Science.gov

Sample records for geometry ii self-bias

  1. Geometry, Student's Text, Part II, Unit 14.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 14 in the SMSG secondary school mathematics series is a student text covering the following topics in geometry: areas of polygonal regions, similarity, circles and spheres, characterization of sets, constructions, areas of circles and sectors, volumes of solids, and plane coordinate geometry. Appendices cover Eratosthenes' measurement of the…

  2. Supersymmetric geometries of IIA supergravity II

    NASA Astrophysics Data System (ADS)

    Gran, Ulf; Papadopoulos, George; von Schultz, Christian

    2015-12-01

    We solve the Killing spinor equations of standard and massive IIA supergravities for a Killing spinor whose isotropy subgroup in Spin(9, 1) is SU(4) and identify the geometry of the spacetime. We demonstrate that the Killing spinor equations impose some mild constraints on the geometry of the spacetime which include the existence of a time-like Killing vector field which leaves the fields and the Killing spinor invariant.

  3. A Self-Biasing Pulsed Depressed Collector

    SciTech Connect

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  4. Self-biased circulators for high power applications

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander S.

    Self-biased circulators exploit the properties of high anisotropy magnetic field in hexagonal ferrites, thus allowing operation without biasing magnets and a significant size and weight reduction. Although first self-biased circulators were demonstrated more than 20 years ago, all the prototypes constructed so far are unsuitable for practical applications. An attempt to design a self-biased circulator from scratch was made. Novel exceptionally low dielectric loss and high heat conductivity ceramic materials were developed and innovative substrate synthesis techniques were employed. Low temperature cofiring of green body ferrite compacts and dielectric ceramic slurries were mastered, resulting in solid composite substrates. Original device design was developed. Key features (including wide coupling angles, wide microstriplines, thick substrate, and absence of impedance transformers) enable low insertion loss, broadband operation, high power handling, and compact size. Fabrication and testing of Ka band Y-junction self-biased circulator are reported herein. Furthermore, design approach and fabrication techniques developed here can be readily applied for the construction of X-band self-biased circulators, provided that suitable ferrite materials are available. Low temperature cofiring of ferrite and dielectric materials is especially beneficial for various RF and high-frequency applications. Multiple devices can be readily fabricated on a single wafer using conventional lithographic techniques, resulting in true microwave monolithic integrated circuit.

  5. Stabilization of electron beam spot size by self bias potential

    SciTech Connect

    Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.

    1998-12-31

    In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment.

  6. Super-size me: self biases increase to larger stimuli.

    PubMed

    Sui, Jie; Humphreys, Glyn W

    2015-04-01

    Prior work has shown that simple perceptual match responses to pairings of shapes and labels are more efficient if the pairing is associated with the participant (e.g., circle-you) than if it is associated with another familiar person (e.g., square-friend). There is a similar advantage for matching associations with high-value rewards (circle-£9) versus low-value rewards (square-£1) (Sui, He, & Humphreys Journal of Experimental Psychology: Human Perception and Performance, 38, 1105-1117, 2012). Here we evaluated the relations between the self- and reward-bias effects by introducing occasional trials in which the size of a shape was varied unexpectedly (large or small vs. a standard medium). Participants favored stimuli that were larger than the standard when stimuli were associated with the self, and this enhancement of self bias was predicted by the degree of self bias that participants showed to standard (medium) sized stimuli. Although we observed a correlation between the magnitudes of the self and reward biases over participants, reward-bias effects were not increased to large stimuli. The data suggest both overlapping and independent components of the self and reward biases, and that self biases are uniquely enhanced when stimuli increase in size, consistent with previously reported motivational biases favoring large stimuli. PMID:25112393

  7. Plasma acceleration using a radio frequency self-bias effect

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Aanesland, A.

    2015-06-01

    In this work plasma acceleration using a RF self-bias effect is experimentally studied. The experiments are conducted using a novel plasma accelerator system, called Neptune, consisting of an inductively coupled plasma source and a RF-biased set of grids. The plasma accelerator can operate in a steady state mode, producing a plasma flow with separately controlled plasma flux and velocity without any magnetic configuration. The operating pressure at the source output is as low as 0.2 mTorr and can further be decreased. The ion and electron flows are investigated by measuring the ion and electron energy distribution functions both space resolved and with different orientations with respect to the flow direction. It is found that the flow of electrons from the source is highly anisotropic and directed along the ion flow and this global flow of accelerated plasma is well localized in the plasma transport chamber. The maximum flux is about 7.5.1015 ions s-1 m-2 (at standard conditions) on the axis and decreasing to almost zero at a radial distances of more than 15 cm from the flow axis. Varying the RF acceleration voltage in the range 20-350 V, the plasma flow velocity can be changed between 10 and 35 km/s. The system is prospective for different technology such as space propulsion and surface modification and also interesting for fundamental studies for space-related plasma simulations and investigation of the dynamo effect using accelerated rotating plasmas.

  8. Self-biased magnetoelectric response in three-phase laminates

    NASA Astrophysics Data System (ADS)

    Yang, Su-Chul; Park, Chee-Sung; Cho, Kyung-Hoon; Priya, Shashank

    2010-11-01

    This study reports the experimental observation and analysis of self-biased magnetoelectric (ME) effect in three-phase laminates. The 2-2 L-T mode laminates were fabricated by attaching nickel (Ni) plates and ME particulate composite plates having 3-0 connectivity with 0.948Na0.5K0.5NbO3-0.052LiSbO3 (NKNLS) matrix and Ni0.8Zn0.2Fe2O4 (NZF) dispersant. The presence of two types of ferromagnetic materials, Ni and NZF, results in built-in magnetic bias due to difference in their magnetic susceptibilities and coercivity. This built-in bias (Hbias) provides finite ME effect at zero applied magnetic dc field. The ME response of bending mode trilayer laminate NKNLS-NZF/Ni/NKNLS-NZF in off-resonance and on-resonance conditions was shown to be mathematical combination of the trilayers with configuration NKNLS-NZF/Ni/NKNLS-NZF and NKNLS/Ni/NKNLS representing contributions from magnetic interaction and bending strain.

  9. Memristor based startup circuit for self biased circuits

    NASA Astrophysics Data System (ADS)

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal

    2016-04-01

    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  10. Plasma acceleration using a radio frequency self-bias effect

    SciTech Connect

    Rafalskyi, D.; Aanesland, A.

    2015-06-15

    In this work plasma acceleration using a RF self-bias effect is experimentally studied. The experiments are conducted using a novel plasma accelerator system, called Neptune, consisting of an inductively coupled plasma source and a RF-biased set of grids. The plasma accelerator can operate in a steady state mode, producing a plasma flow with separately controlled plasma flux and velocity without any magnetic configuration. The operating pressure at the source output is as low as 0.2 mTorr and can further be decreased. The ion and electron flows are investigated by measuring the ion and electron energy distribution functions both space resolved and with different orientations with respect to the flow direction. It is found that the flow of electrons from the source is highly anisotropic and directed along the ion flow and this global flow of accelerated plasma is well localized in the plasma transport chamber. The maximum flux is about 7.5·10{sup 15} ions s{sup −1} m{sup −2} (at standard conditions) on the axis and decreasing to almost zero at a radial distances of more than 15 cm from the flow axis. Varying the RF acceleration voltage in the range 20–350 V, the plasma flow velocity can be changed between 10 and 35 km/s. The system is prospective for different technology such as space propulsion and surface modification and also interesting for fundamental studies for space-related plasma simulations and investigation of the dynamo effect using accelerated rotating plasmas.

  11. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  12. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for

  13. XAFS study of copper(II) diethylenetriamine complexes having different coordination geometries

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Joshi, S. K.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-05-01

    XAFS of three Cu(II) diethylenetriamine complexes (in crystalline form) having different coordination geometries have been investigated. First complex has distorted tetragonal pyramidal, second has distorted square planar and third has distorted square pyramidal geometry. The difference in coordination geometries has been inferred from the differences in pre-edge peak, rising part of edge and in shape of white line, which are seen clearly in the derivative XANES spectra. The distortion in geometry has been correlated with the intensity of peaks in derivative spectra. These inferences have been corroborated from EXAFS analysis where the different paths have been used in the theoretical fits in R space to show contributions of different scatterers at different distances.

  14. Cobalt(II) complex with new terpyridine ligand: An ab initio geometry optimization investigation

    NASA Astrophysics Data System (ADS)

    Ciesielski, Artur; Gorczyński, Adam; Jankowski, Piotr; Kubicki, Maciej; Patroniak, Violetta

    2010-06-01

    Structural parameters of a complex formed between Co(II), and a terpyridine ligand were investigated using the unrestricted Becke three-parameter hybrid exchange functional combined with the Lee-Yang-Parr correlation functional (B3LYP) with the LANL2DZ, 6-31G(d,p), and 6-31G++(d,p) basis sets applied for geometry optimizations. The computations reveal that frequently used methods, which take into consideration primary and secondary interactions, can often be efficient in optimizing structural geometries of systems based on organic molecules and transition-metal ions.

  15. THREE-DIMENSIONAL GEOMETRIES AND THE ANALYSIS OF H II REGIONS

    SciTech Connect

    Wood, Kenneth; Barnes, J. E.; Ercolano, Barbara; Haffner, L. M.; Reynolds, R. J.; Dale, J.

    2013-06-20

    We compare emission line intensities from photoionization models of smooth and fractal shell geometries for low density H II regions, with particular focus on the low-ionization diagnostic diagram [N II]/H{alpha} versus H{alpha}. Building on previously published models and observations of Barnard's Loop, we show that the observed range of intensities and variations in the line intensity ratios may be reproduced with a three-dimensional shell geometry. Our models adopt solar abundances throughout the model nebula, in contrast with previous one-dimensional modeling which suggested the variations in line intensity ratios could only be reproduced if the heavy element abundances were increased by a factor of {approx}1.4. For spatially resolved H II regions, the multiple sightlines that pierce and sample different ionization and temperature conditions within smooth and fractal shells produce a range of line intensities that are easily overlooked if only the total integrated intensities from the entire nebula model are computed. Our conclusion is that inference of H II region properties, such as elemental abundances, via photoionization models of one-dimensional geometries must be treated with caution and further tested through three-dimensional modeling.

  16. A Ka-band Four-stage Self-biased Monolithic Low Noise Amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Ziqiang; Yang, Tao; Liu, Yu

    2009-05-01

    A Ka-band four-stage self-biased monolithic low noise amplifier has been developed using a commercial 0.18-µm pseudomorphic high electron-mobility transistor (pHEMT) process. For the application of self-bias technique, the low noise amplifier (LNA) is biased from a single power supply rail. The LNA has achieved a broadband performance with a gain of more than 18 dB, a noise figure of less than 3.8 dB in the RF frequency of 26 to 40 GHz. The chip size is 3 × 1 mm2.

  17. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.

    PubMed

    Szunyogh, Dániel; Gyurcsik, Béla; Larsen, Flemming H; Stachura, Monika; Thulstrup, Peter W; Hemmingsen, Lars; Jancsó, Attila

    2015-07-28

    Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications. PMID:26040991

  18. A stabilized, high stress self-biasing shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Panton, B.; Zhou, Y. N.; Khan, M. I.

    2016-09-01

    A shape memory alloy (SMA) actuator that is biased internally would not need an external bias to achieve multiple actuation cycles. This would reduce cost, complexity and weight compared to standard one-way SMAs. The self-biasing actuators that have been developed to date have a lack of geometric and actuation stability. The current study developed a self-biasing NiTi actuator using a laser based vaporization process to alter the bulk composition of different regions. The martensitic laser processed NiTi region was the actuator, and un-processed austenitic base metal region was the internal bias. It was discovered that the laser processed region of the self-biasing actuator was unstable during high stress thermomechanical cycling due to the coarse grained microstructure. Cold-working of the half martensitic and half austenitic component resulted in similar deformation characteristics to single phase NiTi, which enabled the formation of a uniform nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing actuator exhibited the stabilization behavior of traditional one-way actuators. This behavior was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and ensured minimal plastic deformation.

  19. Catalytically active lead(ii)-imidazolium coordination assemblies with diversified lead(ii) coordination geometries.

    PubMed

    Naga Babu, Chatla; Suresh, Paladugu; Srinivas, Katam; Sathyanarayana, Arruri; Sampath, Natarajan; Prabusankar, Ganesan

    2016-05-10

    Five Pb(ii)-imidazolium carboxylate coordination assemblies with novel structural motifs were derived from the reaction between the corresponding flexible, semi flexible or rigid imidazolium carboxylic acid ligands and lead nitrate. The imidazolium linker present in these molecules likely plays a triple role such as the counter ion to balance the metal charge, the ligand being an integral part of the final product and the catalyst facilitating carbon-carbon bond formation reaction. These lead-imidazolium coordination assemblies exhibit, variable chemical and thermal stabilities, as well as catalytic activity. These newly prepared catalysts are highly active towards benzoin condensation reactions with good functional group tolerance. PMID:27093629

  20. Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    SciTech Connect

    Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B.; Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A.

    2015-11-02

    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.

  1. A mechanical-thermo-magneto model for self-biased magnetoelectric effect in laminated composite

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Shi, Yang; Gao, Yuan-Wen

    2016-03-01

    In this paper, a mechanical-thermo-magneto model for self-biased magnetoelectric effect in laminated composite with high-permeability materials is established. Considering the effects of demagnetization, pre-stress and temperature, the effective magnetic field and piezomagnetic coefficient of magnetostrictive layers are calculated. Then, the effects of temperature and pre-stress on ME effect are investigated. Finally, the combined effect of temperature and pre-stress on zero-bias ME voltage coefficient is discussed in detail to achieve a good ME conversion efficiency. The numerical results show that due to the occurrence of the additional magnetic field from high-permeability materials, available self-biased ME effect can be obtained in the proposed model. The operating temperature affects not only the peak value but also the initial value of ME voltage coefficient. Also, pre-stress can change the temperature effect on the zero-bias ME voltage coefficient obviously.

  2. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  3. Ion acceleration in a helicon source due to the self-bias effect

    SciTech Connect

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2012-05-15

    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion population

  4. Note: high sensitivity self-bias magnetoelectric sensor with two different magnetostrictive materials.

    PubMed

    Chen, Lei; Li, Ping; Wen, Yumei; Zhu, Yong

    2013-06-01

    The self-bias magnetoelectric (ME) sensor is designed, fabricated, and characterized for detecting weak ac magnetic-field. The two different magnetostrictive materials produce the gradient of magnetization, resulting in an internal magnetic field and a strong ME response. At zero-biased dc magnetic field, a low-frequency ME voltage coefficient (dVME∕dHac) of 22.11 mV∕Oe is achieved, which is 17.69 times higher than that of the previous magnets∕0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) sensor. Furthermore, the ME voltage coefficient reaches 2.73 V∕Oe at resonance. The induced ME voltage shows an excellent linear relationship to ac magnetic field when field amplitude varies from ~10(-7) Oe to 1 Oe. PMID:23822388

  5. Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys

    NASA Astrophysics Data System (ADS)

    Lu, Cai-Jiang; Li, Ping; Wen, Yu-Mei; Yang, Ai-Chao; Yang, Chao; Wang, De-Cai; He, Wei; Zhang, Ji-Tao

    2014-11-01

    We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent resonant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zr1-x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (λs) and saturation magnetization (μ0Ms) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,l) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased αME,b and αME,l due to the largest magnetic grading of λs and μ0Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent αME,b and αME,l at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.

  6. Geometry with Coordinates, Student's Text, Part II, Unit 48. Revised Edition.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    This is part two of a two-part SMSG geometry text for high school students. One of the goals of the text is the development of analytic geometry hand-in-hand with synthetic geometry. The authors emphasize that both are deductive systems and that it is useful to have more than one mode of attack in solving problems. The text begins the development…

  7. Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection.

    PubMed

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  8. Application of Molded Interconnect Device technology to the realization of a self-biased circulator

    NASA Astrophysics Data System (ADS)

    Laur, Vincent; Mattei, Jean-Luc; Vérissimo, Grégory; Queffelec, Patrick; Lebourgeois, Richard; Ganne, Jean-Pierre

    2016-04-01

    This paper describes the first electromagnetic characterization of a self-biased circulator in molded interconnect device (MID) technology. The circulator was designed using a 3D full-wave commercial simulator. It consists of microstrip access lines connected to a Y-junction in Substrate Integrated Waveguide (SIW) technology. Unlike classical technologies, the SIW Y-junction was not fabricated using metallic vias but by a Laser Direct Structuring (LDS) technique. A molded Cyclo-Olefin Polymer (COP) was used as a substrate and 3D metallized. The microwave properties of LDS-compatible COP are not well known so we investigated them through the use of cavity-perturbation and rectangular waveguide characterization methods. The device was then machined to insert a pre-oriented strontium hexaferrite puck doped with cobalt and lanthanum (Sr0,7La0,3Fe11,7Co0,3O19). The characteristics of the MID circulator were assessed between 28 and 32 GHz. Without magnets, insertion losses of 3.32 dB were measured at 30.7 GHz. At the same frequency, an isolation level of 13.89 dB and return losses of 19.89 dB were observed. These measurements demonstrate for the first time the high potential of MID technology for the realization of low-cost non-reciprocal devices.

  9. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    PubMed Central

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-01-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields. PMID:23760520

  10. OD(X/sup 2/II) and SD(X/sup 2/II) from reactions of D atoms with OCS under bulk and precursor geometry limited conditions

    SciTech Connect

    Haeusler, D.; Rice, J.; Wittig, C.

    1987-10-08

    Reactions of D atoms with OCS were studied by 193-nm pulsed laser photolysis of DBr as a nearly monoenergetic D-atom source. Nascent OD(X/sup 2/II) and SD(X/sup 2/II) rotational, vibrational, spin-orbit, and ..lambda..-doublet populations were obtained under single-collision bulk conditions at 300 K. The SD channel is favored energetically (..delta.. H = -43 +/- 13 and 230 +/- 13 kJ mol/sup -1/ for the SD and OD channels, respectively) and is the dominant pathway ((SD)/(OD) = 5 +/- 2). Nascent OD(X/sup 2/II) products were also obtained from a precursor geometry limited (PGL) reaction by using the weakly bound van der Waals complex SCO-DBr. The OD(X/sup 2/II) rotational distributions are the same for both bulk and PGL conditions and can be reproduced by using a statistical model. Due to experimental difficulties, SD(X/sup 2/II) distributions could not be obtained under PGL conditions. The SD(X/sup 2/II) distribution obtained under bulk conditions is very nonstatistical, suggesting that this species is not formed via a long-lived DSCO intermediate complex in which vibrational energy is randomized.

  11. Nonassociative geometry in quasi-Hopf representation categories II: Connections and curvature

    NASA Astrophysics Data System (ADS)

    Barnes, Gwendolyn E.; Schenkel, Alexander; Szabo, Richard J.

    2016-08-01

    We continue our systematic development of noncommutative and nonassociative differential geometry internal to the representation category of a quasitriangular quasi-Hopf algebra. We describe derivations, differential operators, differential calculi and connections using universal categorical constructions to capture algebraic properties such as Leibniz rules. Our main result is the construction of morphisms which provide prescriptions for lifting connections to tensor products and to internal homomorphisms. We describe the curvatures of connections within our formalism, and also the formulation of Einstein-Cartan geometry as a putative framework for a nonassociative theory of gravity.

  12. Studies in Mathematics, Volume II. Euclidean Geometry Based on Ruler and Protractor Axioms. Second Revised Edition.

    ERIC Educational Resources Information Center

    Curtis, Charles W.; And Others

    These materials were developed to help high school teachers to become familiar with the approach to tenth-grade Euclidean geometry which was adopted by the School Mathematics Study Group (SMSG). It is emphasized that the materials are unsuitable as a high school textbook. Each document contains material too difficult for most high school students.…

  13. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.

    2003-01-01

    X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES

  14. The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Mohr, S.; Iwashita, S.; Schulze, J.; Czarnetzki, U.

    2013-05-01

    In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle.

  15. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.

    PubMed

    Chen, Quanpeng; Li, Jinhua; Li, Xuejin; Huang, Ke; Zhou, Baoxue; Shangguan, Wenfeng

    2013-07-01

    A self-biasing photoelectrochemical (PEC) cell that could work for spontaneous overall water splitting in a neutral solution was established based on the mismatched Fermi levels between the photoelectrodes. A Pt-catalyst-decorated crystalline silicon photovoltaic cell (Pt/PVC) was prepared and employed as an effective photocathode. This was coupled with a poly(ethylene glycol)-directed WO3/W photoanode prepared by a hydrothermal process. Both of the photoelectrodes showed a response to visible light. The WO3/W photoanode had a positively located valence band edge, the energy level of which was enough for water oxidation, and the Pt/PVC photocathode possessed a negatively located conduction band edge, which was capable of water reduction. More importantly, the Fermi level of the WO3/W photoanode was more positive than that of the Pt/PVC photocathode because of the p-n junction of the PVC that decoupled the band bending and enlarged the photovoltage. Under visible-light irradiation, the WO3/W photoanode provided a negative bias for the Pt/PVC photocathode, and the Pt/PVC photocathode provided a positive bias for the WO3/W photoanode. An interior bias was generated that could relax the strict criteria of overall water splitting by cooperatively separating the hole-electron pairs at both photoelectrodes. In this system, the short-circuit current and the open-circuit voltage increased with increasing light intensity (AM 1.5 illumination) to reach 121 μA cm(-2) and 0.541 V, respectively, at a light intensity of 100 mW cm(-2). Such a combination provides a promising method for the fabrication of self-driven devices for solar-energy storage. PMID:23775929

  16. Culture modulates implicit ownership-induced self-bias in memory.

    PubMed

    Sparks, Samuel; Cunningham, Sheila J; Kritikos, Ada

    2016-08-01

    The relation of incoming stimuli to the self implicitly determines the allocation of cognitive resources. Cultural variations in the self-concept shape cognition, but the extent is unclear because the majority of studies sample only Western participants. We report cultural differences (Asian versus Western) in ownership-induced self-bias in recognition memory for objects. In two experiments, participants allocated a series of images depicting household objects to self-owned or other-owned virtual baskets based on colour cues before completing a surprise recognition memory test for the objects. The 'other' was either a stranger or a close other. In both experiments, Western participants showed greater recognition memory accuracy for self-owned compared with other-owned objects, consistent with an independent self-construal. In Experiment 1, which required minimal attention to the owned objects, Asian participants showed no such ownership-related bias in recognition accuracy. In Experiment 2, which required attention to owned objects to move them along the screen, Asian participants again showed no overall memory advantage for self-owned items and actually exhibited higher recognition accuracy for mother-owned than self-owned objects, reversing the pattern observed for Westerners. This is consistent with an interdependent self-construal which is sensitive to the particular relationship between the self and other. Overall, our results suggest that the self acts as an organising principle for allocating cognitive resources, but that the way it is constructed depends upon cultural experience. Additionally, the manifestation of these cultural differences in self-representation depends on the allocation of attentional resources to self- and other-associated stimuli. PMID:27164187

  17. The Influence of Environment Geometry on Injury Outcome: II. Lumbosacral Spine

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2006-03-01

    It is widely agreed that the type of motor vehicle in which an occupant is situated can sometimes make a noticeable difference in injury potential even when the insult suffered is the same. A simple example might be the same occupant being in a sports car as opposed to a minivan, but such anecdotal experience does not usually help to distinguish the effect of particular features within the same category of vehicle. Other research has addressed the role of environment geometry in neck injury,[1] and this paper adopts the same methodology for the low back. The heights, lengths and angles of the seat cushion and seat back (including head rest) are all examined as descriptors of passenger compartment geometry, and any changes caused by these are determined. Useful results are feasible with the large patient population available even if clear patterns in these are not always present. As in earlier work, there is still the option of finding individual outcomes on a case-by-case basis. [1] The influence of environment geometry on injury outcome: I. Cervical spine, Bull Am Phys Soc, in press (2006).

  18. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  19. Using the DC self-bias effect for simultaneous ion-electron beam generation in space thruster applications

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2014-10-01

    In this work we discuss ways to use the self-bias effect for broad ion-electron beam generation and present recent experimental results. In asymmetrical systems the self-bias effect leads to rectification of the applied RF voltage to a DC voltage dropped across the space charge sheath near to the electrode having smaller area. Thus, continuous ion acceleration is possible towards the smaller electrode with periodical electron extraction due to the RF plasma potential oscillations. We propose a new concept of neutralizer-free gridded space thruster called NEPTUNE. In this concept, the RF electrodes in contact with the plasma are replaced by a two-grid system such that ``the smaller electrode'' is now the external grid. The grids are biased with RF power across a capacitor. This allows to locate RF space charge sheath between the acceleration grids while still keeping the possibility of a DC self-bias generation. Here we present first proof-of-concept of the NEPTUNE thruster prototype and give basic parameters spacing for such thruster. Comparison of the main parameters of the beam generated using RF and a classical ``DC with neutralizer'' acceleration method shows several advantages of the NEPTUNE concept. This work was supported by a Marie Curie International Incoming Fellowships within the 7th European Community Framework (NEPTUNE PIIF-GA-2012-326054).

  20. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a

  1. Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring

    NASA Astrophysics Data System (ADS)

    Basovník, M.; Semerák, O.

    2016-08-01

    We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.

  2. Geometry of river networks. II. Distributions of component size and number

    SciTech Connect

    Dodds, Peter Sheridan; Rothman, Daniel H.

    2001-01-01

    The structure of a river network may be seen as a discrete set of nested subnetworks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon, and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power-law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.

  3. Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-07-01

    This paper reports the self-biased magnetoelectric (ME) effects in composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), pure nickel (Ni) and piezoelectric lead zirconate titanate (PZT). The FeCuNbSiB ribbons are fabricated on traditional laminates Ni/PZT/Ni through two modes: the attached mode (F-NPN-F) and the laminated mode (F/NPN/F). The F-NPN-F composite sufficiently reveals that the high-permeability FeCuNbSiB ribbons concentrate more magnetic flux in magnetostrictive Ni, which results in the self-biased ME effects of F-NPN-F. For the F/NPN/F composite, the FeCuNbSiB acts as the dynamic driver to enhance the effective piezomagnetic coefficient of Ni. The giant self-biased ME effects of F/NPN/F are because of the internal magnetic field between Ni and FeCuNbSiB due to their different magnetic characteristics. The influences of the numbers of FeCuNbSiB layers ( L) on the resonant ME voltage coefficients ( α ME ,r ) for F-NPN-F and F/NPN/F composites are investigated in detail. The experiments demonstrate that the maximum α ME ,r at zero-biased field is 80 V/cm Oe for F-NPN-F with L = 2, and 85 V/cm Oe for F/NPN/F with L = 4. This paper demonstrates that these two ME composites are suitable for achieving zero-biased ME transducers, power-free magnetic field sensors and energy harvesters.

  4. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    NASA Astrophysics Data System (ADS)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  5. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    SciTech Connect

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong; Whitmore, Bradley; Chandar, Rupali; O'Connell, Robert W.; Blair, William P.; Cohen, Seth H.; Kim, Hwihyun; Frogel, Jay A.

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  6. EXAFS study on yttrium oxide thin films deposited by RF plasma enhanced MOCVD under the influence of varying RF self-bias

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Patil, D. S.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) and atomic force microscopy (AFM) studies are carried out on yttrium oxide (Y2O3) thin films deposited by radio frequency plasma assisted metalorganic chemical vapor deposition (MOCVD) process at different RF self-bias (-50 V to -175 V with a step of -25 V) on silicon substrates. A (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor is used in a plasma of argon and oxygen gases at a substrate temperature of 350 °C for deposition. To gain profound understanding about influence of RF self-bias on the properties of the deposited Y2O3 thin films, the films are characterized by EXAFS and AFM measurements. From the EXAFS measurements it is observed that oxygen co-ordination is high for the film deposited at the lowest self bias (-50 V) which is due to presence of higher amount of hydroxyl group in the sample. Oxygen coordination however decrease to lower values for the films deposited at self bias of -75 V. Ysbnd O bond length decreases gradually with increase in self bias indicating reduction in hydroxyl content. However there is reduction in bond length for the film deposited at -100 V as compared to other films resulting from structural changes. The disorder factor obtained from EXAFS measurement increases for films deposited at voltages beyond -125 V due to degradation in crystallinity of the films caused by increased bombardment by incident ions. From AFM measurements, it is observed that the surface morphology of the films also change with self bias. The root mean square roughness value and the entropy factor are found to be low for films deposited at lower bias values and increase for films deposited at bias voltages above -100 V.

  7. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.

    PubMed

    Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. PMID:27345204

  8. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  9. Multi-objective optimization of weld geometry in hybrid fiber laser-arc butt welding using Kriging model and NSGA-II

    NASA Astrophysics Data System (ADS)

    Gao, Zhongmei; Shao, Xinyu; Jiang, Ping; Wang, Chunming; Zhou, Qi; Cao, Longchao; Wang, Yilin

    2016-06-01

    An integrated multi-objective optimization approach combining Kriging model and non-dominated sorting genetic algorithm-II (NSGA-II) is proposed to predict and optimize weld geometry in hybrid fiber laser-arc welding on 316L stainless steel in this paper. A four-factor, five-level experiment using Taguchi L25 orthogonal array is conducted considering laser power ( P), welding current ( I), distance between laser and arc ( D) and traveling speed ( V). Kriging models are adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). NSGA-II is used for multi-objective optimization taking the constructed Kriging models as objective functions and generates a set of optimal solutions with pareto-optimal front for outputs. Meanwhile, the main effects and the first-order interactions between process parameters are analyzed. Microstructure is also discussed. Verification experiments demonstrate that the optimum values obtained by the proposed integrated Kriging model and NSGA-II approach are in good agreement with experimental results.

  10. Geometry matters: inverse cytotoxic relationship for cis/trans-Ru(ii) polypyridyl complexes from cis/trans-[PtCl2(NH3)2].

    PubMed

    Wachter, Erin; Zamora, Ana; Heidary, David K; Ruiz, José; Glazer, Edith C

    2016-08-01

    Two thermally activated ruthenium(ii) polypyridyl complexes, cis-Ru(bpy)2Cl2 and trans-Ru(qpy)Cl2 were investigated to determine the impact of the geometric arrangement of the exchangable ligands on the potential of the compounds to act as chemotherapeutics. In contrast to the geometry requirements for cisplatin, trans-Ru(qpy)Cl2 was 7.1-9.5× more cytotoxic than cis-Ru(bpy)2Cl2. This discovery could open up a new area of metal-based chemotherapeutic research. PMID:27352966

  11. FAST TRACK COMMUNICATION: The electrical asymmetry effect in capacitively coupled radio frequency discharges - measurements of dc self bias, ion energy and ion flux

    NASA Astrophysics Data System (ADS)

    Schulze, J.; Schüngel, E.; Czarnetzki, U.

    2009-05-01

    The recently theoretically predicted electrical asymmetry effect (EAE) (Heil et al 2008 IEEE Trans. Plasma Sci. 36 1404, Heil et al 2008 J. Phys. D: Appl. Phys. 41 165202, Czarnetzki et al 2009 J. Phys.: Conf. Ser. at press) in capacitively coupled radio frequency (CCRF) discharges and the related separate control of ion energy and flux via the EAE (Czarnetzki et al 2009 J. Phys.: Conf. Ser. at press, Donkó et al 2008 J. Phys. D: Appl. Phys. 42 025205) are tested experimentally for the first time. A geometrically symmetric CCRF discharge (equal electrode surface areas) operated at 13.56 and 27.12 MHz with variable phase angle between the harmonics is operated in argon at different pressures. The dc self bias, the energy as well as the flux of ions at the grounded electrode, and the space and phase resolved optical emission are measured. The results verify the predictions of models and simulations: via the EAE a dc self bias is generated as an almost linear function of the phase. This variable dc self bias allows separate control of ion energy and flux in an almost ideal way under various discharge conditions.

  12. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; Au, William T. W.; So, Ellen S. P.

    The flow field and pollutant dispersion characteristics in a three-dimensional urban street canyon are investigated for various building array geometries. The street canyon in consideration is located in a multi-canopy building array that is similar to realistic estate situations. The pollutant dispersion characteristics are studied for various canopy aspect ratios, namely: the canyon height to width ratio, canyon length to height ratio, canyon breadth ratio and crossroad locations are studied. A three-dimensional field-size canyon has been analysed through numerical simulations using k- ɛ turbulence model. As expected, the wind flow and mode of pollutant dispersion is strongly dependent on the various flow geometric configurations and that the results can be different from that of a single canyon system. For example, it is found that the pollutant retention value is minimum when the canyon height-to-width ratio is approximately 0.8, or that the building height ratio is 0.5. Various rules of thumbs on urban canyon geometry have been established for good pollutant dispersion.

  13. Precision absolute frequency laser spectroscopy of argon II in parallel and antiparallel geometry using a frequency comb for calibration

    NASA Astrophysics Data System (ADS)

    Lioubimov, Vladimir

    A collinear fast ion beam laser apparatus was constructed and tested. It will be used on-line to the SLOW RI radioactive beam facility in RIKEN (Japan) and as in the present experiment for precision absolute frequency measurements of astrophysically important reference lines. In the current work we conducted absolute measurements of spectral lines of Ar+ ions using parallel and antiparallel geometries. To provide a reference for the laser wavelength iodine saturation spectroscopy was used. The precision of this reference was enhanced by simultaneously observing the beat node between the spectroscopy laser and the corresponding mode of a femtosecond laser frequency comb. When performing collinear and anticollinear measurements simultaneously for the laser induced fluorescence, the exact relativistic formula for the transition frequency n0=ncoll˙n anticoll can be applied. In this geometry ion source instabilities due to pressure and anode voltage fluctuation are minimized. The procedure of fluorescence lineshapes fitting is discussed and the errors in the measurements are estimated. The result is n0 = 485, 573, 619.7 +/- 0.3MHz corresponding to Dnn = 6 x 10-10 and is an improvement of two orders of magnitude over the NIST published value.

  14. Lie algebra automorphisms as Lie-point symmetries and the solution space for Bianchi type I, II, IV, V vacuum geometries

    NASA Astrophysics Data System (ADS)

    Terzis, Petros A.; Christodoulakis, T.

    2012-12-01

    Lie-group symmetry analysis for systems of coupled, nonlinear ordinary differential equations is performed in order to obtain the entire solution space to Einstein’s field equations for vacuum Bianchi spacetime geometries. The symmetries used are the automorphisms of the Lie algebra of the corresponding three-dimensional isometry group acting on the hyper-surfaces of simultaneity for each Bianchi type, as well as the scaling and the time reparametrization symmetry. A detailed application of the method is presented for Bianchi type IV. The result is the acquisition of the general solution of type IV in terms of sixth Painlevé transcendent PVI, along with the known pp-wave solution. For Bianchi types I, II, V the known entire solution space is attained and very briefly listed, along with two new type V solutions of Euclidean and neutral signature and a type I pp-wave metric.

  15. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  16. Material laws and related uncommon phenomena in the electromagnetic response of type-II superconductors in longitudinal geometry

    NASA Astrophysics Data System (ADS)

    Ruiz, H. S.; Badía-Majós, A.; López, C.

    2011-11-01

    Relying on our theoretical approach for the superconducting critical state problem in 3D magnetic field configurations, we present an exhaustive analysis of the electrodynamic response for the so-called longitudinal transport problem in the slab geometry. A wide set of experimental conditions have been considered, including modulation of the applied magnetic field either perpendicular or parallel (longitudinal) to the transport current density. The main objective of our work was to characterize the role of the macroscopic material law that should properly account for the underlying mechanisms of flux cutting and depinning. The intriguing occurrence of negative current patterns and the enhancement of the transport current flow along the center of the superconducting sample are reproduced as a straightforward consequence of the magnetically induced internal anisotropy. Moreover, we show that, related to a maximal projection of the current density vector onto the local magnetic field, a maximal transport current density occurs somewhere within the sample. The elusive measurement of the flux cutting threshold (critical value of such parallel component J_{ {c} \\parallel } ) is suggested on the basis of local measurements of the transport current density. Finally, we show that a high correlation exists between the evolution of the transport current density and the appearance of paramagnetic peak structures in terms of the applied longitudinal magnetic field.

  17. Two field-induced slow magnetic relaxation processes in a mononuclear Co(ii) complex with a distorted octahedral geometry.

    PubMed

    Li, Jing; Han, Yuan; Cao, Fan; Wei, Rong-Min; Zhang, Yi-Quan; Song, You

    2016-05-31

    A distorted octahedral Co(II) complex is reported with homoscorpionate ligands. This complex comprised a field-induced single-molecule magnet, showing two slow relaxation processes under a low dc field (<800 Oe) and only one process under a high dc field (≥800 Oe), which was an unusually discovery for 3d metal ions. On the basis of the ac magnetic data, we show for the first time that one of the slow relaxation processes in the low dc field originates from intermolecular dipolar interactions. Interestingly, the Raman process is predominant in the spin reversal relaxation process. The origin of the behaviours of the complex was elucidated by ab initio calculations. PMID:27180637

  18. Bianisotropic-critical-state model to study flux cutting in type-II superconductors at parallel geometry

    NASA Astrophysics Data System (ADS)

    Romero-Salazar, C.

    2016-04-01

    A critical-state model is postulated that incorporates, for the first time, the structural anisotropy and flux-line cutting effect in a type-II superconductor. The model is constructed starting from the theoretical scheme of Romero-Salazar and Pérez-Rodríguez to study the anisotropy induced by flux cutting. Here, numerical calculations of the magnetic induction and static magnetization are presented for samples under an alternating magnetic field, orthogonal to a static dc-bias one. The interplay of the two anisotropies is analysed by comparing the numerical results with available experimental data for an yttrium barium copper oxide (YBCO) plate, and a vanadium-titanium (VTi) strip, subjected to a slowly oscillating field {H}y({H}z) in the presence of a static field {H}z({H}y).

  19. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  20. Colliding Winds in Symbiotic Binary Systems. II. Colliding Winds Geometries and Orbital Motion in the Symbiotic Nova AG Pegasi

    NASA Astrophysics Data System (ADS)

    Kenny, H. T.; Taylor, A. R.

    2007-06-01

    AG Pegasi has been observed at high angular resolution and sensitivity at the Very Large Array (VLA) at 5 GHz in four epochs between 1984 and 1991. Analysis of the radio visibilities indicate that a mass of 4.0+/-0.5×10-5 Msolar is concentrated in the inner nebula and is moving outward at a velocity of 53+/-4 km s-1 (D=600 pc assumed). In order to explain the observed morphology of the inner nebula, a new colliding winds model is derived, which includes the effects of orbital motion (CWo model). Orbital effects cannot be ignored in AG Pegasi since the orbital timescale (2.25 yr; Meinunger 1981) is short compared to the likely timescale of wind collision (symbiotic nova eruption beginning ~1850 Merrill 1959). When these effects are considered, the interaction front between binary stellar winds is wrapped into spiral walls whose density decreases outward with 1/r2. Distinctive geometries are found to arise depending on which wind dominates the interaction, the late-type wind from the symbiotic ``cool component,'' or the high-velocity wind from the ``hot component.'' Application of the CWo model to AG Peg suggests that the observed transient lobe enhancements of the inner nebula arise due to changes in the mass-loss rate from the hot component. Hot component mass-loss rates ranging between 2.1 and 6.0×10-8 Msolar yr-1 are derived. The model is also successful in reproducing the radio spectrum of the central unresolved object of the system. A position angle of -15deg+/-10deg is inferred for the orbital pole as projected on the plane of the sky.

  1. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    NASA Astrophysics Data System (ADS)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-04-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.

  2. Coincident ion acceleration and electron extraction for space propulsion using the self-bias formed on a set of RF biased grids bounding a plasma source

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Aanesland, A.

    2014-11-01

    We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N2. The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam.

  3. Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators

    NASA Astrophysics Data System (ADS)

    Peng, Long; Hu, Yue-Bin; Guo, Cheng; Li, Le-Zhong; Wang, Rui; Hu, Yun; Tu, Xiao-Qiang

    2015-01-01

    Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity Hci can be obtained at a low sintering temperature of 900°C even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40 GHz.

  4. Examination of Ion Beam Acceleration and Self-Bias Effect in the Modified MadHeX Plasma Source with Conducting and Insulating Upstream Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Devinney, Michael; Scharer, John

    2013-10-01

    The MadHeX experiment consists of a Pyrex tube connected to a stainless steel magnetic field expansion chamber (expansion ratio RE = 4.5) has been upgraded with an axial magnetic mirror field and an additional magnet in the transition region. This configuration enhances electron temperature and ionization fraction and minimizes neutral reflux. A half-turn double-helix antenna is used to excite electrostatic or inductive regime waves in the source. An ion beam of energy, E = 160 eV at 500 W RF power, has been observed in a low pressure (0.3 mtorr) argon plasma formed in the expansion region with a 340 G magnetic field with a R = 1.4 nozzle. The effects of upstream end plate boundary conditions on the plasma self-bias and ion beam acceleration are discussed. The effect of lower flow rates and pressures, higher RF powers (500 W-8 kW) and magnetic field strength dependence on the ion beam acceleration, plasma potential, electron density and temperature are explored. The axial ion velocity distribution function and temperatures at higher powers are observed by argon 668 nm laser induced fluorescence with density measurements obtained by mm wave interferometry. The EEDF and non-Maxwellian tail are examined using optical emission spectroscopy. Research supported by the University of Wisconsin-Madison.

  5. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  6. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  7. Dark Geometry

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.

    Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.

  8. Large self-biased and multi-peak magnetoelectric coupling in transducer of Pb(Zr,Ti)O3 plates and H-type magnetization-graded ferromagnetic fork

    NASA Astrophysics Data System (ADS)

    Shen, Yongchun; Ling, Zhihao; Lu, Caijiang

    2015-12-01

    This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.

  9. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  10. Logo Activities in Elementary Geometry.

    ERIC Educational Resources Information Center

    Libeskind, Shlomo; And Others

    These activities were designed for use at the University of Montana, where they were tested for four quarters in a mathematics for elementary teachers course on informal geometry. They are for use with Apple II-Plus computers with 64K memory or Apple IIe computers and MIT Logo. (Modifications are necessary if the activities are to be used with…

  11. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part II: measurements on a resonant network

    NASA Astrophysics Data System (ADS)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2015-12-01

    Measurements and analysis of a radio-frequency planar antenna are presented for applications in inductively-coupled plasma processing. The network of inductive and capacitive elements exhibits high currents under resonance which are efficient for plasma generation. Mode frequencies and impedances are accurately calculated by accounting for the mutual partial inductances using the impedance matrix. The effect of plasma inductive coupling on mode frequency shift and mode impedance is estimated using the complex image method, giving good agreement with experiment. It is proposed that the complex image method combined with the partial inductance concept (see the accompanying paper, Part I (Howling et al 2015 Plasma Sources Sci. Technol. 24 065014)) offers a general way to calculate the impedance characteristics of inductively-coupled plasma sources in planar geometry.

  12. Effects Of Pressure And Power On The Ionic Saturation Current And Self-Bias Voltage In A RF Discharge 13.56 MHz Of (SF{sub 6}, O{sub 2}) At Low Pressure

    SciTech Connect

    Alim, M. M.; Zekara, M.; Henni, L.; Tadjine, R.; Lahmar, E.; Henda, K.

    2008-09-23

    In the present work, we are interested in RF plasma discharge for surface texturing in solar cells application. We then present the results of the electrical characterization of plasma reactor at low pressure (<1 Torr) in (SF{sub 6},O{sub 2}) gases mixtures at 13.56 MHz. We've particularly followed the self-bias voltage (V{sub DC}) and the density of ionic current saturation (J{sub s}) depending in various parameters of the discharge as pressure and power.

  13. Assembly multi-dimensional CdII coordination architectures based on flexible bis(benzimidazole) ligands: Diversity of their coordination geometries and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Jiao, Cui-huan; Geng, Jian-chen; He, Cui-hong; Cui, Guang-hua

    2012-08-01

    Based on three structurally related flexible bis(5,6-dimethylbenzimidazole) ligand, five novel metal-organic CdII coordination architectures: from 0D to 3D structures CdII complexes have been hydrothermally synthesized and structurally characterized, namely, Cd2I4(L1)2 (1), [CdCl2(L1)]n (2), [CdCl2(L2)]n (3), {[Cd(chdc)(L2)0.5]·H2O}n (4), {[Cd(pydca)(L3)0.5(H2O)2]·H2O}n (5) (where L1 = 1,2-bis(5,6-dimethylbenzimidazole)ethane, L2 = 1,3-bis(5,6-dimethylbenzimidazole)propane, L3 = 1,4-bis(5,6-dimethylbenzimidazole)butane, H2chdc = 1,4-cyclohexanedicarboxylic acid, H2pydca = pyridine-2,6-dicarboxylic acid). A discrete binuclear [2 + 2] metallomacrocycles cadmium(II) complex of 1 is 0D, 3 and 5 exhibit one-dimensional helical and zigzag chain structures, respectively. 4 Forms a 2D layer with sql net topology bridged by carboxylate anion and L2, while 2 is an overall 3D array with the diamond topology (dia). In these complexes, the influences of anions coordination on the framework formation were observed and discussed. These results indicate the spacer length of the ligands and anions play important roles in controlling the diversity structural topologies of such metal-organic coordination architectures. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.

  14. Methanethiol Binding Strengths and Deprotonation Energies in Zn(II)-Imidazole Complexes from M05-2X and MP2 Theories: Coordination Number and Geometry Influences Relevant to Zinc Enzymes.

    PubMed

    Linder, Douglas P; Rodgers, Kenton R

    2015-09-17

    Zn(II) is used in nature as a biocatalyst in hundreds of enzymes, and the structure and dynamics of its catalytic activity are subjects of considerable interest. Many of the Zn(II)-based enzymes are classified as hydrolytic enzymes, in which the Lewis acidic Zn(II) center facilitates proton transfer(s) to a Lewis base, from proton donors such as water or thiol. This report presents the results of a quantum computational study quantifying the dynamic relationship between the zinc coordination number (CN), its coordination geometry, and the thermodynamic driving force behind these proton transfers originating from a charge-neutral methylthiol ligand. Specifically, density functional theory (DFT) and second-order perturbation theory (MP2) calculations have been performed on a series of [(imidazole)nZn-S(H)CH3](2+) and [(imidazole)nZn-SCH3](+) complexes with the CN varied from 1 to 6, n = 0-5. As the number of imidazole ligands coordinated to zinc increases, the S-H proton dissociation energy also increases, (i.e., -S(H)CH3 becomes less acidic), and the Zn-S bond energy decreases. Furthermore, at a constant CN, the S-H proton dissociation energy decreases as the S-Zn-(ImH)n angles increase about their equilibrium position. The zinc-coordinated thiol can become more or less acidic depending upon the position of the coordinated imidazole ligands. The bonding and thermodynamic relationships discussed may apply to larger systems that utilize the [(His)3Zn(II)-L] complex as the catalytic site, including carbonic anhydrase, carboxypeptidase, β-lactamase, the tumor necrosis factor-α-converting enzyme, and the matrix metalloproteinases. PMID:26317178

  15. Physics of a magnetic filter for negative ion sources. II. E Ö- B drift through the filter in a real geometry

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.; Claustre, J.; Chaudhury, B.; Fubiani, G.

    2012-11-01

    The physics of a magnetic filter under conditions similar to those of the negative ion source for the ITER neutral beam injector is analyzed with the help of a two-dimensional particle-in-cell Monte Carlo Collisions model. A detailed analysis of the different terms of the electron momentum equations shows how diamagnetic and drift currents can be dominant in different regions of the filter. Electron transport through the filter is due to an E × B drift current on one side of the chamber induced by the presence of the chamber walls perpendicular to the electron diamagnetic current. The filter design of the ITER negative ion source, which does not allow a closed electron diamagnetic current, induces an asymmetry of the plasma that is analyzed with the particle model. It is shown that electron transport through the filter in this geometry is very different from the transport in an ideal, one-dimensional magnetic filter often considered in the literature and described in detail in the companion paper [Boeuf et al., Phys. Plasmas 19, 113509 (2012)].

  16. Physics of a magnetic filter for negative ion sources. II. E Multiplication-Sign B drift through the filter in a real geometry

    SciTech Connect

    Boeuf, J. P.; Claustre, J.; Chaudhury, B.; Fubiani, G.

    2012-11-15

    The physics of a magnetic filter under conditions similar to those of the negative ion source for the ITER neutral beam injector is analyzed with the help of a two-dimensional particle-in-cell Monte Carlo Collisions model. A detailed analysis of the different terms of the electron momentum equations shows how diamagnetic and drift currents can be dominant in different regions of the filter. Electron transport through the filter is due to an E Multiplication-Sign B drift current on one side of the chamber induced by the presence of the chamber walls perpendicular to the electron diamagnetic current. The filter design of the ITER negative ion source, which does not allow a closed electron diamagnetic current, induces an asymmetry of the plasma that is analyzed with the particle model. It is shown that electron transport through the filter in this geometry is very different from the transport in an ideal, one-dimensional magnetic filter often considered in the literature and described in detail in the companion paper [Boeuf et al., Phys. Plasmas 19, 113509 (2012)].

  17. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.

    2002-01-01

    "Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further

  18. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  19. Dynamic Geometry on WWW.

    ERIC Educational Resources Information Center

    Kuntz, Gilles

    The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…

  20. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  1. Combinatorial Geometry Printer Plotting.

    Energy Science and Technology Software Center (ESTSC)

    1987-01-05

    Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.

  2. General 2 charge geometries

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2006-03-01

    Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.

  3. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  4. Bis(thiosemicarbazonato) chelates of Co(II), Ni(II), Cu(II), Pd(II) and Pt(II)

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Singh, R.

    1985-01-01

    Bis chelates of Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) with the enolic form of diethyl ketone and methyl n-propyl thiosemicarbazones were synthesized and characterized by elemental analyses, magnetic moments, i.r. and electronic and electron spin resonance spectral studies. All the complexes were found to have the composition ML 2 [where M = Co(II), Ni(II), Cu(II), Pd(ii) and Pt(II) and L = thiosemicarbazones of diethyl ketone and methyl n-propyl ketone]. Co(II) and Cu(II) complexes are paramagnetic and may have polymeric six-coordinate octahedral and square planar geometries, respectively. The Ni(II), Pd(II) and Pt(II) complexes are diamagnetic and may have square planar geometries. Pyridine adducts (ML 2·2Py) of Ni(II) and Cu(II) complexes were also prepared and characterized.

  5. Compact 0.3-to-1.125 GHz self-biased phase-locked loop for system-on-chip clock generation in 0.18 µm CMOS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Liu, Liyuan; Feng, Peng; Liu, Jian; Wu, Nanjian

    2016-04-01

    In this paper, we propose a compact ring-oscillator-based self-biased phase-locked loop (SBPLL) for system-on-chip (SoC) clock generation. It adopts the proposed triple-well NMOS source degeneration voltage-to-current (V-I) converter instead of the operational amplifier (OPAMP) based V-I converter and a proposed simple start-up circuit with a negligible area to save power and area. The SBPLL is implemented in the 0.18 µm CMOS process, and it occupies 0.048 mm2 active core. The measurement results show the SBPLL can generate output frequency in a wide range from 300 MHz to 1.125 GHz with a constant loop bandwidth that is around 5 MHz and a relatively low jitter performance that is less than 4.9 mUI over the entire covered frequency range. From -20 to 70 °C the rms jitter variation and loop bandwidth variation at 1.125 GHz are 0.2 ps and 350 kHz, respectively. The rms jitter performance variation of all covered frequency points is less than 10% in the supply range from 1.5 to 1.7 V. Such SBPLL shows robustness over environmental variation. The maximum power consumption is 5.6 mW with 1.6 V supply at an output frequency of 1.125 GHz.

  6. Two-coordinate, quasi-two-coordinate, and distorted three coordinate, T-shaped chromium(II) amido complexes: unusual effects of coordination geometry on the lowering of ground state magnetic moments.

    PubMed

    Boynton, Jessica N; Merrill, W Alexander; Reiff, William M; Fettinger, James C; Power, Philip P

    2012-03-01

    The synthesis and characterization of the mononuclear chromium(II) terphenyl substituted primary amido-complexes Cr{N(H)Ar(Pr(i)(6))}(2) (Ar(Pr(i)(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2) (1), Cr{N(H)Ar(Pr(i)(4))}(2) (Ar(Pr(i)(4)) = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2) (2), Cr{N(H)Ar(Me(6))}(2) (Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2) (4), and the Lewis base adduct Cr{N(H)Ar(Me(6))}(2)(THF) (3) are described. Reaction of the terphenyl primary amido lithium derivatives Li{N(H)Ar(Pr(i)(6))} and Li{N(H)Ar(Pr(i)(4))} with CrCl(2)(THF)(2) in a 2:1 ratio afforded complexes 1 and 2, which are extremely rare examples of two coordinate chromium and the first stable chromium amides to have linear coordinated high-spin Cr(2+). The reaction of the less crowded terphenyl primary amido lithium salt Li{N(H)Ar(Me(6))} with CrCl(2)(THF)(2) gave the tetrahydrofuran (THF) complex 3, which has a distorted T-shaped metal coordination. Desolvation of 3 at about 70 °C gave 4 which has a formally two-coordinate chromous ion with a very strongly bent core geometry (N-Cr-N= 121.49(13)°) with secondary Cr--C(aryl ring) interactions of 2.338(4) Å to the ligand. Magnetometry studies showed that the two linear chromium species 1 and 2 have ambient temperature magnetic moments of about 4.20 μ(B) and 4.33 μ(B) which are lower than the spin-only value of 4.90 μ(B) typically observed for six coordinate Cr(2+). The bent complex 4 has a similar room temperature magnetic moment of about 4.36 μ(B). These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 μ(B) because λ (the spin orbit coupling parameter) is positive. The three-coordinated complex 3 had a magnetic moment of 3.79 μ(B). PMID:22356657

  7. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  8. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  9. Want to Play Geometry?

    ERIC Educational Resources Information Center

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  10. Euclidean Geometry via Programming.

    ERIC Educational Resources Information Center

    Filimonov, Rossen; Kreith, Kurt

    1992-01-01

    Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…

  11. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  12. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  13. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  14. Noncommutative Geometry and Physics

    NASA Astrophysics Data System (ADS)

    Connes, Alain

    2006-11-01

    In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.

  15. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  16. Common Geometry Module

    Energy Science and Technology Software Center (ESTSC)

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less

  17. CMS Geometry Through 2020

    NASA Astrophysics Data System (ADS)

    Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.

    2014-06-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  18. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  19. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  20. Synthesis, characterization, X-ray crystal structure and conductometry studying of a number of new Schiff base complexes; a new example of binuclear square pyramidal geometry of Cu(II) complex bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Alavipour, Ehsan

    2015-11-01

    Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.

  1. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  2. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  3. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  4. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  5. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  6. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  7. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  8. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  9. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  10. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  11. An introduction to Minkowski geometries

    NASA Astrophysics Data System (ADS)

    Farnsworth, David L.

    2016-07-01

    The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.

  12. Physics and geometry

    NASA Astrophysics Data System (ADS)

    Souriau, Jean-Marie

    1983-01-01

    Differential geometry, the contemporary heir of the infinitesimal calculus of the 17th century, appears today as the most appropriate language for the description of physical reality. This holds at every level: The concept of “connexion,” for instance, is used in the construction of models of the universe as well as in the description of the interior of the proton. Nothing is apparently more contrary to the wisdom of physicists; all the same, “it works.” The pages that follow show the conceptual role played by this geometry in some examples—without entering into technical details. In order to achieve this, we shall often have to abandon the complete mathematical rigor and even full definitions; however, we shall be able to give a precise description of the connection of ideas thanks to some elements of group theory.

  13. Puzzle geometry and rigidity

    NASA Astrophysics Data System (ADS)

    Smania, Daniel

    2007-07-01

    We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.

  14. Failures of information geometry

    NASA Astrophysics Data System (ADS)

    Skilling, John

    2015-01-01

    Information H is a unique relationship between probabilities, based on the property of independence which is central to scientific methodology. Information Geometry makes the tempting but fallacious assumption that a local metric (conventionally based on information) can be used to endow the space of probability distributions with a preferred global Riemannian metric. No such global metric can conform to H, which is "from-to" asymmetric whereas geometrical length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required structure of the very distributions which are supposedly being triangulated. It follows that probabilities do not form a metric space. We give counter-examples in which alternative formulations of information, and the use of information geometry, lead to unacceptable results.

  15. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  16. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  17. Integral geometry and holography

    DOE PAGESBeta

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  18. Emergent Complex Network Geometry

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  19. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  20. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  1. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  2. Geometry Career Unit: Junior High.

    ERIC Educational Resources Information Center

    Jensen, Daniel

    The guide, the product of an exemplary career education program for junior high school students, was developed to show how geometry can be applied to real-life career-oriented areas and to bring a practical approach to the teaching of geometry. It is designed to show how some of the theorems or postulates in geometry are used in different careers.…

  3. Geometry: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…

  4. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  5. Geometry of Quantum States

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Zyczkowski, Karol

    2006-05-01

    Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists

  6. Optically defined mechanical geometry

    NASA Astrophysics Data System (ADS)

    Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.

    2016-05-01

    In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.

  7. Critique of information geometry

    SciTech Connect

    Skilling, John

    2014-12-05

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  8. Geometry from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-01

    We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  9. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  10. Critique of information geometry

    NASA Astrophysics Data System (ADS)

    Skilling, John

    2014-12-01

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  11. Planetary Image Geometry Library

    NASA Technical Reports Server (NTRS)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  12. Information geometry of Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Matsuzoe, Hiroshi

    2015-01-01

    A survey of geometry of Bayesian statistics is given. From the viewpoint of differential geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed expectations and deformed independeces are important in anomalous statistics. After summarizing geometry of such deformed structues, a generalization of maximum likelihood method is given. A suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight on a sample space is important in anomalous statistics.

  13. Spectral, IR and magnetic studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes with pyrrole-2-carboxyaldehyde thiosemicarbazone (L)

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-11-01

    Mn(II), Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L) derived from pyrrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurement, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO indicates that the complexes are non-electrolyte except Co(L) 2(NO 3) 2 and Ni(L) 2(NO 3) 2 complexes which are 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Mn(II), Co(II) and Ni(II) complexes except Co(L) 2(NO 3) 2 and Ni(L) 2(NO 3) 2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.

  14. The Application of Mechanics to Geometry. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Kogan, B. Yu

    Presented in this translation are three chapters. Chapter I discusses the composition of forces and several theorems of geometry are proved using the fundamental concepts and certain laws of statics. Chapter II discusses the perpetual motion postulate; several geometric theorems are proved using the postulate that perpetual motion is impossible.…

  15. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  16. Achievement in Writing Geometry Proofs.

    ERIC Educational Resources Information Center

    Senk, Sharon L.

    In 1981 a nationwide assessment of achievement in writing geometry proofs was conducted by the Cognitive Development and Achievement in Secondary School Geometry project. Over 1,500 students in 11 schools in 5 states participated. This paper describes the sample, instruments, grading procedures, and selected results. Results include: (1) at the…

  17. Limits of downstream hydraulic geometry

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2004-10-01

    Adjustments to flow width, depth, and velocity in response to changes in discharge are commonly characterized by using downstream hydraulic geometry relationships. The spatial limits of these relationships within a drainage basin have not been systematically quantified. Where the erosional resistance of the channel substrate is sufficiently large, hydraulic driving forces presumably will be unable to adjust channel form. Data sets from 10 mountain rivers in the United States, Panama, Nepal, and New Zealand are used in this study to explore the limits of downstream hydraulic geometry relationships. Where the ratio of stream power to sediment size (Ω/D84) exceeds 10,000 kg/s3, downstream hydraulic geometry is well developed; where the ratio falls below 10,000 kg/s3, downstream hydraulic geometry relationships are poorly developed. These limitations on downstream hydraulic geometry have important implications for channel engineering and simulations of landscape change.

  18. Lobachevsky's Geometry and Research of Geometry of the Universe

    NASA Astrophysics Data System (ADS)

    Brylevskaya, L. I.

    2008-10-01

    For the first time N. I. Lobachevsky gave a talk on the new geometry in 1826; three years after he had published a work "On the fundamentals of geometry", containing all fundamental theorems and methods of non-Euclidean geometry. A small part of the article was devoted to the study of geometry of the Universe. The interpretation of geometrical concepts in pure empirical way was typical for mathematicians at the beginning of the XIX century; in this connection it was important for scientists to find application of his geometry. Having the purpose to determine experimentally the properties of real physical Space, Lobachevsky decided to calculate the sum of angles in a huge triangle with two vertexes in opposite points of the terrestrial orbit and the third -- on the remote star. Investigating the possibilities of solution of the set task, Lobachevsky faced the difficulties of theoretical, technical and methodological character. More detailed research of different aspects of the problem led Lobachevsky to the comprehension of impossibility to obtain the values required for the goal achievement, and he called his geometry an imaginary geometry.

  19. Quantum Consequences of Parameterizing Geometry

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.

    2002-12-01

    The marriage between geometrization and quantization is not successful, so far. It is well known that quantization of gravity , using known quantization schemes, is not satisfactory. It may be of interest to look for another approach to this problem. Recently, it is shown that geometries with torsion admit quantum paths. Such geometries should be parameterizied in order to preserve the quantum properties appeared in the paths. The present work explores the consequences of parameterizing such geometry. It is shown that quantum properties, appeared in the path equations, are transferred to other geometric entities.

  20. Distance geometry and geometric algebra

    NASA Astrophysics Data System (ADS)

    Dress, Andreas W. M.; Havel, Timothy F.

    1993-10-01

    As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)

  1. On The Explosion Geometry of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas C.; Supernova Spectropolarimetry Project (SNSPOL)

    2016-06-01

    From progenitor studies, type II-Plateau supernovae (SNe II-P) have been decisively and uniquely determined to arise from isolated red supergiant (RSG) stars, establishing the most homogeneous --- and well understood --- progenitor class of any type of core-collapse supernova. The physical process by which these stars explode, however, remains a mystery. A fundamental clue to the nature of the explosion mechanism is explosion geometry: In short, are supernovae round? Because young supernova atmospheres are electron-scattering dominated, their net linear polarization provides a direct probe of early-time supernova geometry, with higher degrees of polarization generally indicating greater departures from spherical symmetry. This presentation will describe the ongoing work being carried out on RSG explosion geometry by the SuperNova SpectroPOLarimetry project (SNSPOL), with a particular focus on SN 2013ej -- an SN II-P that exhibited remarkably high polarization just days after the explosion, and for which twelve epochs of spectropolarimetry trace an intriguing tale about its geometry deep into the nebular phase.We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  2. The Dilemma of Descriptive Geometry

    ERIC Educational Resources Information Center

    Boleslavski, Moshe

    1977-01-01

    Proposes that engineering students undergo a preparatory summer school training program in fundamentals of engineering drawing, descriptive geometry, and mathematics prior to being admitted to regular engineering studies. (SL)

  3. Emergent geometry from quantized spacetime

    SciTech Connect

    Yang, Hyun Seok; Sivakumar, M.

    2010-08-15

    We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the d-dimensional Snyder algebra is equivalent to the Lorentz algebra in (d+1)-dimensional flat spacetime. For example, a vacuum geometry of the mass-deformed matrix model is completely described by a G-invariant metric of coset manifolds G/H defined by the Snyder algebra. We also discuss a nonlinear deformation of the Snyder algebra.

  4. Interaction of morphogens with geometry

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.

    2005-09-01

    Morphogen patterns are viewed as being affected by epithelial sheet geometry in early development. As the total area of the (closed) sheet changes, the changing geometry acts back in turn to change the morphogen pattern. A number of constraints are given on the functional form of the Gauss and Mean curvatures, considered as functions of the morphogen concentrations and their derivatives. It is shown that the constraints are sufficient to motivate a convincing dependence of the two curvatures on the morphogen concentrations.

  5. The Common Geometry Module (CGM).

    SciTech Connect

    Tautges, Timothy James

    2004-12-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  6. Black holes and large order quantum geometry

    SciTech Connect

    Huang Minxin; Klemm, Albrecht; Marino, Marcos; Tavanfar, Alireza

    2009-03-15

    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations--which seem necessary to resolve the so-called entropy enigma in the Ooguri-Strominger-Vafa conjecture--do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.

  7. Realism, positivism, instrumentalism, and quantum geometry

    NASA Astrophysics Data System (ADS)

    Prugovečki, Eduard

    1992-02-01

    The roles of classical realism, logical positivism, and pragmatic instrumentalism in the shaping of fundamental ideas in quantum physics are examined in the light of some recent historical and sociological studies of the factors that influenced their development. It is shown that those studies indicate that the conventionalistic form of instrumentalism that has dominated all the major post-World War II developments in quantum physics is not an outgrowth of the Copenhagen school, and that despite the “schism” in twentieth century physics created by the Bohr-Einstein “disagreements” on foundational issues in quantum theory, both their philosophical stands were very much opposed to those of conventionalistic instrumentalism. Quotations from the writings of Dirac, Heisenberg, Popper, Russell, and other influential thinkers, are provided, illustrating the fact that, despite the various divergencies in their opinions, they all either opposed the instrumentalist concept of “truth” in general, or its conventionalistic version in post-World War II quantum physics in particular. The basic epistemic ideas of a quantum geometry approach to quantum physics are reviewed and discussed from the point of view of a quantum realism that seeks to reconcile Bohr's “positivism” with Einstein's “realism” by emphasizing the existence of an underlying quantum reality, in which they both believed. This quantum geometry framework seeks to introduce geometro-stochastic concepts that are specifically designed for the systematic description of that underlying quantum reality, by developing the conceptual and mathematical tools that are most appropriate for such a use.

  8. Synthesis, Characterization and Biological Evaluation of Co(II), Cu(II), Ni(II) and Zn(II) Complexes With Cephradine

    PubMed Central

    Jaffery, Maimoon F.

    2000-01-01

    Some Co(II), Cu(II), Ni(II) and Zn(II) complexes of antibacterial drug cephradine have been prepared and characterized by their physical, spectral and analytical data. Cephradine acts as bidentate and the complexes have compositions, [M(L)2X2] where [M = Co(II), Ni(II) and Zn(II), L = cephradine and X = Cl2] showing octahedral geometry, and [M(L)2] where [M = Cu(II), L = cephradine] showing square planar geometry. In order to evaluate the effect of metal ions upon chelation, eephradine and its complexes have been screened for their antibacterial activity against bacterial strains, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. PMID:18475955

  9. Earthquake cycles in complex geometries

    NASA Astrophysics Data System (ADS)

    Romanet, Pierre; Bhat, Harsha; Madariaga, Raul

    2016-04-01

    Our understanding of earthquake cycles, from a modelling perspective, comes mainly from theoretical, and numerical, work on a single straight fault. However, natural fault systems are geometrically complex. Modelling complex fault geometry (bends, kinks and multiple faults) is in itself a challenge as it is computationally intensive. To overcome this difficulty, we appeal to the Fast Multipole Method which was developed in the context of modelling N-body problems. This method is then used to model the quasi-dynamic response of multiple faults, with complex geometries, that are governed by rate and state friction laws. Our preliminary findings tell us that when stress interaction between faults, due to complex geometry, is accounted then even strongly rate-weakening faults (a-b)<0 show a complex spectrum of slow slip and dynamic ruptures.

  10. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  11. Hexatic undulations in curved geometries.

    PubMed

    Lenz, Peter; Nelson, David R

    2003-03-01

    We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of liquid jets. PMID:12689068

  12. Conventionalism and integrable Weyl geometry

    NASA Astrophysics Data System (ADS)

    Pucheu, M. L.

    2015-03-01

    Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.

  13. Individualized Geometry: A Geometry Unit for the Intermediate Grades.

    ERIC Educational Resources Information Center

    Geissler, Dennis; Larson, Richard

    This geometry unit for the intermediate grades is based on the Holt Mathematics Series (levels 3-6), using the concepts of Individually Guided Education (IGE). It is divided into seven levels, one for grade 3 and two each for grades 4-6. Each is designed for both individual and group learning. A vocabulary list is used as a key for activities; a…

  14. Geometry of generalized depolarizing channels

    SciTech Connect

    Burrell, Christian K.

    2009-10-15

    A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.

  15. Geometry, topology, and string theory

    SciTech Connect

    Varadarajan, Uday

    2003-07-10

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  16. LOGO Based Instruction in Geometry.

    ERIC Educational Resources Information Center

    Yusuf, Mian Muhammad

    The objective of this pretest-posttest Quasi-Experimental Design study was to determine the effects of LOGO Based Instruction (LBI) compared to instruction by teacher lecture and pencil-and-paper activities on: (1) students' understanding of the concepts of point, ray, line, and line segment; (2) students' attitudes toward learning geometry,…

  17. Exploring Bundling Theory with Geometry

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  18. Computer Environments for Learning Geometry.

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Battista, Michael T.

    1994-01-01

    Reviews research describing computer functions of construction-oriented computer environments and evaluates their contributions to students' learning of geometry. Topics discussed include constructing geometric concepts; the use of LOGO in elementary school mathematics; software that focuses on geometric construction; and implications for the…

  19. Dislocation dynamics in confined geometry

    NASA Astrophysics Data System (ADS)

    Gómez-García, D.; Devincre, B.; Kubin, L.

    1999-05-01

    A simulation of dislocation dynamics has been used to calculate the critical stress for a threading dislocation moving in a confined geometry. The optimum conditions for conducting simulations in systems of various sizes, down to the nanometer range, are defined. The results are critically compared with the available theoretical and numerical estimates for the problem of dislocation motion in capped layers.

  20. Improving Student Reasoning in Geometry

    ERIC Educational Resources Information Center

    Wong, Bobson; Bukalov, Larisa

    2013-01-01

    In their years of teaching geometry, Wong and Bukalov realized that the greatest challenge has been getting students to improve their reasoning. Many students have difficulty writing formal proofs--a task that requires a good deal of reasoning. Wong and Bukalov reasoned that the solution was to divide the lessons into parallel tasks, allowing…

  1. Foucault pendulum through basic geometry

    NASA Astrophysics Data System (ADS)

    von Bergmann, Jens; von Bergmann, HsingChi

    2007-10-01

    We provide a thorough explanation of the Foucault pendulum that utilizes its underlying geometry on a level suitable for science students not necessarily familiar with calculus. We also explain how the geometrically understood Foucault pendulum can serve as a prototype for more advanced phenomena in physics known as Berry's phase or geometric phases.

  2. A Microcomputer Descriptive Geometry Tutorial.

    ERIC Educational Resources Information Center

    Zongyi, Zuo

    1990-01-01

    A software package which can aid descriptive geometry instruction is described. Included are the features of the software and the software configuration. This software has been honored as the best and most advanced software of its kind in the People's Republic of China. (KR)

  3. Exploring Fractal Geometry with Children.

    ERIC Educational Resources Information Center

    Vacc, Nancy Nesbitt

    1999-01-01

    Heightens the awareness of elementary school teachers, teacher educators, and teacher-education researchers of possible applications of fractal geometry with children and, subsequently, initiates discussion about the appropriateness of including this new mathematics in the elementary curriculum. Presents activities for exploring children's…

  4. Towards a Navajo Indian Geometry.

    ERIC Educational Resources Information Center

    Pinxten, Rik; And Others

    This book examines the Navajo system of spatial knowledge and describes a culture-based curriculum for the development of an intuitive geometry based on the child's experience of the physical world. Aspects of the Navajo cosmology relevant to spatial knowledge are discussed: the structure of the world; the dynamic nature of the universe;…

  5. Analogical Reasoning in Geometry Education

    ERIC Educational Resources Information Center

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  6. Spectral geometry of symplectic spinors

    NASA Astrophysics Data System (ADS)

    Vassilevich, Dmitri

    2015-10-01

    Symplectic spinors form an infinite-rank vector bundle. Dirac operators on this bundle were constructed recently by Habermann, K. ["The Dirac operator on symplectic spinors," Ann. Global Anal. Geom. 13, 155-168 (1995)]. Here we study the spectral geometry aspects of these operators. In particular, we define the associated distance function and compute the heat trace asymptotics.

  7. Teaching Geometry According to Euclid.

    ERIC Educational Resources Information Center

    Hartshorne, Robin

    2000-01-01

    This essay contains some reflections and questions arising from encounters with the text of Euclid's Elements. The reflections arise out of the teaching of a course in Euclidean and non-Euclidean geometry to undergraduates. It is concluded that teachers of such courses should read Euclid and ask questions, then teach a course on Euclid and later…

  8. Noncommutative geometry inspired entropic inflation

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Akhshabi, Siamak

    2011-06-01

    Recently Verlinde proposed that gravity can be described as an emergent phenomena arising from changes in the information associated with the positions of material bodies. By using noncommutative geometry as a way to describe the microscopic microstructure of quantum spacetime, we derive modified Friedmann equation in this setup and study the entropic force modifications to the inflationary dynamics of early universe.

  9. Van Hiele Guidelines for Geometry.

    ERIC Educational Resources Information Center

    Davey, Geoff; Holliday, Jack

    1992-01-01

    Describes five skills underpinning the understanding of geometry for primary and lower secondary mathematics students. Skill categories identified include (1) visual; (2) verbal; (3) drawing; (4) logical; and (5) application. Gives examples of skills appropriate for Van Hiele levels 1-3. (MDH)

  10. General Relativity: Geometry Meets Physics

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  11. The basics of information geometry

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2015-01-01

    To what extent can we distinguish one probability distribution from another? Are there quantitative measures of distinguishability? The goal of this tutorial is to approach such questions by introducing the notion of the "distance" between two probability distributions and exploring some basic ideas of such an "information geometry".

  12. The Idea of Order at Geometry Class.

    ERIC Educational Resources Information Center

    Rishel, Thomas

    The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…

  13. Teaching Activity-Based Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba

    2013-01-01

    This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…

  14. Spectral and magnetic studies on manganese(II), cobalt(II) and nickel(II) complexes with Schiff bases

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Umendra

    2005-01-01

    Mn(II), Co(II) and Ni(II) complexes of 2-methylcyclohexanone thiosemicarbazone(MCHTSC L 1) and 2-methylcyclohexanone - 4N-methyl-3-thiosemicarbazone (MCHMTSC L 2), general composition [M(L) 2X 2] (where M = Mn(II), Co(II), Ni(II), L = L 1 or L 2 and X = Cl -, NO 3-, and 1/2SO42-) have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, UV-vis, IR, EPR, and mass spectral studies. Various physico-chemical techniques suggest an octahedral geometry for all the complexes.

  15. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  16. Geometry in Transition: A Model of Emergent Geometry

    SciTech Connect

    Delgadillo-Blando, Rodrigo; O'Connor, Denjoe; Ydri, Badis

    2008-05-23

    We study a three matrix model with global SO(3) symmetry containing at most quartic powers of the matrices. We find an exotic line of discontinuous transitions with a jump in the entropy, characteristic of a 1st order transition, yet with divergent critical fluctuations and a divergent specific heat with critical exponent {alpha}=1/2. The low temperature phase is a geometrical one with gauge fields fluctuating on a round sphere. As the temperature increased the sphere evaporates in a transition to a pure matrix phase with no background geometrical structure. Both the geometry and gauge fields are determined dynamically. It is not difficult to invent higher dimensional models with essentially similar phenomenology. The model presents an appealing picture of a geometrical phase emerging as the system cools and suggests a scenario for the emergence of geometry in the early Universe.

  17. Geometry-invariant resonant cavities

    NASA Astrophysics Data System (ADS)

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-03-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  18. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  19. Geometry of area without length

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Inami, Takeo

    2016-01-01

    To define a free string by the Nambu-Goto action, all we need is the notion of area, and mathematically the area can be defined directly in the absence of a metric. Motivated by the possibility that string theory admits backgrounds where the notion of length is not well defined but a definition of area is given, we study space-time geometries based on the generalization of a metric to an area metric. In analogy with Riemannian geometry, we define the analogues of connections, curvatures, and Einstein tensor. We propose a formulation generalizing Einstein's theory that will be useful if at a certain stage or a certain scale the metric is ill defined and the space-time is better characterized by the notion of area. Static spherical solutions are found for the generalized Einstein equation in vacuum, including the Schwarzschild solution as a special case.

  20. Information geometry of Boltzmann machines.

    PubMed

    Amari, S; Kurata, K; Nagaoka, H

    1992-01-01

    A Boltzmann machine is a network of stochastic neurons. The set of all the Boltzmann machines with a fixed topology forms a geometric manifold of high dimension, where modifiable synaptic weights of connections play the role of a coordinate system to specify networks. A learning trajectory, for example, is a curve in this manifold. It is important to study the geometry of the neural manifold, rather than the behavior of a single network, in order to know the capabilities and limitations of neural networks of a fixed topology. Using the new theory of information geometry, a natural invariant Riemannian metric and a dual pair of affine connections on the Boltzmann neural network manifold are established. The meaning of geometrical structures is elucidated from the stochastic and the statistical point of view. This leads to a natural modification of the Boltzmann machine learning rule. PMID:18276427

  1. Extending dark optical trapping geometries.

    PubMed

    Arnold, Aidan S

    2012-07-01

    New counterpropagating geometries are presented for localizing ultracold atoms in the dark regions created by the interference of Laguerre-Gaussian laser beams. In particular dark helices, an "optical revolver," axial lattices of rings, and axial lattices of ring lattices of rings are considered and a realistic scheme for achieving phase stability is explored. The dark nature of these traps will enable their use as versatile tools for low-decoherence atom interferometry with zero differential light shifts. PMID:22743436

  2. Geometry Dependence of Stellarator Turbulence

    SciTech Connect

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    2009-08-10

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  3. Orbit propagation in Minkowskian geometry

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Peláez, Jesús

    2015-09-01

    The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.

  4. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but

  5. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its

  6. Spectral studies on Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-04-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Ni(L) 2(NO 3) 2, which is 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except nitrato complexes of Ni(II) which is of tetrahedral geometry, whereas tetragonal geometry for Cu(II) complexes.

  7. The Effect of Geometry Instruction with Dynamic Geometry Software; GeoGebra on Van Hiele Geometry Understanding Levels of Students

    ERIC Educational Resources Information Center

    Kutluca, Tamer

    2013-01-01

    The aim of this study is to investigate the effect of dynamic geometry software GeoGebra on Van Hiele geometry understanding level of students at 11th grade geometry course. The study was conducted with pre and posttest control group quasi-experimental method. The sample of the study was 42 eleventh grade students studying in the spring term of…

  8. Structural studies of six and four coordinate zinc(II), nickel(II) and dioxovanadium(V) complexes with thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sreekanth, A.; Sivakumar, S.; Prathapachandra Kurup, M. R.

    2003-07-01

    Three Zn(II) complexes of di-2-pyridyl ketone thiosemicarbazone, an octahedral Ni(II) complex of 2-acetylpyridine hexamethyleneiminyl-3-thiosemicarbazone, and a V(V) complex of 2-acetylpyridine morpholyl-3-thiosemicarbazone were prepared and characterized. Crystal structure of Ni(II) and V(V) complexes are reported. The ligand in the nickel complex is found to coordinate in the thione form with a pseudo octahedral geometry and the vanadium(V) complex has trigonal bipyramidal geometry.

  9. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  10. A Whirlwind Tour of Computational Geometry.

    ERIC Educational Resources Information Center

    Graham, Ron; Yao, Frances

    1990-01-01

    Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)

  11. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  12. Rotating convection in elliptical geometries

    NASA Astrophysics Data System (ADS)

    Evonuk, M.

    2014-12-01

    Tidal interactions between hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of ellipticity on convection for varying density contrasts with differing convective vigor and rotation rate. This survey is conducted in two dimensions in order to simulate a broad range of ellipticities and to maximize the parameter space explored.

  13. Worldsheet geometries of ambitwistor string

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro

    2015-06-01

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  14. Emergent Calabi-Yau geometry.

    PubMed

    Ooguri, Hirosi; Yamazaki, Masahito

    2009-04-24

    We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper. In particular, the thermodynamic partition function of molten crystals is shown to be equal to the classical limit of the partition function of the topological string theory by relating the Ronkin function of the characteristic polynomial of the crystal melting model to the holomorphic 3-form on the corresponding Calabi-Yau manifold. PMID:19518695

  15. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  16. Inverse Marx modulators for self-biasing klystron depressed collectors

    SciTech Connect

    Kemp, Mark A.

    2014-07-31

    A novel pulsed depressed collector biasing scheme is proposed. This topology feeds forward energy recovered during one RF pulse for use on the following RF pulse. The presented ''inverse'' Marx charges biasing capacitors in series, and discharges them in parallel. Simulations are shown along with experimental demonstration on a 62kW klystron.

  17. Dual-phase self-biased magnetoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Apo, Daniel J.; Priya, Shashank

    2013-11-01

    We report a magnetoelectric energy harvester structure that can simultaneously scavenge magnetic and vibration energy in the absence of DC magnetic field. The structure consisted of a piezoelectric macro-fiber composite bonded to a Ni cantilever. Large magnetoelectric coefficient ˜50 V/cm Oe and power density ˜4.5 mW/cm3 (1 g acceleration) were observed at the resonance frequency. An additive effect was realized when the harvester operated under dual-phase mode. The increase in voltage output at the first three resonance frequencies under dual-phase mode was found to be 2.4%, 35.5%, and 360.7%. These results present significant advancement toward high energy density multimode energy harvesting system.

  18. Engaging All Students with "Impossible Geometry"

    ERIC Educational Resources Information Center

    Wiest, Lynda R.; Ayebo, Abraham; Dornoo, Michael D.

    2010-01-01

    Geometry is an area in which Australian students performed particularly poorly on the 2007 Trends in International Mathematics and Science Study (TIMSS). One innovative area of recreational geometry that has rich potential to engage and challenge a wide variety of students is "impossible geometry." An impossible geometric object is a…

  19. Geometry: Career Related Units. Teacher's Edition.

    ERIC Educational Resources Information Center

    Pierro, Mike; And Others

    Using six geometry units as resource units, the document explores 22 math-related careers. The authors intend the document to provide senior high school students with career orientation and exploration experiences while they learn geometry skills. The units are to be considered as a part of a geometry course, not a course by themselves. The six…

  20. Preservice Primary School Teachers' Elementary Geometry Knowledge

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2012-01-01

    Geometrical notions and properties occur in real-world problems, thus Geometry has an important place in school Mathematics curricula. Primary school curricula lays the foundation of Geometry knowledge, pupils learn Geometry notions and properties by exploring their environment. Thus it is very important that primary school teachers have a good…

  1. Teaching Geometry: An Experiential and Artistic Approach.

    ERIC Educational Resources Information Center

    Ogletree, Earl J.

    The view that geometry should be taught at every grade level is promoted. Primary and elementary school children are thought to rarely have any direct experience with geometry, except on an incidental basis. Children are supposed to be able to learn geometry rather easily, so long as the method and content are adapted to their development and…

  2. Fisher information geometry of the barycenter map

    NASA Astrophysics Data System (ADS)

    Itoh, Mitsuhiro; Satoh, Hiroyasu

    2015-01-01

    We report Fisher information geometry of the barycenter map associated with Busemann function Bθ of an Hadamard manifold X and present its application to Riemannian geometry of X from viewpoint of Fisher information geometry. This report is an improvement of [I-Sat'13] together with a fine investigation of the barycenter map.

  3. Geometry in the Early Years: A Commentary

    ERIC Educational Resources Information Center

    Dindyal, Jaguthsing

    2015-01-01

    The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…

  4. On generic parametrizations of spinning black-hole geometries

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Pani, Paolo; Rico, João

    2014-03-01

    The construction of a generic parametrization of spinning geometries that can be matched continuously to the Kerr metric is an important open problem in general relativity. Its resolution is of more than academic interest, as it allows us to parametrize and quantify possible deviations from the no-hair theorem. Various approaches to the problem have been proposed, all with their own (severe) limitations. Here we discuss the metric recently proposed by Johannsen and Psaltis, showing that (i) the original metric describes only corrections that preserve the horizon area-mass relation of nonspinning geometries, (ii) this unnecessary restriction can be relaxed by introducing a new parameter that in fact dominates in both the weak-field and strong-field regimes, (iii) within this framework, we construct the most generic spinning black-hole geometry that contains twice as many (infinite) parameters as the original metric, and (iv) in the strong-field regime, all parameters are (roughly) equally important. This fact introduces a severe degeneracy problem in the case of highly spinning black holes. Our results suggest that using parametrizations that affect only the quadrupole moment of the Kerr geometry is problematic, because higher-order multipoles can be equally relevant for highly spinning objects. Finally, we prove that even our generalization fails to describe the few known spinning black-hole metrics in modified gravity.

  5. Three-dimensional representation of complex muscle architectures and geometries.

    PubMed

    Blemker, Silvia S; Delp, Scott L

    2005-05-01

    Almost all computer models of the musculoskeletal system represent muscle geometry using a series of line segments. This simplification (i) limits the ability of models to accurately represent the paths of muscles with complex geometry and (ii) assumes that moment arms are equivalent for all fibers within a muscle (or muscle compartment). The goal of this work was to develop and evaluate a new method for creating three-dimensional (3D) finite-element models that represent complex muscle geometry and the variation in moment arms across fibers within a muscle. We created 3D models of the psoas, iliacus, gluteus maximus, and gluteus medius muscles from magnetic resonance (MR) images. Peak fiber moment arms varied substantially among fibers within each muscle (e.g., for the psoas the peak fiber hip flexion moment arms varied from 2 to 3 cm, and for the gluteus maximus the peak fiber hip extension moment arms varied from 1 to 7 cm). Moment arms from the literature were generally within the range of fiber moment arms predicted by the 3D models. The models accurately predicted changes in muscle surface geometry over a 55 degrees range of hip flexion, as compared to changes in shape predicted from MR images (average errors between the model and measured surfaces were between 1.7 and 5.2 mm). This new framework for representing muscle will enhance the accuracy of computer models of the musculoskeletal system. PMID:15981866

  6. Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.

    2000-01-01

    The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.

  7. The Nature of the Ground States of Cobalt(II) and Nickel(II) Carboxypeptidase A

    PubMed Central

    Rosenberg, Robert C.; Root, Charles A.; Wang, Run-Han; Cerdonio, Massimo; Gray, Harry B.

    1973-01-01

    The magnetic susceptibilities of cobalt(II) and nickel(II) derivaties of carboxypeptidase A (CPA) follow the Curie law over a wide temperature range. The observed magnetic moments of Co(II)CPA and Ni(II)CPA are 4.77 ± 0.15 and 2.53 ± 0.10 Bohr Magnetons, respectively. The magnetic and spectral properties of Ni(II)CPA are consistent only with an octahedral ground-state geometry, whereas Co(II)CPA has a probable five-coordinate structure. The results establish ordinary metal-ion ground states for two metallocarboxypeptidase A derivatives which exhibit full peptidase activity. PMID:4509646

  8. Neuronal activity controls transsynaptic geometry.

    PubMed

    Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  9. Quanta of Geometry: Noncommutative Aspects

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav

    2015-03-01

    In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M2(H ) and M4(C ) are obtained, which are the exact constituents of the standard model. Using the two maps from M4 to S4 the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.

  10. Weyl gravity and Cartan geometry

    NASA Astrophysics Data System (ADS)

    Attard, J.; François, J.; Lazzarini, S.

    2016-04-01

    We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].

  11. Turbine engine variable geometry device

    NASA Technical Reports Server (NTRS)

    Rogo, Casimir (Inventor); Lenz, Herman N. (Inventor)

    1985-01-01

    A variable geometry device for use with the turbine nozzle of a turbine engine of the type having a support housing and a combustion chamber contained within the support housing. A pair of spaced walls in the support housing define an annular and radially extending nozzle passageway. The outer end of the nozzle passageway is open to the combustion chamber while the inner end of the nozzle passageway is open to one or more turbine stages. A plurality of circumferentially spaced nozzle vanes are mounted to one of the spaced walls and protrude across the nozzle passageway. An annular opening is formed around the opposite spaced wall and an annular ring is axially slidably mounted within the opening. A motor is operatively connected to this ring and, upon actuation, axially displaces the ring within the nozzle passageway. In addition, the ring includes a plurality of circumferentially spaced slots which register with the nozzle vanes so that the vane geometry remains the same despite axial displacement of the ring.

  12. Target Detection Using Fractal Geometry

    NASA Technical Reports Server (NTRS)

    Fuller, J. Joseph

    1991-01-01

    The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background.

  13. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  14. Quanta of geometry: noncommutative aspects.

    PubMed

    Chamseddine, Ali H; Connes, Alain; Mukhanov, Viatcheslav

    2015-03-01

    In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M_{2}(H) and M_{4}(C) are obtained, which are the exact constituents of the standard model. Using the two maps from M_{4} to S^{4} the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes. PMID:25793795

  15. Geometry and the quantum: basics

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav

    2014-12-01

    Motivated by the construction of spectral manifolds in noncommutative geometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. This commutation relation appears in two versions, one sided and two sided. It implies the quantization of the volume. In the one-sided case it implies that the manifold decomposes into a disconnected sum of spheres which will represent quanta of geometry. The two sided version in dimension 4 predicts the two algebras M 2(ℍ) and M 4(ℂ) which are the algebraic constituents of the Standard Model of particle physics. This taken together with the non-commutative algebra of functions allows one to reconstruct, using the spectral action, the Lagrangian of gravity coupled with the Standard Model. We show that any connected Riemannian Spin 4-manifold with quantized volume > 4 (in suitable units) appears as an irreducible representation of the two-sided commutation relations in dimension 4 and that these representations give a seductive model of the "particle picture" for a theory of quantum gravity in which both the Einstein geometric standpoint and the Standard Model emerge from Quantum Mechanics. Physical applications of this quantization scheme will follow in a separate publication.

  16. Alternative cosmology from cusp geometries

    NASA Astrophysics Data System (ADS)

    Rosa, Reinaldo; Herbin Stalder Díaz, Diego

    We study an alternative geometrical approach on the problem of classical cosmological singularity. It is based on a generalized function f(x,y)=x(2+y^2=(1-z)z^n) which consists of a cusped projected coupled isosurface. Such a projected geometry is computed and analized into the context of Friedmann singularity-free cosmology where a pre-big bang scenario is considered. Assuming that the mechanism of cusp formation is described by non-linear oscillations of a pre- big bang extended very high energy density field (>3x10^{94} kg/m^3$), we show that the action under the gravitational field follows a tautochrone of revolution, understood here as the primary projected geometry that alternatively replaces the Friedmann singularity in the standard big bang theory. As shown here this new approach allows us to interpret the nature of both matter and dark energy from first geometric principles [1]. [1] Rosa et al. DOI: 10.1063/1.4756991

  17. From Special Geometry to Black Hole Partition Functions

    NASA Astrophysics Data System (ADS)

    Mohaupt, Thomas

    These notes are based on lectures given at the Erwin-Schrödinger Institute in Vienna in 2006/2007 and at the 2007 School on Attractor Mechanism in Frascati. Lecture I reviews special geometry from the superconformal point of view. Lecture II discusses the black hole attractor mechanism, the underlying variational principle and black hole partition functions. Lecture III applies the formalism introduced in the previous lectures to large and small BPS black holes in N = 4 supergravity. Lecture IV is devoted to the microscopic description of these black holes in N = 4 string compactifications. The lecture notes include problems which allow the readers to develop some of the key ideas by themselves. Appendix A reviews special geometry from the mathematical point of view. Appendix B provides the necessary background in modular forms needed for understanding S-duality and string state counting.

  18. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  19. Clustering Implies Geometry in Networks

    NASA Astrophysics Data System (ADS)

    Krioukov, Dmitri

    2016-05-01

    Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity.

  20. Spinors in Physics and Geometry

    NASA Astrophysics Data System (ADS)

    Trautman, A.; Furlan, G.

    1988-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Killing Spinors According to O. Hijazi and Applications * Self-Duality Conditions Satisfied by the Spin Connections on Spheres * Maslov Index and Half - Forms * Spin - 3/2 Fields on Black Hole Spacetimes * Indecomposable Conformal Spinors and Operator Product Expansions in a Massless QED Model * Nonlinear Spinor Representations * Nonlinear Wave Equations for Intrinsic Spinor Coordinates * Twistors - "Spinors" of SU(2,2), Their Generalizations and Achievements * Spinors, Reflections and Clifford Algebras: A Review * overline {SL}(n, R) Spinors for Particles, Gravity and Superstrings * Spinors on Compact Riemann Surfaces * Simple Spinors as Urfelder * Applications of Cartan Spinors to Differential Geometry in Higher Dimensions * Killing Spinors on Spheres and Projective Spaces * Spinor Structures on Homogeneous Riemannian Spaces * Classical Strings and Minimal Surfaces * Representing Spinors with Differential Forms * Inequalities for Spinors Norms in Clifford Algebras * The Importance of Spin * The Theory of World Spinors * Final List of Participants

  1. Chemical shift driven geometry optimization.

    PubMed

    Witter, Raiker; Priess, Wolfram; Sternberg, Ulrich

    2002-01-30

    A new method for refinement of 3D molecular structures by geometry optimization is presented. Prerequisites are a force field and a very fast procedure for the calculation of chemical shifts in every step of optimization. To the energy, provided by the force field (COSMOS force field), a pseudoenergy, depending on the difference between experimental and calculated chemical shifts, is added. In addition to the energy gradients, pseudoforces are computed. This requires the derivatives of the chemical shifts with respect to the coordinates. The pseudoforces are analytically derived from the integral expressions of the bond polarization theory. Single chemical shift values attributed to corresponding atoms are considered for structural correction. As a first example, this method is applied for proton position refinement of the D-mannitol X-ray structure. A crystal structure refinement with 13C chemical shift pseudoforces is carried out. PMID:11924742

  2. Clustering Implies Geometry in Networks.

    PubMed

    Krioukov, Dmitri

    2016-05-20

    Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity. PMID:27258887

  3. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  4. Geometry of discrete quantum computing

    NASA Astrophysics Data System (ADS)

    Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

    2013-05-01

    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

  5. The influence of the nanostructure geometry on the thermoelectric properties

    NASA Astrophysics Data System (ADS)

    AL-Badry, Lafy F.

    2016-09-01

    We discuss the influence of nanostructure geometry on the thermoelectric properties in quantum ring consists of one QD in each arm, each QD connects with side QD. The calculations are based on the time-dependent Hamiltonian model, the steady state is considered to obtain an analytical expression for the transmission probability as a function of system energies. We employed the transmission probability to calculate the thermoelectric properties. We investigate thermoelectric properties through three configurations of this nanostructure. Figure of merit enhanced in configuration (II) when side QD connected to upper arm of quantum ring. The magnetic flux threads quantum ring. The effect of magnetic flux on the thermoelectric properties is examined.

  6. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  7. Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate

    PubMed Central

    Ekennia, Anthony C.; Onwudiwe, Damian C.; Olasunkanmi, Lukman O.; Osowole, Aderoju A.; Ebenso, Eno E.

    2015-01-01

    Heteroleptic complexes of zinc(II), copper(II), manganese(II), and cobalt(II) of the types [MLL′(H2O)2]·nH2O and [MLL′]·nH2O have been synthesized using sodium N-methyl-N-phenyldithiocarbamate (L) and benzoylacetone (L′). The metal complexes were characterized by elemental analysis, electrical conductance, magnetic susceptibility, infrared (IR), and UV-visible spectroscopic studies. The electrical conductance measurements revealed the nonelectrolytic nature of the synthesized complexes. The results of the elemental analyses, magnetic susceptibility measurements, and electronic spectra inferred that the Zn(II) complex adopted a four-coordinate geometry while the Co(II), Cu(II), and Mn(II) complexes assumed octahedral geometries. The IR spectra showed that the metal ions coordinated with the ligands via the S- and O-donor atoms. The geometry, electronic, and thermodynamic parameters of the complexes were obtained from density functional theory (DFT) calculations. The spin density distributions, relative strength of H–bonds, and thermodynamic parameters revealed that the order of stability of the metal complexes is Mn < Co < Cu > Zn. The agar diffusion methods were used to study the antimicrobial activity of the complexes against two Gram positive bacteria (S. aureus and S. pneumoniae), one Gram negative bacterium (E. coli), and two fungi organisms (A. niger and A. candida) and the complexes showed a broad spectrum of activities against the microbes. PMID:26681931

  8. Geometry of solar coronal rays

    NASA Astrophysics Data System (ADS)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  9. Riemannian geometry of fluctuation theory: An introduction

    NASA Astrophysics Data System (ADS)

    Velazquez, Luisberis

    2016-05-01

    Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory (information geometry), which describes the geometric features of the statistical manifold M of random events that are described by a family of continuous distributions dpξ(x|θ). This theory states a connection among geometry notions and statistical properties: separation distance as a measure of relative probabilities, curvature as a measure about the existence of irreducible statistical correlations, among others. In statistical mechanics, fluctuation geometry arises as the mathematical apparatus of a Riemannian extension of Einstein fluctuation theory, which is also closely related to Ruppeiner geometry of thermodynamics. Moreover, the curvature tensor allows to express some asymptotic formulae that account for the system fluctuating behavior beyond the gaussian approximation, while curvature scalar appears as a second-order correction of Legendre transformation between thermodynamic potentials.

  10. Use of CAD Geometry in MDO

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1996-01-01

    The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.

  11. Geometry Software Common to All Experiments

    NASA Technical Reports Server (NTRS)

    1984-01-01

    All imaging, remote sensing, and in situ experiments require information about the geometry and location of observations. An alterntive to collecting geometry data with a supplementary experiment data record is proposed. The new method involves identifying the fundamental information, that is, the geometric state upon which geometry calculations are based, and maintaining or delivering these calculations in separate packages which are easily replaced when improved information is available. Implementation of this method in spacecraft navigation is discussed along with software system requirements.

  12. Geometry-induced asymmetric diffusion

    PubMed Central

    Shaw, Robert S.; Packard, Norman; Schröter, Matthias; Swinney, Harry L.

    2007-01-01

    Past work has shown that ions can pass through a membrane more readily in one direction than the other. We demonstrate here in a model and an experiment that for a mixture of small and large particles such asymmetric diffusion can arise solely from an asymmetry in the geometry of the pores of the membrane. Our deterministic simulation considers a two-dimensional gas of elastic disks of two sizes diffusing through a membrane, and our laboratory experiment examines the diffusion of glass beads of two sizes through a metal membrane. In both experiment and simulation, the membrane is permeable only to the smaller particles, and the asymmetric pores lead to an asymmetry in the diffusion rates of these particles. The presence of even a small percentage of large particles can clog a membrane, preventing passage of the small particles in one direction while permitting free flow of the small particles in the other direction. The purely geometric kinetic constraints may play a role in common biological contexts such as membrane ion channels. PMID:17522257

  13. Linguistic geometry for technologies procurement

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Vladimir; Umanskiy, Oleg; Boyd, Ron

    2005-05-01

    In the modern world of rapidly rising prices of new military hardware, the importance of Simulation Based Acquisition (SBA) is hard to overestimate. With SAB, DOD would be able to test, develop CONOPS for, debug, and evaluate new conceptual military equipment before actually building the expensive hardware. However, only recently powerful tools for real SBA have been developed. Linguistic Geometry (LG) permits full-scale modeling and evaluation of new military technologies, combinations of hardware systems and concepts of their application. Using LG tools, the analysts can create a gaming environment populated with the Blue forces armed with the new conceptual hardware as well as with appropriate existing weapons and equipment. This environment will also contain the intelligent enemy with appropriate weaponry and, if desired, with a conceptual counters to the new Blue weapons. Within such LG gaming environment, the analyst can run various what-ifs with the LG tools providing the simulated combatants with strategies and tactics solving their goals with minimal resources spent.

  14. Eye movements and information geometry.

    PubMed

    Lenz, Reiner

    2016-08-01

    The human visual system uses eye movements to gather visual information. They act as visual scanning processes and can roughly be divided into two different types: small movements around fixation points and larger movements between fixation points. The processes are often modeled as random walks, and recent models based on heavy tail distributions, also known as Levý flights, have been used in these investigations. In contrast to these approaches we do not model the stochastic processes, but we will show that the step lengths of the movements between fixation points follow generalized Pareto distributions (GPDs). We will use general arguments from the theory of extreme value statistics to motivate the usage of the GPD and show empirically that the GPDs provide good fits for measured eye tracking data. In the framework of information geometry the GPDs with a common threshold form a two-dimensional Riemann manifold with the Fisher information matrix as a metric. We compute the Fisher information matrix for the GPDs and introduce a feature vector describing a GPD by its parameters and different geometrical properties of its Fisher information matrix. In our statistical analysis we use eye tracker measurements in a database with 15 observers viewing 1003 images under free-viewing conditions. We use Matlab functions with their standard parameter settings and show that a naive Bayes classifier using the eigenvalues of the Fisher information matrix provides a high classification rate identifying the 15 observers in the database. PMID:27505658

  15. Cusp geometry in MHD simulations

    NASA Astrophysics Data System (ADS)

    Siscoe, George; Crooker, Nancy; Siebert, Keith; Maynard, Nelson; Weimer, Daniel; White, Willard

    2005-01-01

    The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn dusk asymmetry at high-altitude associated with a dawn dusk component of the IMF, and that at the same time there is also a pronounced dawn dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.

  16. Spectroscopic and biological approach of Ni(II) and Cu(II) complexes of 2-pyridinecarboxaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Sharma, Praveen Kumar

    2008-03-01

    Ni(II) and Cu(II) complexes having the general composition [M(L) 2X 2] [where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Ni(II) and Cu(II), X = Cl -, NO 3- and 1/2 SO 42-] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) complexes whereas tetragonal geometry for Cu(II) except [Cu(L) 2SO 4] which posseses five coordinated geometry. The ligand and its metal complexes were screened against phytopathogenic fungi and bacteria in vitro.

  17. Synthesis, structural characterization, thermal and electrochemical studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes containing thiazolylazo ligands

    NASA Astrophysics Data System (ADS)

    Chavan, S. S.; Sawant, V. A.

    2010-02-01

    Some thiazolylazo derivatives and their metal complexes of the type [M(L)(H 2O)Cl]; M = Mn(II), Co(II), Ni(II), Cu(II) and L = 6-(2'-thiazolylazo)-2-mercapto-quinazolin-4-one (HL 1), 6-(4'-phenyl-2'-thiazolylazo)-2-mercapto-quinazolin-4-one (HL 2), 6-(2'-thiazolylazo)-2-mercapto-3-( m-tolyl)-quinazolin-4-one (HL 3) and 6-(4'-phenyl-2'-thiazolylazo)-2-mercapto-3-( m-tolyl)-quinazolin-4-one (HL 4) have been prepared. All the complexes were characterized on the basis of elemental analysis, molar conductance, magnetic moment, IR, UV-vis, ESR, TG-DTA and powder X-ray diffraction studies. IR spectra of these complexes reveal that the complex formation occurred through thiazole nitrogen, azo nitrogen, imino nitrogen and sulfur atom of the ligands. On the basis of electronic spectral data and magnetic susceptibility measurement octahedral geometry has been proposed for the Mn(II), Co(II) and Ni(II) complexes and distorted octahedral geometry for the Cu(II) complexes. Electrochemical behavior of Ni(II) complexes exhibit quasireversible oxidation corresponding to Ni(III)/Ni(II) couple along with ligand reduction. X-ray diffraction study is used to elucidate the crystal structure of the complexes.

  18. Amoeboid motion in confined geometry

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Thiébaud, M.; Hu, W.-F.; Farutin, A.; Rafaï, S.; Lai, M.-C.; Peyla, P.; Misbah, C.

    2015-11-01

    Many eukaryotic cells undergo frequent shape changes (described as amoeboid motion) that enable them to move forward. We investigate the effect of confinement on a minimal model of amoeboid swimmer. A complex picture emerges: (i) The swimmer's nature (i.e., either pusher or puller) can be modified by confinement, thus suggesting that this is not an intrinsic property of the swimmer. This swimming nature transition stems from intricate internal degrees of freedom of membrane deformation. (ii) The swimming speed might increase with increasing confinement before decreasing again for stronger confinements. (iii) A straight amoeoboid swimmer's trajectory in the channel can become unstable, and ample lateral excursions of the swimmer prevail. This happens for both pusher- and puller-type swimmers. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. In this study, we combine numerical and theoretical analyses.

  19. Reference duality and representation duality in information geometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    2015-01-01

    Classical information geometry prescribes, on the parametric family of probability functions Mθ: (i) a Riemannian metric given by the Fisher information; (ii) a pair of dual connections (giving rise to the family of α-connections) that preserve the metric under parallel transport by their joint actions; and (iii) a family of (non-symmetric) divergence functions (α-divergence) defined on Mθ × Mθ, which induce the metric and the dual connections. The role of α parameter, as used in α-connection and in α-embedding, is not commonly differentiated. For instance, the case with α = ±1 may refer either to dually-flat (e- or m-) connections or to exponential and mixture families of density functions. Here we illuminate that there are two distinct types of duality in information geometry, one concerning the referential status of a point (probability function, normalized or denormalized) expressed in the divergence function ("reference duality") and the other concerning the representation of probability functions under an arbitrary monotone scaling ("representation duality"). They correspond to, respectively, using α as a mixture parameter for constructing divergence functions or as a power exponent parameter for monotone embedding of probability functions. These two dualities are coupled into referential-representational biduality for manifolds of denormalized probability functions with α-Hessian structure (i.e, transitively flat α-geometry) and for manifolds induced from homogeneous divergence functions with (α,β)-parameters but one-parameter family of (α ṡ β)-connections.

  20. PREFACE: Water in confined geometries

    NASA Astrophysics Data System (ADS)

    Rovere, Mauro

    2004-11-01

    The study of water confined in complex systems in solid or gel phases and/or in contact with macromolecules is relevant to many important processes ranging from industrial applications such as catalysis and soil chemistry, to biological processes such as protein folding or ionic transport in membranes. Thermodynamics, phase behaviour and the molecular mobility of water have been observed to change upon confinement depending on the properties of the substrate. In particular, polar substrates perturb the hydrogen bond network of water, inducing large changes in the properties upon freezing. Understanding how the connected random hydrogen bond network of bulk water is modified when water is confined in small cavities inside a substrate material is very important for studies of stability and the enzymatic activity of proteins, oil recovery or heterogeneous catalysis, where water-substrate interactions play a fundamental role. The modifications of the short-range order in the liquid depend on the nature of the water-substrate interaction, hydrophilic or hydrophobic, as well as on its spatial range and on the geometry of the substrate. Despite extensive study, both experimentally and by computer simulation, there remain a number of open problems. In the many experimental studies of confined water, those performed on water in Vycor are of particular interest for computer simulation and theoretical studies since Vycor is a porous silica glass characterized by a quite sharp distribution of pore sizes and a strong capability to absorb water. It can be considered as a good candidate for studying the general behaviour of water in hydrophilic nanopores. But there there have been a number of studies of water confined in more complex substrates, where the interpretation of experiments and computer simulation is more difficult, such as in zeolites or in aerogels or in contact with membranes. Of the many problems to consider we can mention the study of supercooled water. It is

  1. Detonation diffraction through different geometries

    NASA Astrophysics Data System (ADS)

    Sorin, Rémy; Zitoun, Ratiba; Khasainov, Boris; Desbordes, Daniel

    2009-04-01

    We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c = k c · λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter ( D/ d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/ λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/ d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/ λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/ λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.

  2. Quantum groups: Geometry and applications

    SciTech Connect

    Chu, C.S.

    1996-05-13

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.

  3. Stop Teaching and Let Students Learn Geometry

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Adu-Gyamfi, Kwaku

    2011-01-01

    For many high school students as well as preservice teachers, geometry can be difficult to learn without experiences that allow them to build their own understanding. The authors' approach to geometry instruction--with its integration of content, multiple representations, real-world examples, reading and writing, communication and collaboration as…

  4. Improving African American Achievement in Geometry Honors

    ERIC Educational Resources Information Center

    Mims, Adrian B.

    2010-01-01

    This case study evaluated the significance of implementing an enrichment mathematics course during the summer to rising African American ninth graders entitled, "Geometry Honors Preview." In the past, 60 to 70 percent of African American students in this school district had withdrawn from Geometry Honors by the second academic quarter. This study…

  5. Normal faults geometry and morphometry on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.

    2014-04-01

    In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.

  6. Teaching Geometry to Visually Impaired Students

    ERIC Educational Resources Information Center

    Pritchard, Christine K.; Lamb, John H.

    2012-01-01

    NCTM (2000) described geometry as "a means of describing, analyzing, and understanding the world and seeing beauty in its structures" (p. 309). Dossey et al. (2002) captured the essence of this aspect of visualization by stating that geometry fosters in students an ability to "visualize and mentally manipulate geometric objects." (p. 200).…

  7. Teaching Geometry through Problem-Based Learning

    ERIC Educational Resources Information Center

    Schettino, Carmel

    2011-01-01

    About seven years ago, the mathematics teachers at the author's secondary school came to the conclusion that they were not satisfied with their rather traditional geometry textbook. The author had already begun using a problem-based approach to teaching geometry in her classes, a transition for her and her students that inspired her to write about…

  8. Quilt Blocks: Writing in the Geometry Classroom

    ERIC Educational Resources Information Center

    Gibson, Michelle; Thomas, Timothy G.

    2005-01-01

    The introduction of quilt pattern consisting of many quilt blocks formed by congruent triangles, for writing by the students in the geometry classrooms, is studied. It is found that the students enjoyed this method and writing also helped in understanding the geometric concepts expanding their vocabulary in geometry.

  9. A Multivariate Model of Achievement in Geometry

    ERIC Educational Resources Information Center

    Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha

    2014-01-01

    Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…

  10. An approach for management of geometry data

    NASA Technical Reports Server (NTRS)

    Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.

    1980-01-01

    The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.

  11. Teaching Molecular Geometry with the VSEPR Model

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.

    2004-01-01

    The first introduction to molecular geometry should be through the simple and easily understood VSEPR model, as the Valence Bond Theory and MO Theory suffer from limitations as far as understanding molecular geometry is concerned. The VSEPR model gives a perfectly satisfactory description of the bonding that follows directly from the Lewis model…

  12. Historical Digressions in Greek Geometry Lessons.

    ERIC Educational Resources Information Center

    Thomaidis, Yannis

    1991-01-01

    Presents an attempt to combine the history of mathematics of ancient Greece with the course on theoretical geometry taught in Greek secondary schools. Three sections present the history of ancient Greek geometry, geometrical constructions using straightedges and compasses, and an application of Ptolemy's theorem in solving ancient astronomy…

  13. The Microcomputer and Instruction in Geometry.

    ERIC Educational Resources Information Center

    Kantowski, Mary Grace

    1981-01-01

    The microcomputer has great potential for making high school geometry more stimulating and more easily understood by the students. The microcomputer can facilitate instruction in both the logico-deductive and spatial-visual aspects of geometry through graphics representations, simulation of motion, and its capability of interacting with the…

  14. Computing Bisectors in a Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Botana, Francisco

    2013-01-01

    In this note, an approach combining dynamic geometry and automated deduction techniques is used to study the bisectors between points and curves. Usual teacher constructions for bisectors are discussed, showing that inherent limitations in dynamic geometry software impede their thorough study. We show that the interactive sketching of bisectors…

  15. Increased Knowledge in Geometry and Instructional Practice.

    ERIC Educational Resources Information Center

    Swafford, Jane O.; And Others

    1997-01-01

    Examines the effects on instruction of an intervention program designed to enhance teachers' knowledge of geometry and their knowledge of research on student cognition in geometry. Findings indicate significant gains in content knowledge and in van Hiele level, and marked changes in what was taught, how it was taught, and the characteristics…

  16. Linking Theory and Practice in Teaching Geometry

    ERIC Educational Resources Information Center

    Groth, Randall E.

    2005-01-01

    Several examples proved Van Hiele theory to be a useful ingredient in teaching of a summer course for high school students who had failed geometry during the school year are discussed. The theory provided a framework to help organize and reflect upon instruction for some key concepts in geometry.

  17. Making Euclidean Geometry Compulsory: Are We Prepared?

    ERIC Educational Resources Information Center

    Van Putten, Sonja; Howie, Sarah; Stols, Gerrit

    2010-01-01

    This study investigated the attitude towards, as well as the level of understanding of Euclidean geometry in pre-service mathematics education (PME) students. In order to do so, a case study was undertaken within which a one group pre-post-test procedure was conducted around a geometry module, and a representative group of students was interviewed…

  18. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  19. Reasoning by Contradiction in Dynamic Geometry

    ERIC Educational Resources Information Center

    Baccaglini-Frank, Anna; Antonini, Samuele; Leung, Allen; Mariotti, Maria Alessandra

    2013-01-01

    This paper addresses contributions that dynamic geometry systems (DGSs) may give in reasoning by contradiction in geometry. We present analyses of three excerpts of students' work and use the notion of pseudo object, elaborated from previous research, to show some specificities of DGS in constructing proof by contradiction. In particular, we…

  20. The Geometry of the Universe: Part 2

    ERIC Educational Resources Information Center

    Francis, Stephanie

    2009-01-01

    Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…

  1. Four-Dimensional Geometry: An Introduction.

    ERIC Educational Resources Information Center

    Hess, Adrien L.

    This document presents six chapters on four-dimensional geometry, whose titles are: (1) A Brief History; (2) What Is Four-Dimensional Geometry?; (3) Selected Drawings and Models; (4) How to Study the Configurations; (5) Selected Topics; and (6) Applications. The text, suitable for students in advanced levels of secondary school mathematics,…

  2. Calculus of Elementary Functions, Part II. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part II, contains material designed to follow Part I. Chapters included in this text are: (6) Derivatives of Exponential and Related Functions; (7) Area and…

  3. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    SciTech Connect

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  4. Inquiry-Based Instruction in Geometry: The Impact on End of Course Geometry Test Scores

    ERIC Educational Resources Information Center

    Lewis, Betty

    2009-01-01

    Research examining instruction in geometry and standardized tests suggests that students have difficulty grasping geometry concepts and developing problem solving skills. The purpose of this study was to examine the relationship between the use of inquiry-based strategies in a geometry class and achievement on the end of course test (EOCT) and to…

  5. A Vector Approach to Euclidean Geometry: Vector Spaces and Affine Geometry, Volume 1. Teacher's Edition.

    ERIC Educational Resources Information Center

    Vaughan, Herbert E.; Szabo, Steven

    This is the teacher's edition of a text for the first year of a two-year high school geometry course. The course bases plane and solid geometry and trigonometry on the fact that the translations of a Euclidean space constitute a vector space which has an inner product. Volume 1 deals largely with affine geometry, and the notion of dimension is…

  6. Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry

    ERIC Educational Resources Information Center

    Mammana, M. F.; Micale, B.; Pennisi, M.

    2012-01-01

    We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…

  7. Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry

    ERIC Educational Resources Information Center

    Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe

    2012-01-01

    This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…

  8. Visuospatial Working Memory in Intuitive Geometry, and in Academic Achievement in Geometry

    ERIC Educational Resources Information Center

    Giofre, David; Mammarella, Irene C.; Ronconi, Lucia; Cornoldi, Cesare

    2013-01-01

    A study was conducted on the involvement of visuospatial working memory (VSWM) in intuitive geometry and in school performance in geometry at secondary school. A total of 166 pupils were administered: (1) six VSWM tasks, comprising simple storage and complex span tasks; and (2) the intuitive geometry task devised by Dehaene, Izard, Pica, and…

  9. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P.

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.

  10. Heuristic Approach to the Schwarzschild Geometry

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    In this article I present a simple Newtonian heuristic for motivating a weak-field approximation for the spacetime geometry of a point particle. The heuristic is based on Newtonian gravity, the notion of local inertial frames (the Einstein equivalence principle), plus the use of Galilean coordinate transformations to connect the freely falling local inertial frames back to the "fixed stars." Because of the heuristic and quasi-Newtonian manner in which the specific choice of spacetime geometry is motivated, we are at best justified in expecting it to be a weak-field approximation to the true spacetime geometry. However, in the case of a spherically symmetric point mass the result is coincidentally an exact solution of the full vacuum Einstein field equations — it is the Schwarzschild geometry in Painlevé-Gullstrand coordinates. This result is much stronger than the well-known result of Michell and Laplace whereby a Newtonian argument correctly estimates the value of the Schwarzschild radius — using the heuristic presented in this article one obtains the entire Schwarzschild geometry. The heuristic also gives sensible results — a Riemann flat geometry — when applied to a constant gravitational field. Furthermore, a subtle extension of the heuristic correctly reproduces the Reissner-Nordström geometry and even the de Sitter geometry. Unfortunately the heuristic construction is not truly generic. For instance, it is incapable of generating the Kerr geometry or anti-de Sitter space. Despite this limitation, the heuristic does have useful pedagogical value in that it provides a simple and direct plausibility argument (not a derivation) for the Schwarzschild geometry — suitable for classroom use in situations where the full power and technical machinery of general relativity might be inappropriate. The extended heuristic provides more challenging problems — suitable for use at the graduate level.

  11. Stokes flow in ellipsoidal geometry

    NASA Astrophysics Data System (ADS)

    Vafeas, Panayiotis; Dassios, George

    2006-09-01

    Particle-in-cell models for Stokes flow through a relatively homogeneous swarm of particles are of substantial practical interest, because they provide a relatively simple platform for the analytical or semianalytical solution of heat and mass transport problems. Despite the fact that many practical applications involve relatively small particles (inorganic, organic, biological) with axisymmetric shapes, the general consideration consists of rigid particles of arbitrary shape. The present work is concerned with some interesting aspects of the theoretical analysis of creeping flow in ellipsoidal, hence nonaxisymmetric domains. More specifically, the low Reynolds number flow of a swarm of ellipsoidal particles in an otherwise quiescent Newtonian fluid, that move with constant uniform velocity in an arbitrary direction and rotate with an arbitrary constant angular velocity, is analyzed with an ellipsoid-in-cell model. The solid internal ellipsoid represents a particle of the swarm. The external ellipsoid contains the ellipsoidal particle and the amount of fluid required to match the fluid volume fraction of the swarm. The nonslip flow condition on the surface of the solid ellipsoid is supplemented by the boundary conditions on the external ellipsoidal surface which are similar to those of the sphere-in-cell model of Happel (self-sufficient in mechanical energy). This model requires zero normal velocity component and shear stress. The boundary value problem is solved with the aim of the potential representation theory. In particular, the Papkovich-Neuber complete differential representation of Stokes flow, valid for nonaxisymmetric geometries, is considered here, which provides the velocity and total pressure fields in terms of harmonic ellipsoidal eigenfunctions. The flexibility of the particular representation is demonstrated by imposing some conditions, which made the calculations possible. It turns out that the velocity of first degree, which represents the leading

  12. Spectroscopic evaluation for VO(II), Ni(II), Pd(II) and Cu(II) complexes derived from thiosemicarbazide: A special emphasis on EPR study and DNA cleavage

    NASA Astrophysics Data System (ADS)

    El-Metwally, Nashwa M.; Al-Hazmi, Gamil A. A.

    2013-04-01

    Some thiosemicarbazide complexes were prepared and deliberately investigated by all allowed tools. The ligand coordinates as a mono negative bidentate towards VO(II) and Ni(II) as well as a neutral bidentate towards Pd(II) and Cu(II) ions. Electronic spectral data beside the magnetic measurements facilitate the structural geometry proposal. EPR spectra of Cu(II) and VO(II) complexes were recorded in their solid state. Spin Hamiltonian parameters and molecular orbital coefficient for Cu(II) and VO(II) complexes were calculated and supporting the octahedral geometry of Cu(II) complex and a square pyramidal for VO(II) one. The biological activity investigation was studied by the use of all prepared compounds. The VO(II) and Cu(II) complexes display the susceptible biotoxicity against a gram-positive bacterium. Also, Cu(II) complex displays the same toxicity against gram-negative bacteria used. The effect of all compounds on DNA were photographed. A successive degradation for the DNA target was observed with Pd(II) and Ni(II) complexes beside their original ligand.

  13. Modeling of Internal State and Performance of an Ironmaking Blast Furnace: Slot vs Sector Geometries

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2016-04-01

    Mathematical modeling is a cost-effective method to understand internal state and predict performance of ironmaking blast furnace (BF) for improving productivity and maintaining stability. In the past studies, both slot and sector geometries were used for BF modeling. In this paper, a mathematical model is described for simulating the complex behaviors of solid, gas and liquid multiphase flow, heat and mass transfers, and chemical reactions in a BF. Then the model is used to compare different model configurations, viz. slot and sector geometries by investigating their effects on predicted behaviors, in terms of two aspects: (i) internal state including cohesive zone, velocity, temperature, components concentration, reduction degree, gas utilization, and (ii) performance indicators including liquid output at the bottom and gas utilization rate at the furnace top. The comparisons show that on one hand, predictions of internal state of the furnace such as fluid flow and thermo-chemical phenomena using the slot and sector geometries are qualitatively comparable but quantitatively different. Both sector and slot geometries give a similar cohesive zone shape but the sector geometry gives a higher cohesive zone near the wall and faster reduction. On the other hand, the two geometries can produce similar performance indicators including gas utilization at the furnace top and liquid output at the bottom. Such a study is useful in selecting geometry for numerically examining BF operation with respect to different needs.

  14. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes.

    PubMed

    Refat, Moamen S; el-Metwaly, Nashwa M

    2011-10-15

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature. PMID:21763185

  15. Spectroscopic and fluorescence studies on Mn(II), Co(II), Ni(II) and Cu(II) complexes with NO donor fluorescence dyes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    2011-10-01

    The reactions of the two common dyes [2TMPACT and 4PENI] with Mn(II), Co(II), Ni(II) and Cu(II) ions were done. All the isolated complexes have been characterized by physicochemical and spectroscopic techniques. The IR data reflect the bidentate mode of 2TMPACT towards the mononuclear complex [Mn(II)] even its tetradentate in binuclear complexes [Co(II) and Cu(II)]. However, the bidentate mode is the only behavior of 4PENI ligand towards each metal ion in its mononuclear complexes. The UV-vis spectral analysis beside the magnetic moment measurements are proposed different geometries concerning each metal ions with the two ligands under investigation, as the Mn(II)-2TMPACT complex is an octahedral but Mn(II)-4PENI is a tetrahedral geometry. All the synthesized compounds are thermogravimetrically investigated. The proposed thermal decomposition was discussed for each compound with each step as well as, the kinetic parameters were calculated for all preferrible decomposition steps. The mass spectroscopy tool was used to emphasis on the suitable molecular formula proposed and the fragmentation patterns were displayed. The fluorescence properties of the synthesized ligands and their complexes were studied in DMSO at room temperature.

  16. tt * geometry in 3 and 4 dimensions

    NASA Astrophysics Data System (ADS)

    Cecotti, Sergio; Gaiotto, Davide; Vafa, Cumrun

    2014-05-01

    We consider the vacuum geometry of supersymmetric theories with 4 supercharges, on a flat toroidal geometry. The 2 dimensional vacuum geometry is known to be captured by the tt * geometry. In the case of 3 dimensions, the parameter space is ( T 2 × ) N and the vacuum geometry turns out to be a solution to a generalization of monopole equations in 3 N dimensions where the relevant topological ring is that of line operators. We compute the generalization of the 2d cigar amplitudes, which lead to S 2 × S 1 or S 3 partition functions which are distinct from the supersymmetric partition functions on these spaces, but reduce to them in a certain limit. We show the sense in which these amplitudes generalize the structure of 3d Chern-Simons theories and 2d RCFT's. In the case of 4 dimensions the parameter space is of the form X M,N = ( T 3 × ) M × T 3 N , and the vacuum geometry is a solution to a mixture of generalized monopole equations and generalized instanton equations (known as hyper-holomorphic connections). In this case the topological rings are associated to surface operators. We discuss the physical meaning of the generalized Nahm transforms which act on all of these geometries.

  17. Detection of edges using local geometry

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. A.; Manohar, M.

    1989-01-01

    Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing.

  18. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Juno II launch vehicle, shown here, was a modified Jupiter Intermediate-Range Ballistic missionile, developed by Dr. Wernher von Braun and the rocket team at Redstone Arsenal in Huntsville, Alabama. Between December 1958 and April 1961, the Juno II launched space probes Pioneer III and IV, as well as Explorer satellites VII, VIII and XI.

  19. Geometry of Thin Nematic Elastomer Sheets

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Sharon, Eran; Kupferman, Raz

    A thin sheet of nematic elastomer attains 3D configurations depending on the nematic director field upon heating. In this talk we describe the intrinsic geometry of such a sheet, and derive an expression for the metric induced by general smooth nematic director fields. Furthermore, we investigate the reverse problem of constructing a director field that induces a specified 2D geometry. We provide an explicit analytical recipe for constructing any surface of revolution using this method. We demonstrate how the design of an arbitrary 2D geometry is accessible using approximate numerical methods.

  20. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Nair, M. Sivasankaran; Joseyphus, R. Selwin

    2008-09-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and DL-α-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H 2O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.

  1. Emergence of wave equations from quantum geometry

    NASA Astrophysics Data System (ADS)

    Majid, Shahn

    2012-10-01

    We argue that classical geometry should be viewed as a special limit of noncommutative geometry in which aspects which are inter-constrained decouple and appear arbitrary in the classical limit. In particular, the wave equation is really a partial derivative in a unified extra-dimensional noncommutative geometry and arises out of the greater rigidity of the noncommutative world not visible in the classical limit. We provide an introduction to this 'wave operator' approach to noncommutative geometry as recently used[27] to quantize any static spacetime metric admitting a spatial conformal Killing vector field, and in particular to construct the quantum Schwarzschild black hole. We also give an introduction to our related result that every classical Riemannian manifold is a shadow of a slightly noncommutative one wherein the meaning of the classical Ricci tensor becomes very natural as the square of a generalised braiding.

  2. Writing and Speaking to Learn Geometry.

    ERIC Educational Resources Information Center

    Myers, Nadine C.

    1991-01-01

    Describes an intermediate level, college geometry course that is designated as both writing and speaking intensive. Suggests methods that utilize writing and speaking activities to enhance student learning, and discusses student reactions to the course. (nine references) (JJK)

  3. The geometry of dual isomonodromic deformations

    NASA Astrophysics Data System (ADS)

    Sanguinetti, G.; Woodhouse, N. M. J.

    2004-09-01

    The JMMS equations are studied using the geometry of the spectral curve of a pair of dual systems. It is shown that the equations can be represented as time-independent Hamiltonian flows on a Jacobian bundle.

  4. Minimal five dimensional supergravities and complex geometries

    SciTech Connect

    Herdeiro, Carlos A. R.

    2010-07-28

    We discuss the relation between solutions admitting Killing spinors of minimal super-gravities in five dimensions, both timelike and null, and complex geometries. For the timelike solutions the results may be summarised as follows. In the ungauged case (vanishing cosmological constant {Lambda} 0) the solutions are determined in terms of a hyper-Kaehler base space; in the gauged case ({Lambda}<0) the complex geometry is Kaehler; in the de Sitter case ({Lambda}>0) the complex geometry is hyper-Kaehler with torsion (HKT). For the null solutions we shall focus on the de Sitter case, for which the solutions are determined by a constrained Einstein-Weyl 3-geometry called Gauduchon-Tod space. The method for constructing explicit solutions is discussed in each case.

  5. Narrow Vertical Caves: Mapping Volcanic Fissure Geometries

    NASA Astrophysics Data System (ADS)

    Parcheta, C.; Nash, J.; Parness, A.; Mitchell, K. L.; Pavlov, C. A.

    2015-10-01

    Volcanic conduits are difficult to quantify, but their geometry fundamentally influences how eruptions occur. We robotically map old fissure conduits - elongated narrow cracks in the ground that transported magma to the surface during an eruption.

  6. The Oak Leaf: Connecting Geometry and Biology.

    ERIC Educational Resources Information Center

    Snyder, Judy

    1999-01-01

    Presents an activity that integrates biology and mathematics. Involves students in actual biological research and uses geometry, statistics, and computers to interpret data about the leaves of a tree. (ASK)

  7. Emergence of wave equations from quantum geometry

    SciTech Connect

    Majid, Shahn

    2012-09-24

    We argue that classical geometry should be viewed as a special limit of noncommutative geometry in which aspects which are inter-constrained decouple and appear arbitrary in the classical limit. In particular, the wave equation is really a partial derivative in a unified extra-dimensional noncommutative geometry and arises out of the greater rigidity of the noncommutative world not visible in the classical limit. We provide an introduction to this 'wave operator' approach to noncommutative geometry as recently used[27] to quantize any static spacetime metric admitting a spatial conformal Killing vector field, and in particular to construct the quantum Schwarzschild black hole. We also give an introduction to our related result that every classical Riemannian manifold is a shadow of a slightly noncommutative one wherein the meaning of the classical Ricci tensor becomes very natural as the square of a generalised braiding.

  8. Fractal Geometry in the High School Classroom.

    ERIC Educational Resources Information Center

    Camp, Dane R.

    1995-01-01

    Discusses classroom activities that involve applications of fractal geometry. Includes an activity sheet that explores Pascal's triangle, Sierpinsky's gasket, and modular arithmetic in two and three dimensions. (Author/MKR)

  9. Robot Geometry and the High School Curriculum.

    ERIC Educational Resources Information Center

    Meyer, Walter

    1988-01-01

    Description of the field of robotics and its possible use in high school computational geometry classes emphasizes motion planning exercises and computer graphics displays. Eleven geometrical problems based on robotics are presented along with the correct solutions and explanations. (LRW)

  10. Computational field simulation of temporally deforming geometries

    SciTech Connect

    Boyalakuntla, K.; Soni, B.K.; Thornburg, H.J.

    1996-12-31

    A NURBS based moving grid generation technique is presented to simulate temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such a grid for every time step. The Non Uniform Rational B Spline (NURBS) based control point information is used for geometry description. The parametric definition of the NURBS is utilized in the development of the methodology to generate well distributed grid in a timely manner. The numerical simulation involving temporally deforming geometry is accomplished by appropriately linking to a unsteady, multi-block, thin layer Navier-Stokes solver. The present method greatly reduces CPU requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. This current effort is the first step towards multidisciplinary design optimization, which involves coupling aerodynamic heat transfer and structural analysis. Applications include simulation of temporally deforming bodies.

  11. Structure analysis for plane geometry figures

    NASA Astrophysics Data System (ADS)

    Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi

    2013-12-01

    As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.

  12. Phase distribution in complex geometry conduits

    SciTech Connect

    Lahey, R.T. Jr.; Lopez de Bertodano, M.; Jones, O.C. Jr.

    1992-12-31

    Some of the most important and challenging problems in two-phase flow today have to do with the understanding and prediction of multidimensional phenomena, in particular, lateral phase distribution in both simple and complex geometry conduits. A prior review paper summarized the state-of-the-art in the understanding of phase distribution phenomena, and the ability to perform mechanistic multidimensional predictions. The purpose of this paper is to update that review, with particular emphasis on complex geometry conduit predictive capabilities.

  13. Structural analysis of complexes formed by ethyl 4-phenylthiocarbamoyl piperazine-1-carboxylate with Ni(II), Zn(II) and Cd(II) through spectroscopic and DFT techniques

    NASA Astrophysics Data System (ADS)

    Prakash, Om; Gautam, Priyanka; Dani, R. K.; Nandi, Abhisikta; Singh, N. K.; Singh, Ranjan K.

    2014-04-01

    A piperazine derivative, ethyl 4-phenylthiocarbamoyl piperazine-1-carboxylate and its Ni(II), Zn(II) and Cd(II) complexes have been synthesized and characterized by elemental analyses, magnetic susceptibility measurement, UV-Visible, FTIR, Raman spectroscopic and DFT methods. The Ni(II) and Zn(II) bind through the N and S sites of the two ligand Heptpc and N site of two pyridine molecules. However, the Cd(II) binds through the only N sites of the two ligand Heptpc and N site of two pyridine molecules. On the basis of various techniques used for the characterizations of the complexes, we found that the most possible geometry of the Ni(II) and Zn(II) complexes are distorted octahedral and of the Cd(II) complex is distorted tetrahedral.

  14. Photosystem II

    ScienceCinema

    James Barber

    2010-09-01

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  15. Twisted geometries, twistors, and conformal transformations

    NASA Astrophysics Data System (ADS)

    Lângvik, Miklos; Speziale, Simone

    2016-07-01

    The twisted geometries of spin network states are described by simple twistors, isomorphic to null twistors with a timelike direction singled out. The isomorphism depends on the Immirzi parameter γ and reduces to the identity for γ =∞ . Using this twistorial representation, we study the action of the conformal group SU(2,2) on the classical phase space of loop quantum gravity, described by twisted geometry. The generators of translations and conformal boosts do not preserve the geometric structure, whereas the dilatation generator does. It corresponds to a one-parameter family of embeddings of T*SL(2,C) in twistor space, and its action preserves the intrinsic geometry while changing the extrinsic one—that is the boosts among polyhedra. We discuss the implication of this action from a dynamical point of view and compare it with a discretization of the dilatation generator of the continuum phase space, given by the Lie derivative of the group character. At leading order in the continuum limit, the latter reproduces the same transformation of the extrinsic geometry, while also rescaling the areas and volumes and preserving the angles associated with the intrinsic geometry. Away from the continuum limit, its action has an interesting nonlinear structure but is in general incompatible with the closure constraint needed for the geometric interpretation. As a side result, we compute the precise relation between the extrinsic geometry used in twisted geometries and the one defined in the gauge-invariant parametrization by Dittrich and Ryan and show that the secondary simplicity constraints they posited coincide with those dynamically derived in the toy model of [Classical Quantum Gravity 32, 195015 (2015)].

  16. Geometry-induced protein pattern formation

    PubMed Central

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-01

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in Δ EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems. PMID:26739566

  17. Holomorphic Parabolic Geometries and Calabi-Yau Manifolds

    NASA Astrophysics Data System (ADS)

    McKay, Benjamin

    2011-09-01

    We prove that the only complex parabolic geometries on Calabi-Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.

  18. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  19. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2014-08-01

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, 1H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely.

  20. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings.

    PubMed

    Yousef, T A; Abu El-Reash, G M; Al-Jahdali, M; El-Rakhawy, El-Bastawesy R

    2014-08-14

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, (1)H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely. PMID:24727176

  1. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  2. Geometry of Fractional Quantum Hall Fluids

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young

    2015-03-01

    Fractional quantum Hall (FQH) fluids of two-dimensional electron gases (2DEG) in large magnetic fields are fascinating topological states of matter. As such they are characterized by universal properties such as their fractional quantum Hall conductivity, fractionally charged anyonic excitations and a degeneracy of topological origin on surfaces with the topology of a torus. Quite surprisingly these topological fluids also couple to the geometry on which the 2DEG resides and have universal responses to adiabatic changes in the geometry. These responses are given by a Wen-Zee term (which describes the coupling of the currents to the spin connection of the geometry) and a gravitational Chern-Simons term which reflects the universal energy and momentum transport along the edges of the FQH state. We use a field theory of the FQH states to derive these universal responses. To account for the coupling to the background geometry, we show that the concept of flux attachment needs to be modified and use it to derive the geometric responses from Chern-Simons theories. We show that the resulting composite particles minimally couple to the spin connection of the geometry. Taking account of the framing anomaly of the quantum Chern-Simons theories, we derive a consistent theory of geometric responses from the Chern-Simons effective field theories and from parton constructions, and apply it to both abelian and non-abelian states. This work was supported in part by the NSF Grant DMR-1408713.

  3. Topology Changing Transitions in Bubbling Geometries

    SciTech Connect

    Horava, Petr; Shepard, Peter G.

    2005-02-15

    Topological transitions in bubbling half-BPS Type IIB geometries with SO(4) x SO(4) symmetry can be decomposed into a sequence of n elementary transitions. The half-BPS solution that describes the elementary transition is seeded by a phase space distribution of fermions filling two diagonal quadrants. We study the geometry of this solution in some detail. We show that this solution can be interpreted as a time dependent geometry, interpolating between two asymptotic pp-waves in the far past and the far future. The singular solution at the transition can be resolved in two different ways, related by the particle-hole duality in the effective fermion description. Some universal features of the topology change are governed by two-dimensional Type 0B string theory, whose double scaling limit corresponds to the Penrose limit of AdS_5 x S^5 at topological transition. In addition, we present the full class of geometries describing the vicinity of the most general localized classical singularity that can occur in this class of half-BPS bubbling geometries.

  4. Topology Changing Transitions in Bubbling Geometries

    SciTech Connect

    Horava, Petr; Shepard, Peter G.

    2005-02-15

    Topological transitions in bubbling half-BPS Type IIB geometries with SO(4) x SO(4) symmetry can be decomposed into a sequence of n elementary transitions. The half-BPS solution that describes the elementary transition is seeded by a phase space distribution of fermions filling two diagonal quadrants. We study the geometry of this solution in some detail. We show that this solution can be interpreted as a time dependent geometry, interpolating between two asymptotic pp-waves in the far past and the far future. The singular solution at the transition can be resolved in two different ways, related by the particle-hole duality in the effective fermion description. Some universal features of the topology change are governed by two-dimensional Type 0B string theory, whose double scaling limit corresponds to the Penrose limit of AdS_5 x S5 at topological transition. In addition, we present the full class of geometries describing the vicinity of the most general localized classical singularity that can occur in this class of half-BPS bubbling geometries.

  5. Electronic, epr and magnetic studies of Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-07-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.

  6. Pearson's Functions to Describe FSW Weld Geometry

    SciTech Connect

    Lacombe, D.; Coupard, D.; Tcherniaeff, S.; Girot, F.; Gutierrez-Orrantia, M. E.

    2011-01-17

    Friction stir welding (FSW) is a relatively new joining technique particularly for aluminium alloys that are difficult to fusion weld. In this study, the geometry of the weld has been investigated and modelled using Pearson's functions. It has been demonstrated that the Pearson's parameters (mean, standard deviation, skewness, kurtosis and geometric constant) can be used to characterize the weld geometry and the tensile strength of the weld assembly. Pearson's parameters and process parameters are strongly correlated allowing to define a control process procedure for FSW assemblies which make radiographic or ultrasonic controls unnecessary. Finally, an optimisation using a Generalized Gradient Method allows to determine the geometry of the weld which maximises the assembly tensile strength.

  7. Geometry optimization of branchings in vascular networks

    NASA Astrophysics Data System (ADS)

    Khamassi, Jamel; Bierwisch, Claas; Pelz, Peter

    2016-06-01

    Progress has been made in developing manufacturing technologies which enable the fabrication of artificial vascular networks for tissue cultivation. However, those networks are rudimentary designed with respect to their geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related fluid mechanical stimuli and the avoidance of vessel occlusion. In the present work, a bioinspired geometry optimization for branchings in artificial vascular networks has been conducted. The analysis could be simplified by exploiting self-similarity properties of the system. Design rules in the form of two geometrical parameters, i.e., the branching angle and the radius ratio of the daughter branches, are derived using the wall shear stress as command variable. The numerical values of these parameters are within the range of experimental observations. Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as indicators for diagnoses of vascular diseases or for the layout of vascular grafts.

  8. Geometry of fractional quantum Hall fluids

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; You, Yizhi; Fradkin, Eduardo

    2014-09-01

    We use the field theory description of the fractional quantum Hall states to derive the universal response of these topological fluids to shear deformations and curvature of their background geometry, i.e., the Hall viscosity, and the Wen-Zee term. To account for the coupling to the background geometry, we show that the concept of flux attachment needs to be modified and use it to derive the geometric responses from Chern-Simons theories. We show that the resulting composite particles minimally couple to the spin connection of the geometry. We derive a consistent theory of geometric responses from the Chern-Simons effective field theories and from parton constructions, and apply it to both Abelian and non-Abelian states.

  9. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  10. Gully geometry: what are we measuring?

    NASA Astrophysics Data System (ADS)

    Casalí, J.; Giménez, R.; Campo-Bescós, M. A.

    2015-07-01

    Much of the research on (ephemeral) gully erosion comprises the determination of the geometry of these eroded channels, especially their width and depth. This is not a simple task due to uncertainty generated by the wide range of variability in gully cross section shapes found in the field. However, in the literature, this uncertainty is not recognized so that no criteria for their measurement are indicated. The aim of this work is to make researchers aware of the ambiguity that arises when characterizing the geometry of an ephemeral gully and similar eroded channels. In addition, a measurement protocol is proposed with the ultimate goal of pooling criteria in future works. It is suggested that the geometry of a gully could be characterized through its mean equivalent width and mean equivalent depth, which, together with its length, define an "equivalent prismatic gully" (EPG). The latter would facilitate the comparison between different gullies.

  11. Supersymmetric geometries of IIA supergravity III

    NASA Astrophysics Data System (ADS)

    Gran, Ulf; Papadopoulos, George; von Schultz, Christian

    2016-06-01

    We find that (massive) IIA backgrounds that admit a {G}_2ltimes {mathbb{R}}^8 invariant Killing spinor must exhibit a null Killing vector field which leaves the Killing spinor invariant and that the rotation of the Killing vector field satisfies a certain g2 instanton condition. This result together with those in [4] and [5] complete the classification of geometries of all (massive) IIA backgrounds that preserve one supersymmetry. We also explore the geometry of a class of backgrounds which admit a {G}_2ltimes {mathbb{R}}^8 invariant Killing spinor and where in addition an appropriate 1-form bilinear vanishes. In all cases, we express the fluxes of the theory in terms of the geometry.

  12. Interfacial geometry dictates cancer cell tumorigenicity.

    PubMed

    Lee, Junmin; Abdeen, Amr A; Wycislo, Kathryn L; Fan, Timothy M; Kilian, Kristopher A

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis. PMID:27043781

  13. GEMPAK: An arbitrary aircraft geometry generator

    NASA Technical Reports Server (NTRS)

    Stack, S. H.; Edwards, C. L. W.; Small, W. J.

    1977-01-01

    A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.

  14. Laws of granular solids: geometry and topology.

    PubMed

    DeGiuli, Eric; McElwaine, Jim

    2011-10-01

    In a granular solid, mechanical equilibrium requires a delicate balance of forces at the disordered grain scale. To understand how macroscopic rigidity can emerge in this amorphous solid, it is crucial that we understand how Newton's laws pass from the disordered grain scale to the laboratory scale. In this work, we introduce an exact discrete calculus, in which Newton's laws appear as differential relations at the scale of a single grain. Using this calculus, we introduce gauge variables that describe identically force- and torque-balanced configurations. In a first, intrinsic formulation, we use the topology of the contact network, but not its geometry. In a second, extrinsic formulation, we introduce geometry with the Delaunay triangulation. These formulations show, with exact methods, how topology and geometry in a disordered medium are related by constraints. In particular, we derive Airy's expression for a divergence-free, symmetric stress tensor in two and three dimensions. PMID:22181138

  15. Quantum Monte Carlo simulations in novel geometries

    NASA Astrophysics Data System (ADS)

    Iglovikov, Vladimir

    Quantum Monte Carlo simulations are giving increasing insight into the physics of strongly interacting bosons, spins, and fermions. Initial work focused on the simplest geometries, like a 2D square lattice. Increasingly, modern research is turning to more rich structures such as honeycomb lattice of graphene, the Lieb lattice of the CuO2 planes of cuprate superconductors, the triangular lattice, and coupled layers. These new geometries possess unique features which affect the physics in profound ways, eg a vanishing density of states and relativistic dispersion ("Dirac point'') of a honeycomb lattice, frustration on a triangular lattice, and a flat bands on a Lieb lattice. This thesis concerns both exploring the performance of QMC algorithms on different geometries(primarily via the "sign problem'') and also applying those algorithms to several interesting open problems.

  16. Students' misconceptions and errors in transformation geometry

    NASA Astrophysics Data System (ADS)

    Ada, Tuba; Kurtuluş, Aytaç

    2010-10-01

    This study analyses the students' performances in two-dimensional transformation geometry and explores the mistakes made by the students taking the analytic geometry course given by researchers. An examination was given to students of Education Faculties who have taken the analytic geometry course at Eskisehir Osmangazi University in Turkey. The subject of this study included 126 third-year students in the Department of Mathematics Education. Data were collected from a seven questions exam. This exam consisted of three procedural questions, two conceptual questions and two procedural-conceptual questions. In data analysis, a descriptor code key was used. When the students' overall performances were considered for all seven questions, the results showed that they did not understand how to apply rotation transformation. The mostly observed mistakes showed that the students seemed to know the algebraic meaning of translation and also rotation but they did not seem to understand the geometric meaning of them.

  17. Supersymmetric geometries of IIA supergravity III

    NASA Astrophysics Data System (ADS)

    Gran, Ulf; Papadopoulos, George; von Schultz, Christian

    2016-06-01

    We find that (massive) IIA backgrounds that admit a {G}_2ltimes {{R}}^8 invariant Killing spinor must exhibit a null Killing vector field which leaves the Killing spinor invariant and that the rotation of the Killing vector field satisfies a certain g2 instanton condition. This result together with those in [4] and [5] complete the classification of geometries of all (massive) IIA backgrounds that preserve one supersymmetry. We also explore the geometry of a class of backgrounds which admit a {G}_2ltimes {{R}}^8 invariant Killing spinor and where in addition an appropriate 1-form bilinear vanishes. In all cases, we express the fluxes of the theory in terms of the geometry.

  18. Aspects of electrostatics in BTZ geometries

    NASA Astrophysics Data System (ADS)

    Herrera, Y.; Hurovich, V.; Santillán, O.; Simeone, C.

    2015-10-01

    In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d (r ,r +1 ) between two particles located at a radius r and r +1 in the geometry tends to zero when r →∞. This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.

  19. Using Dynamic Geometry Software to Improve Eight Grade Students' Understanding of Transformation Geometry

    ERIC Educational Resources Information Center

    Guven, Bulent

    2012-01-01

    This study examines the effect of dynamic geometry software (DGS) on students' learning of transformation geometry. A pre- and post-test quasi-experimental design was used. Participants in the study were 68 eighth grade students (36 in the experimental group and 32 in the control group). While the experimental group students were studying the…

  20. Performance on Middle School Geometry Problems with Geometry Clues Matched to Three Different Cognitive Styles

    ERIC Educational Resources Information Center

    Anderson, Karen L.; Casey, M. Beth; Thompson, William L.; Burrage, Marie S.; Pezaris, Elizabeth; Kosslyn, Stephen M.

    2008-01-01

    This study investigated the relationship between 3 ability-based cognitive styles (verbal deductive, spatial imagery, and object imagery) and performance on geometry problems that provided different types of clues. The purpose was to determine whether students with a specific cognitive style outperformed other students, when the geometry problems…

  1. Coordinate Geometry. Geometry Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Brotherton, Sheila; And Others

    This is one of a series of geometry modules developed for use by secondary students in a laboratory setting. This module includes: (1) Pythagorean Theorem (with review of radicals); (2) Basic Coordinate Geometry (distance and midpoint, slope, slope of parallels and perpendiculars, and equation of a line); (3) Selecting Coordinates; (4) Coordinate…

  2. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  3. Coordination behavior of tetraaza [N₄] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: synthesis, spectroscopic characterization and anticancer activity.

    PubMed

    El-Boraey, Hanaa A

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N(4)] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate d(x2-y2) ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC(50)=25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line. PMID:22765944

  4. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry

    SciTech Connect

    Pease, J.H.

    1989-12-01

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.

  5. A tool for bistatic sar geometry determinations

    NASA Astrophysics Data System (ADS)

    Hawkins, R.; Gibson, J.; Antonik, P.; Saper, R.; Seymour, M.; St Hilaire, M.; Livingstone, C.

    The geometry of wide angle bistatic SAR is somewhat more complex than that of conventional SAR because the transmitter and receiver are displaced considerably. Constant bistatic range contours projected onto the geoid form ellipse-like profiles with the transmitter and receiver located at the two foci. Constant Doppler lines intersect the range ellipses and allow under special circumstances a simple orthogonal basis for processing and analysis. This paper illustrates a simple GUI- based tool developed in a MatLab that uses satellite orbit parameters and RADARSAT-1 data to simulate the bistatic geometry and scattering for a tower- based receiver.

  6. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  7. Thermal geometry from CFT at finite temperature

    NASA Astrophysics Data System (ADS)

    Gan, Wen-Cong; Shu, Fu-Wen; Wu, Meng-He

    2016-09-01

    We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking-Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.

  8. Congruent gridding for developable geometries using NURBS

    SciTech Connect

    Fritts, M.; Weems, K.

    1996-12-31

    This paper discusses recent progress in developing an interactive system built upon NURBS geometry modeling to ensure congruence of surface grids and surface geometries for structured and unstructured gridders. The code system is being developed as part of a collaborative effort among Nausea/Carderock Division, NASA/Lewis, Boeing Computer Services, and SAIC/Ship Technology Division, and uses the Navy library of NURBS FORTRAN subroutines, DT-NURBS, to allow incorporation into a wide variety of gridding codes and flow solvers. Although this paper will present examples relevant to the design of ship hulls only, the code system is being developed to support the design and manufacture of complex mechanical systems.

  9. SABRINA - an interactive geometry modeler for MCNP

    SciTech Connect

    West, J.T.; Murphy, J. )

    1988-01-01

    One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.

  10. Fields and Laplacians on Quantum Geometries

    NASA Astrophysics Data System (ADS)

    Thürigen, Johannes

    2015-01-01

    In fundamentally discrete approaches to quantum gravity such as loop quantum gravity, spin-foam models, group field theories or Regge calculus observables are functions on discrete geometries. We present a bra-ket formalism of function spaces and discrete calculus on abstract simplicial complexes equipped with geometry and apply it to the mentioned theories of quantum gravity. In particular we focus on the quantum geometric Laplacian and discuss as an example the expectation value of the heat kernel trace from which the spectral dimension follows.

  11. Radiation transport in dust in disk geometry

    NASA Technical Reports Server (NTRS)

    Chun, Ming Leung

    1986-01-01

    The main objective of the research program is twofold: (1) to develop a computer code to solve the problem of scattering, absorption and emission of photons by dust grains in a dusty medium with 2 dimensional disk geometry, and (2) to study the various physical and geometrical effects of 2 dimensional radiation transport on the thermal structure and radiation field. These tasks were accomplished and are briefly summarized. The method for solving the radiation transport problem in disk geometry is a generalization of the quasi-diffusion method (QDM) previously developed by the author.

  12. Modeling dynamical geometry with lattice gas automata

    SciTech Connect

    Hasslacher, B.; Meyer, D.A.

    1998-06-27

    Conventional lattice gas automata consist of particles moving discretely on a fixed lattice. While such models have been quite successful for a variety of fluid flow problems, there are other systems, e.g., flow in a flexible membrane or chemical self-assembly, in which the geometry is dynamical and coupled to the particle flow. Systems of this type seem to call for lattice gas models with dynamical geometry. The authors construct such a model on one dimensional (periodic) lattices and describe some simulations illustrating its nonequilibrium dynamics.

  13. Problems of Geophysics that Inspired Fractal Geometry

    NASA Astrophysics Data System (ADS)

    Mandelbrot, B. B.

    2001-12-01

    Fractal geometry arose when the speaker used then esoteric mathematics and the concept of invariance as a tool to understand diverse ``down-to-earth'' practical needs. The first step consisted in using discontinuous functions to represent the variation of speculative prices. The next several steps consisted in introducing infinite-range (global) dependence to handle data from geophysics, beginning with hydrology (and also again in finance). This talk will detail the speaker's debt and gratitude toward several specialists from diverse areas of geophysics who had the greatest impact on fractal geometry in its formative period.

  14. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  15. Information geometry and the renormalization group.

    PubMed

    Maity, Reevu; Mahapatra, Subhash; Sarkar, Tapobrata

    2015-11-01

    Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here, we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality for both classical and quantum systems in a universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective. PMID:26651641

  16. Transversely Hessian foliations and information geometry

    NASA Astrophysics Data System (ADS)

    Boyom, Michel Nguiffo; Wolak, Robert

    2015-01-01

    A family of probability distributions parametrized by an open domain Λ in Rn defines the Fisher information matrix on this domain which is positive semi-definite. In information geometry the standard assumption has been that the Fisher information matrix is positive definite defining in this way a Riemannian metric on Λ. If we replace the "positive definite" assumption by "0-deformable" condition a foliation with a transvesely Hessian structure appears naturally. We develop the study of transversely Hessian foliations in view of applications in information geometry.

  17. Information geometry and the renormalization group

    NASA Astrophysics Data System (ADS)

    Maity, Reevu; Mahapatra, Subhash; Sarkar, Tapobrata

    2015-11-01

    Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here, we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality for both classical and quantum systems in a universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.

  18. Shaping and enforcing coordination spheres: probing the ability of tripodal ligands to favour trigonal prismatic geometry.

    PubMed

    Knight, James C; Amoroso, Angelo J; Edwards, Peter G; Singh, Neha; Ward, Benjamin D

    2016-06-28

    We report two tripodal frameworks, mono(2,2'-bipyrid-6-yl)bis(2-pyridyl)methanol () and bis(2,2'-bipyrid-6-yl)mono(2-pyridyl)methanol () which have one and two bipyridyl arms, respectively. Both ligands form complexes with the first row transition metals. Both ligands appear to overcome the steric strain involved in twisting the ligand to produce an octahedral complex and the solid state structures in general show more octahedral character than complexes of the related ligand, tris(2,2'-bipyrid-6-yl)methanol (). Continuous Shape Mapping (CShM) calculations based on crystallographic data reveal that is incapable of enforcing a trigonal prismatic (TP) co-ordination geometry in the solid state, surprisingly even upon co-ordination to metals with no stereochemical preference such as cadmium (S(TP) = 7.15 and S(Oh) = 3.95). However, ligand clearly maintains an ability to enforce a trigonal prismatic conformation which is demonstrated in the crystal structures of the Mn(II) and Cd(II) complexes (S(TP) = 0.75 and 1.09, respectively). While maintains near-TP configurations in the presence of metal ions with strong octahedral preferences, distorts towards predominantly octahedral co-ordination geometries, increasing in the order Co(II) < Ni(II) < Fe(II) and no trigonal prismatic structures. PMID:27273116

  19. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  20. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Wernher von Braun and his team were responsible for the Jupiter-C hardware. The family of launch vehicles developed by the team also came to include the Juno II, which was used to launch the Pioneer IV satellite on March 3, 1959. Pioneer IV passed within 37,000 miles of the Moon before going into solar orbit.

  1. Welding II.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding II, a performance-based course offered at the Community College of Allegheny County to introduce students to out-of-position shielded arc welding with emphasis on proper heats, electrode selection, and alternating/direct currents. After introductory…

  2. Geometry and the Design of Product Packaging

    ERIC Educational Resources Information Center

    Cherico, Cindy M.

    2011-01-01

    The most common question the author's students ask is, "When will I ever use this in real life?" To address this question in her geometry classes, the author sought to create a project that would incorporate a real-world business situation with their lesson series on the surface area and volume of three-dimensional objects--specifically, prisms,…

  3. Thermodynamic geometry and critical aspects of bifurcations

    NASA Astrophysics Data System (ADS)

    Mihara, A.

    2016-07-01

    This work presents an exploratory study of the critical aspects of some well-known bifurcations in the context of thermodynamic geometry. For each bifurcation its normal form is regarded as a geodesic equation of some model analogous to a thermodynamic system. From this hypothesis it is possible to calculate the corresponding metric and curvature and analyze the critical behavior of the bifurcation.

  4. Environment Study with Buckminster Fuller's Geometry

    ERIC Educational Resources Information Center

    Cohen, Martin J.; Petrillo, Joseph

    1972-01-01

    Describes the teaching of geodesic-dome concepts to students in grades 3-5 through the trial use of Energetic and Synergetic Geometry as well as the undertaking of a workshop designed to prepare elementary and secondary school teachers to conduct further experiments. (CC)

  5. User Interface Design for Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Kortenkamp, Ulrich; Dohrmann, Christian

    2010-01-01

    In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.

  6. Children's Use of Geometry for Reorientation

    ERIC Educational Resources Information Center

    Lee, Sang Ah; Spelke, Elizabeth S.

    2008-01-01

    Research on navigation has shown that humans and laboratory animals recover their sense of orientation primarily by detecting geometric properties of large-scale surface layouts (e.g. room shape), but the reasons for the primacy of layout geometry have not been clarified. In four experiments, we tested whether 4-year-old children reorient by the…

  7. Preparing for Formal Proofs in Geometry

    ERIC Educational Resources Information Center

    Johnson, Art

    2009-01-01

    One way in which geometry teachers can help students develop their reasoning is by providing proof-readiness experiences. Blum and Kirsch (1991) suggest that "preformal proofs" can help students develop deductive reasoning. Preformal proofs, which follow the basic principles of deductive reasoning, can help prepare students for formal deduction in…

  8. Effectiveness of Multimedia in Teaching Descriptive Geometry.

    ERIC Educational Resources Information Center

    Rankowski, Charles A.; Galey, Minaruth

    1979-01-01

    Demonstrates the instructional value of supplementary media presentations using first year engineering students randomly split into 11 descriptive geometry classes; five received multimedia instruction, and six did not. Data compared each study group in relation to competency in the subject, achievement, visualization of spatial relationships, and…

  9. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  10. Transport Code for Regular Triangular Geometry

    Energy Science and Technology Software Center (ESTSC)

    1993-06-09

    DIAMANT2 solves the two-dimensional static multigroup neutron transport equation in planar regular triangular geometry. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective or input specified boundary flux conditions are solved. Anisotropy is allowed for the scattering source. Volume and surface sources are allowed for inhomogeneous problems.

  11. Applications of Differential Geometry to Cartography

    ERIC Educational Resources Information Center

    Benitez, Julio; Thome, Nestor

    2004-01-01

    This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…

  12. Geometry 3, Mathematics (Experimental): 5228.32.

    ERIC Educational Resources Information Center

    Josepher, Nelda; Temple, Aline

    This is the second of a two quin series which introduces the student to all the theorems usually included in high school geometry; emphasis is on understanding and use of these theorems without proof. The course develops definitions and properties of the plane and solid figures and formulates methods for finding their linear measure, lateral and…

  13. Quilts and Tangrams: Linking Literature and Geometry.

    ERIC Educational Resources Information Center

    Bohning, Gerry; Williams, Rebecca

    1997-01-01

    Suggests that by making quilt squares with tangrams, children link geometry and children's literature. Provides background on quilts and tangrams, and provides guidelines for teachers. Points out that children gain communication and mathematical thinking skills as they manipulate and explore relationships among pieces. Contains an annotated…

  14. The Geometry of the Universe: Part 1

    ERIC Educational Resources Information Center

    Francis, Stephanie

    2009-01-01

    This article describes how the author carries out an investigation into the geometry of the three possible curvatures of the universe. The author begins the investigation by looking on the web and in books. She found that the general consensus was that there were three different possible curvatures of the universe, namely: (1) flat; (2) positive;…

  15. From Circle to Hyperbola in Taxicab Geometry

    ERIC Educational Resources Information Center

    Berger, Ruth I.

    2015-01-01

    This "Activity for Students" article presents a taxicab geometry problem that engages students in plotting points and observing surprising shapes and underlining reasons for the appearance of figures when working with street grids. With this activity, teachers can provide an extra challenge by writing additional problems introducing a…

  16. Geometry Success, Brain Theory, and Community Building

    ERIC Educational Resources Information Center

    Antink, Suzanne B. Loyer

    2010-01-01

    This action research project was aimed to improve geometry students' achievement and the retention in a suburban public high school over a one-year implementation cycle. The curricular design was influenced by Dweck's (2006) theories of growth mindset, educational standards, and directives outlined by the National Council of Teachers of…

  17. Learning Geometry by Designing Persian Mosaics

    ERIC Educational Resources Information Center

    Karssenberg, Goossen

    2014-01-01

    To encourage students to do geometry, the art of Islamic geometric ornamentation was chosen as the central theme of a lesson strand which was developed using the newly presented didactical tool called "Learning by Acting". The Dutch students who took these lessons in 2010 to 2013 were challenged to act as if they themselves were Persian…

  18. The Valence Bond Interpretation of Molecular Geometry.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1980-01-01

    Presents ways in which the valence bond (VB) theory describes the bonding and geometry of molecules, following directly from earlier principles laid down by Pauling and others. Two other theories (molecular orbital approach and valence shell electron pair repulsion) are discussed and compared to VB. (CS)

  19. The Geometry of Newton's and Einstein's Theories

    NASA Astrophysics Data System (ADS)

    Hall, Graham S.

    The aim of this paper is to present a simple, brief, mathematical discussion of the interplay between geometry and physics in the theories of Newton and Einstein. The reader will be assumed to have some familiarity with classical Newtonian theory, the ideas of special and general relativity theory (and differential geometry), and the axiomatic formulation of Euclidean geometry. An attempt will be made to describe the relationship between Galileo's law of inertia (Newton's first law) and Euclid's geometry, which is based on the idea of Newtonian absolute time. Newton's second law and classical gravitation theory will then be introduced through the elegant idea of Cartan and his space-time connection and space metric. This space metric will then be used to introduce Minkowski's metric in special relativity and its subsequent generalization, by Einstein, to incorporate relativistic gravitational theory. The role of the principles of equivalence and covariance will also be discussed. Finally, a brief discussion of cosmology will be given. Stress will be laid on the (geometrical) concepts involved rather than the details of the mathematics, in so far as this is possible.

  20. Special Relativity as a Simple Geometry Problem

    ERIC Educational Resources Information Center

    de Abreu, Rodrigo; Guerra, Vasco

    2009-01-01

    The null result of the Michelson-Morley experiment and the constancy of the one-way speed of light in the "rest system" are used to formulate a simple problem, to be solved by elementary geometry techniques using a pair of compasses and non-graduated rulers. The solution consists of a drawing allowing a direct visualization of all the fundamental…

  1. Spadework Prior to Deduction in Geometry.

    ERIC Educational Resources Information Center

    Shaughnessy, J. Michael; Burger, William F.

    1985-01-01

    The five levels of the van Hiele theory are described. Then interviewing tasks designed to be presented to students in kindergarten through college are presented. Finally, responses from 14 interviews are discussed, with implications for teaching geometry. Extensive references are included. (MNS)

  2. Asynchronous event-based hebbian epipolar geometry.

    PubMed

    Benosman, Ryad; Ieng, Sio-Hoï; Rogister, Paul; Posch, Christoph

    2011-11-01

    Epipolar geometry, the cornerstone of perspective stereo vision, has been studied extensively since the advent of computer vision. Establishing such a geometric constraint is of primary importance, as it allows the recovery of the 3-D structure of scenes. Estimating the epipolar constraints of nonperspective stereo is difficult, they can no longer be defined because of the complexity of the sensor geometry. This paper will show that these limitations are, to some extent, a consequence of the static image frames commonly used in vision. The conventional frame-based approach suffers from a lack of the dynamics present in natural scenes. We introduce the use of neuromorphic event-based--rather than frame-based--vision sensors for perspective stereo vision. This type of sensor uses the dimension of time as the main conveyor of information. In this paper, we present a model for asynchronous event-based vision, which is then used to derive a general new concept of epipolar geometry linked to the temporal activation of pixels. Practical experiments demonstrate the validity of the approach, solving the problem of estimating the fundamental matrix applied, in a first stage, to classic perspective vision and then to more general cameras. Furthermore, this paper shows that the properties of event-based vision sensors allow the exploration of not-yet-defined geometric relationships, finally, we provide a definition of general epipolar geometry deployable to almost any visual sensor. PMID:21954205

  3. Honeycomb Geometry: Applied Mathematics in Nature.

    ERIC Educational Resources Information Center

    Roberts, William J.

    1984-01-01

    Study and exploration of the hexagonal shapes found in honeycombs is suggested as an interesting topic for geometry classes. Students learn that the hexagonal pattern maximizes the enclosed region and minimizes the wax needed for construction, while satisfying the bees' cell-size constraint. (MNS)

  4. Magnetic resonance spectra and statistical geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints that introduce curvature into parameter space and discuss the appropriate...

  5. Convex geometry analysis method of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, XiChang; Qi, Hongxing; Yu, BingXi

    2003-06-01

    We present matrix expression of convex geometry analysis method of hyperspectral data by linear mixing model and establish a mathematic model of endmembers. A 30-band remote sensing image is applied to testify the model. The results of analysis reveal that the method can analyze mixed pixel questions. The targets that are smaller than earth surface pixel can be identified by applying the method.

  6. Fostering Spatial vs. Metric Understanding in Geometry

    ERIC Educational Resources Information Center

    Kinach, Barbara M.

    2012-01-01

    Learning to reason spatially is increasingly recognized as an essential component of geometry education. Generally taken to be the "ability to represent, generate, transform, communicate, document, and reflect on visual information," "spatial reasoning" uses the spatial relationships between objects to form ideas. Spatial thinking takes a variety…

  7. Solving Geometry Problems via Mechanical Principles

    ERIC Educational Resources Information Center

    Man, Yiu Kwong

    2004-01-01

    The application of physical principles in solving mathematics problems have often been neglected in the teaching of physics or mathematics, especially at the secondary school level. This paper discusses how to apply the mechanical principles to geometry problems via concrete examples, which aims at providing insight and inspirations to physics or…

  8. Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile.

    PubMed

    Mohamed, Tarek A; Shaaban, Ibrahim A; Farag, Rabei S; Zoghaib, Wajdi M; Afifi, Mahmoud S

    2015-01-25

    Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile (APC) have been synthesized and characterized using elemental analysis, magnetic susceptibility, mass spectrometry, infrared (4000-200 cm(-1)), UV-Visible (200-1100 nm), (1)H NMR and ESR spectroscopy as well as TGA analysis. The molar conductance measurements in DMSO imply non-electrolytic complexes, formulated as [M(APC)2Cl2] where M=Co(II), Ni(II), Cu(II) and Pd(II). The infrared spectra of Co(II), Ni(II) and Cu(II) complexes indicate a bidentate type of bonding for APC through the exocyclic amino and adjacent pyrimidine nitrogen as donors whereas APC coordinated to Pd(II) ion as a monodentated ligand via a pyrimidine nitrogen donor. The magnetic measurements and the electronic absorption spectra support distorted octahedral geometries for Co(II), Ni(II) and Cu(II) complexes however a square planar complex was favored for the Pd(II) complex (C2h skeleton symmetry). In addition, we carried out B3LYP and ω-B97XD geometry optimization at 6-31G(d) basis set except for Pd(II) where we implemented LanL2DZ/6-31G(d) combined basis set. The computational results favor all trans geometrical isomers where amino N, pyrimidine N and Cl are trans to each other (structure 1). Finally, APC and its divalent metal ion complexes were screened for their antibacterial activity, and the synthesized complexes were found to be more potent antimicrobial agents than APC against one or more microbial species. PMID:25105264

  9. Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Shaaban, Ibrahim A.; Farag, Rabei S.; Zoghaib, Wajdi M.; Afifi, Mahmoud S.

    2015-01-01

    Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile (APC) have been synthesized and characterized using elemental analysis, magnetic susceptibility, mass spectrometry, infrared (4000-200 cm-1), UV-Visible (200-1100 nm), 1H NMR and ESR spectroscopy as well as TGA analysis. The molar conductance measurements in DMSO imply non-electrolytic complexes, formulated as [M(APC)2Cl2] where M = Co(II), Ni(II), Cu(II) and Pd(II). The infrared spectra of Co(II), Ni(II) and Cu(II) complexes indicate a bidentate type of bonding for APC through the exocyclic amino and adjacent pyrimidine nitrogen as donors whereas APC coordinated to Pd(II) ion as a monodentated ligand via a pyrimidine nitrogen donor. The magnetic measurements and the electronic absorption spectra support distorted octahedral geometries for Co(II), Ni(II) and Cu(II) complexes however a square planar complex was favored for the Pd(II) complex (C2h skeleton symmetry). In addition, we carried out B3LYP and ω-B97XD geometry optimization at 6-31G(d) basis set except for Pd(II) where we implemented LanL2DZ/6-31G(d) combined basis set. The computational results favor all trans geometrical isomers where amino N, pyrimidine N and Cl are trans to each other (structure 1). Finally, APC and its divalent metal ion complexes were screened for their antibacterial activity, and the synthesized complexes were found to be more potent antimicrobial agents than APC against one or more microbial species.

  10. Project-Based Learning to Explore Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba; Kurtulus, Aytac

    2012-01-01

    In Turkey, the content of the geometry course in the Primary School Mathematics Education, which is developed by The Council of Higher Education (YOK), comprises Euclidean and non-Euclidean types of geometry. In this study, primary mathematics teacher candidates compared these two geometries by focusing on Taxicab geometry among non-Euclidean…

  11. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    SciTech Connect

    West, J.T.

    1985-01-01

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  12. van Hiele Levels and Achievement in Writing Geometry Proofs.

    ERIC Educational Resources Information Center

    Senk, Sharon L.

    1989-01-01

    Secondary geometry students were tested for van Hiele level of thinking, geometry knowledge and achievement, and proof-writing achievement. Proof-writing achievement correlated significantly with van Hiele level entering geometry knowledge and geometry achievement. The predictive validity of the van Hiele model was supported. (Author/DC)

  13. Modelling functional effects of muscle geometry.

    PubMed

    van der Linden, B J; Koopman, H F; Grootenboer, H J; Huijing, P A

    1998-04-01

    Muscle architecture is an important aspect of muscle functioning. Hence, geometry and material properties of muscle have great influence on the force-length characteristics of muscle. We compared experimental results for the gastrocnemius medialis muscle (GM) of the rat to model results of simple geometric models such as a planimetric model and three-dimensional versions of this model. The capabilities of such models to adequately calculate muscle geometry and force-length characteristics were investigated. The planimetric model with elastic aponeurosis predicted GM muscle geometry well: maximal differences are 6, 1, 4 and 6% for fiber length, aponeurosis length, fiber angle and aponeurosis angle respectively. A slanted cylinder model with circular fiber cross-section did not predict muscle geometry as well as the planimetric model, whereas the geometry results of a second slanted cylinder model were identical to the planimetric model. It is concluded that the planimetric model is capable of adequately calculating the muscle geometry over the muscle length range studied. However, for modelling of force-length characteristics more complex models are needed, as none of the models yielded results sufficiently close to experimental data. Modelled force-length characteristics showed an overestimation of muscle optimum length by 2 mm with respect to experimental data, and the force at the ascending limb of the length force curve was underestimated. The models presented neglect important aspects such as non-linear geometry of muscle, certain passive material properties and mechanical interactions of fibers. These aspects may be responsible for short-comings in the modelling. It is argued that, considering the inability to adequately model muscle length-force characteristics for an isolated maximally activated (in situ) muscle, it is to be expected that prediction will fail for muscle properties in conditions of complex movement with many interacting factors. Therefore

  14. Heterogeneity of coronary arterial branching geometry

    NASA Astrophysics Data System (ADS)

    Wan, Shu-Yen; Reyes, Denise A.; Higgins, William E.; Ritman, Erik L.

    2000-04-01

    Past measurements of arterial branching geometry have indicated that the branching geometry is somewhat consistent with an optimal trade-off between the work needed to build and maintain the arterial tree and the work needed to operate the tree as a transport system. The branching geometry is also consistent with the mechanism that acutely adjusts the lumen diameter by way of maintaining a constant shear stress by dilating (or constricting) the arteries via the nitric oxide mechanism. However, those observations also indicate that there is considerable variation about the predicted optimization, both within any one individual and between individuals. Possible causes for this variation include: (1) measurement noise -- both due to the imprecision of the method but also the preparation of the specimen for applying the measurement technique, (2) the fact that the measurement task presents a major logistic problem, which increases as the vessel size decreases (but the number of branches correspondingly doubles at each branching) and results in progressive under-sampling as the vessel size decreases, (3) because of the logistic task involved the number of arterial trees analyzed is also greatly limited, and (4) there may indeed be actual heterogeneity in the geometry which is due to slight variation in implementation of the 'rules' used to construct a vascular tree. Indeed, it is this latter possibility that is of considerable physiological interest as it could result in the observed heterogeneity of organ perfusion and also provide some insight into the relative importance of 'initial ' conditions (i.e., how the vascular tree initially develops during embryogenesis) and the adaptive mechanisms operative in the maturing individual. The use of micro-CT imaging to provide 3D images of the intact vascular tree within the intact organ overcomes or minimizes the logistic problems listed above. It is the purpose of this study to examine whether variability in the branching

  15. Nodal equivalence theory for hexagonal geometry, thermal reactor analysis

    SciTech Connect

    Zika, M.; Downar, T. )

    1992-01-01

    An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.

  16. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  17. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    ERIC Educational Resources Information Center

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  18. The Study of "Elementary Geometry" (1903) by Godfrey and Siddons (1): Roles of Experimental Tasks in the Teaching of Geometry.

    ERIC Educational Resources Information Center

    Fujita, Taro

    2001-01-01

    Examines the roles of experimental tasks in "Elementary Geometry" (1903) by Godfrey and Siddons, which is considered one of the most important geometry textbooks in the history of geometry teaching. Roles of experimental tasks included preparations for deductive geometry and, even though it is implicit, the verification of geometrical facts.…

  19. Predicting the Geometry Knowledge of Pre-Service Elementary Teachers (Sinif Ögretmeni Adaylarinin Geometri Bilgilerinin Yordanmasi)

    ERIC Educational Resources Information Center

    Duatepe Aksu, Asuman

    2013-01-01

    In this study, the aim was to examine the factors that predict the geometry knowledge of pre-service elementary teachers. Data was collected on 387 pre-service elementary teachers from four universities by using a geometry knowledge test, the van Hiele geometric thinking level test, a geometry self efficacy scale and a geometry attitude scale.…

  20. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  1. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II)

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  2. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  3. BORE II

    Energy Science and Technology Software Center (ESTSC)

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  4. Automatic Conversion of Conceptual Geometry to CFD Geometry for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2007-01-01

    Conceptual aircraft design is usually based on simple analysis codes. Its objective is to provide an overall system performance of the developed concept, while preliminary aircraft design uses high-fidelity analysis tools such as computational fluid dynamics (CFD) analysis codes or finite element structural analysis codes. In some applications, such as low-boom supersonic concept development, it is important to be able to explore a variety of drastically different configurations while using CFD analysis to check whether a given configuration can be tailored to have a low-boom ground signature. It poses an extremely challenging problem of integrating CFD analysis in conceptual design. This presentation will discuss a computer code, called iPatch, for automatic conversion of conceptual geometry to CFD geometry. In general, conceptual aircraft geometry is not as well-defined as a CAD geometry model. In particular, a conceptual aircraft geometry model usually does not define the intersection curves for the connecting surfaces. The computer code iPatch eliminates the gap between conceptual geometry and CFD geometry by accomplishing the following three tasks automatically: (1) use bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometry components (such as wing and fuselage) can be intersected to form a watertight CFD geometry, (2) compute the intersection curves of surface patches at any resolution (up to 10-7 accuracy) specified by users, and (3) write the B-spline surface patches and the corresponding boundary points for the watertight CFD geometry in the format that can be directly exported to the meshing tool VGRID in the CFD software TetrUSS. As a result, conceptual designers can get quick feedback on the aerodynamic characteristics of their concepts, which will allow them to understand some subtlety in their concepts and to be able to assess their concepts with a higher degree of

  5. Comparison of Solution and Crystal Properties of Co(II)-Substituted Human Carbonic Anhydrase II

    PubMed Central

    Avvaru, Balendu Sankara; Arenas, Daniel J.; Tu, Chingkuang; Tanner, D. B.; McKenna, Robert; Silverman, David N.

    2010-01-01

    The visible absorption of crystals of Co(II)-substituted human carbonic anhydrase II (Co(II)-HCA II) were measured over a pH range of 6.0 to 11.0 giving an estimate of pKa 8.4 for the ionization of the metal-bound water in the crystal. This is higher by about 1.2 pKa units than the pKa near 7.2 for Co(II)-CA II in solution. This effect is attributed to a nonspecific ionic strength effect of 1.4 M citrate in the precipitant solution used in the crystal growth. A pKa of 8.3 for the aqueous ligand of the cobalt was measured for Co(II)-HCA II in solution containing 0.8 M citrate. Citrate is not an inhibitor of the catalytic activity of Co(II)-HCA II and was not observed in crystal structures. The X-ray structures at 1.5–1.6Å resolution of Co(II)-HCA II were determined for crystals prepared at pH 6.0, 8.5 and 11.0 and revealed no conformational changes of amino-acid side chains as a result of the use of citrate. However, the studies of Co(II)-HCA II did reveal a change in metal coordination from tetrahedral at pH 11 to a coordination consistent with a mixed population of both tetrahedral and penta-coordinate at pH 8.5 to an octahedral geometry characteristic of the oxidized enzyme Co(III)-HCA II at pH 6.0. PMID:20637176

  6. Guiding chemical pulses through geometry: Y junctions.

    PubMed

    Qiao, L; Kevrekidis, I G; Punckt, C; Rotermund, H H

    2006-03-01

    We study computationally and experimentally the propagation of chemical pulses in complex geometries. The reaction of interest, CO oxidation, takes place on single crystal Pt(110) surfaces that are microlithographically patterned; they are also addressable through a focused laser beam, manipulated through galvanometer mirrors, capable of locally altering the crystal temperature and thus affecting pulse propagation. We focus on sudden changes in the domain shape (corners in a Y-junction geometry) that can affect the pulse dynamics; we also show how brief, localized temperature perturbations can be used to control reactive pulse propagation. The computational results are corroborated through experimental studies in which the pulses are visualized using reflection anisotropy microscopy. PMID:16605643

  7. A tool for bistatic SAR geometry determinations

    NASA Astrophysics Data System (ADS)

    Hawkins, R. K.; Gibson, J. R.; Saper, R.; Hilaire, M.

    2003-12-01

    The geometry of wide-angle bistatic Synthetic Aperture Radar (SAR) is somewhat more complex than that of conventional Synthetic Aperture Radar because the transmitter and receiver are displaced considerably. Constant bistatic range surfaces form ellipsoids, with the transmitter and receiver located at the two foci. These ellipsoids of constant bistatic range intersect the earth's surface in a series of ellipse-like contours. Constant Doppler lines intersect the range ellipses and allow, under special circumstances, a simple orthogonal basis for processing and analysis. This paper introduces a simple tool, developed in MatLab® and C++, that uses RADARSAT-1 as a satellite illuminator and a tower-based receiver. Actual orbit parameters and data from RADARSAT-1 are used in the simulation of the bistatic geometry and scattering.

  8. Shadow of noncommutative geometry inspired black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan

    2015-08-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M0 with M0 black hole mass and inclination angle i, the dimensionless noncommutative parameter √vartheta/M0 is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √vartheta/M0, while the distortion increases with it. Compared to the Kerr black hole, the parameter √vartheta/M0 increases the deformation of the shadow. This may offer a way to distinguish noncommutative geometry inspired black hole from Kerr one via astronomical instruments in the near future.

  9. Collective neutrino oscillations in nonspherical geometry

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg

    2008-08-01

    The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.

  10. Non-perturbative quantum geometry III

    NASA Astrophysics Data System (ADS)

    Krefl, Daniel

    2016-08-01

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stokes phenomena over the combined string coupling and quantized Kähler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local ℙ1 + ℙ1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stokes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local ℙ2 near the conifold point in moduli space is also provided.

  11. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  12. Geometry optimization in redundant internal coordinates

    NASA Astrophysics Data System (ADS)

    Pulay, P.; Fogarasi, G.

    1992-02-01

    The gradient geometry-optimization procedure is reformulated in terms of redundant internal coordinates. By replacing the matrix inverse with the generalized inverse, the usual Newton-Raphson-type algorithms can be formulated in exactly the same way for redundant and nonredundant coordinates. Optimization in redundant coordinates is particularly useful for bridged polycyclic compounds and cage structures where it is difficult to define physically reasonable redundancy-free internal coordinates. This procedure, already used for the geometry optimization of porphine, C20N4H14, is illustrated here at the ab initio self-consistent-field level for the four-membered ring azetidine, for bicyclo[2.2.2]octane, and for the four-ring system C16O2H22, the skeleton of taxol.

  13. Multiscale Talbot effects in Fibonacci geometry

    NASA Astrophysics Data System (ADS)

    Ho, I.-Lin; Chang, Yia-Chung

    2015-04-01

    This article investigates the Talbot effects in Fibonacci geometry by introducing the cut-and-projection construction, which allows for capturing the entire infinite Fibonacci structure in a single computational cell. Theoretical and numerical calculations demonstrate the Talbot foci of Fibonacci geometry at distances that are multiples (τ +2){{({{F}μ }+τ {{F}μ +1})}-1}p/(2q) or (τ +2){{({{L}μ }+τ {{L}μ +1})}-1}p/(2q) of the Talbot distance. Here (p, q) are coprime integers, μ is an integer, τ is the golden mean, and {{F}μ } and {{L}μ } are Fibonacci and Lucas numbers, respectively. The image of a single Talbot focus exhibits a multiscale-interval pattern due to the self-similarity of the scaling Fourier spectrum.

  14. Impacts of Conformational Geometries in Fluorinated Alkanes.

    PubMed

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F

    2016-01-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen. PMID:27527753

  15. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations. PMID:20634560

  16. Inductor Geometry With Improved Energy Density

    SciTech Connect

    Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E

    2014-10-01

    The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.

  17. Impacts of Conformational Geometries in Fluorinated Alkanes

    PubMed Central

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-01-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen. PMID:27527753

  18. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  19. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2006-10-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  20. Damage experiments in a cylindrical geometry

    SciTech Connect

    Kaul, Ann M

    2010-09-21

    Studying spallation damage with a cylindrical configuration allows for a natural recollection of the damaged material under proper driving conditions. Additionally, the damaged material can come to a complete rest without the application of further stopping forces. Specific areas of research include the damage initiation regime in convergent geometry, behavior of material recollected after damage, and effects of convergent geometry on the material response. Such experiments produce unique strain and shear stress states, motivating improvements in existing computational material models and increasing the predictive capabilities of codes. A LANL/VNIIEF joint experimental series has produced cylindrical aluminum failure initiation data and studied the behavior of material recollected after damage initiation and after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will discuss the current experimental status.

  1. The universal instability in general geometry

    SciTech Connect

    Helander, P.; Plunk, G. G.

    2015-09-15

    The “universal” instability has recently been revived by Landreman et al. [Phys. Rev. Lett. 114, 095003 (2015)], who showed that it indeed exists in plasma geometries with straight (but sheared) magnetic field lines. Here, it is demonstrated analytically that this instability can be presented in more general sheared and toroidal geometries. In a torus, the universal instability is shown to be closely related to the trapped-electron mode, although the trapped-electron drive is usually dominant. However, this drive can be weakened or eliminated, as in the case in stellarators with the maximum-J property, leaving the parallel Landau resonance to drive a residual mode, which is identified as the universal instability.

  2. Extrinsic and intrinsic curvatures in thermodynamic geometry

    NASA Astrophysics Data System (ADS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-08-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  3. Instabilities of microstate geometries with antibranes

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Pasini, Giulio

    2016-04-01

    One can obtain very large classes of horizonless microstate geometries corresponding to near-extremal black holes by placing probe supertubes whose action has metastable minima inside certain supersymmetric bubbling solutions [1]. We show that these minima can lower their energy when the bubbles move in certain directions in the moduli space, which implies that these near-extremal microstates are in fact unstable once one considers the dynamics of all their degrees of freedom. The decay of these solutions corresponds to Hawking radiation, and we compare the emission rate and frequency to those of the corresponding black hole. Our analysis supports the expectation that generic non-extremal black holes microstate geometries should be unstable. It also establishes the existence of a new type of instabilities for antibranes in highly-warped regions with charge dissolved in fluxes.

  4. Conformation Dependence of Backbone Geometry in Proteins

    PubMed Central

    Berkholz, Donald S.; Shapovalov, Maxim V.; Dunbrack, Roland L.; Karplus, P. Andrew

    2009-01-01

    Summary Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the Φ and Ψ backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conformation-dependent variations. The trends have a rational, structural basis that can be explained by avoidance of atomic clashes or optimization of favorable electrostatic interactions. To facilitate adoption of this new paradigm, we have created a conformation-dependent library of covalent bond lengths and bond angles and shown that it has improved accuracy over existing methods without any additional variables to optimize. Protein structures derived both from crystallographic refinement and predictive modeling both stand to benefit from incorporation of the new paradigm. PMID:19836332

  5. A linguistic geometry for space applications

    NASA Technical Reports Server (NTRS)

    Stilman, Boris

    1994-01-01

    We develop a formal theory, the so-called Linguistic Geometry, in order to discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, and apply them to different systems. This research relies on the formalization of search heuristics of high-skilled human experts which allow for the decomposition of complex system into the hierarchy of subsystems, and thus solve intractable problems reducing the search. The hierarchy of subsystems is represented as a hierarchy of formal attribute languages. This paper includes a formal survey of the Linguistic Geometry, and new example of a solution of optimization problem for the space robotic vehicles. This example includes actual generation of the hierarchy of languages, some details of trajectory generation and demonstrates the drastic reduction of search in comparison with conventional search algorithms.

  6. Robust optimisation of railway crossing geometry

    NASA Astrophysics Data System (ADS)

    Wan, Chang; Markine, Valeri; Dollevoet, Rolf

    2016-05-01

    This paper presents a methodology for improving the crossing (frog) geometry through the robust optimisation approach, wherein the variability of the design parameters within a prescribed tolerance is included in the optimisation problem. Here, the crossing geometry is defined by parameterising the B-spline represented cross-sectional shape and the longitudinal height profile of the nose rail. The dynamic performance of the crossing is evaluated considering the variation of wheel profiles and track alignment. A multipoint approximation method (MAM) is applied in solving the optimisation problem of minimising the contact pressure during the wheel-rail contact and constraining the location of wheel transition at the crossing. To clarify the difference between the robust optimisation and the normal deterministic optimisation approaches, the optimisation problems are solved in both approaches. The results show that the deterministic optimum fails under slight change of the design variables; the robust optimum, however, has improved and robust performance.

  7. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  8. The geometry of electron wave functions

    SciTech Connect

    Aminov, Yurii A

    2013-02-28

    To each wave function we assign a codimension-two submanifold in Euclidean space. We study the case of the wave function of a single electron in the hydrogen atom or other hydrogen-type atoms with quantum numbers n, l, m in detail. We prove theorems describing the behaviour of the scalar and sectional curvature of the constructed submanifold, depending on the quantum numbers. We also consider the external geometry of the submanifold. Bibliography: 9 titles.

  9. Linear stability of noncommutative spectral geometry

    NASA Astrophysics Data System (ADS)

    Sakellariadou, M.; Watcharangkool, A.

    2016-03-01

    We consider the spectral action within the context of a four-dimensional manifold with torsion and show that, in the vacuum case, the equations of motion reduce to Einstein's equations, securing the linear stability of the theory. To subsequently investigate the nonvacuum case, we consider the spectral action of an almost commutative torsion geometry and show that the Hamiltonian is bounded from below, a result which guarantees the linear stability of the theory.

  10. Testing R-parity with geometry

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.

    2016-03-01

    We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields.

  11. Extraction electrode geometry for a calutron

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.

    1975-09-23

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source. (auth)

  12. Analytic Coleman-de Luccia Geometries

    SciTech Connect

    Dong, Xi; Harlow, Daniel; /Stanford U., ITP /Stanford U., Phys. Dept.

    2012-02-16

    We present the necessary and sufficient conditions for a Euclidean scale factor to be a solution of the Coleman-de Luccia equations for some analytic potential V ({psi}), with a Lorentzian continuation describing the growth of a bubble of lower-energy vacuum surrounded by higher-energy vacuum. We then give a set of explicit examples that satisfy the conditions and thus are closed-form analytic examples of Coleman-de Luccia geometries.

  13. Casimir energies of cavities: The geometry question

    NASA Astrophysics Data System (ADS)

    Abalo, Iroko Komi Elom

    The question of how the Casimir effect relates to a system's geometry is of fundamental interest. In this thesis, we present new results for interior Casimir self-energies of various integrable geometries and show interesting systematic relations between these energies. In particular, we consider prisms with triangular cross sections (equilateral, hemiequilateral, and right isosceles triangles), triangular polygons of the same cross sections, and three tetrahedra. The triangular prisms are of infinite or finite lengths. These geometries are integrable and unique in the sense that the Laplacian eigenvalues may be found using the method of images. We obtain interior Casimir energies for these cavities subject to Dirichlet and Neumann boundary conditions. In addition to these boundary conditions, we also obtain electromagnetic Casimir energies for the infinite prisms. These energies are regularized using various consistent methods, one of which is regularization by point-splitting. Summing these modes explicitly using a cylinder kernel formulation, we show that the correct Weyl divergences are obtained. We also give closed-form results for the infinite triangular prisms. In order to understand the geometry dependence of these energies, we rederive well-known results for rectangular parallelepipeds (including the cube) and infinite rectangular prisms. The analysis of these self-energies yields intriguing results. By plotting the scaled energies against the appropriately chosen isoperimetric or isoareal quotients, we observe interesting patterns, which hint towards a systematic functional dependence. In addition to the calculation of new Casimir energies, this constitutes a significant contribution to the theoretical understanding of self-energies and has interesting implications.

  14. Geometry and groups for cosmic topology

    SciTech Connect

    Kramer, Peter

    2011-03-21

    The Cosmic Microwave Background is measured by satellite observation with great precision. It offers insight into its origin in early states of the universe. Unexpected low multipole amplitudes of the incoming CMB radiation may be due to a multiply connected topology of cosmic 3-space. We present and analyze the geometry and homotopy for the family of Platonic spherical 3-manifolds, provide their harmonic analysis, and formulate topological selection rules.

  15. Damage experiments in cylindrical geometry update

    SciTech Connect

    Kaul, Anne; Holtkamp, David; Rodriguez, George

    2009-01-01

    Using a cylindrical configuration to study spallation damage allows for a natural recollection of the damaged material under proper driving conditions. Previous experiments provided data about failure initiation in aluminum in a cylindrical geometry and the behavior of material recollected after damage from pressures in the damage initiation regime. The current series of experiments studied the behavior of material recollected after complete failure. Results from the current experiments will be presented.

  16. Geometry of Quantum Computation with Qudits

    PubMed Central

    Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710

  17. Intersecting solitons, amoeba, and tropical geometry

    SciTech Connect

    Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi; Sakai, Norisuke; Yamazaki, Masahito

    2008-11-15

    We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortex charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.

  18. Geometry of guanidinium groups in arginines.

    PubMed

    Malinska, Maura; Dauter, Miroslawa; Dauter, Zbigniew

    2016-09-01

    The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10)˚, than NE-CZ-NH2, 119.2(10)˚, due to the repulsive interaction between NH1 and CD1 atom. PMID:27326702

  19. RGG: Reactor geometry (and mesh) generator

    SciTech Connect

    Jain, R.; Tautges, T.

    2012-07-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  20. Discovering Structural Regularity in 3D Geometry

    PubMed Central

    Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.

    2010-01-01

    We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292

  1. Core systems of geometry in animal minds.

    PubMed

    Spelke, Elizabeth S; Lee, Sang Ah

    2012-10-01

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds. PMID:22927577

  2. Geometry-free linear combinations for Galileo

    NASA Astrophysics Data System (ADS)

    Henkel, Patrick

    2009-11-01

    Global navigation satellites of the European Galileo system transmit code signals on four carriers in the L1, E5a, E5b and E6 band. New geometry-free linear combinations are presented that eliminate the geometry terms (user to satellite ranges and orbital errors), the clock errors of the user and satellites and the tropospheric delay. The remaining parameters of these carrier phase combinations include integer ambiguities, ionospheric delays, carrier phase multipath and phase noise. The weighting coefficients are designed such that the integer nature of ambiguities is maintained. The use of four frequency combinations is highly recommended due to a noise reduction of up to 14.4 dB and an ionospheric reduction of up to 25.6 dB compared to two frequency geometry-free combinations. Moreover, a modified Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) algorithm is suggested, which differs in two points from the traditional approach: the baseline is replaced by the ionospheric delay and the correlation is caused by linear combinations instead of double differences. For correct ambiguity resolution, the ionospheric delay can be determined with millimeter accuracy. This is quite beneficial as the ionosphere represents the largest source of error for absolute positioning.

  3. An elementary discussion of propellant flame geometry

    SciTech Connect

    Buckmaster, J.; Jackson, T.L.; Yao, J.

    1999-05-01

    The authors examine the geometry of diffusion flames generated by the burning of a heterogeneous solid propellant, using a simple model designed to provide qualitative insights. In the fast chemistry limit a strategy is used which has its roots in Burke and Schumann`s 1928 study of diffusion flames, albeit with different boundary conditions. This shows that the stoichiometric level surface (SLS) intersects the propellant surface at a point displaced from the fuel/oxidizer interface, and the variations of this displacement with Peclet number are discussed. The authors show that for model sandwich propellants, or their axisymmetric counterpart, the geometry of the SLS when the core is oxidizer is quite different from the geometry of the SLS when the core is fuel. Also, it is much easier to quench the flame on an oxidizer core, by reducing the Peclet number, than it is to quench the flame on a fuel core. When finite chemistry effects are accounted for, the flame only occupies a portion of the SLS, and there is a leading edge structure in which premixing plays a role. Enhancement of the burning rate due to premixing is identified, but a well-defined tribrachial structure is not observed. The authors show how a sharp reduction in pressure can lead to a detachment of the flame from the SLS, with subsequent quenching as it is swept downstream.

  4. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  5. Core systems of geometry in animal minds

    PubMed Central

    Spelke, Elizabeth S.; Lee, Sang Ah

    2012-01-01

    Research on humans from birth to maturity converges with research on diverse animals to reveal foundational cognitive systems in human and animal minds. The present article focuses on two such systems of geometry. One system represents places in the navigable environment by recording the distance and direction of the navigator from surrounding, extended surfaces. The other system represents objects by detecting the shapes of small-scale forms. These two systems show common signatures across animals, suggesting that they evolved in distant ancestral species. As children master symbolic systems such as maps and language, they come productively to combine representations from the two core systems of geometry in uniquely human ways; these combinations may give rise to abstract geometric intuitions. Studies of the ontogenetic and phylogenetic sources of abstract geometry therefore are illuminating of both human and animal cognition. Research on animals brings simpler model systems and richer empirical methods to bear on the analysis of abstract concepts in human minds. In return, research on humans, relating core cognitive capacities to symbolic abilities, sheds light on the content of representations in animal minds. PMID:22927577

  6. Interactions between pool geometry and hydraulics

    USGS Publications Warehouse

    Thompson, D.M.; Nelson, J.M.; Wohl, E.E.

    1998-01-01

    An experimental and computational research approach was used to determine interactions between pool geometry and hydraulics. A 20-m-long, 1.8-m-wide flume was used to investigate the effect of four different geometric aspects of pool shape on flow velocity. Plywood sections were used to systematically alter constriction width, pool depth, pool length, and pool exit-slope gradient, each at two separate levels. Using the resulting 16 unique geometries with measured pool velocities in four-way factorial analyses produced an empirical assessment of the role of the four geometric aspects on the pool flow patterns and hence the stability of the pool. To complement the conclusions of these analyses, a two-dimensional computational flow model was used to investigate the relationships between pool geometry and flow patterns over a wider range of conditions. Both experimental and computational results show that constriction and depth effects dominate in the jet section of the pool and that pool length exhibits an increasing effect within the recirculating-eddy system. The pool exit slope appears to force flow reattachment. Pool length controls recirculating-eddy length and vena contracta strength. In turn, the vena contracta and recirculating eddy control velocities throughout the pool.

  7. Control system for variable geometry turbocharger

    SciTech Connect

    Abo, T.; Ueno, T.; Sumizawa, A.

    1987-08-11

    A control system is described for a variable geometry turbocharger for an internal combustion engine including a turbine having a variable area inflow passage, the turbine being operated in response to an exhaust gas flow supplied through the variable area inflow passage, and a compressor adapted to be driven by the turbine. The control system consists of means for detecting operating conditions of the engine, a control means including arithmetic means which calculates a first control value for controlling the cross-sectional area of the variable area inflow passage to provide a suitable supercharging pressure of intake air supplied to the engine in response to the detected operating conditions of the engine, a first variable geometry valve means for changing the cross-sectional area of the variable area inflow passage, means for actuating the variable geometry valve means in accordance with the first control value; and a limiter means for changing the first control value so as to restrict a reduction of the cross sectional area of the variable area inflow passage when the calculated control value has reached a predetermined value after being changed to reduce the cross-sectional area of the variable area inflow passage.

  8. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

    PubMed Central

    Sumathi, R. B.; Halli, M. B.

    2014-01-01

    A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203

  9. SPICE Supports Planetary Science Observation Geometry

    NASA Astrophysics Data System (ADS)

    Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.

    2015-11-01

    "SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this

  10. Dynamic geometry, brain function modeling, and consciousness.

    PubMed

    Roy, Sisir; Llinás, Rodolfo

    2008-01-01

    Pellionisz and Llinás proposed, years ago, a geometric interpretation towards understanding brain function. This interpretation assumes that the relation between the brain and the external world is determined by the ability of the central nervous system (CNS) to construct an internal model of the external world using an interactive geometrical relationship between sensory and motor expression. This approach opened new vistas not only in brain research but also in understanding the foundations of geometry itself. The approach named tensor network theory is sufficiently rich to allow specific computational modeling and addressed the issue of prediction, based on Taylor series expansion properties of the system, at the neuronal level, as a basic property of brain function. It was actually proposed that the evolutionary realm is the backbone for the development of an internal functional space that, while being purely representational, can interact successfully with the totally different world of the so-called "external reality". Now if the internal space or functional space is endowed with stochastic metric tensor properties, then there will be a dynamic correspondence between events in the external world and their specification in the internal space. We shall call this dynamic geometry since the minimal time resolution of the brain (10-15 ms), associated with 40 Hz oscillations of neurons and their network dynamics, is considered to be responsible for recognizing external events and generating the concept of simultaneity. The stochastic metric tensor in dynamic geometry can be written as five-dimensional space-time where the fifth dimension is a probability space as well as a metric space. This extra dimension is considered an imbedded degree of freedom. It is worth noticing that the above-mentioned 40 Hz oscillation is present both in awake and dream states where the central difference is the inability of phase resetting in the latter. This framework of dynamic

  11. A proposal of an open PET geometry.

    PubMed

    Yamaya, Taiga; Inaniwa, Taku; Minohara, Shinichi; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Shibuya, Kengo; Lam, Chih Fung; Murayama, Hideo

    2008-02-01

    The long patient port of a PET scanner tends to put stress on patients, especially patients with claustrophobia. It also prevents doctors and technicians from taking care of patients during scanning. In this paper, we proposed an 'open PET' geometry, which consists of two axially separated detector rings. A long and continuous field-of-view (FOV) including a 360 degrees opened gap between two detector rings can be imaged enabling a fully 3D image reconstruction of all the possible lines-of-response. The open PET will become practical if iterative image reconstruction methods are applied even though image reconstruction of the open PET is analytically an incomplete problem. First we implemented a 'masked' 3D ordered subset expectation maximization (OS-EM) in which the system matrix was obtained from a long 'gapless' scanner by applying a mask to detectors corresponding to the open space. Next, in order to evaluate imaging performance of the proposed open PET geometry, we simulated a dual HR+ scanner (ring diameter of D = 827 mm, axial length of W = 154 mm x 2) separated by a variable gap. The gap W was the maximum limit to have axially continuous FOV of 3W though the maximum diameter of FOV at the central slice was limited to D/2. Artifacts, observed on both sides of the open space when the gap exceeded W, were effectively reduced by inserting detectors partially into unnecessary open spaces. We also tested the open PET geometry using experimental data obtained by the jPET-D4. The jPET-D4 is a prototype brain scanner, which has 5 rings of 24 detector blocks. We simulated the open jPET-D4 with a gap of 66 mm by eliminating 1 block-ring from experimental data. Although some artifacts were seen at both ends of the opened gap, very similar images were obtained with and without the gap. The proposed open PET geometry is expected to lead to realization of in-beam PET, which is a method for an in situ monitoring of charged particle therapy, by letting the beams pass

  12. Geometry of loop quantum gravity on a graph

    SciTech Connect

    Rovelli, Carlo; Speziale, Simone

    2010-08-15

    We discuss the meaning of geometrical constructions associated to loop quantum gravity states on a graph. In particular, we discuss the 'twisted geometries' and derive a simple relation between these and Regge geometries.

  13. Characterizing student mathematics teachers' levels of understanding in spherical geometry

    NASA Astrophysics Data System (ADS)

    Guven, Bulent; Baki, Adnan

    2010-12-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, task-based interviews were held with eight student mathematics teachers at particular times through the course to determine the spherical geometry learning levels. After identifying the properties of spherical geometry levels, we developed Understandings in Spherical Geometry Test to test whether or not the levels form hierarchy, and 58 student mathematics teachers took the test. The outcomes seemed to support our theoretical perspective that there are some understanding levels in spherical geometry that progress through a hierarchical order as van Hiele levels in Euclidean geometry.

  14. Developing the concept of a parabola in Taxicab geometry

    NASA Astrophysics Data System (ADS)

    Ada, Tuba; Kurtuluş, Aytaç; Bahadır Yanik, H.

    2015-02-01

    The aim of this study was to observe the development process of the concept of a parabola in Taxicab geometry. The study was carried out in two stages. First, some activities related to Euclidean geometry and Taxicab geometry were designed based on concept development and real-life applications, and they were administered to a ninth-grade student. According to the findings, once the student learnt the definition of a parabola in Euclidean geometry, she was able to define a Taxicab parabola using the distance function in Taxicab geometry. Also, she came up with an algebraic definition of a Taxicab parabola based on this geometric definition of the concept of a parabola. Moving from algebraic definition to geometric representation, she configured the concept of a parabola in Taxicab geometry. By means of this application activity, the student had the opportunity to observe and practise the concept of a parabola in a real-life situation based on Euclidean geometry and Taxicab geometry.

  15. Introducing GV : The Spacecraft Geometry Visualizer

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Stern, S. A.; Parker, J. W.; Gladstone, G. R.; Weaver, H. A.

    2009-12-01

    GV (Geometry Visualizer) is a web-based program for planning spacecraft observations. GV is the primary planning tool used by the New Horizons science team to plan the encounter with Pluto. GV creates accurate 3D images and movies showing the position of planets, satellites, and stars as seen from an observer on a spacecraft or other body. NAIF SPICE routines are used throughout for accurate calculations of all geometry. GV includes 3D geometry rendering of all planetary bodies, lon/lat grids, ground tracks, albedo maps, stellar magnitudes, types and positions from HD and Tycho-2 catalogs, and spacecraft FOVs. It generates still images, animations, and geometric data tables. GV is accessed through an easy-to-use and flexible web interface. The web-based interface allows for uniform use from any computer and assures that all users are accessing up-to-date versions of the code and kernel libraries. Compared with existing planning tools, GV is often simpler, faster, lower-cost, and more flexible. GV was developed at SwRI to support the New Horizons mission to Pluto. It has been subsequently expanded to support multiple other missions in flight or under development, including Cassini, Messenger, Rosetta, LRO, and Juno. The system can be used to plan Earth-based observations such as occultations to high precision, and was used by the public to help plan 'Kodak Moment' observations of the Pluto system from New Horizons. Potential users of GV may contact the author for more information. Development of GV has been funded by the New Horizons, Rosetta, and LRO missions.

  16. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  17. Geometry and kinematic evolution of inversion structures

    SciTech Connect

    Mitra, S. )

    1993-07-01

    Positive inversion structures form by the compressional reactivation of preexisting extensional structures. Experimental models and observations of natural structures are used to develop quantitative models for the geometry and kinematic evolution of inversion structures. In this paper, I analyze two main formation mechanisms of inversion structures: (1) fault-propagation folding on planar faults, and (2) fault-bend folding on listric faults. Inversion structures formed by fault-propagation folding occur in the southern North Sea, the Central Montana platform, and the Kangean Basin. During extension, a broad fault-propagation (or drape) fold develops above the master fault, with the fault subsequently breaking through the fold. Synextensional growth units deposited in the hanging wall typically thicken into the basin. Compressional reactivation results in slip reversal on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Inversion structures formed by fault-bend folding on listric faults occur in the Taranaki Basin, and possibly in the southern North Sea. Rollover folding in the hanging wall occurs during extension, possibly accompanied by a small component of fault-propagation folding in the vicinity of the fault tip. Deformation is primarily along a system of antithetic faults. Synextensional growth sediments typically thicken into the fault, but also show thinning in the immediate vicinity of the fault. During compression, the extensional fold is first unfolded and then folded into a compressional fault-bend fold. The characteristic variations in bed geometry and thickness provide predictive models for interpreting the subsurface geometries of these two classes of inversion structures in areas with poor seismic data. These models are particularly useful in exploring for structural traps in the complex and relatively unexplored synextensional growth units. 31 refs., 29 figs.

  18. Electronic hidden solder joint geometry characterization

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen

    2009-05-01

    To reduce the size of electronic equipment, multi-layer printed circuit board structures have become popular in recent years. As a result, the inspection of hidden solder joints between layers of boards has become increasingly difficult. Xray machines have been used for ball grid array (BGA) and hidden solder joint inspection; however, the equipment is costly and the inspection process is time consuming. In this paper, we investigate an active thermography approach to probing solder joint geometry. A set of boards having the same number of solder joints and amount of solder paste (0.061 g) was fabricated. Each solder joint had a different geometry. A semi-automated system was built to heat and then transfer each board to a chamber where an infrared camera was used to scan the board as it was cooling down. Two-thirds of the data set was used for model development and one-third was used for model evaluation. Both artificial neural network (ANN) and binary logistic regression models were constructed. Results suggest that solder joints with more surface area cool much faster than those with less surface area. In addition, both modeling approaches are consistent in predicting solder geometry; ANN had 85% accuracy and the regression model had 80%. This approach can potentially be used to test for cold solder joints prior to BGA assembly, since cold solder joints may have air gaps between the joint and the board and air is a poor heat conductor. Therefore, a cold solder joint may have a slower cooling rate than a normal one.

  19. Cloud geometry effects on atmospheric solar absorption

    SciTech Connect

    Fu, Q.; Cribb, M.C.; Barker, H.W.; Krueger, S.K.; Grossman, A.

    2000-04-15

    A 3D broadband solar radiative transfer scheme is formulated by integrating a Monte Carlo photon transport algorithm with the Fu-Liou radiation model. It is applied to fields of tropical mesoscale convective clouds and subtropical marine boundary layer clouds that were generated by a 2D cloud-resolving model. The effects of cloud geometry on the radiative energy budget are examined by comparing the full-resolution Monte Carlo results with those from the independent column approximation (ICA) that applies the plane-parallel radiation model to each column. For the tropical convective cloud system, it is found that cloud geometry effects always enhance atmospheric solar absorption regardless of solar zenith angle. In a large horizontal domain (512 km), differences in domain-averaged atmospheric absorption between the Monte Carlo and the ICA are less than 4 W m{sup {minus}2} in the daytime. However, for a smaller domain (e.g., 75 km) containing a cluster of deep convective towers, domain-averaged absorption can be enhanced by more than 20 W m{sup {minus}2}. For a subtropical marine boundary layer cloud system during the stratus-to-cumulus transition, calculations show that the ICA works very well for domain-averaged fluxes of the stratocumulus cloud fields even for a very small domain (4.8 km). For the trade cumulus cloud field, the effects of cloud sides and horizontal transport of photons become more significant. Calculations have also been made for both cloud systems including black carbon aerosol and a water vapor continuum. It is found that cloud geometry produces no discernible effects on the absorption enhancement due to the black carbon aerosol and water vapor continuum. The current study indicates that the atmospheric absorption enhancement due to cloud-related 3D photon transport is small. This enhancement could not explain the excess absorption suggested by recent studies.

  20. BTZ black holes inspired by noncommutative geometry

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Kuhfittig, P. K. F.; Bhui, B. C.; Rahaman, Mosiur; Ray, Saibal; Mondal, U. F.

    2013-04-01

    In this paper, a Bañados-Teitelboim-Zanelli (BTZ) black hole [Phys. Rev. Lett. 69, 1849 (1992)] is constructed from an exact solution of the Einstein field equations in a (2+1)—dimensional anti—de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have either two horizons, no horizon, or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy, and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.

  1. Differential geometry, Palatini gravity and reduction

    SciTech Connect

    Capriotti, S.

    2014-01-15

    The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.

  2. Ring geometry on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Mckinnon, William B.

    1987-01-01

    Geometrical considerations are brought to bear on a discussion of the impact and internal origin scenarios for the major furrow system of Ganymede, which was remapped in order to take advantage of improvements in coordinate control. Furrow occurrence and geometry are judged to be consistent with an impact origin; the perceived current nonalignment of the presumably once-concentric furrows may be adduced as evidence for large-scale lateral motion of dark terrain blocks in Ganymede's crust, in association with bright terrain formation.

  3. Drift Mode Calculations in Nonaxisymmetric Geometry

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.A. Cooper; W.M. Tang

    1999-07-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.

  4. GGADT: Generalized Geometry Anomalous Diffraction Theory

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Tarczon, Michael; Draine, Bruce T.

    2015-10-01

    GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

  5. Numerical quadrature for slab geometry transport algorithms

    SciTech Connect

    Hennart, J.P.; Valle, E. del

    1995-12-31

    In recent papers, a generalized nodal finite element formalism has been presented for virtually all known linear finite difference approximations to the discrete ordinates equations in slab geometry. For a particular angular directions {mu}, the neutron flux {Phi} is approximated by a piecewise function Oh, which over each space interval can be polynomial or quasipolynomial. Here we shall restrict ourselves to the polynomial case. Over each space interval, {Phi} is a polynomial of degree k, interpolating parameters given by in the continuous and discontinuous cases, respectively. The angular flux at the left and right ends and the k`th Legendre moment of {Phi} over the cell considered are represented as.

  6. The Local Geometry of Multiattribute Tradeoff Preferences

    PubMed Central

    McGeachie, Michael; Doyle, Jon

    2011-01-01

    Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018

  7. The surface geometry of exotic nuclei

    SciTech Connect

    Carlson, B. V.; Baldini-Neto, E.; Hirata, D.; Peru-Desenfants, S.; Berger, J.-F.; Chamon, L. C.

    2007-02-12

    We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data.

  8. Extending the ADM formalism to Weyl geometry

    SciTech Connect

    Barreto, A. B.; Almeida, T. S.; Romero, C.

    2015-03-26

    In order to treat quantum cosmology in the framework of Weyl spacetimes we take the first step of extending the Arnowitt-Deser-Misner formalism to Weyl geometry. We then obtain an expression of the curvature tensor in terms of spatial quantities by splitting spacetime in (3+l)-dimensional form. We next write the Lagrangian of the gravitation field based in Weyl-type gravity theory. We extend the general relativistic formalism in such a way that it can be applied to investigate the quantum cosmology of models whose spacetimes are endowed with a Weyl geometrical structure.

  9. Reactive-infiltration instability in radial geometry

    NASA Astrophysics Data System (ADS)

    Grodzki, Piotr; Szymczak, Piotr

    2015-04-01

    A planar dissolution front propagating through a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This phenomenon, usually referred to known as reactive-infiltration instability is an important mechanism for pattern development in geology, with a range of morphologies and scales, from cave systems running for hundreds of miles to laboratory acidization on the scale of centimeters. In general, this instability is characterized by two length scales: the diffusive length (D/v) and the reactant penetration length (v/r), where v is the Darcy velocity, D - the diffusion constant and r - the dissolution rate. If the latter scale is much smaller than the former one can adopt the so-called thin front limit, where the interface is treated as a discontinuity in porosity, with a completely dissolved phase on one side and an undissolved phase on the other. Linear stability analysis for this case has been carried out by Chadam et al. [1], and the corresponding dispersion relation shows that long wavelengths are unstable, whereas short wavelengths are stabilized by diffusion. In their derivation, Chadam et al. have considered a linear geometry with a uniform pressure gradient applied along one of the directions. However, in many cases (e.g. in the acidization techniques used in oil industry) the reactive fluids are injected through a well and thus the relevant geometry is radial rather than linear. Motivated by this, we have carried out the linear stability analysis of the reactive-infiltration problem in radial geometry, with the fluid injection at the centre of the system. We stay within the thin-front limit and derive the corresponding dispersion relation, which shows the stable regions for both the long-wavelength and short-wavelength modes, and the unstable region in between. Next, we study how

  10. Programmable trap geometries with superconducting atom chips

    SciTech Connect

    Mueller, T.; Fermani, R.; Zhang, B.; Chan, K. S.; Dumke, R.; Lim, M. J.

    2010-05-15

    We employ the hysteretic behavior of a superconducting thin film in the remanent state to generate different traps and flexible magnetic potentials for ultracold atoms. The trap geometry can be programed by externally applied fields. This approach for atom optics is demonstrated by three different trap types realized on a single microstructure: a Z-type trap, a double trap, and a bias-field-free trap. Our studies show that superconductors in the remanent state provide a versatile platform for atom optics and applications in ultracold quantum gases.

  11. Joule heating in spin Hall geometry

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    The theoretical formula for the entropy production rate in the presence of spin current is derived using the spin-dependent transport equation and thermodynamics. This theory is applicable regardless of the source of the spin current, for example, an electric field, a temperature gradient, or the Hall effect. It reproduces the result in a previous work on the dissipation formula when the relaxation time approximation is applied to the spin relaxation rate. By using the developed theory, it is found that the dissipation in the spin Hall geometry has a contribution proportional to the square of the spin Hall angle.

  12. Foucault pendulum and sub-Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.; Monroy-Pérez, F.

    2010-08-01

    The well known Foucault nonsymmetrical pendulum is studied as a problem of sub-Riemannian geometry on nilpotent Lie groups. It is shown that in a rotating frame a sub-Riemannian structure can be naturally introduced. For small oscillations, three dimensional horizontal trajectories are computed and displayed in detail. The fiber bundle structure is explicitly shown. The underlying Lie structure is described together with the corresponding holonomy group, which turns out to be given by the center of the Heisenberg group. Other related physical problems that can be treated in a similar way are also mentioned.

  13. Magnetic Resonance Spectra and Statistical Geometry.

    PubMed

    Earle, Keith A; Mainali, Laxman; Sahu, Indra Dev; Schneider, David J

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  14. Phenomenology of effective geometries from quantum gravity

    NASA Astrophysics Data System (ADS)

    Torromé, Ricardo Gallego; Letizia, Marco; Liberati, Stefano

    2015-12-01

    In a recent paper [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015)] a general mechanism for the emergence of cosmological spacetime geometry from a quantum gravity setting was devised and a departure from standard dispersion relations for an elementary particle was predicted. We elaborate here on this approach extending the results obtained in that paper and showing that generically such a framework will not lead to higher order modified dispersion relations in the matter sector. Furthermore, we shall discuss possible phenomenological constraints to this scenario showing that spacetime will have to be classical to a very high degree by now in order to be consistent with current observations.

  15. Geometry program for aerodynamic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1973-01-01

    A computer program that provides the geometry and boundary conditions appropriate for an analysis of a lifting, thin wing with control surfaces in linearized, subsonic, steady flow is presented. The kernel function method lifting surface theory is applied. The data which is generated by the program is stored on disk files or tapes for later use by programs which calculate an influence matrix, plot the wing planform, and evaluate the loads on the wing. In addition to processing data for subsequent use in a lifting surface analysis, the program is useful for computing area and mean geometric chords of the wing and control surfaces.

  16. Geometry in the large and hyperbolic chaos

    SciTech Connect

    Hasslacher, B.; Mainieri, R.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.

  17. Massless Flavor in Geometry and Matrix Models

    SciTech Connect

    Roiban, Radu; Tatar, Radu; Walcher, Johannes

    2003-01-27

    The proper inclusion of flavor in the Dijkgraaf-Vafa proposal for the solution of N=1 gauge theories through matrix models has been subject of debate in the recent literature. We here reexamine this issue by geometrically engineering fundamental matter with type IIB branes wrapped on non-compact cycles in the resolved geometry, and following them through the geometric transition. Our approach treats massive and massless flavor fields on equal footing, including the mesons. We also study the geometric transitions and superpotentials for finite mass of the adjoint field. All superpotentials we compute reproduce the field theory results. Crucial insights come from T-dual brane constructions in type IIA.

  18. On the geometry of stiff knots

    NASA Astrophysics Data System (ADS)

    Pierre-Louis, O.

    2009-09-01

    We analyse the geometry of a thin knotted string with bending rigidity. Two types of geometric properties are investigated. First, following the approach of von der Mosel [H. von der Mosel, Asymptotic Anal. 18, 49 (1998)], we derive upper bounds for the multiplicity of crossings and braids. Then, using a general inequality for the length of 3D curves derived by Chakerian [G.D. Chakerian, Proc. of the American Math. Soc. 15, 886 (1964)], we analyze the size and confinement of a knot

  19. Twisted spectral geometry for the standard model

    NASA Astrophysics Data System (ADS)

    Martinetti, Pierre

    2015-07-01

    In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.

  20. Depth map generation from geometry and motion

    NASA Astrophysics Data System (ADS)

    Li, Qianmin; Ge, Chenyang; Ren, Pengju; Yao, Huimin

    2013-07-01

    As the demand for 3DTV keep increasing these years, the conversion from exist 2D videos to 3D ones becomes a new area of research. Depth map generation plays a key point in the process. Two most important clues of depth are geometry of the scene and motion vector. This paper presents an algorithm of depth map generation, which intends to get the depth map combines two aspects of information. Compared to the previous work, our method is improved in finding vanishing point, detect motion vectors, and depth map generation.

  1. The Local Geometry of Multiattribute Tradeoff Preferences.

    PubMed

    McGeachie, Michael; Doyle, Jon

    2011-05-01

    Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018

  2. Magnetic Resonance Spectra and Statistical Geometry

    PubMed Central

    Mainali, Laxman; Sahu, Indra Dev; Schneider, David J.

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  3. Principal whitened gradient for information geometry.

    PubMed

    Yang, Zhirong; Laaksonen, Jorma

    2008-01-01

    We propose two strategies to improve the optimization in information geometry. First, a local Euclidean embedding is identified by whitening the tangent space, which leads to an additive parameter update sequence that approximates the geodesic flow to the optimal density model. Second, removal of the minor components of gradients enhances the estimation of the Fisher information matrix and reduces the computational cost. We also prove that dimensionality reduction is necessary for learning multidimensional linear transformations. The optimization based on the principal whitened gradients demonstrates faster and more robust convergence in simulations on unsupervised learning with synthetic data and on discriminant analysis of breast cancer data. PMID:18255260

  4. Information geometry of mean-field approximation.

    PubMed

    Tanaka, T

    2000-08-01

    I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics. PMID:10953246

  5. Information geometry of the spherical model.

    PubMed

    Janke, W; Johnston, D A; Kenna, R

    2003-04-01

    Motivated by the observation that geometrizing statistical mechanics offers an interesting alternative to more standard approaches, we calculate the scaling behavior of the curvature R of the information geometry metric for the spherical model. We find that R approximately epsilon(-2), where epsilon=beta(c)-beta is the distance from criticality. The discrepancy from the naively expected scaling R approximately epsilon(-3) is explained and compared with that for the Ising model on planar random graphs, which shares the same critical exponents. PMID:12786435

  6. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners. PMID:25156265

  7. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  8. Synthesis, Characterization, Spectral Studies and Antifungal Activity of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) Complexes with 2-(4- Sulphophenylazo)-1,8-Dihydroxy-3,6-Napthalene Disulphonic Acid Trisodium Salt

    PubMed Central

    Pandey, Gajanan; Narang, K. K.

    2005-01-01

    Complexes of the type Na6[M(HL)2(H2O)2], where M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) and Na3H2L= 2-(4-sulphophenylazo)-1,8-dihydroxy 3,6 naphthalene disulphonic acid trisodium salt, have been synthesized and characterized by physico-chemical (elemental analyses, solubility, electrolytic conductance, magnetic susceptibility measurement) and spectral (UV-Visible, IR, ESR, powder x-ray diffraction) techniques for their structure and studied for their antifungal activity against ten fungi. The anionic 1:2 metal:ligand complexes show octahedral geometry around M(II), a significant antifungal activity against Curvularia lunata and Alternaria triticina and a moderate activity against Alternaria brassicicola, Alternaria brassicae, Alternaria solanae, Curvularia species, Helminthosporium oryzae, Collectotrichum capsici, Aspergillus niger, Aspergillus flavus and Fusarium udum. PMID:18365101

  9. Early Childhood Teacher Education: The Case of Geometry

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2011-01-01

    For early childhood, the domain of geometry and spatial reasoning is an important area of mathematics learning. Unfortunately, geometry and spatial thinking are often ignored or minimized in early education. We build a case for the importance of geometry and spatial thinking, review research on professional development for these teachers, and…

  10. Standard Definitions of Building Geometry for Energy Evaluation

    SciTech Connect

    Deru, M.; Torcellini, P.

    2005-10-01

    This document provides definitions and metrics of building geometry for use in building energy evaluation. Building geometry is an important input in the analysis process, yet there are no agreed-upon standard definitions of these terms for use in energy analysis. The metrics can be used for characterizing building geometry, for calculating energy performance metrics, and for conducting energy simulations.

  11. Developing the Concept of a Parabola in Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba; Kurtulus, Aytaç; Yanik, H. Bahadir

    2015-01-01

    The aim of this study was to observe the development process of the concept of a parabola in Taxicab geometry. The study was carried out in two stages. First, some activities related to Euclidean geometry and Taxicab geometry were designed based on concept development and real-life applications, and they were administered to a ninth-grade student.…

  12. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  13. A Brief History of Non-Euclidean Geometry

    ERIC Educational Resources Information Center

    Marshall, Daniel; Scott, Paul

    2004-01-01

    Around 300 BC, Euclid wrote "The Elements", a major treatise on the geometry of the time, and what would be considered "geometry" for many years after. Arguably "The Elements" is the second most read book of the western world, falling short only to The Bible. In his book, Euclid states five postulates of geometry which he uses as the foundation…

  14. Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry

    ERIC Educational Resources Information Center

    Guven, Bulent; Baki, Adnan

    2010-01-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…

  15. An Alternative Approach to Logo-Based Geometry

    ERIC Educational Resources Information Center

    Durmus, Soner; Karakirik, Erol

    2005-01-01

    Geometry is an important branch of mathematics. Geometry curriculum can be enriched by using different Technologies such as graphing calculators and computers. Logo-based different software packages aim to improve conceptual understanding in geometry. The goals of this paper are i) to present theoretical foundations of any computer software…

  16. An Alternative Approach to Logo-Based Geometry

    ERIC Educational Resources Information Center

    Karakirik, Erol; Durmus, Soner

    2005-01-01

    Geometry is an important branch of mathematics. Geometry curriculum can be enriched by using different Technologies such as graphing calculators and computers. Logo-based different software packages aim to improve conceptual understanding in geometry. The goals of this paper are i) to present theoretical foundations of any compute software…

  17. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  18. Force evaluation in the lattice Boltzmann method involving curved geometry

    NASA Astrophysics Data System (ADS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi

    2002-04-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum-exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second-order accuracy based on our recent works [Mei et al., J. Comput. Phys. 155, 307 (1999); ibid. 161, 680 (2000)]. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  19. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  20. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    NASA Astrophysics Data System (ADS)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  1. Multigroup Complex Geometry Neutron Diffusion Code System.

    Energy Science and Technology Software Center (ESTSC)

    2002-12-18

    Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates.more » The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.« less

  2. Conical Rotating Aperture Geometries In Digital Radiography

    NASA Astrophysics Data System (ADS)

    Rudin, Stephen; Bednarek, Daniel R.; Wong, Roland

    1981-11-01

    Applications of conical rotating aperture (RA) geometries to digital radiography are described. Two kinds of conical RA imaging systems are the conical scanning beam and the conical scanning grid assemblies. These assemblies comprise coaxial conical surface(s) the axis of which is collinear with the x-ray focal spot. This geometry allows accurate alignment and continuous focusing of the slits or the grid lines. Image receptors which use solid state photodiode arrays are described for each type of conical RA system: multiple linear arrays for the conical scanning beam assembly and multiple area arrays for the conical scanning grid assembly. The digital rotating-aperture systems combine the wide dynamic range characteristics of solid state detectors with the superior scatter-rejection advantages of scanned beam approaches. The high scanning-beam velocities attainable by the use of rotating apertures should make it possible to obtain digital images for those procedures such as chest radiography which require large fields of view and short exposure times.

  3. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  4. Probing the geometry of the Laughlin state

    DOE PAGESBeta

    Johri, Sonika; Papic, Z.; Schmitteckert, P.; Bhatt, R. N.; Haldane, F. D. M.

    2016-02-05

    It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantumHall states—the filling v = 1/3 Laughlin state.We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulkmore » off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a ‘pair amplitude’ operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. Furthermore, these various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient.« less

  5. Study on Pyroelectric Harvesters with Various Geometry

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  6. Study on Pyroelectric Harvesters with Various Geometry.

    PubMed

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  7. Measurement of quantum fluctuations in geometry

    NASA Astrophysics Data System (ADS)

    Hogan, Craig J.

    2008-05-01

    A particular form for the quantum indeterminacy of relative spacetime position of events is derived from the context of a holographic geometry with a minimum length at the Planck scale. The indeterminacy predicts fluctuations from a classically defined geometry in the form of “holographic noise” whose spatial character, absolute normalization, and spectrum are predicted with no parameters. The noise has a distinctive transverse spatial shear signature and a flat power spectral density given by the Planck time. An interferometer signal displays noise due to the uncertainty of relative positions of reflection events. The noise corresponds to an accumulation of phase offset with time that mimics a random walk of those optical elements that change the orientation of a wavefront. It only appears in measurements that compare transverse positions and does not appear at all in purely radial position measurements. A lower bound on holographic noise follows from a covariant upper bound on gravitational entropy. The predicted holographic noise spectrum is estimated to be comparable to measured noise in the currently operating interferometric gravitational-wave detector GEO600. Because of its transverse character, holographic noise is reduced relative to gravitational wave effects in other interferometer designs, such as the LIGO observatories, where beam power is much less in the beam splitter than in the arms.

  8. Quantitative analysis of blood vessel geometry

    NASA Astrophysics Data System (ADS)

    Fuhrman, Michael G.; Abdul-Karim, Othman; Shah, Sujal; Gilbert, Steven G.; Van Bibber, Richard

    2001-07-01

    Re-narrowing or restenosis of a human coronary artery occurs within six months in one third of balloon angioplasty procedures. Accurate and repeatable quantitative analysis of vessel shape is important to characterize the progression and type of restenosis, and to evaluate effects new therapies might have. A combination of complicated geometry and image variability, and the need for high resolution and large image size makes visual/manual analysis slow, difficult, and prone to error. The image processing and analysis described here was developed to automate feature extraction of the lumen, internal elastic lamina, neointima, external elastic lamina, and tunica adventitia and to enable an objective, quantitative definition of blood vessel geometry. The quantitative geometrical analysis enables the measurement of several features including perimeter, area, and other metrics of vessel damage. Automation of feature extraction creates a high throughput capability that enables analysis of serial sections for more accurate measurement of restenosis dimensions. Measurement results are input into a relational database where they can be statistically analyzed compared across studies. As part of the integrated process, results are also imprinted on the images themselves to facilitate auditing of the results. The analysis is fast, repeatable and accurate while allowing the pathologist to control the measurement process.

  9. Dimensional flow in discrete quantum geometries

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2015-04-01

    In various theories of quantum gravity, one observes a change in the spectral dimension from the topological spatial dimension d at large length scales to some smaller value at small, Planckian scales. While the origin of such a flow is well understood in continuum approaches, in theories built on discrete structures a firm control of the underlying mechanism is still missing. We shed some light on the issue by presenting a particular class of quantum geometries with a flow in the spectral dimension, given by superpositions of states defined on regular complexes. For particular superposition coefficients parametrized by a real number 0 <α geometries may be considered as fractal only when α =1 , where the "magic number" DS≃2 for the spectral dimension of spacetime, appearing so often in quantum gravity, is reproduced as well. These results apply, in particular, to special superpositions of spin-network states in loop quantum gravity, and they provide more solid indications of dimensional flow in this approach.

  10. Lobed Mixer Optimization for Advanced Ejector Geometries

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    1996-01-01

    The overall objectives are: 1) to pursue analytical, computational, and experimental studies that enhance basic understanding of forced mixing phenomena relevant to supersonic jet noise reduction, and 2) to integrate this enhanced understanding (analytical, computational, and empirical) into a design-oriented model of a mixer-ejector noise suppression system. The work is focused on ejector geometries and flow conditions typical of those being investigated in the NASA High Speed Research Program (HSRP). The research will be carried out in collaboration with the NASA HSRP Nozzle Integrated Technology Development (ITD) Team, and will both contribute to, and benefit from, the results of other HSRP research. The noise suppressor system model that is being developed under this grant is distinct from analytical tools developed by industry because it directly links details of lobe geometry to mixer-ejector performance. In addition, the model provides a 'technology road map to define gaps in the current understanding of various phenomena related to mixer-ejector design and to help prioritize research areas. This report describes research completed in the past year, as well as work proposed for the following year.

  11. Magnetic geometry, plasma profiles, and stability

    SciTech Connect

    Connor, J. W.

    2006-07-15

    The history of the stability of short wavelength modes, such as MHD instabilities and drift waves, has been a long and tortuous one as increasingly realistic representations of the equilibrium magnetic geometry have been introduced. Early work began with simple slab or cylindrical models where plasma profiles and magnetic shear were seen to play key roles. Then the effects of toroidal geometry, in particular the constraints imposed by periodicity in the presence of magnetic shear, provided a challenge for theory, which was met by the ballooning transformation. More recently the limitations on the conventional ballooning theory arising from effects such as toroidal rotation shear, low magnetic shear, and the presence of the plasma edge have been recognized. These have led in turn to modifications and extensions of this theory. These developments have produced a continuously changing view of the stability of the 'universal' drift wave, for example. After a survey of this background, we describe more recent work of relevance to currently important topics, such as transport barriers characterized by the presence of strong rotation shear and low magnetic shear and the edge localized modes that occur in H-mode.

  12. Time, temperature, and data cloud geometry.

    PubMed

    Fushing, Hsieh; McAssey, Michael P

    2010-12-01

    We demonstrate that the geometry of a data cloud is computable on multiple scales without prior knowledge about its structure. We show that the concepts of "time" and "temperature" are beneficial for constructing a hierarchical geometry based on local information provided by a similarity measure. We design two devices for construction of this hierarchy. Along the time axis, a regulated random walk incorporated with recurrence-time dynamics detects information about the number of clusters and the corresponding cluster membership of individual data nodes. Along the temperature axis we build the geometric hierarchy of a data cloud, which consists of only a few phase transitions. The base level of the hierarchy especially exhibits the intrinsic data structure. At each chosen temperature, we form an ensemble matrix that summarizes information extracted from many regulated random walks. This device constitutes the basis for constructing one corresponding level of the hierarchy by means of spectral clustering. We illustrate the construction of such geometric hierarchies using simulated and real data. PMID:21230647

  13. Geometry as an aspect of dynamics

    NASA Astrophysics Data System (ADS)

    Videira, A. L. L.; Barros, A. L. Rocha; Fernandes, N. C.

    1985-12-01

    Contrary to the predominant way of doing physics, we claim that the geometrical structure of a general differentiable space-time manifold can be determined from purely dynamical considerations. Any n-dimensional manifold V a has associated with it a symplectic structure given by the 2n numbers p and x of the 2n-dimensional cotangent fiber bundle TVn. Hence, one is led, in a natural way, to the Hamiltonian description of dynamics, constructed in terms of the covariant momentum p (a dynamical quantity) and of the contravariant position vector x (a geometrical quantity). That is, the Hamiltonian description furnishes a natural way of relating dynamics and geometry. Thus, starting from the Hamiltonian state function (for a particle)—taken as the fundamental dynamical entity—we show that general relativistic physics implies a general pseudo-Riemannian geometry, whereas the physics of the special theory of relativity is tied up with Minkowski space-time, and nonrelativistic dynamics is bound up to Newton-Cartan space-time.

  14. TES Limb-Geometry Observations of Aerosols

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.

    2003-01-01

    The Thermal Emission Spectrometer (TES) on-board Mars Global Surveyor (MGS) has a pointing mirror that allows observations in the plane of the orbit anywhere from directly nadir to far above either the forward or aft limbs for details about the TES instrument). Nadir-geometry observations are defined as those where the field-of-view contains the surface of Mars (even if the actual observation is at a high emission angle far from true nadir). Limb-geometry observations are defined as those where the line-of-sight of the observations does not intersect the surface. At a number of points along the MGS orbit (typically every 10 deg. or 20 deg. of latitude) a limb sequence is taken, which includes a stack of overlapping TES spectra from just below the limb to more than 120 km above the limb. A typical limb sequence has approx. 20 individual spectra, and the projected size of a TES pixel at the limb is 13 km.

  15. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  16. Thermoacoustic engines in alternate geometry resonators

    NASA Astrophysics Data System (ADS)

    Lightfoot, Jay Alan

    1997-10-01

    The purpose of this research is to branch out from thermoacoustics in the plane wave geometry to study radial wave thermoacoustic engines. Two possible advantages of radial systems are proposed: a reduction in harmonic generation due to the natural anharmonicity of the resonator, and the possibility of improved engine performance using naturally sloped stacks. The radial wave prime mover is described. Experimental results for the temperature at which oscillations begin are compared with theoretical predictions. Accounting for a pore distribution in the stack and temperature discontinuities between the stack and heat exchangers, theory and experiment are shown to be in agreement. In addition, spectral measurements in the radial prime mover show that the anharmonicity of the resonator significantly reduces non-linear harmonic generation. To gain a better understanding of naturally sloped stacks in the radial engine, the physics of sloped stacks is extended to the plane geometry, where fewer constraints exist. A theoretical treatment of thermoacoustic engines with varying stack pore cross-section and/or varying resonator cross-section in the temperature gradient supporting stack region is presented along with numerical results for plane and radial wave prime movers and refrigerators. Results show significant improvements in refrigerator COP in plane wave systems.

  17. Geometry and self-righting of turtles

    PubMed Central

    Domokos, Gábor; Várkonyi, Péter L

    2007-01-01

    Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise. PMID:17939984

  18. Variable geometry device for turbine compressor outlet

    NASA Technical Reports Server (NTRS)

    Rogo, Casimir (Inventor); Lenz, Herman N. (Inventor)

    1985-01-01

    A variable geometry device is provided for use with the compressor outlet of a turbine engine. The turbine engine includes a support housing, a compressor contained within the support housing and having a compressed air outlet and in which a pair of spaced walls define an annular and radially extending diffuser passageway. The inner end of the diffuser passageway is open to the compressed outlet while the outer end of the diffuser passageway is open to the combustion chamber for the turbine engine. A plurality of circumferentially spaced diffuser vanes are mounted to one of the diffuser walls and protrude across the diffuser passageway. An annular recessed channel is formed around the opposite diffuser wall and an annular ring is mounted within the channel. A motor is operatively connected to this ring and, upon actuation, displaces the ring transversely across the diffuser passageway to variably restrict the diffuser passageway. In addition, the ring includes a plurality of slots which register with the diffuser vanes so that the vane geometry remains the same despite axial displacement of the ring.

  19. Students' Learning Experiences When Using a Dynamic Geometry Software Tool in a Geometry Lesson at Secondary School in Ethiopia

    ERIC Educational Resources Information Center

    Denbel, Dejene Girma

    2015-01-01

    Students learning experiences were investigated in geometry lesson when using Dynamic Geometry Software (DGS) tool in geometry learning in 25 Ethiopian secondary students. The research data were drawn from the used worksheets, classroom observations, results of pre- and post-test, a questionnaire and interview responses. I used GeoGebra as a DGS…

  20. Geometry strategy for engineering the recombination possibility of excitons in nanowires.

    PubMed

    Wang, Youwei; Zhang, Yubo; Zhu, Haiming; Liu, Jianjun; Lian, Tianquan; Zhang, Wenqing

    2016-04-01

    We proposed a geometry strategy to engineer the radiative recombination possibility and thus the lifetime of excitons in nanowires of some photovoltaic semiconductors by using theoretical analysis and first-principles calculations. We demonstrated that the shape can engineer the symmetry of the wave-functions of band-edge states and influence the radiative recombination possibility. The nanowires need to satisfy the following requirements to forbid the radiative recombination possibility of band-edge excitons: (i) wurtzite structure; (ii) pxy-characterized wave-function of VBM state and (iii) C3v-symmetry shape. The geometrical symmetry results in the pxy-characterized C3v-symmetry wave-function of VBM state and leads to forbidden radiative recombination of band-edge excitons. The geometry strategy offers a flexible proposal to prolong the exciton lifetime, leaving optical absorption impregnable. PMID:26980541