor corrosion tests in severe marine, moderate marine, rural, and industrial atmospheres. Following eight years of testing, the 55% Al-Zn composition was selected as the optimum composition because it combined excellent long-term durability with the ability to provide cut-edge protection to the steel substrate. Now, after 30 years of continued outdoor testing, the results show conclusively that the 55% Al-Zn alloy coating has better than twice the life of an ordinary zinc coating of equal thickness, and that it provides enduring cut-edge protection. Following identification of the optimum composition in 1972, steel sheet with the 55% Al-Zn alloy coating was produced commercially by Bethlehem Steel. Large quantities of this material have been put in service as unpainted roofing on metal buildings. Inspections of these buildings show that the corrosion performance is excellent for roofs that have been in service for up to 22 years in a variety of US environments. These results confirm the conclusions of the earlier outdoor tests.

  7. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  8. Development of adapted GMR-probes for automated detection of hidden defects in thin steel sheets

    NASA Astrophysics Data System (ADS)

    Pelkner, Matthias; Pohl, Rainer; Kreutzbruck, Marc; Commandeur, Colin

    2016-02-01

    Thin steel sheets with a thickness of 0.3 mm and less are the base materials of many everyday life products (cans, batteries, etc.). Potential inhomogeneities such as non-metallic inclusions inside the steel can lead to a rupture of the sheets when it is formed into a product such as a beverage can. Therefore, there is a need to develop automated NDT techniques to detect hidden defects and inclusions in thin sheets during production. For this purpose Tata Steel Europe and BAM, the Federal Institute for Materials Research and Testing (Germany), collaborate in order to develop an automated NDT-system. Defect detection systems have to be robust against external influences, especially when used in an industrial environment. In addition, such a facility has to achieve a high sensitivity and a high spatial resolution in terms of detecting small inclusions in the μm-regime. In a first step, we carried out a feasibility study to determine which testing method is promising for detecting hidden defects and inclusions inside ferrous thin steel sheets. Therefore, two methods were investigated in more detail - magnetic flux leakage testing (MFL) using giant magneto resistance sensor arrays (GMR) as receivers [1,2] and eddy current testing (ET). The capabilities of both methods were tested with 0.2 mm-thick steel samples containing small defects with depths ranging from 5 µm up to 60 µm. Only in case of GMR-MFL-testing, we were able to detect parts of the hidden defects with a depth of 10 µm trustworthily with a SNR better than 10 dB. Here, the lift off between sensor and surface was 250 µm. On this basis, we investigated different testing scenarios including velocity tests and different lift offs. In this contribution we present the results of the feasibility study leading to first prototypes of GMR-probes which are now installed as part of a demonstrator inside a production line.

  9. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    PubMed Central

    Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry

    2010-01-01

    This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394

  10. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  11. Fiber laser micro-cutting of stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Baumeister, M.; Dickmann, K.; Hoult, T.

    2006-11-01

    The authors report on laser micro-cutting results for stainless steel foils with the aid of a 100 W fiber laser. This novel laser source combines a high output power in relation to conventional laser sources for micro-processing applications with an excellent beam quality (M2=1.1). Different material thicknesses were evaluated (100 μm to 300 μm). Processing was carried out with cw operation of the laser source, and with nitrogen and oxygen as assisting gases. Besides the high processing rate of oxygen assisted cutting, a better cutting performance in terms of a lower kerf width was obtained.

  12. Energy-saving regeneration of hydrochloric acid pickling liquor: NICE3 steel project fact sheet (NICE3 2000 award winners)

    SciTech Connect

    2000-06-19

    This is a fact sheet written for the NICE3 [National Industrial Competititveness through Energy, Environment, and Economics] Program on a new process for reusing hydrochloric acid from steel pickling operations.

  13. The Relationship Between Hot and Cold Rolling Parameters and Secondary Recrystallization Behavior in Silicon Steel Sheets

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mohammadreza

    2015-08-01

    The effect of different hot and cold rolling process variables was evaluated for the secondary recrystallization behavior of silicon steel sheets, and a simple model was developed. On the basis of the model, the following results can be drawn: (a) for complete secondary recrystallization of silicon steel sheets, rolling of cast ingots must precede MnS precipitation start; (b) if it is necessitated, intermediate annealing during hot rolling passes must be carried out in the temperature of about 1000 °C; (c) during hot rolling, the amount of initial strain before the intermediate annealing of rolled strips at 1000 °C must be >70% reduction in thickness; (d) in the two-stage cold rolling method, the thickness reduction in the second cold rolling stage must be <61%; and (e) secondary recrystallization is encouraged by using the non-conventional three-stage cold rolling method with two intermediate anneals.

  14. Progress in press forming computer aided analysis for high strength steel sheet applications

    NASA Astrophysics Data System (ADS)

    Hiramoto, Jiro; Urabe, Masaki; Ishiwatari, Akinobu; Urabe, Toshiaki

    2013-12-01

    The development of press-forming analysis technologies is important to expand the application of high strength steel sheets to automotive body structures. In general, there are various problems in the forming process of high strength steel sheets. In this study the improvements in the prediction accuracy of stretch-flange-fracture and springback were especially focused. In terms of the prediction accuracy of stretch-flange-fracture, a new stretch-flange-fracture prediction technology was developed based on a maximum principal strain gradient. It enables the accurate prediction of stretch- flange-fracture in press-forming of practical parts. On the other hand, springback prediction technologies were developed to solve springback problems. It is very important to clarify the root cause of springback in order to control. Therefore, a new method of springback factor analysis was developed, which can extract the areas and residual stresses which have major impacts on springback at press-forming.

  15. Orientation changes near the interface of explosively bonded (carbon steel)/Zr700 sheets

    NASA Astrophysics Data System (ADS)

    Paul, H.; Baudin, T.; Brisset, F.; Prazmowski, M.

    2015-04-01

    The microstructure and texture of explosively welded carbon steel (base) and Zr700 (flyer) plates were characterized by means of scanning electron microscopy equipped with a high resolution electron backscattered diffraction facility. The orientation maps demonstrate that the deformed zones near-the-interface are composed of several layers, the width of which depends on the applied bonding parameters. For both metals, the very thin layer of ultra-fine grains directly adheres to the interface. In the areas more distanced from the interface, the structure evolution depends on the plate material. In the case of a Zr 700 sheet the second layer is formed by highly dislocated (sub)grains, which progressively evolve, towards the structure composed of only lightly deformed grains. In the case of a carbon steel sheet, the second layer near the interface was composed of flattened grains.

  16. Effect of skin-pass rolling direction on magnetic properties of semiprocessed nonoriented electrical steel sheets

    SciTech Connect

    Kurosaki, Y.; Shimazu, T.; Shiozaki, M.

    1999-09-01

    Effect of skin-pass rolling direction on magnetic properties and directionality in semiprocessed nonoriented electrical steel sheets produced by skin-pass rolling process was studied. Skin-pass rolling direction greatly affects magnetic properties and directionality. By control of skin-pass rolling direction, the value of B{sub 50} in the required directions such as 0{degree}, 90{degree} and circumferential direction can be adjusted and the value of B{sub 50} is higher than that of the usual skin-pass rolling direction of 0{degree}. The textures of the steel sheets developed after batch annealing varied with the skin-pass rolling directions and this result indicates that the residual strain energy by skin-pass rolling varies with skin-pass rolling directions.

  17. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  18. High-Strain-Rate Forming of Aluminum and Steel Sheets for Automotive Applications

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V; Soulami, Ayoub; Davies, Richard W; Smith, Mark T

    2010-06-01

    The formability of aluminum alloy AA5182-O and DP600 steel sheets at high-strain-rates was investigated using an electrohydraulic forming (EHF) setup. Test sheets, ~150 mm diameter x 1 mm thick, were clamped around their circumference and subjected to a pressure-pulse (several 100's duration) generated by a high-energy (up to ~34 kJ) under-water electrical discharge. The real-time strain and strain-rate of the deforming sheets were quantified by the digital image correlation (DIC) technique using a pair of high-speed cameras (~15's per frame). Strain-rate amplification was observed when the sheets were deformed into a conical die, with the maximum in-plane strain-rate and strain for aluminum measured as ~1200 /s and ~0.2, respectively. The deformation behavior of the sheets was modeled using ABAQUS/finite element explicit code and better correlation, between the predicted and the experimental sheet deformation behavior, was observed when an alternate pressure-profile was used instead of the one available from the literature.

  19. Effects of the Formation of Al x Cu y Gradient Interfaces on Mechanical Property of Steel/Al Laminated Sheets by Introducing Cu Binding-Sheets

    NASA Astrophysics Data System (ADS)

    Wei, Aili; Liu, Xinghai; Shi, Quanxin; Liang, Wei

    2015-07-01

    Steel/Cu/Al laminated sheets were fabricated by two-pass hot rolling to improve the mechanical properties of steel/Al sheets. The bonding properties and deformability of the steel/Cu/Al sheets were studied. Steel/Al and steel/Cu/Al samples were rolled at 350°C for 15 min with the first-pass reduction of 40%, and then heated at 600°C for 5 min with different reductions. It was found that the steel/Cu/Al samples rolled by the second-pass reduction of 85% could endure the maximum 90° bend cycle times of 45, exhibiting excellent fatigue resistance as well as deformability. The steel/Al samples could only reach the maximum 90° bend cycle times of 20. Furthermore, the scanning electron microscope, energy-dispersive spectrometer, and electron backscattered diffraction results showed that the preferred growth orientations of Cu, Al4Cu9, and Al2Cu on the steel/Cu/Al laminated sheets are {-1, 1, 2} <1, -1, 1>, {1, 0, 0} <0, 1, 0> and {-1, 1, 2} <1, -1, 1> {1, 1, 0} <0, 0, 1>. The orientation relationships between Cu and Al2Cu are {1, 1, 0}(fcc)//{1, 1, 0}(bct) and {1, 1, 1}(fcc)//{1, 1, 1}(bct). The improved bonding property and excellent fatigue resistance as well as deformability were mainly ascribed to the tight combination and consistent deformability across steel, Al, and the transition layers (Cu, Al4Cu9, and Al2Cu).

  20. Dynamic materials testing and constitutive modeling of structural sheet steel for automotive applications. Final progress report

    SciTech Connect

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1996-08-23

    The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.

  1. In Search of the Attributes Responsible for Sliver Formation in Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mohanty, Itishree; Das, Prasun; Bhattacharjee, Debashish; Datta, Shubhabrata

    2016-06-01

    Surface quality is one of the most important characteristics of cold rolled (CR) steel sheets for its application in consumer goods industries. The actual cause of sliver formation is very difficult to determine, as it is revealed only after the final cold rolling of the steel. A thorough investigation on searching the root cause of sliver formation in CR steel is done here using several statistical tools towards mining the industrial data for extraction of knowledge. As the complex interactions between the variables make it difficult to identify the cause, it is seen that findings from different techniques differed to a certain extent. Still it is revealed that 21 variables could be short listed as major contributor for sliver formation, but those are found to be from all the areas of the processing. This leads to the conclusion that no particular process variable or particular processing could be held responsible for sliver formation.

  2. Flow rates through earthen, geomembrane & composite cut-off walls

    SciTech Connect

    Tachavises, C.; Benson, C.H.

    1997-12-31

    Flow rates through soil-bentonite (SIB), geomembrane (GM), and composite geomembrane-soil (CGS) cut-off walls were determined using a numerical model of ground water flow. Various geological and wall conditions were simulated. Results of the simulations show that flow rates past all wall types are affected by hydraulic conductivities of the aquifer and underlying confining layer. Flow rates past GM walls with perfect joints are very low, provided the confining layer has low hydraulic conductivity. However, if a small fraction of the joints are defective, GM walls can be ineffective in blocking flow. CGS walls with a low hydraulic conductivity shell are less sensitive to joint defects. CGS walls with good shells typically have lower flow rates than SB and GM walls, even if the CGS wall contains defective joints.

  3. Partitioning and diffusion of PBDEs through an HDPE geomembrane.

    PubMed

    Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison

    2016-09-01

    Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. PMID:27211313

  4. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  5. Insoluble surface carbon on steel sheet annealed in hydrogen-nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Biber, H. E.; Takacs, R. C.; Dickey, A. E.

    1983-09-01

    The way in which heating in hydrogen-nitrogen atmosphere affects the pyrolysis of the residual lubricant on cold-reduced steel sheet was studied to discover the factors responsible for the formation of carbonaceous films on the steel surface. These films, referred to as insoluble surface carbon, cannot be removed with the usual solvents or water-base cleaners and adversely affect the paintability of the steel. A surprising result was the observation that the full-hard steel surface has a significant amount of insoluble surface carbon; amounts in excess of 0.010 gm/m2 (1 mg/ft2) were observed. The origin of this “initial” insoluble carbon can be traced to the pickling operation after hot rolling. During annealing much of the residual rolling lubricant on the surface is driven off by evaporation, but concurrently insoluble pyrolysis products are formed. The amount of insoluble pyrolysis product formed is directly related to the amount of “initial” insoluble carbon on the surface before annealing. The results show that at some point during annealing the total amount of insoluble carbon on the surface is more than double the amount of “initial” insoluble carbon. These insoluble pyrolysis products can also be driven from the surface at higher temperatures than are required for evaporation of the oil. The results suggest that removal of the “initial” insoluble carbon prior to cold reduction might be very beneficial with respect to decreasing the amount of insoluble carbon on the surface of steel sheet after annealing.

  6. Behavior of painted steel and aluminum sheet in laboratory automotive corrosion tests

    SciTech Connect

    Townsend, H.E.

    1996-01-01

    Because of environmental concern and government pressure, automakers are exploring ways to increase the fuel economy of vehicles. Mass reduction can be achieved by substituting plastics, aluminum, or high-strength steel for ordinary grades of steel in the autobody. Estimates of fuel economy increases range from 3% to 7% for each 10% reduction in mass. The use of aluminum for mass reduction currently is receiving considerable attention. Cold-rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum alloy sheet products (Al 2036, Al 5182, and Al 6111) were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, GM9540P(B) and CCT-IV. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance was determined in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold-rolled steel and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicated the difference was related to the salt solutions used in each test. The aluminum alloys were prone to crevice corrosion and to galvanic corrosion when coupled to steel. Results indicated that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

  7. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    NASA Astrophysics Data System (ADS)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-08-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides.

  8. Remote Laser Welding of Zinc Coated Steel Sheets in an Edge Lap Configuration with Zero Gap

    NASA Astrophysics Data System (ADS)

    Roos, Christian; Schmidt, Michael

    Remote Laser Welding (RLW) of zinc-coated steel sheets is a great challenge for the automotive industry but offers high potentials with respect to flexibility and costs. In state of the art applications, sheets are joined in overlap configuration with a preset gap for a stable zinc degassing. This paper investigates RLW of fillets without a preset gap and conditions for a stable process. The influence of process parameters on weld quality and process stability is shown. Experimental data give evidence, that the degassing of zinc through the capillary and the rear melt pool are the major degassing mechanisms. Furthermore the paper gives experimental validation of the zinc degassing in advance of the process zone to the open side of the fillet. Chemical analysis of the hot-dip galvanized zinc coating proof the iron-zinc-alloys to be the reason for a limited effectiveness of this mechanism in comparison to pure zinc as intermediate.

  9. Importance of punching and workability in non-oriented electrical steel sheets

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yousuke; Mogi, Hisashi; Fujii, Hiroyasu; Kubota, Takeshi; Shiozaki, Morio

    In order to reduce energy loss in motors, the use of high-efficiency non-oriented electrical steel sheets and an optimal motor core design are important. It is also crucial to minimize the deterioration of magnetic properties during the motor core manufacturing process. Accordingly, this report evaluates the effects of cutting and clamping methods on the deterioration factors of motor cores. Magnetic properties are largely influenced by both cutting and clamping methods. While it is difficult to avoid cutting and clamping altogether, it is necessary to adopt suitable production conditions and minimize the deterioration involved.

  10. Microstructure and crystallographic texture of strip-cast 4.3wt%Si steel sheet

    SciTech Connect

    Park, J.Y.; Oh, K.H.; Ra, H.Y.

    1999-03-19

    Since grain oriented silicon steel sheet was invented in 1935 by Goss, the material has been of considerable fundamental and technological interest to improve the sharpness of Goss orientation {l_brace}110{r_brace}{l_angle}100{r_angle} etc. In the present study, a Fe-4.3wt%Si strip was produced by the vertical type twin roll strip casting process and the microstructure and texture through the thickness direction were studied by optical metallography and quantitative X-ray texture analysis. The inhomogeneity of the texture and microstructure through the thickness direction were investigated.

  11. Behavior of painted steel and aluminum sheet in laboratory corrosion tests

    SciTech Connect

    Townsend, H.E.

    1995-11-01

    Cold rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum-alloy (2036, 5182, and 6111) sheet products were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, namely, GM9540Ps(B) and CCT-4. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold rolled, and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicate that the difference is related to the salt solutions used in each test. Aluminum alloys were found to be prone to crevice corrosion and to galvanic corrosion when coupled to steel. These results indicate that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

  12. Nanoscale analysis of surface oxides on ZnMgAl hot-dip-coated steel sheets.

    PubMed

    Arndt, M; Duchoslav, J; Itani, H; Hesser, G; Riener, C K; Angeli, G; Preis, K; Stifter, D; Hingerl, K

    2012-05-01

    In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed. PMID:22086398

  13. Equivalent orthotropic elastic moduli identification method for laminated electrical steel sheets

    NASA Astrophysics Data System (ADS)

    Saito, Akira; Nishikawa, Yasunari; Yamasaki, Shintaro; Fujita, Kikuo; Kawamoto, Atsushi; Kuroishi, Masakatsu; Nakai, Hideo

    2016-05-01

    In this paper, a combined numerical-experimental methodology for the identification of elastic moduli of orthotropic media is presented. Special attention is given to the laminated electrical steel sheets, which are modeled as orthotropic media with nine independent engineering elastic moduli. The elastic moduli are determined specifically for use with finite element vibration analyses. We propose a three-step methodology based on a conventional nonlinear least squares fit between measured and computed natural frequencies. The methodology consists of: (1) successive augmentations of the objective function by increasing the number of modes, (2) initial condition updates, and (3) appropriate selection of the natural frequencies based on their sensitivities on the elastic moduli. Using the results of numerical experiments, it is shown that the proposed method achieves more accurate converged solution than a conventional approach. Finally, the proposed method is applied to measured natural frequencies and mode shapes of the laminated electrical steel sheets. It is shown that the method can successfully identify the orthotropic elastic moduli that can reproduce the measured natural frequencies and frequency response functions by using finite element analyses with a reasonable accuracy.

  14. Springback analysis for the stamping of an automotive part with high strength steel sheet

    NASA Astrophysics Data System (ADS)

    Hung, Tzu-Hao; Tsai, Heng-Kuang; Chang, Chih-Kai; Hsu, Yu-Hung; Chen, Fuh-Kuo; Chung, Kuo-Hsin

    2013-05-01

    The study of springback analysis of 440MPa high strength steel is investigated in this paper. Because of the springback phenomenon is related to the material properties and the deformation mechanism during the forming process, the material properties of 440MPa high strength steel are studied at first. The material properties of 440MPa high strength steel are obtained by conducting cyclic uniaxial tension-compression tests with different strain ranges. In order to apply the material properties obtained from the experiments to the finite element analysis, the material constants required in the Yoshida-Uemori model (Y-U model) with the Bauschinger effect considered are established. For realizing the springback characteristics of 440MPa high strength steel, the U-hat draw-bending and V-shape bending are examined by the finite element analysis. From the simulation results, it finds that the side wall curl phenomenon occurs in the U-hat drawbending and the springback phenomenon appears in the V-shape bending. Moreover, it also shows that the side wall curl phenomenon and springback phenomenon are more obvious in the finite element simulations with the Bauschinger effect considered. Finally, the validation of springback prediction is performed by stamping an engine hood reinforcement with 440MPa high strength steel sheet. From the stamping results, it shows that the simulation results of springback prediction are in a well agreement to the production part data. It also finds that the springback predictions are more accurate by the finite element simulations with the use of the Y-U model. It is also found that for a stamping part which is subjected to a reversed tension-compression deformation in the forming process, the occurrence of the Bauschinger effect is obvious. It is also concluded that the accuracy of springback prediction can be much improved by the use of material model with the Bauschinger effect considered.

  15. 76 FR 31633 - Tin- and Chromium-Coated Steel Sheet from Japan; Institution of a Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... tin- and chromium-coated steel sheet from Japan (65 FR 52067). Following five-year reviews by Commerce... order on imports of tin- and chromium-coated steel sheet from Japan (71 FR 41422). The Commission is now..., subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847 (January 16, 2009)....

  16. Corrosion of steel members strengthenened with carbon fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Bumadian, Ibrahim

    Due to many years of service at several cases of exposure at various environments there are many of steel bridges which are in need of rehabilitation. The infrastructure needs upgrading, repair or maintenance, and also strengthening, but by using an alternative as retrofits methods. The alternative retrofit method, which used fiber reinforced polymer (FRP) composite materials which their strength materials comes largely from the fiber such as carbon, glass, and aramid fiber. Of the most important materials used in the rehabilitation of infrastructure is a composite material newly developed in bonded externally carbon fiber and polymer (CFRP) sheets, which has achieved remarkable success in the rehabilitation and upgrading of structural members. This technique has many disadvantages one of them is galvanic corrosion. This study presents the effect of galvanic corrosion on the interfacial strength between carbon fiber reinforced polymer (CFRP) sheets and a steel substrate. A total of 35 double-lap joint specimens and 19 beams specimens are prepared and exposed to an aggressive service environment in conjunction with an electrical potential method accelerating corrosion damage. Six test categories are planned at a typical exposure interval of 12 hours, including five specimens per category for double-lap joint specimens. And six test categories are planned at a typical exposure interval of 12 hours, including three specimens per category for Beam section specimens. In addition one beam section specimen is control. The degree of corrosion is measured. Fourier transform infrared (FTIR) reflectance spectroscopy has been used to monitor and confirm the proposed corrosion mechanisms on the surface of CFRP. In this study we are using FTIR-spectroscopic measurement systems in the mid infrared (MIR) wavelength region (4000 - 400) cm-1 to monitor characteristic spectral features. Upon completion of corrosion processes, all specimens are monotonically loaded until failure

  17. The effect of surface morphology on the friction of electrogalvanized sheet steel in forming processes

    SciTech Connect

    Skarpelos, P. N.

    1993-12-01

    The effect in the drawbead simulator test were evaluated for a set of commercially coated steels and a set of laboratory coated steels with underlying surfaces produced by laser textured, shot blast, and electro-discharge textured rolls. In general, surfaces with higher roughness (R{sub a} parameter) measured lower friction in the DBS tests. The requisite roughness amplitude necessary for low friction was moderated somewhat by having a more closely spaced roughness as described by the median wavelength, {lambda}m, of the power spectrum. This effect is due to interaction with the lubricant by the micro-roughness imparted by the galvanizing process. The lubricant tends to be retained better by the surfaces with the micro-roughness, thereby increasing the amount of elasto- and plasto-hydrodynamic support of the load. Other variables, such as large variations in thickness of the sheet can mask the effect of the surface by changing the actual distance of sliding contact during the DBS test. For tests where the amount of sliding is similar, the effect of roughness is significant. The friction measured for EG steels in the DBS test is dominated by deformation of the surface with plowing by the asperities of the tooling adding to that caused by the deformation. The size of the plow marks in the deformed surfaces corresponds to the roughness of the tooling and no significant evidence of wear particles was observed.

  18. The relationship between microstructure and damage evolution in hot-rolled complex-phase steel sheet

    NASA Astrophysics Data System (ADS)

    Bell, Grant A. S.

    Complex-phase (CP) steels are employed in applications that require high-strength and good edge formability. These steels derive their strength from a fine-grained bainite-ferrite microstructure, and alloying to provide solid-solution and precipitation strengthening. CP steels are produced industrially through a process of controlled rolling and cooling to produce desirable microstructures. Hole-expansion tests are typically used as a measure of edge formability for applications such as stretch-flanges. It has been shown that CP microstructures are susceptible to large fluctuations in hole-expansion performance with little change in processing or resulting tensile properties. The steel's characteristics of damage evolution are critical to the hole-expansion performance. This study investigates the role of microstructure in the development of damage in CP microstructural variants. Two variant pairs of different thicknesses were produced from the leading and trailing edge of industrially produced hot-rolled sheet. Each pair consisted of a variant with poor hole-expansion performance, and a variant with good hole-expansion performance. Each variant was tested via interrupted double-notched uniaxial tension testing to induce damage. Damage evolution in each variant was quantified by X-ray micro-computed tomography (XmicroCT), and supplementary optical micrography. The damage results were correlated with microstructural characteristics. It was shown that poor hole-expansion variants failed by intergranular fracture. In these variants, void damage induced by hard martensite and retained austenite was not critical in producing failure. Purely void-damaged microstructures failed by ductile fracture, whereas cracked microstructures failed in a mixed brittle-ductile failure initiated by planar cracks. Microstructural banding of large elongated ferrite grains correlated with the existence of intergranular planar fractures.

  19. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L.

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  20. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    SciTech Connect

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  1. Laboratory testing of geomembrane for waste containment EPA Method 9090, March 1995. Final report

    SciTech Connect

    Whitlock, R.W.

    1995-05-15

    This report describes the work performed by TRI/Environmental, Inc. (TRI) to determine the chemical compatibility of one geomembrane and one seamed geomembrane with four synthetically generated leachates. The objective was to determine the resistance of the geomembrane to changes caused by exposure to the leachates. Changes in physical and mechanical properties were measured after exposure to the leachates at 23 C and 50 C for 30, 60, 90 and 120 days. Exposures were performed in accordance with the exposure regimen specified in US Environmental Protection Agency (EPA) Method 9090A. Methods, results and discussion are provided. Test results are also provided in the Tables of Results which accompany this report.

  2. 76 FR 49450 - Stainless Steel Sheet and Strip in Coils From Germany, Italy, and Mexico: Revocation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... (``Sunset'') Review, 75 FR 30777 (June 2, 2010). \\1\\ See Final Determination of Sales at Less Than Fair Value; Stainless Steel Sheet and Strip in Coils From Germany, 64 FR 30710 (June 8, 1999). \\2\\ See Notice... From Italy, 64 FR 30750 (June 8, 1999). \\3\\ See Notice of Final Determination of Sales at Less...

  3. 76 FR 9542 - Stainless Steel Sheet and Strip in Coils From Mexico; Notice of Amended Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Duty Administrative Review, 76 FR 2332 (January 13, 2011) (S4 from Mexico 2008-2009 Final Results). On... Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). This clarification will apply to... International Trade Administration Stainless Steel Sheet and Strip in Coils From Mexico; Notice of Amended...

  4. 76 FR 58536 - Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... FR 31633, June 1, 2011) were adequate. A record of the Commissioners' votes, the Commission's... COMMISSION Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a... From Japan AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY:...

  5. 75 FR 57899 - Certain Stainless Steel Sheet and Strip in Coils from Italy and Mexico: Extension of Time Limits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... (``Sunset'') Review, 75 FR 30777 (June 2, 2010) (Notice of Initiation). The Department received a notice of... Act of 1930, As Amended, 70 FR 24533 (May 10, 2005). Accordingly, the deadline for the completion of... orders on certain stainless steel sheet and strip (SSSS) in coils from, inter alia, Italy and...

  6. Standard specification for steel, sheet and strip, high-strength, low-alloy, columbium or vanadium, or both, hot-rolled and cold-rolled. ASTM standard

    SciTech Connect

    1998-09-01

    DoD adopted. This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A05.19 on Steel Sheet and Strip. Current edition approved Jun. 10, 1998 and published September 1998. Originally published as A 607-70. Last previous edition was A 607-96.

  7. Resistance spot weldability of 11Cr-ferritic/martensitic steel sheets

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-02-01

    Resistance spot welding of 11Cr-0.4Mo-2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  8. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    SciTech Connect

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  9. Horizontal and vertical twin-belt casting of 1-inch-thin sections of sheet steel

    SciTech Connect

    Moore, M.R.; Daniel, S.S.; Ozgu, M.R.

    1988-01-01

    Innovative horizontal and vertical twin-belt casting systems were developed and tested in casting trials to provide alternative approaches to solving the crux technical problem of feeding liquid steel into the thin mold gap so as to achieve the excellent as-cast surface quality necessary to allow subsequent direct rolling of top-quality sheet. The horizontal approach involved an innovative feeding system to feed the 1-inch-thick caster entry, but the twin-belt Hazelett machine itself was largely conventional. In contrast, the opened-up entry of the vertical twin-belt machine allowed the use of conventional lathe tube and flux pouring systems, but the machine itself was complex and deformed the casting down to the 1-inch thickness. Extensive modeling work was done to support both approaches. 15 refs., 21 figs., 1 tab.

  10. Effect of Seam Welding on Forming Limits of IF-Steel Sheet

    NASA Astrophysics Data System (ADS)

    Sutariya, D.; Raval, H.; Kalaivani, K.; Hariharan, K.; Prabhu, A.; Narasimhan, K.

    2011-08-01

    Laser welding is the most commonly used process for producing Tailor Welded Blanks (TWB). Although laser welding is best suited for TWB applications, it is an expensive process. In this work an alternate cheap process, seam welding, is used to produce welded sheets of IF-steel of same grade and thickness. The effect of this welding on forming limit strains is explored in this work. Forming behavior is characterized by Forming Limit Diagram (FLD). The FLDs of welded blanks are compared with that of un-welded blanks. The effect of longitudinal, transverse and 450 weld orientation on formability is studied. Weld location includes both centered and offset weld location in the transverse weld orientation. Numerical simulations are carried out by considering weld as a zone. Experimental results are compared with the predictions carried out by FE method.

  11. Statistical modeling of laser welding of DP/TRIP steel sheets

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Mokrov, O.; Ahmed, E.

    2012-02-01

    In this research work, a statistical analysis of the CO 2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets was done using response surface methodology. The analysis considered the effect of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm) on the heat input, the weld bead geometry, uniaxial tensile strength, formability limited dome height and welding operation cost. The experimental design was based on Box-Behnken design using linear and quadratic polynomial equations for predicting the mathematical models. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used and the welding speed is the most significant parameter during the welding process.

  12. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  13. Texture development and hardening characteristics of steel sheets under plane-strain compression

    SciTech Connect

    Friedman, P.A.; Liao, K.C.; Pan, J.; Barlat, F.

    1999-04-01

    Crystallographic texture development and hardening characteristics of a hot-rolled, low-carbon steel sheet due to cold rolling were investigated by idealizing the cold rolling process as plane-strain compression. The starting anisotropy of the test material was characterized by examination of the grain structure by optical microscopy and the preferred crystal orientation distribution by x-ray diffraction. Various heat treatments were used in an effort to remove the initial deformation texture resulting from hot rolling. The plastic anisotropy of the starting material was investigated with tensile tests on samples with the tensile axis parallel, 45{degree}, and perpendicular to the rolling direction. The grain structure after plane-strain compression was studied by optical microscopy, and the new deformation texture was characterized by x-ray diffraction pole figures. These figures are compared with the theoretical pole figures produced from a Taylor-like polycrystal model based on a pencil-glide slip system. The uniaxial tensile stress-strain curve and the plane-strain, compressive stress-strain curve of the sheet were used to calibrate the material parameters in the model. The experimental pole figures were consistent with the findings in the theoretical study. The experimental and theoretical results suggest that the initial texture due to hot rolling was insignificant as compared with the texture induced by large strains under plane-strain compression.

  14. Effect of Imposing Temperature Gradient in Stretch Forming Process for Ferritic Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Iguchi, Takaaki; Ujiro, Takumi

    2010-06-01

    A new stamping method developed by the authors, in which a temperature gradient is imposed on the workpiece during stamping, is capable of improving stretch formability in stamping of ferritic stainless steel sheets. Unlike the conventional warm stamping method, the temperature gradient is utilized in order to diffuse the strain distribution induced in the material. Basically, the portions of the sheets which are in contact with the top of the punch and die face are heated, while simultaneously, the portions in contact with the punch corners and die corners are intensively cooled The authors developed a finite element simulation model of stamping which analyzes mechanical and thermal behaviors simultaneously utilizing LS-DYNA3D. The numerical analysis, combined with a numerical model which evaluates the ductile fracture limit of the material in the high temperature region, confirmed that the new stamping method improves stretch formability and the optimal temperature gradient is given. In order to verify the numerical analysis, an experimental apparatus was constructed, comprising a set of stamping tools containing heaters and cooling circuits. The experiments demonstrated the correctness of the numerical analysis and the effectiveness of the new stamping method.

  15. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  16. Mechanical Properties Involved in the Micro-forming of Ultra-thin Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Hanh; Thuillier, Sandrine; Manach, Pierre-Yves

    2015-08-01

    The objective of this paper is to characterize the mechanical behavior of an ultra-thin stainless steel, of 0.15-mm thickness, that is commonly used in the manufacturing of miniature connectors. The main focus is the relationship between some microstructural features, like grain size and surface roughness, and the macroscopic mechanical behavior investigated in uniaxial tension and simple shear. In tension, adaptations to the very small sheet thickness, in order to hold the specimen under the grips, are presented. Yield stress, initial elastic modulus, and evolution of the loading-unloading slope with plastic deformation were evaluated. Moreover, the kinematic contribution to the hardening was characterized by monotonic and cyclic simple shear test and reproduced by a mixed hardening law implemented in Abaqus finite element code. Then, the evolution of surface roughness with plastic strain, both in tension and simple shear, was analyzed. It was shown that in the case of an ultra-thin sheet, the stress levels, calculated either from an average thickness or when considering the effect of the surface roughness, exhibit a significant difference. Finally, the influence of surface roughness on the fracture of a tensile specimen was also investigated.

  17. Temperature Effects on the Magnetic Properties of Silicon-Steel Sheets Using Standardized Toroidal Frame

    PubMed Central

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25–300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50–5,000 Hz) and high magnetic flux (0.2–1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs. PMID:25525629

  18. Effect of deformation texture on the anisotropy of elasticity and damage of two-phase steel sheets

    NASA Astrophysics Data System (ADS)

    Bryukhanov, A. A.; Gerstein, G.; Dyachok, D. A.; Nürnberger, F.

    2016-07-01

    The effect of small tensile deformation (3, 6, and 10%) on the texture of preliminary annealed sheets of two-phase DP600 steel (0.10 C, 0.15 Si, 1.4 Mn, 0.007 P, 0.008 S, 0,009 N, 0.02-0,06 Al, 1 Cr-Mo-Ni (wt %)) is studied. Against the background of the annealing texture in the sheets, the {001} <110>, {111} <110>, {111} <112>, {111} <312> components of the slip texture and {115} <110>, {115} <552>, {221} <110>, {221} <114> orientations are developed, which can be associated with the twinning processes. The anisotropy pattern of the Young's modulus ( E) in the sheet plane remains the same after tensile deformation of the annealed sheets. After tension, the values of E decrease in all directions as a result of the onset and development of microdamages. The anisotropy of damage ( D) in the plane of the steel sheets after tension is characterized by a maximum in the transverse direction (TD) and a minimum in the rolling direction (RD).

  19. Modeling and FE Simulation of Quenchable High Strength Steels Sheet Metal Hot Forming Process

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Bao, Jun; Xing, Zhongwen; Zhang, Dejin; Song, Baoyu; Lei, Chengxi

    2011-08-01

    High strength steel (HSS) sheet metal hot forming process is investigated by means of numerical simulations. With regard to a reliable numerical process design, the knowledge of the thermal and thermo-mechanical properties is essential. In this article, tensile tests are performed to examine the flow stress of the material HSS 22MnB5 at different strains, strain rates, and temperatures. Constitutive model based on phenomenological approach is developed to describe the thermo-mechanical properties of the material 22MnB5 by fitting the experimental data. A 2D coupled thermo-mechanical finite element (FE) model is developed to simulate the HSS sheet metal hot forming process for U-channel part. The ABAQUS/explicit model is used conduct the hot forming stage simulations, and ABAQUS/implicit model is used for accurately predicting the springback which happens at the end of hot forming stage. Material modeling and FE numerical simulations are carried out to investigate the effect of the processing parameters on the hot forming process. The processing parameters have significant influence on the microstructure of U-channel part. The springback after hot forming stage is the main factor impairing the shape precision of hot-formed part. The mechanism of springback is advanced and verified through numerical simulations and tensile loading-unloading tests. Creep strain is found in the tensile loading-unloading test under isothermal condition and has a distinct effect on springback. According to the numerical and experimental results, it can be concluded that springback is mainly caused by different cooling rats and the nonhomogengeous shrink of material during hot forming process, the creep strain is the main factor influencing the amount of the springback.

  20. Formability Analysis of Diode-Laser-Welded Tailored Blanks of Advanced High-Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Baltazar Hernandez, V. H.; Kuntz, M. L.; Zhou, Y.

    2009-08-01

    Currently, advances due to tailored blanking can be enhanced by the development of new grades of advanced high-strength steels (HSSs), for the further weight reduction and structural improvement of automotive components. In the present work, diode laser welds of three different grades of advanced high-strength dual-phase (DP) steel sheets (with tensile strengths of 980, 800, and 450 MPa) to high-strength low-alloy (HSLA) material were fabricated by applying the proper welding parameters. Formability in terms of Hecker’s limiting dome height (LDH), the strain distribution on the hemispherical dome surface, the weld line movement during deformation, and the load-bearing capacity during the stretch forming of these different laser-welded blanks were compared. Finite element (FE) analysis of the LDH tests of both the parent metals and laser-welded blanks was done using the commercially available software package LS-DYNA (Livermore Software Technology Corporation, Livermore, CA); the results compared well with the experimental data. It was also found that the LDH was not affected by the soft zone or weld zone properties; it decreased, however, with an increase in a nondimensional parameter, the “strength ratio” (SR). The weld line movement during stretch forming is an indication of nonuniform deformation resulting in a decrease in the LDH. In all the dissimilar weldments, fracture took place on the HSLA side, but the fracture location shifted to near the weld line (at the pole) in tailor-welded blanks (TWBs) of a higher strength ratio.

  1. Effect of electrode force condition on nugget diameter and residual stress in resistance spot welded high-strength steel sheets

    NASA Astrophysics Data System (ADS)

    Iyota, M.; Mikami, Y.; Hashimoto, T.; Taniguchi, K.; Ikeda, R.; Mochizuki, M.

    2012-08-01

    This study examines the effect of the electrode force condition on the nugget diameter and residual stress in spot welded high-strength steel sheets. Numerical simulations of spot welding were performed to examine the nugget diameter and residual stress. The results indicate that adjusting the force profile changes the current density and stress state at the spot welds. Therefore, choosing an appropriate force profile extends the nugget diameter and reduces the residual stress.

  2. Cosmetic corrosion of painted aluminum and steel automotive body sheet: Results from outdoor and accelerated laboratory test methods

    SciTech Connect

    Moran, J.P.; Ziman, P.R.; Egbert, M.W.

    1995-11-01

    In recent years, increasing attention has been given to the need to develop an accelerated laboratory test method(s) for cosmetic corrosion of painted panels that realistically simulate in-service exposure. Much of that work has focused on steel substrates. The purpose of this research is to compare the corrosion performance of painted aluminum and steel sheet as determined om various laboratory methods and in-service exposure, and to develop a realistic accelerated test method for evaluation of the cosmetic corrosion of painted aluminum. Several aluminum sheet products from the 2xxx, 5xxx, and 6xxx alloy series have been tested. The steel substrates are similar to those used in other programs. The test methods chosen represent a cross-section of methods common to the automotive and aluminum industries for evaluation of painted sheet metal products. The results indicate that there is considerable difference in the relative correlation of various test methods to in-service exposure. In addition, there is considerable difference in the relative magnitudes and morphologies of corrosion, and occasionally in the relative rankings, as a function of test method. The influence of alloy composition and zinc phosphate coating weight are also discussed.

  3. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  4. Investigation of galvanic corrosion in laser-welded stainless steel sheets

    NASA Astrophysics Data System (ADS)

    Kwok, Chi-Tat; Fong, Siu Lung; Cheng, Fai Tsun; Man, Hau-Chung

    2004-10-01

    In the present study, bead-on-plate specimens of 1-mm sheets of austenitic and duplex stainless steels were fabricated by laser penetration welding with a 2.5-kW CW Nd:YAG laser. The galvanic corrosion behavior of laser-weldment (LW) against as-received (AR) specimens with an area rato of 1:1 in 3.5% NaCL solution was studied by means of a zero-resistance ammeter. The free corrosion potentials of as-received specimens were found to be considerably higher than those of laser weldments, indicating that the weldments are more active and always act as anodes. The ranking of galvanic current densities (IG) of the couples in ascending order is: AR S31603-LW S31603 < AR S31803-LW S31803 < AR S32760-LW S32760 < AR S30400-LW S30400. For the galvanic couple between AR S30400 and LW S30400, the IG is the highest (78.6 nA/cm2) because large amount of δ-ferrite in the weld zone acts as active sites. On the other hand, the IG of the galvanic couple between AR S31603 and LW S31603 is the lowest (-26 nA/cm2) because no δ-ferrite is present after laser welding. The recorded IG of all couples revealed constantly low values (in the rnage of nA/cm2) and sometimes stayed negative, which indicated polarity reversal.

  5. Progress in Tridimensional (3d) Laser Forming of Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-09-01

    Achievement of complex shapes with high dimensional accuracy and precision by forming process is a demanding challenge for scientists and practitioners. Available technologies are numerous, with laser forming being progressively emerging because of limited springback, lack of molds and sophisticated auxiliary equipments. However, laser forming finds limited applications, especially when forming of tridimensional (3d) complex shapes is required. In this case, cost savings are often counterbalanced by the need for troublesome forming strategies. Therefore, traditional alternatives based on mechanical devices are usually preferred to laser systems. In the present work, 3d laser forming of stainless steel sheets by high power diode laser is investigated. In particular, the set of scanning patterns to form domes from flat blanks by simple and easy-to-manage radial paths alone was found. Numerous 3d items were also processed by diode laser to manufacture a number of complex shapes with high flexibility and limited efforts to modify the auxiliary forming equipment. Based on the experimental results and analytical data, the high power diode laser was found able to form arbitrary 3d shapes through the implementation of tailored laser scanning patterns and appropriate settings of the operational parameters.

  6. Material Modeling and Springback Prediction of Ultra Thin Austenitic Stainless Steel Sheet

    NASA Astrophysics Data System (ADS)

    Verma, Rahul K.; Murakoso, Satoko; Chung, Kwansoo; Kuwabara, Toshihiko

    2010-06-01

    The constitutive model with combined isotropic-kinematic hardening along with hardening stagnation (or permanent softening) [Verma, Kuwabara, Chung, Haldar: Int. J. Plasticity (submitted)] was used here for modeling the tension-compression behaviors of a 0.1 mm thick austenitic stainless steel sheet (SUS304), which was observed in a recent work [Kuwabara and Murakoso: Proc. CIRP 2010 Conf. (submitted)]. Springback was also experimentally measured for a shallow drawn rectangular cup here and it was verified using the above model. It was found that this model can successfully predict the Bauschinger effect and hardening stagnation. As for springback, it was found that in this particular case it depends on, other than the material model, factors like boundary conditions, in the finite element analysis (FEA), during unloading. It was also observed that incorporation of the Bauschinger effect and permanent softening is a key for accurate springback prediction and, therefore, the present model performs better than the one which is based only on isotropic hardening without any hardening stagnation.

  7. Optimization of laser welding of DP/TRIP steel sheets using statistical approach

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Mokrov, O.; Ahmed, E.

    2012-02-01

    Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO 2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box-Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.

  8. Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

    SciTech Connect

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

  9. Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels

    NASA Astrophysics Data System (ADS)

    Wu, Riming; Li, Wei; Zhou, Shu; Zhong, Yong; Wang, Li; Jin, Xuejun

    2014-04-01

    Fracture toughness K IC was measured by double edge-notched tension (DENT) specimens with fatigue precracks on quenching and partitioning (Q&P)-treated high-strength (ultimate tensile strength [UTS] superior to 1200 MPa) sheet steels consisting of 4 to 10 vol pct of retained austenite. Crack extension force, G IC, evaluated from the measured K IC, is used to analyze the role of retained austenite in different fracture behavior. Meanwhile, G IC is deduced by a constructed model based on energy absorption by martensite transformation (MT) behavior of retained austenite in Q&P-treated steels. The tendency of the change of two results is in good agreement. The Q&P-treated steel, quenched at 573 K (300 °C), then partitioned at 573 K (300 °C), holding for 60 seconds, has a fracture toughness of 74.1 MPa·m1/2, which is 32 pct higher than quenching and tempering steel (55.9 MPa·m1/2), and 16 pct higher than quenching and austempering (QAT) steel (63.8 MPa·m1/2). MT is found to occur preferentially at the tips of extension cracks on less stable retained austenite, which further improves the toughness of Q&P steels; on the contrary, the MT that occurs at more stable retained austenite has a detrimental effect on toughness.

  10. Production of sheet rolled products made of a nitrogen-bearing high-strength corrosion-resistant steel using electroslag remelting

    NASA Astrophysics Data System (ADS)

    Gutman, E. R.; Durynin, V. A.; Kalinin, G. Yu.; Khar'kov, O. A.; Tsukanov, V. V.

    2009-12-01

    A commercial electroslag remelting process is designed for the production of nitrogen-bearing steel. This process is shown to make a high-quality sheet product with higher strength characteristics and impact toughness as compared to rolled products of the nitrogen-bearing steel melted in an open electric arc furnace.

  11. Influence of the geomembrane on time-lapse ERT measurements for leachate injection monitoring.

    PubMed

    Audebert, M; Clément, R; Grossin-Debattista, J; Günther, T; Touze-Foltz, N; Moreau, S

    2014-04-01

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. To quantify the water content and to evaluate the leachate injection system, in situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). However, this method can present false variations in the observations due to several parameters. This study investigates the impact of the geomembrane on ERT measurements. Indeed, the geomembrane tends to be ignored in the inversion process in most previously conducted studies. The presence of the geomembrane can change the boundary conditions of the inversion models, which have classically infinite boundary conditions. Using a numerical modelling approach, the authors demonstrate that a minimum distance is required between the electrode line and the geomembrane to satisfy the good conditions of use of the classical inversion tools. This distance is a function of the electrode line length (i.e. of the unit electrode spacing) used, the array type and the orientation of the electrode line. Moreover, this study shows that if this criterion on the minimum distance is not satisfied, it is possible to significantly improve the inversion process by introducing the complex geometry and the geomembrane location into the inversion tools. These results are finally validated on a field data set gathered on a small municipal solid waste landfill cell where this minimum distance criterion cannot be satisfied. PMID:24529793

  12. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, G.E.; Wemple, R.P.

    1996-10-22

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.

  13. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, George E.; Wemple, Robert P.

    1996-01-01

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.

  14. Biaxial Tensile Test of Cold Rolled IF Steel Sheet for Large Plastic Strain Range

    NASA Astrophysics Data System (ADS)

    Enatsu, Ryotaro; Kuwabara, Toshihiko

    2011-08-01

    Deformation behavior of cold rolled IF steel sheet (SPCE) under biaxial tension has been investigated for large plastic strain range over 15%. The test material was bent and TIG welded to form a tubular specimen with an outer diameter of 46.2 mm and wall thickness of 0.8 mm. The tubular specimens have been subjected to linear stress paths in the first quadrant of stress space with the use of a servo-controlled tension-internal pressure testing machine developed by one of the authors [T. Kuwabara, K. Yoshida, K. Narihara, S. Takahashi, Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure, Int. J. Plasticity 21, 101-117 (2005)]. Moreover, biaxial tensile tests using a cruciform specimen have also been carried out to more precisely measure the deformation behavior for a small strain range following initial yielding. True stress-true plastic strain curves, contours of plastic work in stress space and the directions of plastic strain rates have been measured and compared with those calculated using selected yield functions: the von Mises, Hill's quadratic and Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., Plane stress yield function for aluminum alloy sheets—Part 1: Theory. Int. J. Plasticity 19, 1297-1319 (2003)]. The plastic deformation behavior up to a work equivalent plastic strain of ɛ0p = 0.19 has been successfully measured. It is found that the test material exhibits differential hardening and that the Yld2000-2d yield function with an exponent of six most closely predicts the contours of plastic work and the directions of plastic strain rates.

  15. Preparation of High Silicon Electrical Steel Sheets with Strong {100} Recrystallization Texture by the Texture Inheritance of Initial Columnar Grains

    NASA Astrophysics Data System (ADS)

    Pan, Hongjiang; Zhang, Zhihao; Xie, Jianxin

    2016-05-01

    Texture evolutions and recrystallization texture features in warm- and cold-rolled sheets of high silicon electrical steel with two different initial microstructures (columnar-grained and equiaxed-grained microstructures) were investigated. The relationships between the recrystallization textures and the initial textures (the textures before rolling) of the samples were analyzed. The results showed that after annealing at 1073 K (800 °C) for 1 hour, strong {100} recrystallization textures with volume fractions of more than 47 pct were obtained in the columnar-grained samples fabricated by warm and cold rolling along the growing direction of the columnar grains. While after rolling and annealing in the same processes, only 12.8 pct volume fractions of {100} recrystallization texture were revealed in the equiaxed-grained samples. The formation of strong {100} recrystallization texture in the annealed sheets of high silicon electrical steel with initial columnar grains was attributed to the favorable texture inheritance of the initial texture during rolling and annealing. The columnar grains of strong near {100}<001> ({100}<001> {310}<001>) orientation in the samples before rolling were transferred into deformed grains with orientations such as {100}<011> and {100}<012>. after rolling. Afterwards, these deformed grains were further transferred into {100} oriented recrystallized grains, which formed strong {100} recrystallization texture in the annealed sheets and exhibited preferable soft magnetic properties.

  16. Comparison of precipitate behaviors in ultra-low carbon, titanium-stabilized interstitial free steel sheets under different annealing processes

    SciTech Connect

    Shi, J.; Wang, X.

    1999-12-01

    Ultra-low carbon, titanium-stabilized interstitial free (ULC Ti-IF) steel sheets are widely used in the automobile industry because of excellent deep drawability. The annealing process is critical to their final property, and there are two different annealing processes used in industrial production of interstitial free (IF) steel sheets, namely batch annealing and continuous annealing. In this study, precipitation behaviors of titanium IF steels, that is, TiN, TiS, Ti{sub 4}(CS){sub 2}, and TiC, the size and dispersion of TiN, TiS, and Ti{sub 4}(CS){sub 2} remained almost unchanged after either annealing process. Conversely, the average size of a TiC particle increased substantially after both annealing processes, while TiC after continuous annealing was larger than that after batch annealing due to the higher heating temperature of continuous annealing. Two new particles, FeTiP and (Ti, Mn)S, were also observed in the batch annealing process but not in continuous annealing. The structure of FeTiP and (Ti, Mn)S were studied, and furthermore the evolution of FeTiP precipitation was found to be closely related to recrystallization in batch annealing. Finally, the interrelation among processing parameters, precipitation behaviors, and final property was studied.

  17. Investigation of Ductile Damage in DP980 Steel Sheets Using Mechanical Tests and X-ray Micro-Tomography

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Leguen, C.; Thuillier, S.; Maire, E.

    2011-05-01

    This study is part of a broader research project on the prediction of formability limits in bending on radius of the order of the sheet thickness, based on ductile damage. As a first step, ductile damage in DP980 steel sheet was investigated by means of micro-tomography and mechanical testing, including tensile and simple shear tests. The local strain in tension was measured with a digital image correlation device up to rupture, on macroscopic samples of standard dimensions. Moreover, interrupted tensile tests on smaller specimen were also performed, in order to analyze the void distribution by X-ray micro-tomography. The final aim is to perform numerical simulation of the tests, with Gurson-Tvergaard-Needleman model, to take into account the influence of ductile damage on the mechanical behavior. A fair description of the void volume fraction was obtained as well as the stress level, in the case of small-size specimen.

  18. Two-beam Laser Brazing of Thin Sheet Steel for Automotive Industry Using Cu-base Filler Material

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Reitemeyer, D.; Vollertsen, F.

    This work shows the potential of two-beam laser brazing for joining both Zn-coated steel and 22MnB5. Brazing of Zn-coated steel sheets using Cu-Si filler wire is already state of the art in car manufacturing. New press-hardened steels like 22MnB5 are more and more used in automotive industry, offering high potential to save costs and improve structural properties (reduced weight / higher stiffness). However, for joining of these ultra-high strength steels investigations are mandatory. In this paper, a novel approach using a two-beam laser brazing process and Cu-base filler material is presented. The use of Cu-base filler material leads to a reduced heat input, compared to currently applied welding processes, which may result in benefits concerning distortion, post processing and tensile strength of the joint. Reliable processing at desired high speeds is attained by means of laser-preheating. High feed rates prevent significant diffusion of copper into the base material.

  19. Springback evaluation for TRIP 800 steel sheets by simple bending tests

    NASA Astrophysics Data System (ADS)

    Avellaneda, F. J.; Miguel, V.; Coello, J.; Martínez, A.; Calatayud, A.

    2012-04-01

    TRIP steels, or Transformed Induced Plasticity steels, have excellent mechanical properties if compared with conventional steels. Strain hardening is also greater, thus they offer a good combination of strength and formability properties that may be justified by the multiphase structure of these steels. The highlighted characteristic of these steels is that they modify the microstructure with the deformation process as part of the austenite transforms to martensite, with the consequent change of the material properties. One of the main problems of TRIP steels is strong elastic recovery, or springback, after forming. In this work, the springback phenomenon is evaluated by bending tests and the influence of the variables involved in it is determined. The factor found to affect material recovery the most was the bending angle. Experimental bending forces do not agree with theoretical predictions.

  20. Fracture prediction in hydraulic bulging of AISI 304 austenitic steel sheets based on a modified ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Song, H. W.; Zhang, S. H.; Cheng, M.

    2011-08-01

    The demand for weight reduction in modern vehicle construction has resulted in an increase in the application of hydroforming processes for the manufacture of automotive lightweight components. This trend led to the research of evaluation on formability of the sheet or tube hydroforming to be noted, particularly the prediction of fracture. In this study, a new proposed approach based on damage theory for fracture prediction considering the deformation history was introduced. And the modified ductile fracture criterion was applied to predict the failure for hydraulic bulging of AISI 304 austenitic steel sheets. The material parameters in terms of the function of strain rate in the failure criterion were determined from the equivalent fracture strains corresponding tensile tests under different stress conditions. Then, in the finite element simulation the effect of strain rates and their distribution as well during practical sheet metal forming process was considered. The hydraulic bulging tests were carried out to identify the fracture behavior predicted from FE analysis. A comparison between the prediction and experimental results showed that the proposed approach with a modified ductile fracture criteria can give better fracture predictions than traditional ways.

  1. Steel--Project Fact Sheet: Recycling Acid and Metal Salts from Pickling Liquors

    SciTech Connect

    Poole, L.; Recca, L.

    1999-01-14

    Regenerating hydrochloric acids from metal finishing pickling baths reduces costs, wastes, and produces a valuable by-product--ferrous sulfate. Order your copy of this OIT project fact sheet and learn more about how your company can benefit.

  2. Textured substrate method for the direct continuous casting of steel sheet; Final report

    SciTech Connect

    Gaspar, T.; Hackman, L.E.; Hsiao, Yu-Hsian; Daehn, G.

    1990-03-30

    The three goals of this research project were to demonstrate the feasibility of casting steel strip up to 2 mm (0.079 in) thick on a textured chill roll, to develop the thermal-mechanical processing to optimize the properties of the steel strip and to measure the properties of the steel strip as a function of casting and metalworking variables. Each of these goals have been realized. Type 304 stainless strip measuring up to 329 mm (12.9 in) wide and up to 1.98 mm (0.078 in) thick was cast on a 600 mm (24 in) copper chill roll with a 14 pitch, 60 degree diamond knurl pattern machined on it`s circumference. The casting speed was 0.15 m/s and the depth of liquid steel in contact with the chill roll was approximately 127 m (5 in). The most important process variables are the texture on the chill roll, the chemistry and temperature of the liquid steel, the depth of liquid in contact with the chill roll and the casting speed. It has been shown that thermal mechanical treatment can significantly improve both the surface finish and mechanical properties of Type 304 stainless steel. Cold rolling in excess of 30% reduction serves to completely eliminate the textured pattern from direct cast Type 304 stainless steel strips. Furthermore, cold rolling followed by annealing can produce commercial ingot metallurgy steels. Specifically, for Type 304 stainless steel, 30% cold rolling followed by a 40 minute anneal at 1100 {degree}C (2012 {degree}F) produced equiaxed austenite grains with an average diameter of approximately 20 {mu}m (0.0008 in), and this material gives approximately 45% elongation to failure with and ultimate tensile strength of 660 MPa (96 ksi). 27 refs., 40 figs., 7 tabs.

  3. Textured substrate method for the direct continuous casting of steel sheet: Technical progress report No. 1

    SciTech Connect

    Gaspar, T.

    1988-10-21

    The overall objective of this research project will be to demonstrate the feasibility of casting rapidly solidified steel strip 2 mm (0.080 in.) thick or greater using a textured chill block as described in US Patent No. 4,705,095, issued on November 10, 1987, to Ribbon Technology Corporation. The effect of melt overflow process variables on strip dimensions and uniformity will be investigated. Process variables include, but are not limited to, the following: super heat of the melt; wetting of substrate material; tundish design; and casting speed. Type 304 stainless steel and AISI 1020 standard carbon steel will be investigated.

  4. Effect of gadolinium addition on the corrosion, wear, and neutron absorbing behaviors of duplex stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Baik, Youl; Choi, Yong; Moon, Byung M.; Sohn, Dong S.; Bogdanov, S. G.; Pirogov, A. N.

    2015-11-01

    In order to develop the neutron absorbing and shield materials, a hot-rolled 0.02%-Gd duplex stainless steel was prepared with 55 vol. % of ferrite and 45 vol. % of austenite. The σ phase with an average grain size of 9-11 μm in austenitic (γ) grains tended to be elongated parallel to the rolling direction, with (100) poles concentrated towards the normal direction, and (110) poles located between the normal and radial directions (ND and RD, respectively). Most of the gadolinium existed as sub-micro-meter-sized Gd2O3 and GdCrO3 precipitates. The yield strength, ultimate tensile strength, elongation, and microhardness of the 0.02%-Gd duplex stainless steel were 522.8 MPa, 700.2 MPa, 38.1%, and 258.5-314.7 HV, respectively. The friction coefficient and wear resistance were 3.11 and 0.004 mg/kg/cycle, respectively. The corrosion potential and corrosion rate of the 0.02%-Gd duplex stainless steel were-0.448 V SHE and 1.263 × 10-3 A/cm2 for 1M-HCl,-0.544 V SHE and 2.619 × 10-3 A/cm2 for 1M-NaCl,-0.299 V SHE and 1.469 × 10-3 A/cm2 for 1M-H2SO4, and-0.607 V SHE and 2.295 × 10-3 A/cm2 for synthetic water, respectively. The coefficient of neutron transmission for the 0.02%-Gd duplex stainless steel sheet of 2 mm thickness at neutron beam wavelength of 0.48 nm was 0.6.

  5. Laser-Assisted Sheet Metal Working of High Strength Steels in Serial Production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    Within the sheet metal working industry the demand for thinner sheet materials with very high strength is growing due to the increasing need to save energy and a responsible use of natural resources. The high strength and the low ductility restricts using state of art technology to sheer, bend, emboss or deep draw parts with the needed complexity and quality. The Fraunhofer IPT developed a combination of laser-assisted preheating and conventional punching to a new hybrid technology which allows to shear, bend, emboss and draw high strength materials with a high quality and complexity in a serial production.

  6. 76 FR 77013 - Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ...-year review were such that a full review pursuant to section 751(c)(5) of the Act should proceed (76 FR... COMMISSION Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning.... SUMMARY: The Commission hereby gives notice of the scheduling of a full review pursuant to section...

  7. Springback Analysis of Draw-Bending of 980 MPa Cold Rolled Steel Sheet and Its Experimental Validation

    NASA Astrophysics Data System (ADS)

    Noma, Nobuyasu; Kuwabara, Toshihiko

    2011-01-01

    Draw-bending experiment is carried out using a 1.2 mm-thick high strength steel sheet with a tensile strength of 980 MPa and the residual curvature of the draw-bent specimens are precisely measured. The die profile of the draw-bending testing machine rotates, so that the effect of friction force on the curvature data after springback can be neglected. Moreover, in order to quantitatively evaluate the Bauschinger effect of the test material, stress reversal tests are performed using an in-plane stress reversal testing machine. Furthermore, the finite element analyses (FEA) of the draw-bending experiment are carried out. The effect of the work hardening models (isotropic or combined), element types (shell or solid), and the number of integration points in the through-thickness direction on the amount of springback (residual curvature) are investigated in detail.

  8. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  9. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  10. Effect of strain rate on formability in warm deep drawing of high tensile strength steel sheet

    NASA Astrophysics Data System (ADS)

    Yoshihara, Shoichiro; Iwamatsu, Go

    2014-10-01

    In tensile test of the high tensile strength steel, tensile strength isdrastically decreased as the temperature is raised. Then, the strain rate sensitivity exponent of high tensile strength steel (SUS631) in this study is high at 800 degrees especially. Also, elongation is increased as the temperature is raised. In deep drawing, the maximum punch load of the high tensile strength steel is examined on difference punch speed at 600 and 800 degrees. On the other hand, finite element (FE) simulation was used for the possibility to evaluate the forming load on difference punch speed in warm deep drawing. In FE simulation, we have considered both the strain hardening exponent and the strain rate sensitivity exponent (m-value) because we cannot neglect m-value 0.184 at 800 degrees. The tendency of the forming load in the experiments agrees the results in FE simulation.

  11. 78 FR 79667 - Stainless Steel Sheet and Strip in Coils From Japan: Initiation of Expedited Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Sheet and Strip in Coils from Japan: Final Results of Antidumping Duty Administrative Review, 75 FR 6631... Circumstances Review, 75 FR 8925 (Feb. 26, 2010), unchanged in Pressure Sensitive Plastic Tape From Italy: Final Results of Antidumping Duty Changed Circumstances Review, 75 FR 27706 (May 18, 2010); Brake Rotors...

  12. Textured substrate method for the direct continuous casting of steel sheet: Technical progress report No. 4

    SciTech Connect

    Gaspar, T.

    1989-07-14

    The overall objective of this research project will be to demonstrate the feasibility of casting rapidly solidified steel strip 2 mm (0.080 in.) thick or greater using a textured chill block as described in US Patent No. 4,705,095, issues on November 10, 1987, to Ribbon Technology Corporation. The effect of melt overflow process variables on strip dimensions and uniformity will be investigated. Process variables include, but are not limited to, the following: super heat of the melt; wetting of substrate material; tundish design; and casting speed. Type 304 stainless and AISI 1020 standard carbon steel will be investigated.

  13. Study and numerical analysis on formability of quenching and partitioning steel sheets of auto-body

    NASA Astrophysics Data System (ADS)

    Hu, Xing; Liu, Yifan; Zhu, Lin

    2013-05-01

    Advanced high strength steel is the basic structure material for lightweight design and safety enhancement for automobile industry. Quenching and partitioning steel is a recently developed kind of low carbon and low alloy material with retained Austenite for the requirements of both high strength and high ductility. This paper focuses on the formability of a hinge pillar for some car under numerical modelling analysis. The results show that QP980 has an equal elongation comparing with DP590. Moreover, the numerical modelling results of QP980 are more sensitive to the selection of yielding equation comparing with DP590.

  14. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part I. Deformation modes

    NASA Astrophysics Data System (ADS)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the deformation modes at work in three different microstructures of a thin (8 µm) zinc coating on an interstitial-free steel substrate under tension, plane-strain tension, and expansion loading. Damage mechanisms are addressed in a companion article. The plastic slip and twinning activity in the zinc grains of an untempered cold-rolled coating (labeled NSK), a tempered cold-rolled coating (labeled SK), and a recrystallized coating are compared with the response of the corresponding bulk low-alloyed zinc material. The in-plane grain size in the NSK and SK coatings ranges from 300 to 600 µm, vs about 30 µm in the recrystallized coating and bulk material. The coatings exhibit a strong crystallographic texture, with the c-axis generally normal to the sheet plane. Basal slip is shown to be the main deformation mechanism in bulk zinc and the recrystallized coating, whereas pyramidal π2 slip and mechanical twinning are found to be major modes in the NSK and SK coatings. These results, obtained from an extensive, quantitative slip-line analysis combined with electron backscattered diffraction (EBSD) measurements, are explained by the constraining effect of the substrate. This effect is successfully modeled using a simple Taylor-like polycrystalline approach. The recrystallized coating behaves much like the bulk material. The interpretation of this grain-size effect between the NSK and SK coating, on the one hand, and the recrystallized coating, on the other hand, requires a full three-dimensional finite-element analysis of the multicrystalline coating provided in this work. The simulations show that strong strain gradients can develop in the recrystallized coating from the interface to the surface, which is not the case in the NSK and SK coatings.

  15. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  16. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated. PMID:25208703

  17. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  18. Two-surface plasticity Model and Its Application to Spring-back Simulation of Automotive Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Park, Taejoon; Seok, Dong-Yoon; Lee, Chul-Hwan; Noma, Nobuyasu; Kuwabara, Toshihiko; Stoughton, Thomas B.; Chung, Kwansoo

    2011-08-01

    A two-surface isotropic-kinematic hardening law was developed based on a two-surface plasticity model previously proposed by Lee et al., (2007, Int. J. Plast. 23, 1189-1212). In order to properly represent the Bauschinger and transient behaviors as well as permanent softening during reverse loading with various pre-strains, both the inner yield surface and the outer bounding surface expand (isotropic hardening) and translate (kinematic hardening) in this two-surface model. As for the permanent softening, both the isotropic hardening and the kinematic hardening evolution of the outer bounding surface were modified by introducing softening parameters. The numerical formulation was also developed based on the incremental plasticity theory and the developed constitutive law was implemented into the commercial finite element program, ABAQUS/Explicit and ABAQUS/Standard using the user-defined material subroutines. In this work, a dual phase (DP) steel was considered as an advanced high strength steel sheet and uni-axial tension tests and uni-axial tension-compression-tension tests were performed for the characterization of the material property. For a validation purpose, the developed two-surface plasticity model was applied to the 2-D draw bending test proposed as a benchmark problem of the NUMISHEET 2011 conference and successfully validated with experiments.

  19. Numerical investigation and experimental validation of a plasticity model for sheet steel forming

    NASA Astrophysics Data System (ADS)

    Carvalho-Resende, Tales; Balan, Tudor; Bouvier, Salima; Abed-Meraim, Farid; Sablin, Simon-Serge

    2013-01-01

    This paper investigates a recently developed elasto-plastic constitutive model. For this purpose, the model was implemented in a commercial finite element code and was used to simulate the cross-die deep drawing test. Deep drawing experiments and numerical simulations were conducted for five interstitial-free steels and seven dual-phase (DP) steels, each of them having a different thickness and strength. The main interest of the adopted model is a very efficient parameter identification procedure, due to the physical background of the model and the physical significance of some of its parameters and state variables. Indeed, the dislocation density, grain size and martensite volume fraction explicitly enter the model's formulation, although the overall approach is macroscopic. For the DP steels, only the chemical composition and the average grain sizes were measured for the martensite and ferrite grains, as well as the martensite volume fraction. The mild steels required three additional tensile tests along three directions, in order to describe the plastic anisotropy. Information concerning the transient mechanical behavior after strain-path changes (reverse and orthogonal) was not collected for each material, but for only one material of each family of steels (IF, DP), based on previous works available in the literature. This minimalistic experimental base was used to feed the numerical simulations for the twelve materials that were confronted to deep drawing experiments in terms of thickness distributions. The results suggested that the accuracy of the numerical simulations is very satisfactory in spite of the scarce experimental input data. Additional investigations indicated that the modeling of the transient behavior due to strain-path changes may have a significant impact on the simulation results, and that the adopted approach provides a simple and efficient alternative in this regard.

  20. An Investigation of The Reticulated Foam - Perforated Steel Sheet Sandwich Structure As A Blast Mitigation Media

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien Ngoc; Proud, William; Institute of Shock Physics, Imperial College London Collaboration; Royal British Legion CentreBlast Injury Studies at Imperial College London Collaboration

    2015-06-01

    Explosions have always been the main cause of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming more and more common nowadays. In this paper, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets, with varying thickness and configuration, is studied using an air-driven shock tube apparatus. The mitigation effects for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude as well as shock impulse. Schlieren photography together with other high-speed imaging was also used to visually investigate the matter. The results show that lower open area of perforated sheet and increased thickness of foam offer best protection. However, below a threshold thickness, no mitigation is seen. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  1. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    NASA Astrophysics Data System (ADS)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  2. Analytical study of the performance of a geomembrane leak detection system.

    PubMed

    Lugli, Francesco; Mahler, Claudio Fernando

    2016-05-01

    The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal. PMID:27094694

  3. Local Laser Strengthening of Steel Sheets for Load Adapted Component Design in Car Body Structures

    NASA Astrophysics Data System (ADS)

    Jahn, Axel; Heitmanek, Marco; Standfuss, Jens; Brenner, Berndt; Wunderlich, Gerd; Donat, Bernd

    The current trend in car body construction concerning light weight design and car safety improvement increasingly requires an adaption of the local material properties on the component load. Martensitic hardenable steels, which are typically used in car body components, show a significant hardening effect, for instance in laser welded seams. This effect can be purposefully used as a local strengthening method. For several steel grades the local strengthening, resulting from a laser remelting process was investigated. The strength in the treated zone was determined at crash relevant strain rates. A load adapted design of complex reinforcement structures was developed for compression and bending loaded tube samples, using numerical simulation of the deformation behavior. Especially for bending loaded parts, the crash energy absorption can be increased significantly by local laser strengthening.

  4. Springback Simulation of High Strength Steel Sheet using Local Interpolation for Tool Surfaces

    SciTech Connect

    Hama, Takayuki; Fujimoto, Hitoshi; Takuda, Hirohiko; Teodosiu, Cristian; Makinouchi, Akitake

    2007-05-17

    This paper presents the effect of tool modelling accuracy on the simulation accuracy of springback in high strength steels. Simulations of a two-dimensional draw-bending process are carried out by using a polyhedral tool model whose surface is approximated by a polyhedron, and a model whose surface is smoothed by quadratic parametric surfaces proposed by Nagata [Nagata, Comput. Aided Geom. D, 22(2005), 55-59] (Nagata patch model). It is found that not only the shape accuracy but also the normal vector accuracy of tool models are of importance for accurate springback predictions. The use of the Nagata patch model is an efficient approach not only to improve the simulation accuracy but also to make the simulation be hardly influenced by the tool mesh, even for simulations of a high strength steel in which large amount of springback is involved.

  5. Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction.

    PubMed

    Chen, Zezhi; Gong, Huijuan; Zhang, Mengqun; Wu, Weili; Liu, Yu; Feng, Jin

    2011-05-01

    Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term. PMID:21232931

  6. Microstructure and Crystallographic Texture of Strip-Cast FE-3.2%SI Steel Sheet

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Yu, Y. M.; Cao, G. M.; Li, C. S.; Wang, G. D.; Jiang, Z. Y.

    Fe-3.2%Si steel strips were produced using vertical type twin casting process, and the changes of microstructure and texture trough thickness direction were analyzed. The equiaxed grains of approximately 44.6µm were observed in the center layer, the great mass of columnar dendrite was formed near the surface, and the dendrite truck mainly developed in the transverse direction with respect to the casting direction of about 45° or less. From the subsurface to the center, the volume fraction of the Goss texture (110)[001] gradually decreases. The Goss {110} <001> components at the surface are two times those at the center layer, the {001} <100> components are three times those at the center layer, and the overall texture components are similar to that of the hot-rolled oriented silicon steel strip. The minor α texture could be found from the φ2=45° sections of ODF, and there is no remarkable composition segregation of Si element in the thickness direction of thin strip.

  7. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    NASA Astrophysics Data System (ADS)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  8. Effect of second phase morphology on warm stretch-flangeability in high strength TRIP-aided dual-phase steel sheets

    SciTech Connect

    Nagasaka, A.; Sugimoto, K.; Kobayashi, M.

    1996-12-31

    The effects of second phase morphology on warm stretch-flangeability in 0.2C-(1.0-2.5)Si-(1.0-2.0)Mn (mass%) high strength transformation-induced plasticity TRIP-aided dual-phase (TDP) steel sheets were investigated. Good warm stretch-flangeability in terms of warm hole-punching and the successive warm hole-expanding was achieved in a TDP steel with an isolated fine and acicular second phase. In the acicular type of TDP steel, volume fraction and carbon concentration (stability) of retained austenite increased considerably over a conventional type of TDP steel with a network second phase along ferrite grain boundary. Warm hole-punching suppressed void formation in a surface layer of punched hole, and developed severe flow band which disturbs crack propagation on expanding. On the successive warm hole-expanding it increased local elongation due to TRIP effect of a large amount of untransformed retained austenite. Optimum forming temperatures for punching and for expanding were between 150-200{degrees}C and between 50-200{degrees}C, respectively. These temperatures were related with retained austenite stability. The acicular type of TDP steel also had the best balance of stretch-formability and stretch-flangeability of conventional high strength steels, such as a bainitic steel and a ferrite-bainite steel which have an excellent stretch-flangeability. Also, it was found that the newest TRIP-aided bainitic steel attained the same good balance as the acicular type of TDP steel.

  9. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    NASA Astrophysics Data System (ADS)

    Erice, Borja; Mohr, Dirk

    2015-09-01

    Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  10. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  11. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    SciTech Connect

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-04

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  12. Laser-Assisted Bending of Sharp Angles With Small Fillet Radius on Stainless Steel Sheets: Analysis of Experimental Set-Up and Processing Parameters

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-06-01

    Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.

  13. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect

    Muñoz-Andrade, Juan D.

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  14. Fiber laser welding of dual-phase galvanized sheet steel (DP590): traditional analysis and new quality assessment techniques

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Pfeif, Erik; Kazakov, Andrei; Baumann, Esther; Dowell, Marla

    2016-03-01

    Laser welding has many advantages over traditional joining methods, yet remains underutilized. NIST has undertaken an ambitious initiative to improve predictions of weldability, reliability, and performance of laser welds. This study investigates butt welding of galvanized and ungalvanized dual-phase automotive sheet steels (DP 590) using a 10 kW commercial fiber laser system. Parameter development work, hardness profiles, microstructural characterization, and optical profilometry results are presented. Sound welding was accomplished in a laser power range of 2.0 kW to 4.5 kW and travel speed of 2000 mm/min to 5000 mm/min. Vickers hardness ranged from approximately 2 GPa to 4 GPa across the welds, with limited evidence of heat affected zone softening. Decreased hardness across the heat affected zone directly correlated to the appearance of ferrite. A technique was developed to non-destructively evaluate weld quality based on geometrical criteria. Weld face profilometry data were compared between light optical, metallographic sample, and frequency-modulated continuous-wave laser detection and ranging (FMCW LADAR) methods.

  15. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    NASA Astrophysics Data System (ADS)

    Muñoz-Andrade, Juan D.

    2013-12-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  16. Experimental investigations and statistical analysis of pulsed laser bending of AISI 304 stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Maji, Kuntal; Pratihar, D. K.; Nath, A. K.

    2013-07-01

    This paper presents experimental investigations on pulsed laser bending of sheet metal and statistical analysis to study the effects of process parameters. Laser power, scan speed, spot diameter and pulsed duration were taken as input variables and bending angle was considered as the output. Response surface methodology was used for modeling and optimization of the pulsed laser bending process. The performance of the developed model was validated through the experiments. All the input variables were found to have significant influence on the bending angle. Bending angle increased with the increase of laser power and pulse duration and decreased with the increase of scan speed and spot diameter. The optimum process parameters for the maximum bending angle were also found and verified with experimental data. The effects of pulse frequency, pulse width and pulse energy on bending angle were also investigated through experiments. Bending angle was found to be the maximum for a certain value of pulse frequency. With the increase of pulse width, bending angle increased at constant laser power but decreased at constant pulse energy. Bending angle was seen to increase with the increase of spatial overlapping and decrease with the increase of gap at constant laser power, but it showed optimal values for both the cases at constant line energy. A comparative study between continuous and pulsed laser bending was carried out to study the process efficiency in terms of energy input and produced deformation.

  17. Effect of texture and grain size on the magnetic flux density and core loss of cold-rolled high silicon steel sheets

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yang, Ping; Mao, Weimin; Ye, Feng

    2015-11-01

    The effects of texture and grain size on the magnetic flux density and core loss (50-20 kHz) of 0.23 mm-thick cold-rolled high silicon steel sheets are investigated by means of electron back-scattered diffraction (EBSD), loss separation, and anisotropy parameter (ε) calculation. A model of the hysteresis loss coefficient kh considering average grain size and ε is established. The magnetic flux density at 800 A/m (B8) is closely related to the volume fraction of η-fiber-oriented grains, while the magnetic flux density at 5000 A/m (B50) is closely related to the volume fractions of γ- and λ-fiber-oriented grains in high silicon steel. The hysteresis loss of high silicon steel can be greatly reduced by increasing the grain size and optimizing the texture of the sheets. Although increases in frequencies decrease the effect of texture on core loss, the effect cannot be ignored. As annealing temperature and time increase, the relative difference in core loss between the rolling direction (RD) and the transverse direction (TD) is maintained at higher frequencies because of increases in grain size, decreases in γ texture, and maintenance of a strong η texture. Texture and grain size jointly affect the high-frequency core loss of high silicon steel.

  18. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  19. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-07-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  20. Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

    NASA Astrophysics Data System (ADS)

    Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George

    2016-05-01

    The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel

  1. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Zhuang, Weimin; Xie, Dongxuan; Chen, Yanhong

    2016-06-01

    The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles. However, sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed. Thus, an investigation is conducted to experimentally quantify such influence for a commonly used steel (the 22MnB5 steel) based on the hot and cold forming processes. For each process, a number of samples are used to conduct a uniaxial tensile test to simulate the forming process. After that, some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage. Finally, a microstructure test is conducted to analyze the microdefects of the remaining samples. Based on the results of the first two tests, the effect of material damage on the service performance of 22MnB5 steel is analyzed. It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance, such as the failure strain, the ultimate stress, the capacity of energy absorption and the ratio of residual strain. The reductions are generally lower and non-linear in the former process but higher and linear in the latter process. Additionally, it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes. The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.

  2. Strong <001> recrystallization texture component in 6.5 wt% Si electrical steel thin sheets by secondary cold rolling and annealing

    NASA Astrophysics Data System (ADS)

    Pan, Hongjiang; Zhang, Zhihao; Mo, Yuanke; Xie, Jianxin

    2016-12-01

    In order to prepare thin sheet with a strong <001> texture component, secondary cold rolling and recrystallization annealing were carried out on a raw sheet of high silicon electrical steel (6.5 wt% Si). The raw sheet was obtained through a process of directional solidification, followed by warm and cold rolling, and annealing. The effects of secondary cold rolling reduction, annealing temperature and holding time on the recrystallization microstructure and texture were investigated. The formation of strong <001> texture component was analyzed. The results showed that the <001> texture component could be enhanced when the sheets were prepared through appropriate secondary cold rolling and annealing. It was ascribed to the cube and Goss recrystallized grains had frequency advantages as well as size advantages during nucleation. Furthermore, the cube and Goss recrystallized grains were easy to grow larger due to the advantage on grain boundary energy and surface energy. The samples prepared through secondary cold rolling with the reduction of 30% and annealing at 1300 °C for 1-5 h exhibited good magnetic properties. The magnetic induction B8 of the samples was 1.335-1.398 T and the core loss P10/50 and P10/400 were 0.383-0.391 W/kg and 5.935-6.422 W/kg, respectively.

  3. Texture and Formability of One-Step and Two-Step Cold-Rolled and Annealed Interstitial Free High-Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Humane, M. M.; Minj, R. K.; Peshwe, D. R.; Paretkar, R. K.

    2011-06-01

    In the current experimental investigation, a comparative study has been carried out to understand the development of texture under different conditions, viz. controlled hot-rolled, one-step cold-rolled (CR) and annealed, and two-step cold-rolled and annealed conditions. Mechanical properties were determined and experimental formability limit diagrams (FLDs) were plotted after both one-step and two-step cold-rolled and annealed conditions. From the tabulated data, it was found that hot band texture of 85 to 90 pct deformation was strong and the main orientations were ( {112} )[ {1bar{1}0} ] and ( {332} )[ {bar{1}bar{1}3} ]. One-step cold rolling developed the strong and uniform α-fiber and γ-fiber at 80 pct cold reduction. The strong and uniform new γ-fiber was obtained at the one-step 80 pct CR annealed condition. In addition, the highest drawability was found at the one-step 80 pct CR annealed condition. In two-step cold rolling, orientation ( {223} )[ {1bar{1}0} ] was the main texture component along with extremely strong γ-fiber. Moreover, batch annealing of two-step cold-rolled steel sheets developed exceptionally strong and uniform γ-fiber, and all mechanical properties were enhanced significantly except yield strength. From FLDs, it is observed that the formability properties of interstitial free (IF) high-strength (HS) steel sheets were excellent at both one-step and two-step cold-rolled and annealed conditions. However, the two-step cold-rolling and annealing process was found to be superior to the one-step process. The data of this investigation may be used at the industrial level to design the entire processing of IF-HS steel sheets.

  4. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    NASA Astrophysics Data System (ADS)

    Lee, K. M.; Huh, M. Y.; Lee, H. J.; Park, J. T.; Kim, J. S.; Shin, E. J.; Engler, O.

    2015-12-01

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in <001>//ND and <113>//ND which were beneficial for developing superior magnetic properties.

  5. Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Manning, Charles R., Jr.; Price, Howard L.

    1961-01-01

    Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

  6. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-06-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  7. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  8. Effect of Decarburization on Notch Sensitivity and Fatigue-Crack-Propagation Rates in 12 MoV Stainless-Steel Sheet

    NASA Technical Reports Server (NTRS)

    Herrnstein, William H., III; McEvily, Arthur J., Jr.

    1961-01-01

    Tests were conducted in order to determine the effect of surface decarburization on the notch sensitivity and rate of fatigue crack propagation in 12 MoV stainless-steel sheet at room temperature. Three specimen configurations were utilized in the course of the investigation: standard tensile specimen, 9-inch-wide specimens containing fatigue cracks or thread-cut notches of 0.005-inch radius, and 2-inch-wide specimens containing fatigue cracks. The 12 MoV stainless-steel sheet in the normal condition was found to have an ultimate tensile strength of 251 ksi and to be extremely notch sensitive. The material in the decarburized condition was found to have an ultimate tensile strength of 210 ksi and to be considerably stronger than the normal material in the presence of fatigue cracks. Decarburization did not appear to have any significant influence on the rate of fatigue crack propagation in the 2-inch-wide specimens at the stress levels considered. In addition to the tests, two methods for predicting residual static strength and their application to the material are discussed.

  9. Failure Orientation in Stretch Forming and Its Correlation with a Polycrystal Plasticity-Based Material Model for a Collection of Highly Formable Sheet Steels

    NASA Astrophysics Data System (ADS)

    An, Yuguo; Boterman, Romke; Atzema, Eisso; Abspoel, Michael; Scholting, Marc

    2016-07-01

    Robust design optimization techniques have been developed in recent years within the automotive industry with the aim of reducing scrap rates and improving process stability in sheet metal forming. These new techniques are able to take process variations and other sources of material scatter into account. Among the many material variables and inputs used, the yield criterion is an important aspect and this is used to describe the plastic behavior of sheet metals. To achieve a reliable output in an optimization study, the yield criterion selected must be representative of material response and scatter. However, simple material models that deviate from real material behavior are often used due to a lack of material data, which is usually a requirement when using more complex models. In the present research, a polycrystal plasticity-based CTFP model has been evaluated in stretch forming for a collection of highly formable sheet steel materials. The results demonstrate that the CTFP model can capture the yielding character and also detect the minor deviations presented by different coils. The stretching factor derived from the CTFP model, as opposed to the work hardening and ductility, has a dominant effect on failure for a collection of materials with similar mechanical properties. Results also indicate that plastic deformation causes texture evolution and, consequently, an evolving yield locus. Such changes in the yield locus during deformation have an effect on stretching and friction calibration in FE simulations.

  10. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Jiang, X. Q.; Chen, D. L.

    2015-07-01

    Magnesium (Mg) alloys are increasingly used in the automotive and aerospace sectors to reduce vehicle weight. Al/Mg/Al tri-layered clad sheets are deemed as a promising alternative to improve the corrosion resistance and formability of Mg alloys. The structural application of Al/Mg/Al tri-layered clad sheets inevitably involves welding and joining in the multi-material vehicle body manufacturing. This study aimed to characterize the bonding interface microstructure of the Al/Mg/Al-clad sheet to high-strength low-alloy steel with and without Zn coating using ultrasonic spot welding at different levels of welding energy. It was observed that the presence of Zn coating improved the bonding at the interface due to the formation of Al-Zn eutectic structure via enhanced diffusion. At a higher level of welding energy, characteristic flow patterns of Zn into Al-clad layer were observed with an extensive penetration mainly along some high angle grain boundaries. The dissimilar joints without Zn coating made at a high welding energy of 800 J failed partially from the Al/Fe weld interface and partially from the Al/Mg clad interface, while the joints with Zn coating failed from the Al/Mg clad interface due to the presence of brittle Al12Mg17 phase.

  11. Failure Orientation in Stretch Forming and Its Correlation with a Polycrystal Plasticity-Based Material Model for a Collection of Highly Formable Sheet Steels

    NASA Astrophysics Data System (ADS)

    An, Yuguo; Boterman, Romke; Atzema, Eisso; Abspoel, Michael; Scholting, Marc

    2016-04-01

    Robust design optimization techniques have been developed in recent years within the automotive industry with the aim of reducing scrap rates and improving process stability in sheet metal forming. These new techniques are able to take process variations and other sources of material scatter into account. Among the many material variables and inputs used, the yield criterion is an important aspect and this is used to describe the plastic behavior of sheet metals. To achieve a reliable output in an optimization study, the yield criterion selected must be representative of material response and scatter. However, simple material models that deviate from real material behavior are often used due to a lack of material data, which is usually a requirement when using more complex models. In the present research, a polycrystal plasticity-based CTFP model has been evaluated in stretch forming for a collection of highly formable sheet steel materials. The results demonstrate that the CTFP model can capture the yielding character and also detect the minor deviations presented by different coils. The stretching factor derived from the CTFP model, as opposed to the work hardening and ductility, has a dominant effect on failure for a collection of materials with similar mechanical properties. Results also indicate that plastic deformation causes texture evolution and, consequently, an evolving yield locus. Such changes in the yield locus during deformation have an effect on stretching and friction calibration in FE simulations.

  12. Welding Rustproof Steels

    NASA Technical Reports Server (NTRS)

    Hoffmann, W

    1929-01-01

    The following experimental results will perhaps increase the knowledge of the process of welding rustproof steels. The experiments were made with two chrome-steel sheets and with two chrome-steel-nickel sheets having the composition shown in Table I.

  13. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... section 751(c) of the Act. See Initiation of Five-Year (``Sunset'') Review, 75 FR ] 30777 (June 2, 2010...-cobalt alloy stainless strip is also excluded from the scope of the orders. This ductile stainless steel strip contains, by weight, 26 to 30 percent chromium, and 7 to 10 percent cobalt, with the remainder...

  14. Measurement of the mechanical properties of car body sheet steels at high strain rates and non ambient temperature

    NASA Astrophysics Data System (ADS)

    Bleck, W.; Larour, P.

    2003-09-01

    Crash behaviour and light weight have become the major design criteria for car bodies. Modem high strength steels offer appropriate solutions for these requirements. The prediction of the crash behaviour in simulation programs requires the information on materials behaviour during dynamic testing. The reduction of the signal waviness and the inertia effects at strain rates above 50s^{-1} are major issues in dynamic tensile testing. Damping techniques or load measurement on the sample itself are the common way to reduce oscillations. Strain measurement from the piston displacement or from optical devices on the specimen itself are also compared. Advantages and drawbacks of those various measurement techniques are presented.

  15. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  16. Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Jen

    The mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions. Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to

  17. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    SciTech Connect

    Kubiak, Marcin Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  18. Parametric Study On The CW Nd: YAG Laser Cutting Quality Of 1.25 mm Ultra Low Carbon Steel Sheets Using O2 Assist Gas

    SciTech Connect

    Salem, Hanadi G.; Abbas, Wafaa A.; Mansour, Mohy S.; Badr, Yehia A.

    2007-02-14

    There are many non-linear interaction factors responsible for the performance of the laser cutting process. Identification of the dominant factors that significantly affect the cut quality is important. In the current research, the gas pressure, laser power and scanning speed were selected as the cutting parameters. Effect of the cutting parameters on the cut quality was investigated, by monitoring the variation in hardness, oxide layer width and microstructural changes within the heat affected zone (HAZ). Results revealed that good quality cuts can be produced in ultra low carbon steel thin sheets, using CW Nd:YAG laser at a window of scanning speed ranging from 1100-1500 mm/min at a minimum heat input of 337watts under an assisting O2 gas pressure of 5 bar. Higher laser power resulted in either strengthening or softening in the HAZ surrounding the cut kerf. The oxide layer width is not affected by the energy density input but rather affected by the O2 gas pressure due to exothermal reaction.

  19. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    NASA Astrophysics Data System (ADS)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  20. Standard specification for heat-resisting chromium and chromium-nickel stainless steel plate, sheet, and strip for pressure vessels. ASTM standard

    SciTech Connect

    1998-10-01

    This specification is under the jurisdiction of ASTM Committee A-1 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.17 on Flat Stainless Steel Products. Current edition approved Sep. 10, and Nov. 10, 1997, Apr. 10, and Jun. 10, 1998. Published October 1998. Originally published as A 240-40T. Last previous edition A 240/A 240M-97a.

  1. Formability of Aluminum 5182-Polypropylene Sandwich Sheet for Automotive Application

    NASA Astrophysics Data System (ADS)

    Kim, Kee Joo; Kim, Cheol-Woong; Choi, Byung-Ik; Sung, Chang Won; Kim, Heon Young; Won, Si-Tae; Ryu, Ho-Yeun

    The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheet is the material fabricated by adhering two aluminum skins to one polypropylene core. When it has the same flexural rigidity as a steel sheet, it is 65% lighter than the steel sheet and 30% lighter than an aluminum alloy sheet. Therefore, it is notified exclusively as good substitutive materials for a steel body to improve the fuel efficiency. Through AA/PP/AA sandwich sheet, however, it has relatively lower formability than that of the steel sheet for automotive application. In this study, we developed formability evaluation techniques in order to apply AA/PP/AA sandwich sheet for an automotive parts. For this purpose, newly adopting formability evaluations (using limit dome height and plane strain test) were carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the sandwich sheet. The results showed that there were in good agreements between the old formability evaluation method and the new one which was more simplified than that of the old one. From the results of these formability evaluations, the formability of sandwich sheet was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich sheet. In addition, it was found that sandwich sheet could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

  2. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    SciTech Connect

    Melchior, S.

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  3. Design, construction, and performance of a single geomembrane liner system at a residual waste disposal site in western Pennsylvania

    SciTech Connect

    Khilji, K.H.; Gould, S.E.; Hamel, T.W.; Thomas, W.B.

    1997-11-01

    This paper examines the effectiveness of a single geomembrane-lined deep valley coal ash/coal mine refuse disposal site to maintain ground-water quality after 10 years of operation. The site occupies over 81 hectares (ha) [200 acres (ac)] in western Pennsylvania. The effectiveness of the liner system was evaluated based on an assessment of the site`s ground-water quality. The liner system was designed in 1983. Selection of geosynthetics and drainage materials, interface shear values, and construction control methods were based on laboratory testing, field investigations, slope stability analyses, and construction load analyses. Diligent construction quality control was applied during all aspects of site development. To examine the site`s ground-water quality, the ground-water monitoring network was sampled approximately once every six weeks for one year. Results of statistical analyses show that the liner system is effectively separating disposal site leachate from ground water and that the site is not degrading ground water.

  4. Effect of the removal of the surface layer of a TRIP steel sheet on its phase composition after static tension at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Sirotinkin, V. P.; Prosvirnin, D. V.; Kobeleva, L. I.; Eliseev, E. A.; Rybal'chenko, O. V.; Ashmarin, A. A.

    2016-01-01

    The effect of the removal of the surface layer of a thin strip made of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) TRIP steel on the phase composition of the strip surface is studied after static tension at various strain rates. An increase in the strain rate is shown to increase the austenite content in the surface layer of the metal. The removal of a 10-μm-thick surface layer by electropolishing results in an increase in the austenite content due to the initial nonuniform phase composition of the thin TRIP steel strip across its thickness after cold rolling.

  5. A Method for Imaging Steel Bars Behind a Ferrous Steel Boundary

    SciTech Connect

    Fernandes, B.; Miller, G.; Zaid, M.; Gaydecki, P.

    2006-03-06

    A system for detecting steel objects behind ferrous steel boundaries is described. It may be used to image steel reinforcing bars in concrete, where a steel sheet exists between the bars and the surface. The sensor comprises a transmitter, receiver and a dummy coil, which cancels cross-talk and enhances the signal from the bars. It is possible to penetrate a 2mm thick sheet at 125 Hz and image 16 mm diameter bars placed underneath.

  6. A Method for Imaging Steel Bars Behind a Ferrous Steel Boundary

    NASA Astrophysics Data System (ADS)

    Fernandes, B.; Miller, G.; Zaid, M.; Gaydecki, P.

    2006-03-01

    A system for detecting steel objects behind ferrous steel boundaries is described. It may be used to image steel reinforcing bars in concrete, where a steel sheet exists between the bars and the surface. The sensor comprises a transmitter, receiver and a dummy coil, which cancels cross-talk and enhances the signal from the bars. It is possible to penetrate a 2mm thick sheet at 125 Hz and image 16 mm diameter bars placed underneath.

  7. Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bonaccorso, Francesco; Maragò, Onofrio M; Gucciardi, Pietro G; Di Marco, Gaetano

    2010-03-21

    We report on the implementation of stainless steel foils coated with dispersed Single Wall Carbon Nanotubes as novel, low cost and highly efficient counter electrodes for dye sensitized solar cells (DSSCs). We use commercially available non purified nanotubes dispersed in water by ultrasonication and drop cast on stainless steel substrates. When implemented on a ruthenium based DSSC we obtain a high short circuit current density (J(sc)= 9.21 mA cm(-2)), a good open circuit voltage (V(oc) = 0.660 V) and a solar energy conversion efficiency of 3.92%. The above cited values are measured under a light flux of 100 mW cm(-2) generated by a solar simulator equipped with a filter AM 1.5. The obtained results are comparable to those attained using a stainless steel counter electrode sputtered with a 2 microm thick platinum film (J(sc) 10.92 mA cm(-2), V(max) = 0.66 V and eta = 4.5%, AM 1.5). PMID:20200718

  8. A Modified Johnson-Cook Model to Predict Stress-strain Curves of Boron Steel Sheets at Elevated and Cooling Temperatures

    NASA Astrophysics Data System (ADS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Dong-Won, Jung; Seung-Han, Yang; Young-Suk, Kim

    2012-02-01

    In order to predict correctly stress-strain curve for tensile tests at elevated and cooling temperatures, a modification of a Johnson-Cook (J-C) model and a new method to determine (J-C) material parameters are proposed. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick and Voce's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. An FEM tensile test simulation based on the isotropic hardening model for metal sheet at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code. The simulation results at elevated temperatures were firstly presented and then compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation. The modified (J-C) model showed the good comparability between the simulation results and the corresponding experiments.

  9. 75 FR 4779 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...-Rolled Flat-Rolled Carbon-Quality Steel Products From Japan, 64 FR 24329 (May 6, 1999). In Nippon Steel... home-market sales database. See Stainless Steel Sheet and Strip in Coils from Taiwan: Preliminary... (August 5, 2008) (Coils from Taiwan), unchanged in Stainless Steel Sheet and Strip in Coils From...

  10. New Method For Joining Stainless Steel to Titanium

    NASA Technical Reports Server (NTRS)

    Emanuel, W. H.

    1982-01-01

    In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations, forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

  11. 43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. WEST TO DETAIL OF WHEELED SHEET METAL WORK STATION BEARING ON LEFT CIRCA 1900 ROLLS FOR BENDING STEEL WINDMILL BLADES TO PROPER CURVATURE AND ON RIGHT CIRCA 1900 BEADING MACHINE FOR ADDING STIFFENING CREASES TO THE EDGES OF SHEET METAL PARTS SUCH AS BLADES. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  12. 44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. SOUTHWEST TO CIRCA 1900 SHEET METAL BRAKE, THE MACHINE USED TO BEND SHEET METAL TO EXACT ANGLES AS IN STEEL WATER TANK MANUFACTURE. IN THE BACKGROUND IS THE INTERIOR WEST WALL OF THE FACTORY, ITS SHELVES BEARING WATER PUMPS, PARTS FOR PUMPS AND WATER SUPPLY EQUIPMENT, AND NEW OLD STOCK MERCHANDISE. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  13. Rehabilitation of Composite Steel Bridges Using GFRP Plates

    NASA Astrophysics Data System (ADS)

    Damatty, A. A.; Abushagur, M.; Youssef, M. A.

    2005-09-01

    The current study is a part of an extensive research program conducted to assess the use of Glass Fibre Reinforced Plastic (GFRP) sheets in enhancing the flexural capacity of steel beams. The properties of a heavy-duty adhesive system that can be used to bond GFRP sheets to the flanges of steel beams were experimentally determined in a previous study. The excellent performance of a W-shaped steel beam strengthened using GFRP sheets has encouraged the authors to assess the applicability of this technique to composite steel bridges.

  14. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner.

    PubMed

    Xie, Haijian; Jiang, Yuansheng; Zhang, Chunhua; Feng, Shijin

    2015-02-01

    An analytical model for volatile organic compounds (VOCs) transport through a composite liner consisting of a geomembrane (GM), a geosynthetic clay liner (GCL), and a soil liner (SL) was developed for the assessment of the performance of this triple liner system. Both advection through the defects of GM and diffusion in the intact GM were considered in the model, and dimensionless analytical solution was obtained. The soil concentration profiles obtained by the proposed analytical solution have a good agreement with those obtained by the finite-layer-based software POLLUTE v7. The effects of leachate head, length of the connected wrinkles, and the interface transmissivity of GM/GCL on the breakthrough curves of the liner system were then investigated. Results show that the 30-year base flux of the liner system for the case with leachate head = 10 m and length of the connected wrinkles = 1,000 m can be over 60 times greater than that of the pure diffusion case. The length of the connected wrinkles of the GM has greater influence on the base flux of the liner system than on the base concentration. The interface transmissivity has negligible effect on the solute breakthrough curves of the liner system for relatively low values of the length of the connected wrinkles (e.g., <100 m). The groundwater protection level achieved by GM/CCL is more effective than that by GM/GCL/SL in the earlier times. However, the steady state base flux for GM/GCL/SL can be seven to eight times lower than that for GM/CCL. The analytical solution can also be used for experimental data fitting, verification of complicated numerical models, and preliminary design of composite liners. PMID:25217284

  15. 77 FR 2032 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... as stated in Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of Antidumping Duty Administrative Review, 73 FR 45708, 45714 (August 6, 2008), unchanged in Stainless Steel Sheet and... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From the...

  16. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  17. Aerosol filtration with steel fiber filters

    SciTech Connect

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.

    1993-04-01

    We have conducted an experimental study of aerosol penetration through a new high efficiency steel fiber filter and filter media that we developed in cooperation with Pall Corporation. Our previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, we have measured the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters and a 1000 cfm filter having 64 cartridges housed in a 2 {times} 2 {times} 1 ft. frame. The steel fiber media used in our study consists of 2 {mu}m diameter stainless steel (316L) fibers sintered together into sheets.

  18. Aerosol filtration with steel fiber filters

    NASA Astrophysics Data System (ADS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.

    1993-04-01

    An experimental study has been conducted of aerosol penetration through a new high efficiency steel fiber filter and filter media that was developed in cooperation with Pall Corporation. Previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, measurements were made of the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters, and a 1000 cfm filter having 64 cartridges housed in a 2 x 2 x 1 ft. frame. The steel fiber media used in our study consists of 2 micron diameter stainless steel (316 L) fibers sintered together into sheets.

  19. Precision Small Angle Bending of Sheet Metals Using Shear Deformation

    NASA Astrophysics Data System (ADS)

    Hirota, Kenji; Mori, Yorifumi

    This paper deals with a new method to bend sheet metals at a small angle precisely, in which a sheet metal is slightly bent by shear deformation at negative punch-die clearance. Deformation behavior and key factors affecting on the bend angle were studied in detail with pure aluminum sheets. It was proved that the bend angle was changed in proportion to both punch penetration and negative punch-die clearance within a certain range. The same was true for high-strength steel and phosphor bronze, which are difficult to bend precisely by conventional methods due to large springback after unloading. By using this relationship as a control law, four kinds of sheet metals were precisely bent within a few degrees. This method was applied to correct the angular errors in U-bend products of high-strength steel and to bend leaf springs of phosphor bronze at an arbitrary small angle.

  20. Fatigue Strengths of Aircraft Materials: Axial-Load Fatigue Tests on Edge-Notched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Notch Radii of 0.004 and 0.070 inch

    NASA Technical Reports Server (NTRS)

    Grover, H. J.; Hyler, W. S.; Jackson, L. R.

    1959-01-01

    The present report gives results of axial-load fatigue tests on notched specimens of three sheet materials: 2024-T3 and 7075-T6 aluminum alloys and normalized SAE 4130 steel. Two edge-notched specimens were designed and tested, each having a theoretical stress-concentration factor K(sub t) = 4.0. The radii of the notches were 0.004 and 0.070 inch. Tests of these specimens were run at two levels of nominal mean stress: 0 and 20,000 psi. Results of these studies extended information previously reported on tests of specimens with varying notch severity. They afford data on the variation of fatigue-strength reduction with notch radius and on the potential usefulness of Neuber's technical stress-concentration factor K(sub n).

  1. 15. STRESS SHEET. American Bridge Company, New York Office, 30 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. STRESS SHEET. American Bridge Company, New York Office, 30 Church Street, sheet no. C516, dated March 12, 1928, approved March 16, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot. For Southern Pacific Company, Pacific Lines, 1st crossing, Napa River, near Napa, Western Division, customer's order no. 8873-P-28746. Various scales. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  2. Zika Virus Fact Sheet

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease After a comprehensive review of evidence, there ...

  3. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  4. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 2, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  5. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 3, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  6. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 5, APALACHICOLA RIVER BRIDGE, SHEET 5505-6-E2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  7. ANCHOR SETTING PLAN, WITH DETAILS, FOR STEEL BENTS AT APPROACH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ANCHOR SETTING PLAN, WITH DETAILS, FOR STEEL BENTS AT APPROACH SPANS FOR APALACHICOLA RIVER BRIDGE, SHEET 5509-M2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  8. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 1, APALACHICOLA RIVER BRIDGE, SHEET 5505-6-E1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  9. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 4, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E3 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  10. 117. JOB NO. 1347M, SHEET 5, 1930, ADDITION FOR PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. JOB NO. 1347-M, SHEET 5, 1930, ADDITION FOR PRESSED STEEL DEPARTMENT FOR FORD MOTOR COMPANY; NORTH ELEVATIONS DETAILS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  11. 116. JOB NO. 1347M, SHEET 4, 1930, ADDITION FOR PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. JOB NO. 1347-M, SHEET 4, 1930, ADDITION FOR PRESSED STEEL DEPARTMENT FOR THE FORD MOTOR COMPANY; ELEVATIONS, DETAILS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  12. Investigation into springback characteristics of two HSS sheets during cold v-bending

    SciTech Connect

    Fang, Gang; Gao, Wei-Ran

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  13. 36. PHOTOGRAPHY OF W.P.A. PROJECT (MINNEAPOLIS CITY ENGINEER) STRAIN SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. PHOTOGRAPHY OF W.P.A. PROJECT (MINNEAPOLIS CITY ENGINEER) STRAIN SHEET (4 x 5 negative) - Steel Arch Bridge, Hennepin Avenue spanning west channel of Mississippi River, Minneapolis, Hennepin County, MN

  14. Investigation into springback characteristics of two HSS sheets during cold v-bending

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Gao, Wei-Ran

    2013-12-01

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  15. 41. DRAW SPAN OVER PASSAIC RIVER 18M110; Sheet No. 34 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. DRAW SPAN OVER PASSAIC RIVER 18-M-110; Sheet No. 34 Details of Center Casting and Steel Ring Scale 1-1/2'=1'; February 1897 - Jackson Street Bridge, Spanning Passaic River, Newark, Essex County, NJ

  16. Effect of initial texture on secondary recrystallization of grain-oriented electrical steel

    SciTech Connect

    Iwanaga, I.; Iwayama, K.; Takahasi, N. . Yawata R and D Lab.); Masui, H.; Harase, J. . Steel Research Labs.)

    1994-04-01

    The effect of initial texture before cold rolling on secondary recrystallization of grain-oriented electrical steel was investigated using thin cast sheets and conventional hot-rolled sheets and conventional hot-rolled sheets as initial materials. The main texture component of the surface layer of thin cast sheets is random, while that of the hot-rolled sheets is [110] <001>. It was found that the optimum cold reduction for achieving a strong [110] <001> texture during secondary recrystallization was 95% and 90% for thin cast sheets and hot-rolled sheets, respectively.

  17. Microstructures in laser welded high strength steels

    NASA Astrophysics Data System (ADS)

    Rizzi, P.; Bellingeri, S.; Massimino, F.; Baldissin, D.; Battezzati, L.

    2009-01-01

    In this work, the effect of laser welding on the microstructure was studied for three Advanced High Strength Steels: transformation induced plasticity steel (TRIP), dual phase steel (DP) and martensitic steel. Two sheets of the same steel were laser welded and a microstructural study was performed by optical microscopy, scanning electron microscopy and X-ray diffraction. For all samples the welded zone was constituted by martensite and the heat affected zone shows a continuous change in microstructure depending on temperatures reached and on the different cooling rates. The change in mechanical properties in the welded area was followed by Vickers micro-hardness measurements. Quasi binary phase diagrams were calculated and, according to position of T0 lines, it was deduced that austenite is the primary phase forming during rapid solidification for all steels.

  18. Modern processes of production of thin sheets and strips by continuous casting

    NASA Astrophysics Data System (ADS)

    Smirnov, A. N.

    2012-06-01

    The history of the development of producing thin sheets and strips by continuous casting methods is considered. The mechanism of this sheet formation during casting of steel in a two-roll continuous caster is described. The advantages of this process over the corresponding traditional technologies are discussed.

  19. A Collaborative Design Curriculum for Reviving Sheet Metal Handicraft

    ERIC Educational Resources Information Center

    Chan, Patrick K. C.

    2015-01-01

    Galvanised sheet metal was a popular and important material for producing handmade home utensils in Hong Kong from the 1930s onwards. It was gradually replaced by new materials like stainless steel and plastic because similar goods made with these are cheaper, more standardised, more durable and of much better quality. The handicrafts behind sheet…

  20. 10. Photographic copy of linen drawing of original construction (sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photographic copy of linen drawing of original construction (sheet 1 of 4, in possession of DM & IR Bridge Engineer, Procter, Minnesota). Steel plan detailing truss elevation, foundation locations and sizes, railroad track layout and typical approach span bents. - Elwood Bridge, Carrying St. Louis County Road 696 over DM & IR Railyard, Proctor, St. Louis County, MN

  1. 75 FR 39663 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Antidumping Duty Administrative Review, 73 FR 75398, 75399 (December 11, 2008), and Stainless Steel Sheet and... Steel Bar From Brazil, 59 FR 66914 (December 28, 1994). These deposit requirements shall remain in... International Trade Administration Stainless Steel Bar From Brazil: Final Results of Antidumping...

  2. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  3. 75 FR 12514 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Review, 73 FR 75398, 75399 (December 11, 2008) (SSPC from Belgium), and Stainless Steel Sheet and Strip... International Trade Administration Stainless Steel Bar From Brazil: Preliminary Results of Antidumping...

  4. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  5. Corrosion behavior of HVOF coated sheets

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.

    2003-12-01

    High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.

  6. Titanium Sheet Fabricated from Powder for Industrial Applications

    SciTech Connect

    Peter, William H; Muth, Thomas R; Chen, Wei; Yamamoto, Yukinori; Jolly, Brian C; Stone, Nigel; Cantin, G.M.D.; Barnes, John; Paliwal, Muktesh; Smith, Ryan; Capone, Joseph; Liby, Alan L; Williams, James C; Blue, Craig A

    2012-01-01

    In collaboration with Ametek and Commonwealth Scientific and Industrial Research Organization (CSIRO), Oak Ridge National Laboratory has evaluated three different methods for converting titanium hydride-dehydride (HDH) powder into thin gauge titanium sheet from a roll compacted preform. Methodologies include sintering, followed by cold rolling and annealing; direct hot rolling of the roll-compacted sheet; and hot rolling of multiple layers of roll compacted sheet that are encapsulated in a steel can. All three methods have demonstrated fully consolidated sheet, and each process route has the ability to produce sheet that meets ASTM B265 specifications. However, not every method currently provides sheet that can be highly formed without tearing. The degree of sintering between powder particles, post processing density, and the particle to particle boundary layer where compositional variations may exist, have a significant effect on the ability to form the sheet into useful components. Uniaxial tensile test results, compositional analysis, bend testing, and biaxial testing of the titanium sheet produced from hydride-dehydride powder will be discussed. Multiple methods of fabrication and the resulting properties can then be assessed to determine the most economical means of making components for industrial applications.

  7. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    NASA Astrophysics Data System (ADS)

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-01

    One way to reduce the CO2 emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  8. Self-Pierce Riveting Through 3 Sheet Metal Combinations

    SciTech Connect

    Andersson, Roger; Jonason, Paul; Pettersson, Tommy

    2011-05-04

    One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensive door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.

  9. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    NASA Astrophysics Data System (ADS)

    Jana, S.; Hovanski, Y.; Grant, G. J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining magnesium alloy AZ31 sheet to galvanized steel sheet in a lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential: a 0.8 mm thick, electrogalvanized (EG) mild steel, and a 1.5 mm thick hot-dipped galvanized (HDG) high-strength, low-alloy (HSLA) steel. These steels were joined to 2.33 mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and the process parameters were kept the same. The average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating present on the steel sheets, and subsequent alloying with the Mg sheet resulted in the formation of a solidified Zn-Mg alloy layer.

  10. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  11. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  12. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  13. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  14. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  15. Sheet electron beam tester

    NASA Astrophysics Data System (ADS)

    Spear, Alexander Grenbeaux

    The DARPA HiFIVE project uses a pulsed electron sheet beam gun to power a traveling wave tube amplifier operating at 220 GHz. Presented is a method for characterizing the high current density 0.1 mm by 1 mm sheet electron beam. A tungsten tipped probe was scanned through the cross section of the sheet electron beam inside of a vacuum vessel. The probe was controlled with sub-micron precision using stepper motors and LabView computer control while boxcar averaging hardware sampled the pulsed beam. Matlab algorithms were used to interpret the data, calculate beam dimensions and current density, and create 2-dimensional cross section images. Full characterization of two separate HiFIVE sheet electron guns was accomplished and is also presented.

  16. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  17. Polarised light sheet tomography.

    PubMed

    Reidt, Sascha L; O'Brien, Daniel J; Wood, Kenneth; MacDonald, Michael P

    2016-05-16

    The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets. PMID:27409945

  18. Energy information sheets

    SciTech Connect

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  19. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  20. Current sheet model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The model of a rectenna based on the current sheet equivalency of a large planar array is described. The model is mathematically characterized by expression for the fraction of the incident plane wave that is reflected from the sheet. The model is conceptually justified for normal incidence by comparing it to the waveguide model in which evanescent modes, present as beyond and cutoff, correspond to the near field components which become negligible at any significant distance from the antenna array.

  1. Microstructure and Mechanical Properties of Friction Stir Spot-Welded IF/DP Dissimilar Steel Joints

    NASA Astrophysics Data System (ADS)

    Sarkar, Rajarshi; Sengupta, Shiladitya; Pal, Tapan Kumar; Shome, Mahadev

    2015-11-01

    Interstitial-free (IF) and dual-phase (DP) steel sheets of 1-mm thickness were joined by friction stir spot welding with a convex shoulder tool. Two different combinations were used; one with IF as top sheet (IF/DP) and another with DP as top sheet (DP/IF). Material intermixing between the overlapping sheets takes place within the stirred zone. The truncated sheet interface curls upward into the top sheet, more so in case of IF/DP, due to lower resistance offered by the top (IF) sheet to the upward migrating bottom (DP) sheet material. Material from the IF steel contains ferrite phases, while that from the DP steel contains acicular ferrite and lath martensite. Under quasi-static loading, the crack passes along the dissimilar interface and into the top sheet thickness, resulting in pull-out failure. Under cyclic loading, the failure is brought about by the initiation of kinked fatigue cracks and their subsequent propagation through the top and bottom sheet thickness. The dominant fatigue crack moves through the reduced top sheet thickness. The mechanical performance of DP/IF is better than IF/DP owing to higher strength of the stirred zone. The mechanical performances of the dissimilar joints are intermediate to that of the similar material joints.

  2. Ultrasonic cold forming of aircraft sheet materials

    NASA Astrophysics Data System (ADS)

    Devine, J.; Krause, P. C.

    1981-01-01

    Ultrasonic forming was investigated as a means for shaping aircraft sheet materials, including titanium 6Al-4V alloy, nickel, and stainless steel AM355-CRT, into a helicopter rotor blade nosecap contour. Equipment for static forming of small coupons consisted of a modified 4000 watt ultrasonic spot welder provided with specially designed punch and die sets. The titanium alloy was successfully formed to a 60 degree angle in one step with ultrasonics, but invariably cracked under static force alone. Nickel had a low enough yield strength that it could be successfully formed either with or without ultrasonics. Insufficient ultrasonic power was available to produce beneficial effect with the high-strength steel. From analogy with commercially used ultrasonic tube drawing, it was postulated that dynamic forming of long lengths of the nosecap geometry could be achieved with an ultrasonic system mounted on a draw bench. It was recommended that the ultrasonic technique be considered for forming other aircraft sheet geometries, particularly involving titanium alloy.

  3. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining Magnesium alloy AZ31 sheet to galvanized steel sheet in lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential; a 0.8mm thick, electro galvanized (EG) mild steel, and a 1.5mm thick hot dipped galvanized (HDG) high-strength, low-alloy steel (HSLA). These steels were joined to 2.33mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and process parameters were kept the same. Average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating at the interface and subsequent alloying with the Mg sheet resulting in formation of solidified Zn-Mg alloy layer at AZ31/steel interface.

  4. The interphase precipitation reaction in HSLA steels

    NASA Astrophysics Data System (ADS)

    Todd, Judith A.

    1991-01-01

    An in-depth study of the interphase precipitation reaction in model vanadium steels has shown that the reaction may not just be confined to HSLA steels, but may be part of a general class of banded microstructures which are common to both eutectoid and eutectic systems. A new mass transport theory has been developed in which the interphase precipitation reaction in Fe-C-V steels is treated as a generalized type of cooperative growth. In addition to predicting the spacings of sheets of interphase precipitates and the precipitate sizes in steels, this theory is providing new insights into the origin of banded structures occurring in eutectic systems at solid-liquid interface boundary velocities faster than those required for coupled growth, but slower than those required to produce the extended metastable solid solution.

  5. DETAIL OF STEEL CASTINGS/CONNECTORS FOR SPANS 1, 2, 4 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF STEEL CASTINGS/CONNECTORS FOR SPANS 1, 2, 4 AND 5, APALACHICOLA RIVER BRIDGE, SHEET 5508-1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  6. Energy information sheets

    SciTech Connect

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  7. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  8. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  9. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  10. Hole expansion of dual phase steels

    SciTech Connect

    Xu, Le; Barlat, Frederic; Lee, M.G.; Choi, Kyoo Sil; Sun, Xin

    2012-06-01

    In this work, the stretch-flangeability of dual phase (DP) steels was investigated through the hole expansion (HE) tests for three DP980 steel sheet samples. In order to understand the effect of hole surface quality on the HE results, the specimens were prepared with three hole machining methods, namely, electrical discharge machining (EDM), punching and laser cutting. The HE results were discussed in terms of the hole surface quality before and after testing. Moreover, the failure behaviour was analyzed based on the observations of the fracture surfaces using optical microscopy (OM) and scanning electron microscopy (SEM).

  11. Section NN, showing steel roof trusses, mezzanine iron railing, first ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section NN, showing steel roof trusses, mezzanine iron railing, first floor doors, etc. San Bernardino Valley Union Junior College, Library Building. Also includes steel truss roof plan and a small stress diagram of the truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 8, job no. 315. Scales 1/2 inch to the foot (section), and 1/8 and 1/16 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. Quick Information Sheets. 1988.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    The Trace Center gathers and organizes information on communication, control, and computer access for handicapped individuals. The information is disseminated in the form of brief sheets describing print, nonprint, and organizational resources and listing addresses and telephone numbers for ordering or for additional information. This compilation…

  13. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  14. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  15. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  16. GED Testing Fact Sheet

    ERIC Educational Resources Information Center

    GED Testing Service, 2009

    2009-01-01

    This GED Testing fact sheet provides information on: (1) GED[R] Tests; (2) Versions and Editions of the GED Tests; (3) Earning a Credential; (4) GED Testing Service[R]; (5) History of the GED Tests; (6) Who Accepts the GED Credential; (7) Public/Private Partnership of GEDTS; (8) Renowned GED Credential Recipients; (9) GED Testing Numbers for 2008;…

  17. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  18. Youth Demographics. Fact Sheet

    ERIC Educational Resources Information Center

    Lopez, Mark Hugo; Marcelo, Karlo Barrios

    2006-01-01

    This fact sheet compares the numbers of 18-25 year-old residents and citizens by gender, race, ethnicity, geographic distribution, marital status, military status, unemployment, educational attainment, and assesses population trends from 1968-2006. It explores such demographic characteristics of young people using data from the March Annual…

  19. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  20. Reading Recovery. [Fact Sheets].

    ERIC Educational Resources Information Center

    Reading Recovery Council of North America, Columbus, OH.

    This set of 10 fact sheets (each 2 to 4 pages long) addresses aspects of Reading Recovery, a program that helps children to be proficient readers and writers by the end of the first grade. It discusses the basic facts of Reading Recovery; Reading Recovery for Spanish literacy; Reading Recovery lessons; Reading Recovery professional development;…

  1. Reduction of Springback of Sheet Metals by Bottoming

    NASA Astrophysics Data System (ADS)

    Ogawa, Takayuki; Hirahara, Atsushi; Yoshida, Fusahito

    2010-06-01

    The effect of bottoming on the reduction of springback is investigated by performing V-air-bending experiment on a high strength steel sheet of TS590MPa and the corresponding FE simulation. From the experiment, it was found that the springback is drastically decreased with increasing bottoming force. This is mainly due to the reduction of bending moment by compressive load acting normally to the sheet. At an early stage of bottoming, springback is also influenced by the change of geometrical rigidity of the bent sheet due to the straightening of ridge line warp. Since bottoming is a process of reverse deformation of tension-compression, the Bauschinger effect of materials should be taken into account for its accurate numerical simulation. 3D FE simulation using Yoshida-Uemori kinematic hardening model predicts well the bottoming effect.

  2. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  3. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  4. Fast Light-Sheet Scanner

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  5. Investigation and Modeling of Recrystallization of Cold Rolled Automotive Steels

    NASA Astrophysics Data System (ADS)

    Zhitelev, P.; Vasilyev, A.; Sokolov, S.; Sokolov, D.; Paligin, R.

    2016-04-01

    Ferrite recrystallization in cold-rolled sheets of automotive steels has been studied using a Geeble 3800 complex. Mathematical models for quantitative description of the process kinetics and prediction of the recrystallized ferrite grain size have been developed. These models enable performing calculations for any arbitrary heating regimes, including those that are used in industrial production practice, and allow taking into account the effects of a fairly wide range variation of the chemical composition of steels.

  6. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  7. Beginning Child Care Fact Sheets.

    ERIC Educational Resources Information Center

    Tweedie, Pat

    These six fact sheets from Child Care Aware are designed to help parents ease their children's transition to child care. The first fact sheet, "Before Your Child's First Day," discusses tips such as: (1) "prepare your child"; (2) read and look at picture books about child care; and (3) "prepare yourself." The second fact sheet, "First Day Tips,"…

  8. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  9. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  10. Material Models for Accurate Simulation of Sheet Metal Forming and Springback

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito

    2010-06-01

    For anisotropic sheet metals, modeling of anisotropy and the Bauschinger effect is discussed in the framework of Yoshida-Uemori kinematic hardening model incorporating with anisotropic yield functions. The performances of the models in predicting yield loci, cyclic stress-strain responses on several types of steel and aluminum sheets are demonstrated by comparing the numerical simulation results with the corresponding experimental observations. From some examples of FE simulation of sheet metal forming and springback, it is concluded that modeling of both the anisotropy and the Bauschinger effect is essential for the accurate numerical simulation.

  11. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  12. Libyan made steels quality and standers

    NASA Astrophysics Data System (ADS)

    Tajouri, Ali Musbah; Raddad, Basher; Abozreba, Moktar K.; Akrim, Mosbah A.

    2012-09-01

    Libyan Iron and Steel Company (LISCO) produce in excess of 1.3 million tons steel/year, using Medrix process utilizing local natural gas. LISCO products are Bars, Rods, Sections, hot and cold Rolled Sheets and Coils. During cutting &shaping of LISCO sheets with definite dimension, the product was deformed to an irregular shape. Samples used in the present case study were coded as (D) deformed and (ND) not deformed. Certain measured samples subjected for chemical analysis, mechanical tests, heat treatment &finally microstructure was studied as well. The conclusion was that the quality of materials used for the investigation in accordance with the use for heavy duty trucks (IVECO) & fits the standard (15-2812), and the material classified as a steel FEE (420), tension results and vickers hardness results are in accordance with the specified material. Consequently all of those testing &examinations, confirm that crucial deformation problem of plate during the shaping depends mainly on the asymmetry of residual stresses, related principally to the difference of work-hardening intensity, where the cooling rate during rolling of hot/cold sheets should be uniform &it is recommended that heat treatments should takes place as well.

  13. Biomolecular Science (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  14. Topographical atlas sheets

    USGS Publications Warehouse

    Wheeler, George Montague

    1876-01-01

    The following topographical atlas sheets, accompanying Appendix J.J. of the Annual Report of the Chief of Engineers, U.S. Army-being Annual Report upon U. S. Geographical Surveys-have been published during the fiscal year ending June 30, 1876, and are a portion of the series projected to embrace the territory of the United States lying west of the 100th meridian.

  15. Silicon sheet surface studies

    NASA Astrophysics Data System (ADS)

    Danyluk, S.

    1985-06-01

    Results of the program are presented on developing an understanding of the basic mechanisms of abrasion and wear of silicon and on the nondestructive measurement of residual stresses in sheet silicon. Experiments were conducted at various temperatures and in the presence of various fluids. In abrasive wear, it was shown that dislocations, microtwins, and cracks are generated beneath the contact surface. Residual stresses in ribbon by the edge defined film growth process were measured by use of a shadow moire interferometry technique.

  16. Clean Cities Fact Sheet

    SciTech Connect

    Not Available

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  17. Analysis of failure of resistance spot welding for advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Noh, Wooram; Koh, Youngwoo; Chung, Kwansoo; Yang, Xin

    2013-12-01

    For the evaluation of the failure performance of the similar spot welded joints under static loading conditions, characterization procedure was proposed utilizing numerically inverse calibration method. TRIP (Transformation induced plasticity steel) 980 and DP (Dual Phase steel) 980 sheets were considered as base materials. In order to characterize the mechanical properties, for the spot weld joints were performed simple tension tests based on the newly developed miniature simple tension test method, while for the base sheets were performed those following standard methods. Considering the hardening behaviors and failure properties of the base sheets and weld nuggets, numerical simulations for the lap-shear tension test were performed and compared with experiments.

  18. Electro-Hydraulic Forming of Sheet Metals: Free-forming vs. Conical-die Forming

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.; Soulami, Ayoub; Ahzi, Said

    2012-05-01

    This work builds upon our recent advances in quantifying high-rate deformation behavior of sheet metals, during electro-hydraulic forming (EHF), using high-speed imaging and digital image correlation techniques. Following recent publication of an earlier manuscript, resulting from this project, in the Journal of Materials Processing Technology, this manuscript further details our results and compares forming behavior when the process is carried out inside an open-die or a conical die. It is anticipated that quantitative information of the sheet deformation history, made possible by the experimental technique developed in this work, will improve our understanding on the roles of strain-rate and sheet-die interactions in enhancing the sheet metal formability during high-rate forming. This knowledge will be beneficial to the automotive industry and enable them to fabricate light-weight sheet parts out of Al and advanced high strength steels.

  19. Experimental Studies on Flexible Forming of Sheet Metals Assisted by Magnetic Force Transfer Medium

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhou, Fu Jian; Wang, Mo Nan; Xu, Peng; Jin, Cheng Chuang

    2016-06-01

    To improve the thickness uniformity and increase the forming limit of sheets to enhance their overall quality, a magnetorheological fluid (MRF) was injected into the punch cavity to act as the force transfer medium and fulfill the function of flexible pressing during the sheet bulging process. The rheological properties of the MRF were changed under the influence of a magnetic field produced by loading different currents, which allowed variation of stress states and deformation modes in the 0.75-mm-thick 304 stainless steel sheets. With increasing current (up to 3.5 A), the sheet-forming limit increased by 16.13% at most, and the fracture morphology experienced a certain change. Additionally, both the bulge height and the wall thickness distribution had obvious changes with a punch stroke of 10 mm. According to the experimental analysis, the MRF can be used successfully as a pressure-carrying medium in the sheet forming process.

  20. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  1. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  2. A study on corrosion test methods for automotive steel sheet

    SciTech Connect

    Miyoshi, Y.; Kitayama, M.; Ito, Y.; Koyahara, H.

    1984-01-01

    The corrosion behavior of an automobile body caused by de-icing salt was classified into various corrosion phenomena, of which paint exfoliation and perforation were studied fundamentally. There are 2 types of paint exfoliation. One is paint adhesion, where underfilm corrosion plays a decisive role. Another is wet adhesion, where water immersion through the paint film into the paint/substrate interface is important. Perforation corrosion can be simulated by corrosion test using lapped panel specimens. CCT conditions which should be applied for all exposure tests were determined on the basis of experimental data.

  3. 10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523196 (sheet no. 6; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  4. 9. DETAILS OF STEEL FLUME, TYPICAL CURVES AND TRANSITIONS. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAILS OF STEEL FLUME, TYPICAL CURVES AND TRANSITIONS. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523195 (sheet no. 5; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  5. Model 200 crane, general arrangement & clearances. Colby Steel & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Model 200 crane, general arrangement & clearances. Colby Steel & Engineering Company, Vancouver B.C., Seattle, New York. Two elevations and cab plan. No architect noted, drawn by Gould. Sheet A2, no 6365. Scaled not given. August 10, 1942. Proposal no. 318. - United Engineering Company Shipyard, Crane, 2900 Main Street, Alameda, Alameda County, CA

  6. 120. JOB NO. 1347M, SHEET 7, 1930, ADDITION FOR PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. JOB NO. 1347-M, SHEET 7, 1930, ADDITION FOR PRESSED STEEL DEPARTMENT FOR THE FORD MOTOR COMPANY; SECTION AA AND ROOF DETAILS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  7. 119. JOB NO. 1347M, SHEET 6, 1930, ADDITION FOR PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. JOB NO. 1347-M, SHEET 6, 1930, ADDITION FOR PRESSED STEEL DEPARTMENT FOR FORD MOTOR COMPANY; ONE-FOURTH INCH ELEVATIONS, TRANSFORMER, DETAILS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  8. 118. JOB NO. 1347M, SHEET 2, 1930/1931, ADDITION FOR PRESSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. JOB NO. 1347-M, SHEET 2, 1930/1931, ADDITION FOR PRESSED STEEL DEPARTMENT FOR FORD MOTOR COMPANY; FIRST FLOOR PLAN - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  9. 75 FR 15741 - Sheet Metal Workers Internationl Association, Local 292: Troy, MI; Notice of Termination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Sheet Metal Workers Internationl Association, Local 292: Troy, MI... investigation was initiated in response to a petition filed on July 13, 2009 on behalf of workers of Steel...

  10. Studies in Cup Drawing Behavior of Polymer Laminated Sheet Metal

    NASA Astrophysics Data System (ADS)

    Elnagmi, M.; Jain, M.; Bruhis, M.; Nielsen, K.

    2011-08-01

    Axisymmetric deep drawing behavior of a polymer laminated sheet metal (PLSM) is investigated using an axisymmetric cup drawing test. PLSMs are of interest as a replacement for painted finishes for automotive applications as they have the potential to achieve good quality long lasting and aesthetically appealing surfaces on stamped parts. However, there is limited understanding of PLSMs in automotive deep drawing situations to produce complex 3-D parts. The tests are carried out using well-controlled, laboratory-based, dual-action, servo-hydraulic forming presses under blank-holder force and punch displacement control conditions. An optical strain mapping system is used to measure the surface strains (and to construct 3D strain maps) from the film side of the deformed samples for a range of forming conditions. Deep drawing characteristics such as punch load versus punch displacement traces, strain distribution along the cup profile, flange wrinkling and fracture characteristics are experimentally assessed for stainless steel-plastic film laminated sheet materials. Also the effect of lamination pressure on wrinkling and delamination is investigated for a decorative pressure sensitive adhesive film affixed to the stainless steel sheet.

  11. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  12. Twisting of sheet metals

    NASA Astrophysics Data System (ADS)

    Pham, C. H.; Thuillier, S.; Manach, P. Y.

    2013-12-01

    Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. In this study, a dedicated device for drawing of elongated part with a U-shaped section has been designed on purpose, in order to obtain reproducible data. Very thin metallic sheet, of thickness 0.15 mm, has been used, so that the maximum length of the part is 100 mm. Two different orientations of the part with respect to the tools have been chosen: either aligned with the tools, or purposefully misaligned by 2°. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a significant one can be measured for the second one. In a second step, 2D and 3D numerical simulations within the implicit framework for drawing and springback were carried out. A mixed hardening law associated to von Mises yield criterion represents accurately the mechanical behavior of the material. This paper highlights a comparison of numerical predictions with experiments, e.g. the final shape of the part and the twisting parameter.

  13. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  14. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  15. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  16. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  17. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  18. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  19. Development of environmentally friendly non-chrome conversion coatings for cold-rolled steel

    NASA Astrophysics Data System (ADS)

    Zhang, Jinming

    Steel producers use various organic and inorganic coatings to protect cold-rolled steel (CRS) sheets from corrosion during shipment and storage. It is well known that CRS sheets can be protected from corrosion by galvanizing, phosphating, chromating, topcoating with organic, or their combinations. The chromate rinsing is particularly effective for preventing white rusting of galvanized steel. But there is an increasing interest in a replacement for the chromating process because of environmental and health concerns. The objective of the present work is to develop a chrome-free conversion coating for steel sheets. Various carboxylic acids and their salts have been studied for coating phosphated electrogalvanized (EG) steel sheets, including 10-undecenoic acid (UA), oleic acid (OA), and other fatty acids such as stearic acid (SA) and palmitic acid (PA). When they were used alone, or subsequently coated with resin, they could produce a highly hydrophobic surface and improve the corrosion resistance. Thiols such as 1-octadecanethiol (ODT) can form a self-assembled monolayer on metal substrates. This close-packed monolayer could provide an excellent corrosion resistance for EG steel sheets. It was capable of withstanding 50˜60 hours of salt spray test (SST) although its thickness was only a few nanometers. The EG steel itself usually started rusting only after 2˜4 hours of salt spray. In another coating system, thiols were mixed with a conventional resin to improve the corrosion resistance of EG steel. This new technique gave 100˜120 hours of corrosion resistance. When the resin was applied directly on EG steel surface, its corrosion resistance was less than 72 hours. It was shown that further optimization of this technique increased the corrosion resistance to 200 hours and more in the standard SST.

  20. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  1. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  2. Double Sided Irradiation for Laser-assisted Shearing of Ultra High Strength Steels with Process Integrated Hardening

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus; Weinbach, Matthias

    Most small or medium sized parts produced in mass production are made by shearing and forming of sheet metal. This technology is cost effective, but the achievable quality and geometrical complexity are limited when working high and highest strength steel. Based on the requirements for widening the process limits of conventional sheet metal working the Fraunhofer IPT has developed the laser-assisted sheet metal working technology. With this enhancement it is possible to produce parts made of high and highest strength steel with outstanding quality, high complexity and low tool wear. Additionally laser hardening has been implemented to adjust the mechanical properties of metal parts within the process. Currently the process is limited to lower sheet thicknesses (<2 mm) to maintain short cycle times. To enable this process for larger geometries and higher sheet thicknesses the Fraunhofer IPT developed a system for double sided laser-assisted sheet metal working within progressive dies.

  3. A study of Damascus steel

    SciTech Connect

    Berge, P.

    1995-02-16

    The Damascus sword has been an article of fascination for many years to blade collectors and metallurgists alike. The blades were given their name by Europeans who encountered these blades which originated from Damascus, Syria. They are best known for the appearance of the blade face. Genuine Damascus blades show swirling patterns of alternating light and dark regions which are due to the microstructure of the steel. The microstructure consists of arrays of well rounded cementite patterns in a matrix of either pearlite, bainite, or martensite. When this structure is etched the matrix will turn dark leaving the cementite particles light. Although many blades were produced over the centuries, while some of the process is known the making of a genuine Damascus blade today is generally considered a lost art. Many scientists have studied the subject in an attempt to understand the complex process by which the clustered arrays of cementite particles develop in the steel blades. The most prominent theories to date are presented in the General Introduction to this thesis. The thesis is divided into four main parts. In the first part, four proposed mechanisms of cementite cluster sheet formation as they relate to the banding theory are introduced. Experiments to investigate these mechanisms are presented. In Part II, collaborative research focused on the methodology of the reconstructed process for making Damascus steel is presented. In the third part, a study into the graphitization of the reconstructed blades is presented. In Part IV, experimental attempts at producing Damascus steel ingots in the laboratory are presented.

  4. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  5. Silicone Coating on Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Park, J. J.

    1985-01-01

    Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.

  6. Cutting Guide for Fibrous Sheets

    NASA Technical Reports Server (NTRS)

    Warren, A., D.

    1985-01-01

    Tool facilitates repetitive cutting of fibrous sheets. Flexible aluminum tape allows metal strips folded back on themselves, exposing fresh material for cutting. More than one strip folded back, and cutting width therefore increased in multiples of strip width. Developed for cutting strips of alumina-fiber matting, tool also used on such materials as felts, textiles, and sheet metals.

  7. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-04-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  8. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-06-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  9. Hyperspectral light sheet microscopy.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685

  10. Hyperspectral light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  11. Hyperspectral light sheet microscopy

    PubMed Central

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685

  12. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Vitamin and Mineral Supplement Fact Sheets

    MedlinePlus

    ... Tables Online DRI Tool Daily Value (DV) Tables Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  14. The Forming of AISI 409 sheets for fan blade manufacturing

    SciTech Connect

    Foroni, F. D.; Menezes, M. A.; Moreira Filho, L. A.

    2007-04-07

    The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concern referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good to temperatures of gas exhaust from tunnels in fire situation. The innovation is centered in the process of a deep drawing of metallic sheets in order to keep the ideal aerodynamic superficies for the fan ideal performance. Through the impression of circles on the sheet plane it is shown, experimentally, that, during the pressing process, the more deformed regions on the sheet plane of the blade can not reach the deformation limits of the utilized sheet material.

  15. Development of sheet-metal parabolic-trough reflector panels

    SciTech Connect

    Biester, A.W.

    1982-06-01

    Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Appended are results of adhesive bonding studies. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration has been selected for fabrication in suitable quantities for performance testing. (LEW)

  16. Gap Bridging Ability in Laser GMA Hybrid Welding of Thin 22MnB5 Sheets

    NASA Astrophysics Data System (ADS)

    Möller, F.; Kügler, H.; Kötschau, S.; Geier, A.; Goecke, S.-F.

    In this paper, laser GMA hybrid welding of thin ultra-high-strength steel sheets (22MnB5) is investigated. A single-mode laser beam oscillating transversal to the welding direction is used in order to minimize the heat input during the process. The sheets have a thickness of 1.5mm each and are fixed in overlap configuration. The gap between the sheets was 0.8mm during experiments in order to simulate typical gap width in industrial manufacturing processes. It is shown that a stable weld seam has been achieved for this gap width in case of a welding speed of 6m/min. The gap bridging ability is caused by the interaction of the arc and the laser beam process. The laser beam process produces deeper penetration in the bottom sheet. Thus, the arc is stabilized by the laser beam.

  17. Towards Industrial Application of Damage Models for Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Doig, M.; Roll, K.

    2011-05-01

    Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.

  18. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  19. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  20. Friction Stir Brazing: a Novel Process for Fabricating Al/Steel Layered Composite and for Dissimilar Joining of Al to Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Zhang, Jianxun; Wei, Zhongxin

    2011-09-01

    A novel process of friction stir brazing (FSB) for fabricating Al/steel layered composite (by multipass) and for joining Al to steel (by single pass) was proposed to avoid the wear of pin by steel, in which a tool without pin was used. FSB of 1.8-mm-thick Al sheet to steel sheet was conducted using a cylindrical tool with 20-mm diameter but without pin and using 0.1-mm-thick zinc foil as filler metal. For the rotational speed of 1500 rpm, sound joints were reliably obtained at the medium range of traverse speed of 75 to 235 mm/min, which fractured within Al parent sheet during tensile shear test. Furthermore, for peel test on the sound joints, Al and steel parent sheets tended to crack and deform, respectively. Metallographic examination showed that most Zn was extruded and the resultant interfacial structure consisted of several Al-Fe intermetallic compounds (IMCs) with a little Zn, less than 3 at. pct. The thickness of IMCs can be controlled to be less than 10 μm by properly increasing traverse speed ( e.g., 150 mm/min). The metallurgical process of FSB was investigated by observing the microstructure of the longitudinal section of a friction stir brazed joint obtained by the suddenly stopping technique.

  1. Superfund fact sheet: The removal program. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    The fact sheet describes the Superfund Emergency Response Program, a program specifically designed to respond to multi-media hazardous materials accidents (e.g. illegal disposal or improper handling of materials, transportation accidents, chemical fires) that endanger people and/or the environment. Explanations of how the removal program works and how the affected communities are involved are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no scientific training.

  2. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  3. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  4. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  5. Differences between Laser and Arc Welding of HSS Steels

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Mužík, Tomáš; Míšek, Michal

    Conventional welding processes often fail to provide adequate joints in high strength steels with multiphase microstructures. One of the promising techniques is laser beam welding: working without filler metal and with sufficient capacity for automotive and transportation industry (where the amount of AHSS steels increases each year, as well as the length of laser welds). The paper compares microstructures and properties of HSS (high strength steel) joints made by MAG (Metal Active Gas) and laser welding. The effects of main welding parameters (heat input, welding speed and others) are studied on multiphase TRIP 900 steel tubes and martensitic sheets DOCOL 1200, advanced materials for seat frames and other automotive components. Whereas the strength of conventional welds is significantly impaired, laser welding leaves strength of the base material nearly unaffected. As the nature of fracture changes during loading and depending on the welding method, failure mechanisms upon cross tension tests have been studied as well.

  6. Annealing textures for drawability: Influence of the degree of cold rolling reduction for low-carbon and extra low-carbon ferritic steels

    SciTech Connect

    Pero-Sanz, J.; Ruiz-Delgado, M.; Martinez, V.; Verdeja, J.I.

    1999-11-01

    This work considers the optimization of deep drawing properties by studying the influence of hot rolling conditions, cold reduction rate, and final annealing on the evolution of steel sheet textures. Two steels have been selected: a low-C steel used for enameling applications, and an extra-low-C steel of the interstitial-free type. Results show that the intensity of {l{underscore}brace}111{r{underscore}brace} component--and, consequently, drawability--is considerably higher in the textures of cold-rolled and annealed sheets than in hot-rolled sheets. It is suggested that drawability of sheets annealed after cold rolling improves if greater than conventional reduction rates are used during rolling. Finally, it is shown that, contrary to what has sometimes been claimed, improved of the ``r'' coefficient are not accompanied by a pancake morphology of the ferrite grains.

  7. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  8. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  9. SEER Cancer Stat Fact Sheets

    Cancer.gov

    Cancer Statistical Fact Sheets are summaries of common cancer types developed to provide an overview of frequently-requested cancer statistics including incidence, mortality, survival, stage, prevalence, and lifetime risk.

  10. Measurements and Characterization (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization that includes scope, core competencies and capabilities, and contact/web information for Analytical Microscopy, Electro-Optical Characterization, Surface Analysis, and Cell and Module Performance.

  11. Sports Injury Prevention Tip Sheet

    MedlinePlus

    ... Finance Human Resources and Administrative Services Information Technology Marketing and Sales Membership Practice Public Affairs Quality Publishing ... Feedback Recent a a a print email share Facebook Twitter 2016 Sports Injury Prevention Tip Sheet 3/ ...

  12. Deep Space 1 (fact sheet)

    NASA Technical Reports Server (NTRS)

    Fisher, D. K.

    1998-01-01

    Exerting less force than does a single sheet of paper resting in your hand, Deep Space 1's ion propulsion system will slowly, yet continuously accelerate the spacecraft well beyond speeds attainable by conventional chemical propulsion.

  13. Energy information sheets, July 1998

    SciTech Connect

    1998-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  14. Energy information sheets, September 1996

    SciTech Connect

    1996-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  15. Crib sheets or security blankets?

    PubMed

    Drake, V K; Freed, P; Hunter, J M

    1998-01-01

    This article describes the sanctioned use of crib sheets as a nursing intervention to decrease test anxiety when the classroom is the practice setting for psychiatric/mental health nursing faculty. The products that the students created offered additional unsuspected benefits. The faculty were convinced that the use of crib sheets can be a sound intervention to reduce students' test-taking anxiety. PMID:9661379

  16. Supporting steel

    SciTech Connect

    Badra, C.

    1995-10-01

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  17. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  18. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical

  19. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  20. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  1. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  2. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  3. Application of the coenergy model to different electrotechnical devices: Comparison of different magnetic sheets

    SciTech Connect

    Mekhiche, M.; Waeckerle, T.; Ossart, F.; Pera, T.

    1995-11-01

    The performance of most electrical machinery relies on the electrical steels used. Therefore any efficient CAD tool should be able to account for the magnetic behavior of those materials. Here, models taking into account the anisotropy and nonlinearity of doubly oriented, grain oriented and nonoriented electrical sheets were implemented in finite element CAD software. These models based on the coenergy density have been used to model different electrical power devices and to compare their performance. The doubly oriented sheets proved to be more suitable than the conventional soft magnetic materials.

  4. Finite Element Prediction of Sheet Forming Defects Using Elastic-Plastic, Damage and Localization Models

    NASA Astrophysics Data System (ADS)

    Haddag, Badis; Abed-Meraim, Farid; Balan, Tudor

    2007-05-01

    In this work, an advanced anisotropic elastic-plasticity model is combined with a damage model and a strain localization criterion in the aim to describe accurately the mechanical behavior of sheet metals. Large strain, fully three-dimensional, implicit time integration algorithms are developed for this model and implemented in the finite element code Abaqus. The resulting code is used to predict the strain localization limits as well as the springback after forming of sheet steels. The impact of strain-path dependent hardening models on the limit strains and on the amount of springback is addressed.

  5. On the Evolution of Through-Thickness Texture Gradients in Rolled Sheet Products

    SciTech Connect

    Engler, O.; Huh, M.Y.

    1999-01-05

    The paper reviews recent experimental results on the formation of through-thickness texture gradients during non-uniform rolling and, in particular, addresses their materials-dependence. For that purpose, two different materials (Cu and a low carbon steel) were subjected to non-uniform deformation by cold rolling without application of a lubricant. The effects of the different local strain states through the sheet thickness on microstructure and crystallographic texture were studied by X-ray texture analysis and microstructure observations and compared to results obtained in uniformly deformed sheets.

  6. A method for vertical electromagnetic moldless casting of steel

    SciTech Connect

    Turner, L.R.; Lari, R.J.; Praeg, W.F.

    1988-05-01

    Several approaches have been studied for the vertical casting of thin (3 mm-8 mm) sheets of steel. Each approach employs electromagnetic (EM) forces, avoids the need for contact between the solidifying steel and a solid mold. The most promising approach uses a high-frequency (HF:>100 kHz) oval solenoid magnet to provide containment of the liquid steel and a low-frequency (LF:/approximately/60 Hz) traveling field, similar to the double-sided linear induction pump, to provide levitation. The low field level of the solenoid and the low frequency of the levitation magnet result in acceptably low EM heating of the steel. The LF field penetrates the steel and provides a body force exactly counteracting the force of gravity everywhere except near the edges of the solidifying sheet. Additional HF traveling field magnets augment the levitation force near the edges but generate more EM heating. Other means of extending the levitating force to the edge and other approaches using stationary or traveling fields have also been studied. 4 refs., 4 figs.

  7. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  8. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  9. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  10. Regression relations for estimating the mechanical properties of steels subjected to solid-solution hardening

    NASA Astrophysics Data System (ADS)

    Protopopov, E. A.; Val'ter, A. I.; Protopopov, A. A.; Malenko, P. I.

    2015-07-01

    An approach is proposed to obtain regression relations to estimate the mechanical properties of steels subjected to solid-solution hardening. The applicability of the developed approach is shown for hot-rolled sheet austenitic iron-nickel and nickel alloys after quenching, toughened low-alloy structural steels with a sorbite structure in the case of full hardenabilty, sheet corrosion-resistant ferritic steels after softening heat treatment, and corrosion-resistant austenitic steels after austenitization. The derived regression relations serve as the basis for correcting the chemical composition of a metal melt to ensure the required level of the mechanical properties of ready products by controlling the degree of solid-solution hardening.

  11. Johnson-Cook Strength Model for Automotive Steels

    NASA Astrophysics Data System (ADS)

    Vedantam, K.

    2005-07-01

    Over the last few years most automotive companies are engaged in performing simulations of the capability of individual components or entire structure of a motor vehicle to adequately sustain the shock (impacts) and to protect the occupants from injuries during crashes. These simulations require constitutive material models (e.g., Johnson-Cook) of the sheet steel and other components based on the compression/tension data obtained in a series of tests performed at quasi-static (˜1/s) to high strain rates (˜2000/s). One such study is undertaken by the recently formed IISI (International Iron and Steel Institute) in organizing the round robin tests to compare the tensile data generated at our Laboratory at strain rates of ˜1/s, ˜300/s, ˜800/s, and ˜2000/s on two grades of automotive steel (Mild steel and Dual Phase-DP 590) using split Hopkinson bar with those generated at high strain rate testing facilities in Germany and Japan. Our tension data on mild steel (flow stress ˜ 500 MPa) suggest a relatively small strain rate sensitivity of the material. The second steel grade (DP-590) tested exhibits significant strain rate sensitivity in that the flow stress increases from about 700 MPa (at ˜1/s) to 900 MPa (at ˜2000/s). J-C strength model constants (A, B, n, and C) for the two steel grades will be presented.

  12. The magnetohydrodynamics of current sheets

    NASA Technical Reports Server (NTRS)

    Priest, E. R.

    1985-01-01

    Examples of current sheets are summarized and their formation is described. A universal phenomenon in cosmic plasmas is the creation of sheets off intense current near X-type neutral points (where the magnetic field vanishes). These sheets are important as sites where the magnetic-field energy is converted efficiently into heat and bulk kinetic energy and where particles can be accelerated to high energies. Examples include disruptions in laboratory tokamaks, substorms in the earth's magnetosphere, and flares on the sun. The basic behavior of a one-dimensional sheet is presented, together with an account of the linear tearing-mode instability that can cause the field lines in such a sheet to reconnect. Such reconnection may develop in different ways: it may arise from a spontaneous instability or it may be driven, either from outside by motions or locally by a resistivity enhancement. Various processes are described that may occur during the nonlinear development of tearing, along with the many numerical and laboratory experiments that are aiding our understanding of this intriguing cosmical process.

  13. HOT CELL BUILDING, TRA632. WHILE STEEL BEAMS DEFINE FUTURE WALLS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. WHILE STEEL BEAMS DEFINE FUTURE WALLS OF THE BUILDING, SHEET STEEL DEFINES THE HOT CELL "BOX" ITSELF. THREE OPERATING WINDOWS ON LEFT; ONE VIEWING WINDOW ON RIGHT. TUBES WILL CONTAIN SERVICE AND CONTROL LEADS. SPACE BETWEEN INNER AND OUTER BOX WALLS WILL BE FILLED WITH SHIELDED WINDOWS AND BARETES CONCRETE. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 7933. Unknown Photographer, ca. 5/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    SciTech Connect

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-09

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.

  15. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-01

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age. PMID:23442209

  16. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  17. Casimir forces and graphene sheets

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2010-10-15

    The Casimir force between two infinitely thin parallel sheets in a setting of N such sheets is found. The finite two-dimensional conductivities, which describe the dispersive and absorptive properties of each sheet, are taken into account, whereupon the theory is applied to interacting graphenes. By exploring similarities with in-plane optical spectra for graphite, the conductivity of graphene is modeled as a combination of Lorentz-type oscillators. We find that the graphene transparency and the existence of a universal constant conductivity e{sup 2}/(4({h_bar}/2{pi})) result in the graphene/graphene Casimir interaction at large separations to have the same distance dependence as the one for perfect conductors but with much smaller magnitude. The Casimir force is also studied when the graphene system is above a substrate or immersed in a medium. It is found that the response properties of the environmental materials can strongly affect the graphene interaction.

  18. Optimal swimming of a sheet

    NASA Astrophysics Data System (ADS)

    Montenegro-Johnson, Thomas D.; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  19. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  20. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  1. Fouling of carbon steel heat exchanger caused by iron bacteria

    SciTech Connect

    Starosvetsky, J.; Armon, R.; Starosvetsky, D. ); Groysman, A.

    1999-01-01

    A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

  2. Sheet Beam Klystron Instability Analysis

    SciTech Connect

    Bane, K.L.F.; Jensen, A.; Li, Z.; Stupakov, G.; Adolphsen, C.; /SLAC

    2009-05-08

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.

  3. Eumelanin kinetics and sheet structure

    NASA Astrophysics Data System (ADS)

    Sutter, J. U.; Bidláková, T.; Karolin, J.; Birch, D. J. S.

    2012-03-01

    Melanins are common pigments with a non-repeating primary structure that is generally accepted to be composed of dihydroxyindoles. However, despite intensive research the secondary structure defining the minimum functional unit (protomolecule) remains elusive. We have revisited eumelanin formation in-situ during the non-enzymatic auto-oxidation of 3,4-dihydroxy-L-phenylalanine by using the fluorescence of thioflavin T; an extrinsic probe known to report on sheet structure. This approach obviates the complex intrinsic fluorescence and reveals a sigmoidal temporal dependence of assembly that is consistent with protomolecule formation and assembly into a stacked sheet structure rather than a randomized heteropolymer formed by monomer addition.

  4. Biaxially corrugated flexible sheet material

    DOEpatents

    Schmertz, John C.

    1991-04-16

    A flexible biaxially corrugated sheet material is formed from a plurality of identical trapezium segments which are arranged in a plurality of long strips a single segment wide. Adjacent strips are mirror images of each other and connected along adjoining sides with the angles of the four corners of adjacent segments being alternately less than 360.degree. and greater than 360.degree. along the length of a strip such that the sheet material has an undulating configuration, and is inherently curved and cannot lie in a flat plane.

  5. Characterization of commercial sheet polarizer material

    NASA Astrophysics Data System (ADS)

    Goldstein, Dennis H.; Jones, Douglas G.

    2006-05-01

    Sheet polarizers were invented by Land in the 1920s. The fabrication of the type of sheet polarizers we use today, i.e. H-sheet polarizers, was described in the basic H-sheet patent issued in 1948. Single polarizer transmittance, and parallel pair and crossed pair transmittance are typically quoted for these polarizers. In this paper we describe spectropolarimetric measurement results for a variety of commercial sheet polarizer and sheet retarder materials. The measurements cover the nominal spectral region for the polarization elements but also describe performance well beyond the advertised range. Mueller matrices for the elements were measured, and diattenuation and retardance for both polarizers and retarders are presented.

  6. Fact Sheet: Summary of Self-Determination. NRC Fact Sheet

    ERIC Educational Resources Information Center

    Kennedy, Michael; Lewin, Lori

    2010-01-01

    This fact sheet provides an explanation of what self determination is, provides the four principles of self determination, describes the values supported by self determination. The authors contend that if self-determination is going to be successful, it requires that those who supply services and fund them make certain changes in both the way they…

  7. Optimization of Forming Processes with Different Sheet Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sousa, Luísa C.; Castro, Catarina F.; António, Carlos C.

    2007-05-01

    Over the past decades relatively heavy components made of steel alloys comprise the majority of many manufactured parts due to steel's low cost, high formability and good strength. The desire to produce lightweight parts has led to studies searching for lighter and stronger materials such as aluminum alloys. However, they exhibit lower elastic stiffness than steel resulting in higher elastic strains causing known distortions such as spring-back and so decreasing accuracy of manufactured net-shape components. This paper presents a developed computational method to optimize the design of sheet metal processes using genetic algorithms. An inverse approach is considered so that the final geometry of the bended blank closely follows a prescribed one. The developed computational method couples a finite element forming simulation and an evolutionary algorithm searching the optimal design parameters of the process. The developed method searches the optimal parameters that ensure a perfect net-shape part. Different aluminum alloys candidates for automotive structural applications are considered and the optimal solutions are analyzed.

  8. Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Hong; Li, Faping

    2010-05-01

    In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.

  9. Fact Sheet: Vulnerable Young Children

    ERIC Educational Resources Information Center

    Shaw, Evelyn, Comp.; Goode, Sue, Comp.

    2008-01-01

    This fact sheet provides data on infants, toddlers and young children who are experiencing high stress as a result of a number of risk factors specifically identified in the Individuals with Disabilities Education Improvement Act of 2004 (IDEA 2004), including substantiated abuse or neglect, foster care placement, homelessness, exposure to family…

  10. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  11. Strategic Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

  12. Fact Sheets on Institutional Racism.

    ERIC Educational Resources Information Center

    Foundation for Change, Inc., New York, NY.

    This fact sheet on institutional racism contains statistics on white control of the economy, health, housing, education, the media, and government. It also shows the oppression of minorities in these areas. The areas of wealth, the stock exchange, business, banks, unions, poverty, and unemployment, are discussed in terms of economy. Health matters…

  13. Bedload sheets in heterogeneous sediment

    SciTech Connect

    Whiting, P.J.; Dietrich, W.E.; Leopold, L.B.; Drake, T.G.; Shreve, R.L.

    1988-02-01

    Field observations in streams with beds of coarse sand and fine gravel have revealed that bedload moves primarily as thin, migrating accumulations of sediment, and coarse grains cluster at their leading edge. These accumulations are one or two coarse grains high and are much longer (0.2-0.6 m long in sand; 0.5-2.0 m in fine gravel) than their height. The authors propose the term bedload sheet for these features, and the authors argue that they result from an instability inherent to bedload movement of moderately and poorly sorted sediment. In essence, coarse particles in the bedload slow or stop each other, trap finer particles in their interstices, and thus cause the coarse particles to become mobile again. Bedload sheets develop on the stoss side of dunes, causing the dune to advance incrementally with the arrival of each sheet. Successive deposition of coarse sediment from the leading edge followed by fine sediment may generate the grain-size sorting that distinguishes cross-bedding. Available flume experiments and field observations indicate that bedload sheets are a common, but generally unrecognized, feature of heterogeneous sediment transport.

  14. Immigrant Youth Demographics. Fact Sheet

    ERIC Educational Resources Information Center

    Marcelo, Karlo Barrios; Lopez, Mark Hugo

    2006-01-01

    This fact sheet compares the numbers of 18-25 year-old immigrants by nativity status, gender, race, ethnicity, geographic distribution, country of origin, year of arrival, marital status, educational attainment, and assesses population trends from 1994-2006. These numbers are based on Current Population Survey data. An appendix presents: 2006 At a…

  15. Learning from Balance Sheet Visualization

    ERIC Educational Resources Information Center

    Tanlamai, Uthai; Soongswang, Oranuj

    2011-01-01

    This exploratory study examines alternative visuals and their effect on the level of learning of balance sheet users. Executive and regular classes of graduate students majoring in information technology in business were asked to evaluate the extent of acceptance and enhanced capability of these alternative visuals toward their learning…

  16. [Fact Sheets on Working Women].

    ERIC Educational Resources Information Center

    National Commission on Working Women, Washington, DC.

    These four fact sheets address a number of issues relating to women in the work force. The first, "An Overview of Women in the Work Force," offers a look at the numbers of women in the labor force, the occupational categories represented by women workers, women in professional and nonprofessional occupations, and women in nontraditional…

  17. Off-Balance Sheet Financing.

    ERIC Educational Resources Information Center

    Adams, Matthew C.

    1998-01-01

    Examines off-balance sheet financing, the facilities use of outsourcing for selected needs, as a means of saving operational costs and using facility assets efficiently. Examples of using outside sources for energy supply and food services, as well as partnering with business for facility expansion are provided. Concluding comments address tax…

  18. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  19. Epistemology of Ice Sheet Change

    NASA Astrophysics Data System (ADS)

    Waibel, M. S.; Hulbe, C. L.; Johnson, J. V.

    2012-12-01

    Recent change in the Greenland and West Antarctic ice sheets is observed as surface lowering accompanied by speed up of the ice. One of two types of perturbation is usually invoked to account for these changes, unbalanced forces at either the bed or at the marine margin of the ice sheet. The former is linked to change in meltwater at the bed while the latter is linked to a change in the temperature of the ocean near the margin. Observational data have been used together with numerical models to reproduce both cases. What we ask here is whether or not there is anything distinctive in the observed patterns of change that warrants preferring one type of perturbation over the other. That is, our interest is epistemological: is there anything distinctive in the pattern of ice sheet response to environmental forcing that allows the correct forcing to be identified using observational data? We hypothesize that specific changes in ice dynamics—perturbation at the bed or at the margin—lead to unique patterns of change in ice sheet flow, and thus geometry. For example, ocean warming may have its largest expression close to the coast and then propagate into the interior on time and spatial scales set by the material properties of the ice and various boundary conditions. Other perturbations may yield different patterns. The hypothesis is tested using an ice sheet model and a set of simple perturbations that represent environmental changes that might drive ice sheet change. We use surface lowering (ice thinning) as our indicator of change and conduct an EOF analysis to identify modes in that time dependent field. If leading modes derived from different perturbation experiments are distinguishable, the null hypothesis—that there is nothing diagnostic in the observed changes—is rejected and we conclude that observed patterns of change in ice sheets may be used to identify underlying causes for that change. This, in turn, would yield normal mode "finger prints" for

  20. Whooping Cough (Pertussis) - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Pertussis fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/pertussis.html Print page Share Compartir File Formats Help: ...

  1. Tool steels. 5. edition

    SciTech Connect

    Roberts, G.; Krauss, G.; Kennedy, R.

    1998-12-31

    The revision of this authoritative work contains a significant amount of new information from the past nearly two decades presented in an entirely new outline, making this a must have reference for engineers involved in tool-steel production, as well as in the selection and use of tool steels in metalworking and other materials manufacturing industries. The chapter on tool-steel manufacturing includes new production processes, such as electroslag refining, vacuum arc remelting, spray deposition processes (Osprey and centrifugal spray), and powder metal processing. The seven chapters covering tool-steel types in the 4th Edition have been expanded to 11 chapters covering nine main groups of tool steels as well as other types of ultrahigh strength steels sometimes used for tooling. Each chapter discusses in detail processing, composition, and applications specific to the particular group. In addition, two chapters have been added covering surface modification and trouble shooting production and performance problems.

  2. Improvement of the corrosion behavior of low carbon steel by laser surface alloying

    NASA Astrophysics Data System (ADS)

    Abdolahi, B.; Shahverdi, H. R.; Torkamany, M. J.; Emami, M.

    2011-09-01

    In the present study, an integrated layer of iron aluminides of FeAl and Fe3Al was formed on the surface of a low carbon steel sheet by a two-step process. The first step was hot dipping of the steel in a molten aluminum pool and secondly laser surface processing using a pulsed Nd:YAG laser. The corrosion resistance of the coated specimens was evaluated by activation polarization and Tafel methods. The results show that laser processing of the aluminized steel leads to a considerable increase in its corrosion resistance compared to both uncoated and merely aluminized materials.

  3. Development of Al-killed/Ti stabilized steels

    NASA Astrophysics Data System (ADS)

    Ramirez-Ledesma, A. L.; Aguilar-Mendez, M. A.; Rodriguez-Diaz, R. A.; >G Aramburo,

    2015-01-01

    Several Al-killed/Ti-stabilized low carbon steels were developed in a Mexican steel industry with the aim of obtaining an interstitial free steel for automotive applications. The steelmaking route involved the use of 100% sponge iron which was feed into an electric arc furnace, vacuum degassed, ladle treated and continuously casted. The resulting slabs were then hot rolled at 1100 °C and coiled at 650 °C. Then, the steel plates were cold rolled at room temperature and sheets annealed at 700 °C. As-cast micro structure showed the presence of α-ferrite with titanium nitrides in matrix and grain boundaries while in the ashot rolled condition, elongated grains showed the presence of titanium nitrides, titanium sulfides and titanium carbosulfides. The annealed sheets showed, additionally to the other precipitates, the presence of titanium carbides. Microstructure, texture, the Lankford ratio and mechanical properties of fully recrystallized coils fulfilled the target properties established by the automobile industry.

  4. Mode I fracture of sheet metal

    NASA Astrophysics Data System (ADS)

    Pardoen, T.; Hachez, F.; Marchioni, B.; Blyth, P. H.; Atkins, A. G.

    2004-02-01

    The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I "bath-tub", i.e. "cup & cup", fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5- 5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the "fracture" work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing

  5. Runaway electrons in plasma current sheets

    SciTech Connect

    Gurevich, A.V.; Sudan, R.N. )

    1994-01-31

    It is shown that a runaway electron population accelerates along the main magnetic field in a Sweet-Parker current sheet. After a characteristic distance the entire current is carried by runaways. The thickness of this runaway sheet is much smaller than the original Ohmic sheet. The influence of microinstabilities is discussed.

  6. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  7. Manifold free multiple sheet superplastic forming

    DOEpatents

    Elmer, John W.; Bridges, Robert L.

    2001-01-01

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  8. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can... uses. (b) A heading: “This is ____ insulation.” Fill in the blank with the type and form of...

  9. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can... uses. (b) A heading: “This is ____ insulation.” Fill in the blank with the type and form of...

  10. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can... uses. (b) A heading: “This is ____ insulation.” Fill in the blank with the type and form of...

  11. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can... uses. (b) A heading: “This is ____ insulation.” Fill in the blank with the type and form of...

  12. 16 CFR 460.13 - Fact sheets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSULATION § 460.13 Fact sheets. If you are a manufacturer, you must give retailers and installers fact sheets for the insulation products you sell to them. Each sheet must contain what is listed here. You can... uses. (b) A heading: “This is ____ insulation.” Fill in the blank with the type and form of...

  13. Sheet Metal Worker: A Training Profile.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    This training profile is intended for use by program developers and trainers in the development of training courses and programs for sheet metal workers. It contains 17 modules: safety for sheet metal worker; tools and machinery; materials and gauges; drafting and shop drawing; pattern development; methods of joining sheet metal; shearing and…

  14. Early-Stage Breast Cancer Treatment Fact Sheet

    MedlinePlus

    ... breast cancer treatment fact sheet ePublications Early-stage breast cancer treatment fact sheet Print this fact sheet Early-stage breast cancer treatment fact sheet (PDF, 943 KB) Related information ...

  15. Dynamics of energetic plasma sheet electrons

    NASA Astrophysics Data System (ADS)

    Burin Des Roziers, Edward

    2009-06-01

    The dynamics of energetic plasma sheet electrons plays an important role in many geomagnetic processes. The intent of this thesis is to extend the current understanding of the relationship between the solar wind and energetic plasma sheet electrons (~> 40 keV ), as well as the variability of these electrons within the plasma sheet. The statistical relationship between tens of keV plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated, using plasma sheet measurements from Cluster (2001 - 2005) and Geotail (1998 - 2005), and concurrent solar wind measurements from ACE. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, IMF B z , and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) there is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity; (2) this correlation is valid throughout the plasma sheet and extends to distances of X GSM =-30 R E ; (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density; (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF); (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies; and (6) there is a strong correlation between energetic electrons in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. In addition, the variability of energetic electron fluxes within the plasma sheet is explored. Interesting events were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp

  16. 76 FR 27007 - Steel Wire Garment Hangers From the People's Republic of China: Affirmative Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... of Antidumping Duty Order: Steel Wire Garment Hangers from the People's Republic of China, 73 FR... of China: Initiation of Anti-Circumvention Inquiry, 75 FR 42685 (July 22, 2010) (``Initiation Notice... Determination: Coated Free Sheet Paper from the People's Republic of China, 72 FR 30758, 30760 (June 4,...

  17. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  18. Correlations between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels

    SciTech Connect

    Taylor, Mark D.; Choi, Kyoo Sil; Sun, Xin; Matlock, David K.; Packard, Corrine; Xu, Le; Barlat, Frederic

    2014-03-01

    Multiphase advanced high strength steels (AHSS) are being increasingly used in the automotive industry due to their low cost, good availability and excellent combination of strength and ductility. There is a keen interest from the automotive and steel industry for more fundamental understandings on the key microstructure features influencing the macroscopic properties, i.e., tensile properties, hole-expansion ratio and localized formability of AHSS. In this study, the micro- and macro-level properties for eight commercial DP980 steels are first characterized and quantified with various experimental methods. Correlations between macroscopic-level properties and relationships between various micro- and macro- properties for these steels are then established based on the experimental measurements. It is found that, despite their differences in their chemistry, processing parameters and sheet thickness, the eight DP980 steels do have common microstructural level properties governing their specific macroscopic properties in terms of strength, elongation and hole expansion performance.

  19. Investigation on frictional characteristics and drawbead restraining force of steel with/without coating

    NASA Astrophysics Data System (ADS)

    Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun

    2013-12-01

    Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.

  20. Characterization of Palladium and Palladium-Silver Alloy Layers on Stainless Steel Support

    NASA Astrophysics Data System (ADS)

    Katoh, Masahiro; Sondoh, Akira; Horikawa, Toshihide; Tomida, Tahei

    Pd and Pd/Ag layers were prepared by a technique of electroless plating on stainless steel supports. To form Pd/Ag layers, Pd layer was plated on an activated stainless steel (SS) sheet followed by Ag plating. The Pd/Ag-SS sheet composite was annealed at 873 K-973 K for 10 h -12 h in helium. Before annealing, the thickness of Pd layer and Ag layer on Pd/Ag-SS sheet composite was 7.6 μm and 1.9 μm, respectively. The formation of Pd/Ag alloy was observed on the SS sheet after annealing at 873 K for 12 h in helium. The ratios of Ag/(Pd+Ag) were 0.28 on the surface by XRF and 0.29 in the bulk by XPS. This result showed the formation of homogeneous Pd/Ag alloy on the SS sheet at that annealing condition. Helium permeances were measured at a pressure difference of 1 atm and room temperature. The permeances of porous stainless steel (PSS) tubes without and with 78 μm Pd layer were 100 m3/m2h and 0.35 m3/m2h, respectively. This result showed the obtained membrane was an almost dense membrane.

  1. Ohm's law for a current sheet

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  2. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  3. Action Sheet 36 Final Report

    SciTech Connect

    Kips, R E; Kristo, M J; Hutcheon, I D

    2012-02-24

    Pursuant to the Arrangement between the European Commission DG Joint Research Centre (EC-JRC) and the Department of Energy (DOE) to continue cooperation on research, development, testing, and evaluation of technology, equipment, and procedures in order to improve nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for international safeguards, dated 1 September 2008, the IRMM and LLNL established cooperation in a program on the Study of Chemical Changes in Uranium Oxyfluoride Particles under IRMM-LLNL Action Sheet 36. The work under this action sheet had 2 objectives: (1) Achieve a better understanding of the loss of fluorine in UO{sub 2}F{sub 2} particles after exposure to certain environmental conditions; and (2) Provide feedback to the EC-JRC on sample reproducibility and characteristics.

  4. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  5. Modern Steel Framed Schools.

    ERIC Educational Resources Information Center

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  6. The Steel Band.

    ERIC Educational Resources Information Center

    Weil, Bruce

    1996-01-01

    Describes studying the steel drum, an import from Trinidad, as an instrument of intellectual growth. Describes how developing a steel drum band provided Montessori middle school students the opportunity to experience some important feelings necessary to emotional growth during this difficult age: competence, usefulness, independence, and…

  7. Modeling Harris Current Sheets with Themis Observations

    NASA Technical Reports Server (NTRS)

    Kepko, L.; Angelopoulos, V.; McPherron, R. L.; Apatenkov, S.; Glassmeier, K.-H.

    2010-01-01

    Current sheets are ubiquitous in nature. occurring in such varied locations as the solar atmosphere. the heliosphere, and the Earth's magnetosphere. The simplest current sheet is the one-dimensional Harris neutral sheet, with the lobe field strength and scale-height the only free parameters. Despite its simplicity, confirmation of the Harris sheet as a reasonable description of the Earth's current sheet has remained elusive. In early 2009 the orbits of the 5 THEMIS probes fortuitously aligned such that profiles of the Earth's current sheet could be modeled in a time dependent manner. For the few hours of alignment we have calculated the time history of the current sheet parameters (scale height and current) in the near-Earth region. during both quiet and active times. For one particular substorm. we further demonstrate good quantitative agreement with the diversion of cross tail current inferred from the Harris modeling with the ionospheric current inferred from ground magnetometer data.

  8. Reconnection in thin current sheets

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  9. Effect of Nb on high-temperature properties for ferritic stainless steel

    SciTech Connect

    Fujita, N.; Kikuchi, M.; Ohmura, K.; Suzuki, T.; Funaki, S.; Hiroshige, I.

    1996-09-15

    In order to improve the efficiency of automobile engines and to reduce their weight, there is a move toward the use of conventional stainless steel sheets and pipes for exhaust manifolds to replace cast iron, the traditional material for this application. The exhaust manifold is used in an environment that includes engine vibrations as well as heating and cooling cycles caused by the travel pattern. Therefore, among high-temperature characteristics, thermal fatigue resistance is an important one that affects the life span of an exhaust manifold. Generally, austenitic steels have higher strength at high temperature than ferritic steels. However, type 304, a typical austenitic stainless steel, has less thermal fatigue resistance than type 430, a typical ferritic stainless steel. This is because austenitic steels have higher coefficient of thermal expansion than ferritic steels. Therefore, to obtain a material with excellent thermal fatigue resistance, it would conceivably be best to attempt to increase the high temperature strength of ferritic stainless steels. The present study centered on improvement of the high-temperature proof strength of ferritic stainless steels. The mechanism of high temperature strengthening by Nb addition, which was shown to be one of the most effective methods to improve proof strength at high temperature, was discussed.

  10. Oxide formation and alloying elements enrichment on TRIP steel surface during inter-critical annealing.

    PubMed

    Gong, Y F; Birosca, S; Kim, H S; De Cooman, B C

    2008-06-01

    The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steels. The alloying element enrichments and the oxide morphology on transformation-induced plasticity steel surfaces are strongly influenced by the dew point of the furnace atmosphere and annealing temperature. The formation of a thin oxide film and enrichment of the alloying elements during annealing may result in surface defects on galvanized sheet products. The present contribution reports on the use of microanalysis techniques such as electron backscatter diffraction, glow discharge optical emission spectroscopy and electron probe micro-analysis for the detailed surface analysis of inter-critically annealed transformation-induced plasticity steel such as oxide phase determination, microstructure and microtexture evolutions. PMID:18503669

  11. Possible influence of sulfur content on magnetic aging behaviors of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Mao, Wei-Min; Yang, Ping; Li, Chang-Rong

    2013-12-01

    Six non-oriented steel sheets of similar grade produced by different steel companies were used to analyze the magnetic aging behaviors after aging at 200°C for 48 h. It was observed that tiny S atoms, besides C and N, could also induce certain increase of core loss during aging. Thermodynamic calculation indicated that the nucleation driving force of FeS is much higher than those of Fe3C and Fe4N at low temperature, while S atoms, which tend to segregated around dislocations and boundaries, would diffuse rapidly along the crystalline defects while FeS particles would form. Therefore, higher content of tiny S atoms could increase core loss during service time of non-oriented steel sheets.

  12. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  13. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading.

  14. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  15. Novel magnetic indenter for rheological analysis of thin biological sheet for regenerative medicine.

    PubMed

    Kageshima, Masami; Maruyama, Toshiro; Akama, Tomoya; Nakamura, Tomoyuki

    2016-07-01

    A novel method is proposed for analyzing the mechanical properties of a thin sheet of cells or extracellular matrix cultured for regenerative medicine. A steel sphere is mounted onto the center of the sheet sample, placed over a circular aperture, and a loading force is exerted via an electromagnet with well-regulated current while the displacement of the sample center is optically detected. Details of the instrument and its performance are described. Loading and unloading experiment with stepwise magnetic force revealed that creep response of each of the cell sheet and matrix sheet can be expressed as a combination of a quasi-instantaneous deformation and two delayed elastic responses having different retardation times. The retardation time exhibited an increasing trend with the loading force. Close analysis of loading-force dependence and reversibility of the derived mechanical parameters revealed that these deformation modes are not independent but flexibly switches to each other depending on load magnitude and loading history. The cell sheet sample exhibited remarkable irreversibility between loading and unloading responses, which is attributed to response of the live cells to the sustained loading. PMID:27475573

  16. Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators

    SciTech Connect

    Maziasz, Philip J; Shingledecker, John P; Evans, Neal D; Yamamoto, Yukinori; More, Karren Leslie; Trejo, Rosa M; Lara-Curzio, Edgar

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) and ATI Allegheny Ludlum worked together on a collaborative program for about two years to produce a wide range of commercial sheets and foils of the new AL20-25+Nb{trademark} (AL20-25+Nb) stainless alloy for advanced microturbine recuperator applications. There is a need for cost-effective sheets/foils with more performance and reliability at 650-750 C than 347 stainless steel, particularly for larger 200-250 kW microturbines. Phase 1 of this collaborative program produced the sheets and foils needed for manufacturing brazed plated-fin air cells, while Phase 2 provided foils for primary surface air cells, and did experiments on modified processing designed to change the microstructure of sheets and foils for improved creep-resistance. Phase 1 sheets and foils of AL20-25+Nb have much more creep-resistance than 347 steel at 700-750 C, and those foils are slightly stronger than HR120 and HR230. Results for Phase 2 showed nearly double the creep-rupture life of sheets at 750 C/100 MPa, and similar improvements in foils. Creep data show that Phase 2 foils of AL20-25+Nb alloy have creep resistance approaching that of alloy 625 foils. Testing at about 750 C in flowing turbine exhaust gas for 500 h in the ORNL Recuperator Test Facility shows that foils of AL20-25+Nb alloy have oxidation-resistance similar to HR120 alloy, and much better than 347 steel.

  17. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  18. Formation and separation of merged liquid sheets developed from the mixing of coaxial swirling liquid sheets

    NASA Astrophysics Data System (ADS)

    Sivakumar, D.; Raghunandan, B. N.

    2003-11-01

    Liquid-liquid coaxial swirl atomizers are used in liquid rocket engines to achieve an efficient mixing between the fuel and oxidizer sprays. The characteristics of the mixed spray are mainly controlled by the flow behavior of merged liquid sheet originating at the contact point of inner and outer swirling liquid sheets. With an intention of identifying various flow regimes of merged liquid sheet at different conditions of inner and outer liquid sheets, we report here a fundamental experimental investigation on the characteristics of merged liquid sheets using water as the experimental liquid. The physical processes involved in the formation and separation of a merged liquid sheet are described from the experimental measurements. For a given outer liquid sheet condition, the merged liquid sheet forms and separates at specific inner liquid sheet flow conditions. At low outer liquid sheet flow conditions with Weber number less than 50, the merged liquid sheet exhibits a self-sustaining periodic separation process, whose frequency increases with increasing inner liquid sheet Weber number for a given outer liquid sheet Weber number. Experimental measurements are presented to show that the dynamics of the contact point plays a major role in governing the characteristics of merged liquid sheets.

  19. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  20. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  1. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  2. Research on the Effects of the Movable Die and its Counter Force on Sheet Hydroforming

    SciTech Connect

    Zhou, Li X.; Zhang, Shi H.; Wang, Ben X.

    2007-05-17

    An improved Sheet Hydro-forming process was proposed, which was investigated in Institute of Metal Research, Chinese Academy of Sciences. ASAME system and FEM are used to analyze the forming process to explain some results that were found in the experiment. In the simulation, the effect of the movable die on the maximum principal stress is investigated in detail by using the FEM code LS-DYNA. For this case, the movable die changes the distribution of the maximum principal stress. For the sheet hydroforming without the movable die, the principal stress near the shoulder of the movable die arrives to the maximum value when t=0.0033s suddenly. But for the sheet hydroforming with the movable die, the maximum principal stress still lies in the die radius. The principal stress near the shoulder of the movable die is smaller. At the last stage contacting with the die, for the case without the movable die, the maximum principal stress near the shoulder of movable die is larger than that of the sheet hydroforming with the movable die. Moreover, the stress distribution near the shoulder of movable die for the case without the movable die is complicated. It is instable and very easy to occur wrinkling. The movable die delays the maximum thickness strain to the contacting die stage. So the formability of sheet metal can be remarkably improved by adopting the movable die. On a certain extent, the uniform distribution of thickness can be realized by increasing the counterforce of movable die. The minimum thickness reduction moves outside which is very helpful for the uniform thickness distribution. In this paper, two kinds of materials, soft steel and stainless steel, were investigated.

  3. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  4. Method for heating, forming and tempering a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker; Sitzman, Gary W.

    1998-01-01

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  5. Method for heating, forming and tempering a glass sheet

    DOEpatents

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  6. Infused polymers for cell sheet release

    NASA Astrophysics Data System (ADS)

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-05-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering.

  7. Drying apparatus for photographic sheet material

    NASA Technical Reports Server (NTRS)

    Epstein, P.; Donovan, G.; Lawhite, E. (Inventor)

    1973-01-01

    An elongated drying chamber is provided with transport means for carrying photographic sheet material edgewise with the sheets in end-to-end relationship past a plurality of tubes that issue drying air streams. The tubes are slotted a distance equal to substantially the full width of the sheet material for complete, gentle drying by sheets of air. A common plenum supplies the tubes with heated air; the air is directed from the tube slots at a pronounced angle to the sheet surface to provide for arraying the tubes close to the surface for maximum drying effect while minimizing the danger of mechanical interference between the edges of the sheets and the slots in the tubes. The driver for the transport is housed in an enclosure between the plenum and the drying chamber; an air return duct is provided along another side to complete insulation of the drying chamber from ambient conditions.

  8. Thin sheets achieve optimal wrapping of liquids

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan

    2015-03-01

    A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.

  9. Infused polymers for cell sheet release

    PubMed Central

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L.; Lin, Jennifer J.; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  10. Infused polymers for cell sheet release.

    PubMed

    Juthani, Nidhi; Howell, Caitlin; Ledoux, Haylea; Sotiri, Irini; Kelso, Susan; Kovalenko, Yevgen; Tajik, Amanda; Vu, Thy L; Lin, Jennifer J; Sutton, Amy; Aizenberg, Joanna

    2016-01-01

    Tissue engineering using whole, intact cell sheets has shown promise in many cell-based therapies. However, current systems for the growth and release of these sheets can be expensive to purchase or difficult to fabricate, hindering their widespread use. Here, we describe a new approach to cell sheet release surfaces based on silicone oil-infused polydimethylsiloxane. By coating the surfaces with a layer of fibronectin (FN), we were able to grow mesenchymal stem cells to densities comparable to those of tissue culture polystyrene controls (TCPS). Simple introduction of oil underneath an edge of the sheet caused it to separate from the substrate. Characterization of sheets post-transfer showed that they retain their FN layer and morphology, remain highly viable, and are able to grow and proliferate normally after transfer. We expect that this method of cell sheet growth and detachment may be useful for low-cost, flexible, and customizable production of cellular layers for tissue engineering. PMID:27189419

  11. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  12. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  13. Red facts: Ethylene. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    EPA is directed by the Federal Insecticide, Fungicide, and Rodenticide Act as amended in 1988 (FIFRA '88) to review all pesticide products containing active ingredients initially registered before November 1, 1984, and to reregister those products that have a substantially complete data base and do not pose unreasonable adverse effects to people or the environment. The pesticide reregistration program is to be completed by the late 1990's. The RED FACTS fact sheet summarizes EPA's conclusion, as set forth in the Reregistration Eligibility Document (or RED), that products containing a pesticide do not pose unreasonable risks when used as directed by Agency-approved labeling, and are eligible for reregistration.

  14. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  15. Strontium-90 fluoride data sheet

    SciTech Connect

    Fullam, H.T.

    1981-06-01

    This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977.

  16. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  17. A Numerical Investigation of CFRP-Steel Interfacial Failure with Material Point Method

    SciTech Connect

    Shen Luming; Faleh, Haydar; Al-Mahaidi, Riadh

    2010-05-21

    The success of retrofitting steel structures by using the Carbon Fibre Reinforced Polymers (CFRP) significantly depends on the performance and integrity of CFRP-steel joint and the effectiveness of the adhesive used. Many of the previous numerical studies focused on the design and structural performance of the CFRP-steel system and neglected the mechanical responses of adhesive layer, which results in the lack of understanding in how the adhesive layer between the CFRP and steel performs during the loading and failure stages. Based on the recent observation on the failure of CFRP-steel bond in the double lap shear tests, a numerical approach is proposed in this study to simulate the delamination process of CFRP sheet from steel plate using the Material Point Method (MPM). In the proposed approach, an elastoplasticity model with a linear hardening and softening law is used to model the epoxy layer. The MPM, which does not employ fixed mesh-connectivity, is employed as a robust spatial discretization method to accommodate the multi-scale discontinuities involved in the CFRP-steel bond failure process. To demonstrate the potential of the proposed approach, a parametric study is conducted to investigate the effects of bond length and loading rates on the capacity and failure modes of CFRP-steel system. The evolution of the CFRP-steel bond failure and the distribution of stress and strain along bond length direction will be presented. The simulation results not only well match the available experimental data but also provide a better understanding on the physics behind the CFRP sheet delamination process.

  18. A Numerical Investigation of CFRP-Steel Interfacial Failure with Material Point Method

    NASA Astrophysics Data System (ADS)

    Shen, Luming; Faleh, Haydar; Al-Mahaidi, Riadh

    2010-05-01

    The success of retrofitting steel structures by using the Carbon Fibre Reinforced Polymers (CFRP) significantly depends on the performance and integrity of CFRP-steel joint and the effectiveness of the adhesive used. Many of the previous numerical studies focused on the design and structural performance of the CFRP-steel system and neglected the mechanical responses of adhesive layer, which results in the lack of understanding in how the adhesive layer between the CFRP and steel performs during the loading and failure stages. Based on the recent observation on the failure of CFRP-steel bond in the double lap shear tests [1], a numerical approach is proposed in this study to simulate the delamination process of CFRP sheet from steel plate using the Material Point Method (MPM). In the proposed approach, an elastoplasticity model with a linear hardening and softening law is used to model the epoxy layer. The MPM [2], which does not employ fixed mesh-connectivity, is employed as a robust spatial discretization method to accommodate the multi-scale discontinuities involved in the CFRP-steel bond failure process. To demonstrate the potential of the proposed approach, a parametric study is conducted to investigate the effects of bond length and loading rates on the capacity and failure modes of CFRP-steel system. The evolution of the CFRP-steel bond failure and the distribution of stress and strain along bond length direction will be presented. The simulation results not only well match the available experimental data but also provide a better understanding on the physics behind the CFRP sheet delamination process.

  19. Application of atelocollagen sheet for sellar reconstruction.

    PubMed

    Goto, Yuko; Oshino, Satoru; Shimizu, Takeshi; Saitoh, Youichi

    2016-05-01

    We aimed to evaluate combined use of atelocollagen sheet and fibrin glue for sellar reconstruction. Experiment 1: A plastic chamber was prepared with a hydroxyapatite lid with a hole of 10mm in diameter at its center, covered with a Gore-Tex sheet (W.L. Gore & Associates, Tokyo, Japan) 15mm in diameter and sealed with a combination of fibrin glue sealant and either atelocollagen sheet or polyglycolic acid (PGA) sheet. Air was injected into the chamber and the pressure at which air leakage occurred was measured under each situation. Mean (±standard deviation) leakage pressure was 816±162mmH2O for atelocollagen sheet (n=5), significantly higher than the 557±130mmH2O for PGA sheet (n=5, p<0.05, Wilcoxon test). Experiment 2: Bilateral 5mm bone windows were made in the temporal bone in eight rats. The surgical cavities were filled with one of four materials (fibrin glue only; fibrin glue and atelocollagen sheet; PGA sheet; or autologous fat tissue). Histological changes including the status of implanted materials and inflammatory responses were investigated 2 and 5weeks after the procedures. Both atelocollagen and PGA sheets remained at 5weeks after implantation, whereas fibrin glue and fat tissue were absorbed and undetectable at 2weeks. Inflammatory cell accumulation was less around the atelocollagen sheet compared to the PGA sheet. The combination of atelocollagen sheet and fibrin glue sealant showed sufficient adhesion force and favorable tissue affinity, suggesting this combination as a feasible material in sellar reconstruction. PMID:26778360

  20. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  1. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  2. Cobalt free maraging steel

    SciTech Connect

    Floreen, S.

    1984-04-17

    The subject invention is directed to ferrous-base alloys, particularly to a cobalt-free maraging steel of novel chemistry characterized by a desired combination of strength and toughness, notwithstanding that cobalt is non-essential.

  3. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  4. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  5. Growth of silicon sheets for photovoltaic applications

    SciTech Connect

    Surek, T.

    1980-12-01

    The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The fast growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.

  6. Imaging with parallel ray-rotation sheets.

    PubMed

    Hamilton, Alasdair C; Courtial, Johannes

    2008-12-01

    A ray-rotation sheet consists of miniaturized optical components that function--ray optically--as a homogeneous medium that rotates the local direction of transmitted light rays around the sheet normal by an arbitrary angle [A. C. Hamilton et al., arXiv:0809.2646 (2008)]. Here we show that two or more parallel ray-rotation sheets perform imaging between two planes. The image is unscaled and un-rotated. No other planes are imaged. When seen through parallel ray-rotation sheets, planes that are not imaged appear rotated. PMID:19065221

  7. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  8. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  9. Thermally Sprayed Coatings as Effective Tool Surfaces in Sheet Metal Forming Applications

    NASA Astrophysics Data System (ADS)

    Franzen, V.; Witulski, J.; Brosius, A.; Trompeter, M.; Tekkaya, A. E.

    2011-06-01

    Two approaches to produce wear-resistant effective surfaces for deep drawing tools by thermal arc wire spraying of hard materials are presented. Arc wire spraying is a very economic coating technique due to a high deposition rate. The coated surface is very rough compared to that of conventional sheet metal forming tools. In the first approach, the coated surface is smoothed in a subsequent CNC-based incremental roller burnishing process. In this process, the surface asperities on the surface are flattened, and the roughness is significantly reduced. In the second approach, the hard material coatings are not sprayed directly on the tool but on a negative mould. Afterward, the rough "as-sprayed" side of the coating is backfilled with a polymer. The bonded hard metal shell is removed from the negative mould and acts as the surface of the hybrid sheet metal forming tool. Sheet metal forming experiments using tools based on these two approaches demonstrate that they are suitable to form high-strength steels. Owing to a conventional body of steel or cast iron, the first approach is suitable for large batch sizes. The application of the second approach lies within the range of small up to medium batch size productions.

  10. Light Sheet Fluorescence Microscopy (LSFM)

    PubMed Central

    Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A.J.

    2015-01-01

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Microscopy (LSFM), a century old idea (Siedentopf and Zsigmondy, 1902) made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light sheet based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. PMID:25559221

  11. Finding the best swimming sheet

    NASA Astrophysics Data System (ADS)

    Ives, Tom; Morozov, Alexander

    2014-11-01

    Many microorganisms propel through fluid environments by undulating their bodies or long thin organelles (flagella). The particular waveform of the undulations can often be changed by the organism to adapt to particular environmental conditions. It has been proposed in the literature that this adaptation is driven by the desire to optimise the swimming efficiency. However, it remains an open question as to whether this is indeed the optimised quantity for microorganisms. We study propulsion in Newtonian fluids at zero inertia for a model organism, the so-called Taylor waving sheet. We develop a numerical method that allows us to calculate flow fields for sheets of arbitrary waverforms in the bulk and next to a wall. We perform optimisations of various quantities that can potentially be optimised by a swimming microorganisms (efficiency, speed, etc.) and present the optimal waveforms. We also present a simple analytical model that yields similar results. We conclude that various optimal waveforms are very similar, both in the bulk and next to a boundary, and one cannot claim that optimising the swimming efficiency is the strategy adopted by undulating microorganisms. SUPA, School of Physics & Astronomy, University of Edinburgh, UK.

  12. Shape Optimization of Swimming Sheets

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  13. Stress-corrosion cracking of steels in ammonia with consideration given to OTEC design: a survey

    SciTech Connect

    Teel, R.B.

    1980-03-01

    Carbon steel, alloy steel, and high-strength, quenched and tempered steel, when under applied or residual stress and especially when cold formed and/or welded without subsequent thermal stress relief, are subject to failure by stress-corrosion cracking (SCC) in air-contaminated dry ammonia. Water as well as hydrazine when present in small amounts have been shown to be effective inhibitors in an all steel system. Galvanic corrosion between dissimilar metals and/or accelerated failure by SCC of stressed steel as a result of galvanic coupling may be of concern. Where water has proven effective as an inhibitor of SCC in an all steel system, it may not be adequate in a mixed metal system. With aluminum tubes, the tube sheet will either have to be solid aluminum, aluminum clad steel or some nonconductive coating will be necessary to effectively remove the cathodic alloy from the galvanic circuit. Research is required to determine the severity of the coupling effect between dissimilar alloys in ammonia under OTEC conditions; especially the possibility of accelerated SCC failures of stressed steel where the presence of an inhibitor in the ammonia may not be sufficient to override the galvanic coupling effect.

  14. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  15. Aircraft Sheet Metal Practices, Blueprint Reading, Sheet Metal Forming and Heat Treating; Sheet Metal Work 2: 9855.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course is designed to familiarize vocational students with construction in sheet metal layout. The document outlines goals, specific block objectives, layout practices, blueprint reading, sheet metal forming (by hand and by machine), and heat treatment of metals, and includes posttest samples. Layout techniques and air foil developing are…

  16. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  17. Experimental Investigation of Resistance Spot Welding for Sheet Metals Used in Automotive Industry

    NASA Astrophysics Data System (ADS)

    Jou, Min

    Resistance spot welding (RSW) is used for the fabrication of sheet metal assemblies. The major advantages of spot welding are high speed and adaptability for automation in high-volume and/or high-rate production. Despite these advantages, resistance spot welding suffers from a major problem of inconsistent quality from weld to weld. This problem results from both the complexity of the basic process as well as from numerous sources of variability, noise, and errors. Any or all of these complicate automation, reduce weld quality, demand over welding and drive up production costs. For this reason, ensuring weld quality has been and remains a major challenge and goal. The objective of this research is to explore the phenomenon of how changes in a controllable parameter of % heat input affect a measurable output signal indicative of strength and weld quality for various sheet steels used in the automotive industry. The approach of this research is to create a relationship between a key process input variable and the key process output of a quality weld. The input parameter chosen is % heat input, as this directly effects the size and strength of the resulting weld. The output chosen is electrode displacement, as this has been shown to accurately reflect the formation and growth of a weld nugget. A series of experiments was conducted to explore how changes of % heat input and process variations affect the electrode displacement curve for various sheet steels used in the automotive industry. Experimental results show that the electrode displacement increased when higher % heat input was applied. Weld nugget starts to grow when electrode velocity cube changes from positive to negative. Characteristic electrode displacement curves were developed for process variations. A poor part fit-up condition shifted the electrode displacement curve to the right as a result of a smaller weld nugget being formed. Worn electrode lowers the electrode displacement curve. For bare steel

  18. ISSM: Ice Sheet System Model

    NASA Technical Reports Server (NTRS)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  19. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  20. Learning Related Visual Problems. ERIC Fact Sheet.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Handicapped and Gifted Children, Reston, VA.

    This fact sheet defines vision, outlines the visual skills needed for school achievement (ocular motility, binocularity, eye-hand coordination skills, and visual form perception), and describes how visual problems are evaluated and treated. The fact sheet also lists clues to look for when a visual problem is suspected, including the appearance of…

  1. Environmental Education Activity Sheets 1-11.

    ERIC Educational Resources Information Center

    Halsey, Clifton F.; And Others

    These activity sheets, developed by personnel of the Agricultural Extension Service of the University of Minnesota, were designed for youth group campers but may be used by other populations and individuals. Each activity sheet focuses on a separate topic: (1) Selecting Suitable Uses for Land, (2) Measuring the Steepness of Land, (3) Determining…

  2. 40 CFR 124.56 - Fact sheets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Fact sheets. 124.56 Section 124.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS PROCEDURES FOR DECISIONMAKING Specific Procedures Applicable to NPDES Permits § 124.56 Fact sheets. (Applicable to State programs, see § 123.25 (NPDES).) In addition...

  3. Looking for a Job. Clip Sheets.

    ERIC Educational Resources Information Center

    BOCES Geneseo Migrant Center, Geneseo, NY.

    These bilingual sheets assist migrant farmworkers to develop job readiness skills; however, they would be applicable to any job seeker. The collection contains sheets with the following titles: (1) Decide Where To Look; (2) Extra Steps for Success; (3) Fill Out Applications; (4) Introducing Yourself; (5) Keeping a Job Depends upon You; (6) Learn…

  4. Fact Sheets on Pesticides in Schools.

    ERIC Educational Resources Information Center

    National Coalition against the Misuse of Pesticides, Washington, DC.

    This document consists of a collection of fact sheets about the use of pesticides in schools and how to reduce it. The sheets are: (1) "Alternatives to Using Pesticides in Schools: What Is Integrated Pest Management?"; (2) "Health Effects of 48 Commonly Used Pesticides in Schools"; (3) "The Schooling of State Pesticide Laws--2002 Update: A Review…

  5. Reinforcement for Stretch Formed Sheet Metal

    NASA Technical Reports Server (NTRS)

    Lea, J. B.; Baxter, C. R.

    1983-01-01

    Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.

  6. ENVIRONMENTAL INFORMATION MANAGEMENT SYSTEM (EIMS) FACT SHEET

    EPA Science Inventory

    The purpose of the fact sheet is to provide information about the US EPA Office of Research and Developments Environmental Information Management System. The fact sheet indicates the type of records that are in EIMS, systems that are integrated with EIMS as well as some highligh...

  7. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  8. Dual circuit embossed sheet heat transfer panel

    DOEpatents

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  9. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting....

  10. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting....

  11. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting....

  12. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting....

  13. 21 CFR 878.4025 - Silicone sheeting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Silicone sheeting. 878.4025 Section 878.4025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4025 Silicone sheeting....

  14. Nuclear Data Sheets for A = 201

    SciTech Connect

    Kondev, F.G.

    2007-02-15

    Evaluated nuclear structure and decay data for all nuclei within the A = 201 mass chain are presented. This work supersedes the earlier full evaluation by M. Schmorak (1986Sc31) published in Nuclear Data Sheets 49, 733 (1986) and the update by S. Rab (1994Ra12), published in Nuclear Data Sheets 71, 421 (1994)

  15. Structure and hardness of corrosion-resistant ferritic steels subjected to high-temperature nitriding

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rogachev, S. O.; Khatkevich, V. M.; Rozhnov, A. B.

    2014-02-01

    A comparative study of the effect of high-temperature internal nitriding (at above 1000°C) on the structure formation and hardening of thin-sheet samples of 08Kh17T (0.06% C-17.0% Cr-0.5% Ti) and 15Kh25T (0.10% C-25.0% Cr-0.5% Ti) steels was performed. The high-temperature internal nitriding of the 08Kh17T steel leads to the formation of martensite structure with Cr2N precipitates. The nitriding of 15Kh25T steel results in the formation of a layered structure; in this case, individual layers consist of a mixture of the α and γ phases and Cr2N particles, which are present in different proportions. It was shown that the internal nitriding of both steels with their subsequent annealing leads to their substantial uniform hardening.

  16. The Elementary Marine Ice Sheet Model (EMISM)

    NASA Astrophysics Data System (ADS)

    Pattyn, Frank

    2015-04-01

    Ice sheet models become more and more components of global climate system modelling instead of stand-alone features to study cryospheric processes. Full coupling of ice sheet models to atmospheric and ocean models requires a standard for ice sheet models, and more precisely for marine ice sheet models, where complex feedbacks between ice and ocean, such as marine ice sheet instability, and the atmosphere, such as the elevation-mass balance feedback, operate at different time scales. Recent model intercomparisons (e.g., SeaRISE, MISMIP) have shown that basic requirements for marine ice sheet models are still lacking and that the complexity of many ice sheet models is focused on processes that are either not well captured numerically (spatial resolution issue) or are of secondary importance compared to the essential features of marine ice sheet dynamics. Here, we propose a new and fast computing ice sheet model, devoid of most complexity, but capturing the essential feedbacks when coupled to ocean or atmospheric models. Its computational efficiency guarantees to easily tests its advantages as well as limits through ensemble modelling. EMISM (Elementary Marine Ice Sheet Model) is a vertically integrated ice sheet model based on the Shallow-Ice Approximation extended a Weertman sliding law. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, enhanced with strain heating. The marine boundary is represented by a parameterized flux condition similar to Pollard & Deconto (2012), based on Schoof (2007). A simplified ice shelf is added to account for buttressing of ice shelves in this parameterization. The ice sheet model is solved on a finite difference grid and special care is taken to its numerical efficiency and stability. While such model has a series of (known) deficiencies with respect to short time effects, its overall

  17. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-05-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model.

  18. Concentrating Solar Power Fact Sheet

    SciTech Connect

    2015-12-01

    This fact sheet is an overview of the Concentrating Solar Power (CSP) subprogram at the U.S. Department of Energy SunShot Initiative. CSP is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation’s goal of making solar energy fully cost-competitive with other energy sources by the end of the decade. Worldwide, CSP activity is rapidly scaling, with approximately 10 gigawatts (GW) in various stages of operation or development. In the United States alone, nearly 2 GW of CSP are in operation.

  19. Changes of inclusion, texture and magnetic property of non-oriented Si steel treated by Ca alloy

    NASA Astrophysics Data System (ADS)

    Lv, X.; Zhang, F.; Chen, X.

    2015-04-01

    Based on the industrial production of non-oriented Si steel, Ca treatment by Ca alloy adding during the RH refining process was studied. The changes of inclusion, crystal texture and microstructure, and its effect on magnetic properties of final steel sheets were analyzed. The results showed that, in present work, Ca treatment can improve the texture proportion of {110} and {111} significantly, and the formation of MnS and AlN inclusions were restrained. Meanwhile, the recrystallization effects of hot rolled strip get bad and the fiber structure enhanced obviously. The grain size of finished steel sheets increased as the increase of Ca alloy adding amount quickly, and then decreased. Compared with the non-Ca treatment charge, the numbers of inclusions whose size below 1.0μm will decrease by 68.06%, 87.50% and 94.94%, the texture proportion of {110} and {111} was 30.3%, 39.1%, 17.6% and 2.8%, 5.5%, 20.6%, while the correspondent Ca alloy adding amount is 0.67 kg/t steel, 1.00 kg/t steel and 1.67 kg/t steel, respectively. In addition, the core loss gradually decreases to a stable level as the increasing of Ca added, and the magnetic induction decreases quickly after slow increasing, respectively. The optimal Ca treatment mode depends on the chemical compositions of steel grades.

  20. Thinning of current sheets and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Singh, N.; Deverapalli, C.

    Using three-dimensional particle-in-cell (3DPIC) simulations, we study the formation of a thin current sheet. The processes associated with thin current sheets reported here include its thinning, associated potential well in its central part, ion acceleration into the well, current-driven ion mode instabilities, electron and ion heating, current sheet re- broadening, current disruption in the central part of the current sheet and magnetic reconnection. It is shown that current driven instabilities become explosive when the preferential heating of electrons by the ions make electron temperature higher than that of the ions. This explosive stage is associated with high plasma resistivity, current disruption and bifurcated current sheets. The current disruption is linked to the magnetic reconnection.