These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project  

NASA Astrophysics Data System (ADS)

The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at 2,000 m depth is 102°C. The rock types at Kimama and Kimberly are primarily basalt and rhyolite, respectively, with interbedded thin sedimentary layers. We identify anomalies in the physical properties of igneous rocks using porosity logs (neutron and acoustic), lithology logs (gamma ray and magnetic susceptibility) and fracture/saturation logs (televiewer and electrical resistivity). The core will be used to constrain the geophysical data and confirm the ability to identify permeability in fracture zones and saturated zones through analysis of the wireline log data. The matrix porosity of these igneous lithologies is near zero aside from porosity from vugs and vesicles. However, open and sealed fractures indicate that mineralizing fluids form connected pathways in the rock. Core samples show a series of alteration phases, including amygdaloidal fine-grained calcite and secondary clays. The geophysical data will be used to predict anomalies in lithology and identify open fractures and saturated zones with high permeability.

Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

2011-12-01

2

HYDRATE CORE DRILLING TESTS  

SciTech Connect

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01

3

Ultrasonic Drilling and Coring  

NASA Technical Reports Server (NTRS)

A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

Bar-Cohen, Yoseph

1998-01-01

4

Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma  

USGS Publications Warehouse

Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.

Schlottmann, Jamie L.; Funkhouser, Ron A.

1991-01-01

5

A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples  

NASA Technical Reports Server (NTRS)

Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

1996-01-01

6

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01

7

Comparison of hydrogeochemical logging of drilling fluid during coring with the results from geophysical logging and hydraulic testing Example of the Morte-Mérie scientific borehole, Ardèche-France, Deep Geology of France Programme  

NASA Astrophysics Data System (ADS)

A 980-m-deep well was cored on the Ardèche border of the Southeastern basin of France as part of the Deep Geology of France (GPF) programme. Hydrogeochemical logging was carried out during drilling, which involved the monitoring of physico-chemical parameters (pH, Eh, temperature and conductivity), and chemical parameters (concentrations of He, Rn, CO 2, CH 4, O 2 Ca, Cl and SiO 2) of the drilling fluid permanently circulating in the well. This logging programme was complemented by geophysical logging and two hydraulic tests. The combination of these measurements enabled identification of a transmissive interval due to fractures in the Jurassic carbonates, and of fluid inflow both at the base of the porous and slightly permeable Triassic sandstones and from an open fracture in the Permian conglomerates. These intervals are marked by changes in the drilling-fluid chemistry, such as an increase in chemical species content, or a drop in pH. The degree of modification depends on the natural permeability of the fractures and the salinity of the fluids. The porous and permeable intervals are also marked by He anomalies, which act as a tracer for these zones. Comparison between the geophysical and hydrogeochemical logs reveals that the latter provide information on the liquid phase, whether the fractures are productive or not, whereas the geophysical logs are more directly related to the solid phase.

Aquilina, L.; Eberschweiler, C.; Perrin, J.; Deep Geology of France Team

1996-11-01

8

Parametric study on thrust force of core drill  

Microsoft Academic Search

Drilling-induced delamination is among the major concerns of applying the fiber-reinforced composite materials in various industries. Core drill possesses the advantage for reducing the delamination by distributing the drilling thrust force toward the drill periphery. The thrust force of core drill varying with the conditions in drilling carbon fiber reinforced plastic (CFRP) is experimentally investigated in this study. The experimental

C. C. Tsao; H. Hocheng

2007-01-01

9

Taguchi analysis of drilling quality associated with core drill in drilling of composite material  

Microsoft Academic Search

The thrust force and surface roughness of core drill with drill parameters (grit size of diamond, thickness, feed rate and\\u000a spindle speed) in drilling carbon fiber reinforced plastic (CFRP) laminate was experimentally investigated in this study.\\u000a A L27 (313) orthogonal array and signal-to-noise (S\\/N) were employed to analyze the effect of drill parameters. Using Taguchi method\\u000a for design of a

C. C. Tsao

2007-01-01

10

Downhole geophysical data from recent deep drilling in the center of the Thuringian Basin, Germany  

NASA Astrophysics Data System (ADS)

In the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary Basins) project, a 1.179 meter deep scientific borehole was drilled in summer 2013. The drill site is situated in the north of Erfurt, in the center of the Thuringian Basin on the crossing point of two seismic reflection profiles, which were acquired in 2011. An almost complete sequence from Keuper to the base of the Buntsandstein was drilled. Drilling, geophysical measurements and well construction were conducted for three depth intervals. First, drilling was undertaken to a depth of 313 m down to the top of the Middle Muschelkalk. Then, the Middle and Upper Muschelkalk were drilled to a depth of 515 m and the third part of the drilling campaign was finished at a depth of 1.179 m at the base of the Lower Buntsandstein. Coring was done in the depth intervals of 285 m to 420 m and 520 m to 914 m. With the help of the borehole geophysical measurements, which were done along the entire depth, stratigraphic information obtained through core samples can be extrapolated from cored sections into those depth sections, where no coring was done. Immediately after finishing drilling through a certain depth interval, borehole geophysical measurements were conducted in the open hole. Using the caliper and inclination instruments, the geometry of the well was determined. In addition, milieu, gamma-ray, spectral gamma-ray, acoustic borehole television, sonic, susceptibility, dipmeter, gamma-gamma, neutron-neutron and the dual latero-log were measured to get information about rock properties. Within rock-salt bearing depth intervals, embedded cm-thin layers of clay can be geophysically resolved. This will e.g. enable to determine and contrast the physical properties of these alternating sequences with high accuracy. Besides the in-situ well measurements rock-physical parameters of the core samples were acquired with a Multi-Sensor Core Logger (MSCL). Here, we present the new data set and discuss some preliminary results. Unexpectedly and contrary to them being prominent aquifers, like at the edges of the Thuringian Basin, the Middle Muschelkalk and Middle Buntsandstein sequences are characterized by very low porosities and no macroscopically recognizable fluid transport here.

Methe, Pascal; Goepel, Andreas; Kukowski, Nina

2014-05-01

11

Integrated deep drilling, coring, downhole logging, and data management in the Chicxulub Scientific Drilling Project (CSDP), Mexico  

Microsoft Academic Search

Impact structures in the solar system are mainly recognized and explored through remote sensing and, on Earth, through geophysical deep sounding. To date, a continuous scientific sampling of large impact craters from cover rocks to target material has only seldom been performed. The first project to deep-drill and core into one of the largest and well-preserved terrestrial impact structures was

Lothar Wohlgemuth; Eckhard Bintakies; Jochem Kück; Ronald Conze; Ulrich Harms

2004-01-01

12

Geothermal temperature gradient core drill, Santiam Pass  

SciTech Connect

DOE is proposing to share in the cost of drilling a 3000-ft core hole to evaluate temperature gradients, subsurface geology and the geothermal potential of an area in the Cascade Mountains. The proposed core hole will be located in the Deschutes National Forest in Oregon, near Santiam Pass. The proposed action has been described in the Environmental Assessment (EA) for Geothermal Temperature Gradient Core Drill Santiam Pass Area (No. OR-050-9-51) prepared by the US Bureau of Land Management (BLM). DOE has determined that the BLM EA adequately addresses the impacts of the proposal and is hereby adopting the EA in partial fulfillment of its NEPA responsibilities. Based upon a review of the EA and an independent analysis, DOE has concluded that the proposed corehole drilling project does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement will not be prepared.

Not Available

1989-01-01

13

Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills  

Microsoft Academic Search

Drilling is the mostly used secondary machining of the fiber reinforced composite laminates, while the delamination occurs frequently at the drill exit in the workpiece. In the industrial experiences, core drill shows better drilling quality than twist drill. However, chip removal is a troublesome problem when using the core drill. Conventional compound core-special drills (core-special drills and step-core-special drills) are

C. C. Tsao; Y. C. Chiu

2011-01-01

14

Experimental study of drilling composite materials with step-core drill  

Microsoft Academic Search

In conventional machining, drilling is the most applied method accounting for as much as 40% for all material removal processes. However, problems in drilling, particularly the heterogeneity and anisotropy of composite materials, increase delamination. Several studies have proved that delamination is related to the thrust force in drilling composite materials. The thrust force of step-core drill with drilling parameters (diameter

C. C. Tsao

2008-01-01

15

Hydraulic inner barrel in a drill string coring tool  

Microsoft Academic Search

This patent describes a hydraulic lift apparatus for use in combination with a drill string and a coring bit used for coring. The drill string is characterized by including an outer tube connected to a coring bit and having pressurized hydraulic fluid forced through the outer tube, the drill string further characterized by an inner tube for receiving and lifting

K. Knighton; J. S. Davis; S. R. Radford

1987-01-01

16

The Apollo 16 deep drill core  

NASA Technical Reports Server (NTRS)

Numerous investigations have been undertaken on samples from the Apollo 16 deep drill core. These studies are diverse in character and range from grain size analyses, through chemical and mineralogical studies to investigations of nuclear particle tracks, rare gases, and isotopic abundances. In order to comprehend the significance of the studies of the mineral chemistry of the clasts below 1 mm in size in several samples with respect to other studies, it became obvious that a review of all previous works was desireable. After reviewing the available literature it can be concluded that only four major stratigraphic divisions exist in the core section. Whether these represent four single events or multi-stage events within one unit is uncertain; however, it appears that accumulation of the material in the core has taken place during a period of 1 billion years, and that the material is predominantly of locally derived Highlands origin.

Meyer, H. O. A.; Mccallister, R. H.

1977-01-01

17

Concepts and Benefits of Lunar Core Drilling  

NASA Technical Reports Server (NTRS)

Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.

McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.

2007-01-01

18

Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)  

NASA Astrophysics Data System (ADS)

Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.

Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

2013-12-01

19

-RIS-M-2210 KVANE -A KVANEFJELD DRILL CORE DATABASE  

E-print Network

-RISÃ?-M-2210 KVANE - A KVANEFJELD DRILL CORE DATABASE Flemming Lund Clausen Nineralogical Institute, Technical University of Denmark Abstract. A database KVANE containing all drill core information from be picked out of the database. A short introduction to the SAS system is also given. The database has been

20

Cretaceous shallow drilling, US Western Interior: Core research  

SciTech Connect

This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

Arthur, M.A.

1993-02-17

21

Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology  

NASA Astrophysics Data System (ADS)

Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.

Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.

2001-05-01

22

Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico  

SciTech Connect

This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

1989-02-01

23

Hydraulic lift inner barrel in a drill string coring tool  

Microsoft Academic Search

An automatically operable hydraulic lift inner barrel is devised to lift the inner tube of the core barrel on a drill string. An inner mandrel is axially disposed within the outer tube of the coring tool. An outer piston which is selectively locked to the inner mandrel is telescopically and concentrically disposed about the inner mandrel. Fluid is selectively diverted

1985-01-01

24

Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California  

USGS Publications Warehouse

The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)

Paillet, F.L.; Morin, R.H.; Hodges, H.E.

1986-01-01

25

A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 1. Design concepts  

Microsoft Academic Search

The Deep Ice Sheet Coring (DISC) drill, developed by Ice Coring and Drilling Services (ICDS) under contract with the US National Science Foundation, is an electromechanical drill designed to take 122 mm diameter ice cores to depths of 4000 m. The conceptual design of the DISC drill was developed in 2002\\/03 based on science requirements written by K. Taylor and

Alexander J. Shturmakov; Donald A. Lebar; William P. Mason; Charles R. Bentley

2007-01-01

26

Data from core analyses, aquifer testing, and geophysical logging of Denver Basin bedrock aquifers at Castle Pines, Colorado  

USGS Publications Warehouse

This report contains data pertaining to the geologic and hydrologic characteristics of the bedrock aquifers of the Denver basin at a site near Castle Pines, Colorado. Data consist of a lithologic- description of about 2,400 ft of drill core and laboratory determinations of mineralogy, grain size, bulk and grain density, porosity, specific yield, and specific retention for selected core samples. Water-level data, atmospheric-pressure measurements, aquifer-compression measurements, and borehole geophysical logs also are included.

Robson, S.G.; Banta, E.R.

1993-01-01

27

Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America  

SciTech Connect

Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

Goff, S.J.; Goff, F.E.; Heiken, G.H. [Los Alamos National Lab., NM (United States); Duffield, W.A. [Geological Survey, Flagstaff, AZ (United States); Janik, C.J. [Geological Survey, Menlo Park, CA (United States)

1994-04-01

28

Discarded Drill Cores from the Blackbird Cobalt-Copper Mine  

USGS Multimedia Gallery

Blocks of biotitic meta-sandstone from the lower part of the Gunsight Formation, and drill core from the underlying banded siltite unit of the Apple Creek Formation, lying on the dump of the lower workings of the Copper Queen mine, southeast of the Blackbird cobalt-copper mine area....

29

Design an Interactive Visualization System for Core Drilling Expeditions  

E-print Network

and studies have proposed participatory design [2] and user-centered design [3]. However real-world usersDesign an Interactive Visualization System for Core Drilling Expeditions Using Immersive Empathic Method Overview In this paper, we propose an immersive empathic design method and used it to create

Johnson, Andrew

30

Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills  

NASA Astrophysics Data System (ADS)

Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

2012-12-01

31

Development of a drilling and coring test-bed for lunar subsurface exploration and preliminary experiments  

NASA Astrophysics Data System (ADS)

Drill sampling has been widely employed as an effective way to acquire deep samples in extraterrestrial exploration. A novel sampling method, namely, flexible-tube coring, was adopted for the Chang'e mission to acquire drilling cores without damaging stratification information. Since the extraterrestrial environment is uncertain and different from the terrestrial environment, automated drill sampling missions are at risk of failure. The principles of drilling and coring for the lunar subsurface should be fully tested and verified on earth before launch. This paper proposes a test-bed for conducting the aforementioned experiments on earth. The test-bed comprises a rotary-percussive drilling mechanism, penetrating mechanism, drilling medium container, and signal acquisition and control system. For granular soil, coring experiments indicate that the sampling method has a high coring rate greater than 80%. For hard rock, drilling experiments indicate that the percussive frequency greatly affects the drilling efficiency. A multi-layered simulant composed of granular soil and hard rock is built to test the adaptability of drilling and coring. To tackle complex drilling media, an intelligent drilling strategy based on online recognition is proposed to improve the adaptability of the sampling drill. The primary features of this research are the proposal of a scheme for drilling and coring a test-bed for validation on earth and the execution of drilling experiments in complex media.

Shi, Xiaomeng; Deng, Zongquan; Quan, Qiquan; Tang, Dewei; Hou, Xuyan; Jiang, Shengyuan

2014-07-01

32

Ultrasonic\\/sonic drilling\\/coring (USDC) for in-situ planetary applications  

Microsoft Academic Search

A novel ultrasonic drilling and coring device (USDC) was demonstrated to drill a wide variety of rocks: form ice and chalk to granite and basalt. The USDC addresses the key shortcomings of the conventional drills. The device requires low preload and power. The drill bits are not sharpened and, therefore there is no concern to loss of performance due to

Yoseph Bar-Cohen; Stewart Sherrit; Benjamin P. Dolgin; Dharmendra S. Pal; Thomas Peterson; Jason Kroh; Ron Krahe

2000-01-01

33

Investigation of origin for seawater intrusion using geophysical well logs and absolute ages of volcanic cores in the eastern part of Jeju Island  

Microsoft Academic Search

Jeju located in the southern extremity of Korea is volcanic island, one of best-known tourist attractions in Korea. Jeju Province operates the monitoring boreholes for the evaluation of groundwater resources in coastal area. Major rock types identified from drill cores are trachybasalt, acicular basalt, scoria, hyalocastite, tuff, unconsolidated U formation, and seoguipo formation and so on. Various conventional geophysical well

Seho Hwang; Jehyun Shin

2010-01-01

34

Axel rover NanoDrill and PowderDrill: Acquisition of cores, regolith and powder from steep walls  

NASA Astrophysics Data System (ADS)

This paper describes development and testing of low-mass, low-power drills for the Axel rover. Axel is a two-wheeled tethered rover designed for the robotic exploration of steep cliff walls, crater walls and deep holes on earth and other planetary bodies. The Axel rover has a capability to deploy scientific instruments and/or samplers in the areas of interest to scientists currently inaccessible by conventional robotic systems. To enable sample recovery, we developed two drills: NanoDrill for acquisition of 25 mm long and 7 mm diameter cores and PowderDrill for acquisition of either in situ regolith/soil or drilled cuttings from depths of up to 15 mm. Both drills have been successfully tested in laboratory in limestone and sandstone rocks and on-board the Axel rover in the Mars Yard at NASA JPL. The drills managed to acquire limestone and sandstone cores and powder, with an average power of less than 5 Watts. The penetration rate of the NanoDrill was ~2 mm/min and of the PowderDrill it was ~9 mm/min. After sample acquisition, both drills successfully ejected of the acquired samples (cores and powder).

Zacny, K.; Paulsen, G.; Chu, P.; Hedlund, M.; Spring, J.; Osborne, L.; Matthews, J.; Zarzhitsky, D.; Nesnas, I. A.; Szwarc, T.; Indyk, S.

35

Geophysical well-log measurements in three drill holes at Salt Valley, Utah  

SciTech Connect

Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies.

Daniels, J.J.; Hite, R.J.; Scott, J.H.

1980-01-01

36

Comparison of core control and geophysical investigations, silica sand deposits, Dawmat Al Jandal, Al Jawf at Saudi Arabia  

NASA Astrophysics Data System (ADS)

This thesis is a summary of a comprehensive geophysical investigation in southern Dawmat Al Jandal, Al Jawf in Saudi Arabia. This research demonstrates that the acquisition of both core control and geophysical data is superior to the acquisition of core control alone. Coring is expensive and is limited in subsurface coverage. Geophysical surveying, however, is a relatively rapid and cost-effective means of deriving information about the subsurface between core holes. Ground penetrating radar (GPR), Multichannel Analysis of Surface Waves (MASW), and Seismic Refraction methods were used as exploration techniques to locate surficial mineral deposits within the study area. During the course of these investigations, the author tries to review the acquired 1620 meters of ground penetrating radar (GPR) data to image internal reflections (if any) within the sand and the top of the underlying sandstone; 27 MASW field records were acquired at each core hole location, which generated 1-D and 2-D shear wave velocity profiles, and 27 seismic refraction profiles were acquired, which did not image the top of the sandstone. The purpose was to estimate the thickness of the sand and to map bedding planes within the sand to better understand depositional environments under the same conditions, based on the high-resolution 2-D surveys, mostly performed in mining areas. The Geophysical investigations were successful and proved to be useful methods for the exploration of shallow subsurface areas where the results are equal to, or slightly different from, the corresponding with of the core holes' values. Therefore, geophysical surveying does not remove the need for core control, but when it is properly applied it can optimize exploration rating programs by maximizing the rate of ground coverage and minimizing the amount of core drilling that is required.

Alsulaimani, Ghassan Salem

37

Barberton Drilling Project - Barite Valley Core BARB5  

NASA Astrophysics Data System (ADS)

Diamond drilling has recently been completed in the Barberton Greenstone Belt, South Africa in order to obtain fresh, unweathered samples and continuous stratigraphic sections of Palaeoarchean volcanic and sedimentary rocks. The Barberton drilling project, sponsored by ICDP, has multiple aims including investigating the composition and temperature of the early atmosphere and oceans, the presence and activity of early microbial biosphere, the nature of melting in the mantle, and early tectonic processes. Three sections of sedimentary rocks have been obtained including the site BARB5 that is described here. The cores represent diverse chemical and clastic sediments and primary as well as diagenetic sedimentary structures. BARB5 cuts through stratigraphy in the 3.26-3.23 Ga lower Mapepe Formation of the Fig Tree Group in the Barite Valley Syncline. We provide core logs, details of the main lithologies sampled and present preliminary chemostratigraphic data. The core has a total length of 763 m and samples three major units with depth: siltstone, silicified volcaniclasics and laminated carbonaceous shales. The uppermost part of the stratigraphy consists of poorly preserved siltstone with some interbedded heavily weathered and variably silicified shale up to a core depth of 110 m. Heavily silicified volcaniclastic sediments, with interbedded cherts and sandstones underlie the siltstone for 150 m. The remaining 500m of core consists of interbedded shale, conglomerate, sandstone, breccias and minor chert bands at the base. An impact spherule layer occurs at the uppermost part of this zone accompanied by localized brecciation. Pyrite is common throughout the section as both discreet layers and disseminated grains. Forthcoming geological, geochemical and isotopic investigations with this core are expected to reveal key information about the nature of Archean sedimentary, biological and hydrothermal processes.

Mason, Paul; Galic, Aleksandra; Montinaro, Alice; Strauss, Harald; Hofmann, Axel; Chunnett, Gordon; Wilson, Allan; Arndt, Nick

2013-04-01

38

Research core drilling in the Manson impact structure, Iowa  

NASA Technical Reports Server (NTRS)

The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence.

Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.

1992-01-01

39

Preliminary Physical Stratigraphy and Geophysical Data From the USGS Dixon Core, Onslow County, North Carolina  

USGS Publications Warehouse

In October through November 2006, scientists from the U. S. Geological Survey (USGS) Eastern Region Earth Surface Processes Team (EESPT) and the Raleigh (N.C.) Water Science Center (WSC), in cooperation with the North Carolina Geological Survey (NCGS) and the Onslow County Water and Sewer Authority (ONWASA), drilled a stratigraphic test hole and well in Onslow County, N.C. The Dixon corehole was cored on ONWASA water utility property north of the town of Dixon, N.C., in the Sneads Ferry 7.5-minute quadrangle at latitude 34deg33'35' N, longitude 77deg26'54' W (decimal degrees 34.559722 and -77.448333). The site elevation is 66.0 feet (ft) above mean sea level as determined using a Paulin precision altimeter. The corehole attained a total depth of 1,010 ft and was continuously cored by the USGS EESPT drilling crew. A groundwater monitoring well was installed in the screened interval between 234 and 254 ft below land surface. The section cored at this site includes Upper Cretaceous, Paleogene, and Neogene sediments. The Dixon core is stored at the NCGS Coastal Plain core storage facility in Raleigh. The Dixon corehole is the fourth and last in a series of planned North Carolina benchmark coreholes drilled by the USGS Coastal Carolina Project. These coreholes explore the physical stratigraphy, facies, and thickness of Cretaceous, Paleogene, and Neogene Coastal Plain sediments in North Carolina. Correlations of lithologies, facies, and sequence stratigraphy can be made with the Hope Plantation corehole, N.C., near Windsor in Bertie County (Weems and others, 2007); the Elizabethtown corehole, near Elizabethtown, N.C., in Bladen County (Self-Trail and others, 2004b); the Smith Elementary School corehole, near Cove City, N.C., in Craven County (Harris and Self-Trail, 2006; Crocetti, 2007); the Kure Beach corehole, near Wilmington, N.C., in New Hanover County (Self-Trail and others, 2004a); the Esso#1, Esso #2, Mobil #1, and Mobil #2 cores in Albermarle and Pamlico Sounds, N.C. (Zarra, 1989); and the Cape Fear River outcrops in Bladen County, N.C. (Farrell, 1998; Farrell and others, 2001). This report contains the lithostratigraphic summary recorded at the drill site, core photographs, geophysical data, and calcareous nannofossil biostratigraphic correlations.

Seefelt, Ellen L.; Gonzalez, Wilma Aleman B.; Self-Trail, Jean M.; Weems, Robert E.; Edwards, Lucy E.; Pierce, Herbert A.; Durand, Colleen T.

2009-01-01

40

Drilling and geophysical logs of the tophole at an oil-and-gas well site, Central Venango County, Pennsylvania  

USGS Publications Warehouse

Collection and integrated analysis of drilling and geophysical logs provided an efficient and effective means for characterizing the geohydrologic framework and conditions penetrated by the tophole at the selected oil-and-gas well site. The logging methods and lessons learned at this well site could be applied at other oil-and-gas drilling sites to better characterize the shallow subsurface with the overall goal of protecting freshwater aquifers during hydrocarbon development.

Williams, John H.; Bird, Philip H.; Conger, Randall W.; Anderson, Alton

2014-01-01

41

Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada  

USGS Publications Warehouse

From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

2009-01-01

42

Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident  

Microsoft Academic Search

Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content

I. A. Alekhina; J. R. Petit; V. V. Lukin; S. A. Bulat

2003-01-01

43

Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland  

NASA Astrophysics Data System (ADS)

Petrophysical, in particular seismic velocity, measurements of the Outokumpu deep drill core (depth 2.5 km) have been carried out to characterize the geophysical nature of the Paleoproterozoic crustal section of eastern Finland and to find lithological and geophysical interpretations to the distinct crustal reflectors as observed in seismic surveys. The results show that different lithological units can be identified based on the petrophysical data. The density of the samples remained nearly constant throughout the drilled section. Only diopside-tremolite skarns and black schists exhibit higher densities. The samples are dominated by the paramagnetic behaviour with occasional ferromagnetic signature caused by serpentinitic rocks. Large variations in seismic velocities, both at ambient pressure and under in situ crustal conditions are observed. The porosity of the samples, which is extremely low, is either intrinsic by nature or caused by decompaction related to fracturing during the core retrieval. It is noteworthy that these microfractures have dramatically lowered the VP and VS values. From the measured velocities and density data we have calculated the seismic impedances, Young's modulus and Poisson's ratios for the lithological units of the Outokumpu section and from these data the reflection coefficients for the major lithological boundaries, evident in the surveyed section, were determined. The data show that the strong and distinct reflections visible in wide-angle seismic surveys are caused by interfaces between diopside-tremolite skarn and either serpentinites, mica schist or black schist.

Elbra, Tiiu; Karlqvist, Ronnie; Lassila, Ilkka; Høgström, Edward; Pesonen, Lauri J.

2011-01-01

44

The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling  

NASA Astrophysics Data System (ADS)

The Chicxulub crater has attracted considerable attention as one of the three largest terrestrial impact structures and its association with the Cretaceous/Paleogene boundary (K/Pg). Chicxulub is a 200 km-diameter multi-ring structure formed 65.5 Ma ago in the Yucatan carbonate platform in the southern Gulf of Mexico and which has since been buried by Paleogene and Neogene carbonates. Chicxulub is one of few large craters with preserved ejecta deposits, which include the world-wide K/Pg boundary clay layer. The impact has been related to the global major environmental and climatic effects and the organism mass extinction that mark the K/Pg boundary, which affected more than 70 % of organisms, including the dinosaurs, marine and flying reptiles, ammonites and a large part of the marine microorganisms. The impact and crater formation occur instantaneously, with excavation of the crust down to 25 km depths in fractions of second and lower crust uplift and crater formation in a few hundreds of seconds. Energy released by impact and crustal deformation generates seismic waves traveling the whole Earth, and resulting in intense fracturing and deformation at the target site. Understanding of the physics of impacts on planetary surfaces and modeling of processes of crustal deformation, rheological behavior of materials at high temperatures and pressures remain a major challenge in geosciences. Study of the Chicxulub crater and the global effects and mass extinction requires inter- and multidisciplinary approaches, with researchers from many diverse fields beyond the geosciences. With no surface exposures, geophysical surveys and drilling are required to study the crater. Differential compaction between the impact breccias and the surrounding carbonate rocks has produced a ring-fracture structure that at the surface reflects in a small topographic depression and the karstic cenote ring. The crater structure, located half offshore and half on-land, has been imaged by different geophysical aerial, land and marine methods including gravity, magnetics, electromagnetics and seismic refraction and reflection. The impact lithologies and carbonate sequence have been cored as part of several drilling projects. Here we analyze the stratigraphy of Chicxulub from borehole logging data and core analyses, with particular reference to studies on CSDP Yaxcopoil-1 and UNAM Santa Elena boreholes. Analyses of core samples have examined the stratigraphy of the cover carbonate sequence, impact breccia contact and implications for impact age, K/Pg global correlations and paleoenvironmental conditions following impact. The K/Pg age for Chicxulub has been supported from different studies, including Ar/Ar dating, magnetic polarity stratigraphy, geochemistry and biostratigraphy. A Late Maastrichtian age has also been proposed for Chicxulub from studies in Yaxcopoil-1 basal Paleocene carbonates, with impact occurring 300 ka earlier predating the K/Pg boundary. This proposal calls attention to the temporal resolution of stratigraphic and chronological methods, and the need for further detailed analyses of the basal carbonate sections in existing boreholes and new drilling/coring projects. Stratigraphy of impact ejecta and basal sediments in Yaxcopoil-1 and UNAM boreholes indicates a hiatus in the basal sequence. Modeling of post- impact processes suggest erosion effects due to seawater back surge, block slumping and partial rim collapse of post-impact crater modification. Analyses of stable isotopes and magnetostratigraphic data for the Paleocene carbonate sequences in Yaxcopoil-1 and Santa Elena boreholes permit to investigate the post- impact processes, depositional conditions and age of basal sediments. Correlation of stable isotopes with the global pattern for marine carbonate sediments provides a stratigraphic framework for the basal Paleocene carbonates. The analyses confirm a K/Pg boundary age for the Chicxulub impact. References: Collins et al, 2008. Earth Planetary Science Letters 270, 221-230; Gulick et al, 2008. Nature Geoscience 1, 131-135; Hild

Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia

2010-03-01

45

Cretaceous shallow drilling, US Western Interior: Core research. Technical progress report  

SciTech Connect

This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth ``exposures`` in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

Arthur, M.A.

1993-02-17

46

Density of basalt core from Hilo drill hole, Hawaii  

USGS Publications Warehouse

Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing downward the hyaloclastite absorbs less water and becomes better cemented. This change is apparently due to palagonitization of glass and addition of secondary minerals in the deeper older hyaloclastite, a process favored by the increase of temperature with depth. The cementation is largely complete at 1800 m depth where the temperature attains about 20??C. The zone of freshest, uncemented hyaloclastite represents the weakest rock in the drill hole and is a likely level for tectonic or landslide disruption. ?? 2001 Published by Elsevier Science B.V.

Moore, J.G.

2001-01-01

47

GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM  

SciTech Connect

This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

Witcher, James

2006-08-01

48

Surface elevation change artifact at the NEEM ice core drilling site, North Greenland.  

NASA Astrophysics Data System (ADS)

The NEEM deep drilling site (77.45°N 51.06°W) is located at the main ice divide in North Greenland. For the ice core drilling project, a number of buildings was erected and left on the snow surface during the five-year project period. The structures created snowdrifts that formed accordingly to the predominant wind direction on the lee side on the buildings and the overwintering cargo. To get access to the buildings, the snowdrifts and the accumulated snow were removed and the surface in the camp was leveled with heavy machinery each summer. In the camp a GPS reference pole was placed as a part of the NEEM strain net, 12 poles placed in three diamonds at distances of 2,5 km, 7,5 km and 25 km they were all measured with high precision GPS every year. Around the reference pole, a 1 km x 1 km grid with a spacing of 100 m was measured with differential GPS each year. In this work, we present results from the GPS surface topography measurements in and around the campsite. The mapping of the topography in and around the campsite shows how the snowdrifts evolve and are the reason for the lift of the camp site area. The accumulated snowdrifts are compared to the dominant wind directions from year to year. The annual snow accumulation at the NEEM site is 0.60 m. The reference pole in the camp indicates an additional snow accumulation of 0.50 m per year caused by collected drifting snow. The surface topography mapping shows that this artificially elevated surface extends up to several kilometers out in the terrain. This could have possible implications on other glaciological and geophysical measurements in the area i.e. pit and snow accumulation studies.

Berg Larsen, Lars; Schøtt Hvidberg, Christine; Dahl-Jensen, Dorthe; Lilja Buchardt, Susanne

2014-05-01

49

Improved diamond coring bits developed for dry and chip-flush drilling  

NASA Technical Reports Server (NTRS)

Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

1971-01-01

50

Possible reasons of shock melt deficiency in the Bosumtwi drill cores  

Microsoft Academic Search

Pre-drilling numerical modeling of the Bosumtwi impact event predicted a 200 m thick coherent melt layer, as well as abundant highly shocked target material within the central part of the crater structure. However, these predictions are in disagreement with data from drill core obtained in 2004-2005. Here I provide a brief overview of previous results and discuss possible reasons behind

N. Artemieva

2007-01-01

51

Core drill's bit is replaceable without withdrawal of drill stem - A concept  

NASA Technical Reports Server (NTRS)

Drill bit is divided into several sectors. When collapsed, the outside diameter is forced down the drill stem, when it reaches bottom the sectors are forced outward and form a cutting bit. A dulled bit is retracted by reversal of this procedure.

Rushing, F. C.; Simon, A. B.

1970-01-01

52

Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland  

USGS Publications Warehouse

The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44?49.34?N. and long 76°00?25.09?W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.

Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

2012-01-01

53

Learning Activities Developed at The University of Texas at Austin Institute for Geophysics Using Ocean Drilling Science, Technology and Data  

Microsoft Academic Search

NSF GK-12 Fellows at The University of Texas at Austin Institute for Geophysics (UTIG) actively contribute to K-12 education by linking K-12 students and teachers to research scientists and recent discoveries, and by developing hands-on learning activities designed primarily for secondary school learning environments. The excitement of the new Integrated Ocean Drilling Program (IODP), an international research program that explores

D. M. Bailey; J. Stevens; D. Clarke; K. Ellins; G. Tynes; M. Petkovsek

2004-01-01

54

Deep Rotary-Ultrasonic Core Drill for Exploration of Europa and Enceladus  

NASA Astrophysics Data System (ADS)

Since water is an important requisite for life as we know it, likely exobiologic exploration targets in our Solar System include Mars, Europa, and Enceladus, where water/ice is known to exist. Because of oxidizing nature of Mars atmosphere, as well as increased radiation at the surfaces of Mars, Europa and Enceladus, samples must be acquired from the subsurface at greater depths, presenting a great challenge to off-world drilling design. For the past 3 years, we have been developing a prototype wireline coring drill, called the Auto-Gopher, for the capability to acquire samples from hundreds of meters depth. The drill is capable of penetrating both rock and ice. However, because of large geological uncertainty on Mars and issues related to borehole collapse, we specifically target ice formations present on Europa and Enceladus. The main feature of the Auto-Gopher is its wireline operation. The drill is essentially suspended on a tether and the motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill (plus core) is retracted from the borehole by a pulley system (the pulley system can be either on the surface or integrated into a top part of the drill itself). Once on the surface, the core is deposited into a sample transfer system, and the drill is lowered back into the hole in order to drill the next segment. Each segment is typically 10 cm long. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections. With traditional continuous drill string systems (the major competition to the Autor-Gopher), new drill sections need to be added to the string as the drill gets deeper. This of course requires multiple drill sections, which add significantly to the mass of the system very quickly, and requires a complicated drill string feeding and coupling mechanism, thus increasing the system complexity. The Auto-gopher has been successfully tested in a lab environment in rock to a depth of 2 meters and in the field. The average drilling power was in the range of 100-150 Watt, while penetration rate was approximately 1 cm/min.

Paulsen, G. L.; Zacny, K.; Bar-Cohen, Y.; Beegle, L. W.; Corsetti, F. A.; Mellerowicz, B.; Badescu, M.; Sherrit, S.; Ibarra, Y.

2012-12-01

55

Fischer Assays of Oil Shale Drill Cores and Rotary Cuttings from the Piceance Basin, Colorado - 2009 Update  

USGS Publications Warehouse

This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.

Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.

1998-01-01

56

Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming  

USGS Publications Warehouse

Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.

U.S. Geological Survey Oil Shale Assessment Team

2008-01-01

57

Ultrasonic\\/sonic drilling\\/coring (USDC) for planetary applications  

Microsoft Academic Search

Future NASA exploration missions are increasingly seeking to conduct sampling, in-situ analysis and possibly return samples to Earth for further tests. Missions to Mars are the more near term projects that are seeking such capabilities. One of the major limitations of sampling on Mars and other low gravity environments is the need for high axial force when using conventional drilling.

Yoseph Bar-Cohen; Stewart Sherrit; Benjamin P. Dolgin; Xiaoqi Bao; Zensheu Chang; Dharmendra S. Pal; Ron Krahe; Jason Kroh; Shu Du; Thomas Peterson

2001-01-01

58

Ultrasonic\\/sonic drilling\\/coring (USDC) for planetary applications  

Microsoft Academic Search

Future NASA exploration missions are increasingly seeking to conduct sampling, in-situ analysis and possibly return samples to Earth for further tests. Missions to Mars are the more near term projects that are seeking such capabilities. One of the major limitations of sampling on Mars and other low gravity environments is the need for high axial force when using conventional drilling.

Yoseph Bar-Cohen; Stewart Sherrita; Benjamin P. Dolgina; Xiaqi Bao; Zensheu Chang

59

Improving the Accuracy of Core Location and Recovery Estimates Through the Integration of Core Data, Wireline Logs and Drilling Parameters: an Example From IODP Expedition 310, Tahiti Sea Level  

NASA Astrophysics Data System (ADS)

In palaeoclimate and sea-level studies accurate depth positioning of core pieces is critical in assessing the usefulness of a specific drill site. The location and amounts of core recovered during a drilling program can often place severe constraints on the subsequent applications of core measurements. The principle objectives of Expedition 310 are to establish the course of postglacial sea level rise at Tahiti in the South Pacific, to define sea surface temperature (SST) variations for the region over the period 20 to10 ka, and to analyse the impact of sea level changes on reef growth and geometry. Average conventionally-calculated core recovery for the 37 boreholes drilled during this expedition is 57.47 percent, although for an individual borehole core recovery is highly variable. Depth inaccuracies increase as recovery falls below 100 percent as, by convention, core is placed at the top of the core barrel run from which it was recovered. Careful integration of datasets can improve the positioning of core. The Expedition 310 logging programme included the collection of high resolution optical and acoustic images. Visual correlation of the recovered core with these image logs provides an extremely effective method of integrating these datasets. Comparison of drilling parameters (rate of drilling, pullback pressure and torque on bit) with the downhole logs indicates a clear correlation between these datasets and allows the logging data to be accurately matched to the drilling data. The final integrated depths comprise the underlying framework for all subsequent scientific analyses of recovered core employing interpretations based on depth. There are two principle outcomes of the integration process: (i) Accurate depth positioning can be achieved. In coral reefs where regions of high porosity and large void spaces are common, without careful integration of discrete core pieces with continuous records of the nature of the borehole, large depth errors can result and propagate through analyses. (ii) Core recoveries can be accurately estimated. Estimates based on core alone cannot take into consideration meso or macro scale porosities. Utilising continuous geophysical measurements allows areas of high porosity to be identified and incorporated into the calculation of recovery percentages.

Inwood, J.; Brewer, T.; Braaksma, H.; Pezard, P.

2007-12-01

60

Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada  

SciTech Connect

The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

1982-07-01

61

Preliminary Physical Stratigraphy and Geophysical Data of the USGS Hope Plantation Core (BE-110), Bertie County, North Carolina  

USGS Publications Warehouse

Introduction In March and April, 2004, the U.S. Geological Survey (USGS), in cooperation with the North Carolina Geological Survey (NCGS) and the Raleigh Water Resources Discipline (WRD), drilled a stratigraphic test hole and well in Bertie County, North Carolina (fig. 1). The Hope Plantation test hole (BE-110-2004) was cored on the property of Hope Plantation near Windsor, North Carolina. The drill site is located on the Republican 7.5 minute quadradrangle at lat 36?01'58'N., long 78?01'09'W. (decimal degrees 36.0329 and 77.0192) (fig. 2). The altitude of the site is 48 ft above mean sea level as determined by Paulin Precise altimeter. This test hole was continuously cored by Eugene F. Cobbs, III and Kevin C. McKinney (USGS) to a total depth of 1094.5 ft. Later, a ground water observation well was installed with a screened interval between 315-329 feet below land surface (fig. 3). Upper Triassic, Lower Cretaceous, Upper Cretaceous, Tertiary, and Quaternary sediments were recovered from the site. The core is stored at the NCGS Coastal Plain core storage facility in Raleigh, North Carolina. In this report, we provide the initial lithostratigraphic summary recorded at the drill site along with site core photographs, data from the geophysical logger, calcareous nannofossil biostratigraphic correlations (Table 1) and initial hydrogeologic interpretations. The lithostratigraphy from this core can be compared to previous investigations of the Elizabethtown corehole, near Elizabethtown, North Carolina in Bladen County (Self-Trail, Wrege, and others, 2004), the Kure Beach corehole, near Wilmington, North Carolina in New Hanover County (Self-Trail, Prowell, and Christopher, 2004), the Esso #1, Esso #2, Mobil #1 and Mobil #2 cores in the Albermarle and Pamlico Sounds (Zarra, 1989), and the Cape Fear River outcrops in Bladen County (Farrell, 1998; Farrell and others, 2001). This core is the third in a series of planned benchmark coreholes that will be used to elucidate the physical stratigraphy, facies, thickness, and hydrogeology of the Tertiary and Cretaceous Coastal Plain sediments of North Carolina.

Weems, Robert E.; Seefelt, Ellen L.; Wrege, Beth M.; Self-Trail, Jean M.; Prowell, David C.; Durand, Colleen; Cobbs, Eugene F., III; McKinney, Kevin C.

2007-01-01

62

Paleomagnetism of the Astrobiology Drilling Project 8 drill core, Pilbara, Western Australia: implications for the early geodynamo and Archean tectonics  

NASA Astrophysics Data System (ADS)

Paleomagnetic measurements from the Archean Pilbara craton have recently been used to argue for the presence of a substantial magnetic field at 3.2 Ga (Tarduno et al., 2007), as well as for extremely fast plate motions or true polar wander (Strik et al., 2003, Suganuma et al., 2006). Paleomagnetic records in the Archean are fundamentally limited by the scarcity of well-preserved, low metamorphic grade Archean rocks. Where such rocks are exposed, paleomagnetic sampling is often difficult or impossible due to pervasive lightning remagnetization and deep weathering of the cratonic surface. More pristine samples can potentially be obtained from shallow drill cores like those obtained by the Astrobiology Drilling Project (ABDP). We present a paleomagnetic analysis of the ~350 m deep ABDP-8 drill core, which was drilled in the East Strelley greenstone belt and which penetrated the Double Bar Formation of the Warrawoona Group, as well as the unconformably overlying Euro Basalt and Strelley Pool Chert units of the Kelly Group. Full sample orientation (declination and inclination) was achieved through the use of a Ballmark orientation system. A strong drilling overprint was removed for most samples by alternating field demagnetization to 20 mT. Subsequent thermal demagnetization revealed single-polarity magnetic directions within the Euro Basalt and Double Bar Formation carried by magnetite. The directions from these two Formations are statistically different to >95% confidence, which constitutes a positive unconformity test and indicates that the Euro Basalt direction is primary. Upon tilt correction, the ~3.34-3.37 Ga Euro Basalt direction is indistinguishable from the tilt-corrected direction found previously in the ~3.46 Ga Duffer Formation of the Warrawoona Group (McElhinny and Senanayake, 1980). The Euro Basalt direction, if taken at face value, implies small relative motion of the Pilbara Craton from ~3.46 Ga to ~3.34 Ga. This is inconsistent with the apparent polar wander path presented for the ~3.46 Ga Marble Bar Chert Member of the Towers Formation (Suganuma et al., 2006). The lack of reversals in the sequence is consistent with a low reversal frequency in early Earth history, as has been suggested by dynamo models for the Earth with a small inner core (Coe and Glatzmaier, 2006).

Bradley, K.; Weiss, B.; Carporzen, L.; Anbar, A.; Buick, R.

2008-12-01

63

The importance of core-drilling as a research instrument: The Oklahoma Geological Survey's scientific drilling program  

SciTech Connect

The Oklahoma Geological Survey's drilling rig represents a unique scientific facility within the State with the capability to investigate geologic targets to a depth of 1,000 feet. The drilling rig serves as an ideal research tool for hypothesis testing, sample acquisition, and establishment of stratigraphic control points in regions of poorly exposed outcrops and in regions where access to outcrops is limited. Core-hole data help: (1) to establish and correct sequence correlations from shelf to basin, (2) correct surface and subsurface mapping errors, (3) verify geologic structures, (4) propose depositional models, (5) gather data concerning the distribution, thickness, characteristics, and areal extent of coal deposits and associated strata, (6) designate reference wells near previously established surface type sections (localities) for outcrop to subsurface correlations, (7) document the geometry, thickness, and lateral extent of major and secondary laterally discontinuous Pennsylvanian-Permian sandstone producing reservoirs, (8) identify physical surfaces (e.g., sequence boundaries, transgressive/regressive surfaces, maximum flooding surfaces, etc.) and stratal stacking patterns, and (9) provide cores for public use from stratigraphic intervals that are poorly known. Some results from newly acquired core-hole data include (1) recognition of several previously unidentified coal beds in the shelf area and their correlation with coals in the basin, (2) documentation of the stratigraphic position and lateral continuity of locally reported sandstone-producing reservoirs, and (3) confirmation that many lithostratigraphic units of previously uncertain stratigraphic position and continuity in the subsurface can be stratigraphically correlated to surface sections.

Chaplin, J.R. (Oklahoma Geological Survey, Norman, OK (United States). Energy Center)

1993-02-01

64

Permeability and of the San Andreas Fault core and damage zone from SAFOD drill core  

NASA Astrophysics Data System (ADS)

Quantifying fault-rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that may affect faulting and earthquake mechanics by mediating effective stress. These include persistent fluid overpressures hypothesized to reduce fault strength, as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. To date, studies of permeability on fault rocks and gouge from plate-boundary strike-slip faults have mainly focused on samples from surface outcrops. We report on permeability tests conducted on the host rock, damage zone, and a major actively creeping fault strand (Central Deformation Zone, CDZ) of the San Andreas Fault (SAF), obtained from coring across the active SAF at ~2.7 km depth as part of SAFOD Phase III. We quantify permeability on subsamples oriented both perpendicular and parallel to the coring axis, which is nearly perpendicular to the SAF plane, to evaluate permeability anisotropy. The fault strand samples were obtained from the CDZ, which accommodates significant creep, and hosts ~90% of the observed casing deformation measured between drilling phases. The CDZ is 2.6 m thick with a matrix grain size < 10 ?m and ~5% vol. clasts, and contains ~80% clay, of which ~90% is smectite. We also tested damage zone samples taken from adjacent core sections within a few m on either side of the CDZ. Permeability experiments were conducted in a triaxial vessel, on samples 25.4 mm in diameter and ~20-35 mm in length. We conducted measurements under isotropic stress conditions, at effective stress (Pc') of ~5-70 MPa. We measure permeability using a constant head flow-through technique. At the highest Pc', low permeability of the CDZ and damage zone necessitates using a step loading transient method and is in good agreement with permeabilities obtained from flow-through experiments. We quantify compression behavior by monitoring the volumetric and axial strain in response to changes in effective stress. Permeability of the CDZ is systematically lower than that of the damage zone or wall rock, and decreases from 2x10 -19m 2 at 5 MPa effective stress to 5x10-21 m 2 at 65 MPa. Some damage zone samples exhibit permeabilities as low as the CDZ, but most values are ~10-30 times higher. For both the damage zone and CDZ, permeability anisotropy is negligible. Volumetric compressibility (mv) decreases from ~1x10-9 Pa-1 to ~1x10-10 Pa-1 and hydraulic diffusivity decreases from ~2x10-7 m2/s to 1.7x10-8 m2/s over a range of effective stresses from 10 to 65 MPa. Our results are consistent with published geochemical data from SAFOD mud gas monitoring, and from inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault has a low permeability and is a barrier to regional fluid flow along. Our results also demonstrate that the diffusivity of the fault core of CDZ is sufficiently low to result in effectively undrained behavior over timescales of minutes to hours, thus facilitating dynamic hydrologic processes that may impact fault slip, including thermal pressurization and dilatancy hardening.

Rathbun, A. P.; Fry, M.; Kitajima, H.; Song, I.; Carpenter, B. M.; Marone, C.; Saffer, D. M.

2012-12-01

65

Diaplectic transformation of minerals: Vorotilov drill core, Puchezh-Katunki impact crater, Russia  

NASA Technical Reports Server (NTRS)

The Vorotilov core was drilled in the central uplift of the Puchezh-Katunki astrobleme to a depth of 5.1 km. Impactites are revealed in the rocks of the core beginning from a depth of 366 m: suevites (66 m), allogenic breccias (112 m), and autogenic breccias (deeper than 544 m). These rocks are represented by shocked-metamorphic gneisses, schists, amphibolites of Archean age, and magmatic rocks (dolerites, olivines, and peridotites) that lie between them.

Feldman, V. I.

1992-01-01

66

The remarkable chemical uniformity of Apollo 16 layered deep drill core section 60002  

NASA Technical Reports Server (NTRS)

Atomic absorption and colorimetric spectrophotometers were used to determine major- and minor-element abundances in 12 samples from layered section 60002 of the Apollo 16 deep drill core. It is suggested that gardening of a relatively thick local unit produced the layering in this section in such a manner that the proportions of materials of different compositions remained virtually unchanged.

Nava, D. F.; Philpotts, J. A.; Lindstrom, M. M.; Schuhmann, P. J.; Lindstrom, D. J.

1976-01-01

67

Preliminary Descriptions of Impact Rocks Recovered by Recent Core Drilling in the Manson Impact Structure  

Microsoft Academic Search

In a recent drilling program 12 cores totaling over 1200 m were recovered from the Manson Impact Structure. Four principal impact rock types were encountered (1) Sedimentary Clast Breccia (SCB), (2) Crystalline Clast Breccia with Sandy Matrix (CCB-S) and Melt Rock Matrix (CCB-M), (3) Central Peak Igneous and Metamorphic Rocks (CP), and (4) an overturned flap of Impact Ejecta (IE).

R. R. Anderson; B. J. Witzke; J. B. Hartung

1993-01-01

68

Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident  

NASA Astrophysics Data System (ADS)

Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content by ribosomal DNA sequencing. Total, 33 clones of 16S ribosomal DNA were recovered from four samples of drilling fluid at 110, 2750, 3400, and 3600m leading to identification of 8 bacterial species. No overlapping was observed even for neighboring samples (3400m and 3600m). At present four major bacteria with the titer more than 103-104 cells per ml (as estimated from PCR results) are identified. Among them we found: unknown representative of Desulfobacteraceae which are able to oxidize sulphates and degrade benzenes (110m); PAH-degrading alpha-proteobacterium Sphingomonas natatoria (3400m); alpha-proteobacterium representing closely-related group of Sphingomonas sp. (e.g., S. aurantiaca) which are able to degrade PAH as well, and human pathogen closely related to Haloanella gallinarum of CFB group (3600m). Four additional species were revealed as single clones and showed relatedness to human pathogens and saprophytes as well as soil bacteria. These bacteria may represent drilling fluid contaminants introduced during its sampling or DNA extraction procedure. Of four major bacteria revealed, one species, Sphingomonas natatoria, has been met by us in the Vostok core from 3607 m depth (AF532054) whereas another Sphingomonas sp. which we refer to as S. aurantiaca was found in Antarctic microbial endolithic community (AF548567), hydrocarbon-containing soil near Scott Base in Antarctica (AF184221) and even isolated from 3593m Vostok accretion ice (AF324199) and Taylor Dome core (AF395031). The source for major human pathogen-related bacteria is rather uncertain indicating that very unusual microbes can be contained in a drilling fluid. All this testifies that kerosene film is indeed hard to remove and everyone should be aware on bacteria introduced with any drilling fluid. Our results demonstrate the necessity to have a drilling fluid data base when studying the microbial contents of ice cores.

Alekhina, I. A.; Petit, J. R.; Lukin, V. V.; Bulat, S. A.

2003-04-01

69

Coring project in Bighorn Basin: Drilling phase complete  

NASA Astrophysics Data System (ADS)

Scientists have begun a new project to recover and study sediment cores in the Bighorn Basin of Wyoming to investigate the high-frequency climatic and biotic variability of a continental depositional system during past episodes of greenhouse conditions. The project, called the Bighorn Basin Coring Project (BBCP), focuses on the early Paleogene (?50-65 million years ago), the most recent interval of Earth history characterized by greenhouse climate conditions. During the early Paleogene, global mean annual temperatures were up to 10°C higher than today, and carbon dioxide (CO2) concentrations may have been more than 1000 parts per million [Zachos et al., 2008] compared with the roughly 390 parts per million today. Superimposed on this background greenhouse climate state were a series of short-term extreme warming events called hyperthermals. The best known early Paleogene hyperthermal event is the Paleocene-Eocene Thermal Maximum (PETM; ?56 million years ago), which is characterized by a large global carbon isotope excursion and coincides with major changes to marine and continental ecosystems [McInerney and Wing, 2011]. At present, the causes of these hyperthermal events remain unknown, although several hypotheses exist.

Clyde, William C.; Gingerich, Philip D.; Wing, Scott L.

2012-01-01

70

The ICDP Hotspot Scientific Drilling Program: Overview of geophysical logging and seismic imaging through basaltic and rhyolitic volcanic deposits  

NASA Astrophysics Data System (ADS)

The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.

Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.

2012-12-01

71

Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field  

NASA Astrophysics Data System (ADS)

Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25mT, and between 0 to 625°C. The declination of RM vectors was used to bring pieces to a common anchor orientation calculated through the Geocentric Axial Dipole Model (GAD). The paleomagnetic technique proved to be reliable to reorient the Tol-1 core. Structural analyses along the core show N50-60E-striking preferential vein orientation. In addition, N40-50E- and N60-70W-striking preferential fault orientations were identified. Kinematic analysis of fault-slip data shows a N60E-striking bulk fault plane solution with normal strain regime. The veins and faults orientation show strain axes compatible with published regional stress field (?max N238E).

Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

2013-12-01

72

Core formation, evolution, and convection - A geophysical model  

NASA Technical Reports Server (NTRS)

A model for the formation and evolution of the earth's core, which provides an adequate energy source for maintaining the geodynamo, is proposed. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al-26. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long-lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

Ruff, L.; Anderson, D. L.

1980-01-01

73

Laboratory-determined transport properties of core from the Salton Sea Scientific Drilling Project  

Microsoft Academic Search

Two cores from the Salton Sea Scientific Drilling Project have been studied in the laboratory to determine electrical resistivity, ultrasonic velocity, and brine permeability at pressures and temperatures close to estimated borehole conditions. Both samples were siltstones; the first sample was from 1158-m depth, and the other was from 919-m depth. A synthetic brine with 13.6 weight percent NaCl, 7.5

Wunan Lin; William Daily

1988-01-01

74

Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa  

USGS Publications Warehouse

Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

1998-01-01

75

Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core.  

PubMed

Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. PMID:24450335

Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean

2014-08-01

76

Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada  

SciTech Connect

Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.

Chipera, S.J.; Vaniman, D.T.; Carlos, B.A.; Bish, D.L.

1995-02-01

77

First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report  

SciTech Connect

This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

1987-02-01

78

A Long Record of Tropical Glaciation and Climate Change in Drill Cores From Lake Titicaca  

NASA Astrophysics Data System (ADS)

A long and continuous continental record of climate change from the tropics could provide a measure of climate variability and pacing comparable to marine and high-latitude terrestrial records. Lake Titicaca (16° S, 69° W), one of the largest extant lakes in South America, is located at 3810 m between the eastern and western cordillera of the Peruvian-Bolivian Andes. In April-May 2001 we used the GLAD800 drill rig to recover 625 m of sediment core from three sites in the lake. Our principal drill site in 235 m water depth yielded a 136 m core. Five intervals of sediments high in magnetic susceptibility are separated by thinner intervals of sediments with low magnetic susceptibility characterized by relatively high organic (0.2 to 12.9%) and inorganic carbon (0.2 to 9.8%). Radiocarbon analysis of bulk organic matter from the core catchers indicates that the most recent interval of high magnetic susceptibility lasted from ca. 22,000 to <52,000 14C yr BP. Our previous work on piston cores from Lake Titicaca indicated that sediments high in magnetic susceptibility and low in organic carbon were associated with a greater influx of glacially derived silts from the neighboring cordillera. In contrast, sediments with high organic and inorganic carbon and low magnetic susceptibility represented time periods when glaciers had retreated and perhaps disappeared entirely from the watershed. We believe that the stratigraphic variations in the new drill cores from Lake Titicaca represent at least five periods of glaciation in the tropical Andes. Diatom and geochemical analysis of piston cores from Lake Titicaca also indicated that wet climatic conditions prevailed during the most recent glaciation. However, the extent of glaciation in the tropics is highly constrained by mean monthly temperatures that are relatively constant throughout the year. Thus glaciers can only expand significantly when there is also a reduction in mean annual temperature. The most recent period of glaciation and the older glacial phases represented in the stratigraphy of the new drill cores were probably associated with both colder and wetter conditions than today. In contrast, the interglacials/interstadials were characterized by warmer and drier conditions, including significant drops in lake level.

Seltzer, G.; Baker, P.; Fritz, S.; Arnold, K.; Ballantine, A.; Tapia, P.; Veliz, C.

2001-12-01

79

Geochemistry of drill core headspace gases and its significance in gas hydrate drilling in Qilian Mountain permafrost  

NASA Astrophysics Data System (ADS)

Headspace gases from cores are sampled in the gas hydrate drilling well DK-8 in the Qilian Mountain permafrost. Gas components and carbon isotopes of methane from headspace gas samples are analyzed. The geochemical features of the headspace gases along the well profile are compared with occurrences of gas hydrate, and with the distribution of faults or fractures. Their geochemical significance is finally pointed out in gas hydrate occurrences and hydrocarbon migration. Results show high levels of hydrocarbon concentrations in the headspace gases at depths of 149-167 m, 228-299 m, 321-337 m and 360-380 m. Visible gas hydrate and its associated anomalies occur at 149-167 m and 228-299 m; the occurrence of high gas concentrations in core headspace gases was correlated to gas hydrate occurrences and their associated anomalies, especially in the shallow layers. Gas compositions, gas ratios of C1/?C1-5, C1/(C2 + C3), iC4/nC4, and iC5/nC5, and carbon isotopic compositions of methane (?13C1, PDB‰) indicate that the headspace gases are mainly thermogenic, partly mixed with biodegraded thermogenic sources with small amounts derived from microbial sources. Faults or fracture zones are identified at intervals of 149-167 m, 228-299 m, 321-337 m, and near 360-380 m; significantly higher gas concentrations and lower dryness ratio were found in the headspace gases within the fault or fracture zones compared with areas above these zones. In the shallow zones, low dryness ratios were observed in headspace gases in zones where gas hydrate and faults or fracture zones were found, suggesting that faults or fracture zones serve as migration paths for gases in the deep layers and provide accumulation space for gas hydrate in the shallow layers of the Qilian Mountain permafrost.

Lu, Zhengquan; Rao, Zhu; He, Jiaxiong; Zhu, Youhai; Zhang, Yongqin; Liu, Hui; Wang, Ting; Xue, Xiaohua

2015-02-01

80

Preliminary Palaeomagnetic Results from ICDP Barberton Greenstone Belt Scientific Drill Cores.  

NASA Astrophysics Data System (ADS)

Four drill cores from the ICDP Barberton Greenstone Belt Scientific Drilling Project have been sampled for palaeomagnetic analysis. Some 350 oriented mini-samples (10mm diameter) were collected from cores BARB1 to BARB 4, allowing units from the Onverwacht (Komatii and Hooggenoeg Formations) and Fig Tree Groups to be studied. Previous work has indicated that rocks from the Noisy and Hooggenoeg Formations have the potential to record a near-primary direction of remanence and suggest the presence of a reversing geomagnetic field of similar magnitude to the recent field at ca. 3.5Ga. Previous paleomagnetic studies carried out on the Komatii Formation have yielded one of the oldest paleomagnetic poles and intensities in the world but these results are even more questionable. So far, no paleomagnetic work has been carried out on the Buck Reef Chert Formation or the Fig Tree Group. This sampling forms part of a larger study aiming, firstly to constrain the reliability of previous results by performing improved field stability tests. A positive fold test would constrain the age of the magnetic signal recorded by the Komatii and Hooggenoeg Formations to older than 3.2 Ga. Confirmation of the presence of a viable and reversing field during the Palaeoarchean would place a strong constraint on processes occurring in the outer core during this time with implications for planetary evolution. Rates of polar wander will also be constrained by the directional findings, shedding some light on mantle convection processes at the time. Preliminary directional work on samples from drill cores will be presented here.

Roberts Artal, Laura; Biggin, Andy; Langereis, Cor; Wilson, Allan; Arndt, Nicholas; Hill, Mimi

2013-04-01

81

Strike-dip determination of fractures in drill cores by an astatic-magnetometer  

SciTech Connect

The strike and dip of fractures in drillcores from Well HT-4 drilled in the Hatchobaru geothermal field, Kyushu, Japan, have been determined using an astatic-magnetometer. Since the drill cores consist mainly of younger andesite lavas, the measurements of the declination and inclination of remnant magnetism should yield the strike and dip of the fractures. The results show that they dip generally southward with angles from 40/sup 0/ to 80/sup 0/ (62.5 on the average), and strike NW-SE or NE-SW. The NW-SE trending fractures predominate in the Pleistocene series, which persists at depths shallower than 1000 m, while the NE-SW trending ones occur in the Neogene system at deeper levels, and are considered to be older than the former. The stress field can also be estimated by the strike-dip data and the direction of lineation on a slickenside.

Hayashi, M.; Furutani, N.

1982-10-01

82

Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP)  

Microsoft Academic Search

Due to the inherent anisotropy and inhomogeneous nature of polymer-based composite materials, their cutting mechanism differs\\u000a in many respects from conventional metallic materials. Amongst all machining operations, drilling using a twist drill is the\\u000a most commonly applied method for generating holes for riveting and fastening structural assemblies. Most of the previous research\\u000a correlates the drill geometry and feed rate to

C. C. Tsao

2008-01-01

83

Carbon chemistry of the Apollo 15 and 16 deep drill cores  

NASA Technical Reports Server (NTRS)

The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.

Wszolek, P. C.; Burlingame, A. L.

1973-01-01

84

The Chicxulub impact structure: What does the Yaxcopoil-1 drill core reveal?  

NASA Astrophysics Data System (ADS)

The Chicxulub impact structure, one of the largest impact structures on Earth, was formed 65 Ma by hypervelocity impact which led to the large mass-extinction at K-Pg boundary. This well preserved but buried structure has undergone numerous drillings and studies aimed to understand the formation mechanism, structure and age of the crater. The Yaxcopoil-1 (Yax-1) drill core, located in the southern sector of the Chicxulub crater, in the outer part of an annular trough, 62 km from the crater center, was drilled by ICDP in 2001-2002. Petrophysical, rock- and paleomagnetic studies of Yax-1 (Elbra and Pesonen, 2011) showed that physical properties characterize the various lithological units. Dependence on mineral composition rather than fabric was observed in pre-impact lithologies contrarily to the post-impact and impact rocks where the physical properties were dominated by porosity and reflected, in case of impactites, the impact formation mechanism with its numerous features resulting from melting, brecciation and fracturing. Furthermore, while the pre- and post-impact lithologies in Yax-1 are mostly dia- or paramagnetic, the impactite units indicated enhanced magnetizations and the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The sharp contrast of the impactites to the target and to post-impact lithologies allowed establishing the contact (especially the K-Pg boundary) between. The anisotropy, shape and orientation of the magnetic fraction illustrated the fabric randomization and showed the influence of impact-related redeposition and hydrothermal activity. The paleomagnetic data suggested that the Chicxulub impact occurred during the reverse polarity geomagnetic chron 29R, which is in agreement with the isotopic dates of the Chicxulub impact as well as with expected K-Pg boundary polarity. Reference Elbra, T. and Pesonen, L.J., 2011. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico. Meteoritics & Planetary Science 46, 11, p. 1640-1652.

Elbra, T.

2013-05-01

85

Geophysics  

NSDL National Science Digital Library

This website contains abbreviated course notes from a geophysics class at California State University at Sacramento. The notes contain topic summaries and formulas, including gravity, Newton's laws, radioactivity, radioactive decay, Rb/Sr dating, Uranium-Thorium-Lead dating, uses of Lead, fission-track dating, Potassium-Argon dating, Carbon dating, heat, magnetism, seismology and earthquake prediction.

Slaymaker, Susan

86

Geophysics  

NASA Technical Reports Server (NTRS)

Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

Carr, M. H.; Cassen, P.

1976-01-01

87

Procedures for use of, and drill cores and cuttings available for study at, the Lithologic Core Storage Library, Idaho National Engineering Laboratory, Idaho  

SciTech Connect

In 1990, the US Geological Survey, in cooperation with the US Department of Energy, Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Engineering Laboratory (INEL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from investigations of the subsurface conducted at the INEL, and to provide a location for researchers to examine, sample, and test these materials. The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the well names, well locations, and depth intervals available. Most cores and cuttings stored at the facility were drilled at or near the INEL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose the majority of cores and cuttings, most of which are continuous from land surface to their total depth. The deepest core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers` responsibilities for access to the facility, and examination, sampling, and return of materials.

Davis, L.C.; Hannula, S.R.; Bowers, B.

1997-03-01

88

Rare gases and Ca, Sr, and Ba in Apollo 17 drill-core fines  

NASA Technical Reports Server (NTRS)

Trapped gas isotopic compositions and spallation gas concentrations as functions of depth in the Apollo 17 drill core were determined from mass spectrometer studies by means of correlation techniques. The distribution of He, Ne, Ar, Kr, and Xe as well as Ca, Sr, and Ba was investigated, and rare-gas spallation and neutron capture profiles are compared with attention to proposed depositional models for the Taurus-Littrow regolith. The data exclude a sedimentation pattern similar to that found at the Apollo 15 site but are possibly compatible with long-term continuous accretion models or models of very recent rapid accumulation of regolith.

Pepin, R. O.; Dragon, J. C.; Johnson, N. L.; Bates, A.; Coscio, M. R., Jr.; Murthy, V. R.

1975-01-01

89

Tecuamburro Volcano, Guatemala geothermal gradient core hole drilling, operations, and preliminary results  

SciTech Connect

A geothermal gradient core hole (TCB-1) was drilled to a depth of 700+ m at the Tecuamburro geothermal site, Guatemala during February and March, 1990. The core hole is located low on the northern flank of the Tecuamburro Volcano complex. Preliminary analysis of cores (>98% core recovery) indicates that the hydrothermal system may be centered in the 4-km-diameter Chupadero Crater, which has been proposed as the source of pyroxene pumice deposits in the Tecuamburro area. TCB-1 is located 300 m south of a 300-m-diameter phreatic crater, Laguna Ixpaco; the core hole penetrates the thin edge of a tuff ring surrounding Ixpaco and zones of hydrothermal brecciation within the upper 150 m may be related to the phreatic blast, dated at 2,910 {sup 14}C years. At the time of this writing, the unequilibrated temperature at a depth of 570m was 180{degree}C. Data on fracturing, permeability, hydrothermal alteration, and temperature will be presented. 3 refs., 3 figs.

Goff, S.; Heiken, G.; Goff, F.; Gardner, J. (Los Alamos National Lab., NM (USA)); Duffield, W. (Geological Survey, Flagstaff, AZ (USA)); Martinelli, L.; Aycinena, S. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

1990-01-01

90

Melt in the impact breccias from the Eyreville drill cores, Chesapeake Bay impact structure, USA  

NASA Astrophysics Data System (ADS)

The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP-0USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397-01551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile-rich targets, because no large melt body exists, in which homogenization would have taken place.

Bartosova, Katerina; Hecht, Lutz; Koeberl, Christian; Libowitzky, Eugen; Reimold, Wolf Uwe

2011-03-01

91

Mineralogical and petrological investigations of rocks cored from depths higher than 440m during the CFDDP drilling activities at the Campi Flegrei caldera (southern Italy).  

NASA Astrophysics Data System (ADS)

The Campi Flegrei caldera is one of the highest-risk volcanic areas on the Earth and the drilling exploiting activities carried by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN) since the '40 have produced the main constrains to the definition of the subsurface structure of the caldera. The eastern part of the caldera represents among the least known in the area in terms of both volcanic and geothermal evolution. Recently, in the 2012, the Campi Flegrei Deep Drilling Project (CFDDP) allowed performing a 506m hole in this sector of the caldera, i.e. in the Bagnoli Plain, where the western districts of the Neapolitan city developed. Here, we present the preliminary results from mineralogical, geochemical and petrological investigations of drilling core samples collected at -443 m and -506 m of depths. Scanning electron microscopy (SEM), microanalysis by energy dispersive spectroscopy (EDS) together with investigations by back-scattered electron mode (SEM-BSE), and powder X-Ray diffraction (XRD) allowed: 1) defining the primary sample lithology; 2) examining the features of both primary and secondary minerals; 3) describing the relationships among texture and secondary mineralization. Sr isotope analyses were furthermore performed on separated feldspars. Density measurements were also carried out on the bottom core. The investigated samples are representative of strongly altered, massive pyroclastic tuffs, which made of a chaotic ashy to sandy matrix including low crystalline juvenile scoria and pumice fragments. Textural features of secondary mineralization are consistent with circulation of hydrothermal fluids as the results of a wide geothermal resource in the caldera. Comparing the paleo-temperature inferred by authigenic minerals occurrence and the temperature measured at the bottom hole (~60°C) during geophysical logs, we suggest the cooling of the hydrothermal system in the eastern sector of the caldera.

Mormone, Angela; Piochi, Monica; Balassone, Giuseppina; Carlino, Stefano; Somma, Renato; Troise, Claudia; De Natale, Giuseppe

2014-05-01

92

Evaluation of a novel approach to a delamination factor after drilling composite laminates using a core–saw drill  

Microsoft Academic Search

Drilling is the most commonly applied method for hole making of fiber-reinforced materials owing to the need for structure\\u000a joining. Delamination is the most common defect during drilling because of the heterogeneity of both the fibers and the matrix.\\u000a The delamination, in general, is an irregular shape and size, containing long and fine breaks and cracks at the exit of

C. C. Tsao; K. L. Kuo; I. C. Hsu

93

A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core  

NASA Astrophysics Data System (ADS)

A stratigraphy-based chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core has been derived by transferring the annual layer counted Greenland Ice Core Chronology 2005 (GICC05) and its model extension (GICC05modelext) from the NGRIP core to the NEEM core using 787 match points of mainly volcanic origin identified in the electrical conductivity measurement (ECM) and dielectrical profiling (DEP) records. Tephra horizons found in both the NEEM and NGRIP ice cores are used to test the matching based on ECM and DEP and provide five additional horizons used for the timescale transfer. A thinning function reflecting the accumulated strain along the core has been determined using a Dansgaard-Johnsen flow model and an isotope-dependent accumulation rate parameterization. Flow parameters are determined from Monte Carlo analysis constrained by the observed depth-age horizons. In order to construct a chronology for the gas phase, the ice age-gas age difference (?age) has been reconstructed using a coupled firn densification-heat diffusion model. Temperature and accumulation inputs to the ?age model, initially derived from the water isotope proxies, have been adjusted to optimize the fit to timing constraints from ?15N of nitrogen and high-resolution methane data during the abrupt onset of Greenland interstadials. The ice and gas chronologies and the corresponding thinning function represent the first chronology for the NEEM core, named GICC05modelext-NEEM-1. Based on both the flow and firn modelling results, the accumulation history for the NEEM site has been reconstructed. Together, the timescale and accumulation reconstruction provide the necessary basis for further analysis of the records from NEEM.

Rasmussen, S. O.; Abbott, P. M.; Blunier, T.; Bourne, A. J.; Brook, E.; Buchardt, S. L.; Buizert, C.; Chappellaz, J.; Clausen, H. B.; Cook, E.; Dahl-Jensen, D.; Davies, S. M.; Guillevic, M.; Kipfstuhl, S.; Laepple, T.; Seierstad, I. K.; Severinghaus, J. P.; Steffensen, J. P.; Stowasser, C.; Svensson, A.; Vallelonga, P.; Vinther, B. M.; Wilhelms, F.; Winstrup, M.

2013-12-01

94

Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada  

SciTech Connect

Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults.

Carr, W.J.; Grow, J.A. [Geological Survey, Denver, CO (United States); Keller, S.M. [Science Applications International Corp., Golden, CO (United States)

1995-10-01

95

Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field  

SciTech Connect

For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

1987-01-20

96

Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico  

SciTech Connect

An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

1990-03-01

97

Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico  

NASA Astrophysics Data System (ADS)

The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K-Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001-2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K-Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia- or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact-related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K-Pg boundary.

Elbra, Tiiu; Pesonen, Lauri J.

2011-11-01

98

Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill  

NASA Technical Reports Server (NTRS)

NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms will be reviewed and discussed including the configurations, capabilities, and challenges.

Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

2012-01-01

99

Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core  

NASA Technical Reports Server (NTRS)

Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.

Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.

1977-01-01

100

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15

101

Trace elements profiles, notably Hg, from a preliminary study of the Apollo 15 deep-drill core.  

NASA Technical Reports Server (NTRS)

The possible thermal gradient near the surface during a lunation is considered together with the heat flow from the interior, the physical process of Hg migration, the results from core and trench samples from previous missions, and other temperature sensitive phenomena that may help understand the processes. U, Os, and Ru concentrations in the deep drill core samples are of potential interest and are summarized in a table. The Os tends to parallel the Hg profile with depth.

Jovanovic, S.; Reed, G. W., Jr.

1972-01-01

102

Spherule Size Distribution in the BARB5 ICDP Drill Core from the Barberton Greenstone Belt, South Africa  

NASA Astrophysics Data System (ADS)

On the four 4 cm thick spherule layers of the ICDP BARB5 drill core grain size analysis has been performed. The grain size statistics do not indicate regular decrease of spherule sizes, so do not represent a single impact bed.

Hoehnel, D.; Mohr-Westheide, T.; Fritz, J.; Reimold, W. U.

2014-09-01

103

The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant  

NASA Astrophysics Data System (ADS)

The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.

Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

2012-12-01

104

Analysis of hydrologic structures within Mauna Kea volcano using diamond wireline core drilling  

NASA Astrophysics Data System (ADS)

The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within the dry (~430 mm/year annual rainfall) saddle region between Mauna Loa and Mauna Kea volcanoes. The project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl. The shallow stratigraphy consisted of alluvial outwash of clastic debris, of both volcanic and glacial origin, from the upper slopes of Mauna Kea, and was underlain by highly permeable post-shield lavas to depths of a few hundred meters. Below this depth, shield stage lavas were dominated by highly-fractured and permeable pahoehoe lavas and (less common) a'a flows and occasional soil and ash accumulations at flow boundaries. As depths increased below 1000 m, progressive compaction of fragmental material was found at the flow boundaries and, by depths of ~1500 m, much of the void space in the flow boundaries had been collapsed and compacted. Increasing secondary mineralization was observed below about 1000 m depth that was exacerbated by rising temperatures and temperature gradients toward the bottom of the hole. Hydrologic conditions were strikingly different from those predicted by conventional models for ocean islands: the formation was dry down to only ~150 m where the first, thin, perched aquifer was encountered; a second, more substantial, perched aquifer was reached at only ~220 m depth that extended to ~360 m where a sequence of (remarkably thin) perching formations were recovered in the core down to about 420 m where unsaturated rocks were again encountered. Saturated conditions resumed at 550 m depth that continued to the total depth drilled; this latter zone is inferred to be the basal aquifer for Mauna Kea within this region of the island. Our initial analysis of the core suggests that thin, clay-rich, perching formations in the shallow stratigraphic column play a much larger role in groundwater transport than has generally been recognized; in the deeper interior of the volcano, compaction of flow boundaries (the major water carriers in the shallow stratigraphy) leads to a progressive decrease in permeability and reduction in the transport rates of recharge toward the shoreline aquifers.

Thomas, D. M.; Haskins, E.

2013-12-01

105

Lake Van deep drilling project PALEOVAN  

NASA Astrophysics Data System (ADS)

A complete succession of the lacustrine sediment sequence deposited during the last ?600,000 years in Lake Van, Eastern Anatolia (Turkey) was drilled in 2010 supported by the International Continental Scientific Drilling Program (ICDP). Based on a detailed seismic site survey, two sites at a water depth of up to 360 m were drilled in summer 2010, and cores were retrieved from sub-lake-floor depths of 140 m (Northern Basin) and 220 m (Ahlat Ridge). To obtain a complete sedimentary section, the two sites were multiple cored in order to investigate the paleoclimate history of a sensitive semi-arid region between the Black, Caspian, and Mediterranean seas. This introductory paper provides background information of the deep drilling project and an overview of the studies presented in this special volume by the PALEOVAN science team dealing with chronology, paleomagnetism, paleoenvironmental proxies, geophysical and petrophysical investigations as well as pore-water and fluid transport.

Litt, Thomas; Anselmetti, Flavio S.

2014-11-01

106

Geophysical signatures of past and present hydration within a young oceanic core complex  

NASA Astrophysics Data System (ADS)

logging at the Atlantis Massif oceanic core complex provides new information on the relationship between the physical properties and the lithospheric hydration of a slow-spread intrusive crustal section. Integrated Ocean Drilling Program Hole U1309D penetrates 1.4 km into the footwall to an exposed detachment fault on the 1.2 Ma flank of the mid-Atlantic Ridge, 30°N. Downhole variations in seismic velocity and resistivity show a strong correspondence to the degree of alteration, a recorder of past seawater circulation. Average velocity and resistivity are lower, and alteration is more pervasive above a fault around 750 m. Deeper, these properties have higher values except in heavily altered ultramafic zones that are several tens of meters thick. Present circulation inferred from temperature mimics this pattern: advective cooling persists above 750 m, but below, conductive cooling dominates except for small excursions within the ultramafic zones. These alteration-related physical property signatures are probably a characteristic of gabbroic cores at oceanic core complexes.

Blackman, Donna K.; Slagle, Angela; Guerin, Gilles; Harding, Alistair

2014-02-01

107

Laboratory-determined transport properties of core from the Salton Sea Scientific Drilling Project  

SciTech Connect

Two cores from the Salton Sea Scientific Drilling Project have been studied in the laboratory to determine electrical resistivity, ultrasonic velocity, and brine permeability at pressures and temperatures close to estimated borehole conditions. Both samples were siltstones; the first sample was from 1158-m depth, and the other was from 919-m depth. A synthetic brine with 13.6 weight percent NaCl, 7.5 weight percent CaCl/sub 2/, and 3.2 weight percent KCl was used as a pore fluid. The dry bulk density of the first sample was 2.44 Mg m/sup -3/ with an effective porosity of 8.7%. The second sample had a dry bulk density of 2.06 Mg m/sup -3/ with an effective porosity of 22.2%. At the midplane of the first sample, electrical impedance tomography was used to map the spatial variation of resistivity during the experiment. Also, at the midplane of both samples, ultrasonic tomography was used to map the spatial variation of P wave velocity.

Lin, W.; Daily, W.

1988-11-10

108

Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages  

Microsoft Academic Search

The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 m record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ?1.2–0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ?500

Thomas M. Cronin; Shannon A. Smith; Frédérique Eynaud; Matthew O'Regan; John King

2008-01-01

109

Microbial Community Analysis of Opalinus Clay Drill Core Samples from the Mont Terri Underground Research Laboratory, Switzerland  

Microsoft Academic Search

Opalinus Clay is a candidate host rock for a high-level radioactive waste repository in Switzerland. Microbial metabolism and its by-products could affect the physical and (geo)chemical conditions in such a repository. This study investigated the occurrence of indigenous microbes, their community size and-structure in an Opalinus Clay core from the Mont Terri Underground Research Laboratory, Switzerland, drilled with aseptic techniques.

S. Stroes-Gascoyne; A. Schippers; B. Schwyn; S. Poulain; C. Sergeant; M. Simonoff; C. Le Marrec; S. Altmann; T. Nagaoka; L. Mauclaire; J. McKenzie; S. Daumas; A. Vinsot; C. Beaucaire; J.-M. Matray

2007-01-01

110

Drilling overdeepened Alpine Valleys (DOVE)  

NASA Astrophysics Data System (ADS)

A recently submitted ICDP drilling proposal targets formerly glaciated areas, which are often characterized by deeply incised structures filled by thick Quaternary deposits. These buried troughs and valleys were formed by glacial overdeepening, likely caused by pressurized subglacial meltwater below warm-based glaciers. The proposed multinational drilling initiative consists of 14 drill sites in six different countries, all linked by the fact that they surround a formerly glaciated, densely populated mountain range, the European Alps. Being the best studied mountain range, the Alps will serve as textbook example allowing application of drilling results to other glaciated areas around the world. The drill holes, to be cored all the way to bedrock, will explore the type and age of the infillings of these overdeepened troughs. Such drill cores, paired with matching geophysical and instrumental data, hold the keys to understand how and how fast mountain ranges and their foreland are shaped by repetitive glaciations. The overarching goal will be to date the age and extent of past glaciations and their connection to paleoclimate, paleoecology and landscape history. As of today, it is not known how these glaciations varied along and across the Alps during the past, and to what extent the ice build-up along and across the Alps reflects changes in atmospheric circulation patterns. First results of drill holes in similar settings have produced local knowledge of the timing of glacial activity. Only an alpine-wide drilling initiative, however, will allow to reconstruct the full spatial and temporal scale of glacier advances and erosion and related landscape-forming processes over several glacial-interglacial cycles. Next to these paleoglacial, paleoecological and paleoclimatic aspects, the thick valley fills hold large, untapped aquifers. In the light of an increasing demand for water resources likely amplified by the projected climate change, testing these aquifers in the framework of this project is of high relevance for future hydrogeological applications. Related to this role, these drill holes may be used for shallow geothermal applications, which, however, to date rely on poorly constrained physical properties of the infilling sections. In addition, the areas represent areas of high seismic hazards related to their unfavorable seismic site effects. All these goals will be first addressed by state-of-the-art geophysical surveys that quantify the geometry of the overdeepenings. Drillholes will be analyzed by downhole logging, groundwater sampling and subsurface biosphere testing. Sedimentological, geochemical and palaeobiological analyses will characterize the sediment cores, and a combination of different approaches (biostratigraphy, luminescence dating, cosmogenic nuclide dating, magnetostratigraphy, and tephrastratigraphy) will establish the chronological framework. Eventually, the results from the above approaches will be cross-checked with the outcome of modeling both glacial flow and erosion and atmospheric circulation.

Anselmetti, Flavio S.; Preusser, Frank; Bavec, Milos; Crouzet, Christian; Fiebig, Markus; Gabriel, Gerald; Ravazzi, Cesare; Spoetl, Christoph

2014-05-01

111

Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones  

SciTech Connect

Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

Haase, C.S.; King, H.L.

1986-01-01

112

Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 7: Site investigation: Deep drilling  

NASA Astrophysics Data System (ADS)

The results of the deep drilling program performed on the Sunshine Site from January to August 1979 are presented. The work included continuous core drilling and sampling of the Sykesville to a vertical depth of 2556 ft, in hole geophysical logging, determination of rock permeability and stresses, and rock testing.

1981-04-01

113

Uranium-series age determination of calcite veins, VC-1 drill core, Valles Caldera, New Mexico  

NASA Astrophysics Data System (ADS)

Uranium-series analysis (238U-234U-230Th) of 13 calcite veins from the hydrothermally altered Madera Limestone in the VC-1 drill core was performed to determine the ages of the veins and their relation to the Valles hydrothermal system. Thermal water from VC-1 and two hot springs in San Diego Canyon was analyzed for U and (234U/238U) to help evaluate the constancy of initial (234U/238U). The (230Th/234U) age of one of the veins is ˜95 kyr, and those of two other veins are ˜230 and ˜250 kyr. Five of the veins have near equilibrium (230Th/234U) and are probably older than ˜0.3 m.y. Uranium concentrations in the remaining veins are too low for analysis by the ?-spectrometry techniques employed in this study. Of the five veins near (230Th/234U) equilibrium, four are also near (234U/238U) equilibrium, suggesting ages greater than ˜1.0 m.y., but one has (234U/238U) = 1.15, suggesting an age between ˜0.3 and ˜1.0 m.y. Calculated initial (234U/238U) of the veins yielding relatively young ages are neither equal to each other nor to (234U/238U) in thermal water from VC-1, indicating inconstancy of initial (234U/238U) that may be related to variations in groundwater mixing proportions. Three of the four veins that yield relatively young ages consist of coarse, sparry, vuggy calcite, suggesting that this may be the type of calcite vein which forms under conditions resembling those encountered presently in VC-1. The analytical data are consistent with closed-system behavior of U and Th in the VC-1 calcite veins.

Sturchio, Neil C.; Binz, Carl M.

1988-06-01

114

Stratigraphic implications of early to late Pleistocene tephra layers in the three drill cores from the Ulleung Basin, East Sea, Korea  

NASA Astrophysics Data System (ADS)

Three cores (UBGH1-4, UBGH1-9, and UBGH-10) were collected from continental slope to basin plain in the Ulleung Basin, East Sea during UBGH-Expedition-01 in 2007. The objective of UBGH-Ex-01 program is an understanding of the overall gas hydrate occurrence in the Ulleung Basin. Although the penetration depth of three drill cores range from 175 to 205 meter below seafloor, but core recoveries were very poor due to the gas hydrate dissociation and the drilling intervals without coring. Only several tephra layers were distinguished from all three drill cores. These were characterized by rhyolite and trachyte eruptions determined by electron probe microanalysis. The rhyolitic tephras consist of glass shards which were derived from volcanic front of the Japanese arc as co-ignimbrite fallout deposits. The trachytic tephras are composed of pumice and scoria which were derived from deep-water submarine volcanoes in the Korea Plateau, East Sea. However, these tephra layers are important chronologic tool with lack of lithologic, paleontologic, and stable isotopic records in three drill core from the Ulleung Basin. Source volcanoes and eruption ages of these tephras provide based on compositional comparison with age-controlled tephra layers of ODP 798 core from the Oki Ridge. This correlation provides to evaluate reconstruction of tephrostratigraphy for three drill cores in the Ulleung Basin.

Chun, J.; Bahk, J.; Ryu, B.

2010-12-01

115

Neogene deformation in the West Antarctic Rift in the McMurdo Sound region from studies of the ANDRILL and Cape Roberts drill cores  

NASA Astrophysics Data System (ADS)

Seismic studies indicate that the West Antarctic rift system records at least two distinct periods of Cenozoic rifting (Paleogene and Neogene) within the western Ross Sea. Natural fracture data from ANDRILL and Cape Roberts drill cores are revealing a picture of the geodynamic patterns associated with these rifting episodes. Kinematic indicators along faults recovered in drill cores document dominant normal faulting, although reverse and strike-slip faults are also present. Ongoing studies of mechanically twinned calcite in veins recovered in the drill cores yield predominantly vertical shortening strains with horizontal extension, consistent with a normal fault regime. In the Cape Roberts Project drill core, faults of inferred Oligocene age document a dominant NNE maximum horizontal stress associated with Paleogene rifting within the Victoria Land Basin. The NNE maximum horizontal stress at Cape Roberts is at an oblique angle to Transantarctic Mountain front, and consistent with previous interpretations invoking Cenozoic dextral transtensional shear along the boundary. In the ANDRILL SMS (AND-2A) drill core, faults and veins presumably associated with Neogene rifting document a dominant NNW to NE faulting of an expanded Lower Miocene section, although subsidiary WNW faulting is also present within the upper sections of oriented core. In the ANDRILL MIS (AND-1B) drill core, natural fractures are consistently present through the core below c. 450 mbsf, the estimated depth of the ‘B-clino’ seismic reflector. This is consistent with the presence of seismically-detectable faults below this horizon, which record the major faulting episode associated with Neogene rifting in the Terror Rift. Sedimentary intrusions and steep veins folded by compaction indicate that deformation occurred prior to complete lithification of the strata, suggesting that deformation was at least in part coeval with deposition. Faults and associated veins intersected in the AND-1B drill core also cut Pliocene and Pleistocene strata, suggesting that deformation has continued to the recent or may perhaps ongoing.

Paulsen, T. S.; Wilson, T. J.; Jarrard, R. D.; Millan, C.; Saddler, D.; Läufer, A.; Pierdominici, S.

2010-12-01

116

Initial results from VC-1, first Continental Scientific Drilling Program core hole in Valles caldera, New Mexico  

SciTech Connect

Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphic information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, and to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

Goff, F.; Rowley, J.; Gardner, J.N.; Hawkins, W.; Goff, S.; Charles, R.; Wachs, D.; Maassen, L.; Heiken, G.

1986-02-10

117

Initial results from VC-1, First Continental Scientific Drilling Program Core Hole in Valles Caldera, New Mexico  

NASA Astrophysics Data System (ADS)

Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphie information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, arid to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the Battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

Goff, Fraser; Rowley, John; Gardner, Jamie N.; Hawkins, Ward; Goff, Sue; Charles, Robert; Wachs, Daniel; Maassen, Larry; Heiken, Grant

1986-02-01

118

Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data  

NASA Astrophysics Data System (ADS)

Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.

Levy, Richard; Cody, Rosemary; Crampton, James; Fielding, Christopher; Golledge, Nick; Harwood, David; Henrys, Stuart; Mckay, Robert; Naish, Timothy; Ohneiser, Christian; Wilson, Gary; Wilson, Terry; Winter, Diane

2012-01-01

119

Stress analysis of jacks, frame and bearing connections, and drill rod for core sampler truck No. 2  

SciTech Connect

This analysis evaluates the structural design adequacy of several components and connections for the rotary mode core sampler truck (RMCST) No. 2. This analysis was requested by the Characterization Equipment Group (WHC 1994a). The components addressed in this report are listed below: front jack assembly and connection to the truck chassis; rear jack assembly and connection to the truck chassis; center outrigger jacks and connection to the truck chassis; lower frame assembly and connection to the truck chassis; bolt connections for bearing plate assembly (for path of maximum load); traverse slide brackets and mounting of the traverse jack cylinders; and drill rod (failure loads).

Ziada, H.H.

1995-02-28

120

Salton Sea Scientific Drilling Program  

SciTech Connect

The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S. Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activities enabled the U.S. Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. The SSSDP exceeded its target depth of 10,000 feet, and a comprehensive set of cuttings, cores, and downhole logs was obtained. Two flow tests at different depths were successfully completed. Hydrologic connection between the different producing horizons, however, made the data from the deeper test difficult to interpret. Temperature logging by the Geological Survey and Sandia National Laboratories to establish the equilibrium profile continued until August of 1987. The SSSDP provides a model for scientific cooperation among government agencies, universities, and private industry.

Sass, J.H.

1988-01-01

121

Geophysical characterization of the Lollie Levee near Conway, Arkansas, using capacitively coupled resistivity, coring, and direct push logging  

USGS Publications Warehouse

A geophysical characterization of Lollie Levee near Conway, Arkansas, was conducted in February 2011. A capacitively coupled resistivity survey (using Geometric's OhmMapper) was completed along the top and toe of the 6.7-mile levee. Two-dimensional inversions were conducted on the geophysical data. As a quality-control measure, cores and direct push logs were taken at approximately 1-mile intervals along the levee. The capacitively coupled resistivity survey, the coring, and the direct push logs were used to characterize the geologic materials. Comparison of the cores and the direct push log data, along with published resistivity values, indicates that resistivity values of 200 Ohm-meters or greater represent relatively clean sand, with decreasing resistivity values occurring with increasing silt and clay content. The cores indicated that the levee is composed of a heterogeneous mixture of sand, silt, and clay. The capacitively coupled resistivity sections confirm that the levee is composed of a heterogeneous mixture of high and low resistivity materials and show that the composition of the levee varies spatially. The geologic materials underlying the levee vary spatially as a result of the geologic processes that deposited them. In general, the naturally deposited geologic materials underlying the levee contain a greater amount of low resistivity materials in the southern extent of the levee.

Gillip, Jonathan A.; Payne, Jason D.

2011-01-01

122

Invasion of drilling mud into gas-hydrate-bearing sediments. Part II: Effects of geophysical properties of sediments  

NASA Astrophysics Data System (ADS)

This study examines the dynamic behaviour of drilling-mud invasion into gas-hydrate-bearing sediment (GHBS) and the effects of such an invasion on wellbore stability and the reliability of well logging. The effects of mud properties on mud invasion into the GHBS are detailed in Part I. Here, we discuss the effects of sediment properties on mud invasion by considering the Chinese first gas-hydrate-drilling expedition in the South China Sea and other hydrate projects. Our simulation results further show that mud-invasion coupling hydrate dissociation and reformation is the main unique characteristic observed during mud invasion in GHBS compared with conventional oil/gas sediments. The appearance of a high-saturation hydrate ring during mud-invasion process is related to not only mud density, temperature and salinity but also sediment properties. On the whole, the effective permeability and initial hydrate saturation plays a critical role in mud invasion in GHBS. The effect of initial hydrate saturation, which corresponds to effective permeability and porosity on the mud invasion in SH7 is pronounced because initial hydrate saturations vary greatly. For pore-filling GHBS without fractures, well-logging results in high-saturation hydrate intervals are more reliable and accurate than those in low-saturation hydrate intervals. The log results at the interbeds with low-saturation hydrates are easily distorted by mud invasion.

Ning, Fulong; Wu, Nengyou; Yu, Yibing; Zhang, Keni; Jiang, Guosheng; Zhang, Ling; Sun, Jiaxin; Zheng, Mingming

2013-06-01

123

Brines and interstitial brackish water in drill cores from the deep gulf of Mexico  

USGS Publications Warehouse

Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur.

Manheim, F. T.; Sayles, F.L.

1970-01-01

124

Brines and interstitial brackish water in drill cores from the deep gulf of Mexico.  

PubMed

Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur. PMID:17734668

Manheim, F T; Sayles, F L

1970-10-01

125

An ultra-clean firn core from the Devon Island Ice Cap, Nunavut, Canada, retrieved using a titanium drill specially designed for trace element studies.  

PubMed

An electromechanical drill with titanium barrels was used to recover a 63.7 m long firn core from Devon Island Ice Cap, Nunavut, Canada, representing 155 years of precipitation. The core was processed and analysed at the Geological Survey of Canada by following strict clean procedures for measurements of Pb and Cd at concentrations at or below the pg g(-1) level. This paper describes the effectiveness of the titanium drill with respect to contamination during ice core retrieval and evaluates sample-processing procedures in laboratories. The results demonstrate that: (1) ice cores retrieved with this titanium drill are of excellent quality with metal contamination one to four orders of magnitude less than those retrieved with conventional drills; (2) the core cleaning and sampling protocols used were effective, contamination-free, and adequate for analysis of the metals (Pb and Cd) at low pg g(-1) levels; and (3) results from 489 firn core samples analysed in this study are comparable with published data from other sites in the Arctic, Greenland and the Antarctic. PMID:16528426

Zheng, J; Fisher, D; Blake, E; Hall, G; Vaive, J; Krachler, M; Zdanowicz, C; Lam, J; Lawson, G; Shotyk, W

2006-03-01

126

The 1997 core drilling through Ordovician and Silurian strata at Ro??sta??nga, S. Sweden: Preliminary stratigraphic assessment and regional comparison  

USGS Publications Warehouse

A core drilling at Ro??sta??nga, the first such drilling ever undertaken in this classical Lower Paleozoic outcrop area in W-central Scania, penetrated an approximately 96 m thick succession of Lower Silurian-upper Middle Ordovician marine rocks. The drilling was stopped at a depth of 132.59 m in an interval of crushed rocks, probably a prominent fault zone, that proved impossible to drill through. The core contains a stratigraphical sequence from the basal Upper Llandoverian (Telychian Stage) to the upper Middle Ordovician (Harjuan Stage). The following units are recognized in descending stratigraphic order (approximate thickness in parenthesis): Kallholn Formation (35 m), Lindega??rd Mudstone (27 m), Fja??cka Shale (13 m), Mossen Formation (0.75 m), Skagen Formation (2.5 m), and Sularp Shale (19 m+). Except for the Skagen Formation, the drilled sequence consists of shales and mudstones with occasional thin limestone interbeds and is similar to coeval successions elsewhere in Scania. There are 11 K-bentonite beds in the Kallholn Formation, 2(3?) in the Lindega??rd Mudstone, 1 in the Mossen Formation, 7 in the Skagen Formation, and 33 in the Sularp Shale. The core serves as an excellent Lower Silurian-upper Middle Ordovician reference standard not only for the Ro??sta??nga area but also for southernmost Sweden in general because the cored sequence is the stratigraphically most complete one known anywhere in this region.

Bergstrom, S.M.; Huff, W.D.; Koren', T.; Larsson, K.; Ahlberg, P.; Kolata, D.R.

1999-01-01

127

Geochemical studies of the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany  

NASA Astrophysics Data System (ADS)

Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within-crater and out-of-crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate-impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment-clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic-granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum-group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near-chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1-0.2% chondrite-equivalent.

Reimold, Wolf Uwe; McDonald, Iain; Schmitt, Ralf-Thomas; Hansen, Birgit; Jacob, Juliane; Koeberl, Christian

2013-09-01

128

SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.  

USGS Publications Warehouse

The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

Sass, J.H.; Elders, W.A.

1986-01-01

129

Core hole drilling and the ''rain current'' phenomenon at Newberry Volcano, Oregon  

SciTech Connect

Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole Geo N-1 has a heat flow of 180 mW m/sup -2/, reflecting subsurface temperatures, sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mW m/sup -2/, is less encouraging. We emphasize the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Cole hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite, basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Caving and sloughing were encountered in both core holes at depths near the regional water table. Both core holes penetrate three distinct thermal regimes. The uppermost regime is isothemal at mean air temperature down to about 900-1000 m (the rain curtain).

Swanberg, C.A.; Walkey, W.C.; Combs, J.

1988-09-10

130

Drill core LB-08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift  

NASA Astrophysics Data System (ADS)

The 1.07 Myr old Bosumtwi impact structure in Ghana (West Africa), which measures 10.5 km in diameter and is largely filled by Lake Bosumtwi, is associated with one of four currently known tektite strewn fields. Two boreholes were drilled to acquire hard-rock samples of the deep crater moat and from the flank of the central uplift (LB-07A and LB-08A, respectively) during a recent ICDP-sponsored drilling project. Here we present results of major and trace element analysis of 112 samples from drill core LB-08A. This core, which was recovered between 235.6 and 451.33 m depth below lake level, contains polymict lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment. The basement is dominated by meta-graywacke (from fine-grained to gritty), but also includes some phyllite and slate, as well as suevite dikelets and a few units of a distinct light greenish gray, medium-grained meta-graywacke. Most of the variations of the major and trace element abundances in the different lithologies result from the initial compositional variations of the various target rock types, as well as from aqueous alteration processes, which have undeniably affected the different rocks. Suevite from core LB-08A (fallback suevite) and fallout suevite samples (from outside the northern crater rim) display some differences in major (mainly in MgO, CaO, and Na2O contents) and minor (mainly Cr and Ni) element abundances that could be related to the higher degree of alteration of fallback suevites, but also result from differences in the clast populations of the two suevite populations. For example, granite clasts are present in fallout suevite but not in fallback breccia, and calcite clasts are present in fallback breccia and not in fallout suevite. Chondrite-normalized rare earth element abundance patterns for polymict impact breccia and basement samples are very similar to each other. Siderophile element contents in the impact breccias are not significantly different from those of the metasediments, or compared to target rocks from outside the crater rim. So far, no evidence for a meteoritic component has been detected in polymict impact breccias during this study, in agreement with previous work.

Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe; Mader, Dieter

131

Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)  

NASA Astrophysics Data System (ADS)

The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.

Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

2010-05-01

132

Hydraulic and acoustic properties of the active Alpine Fault, New Zealand: Laboratory measurements on DFDP-1 drill core  

NASA Astrophysics Data System (ADS)

We report on laboratory measurements of permeability and elastic wavespeed for a suite of samples obtained by drilling across the active Alpine Fault on the South Island of New Zealand, as part of the first phase of the Deep Fault Drilling Project (DFDP-1). We find that clay-rich cataclasite and principal slip zone (PSZ) samples exhibit low permeabilities (?10-18 m), and that the permeability of hanging-wall cataclasites increases (from c. 10-18 m to 10-15 m) with distance from the fault. Additionally, the PSZ exhibits a markedly lower P-wave velocity and Young's modulus relative to the wall rocks. Our laboratory data are in good agreement with in situ wireline logging measurements and are consistent with the identification of an alteration zone surrounding the PSZ defined by observations of core samples. The properties of this zone and the low permeability of the PSZ likely govern transient hydrologic processes during earthquake slip, including thermal pressurization and dilatancy strengthening.

Carpenter, B. M.; Kitajima, H.; Sutherland, R.; Townend, J.; Toy, V. G.; Saffer, D. M.

2014-03-01

133

Description and hydrogeologic implications of cored sedimentary material from the 1975 drilling program at the radioactive waste management complex, Idaho  

USGS Publications Warehouse

Samples of sedimentary material from interbeds between basalt flows and from fractures in the flows, taken from two drill cores at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory were analyzed for (1) particle-size dribution, (2) bulk mineralogy, (3) clay mineralogy, (4) cation-exchange capacity, and (5) carbonate content. Thin sections of selected sediment material were made for petrographic examination. Preliminary interpretations indicate that (1) it may be possible to distinguish the various sediment interbeds on the basis of their mineralogy, (2) the presence of carbonate horizons in sedimentary interbeds may be utilized to approximate the time of exposure and the climate while the surface was exposed (which affected the hydrogeologic character of the sediment), and the type and orientation of fracture-filling material may be utilized to determine the mechanism by which fractures were filled. (USGS)

Rightmire, C.T.

1984-01-01

134

Glaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice core drilling  

E-print Network

traverse indicate accumulation rates of 0.16­0.20 m/yr ice equivalent over the last 300 years. Age controlGlaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice as a deep ice core site. Annual layering in dD ratios from a 72 m ice core collected by the US-ITASE 2002

Jacobel, Robert W.

135

Early Miocene Antarctic glacial history: new insights from heavy mineral analysis from ANDRILL AND-2A drill core sediments  

NASA Astrophysics Data System (ADS)

The present study deals with heavy mineral analysis of late Early Miocene marine sediments recovered in the McMurdo Sound region (Ross Sea, Antarctica) during the ANDRILL—SMS Project in 2007. The main objective is to investigate how heavy mineral assemblages reflect different source rocks and hence different provenance areas. These data contribute to a better understanding of East Antarctica ice dynamics in the Ross Sea sector during the Early Miocene (17.6-20.2 Ma), a time of long-term global warming and sea level rise. The AND-2A drill core recovered several stratigraphic intervals that span from Early Miocene to Pleistocene and it collected a variety of terrigenous lithologies. The heavy mineral assemblages of the lower 650-m-thick sedimentary succession were analyzed through SEM observations and SEM-EDS microanalyses on heavy mineral grains. The heavy mineral analysis shows that the sediments are a mix of detritus dominated by McMurdo Volcanic Group sources most likely located in the present-day Mount Morning area (Proto-Mount Morning) with minor contribution from Transantarctic Mountains source rocks located west of the drill site. The heavy mineral assemblages in Interval 1 indicate that between 20.2 and 20.1 Ma, the grounding line of the ice sheet advanced to a position near the present-day Mount Morning volcanic center. During deposition of Interval 2 (20.1-19.3 Ma), the ice sheet most likely experienced a dynamic behavior with interval of ice advance alternating with periods of ice retreat, while Interval 3 (19.3-18.7 Ma) records further retreat to open water conditions. A dynamic behavior is noted in Interval 4 (18.7-17.6 Ma) with a decreasing contribution of materials derived from the basalts of the Mount Morning volcanic center located to the south of the drill site and a consequent increasing contribution of materials derived from the Transantarctic Mountains to the west of the drill site.

Iacoviello, Francesco; Giorgetti, Giovanna; Turbanti Memmi, Isabella; Passchier, Sandra

2014-12-01

136

Development of a seismic borehole sonde for high resolution geophysical exploration ahead and around the drill bit  

NASA Astrophysics Data System (ADS)

The importance of exploration with high resolution increases more and more because reservoirs especially in geothermal fields are characterized of small-scale geological structures. Today, surface seismic surveys were often combined with borehole seismic measurements like VSP or SWD to improve the velocity model and to image the structures with higher resolution. The accuracy of structure localization depends strongly on the surveying depth. There is the need for resolution of such small-scale structures in the range of meters to explore deeper structures with a high resolution. In the project "Seismic Prediction While Drilling" (SPWD) a new approach for a seismic exploration method in boreholes will be examined. SPWD comprises the seismic sources and receivers in one device. This allows an exploration with a resolution independent from depth and a system development for an exploration ahead and around the drill bit. At first a prototype of a borehole device for dry horizontal boreholes in a mine was developed and tested. The source device consists of four magnetostrictive vibrators emitting sweep signals from 500 Hz to 5000 Hz. To achieve a radiation pattern for focusing the seismic wave energy in predefined directions the signals of each vibrator must be independently controlled in amplitude and phase. The adjustment of amplitudes and phases of each sweep signal resulting in constructive interference with a predefined direction. A control of the emitted signals is retained by 30 three-component receivers mounted along the surrounding galleries in distances of up to 50 m. In measurements several parameters were examined to control the radiation pattern. The enhancement and diminishment of the wave amplitudes in the predefined directions of the radiation pattern is clearly exhibited also a dependency of the frequency. Using a three-component Fresnel-Volume-Migration to image the reflected wave field the results show clearly the effect of the radiation pattern on the distribution of the seismic wave energy. The migration of the reflected wave field reveals an amplification of the reflected amplitudes at the galleries corresponding to the radiation pattern of the complex borehole source. Also, structures passing through the borehole can be detected with an additional characterization by different radiation patterns. Further improvements were realized in focusing the seismic energy with advances in technical devices and also in the control of the vibrators. As a next step a wireline prototype for borehole measurements was designed and constructed. Currently the manufacturing is in progress. This prototype will be used in vertical boreholes up to 2000 m depth. After completion first measurements are planned to verify the exploration method for a directional investigation in boreholes. The measurements will take place in different geologies of hard and soft rocks and also depths. Also the mine was expanded with a 70 m vertical borehole for further research aspects. This project is funded by the German Federal Environment Ministry.

Jaksch, K.; Giese, R.; Kopf, M.

2012-04-01

137

What Really Lies Beneath? Defying Conventional Geophysical Inversion and new Observations From the Crust to the Core  

NASA Astrophysics Data System (ADS)

Global observational seismology is a powerful tool that serves as an inverted telescope with which we can probe the deepest parts of the Earth's interior including the lowermost mantle and core. The nature of seismological observations is that they often lead, and less often follow, geodynamical predictions. Indeed, seismological observations have been the pivotal points for major advances in our understanding of the Earth's interior, from the shallowest to the deepest Earth structures and dynamics. Conceptual frameworks are shaped within the community to become hypotheses, but they rarely become theories due to a lack of an experimentally controlled environment. Geophysical models that are initially put forward as "the best fitting models" often explain the majority of observations, but are not always uniquely required by the data. Examples include mantle tomography models derived from subjective regularization choices, a highly non-unique model of a cylindrical anisotropy in the inner core, or a constant prograde rotation of the inner core with respect to the rest of the planet obtained as a result of a too simple parameterization. Obtaining a too simplistic (or a too complex) geophysical model is one of the consequences of utilizing a conventional geophysical inversion requiring various subjective decisions. Some of the issues of traditional techniques are inadequate parameterization of a problem and an inaccurate knowledge of data noise. A trans-dimensional Bayesian inverse method has the excellent property of treating the number of model parameters (e.g. number of basis functions in tomography, number of layers in receiver function inversions and number of changes in differential travel times trends) as an unknown in the problem. Furthermore, in a hierarchical extension of the trans-dimensional framework, the level of data noise can be relaxed to become a free parameter in the inversion. This level is critical because it effectively quantifies the usable information present in the data, and therefore determines the complexity of the solution. We show the application of the Bayesian method to the joint inversion of receiver functions and surface wave dispersion, travel-time tomography and full waveform modeling of structures in the lowermost mantle, and modelling of the rotational dynamics of the inner core. The obtained results have profound consequences for the dynamics of the Earth's interior.

Tkalcic, H.; Sambridge, M.; Young, M.; Bodin, T.; Pachhai, S.

2012-12-01

138

Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core  

NASA Astrophysics Data System (ADS)

Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in AND-1B demonstrates that Pliocene glacial intervals were warmer than in the Pleistocene when polar ice sheets grew from local inland ice to regional ice streams.

Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

2014-08-01

139

Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores  

USGS Publications Warehouse

Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

1990-01-01

140

Hydrothermal brecciation in the Jemez fault zone, Valles Caldera, New Mexico: Results from Continental Scientific Drilling Program core hole VC1  

Microsoft Academic Search

An unusual breccia sequence penetrated in the lower 30 m of Continental Scientific Drilling Program core hole VC-1 (total depth 856 m) records a complex hydrothermal history culminating in hydraulic rock rupture and associated alteration at the edge of the Quaternary Valles caldera. The breccias, both tectonic and hydrothermal in origin, were formed in the Jemez fault zone, near the

Jeffrey B. Hulen; Dennis L. Nielson

1988-01-01

141

Testing the ureilite projectile hypothesis for the El'gygytgyn impact: Determination of siderophile element abundances and Os isotope ratios in ICDP drill core samples  

E-print Network

Testing the ureilite projectile hypothesis for the El'gygytgyn impact: Determination of siderophile element abundances and Os isotope ratios in ICDP drill core samples and melt rocks S. GODERIS1,2* , A with that of impact melt rock fragments collected near the western rim of the structure and literature data

Claeys, Philippe

142

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect

This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

2002-07-24

143

Erosion and filling of glacially-overdeepened troughs in the Northern Alpine Foreland as recorded in a deep drill core from Northern Switzerland  

NASA Astrophysics Data System (ADS)

As the major weather divide in Europe, the Alps represent one of the most interesting areas for understanding past climate change and its impact on continental environments. However, our knowledge of the Quaternary environmental history of the region is still rather limited, especially for the time preceding the last glaciation of the Alps. Geological and geophysical studies in the Wehntal, 20 km northwest of Zurich, Switzerland, in 2007 and 2008 have revealed the existence of a glacially overdeepened trough cut into Miocene molasse bedrock, which is today filled with ~90 to 180 m of Pleistocene sediments. In March 2009, a 93.6 m long sediment core (NW09/1) has been drilled east of the famous mammoth-site Niederweningen. This record is one of the very few sites in the northern Alpine Foreland that provides crucial insights into the timing of the erosion and infilling history of pre-Eemian glacially overdeepened troughs and also helps to understand the climate and environmental history. Based on chronological data deduced from the nearby, but shorter, 2007 core and on new multi-proxy data, the NW09/1 record is interpreted as: 4.1 m of in-situ molasse bedrock, overlain by 3.4 m of diamictic till. These glacial deposits were deposited by a Linth glacier lobe during Marine Isotope Stage (MIS) 6 (Rissian), although, the possibility that an even older glaciation was responsible cannot currently be excluded (e.g. MIS 8, luminescence dating, pollen interpretations, and palaeomagnetic studies in progress). It is suggested that this extensive ice advance, which once covered the entire Wehntal valley, caused the final erosion of the bedrock. The till is overlain by a 29.5 m thick sequence of laminated, carbonate-rich, fine-grained siliciclastic sediments that are interpreted as proglacial lake sediments. It is supposed that this unit was deposited in a proximal setting to a calving glacier-front confirmed by the presence of numerous dropstones. The damming of this Wehntal palaeolake was most likely caused by a terminal moraine located ~3 km to the northwest of the drill site. The overlying 37.9 m of fine-grained lake sediments are comparable to the former unit, but the absence of dropstones and the occurrence of multiple interstratified sand layers (up to 40 cm in thickness) indicate a more distal proglacial lake facies and thus, a melting of the feeding glacier lobe. The subsequent 9.5 m of fine-grained material are characterised by a striking drop in carbonate content (from ~50 to 20 wt%), which is interpreted as a decoupling of the Wehntal catchment from the Linth glacier system that originates in a carbonate-rich hinterland. Furthermore, the top of this unit documents the gradual infilling of the palaeolake and the onset of biological productivity due to climate warming. This is also documented by occurrence of pyrite and siderite concretions. The prominent environmental change culminates in the abrupt accumulation of peat (1.8 m) during the interglacial MIS 5e (late Eemian). Afterwards, the Wehntal was recaptured by a younger palaeolake after which the peat became flooded. The resulting 4.9 m of silty sediments have carbonate contents of ~25 wt% and also show post-sedimentary pyrite and siderite concretions. The source of sediment is interpreted as derived from the molassic Zurich Highlands and the Jurassic limestone of the Lägern mountain, which borders the Wehntal valley to the south. The cause of the rise in water level subsequent to deposition of the MIS 5e peat, however, has not yet been identified. Eventually, the younger palaeolake was filled, resulting in the accumulation of 0.7 m of fossil rich Middle Würmian peat (‘Mammoth peat'). This peat was finally covered with 2.0 m of post-Würmian-to-recent silts and sands.

Dehnert, Andreas; Axel Kemna, Hans; Anselmetti, Flavio; Drescher-Schneider, Ruth; Graf, Hans Rudolf; Lowick, Sally; Preusser, Frank; Züger, Andreas; Furrer, Heinz

2010-05-01

144

Detrital dating on drill-core records from McMurdo Sound, Ross Sea (Antarctica)  

NASA Astrophysics Data System (ADS)

The influence of Antarctic ice sheets on the global climate system during the Cenozoic has been intensely investigated in the last years, especially after the successful drilling projects off-shore the western Ross Sea. While the role of the Western Ice Sheet (WAIS) during the Miocene it is not clear, the East Antarctic Ice Sheet (EAIS) has been suggested to be more or less stable and cold for the last 14 Ma. Records from drilling projects in syn-tectonic basins located on the continental shelf along the western margin of the West Antarctica Rift System (DSDP, CIROS, CRP and ANDRILL projects) may provide crucial information on the tectonic and paleo-climatic evolution of that region during Cenozoic. The drilled sedimentary records have been therefore investigated by detrital geochronology which, integrated by sandstone and gravel petrography, can provide valuable information on the dynamics of the ice sheets as provenance data are sensitive to variations in the ice-flow patterns. Apatite fission-track (AFT) data from ANDRILL and CRP records show multiple peaks in most of the samples. In the AND-2A well, whose stratigraphic record spans the last 20 Ma, the grain-age distributions are dominated by grains between 20 and 40 Ma. A young peak with a comparable age has been also episodically detected in CRP wells where conversely the most relevant population is made by grain ages between 45 and 70 Ma. Samples from Late Miocene-Pleistocene sediments of AND-1B well show a completely different AFT age distribution as a single peak is usually detected and ages are younger than 20 Ma. The AFT age range is well represented in bedrock data along the entire Transantarctic Mountains (TAM). The main denudation phase in the TAM began at 55-50 Ma but the occurrence of a young peak in the detrital data at ca. 35 Ma indicates the presence of an Oligocene pulse, as testified also by the small gap between AFT and some (U-Th-Sm)/He ages that have been detected on AND-2A samples. Such young ages are absent in the onshore portion of the TAM proximal to wells while they are present in regions located to the south. This suggests that the TAM are segmented by transversal lineaments and that significant vertical displacements occurred south of the so-called Discovery Accommodation Zone during the Oligocene. Single grain U-Pb ages on apatites from AND-2A well testify that some volcanism was concurrent with this exhumation event. The location of the volcanic centers is unknown, but aeromagnetic anomalies suggest the presence of subglacial volcanic centers beneath the Ross Ice Shelf and the WAIS. After the Oligocene, the TAM have been in a post-orogenic decay, with exhumation rates of the order of 0.1 km/Ma. As a whole, detrital ages and petrographic data agree on the idea of an ice pattern dominated by south to north trending flow lines parallel to the TAM front. Our record supports the presence of large-scale advance of WAIS across the Ross Sea. Local ice lobes from the TAM glaciers were able to transport debris only during glacial-minima settings while during periods with presence of large ice volumes, W-E flows from the TAM were obstructed by the major flow running S to N.

Zattin, M.; Andreucci, B.; Balestrieri, M.; Olivetti, V.; Pace, D.; Reiners, P. W.; Rossetti, F.; Talarico, F.; Thomson, S. N.

2012-12-01

145

Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs  

NASA Astrophysics Data System (ADS)

For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after the expedition, conducting post-expedition projects in conjunction with the U.S. Implementing Organization and their own institutions, and to participating actively in post-cruise evaluation. Since its inception in 2005, 75 SOR graduates and staff have conducted over 150 workshops and short courses for 3,000 participants in more than 30 U.S. states and five other nations. Integral to the success of the program is the evaluation process that takes place during and after each SOR. In particular, SOR evaluations take advantage of the power of video data collection to demonstrate the transformative nature of SOR expeditions. Video evaluations offer a unique opportunity to collect and preserve participant “voice” to document true transformative broader impacts. Along with video evaluations, the program also employs more traditional evaluation methods such as internal evaluator observations, open-ended questionnaires, and participant journals.

Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

2010-12-01

146

Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation  

NASA Technical Reports Server (NTRS)

The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

1999-01-01

147

Constraints on magma ascent, emplacement, and eruption: geochemical and mineralogical data from drill-core samples at Obsidian dome, Inyo chain, California  

SciTech Connect

Systematic chemical and mineralogical variability occurs in samples from drill holes through Obsidian dome, the conduit to the dome, and a nearby associated feeder dike. The drill-hole samples from the margins of the conduit and most of the lower part of the dome are high-Ba, low-silica rhyolites; they contain two populations of phenocrysts and represent commingled magmas, whereas samples from the dike and upper parts of the dome are low-Ba, higher silica rhyolites that do not reflect commingled magmas. Samples from the center of the conduit are low-Ba, higher silica rhyolites that are only slightly mixed. A major part of the variability within the drill-core samples of the dome and conduit reflects the juxtaposition and commingling of two distinct magmas during their passage through the conduit.

Vogel, T.A.; Younker, L.W.; Schuraytz, B.C.

1987-05-01

148

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

SciTech Connect

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01

149

Environmental Health Research Recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations  

PubMed Central

Background: Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Objectives: Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. Discussion: The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Conclusions: Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies. Citation: Penning TM, Breysse PN, Gray K, Howarth M, Yan B. 2014. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environ Health Perspect 122:1155–1159;?http://dx.doi.org/10.1289/ehp.1408207 PMID:25036093

Breysse, Patrick N.; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

2014-01-01

150

The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)  

PubMed Central

During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

2013-01-01

151

The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).  

PubMed

During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

2013-01-01

152

Drill, Baby, Drill  

ERIC Educational Resources Information Center

School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

Kerkhoff, Todd

2009-01-01

153

On the joint inversion of geophysical data for models of the coupled core-mantle system  

NASA Technical Reports Server (NTRS)

Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

Voorhies, Coerte V.

1991-01-01

154

`Building Core Knowledge - Reconstructing Earth History': Transforming Undergraduate Instruction by Bringing Ocean Drilling Science on Earth History and Global Climate Change into the Classroom (Invited)  

Microsoft Academic Search

This NSF-funded, Phase 1 CCLI project effectively integrates scientific ocean drilling data and research (DSDP-ODP-IODP-ANDRILL) with education. We have developed, and are currently testing, a suite of data-rich inquiry-based classroom learning materials based on sediment core archives. These materials are suitable for use in introductory geoscience courses that serve general education students, early geoscience majors, and pre-service teachers. 'Science made

K. St. John; R. M. Leckie; M. H. Jones; K. S. Pound; E. Pyle; L. A. Krissek

2009-01-01

155

Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core  

NASA Astrophysics Data System (ADS)

In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during SAFOD drilling, we use the ultrasonic velocities of SAFOD core and analogous outcrop samples to determine if the velocity reduction is due to lithologic variations or the presence of deformational fabrics and alteration in the fault zone. Preliminary analysis indicates that while the decrease in velocity across the broad fault zone is heavily influenced by fractures, the extremely low velocities associated with the actively deforming zones are more likely caused by the development of scaly fabric with clay coatings on the fracture surfaces. Analysis of thin sections and well logs are used to support this interpretation.

Jeppson, T.; Tobin, H. J.

2013-12-01

156

Statistical correlation between geophysical logs and extracted core David Price1  

E-print Network

core sec- tions, in 2D using a scanning electron microscope SEM or in 3D using computerized tomography.g., bulk density, neutron density, P-wave velocity, etc. which can be converted to, or used as a proxy for

157

Methane hydrate pore saturation evaluation from geophysical logging and pressure core analysis, at the first offshore production test site in the eastern Nankai Trough, Japan  

NASA Astrophysics Data System (ADS)

On March 2013, the first offshore production test form methane hydrate (MH) concentrated zone (MHCZ) was conducted by the Research Consortium for Methane Hydrate Resource Development in Japan (MH21) at the AT1 site located in the north-western slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. Before the production test, extensive geophysical logging and pressure coring using Hybrid Pressure Coring System were conducted in 2012 at monitoring well (AT1-MC) and coring well (AT1-C), in order to obtain basic information for the MH reservoir characterization. MH pore saturation (Sh) is one of the important basic parameters not only for reservoir characterization, but also the resource assessment. However, precise evaluation of Sh from geophysical logging is still challenging technical issue. The MHCZ confirmed by the geophysical logging at AT1-MC has a turbidite assemblage (from several tens of centimeters to a few meters) with 60 m of gross thickness; it is composed of lobe/sheet type sequences in the upper part, and relatively thick channel sand sequences in the lower part. In this study, the Sh evaluated from geophysical logging data were compared with those evaluated from pressure core analysis. Resistivity logs and nuclear magnetic resonance (NMR) log were used for the Sh evaluation by geophysical logging. Standard Archie equation was applied for Sh evaluation from resistivity log, while density magnetic resonance (DMR) method was used for Sh evaluation from NMR log. The Sh from pressure core samples were evaluated using the amount of dissociated gas volume, together with core sample bulk volume, measured porosity, net sand intervals, and assumed methane solubility in pore water. In the upper part of the MHCZ, Sh estimated from resistivity log showed distinct difference in value between sand and mud layers, compared to Sh from NMR log. Resistivity log has higher vertical resolution than NMR log, so it is favorable for these kinds of thin bed evaluation. In this part, 50 to 80% of Sh was observed in sandy layer, which showed fairly good agreement with core derived Sh. On the other hand, lower part of the MHCZ, Sh estimated from both resistivity and NMR log showed higher background value and relatively smoother curve than upper part. In this part, 50 to 80% of Sh was observed in sandy layer, which was also showed good agreement with core derived Sh. This study was conducted by the Research Consortium for Methane Hydrate Resource Development in Japan (MH21).

Fujii, T.; Suzuki, K.; Takayama, T.; Konno, Y.; Yoneda, J.; Egawa, K.; Ito, T.; Nagao, J.

2013-12-01

158

Petrophysical characterization of first ever drilled core samples from an active CO2 storage site, the German Ketzin Pilot Site - Comparison with long term experiments  

NASA Astrophysics Data System (ADS)

Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|

Zemke, Kornelia; Liebscher, Axel

2014-05-01

159

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

SciTech Connect

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01

160

The 1992 drill core from the Kalkkop impact crater, Eastern Cape Province, South Africa: stratigraphy, petrography, geochemistry and age  

NASA Astrophysics Data System (ADS)

New drill core data are provided which support earlier interpretations that the Kalkkop structure, a 600-630 m wide, near-circular feature south-southwest of Graaff-Reinet in the Eastern Cape Province of South Africa, is a meteorite impact crater. Shock metamorphosed clasts in suevitic crater fill and Re?Os isotope data of this breccia indicate the presence of a minor (0.05%) meteoritic component in the suevite. The new data come from a 1992 borehole, which transected the complete crater fill and extended from about 160 to 380 m depth into the sedimentary basement belonging to the Koonap Formation of the Beaufort Group (Karoo Supergroup). Dyke breccias were found in the otherwise coherent Beaufort Group sediments forming the floor to the Kalkkop Crater. Mostly narrow zones of different breccia types, including injections of lithic impact breccia, a possible pseudotachylite veinlet and cataclasite occur predominantly in an approximately 65 m wide zone below the crater floor, with a few other cataclasite occurrences found lower down in the basement. Stratigraphical crater constraints provide information for the depth-diameter scaling and breccia volumes associated with such small, bowl-shaped impact craters formed in sedimentary targets. U?Th series dating of limestone samples from near the top and the bottom of the crater sediment fill constraints the age of the Kalkkop impact event to about 250 ± 50 ka, similar to the age of the Pretoria Saltpan impact crater, also located in South Africa. The variety of different breccia types (polymict and monomict impact breccias; local formations of pseudotachylitic and cataclastic breccias) observed in the crater fill of the Kalkkop Crater indicates the need to carefully distinguish different breccia types in order to assess the respective importance of each formation.

Reimold, Wolf Uwe; Koeberl, Christian; Reddering, Jacobus S. V.

1998-05-01

161

Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1  

SciTech Connect

The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age.

NONE

1998-12-01

162

Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project  

Microsoft Academic Search

Continuous cores and a suit of geophysical measurements were collected in two scientific drill holes to understand physical mechanisms involved in the large displacements during the 1999 Chi-Chi earthquake. Physical properties obtained from wire-line logs including P- and S-wave sonic velocity, gamma ray, electrical resistivity, density and temperature, are primarily dependent on parameters such as lithology, depth and fault zones.

Jih-Hao Hung; Kuo-Fong Ma; Chien-Yin Wang; Hisao Ito; Weiren Lin; En-Chao Yeh

2009-01-01

163

Geophysics adds a dimension  

SciTech Connect

Geophysics is adding technology which can pinpoint drill sites, quicken drilling schedules and enhance success ratios. The use of 3-D seismic surveys can help determine the exact extent and shape of an oil or gas field. Vertical seismic profiling (VSP) also is proving to be extremely useful among companies that recognize its potential. A land air gun has started to refine the seismic surveys since it can be refired on 6 to 8 second intervals. A combination of these geophysical techniques may become a cheaper and more effective way of correlating strata.

Savage, D.

1984-03-01

164

Drilling and Logging in Space; An Oil-Well Perspective  

Microsoft Academic Search

Growing interest in extraterrestrial subsurface exploration has prompted an examination of advanced technologies for drilling slim holes and obtaining geophysical data in these holes. The borehole surveys with geophysical measurements called \\

Max Peeters; Brad Blair

2000-01-01

165

Mingling processes at Panarea Volcano (Aeolian Islands, Italy): results from M73/2 cruise drilled cores  

NASA Astrophysics Data System (ADS)

The last Meteor 73/2 cruise drilled several lava cores in the southern Tyrrhenian Sea, close to Panarea Island and surrounding islets (Aeolian archipelago, Italy), at depths comprised between 50 and 70 m bsl. These rocks - unconformably covered by unconsolidated lapilli tuffs - revealed different lithologies and mineralogical assemblages corresponding to different compositions (hereafter A & B), as then evidenced by ICP-MS analyses (major and trace elements) performed on selected rock-samples. The cores also displayed several, cm-sized, rounded enclaves of the A-type dispersed in the B-type. The petrographic study on textures and microprobe analyses on glass shards and mineral phases finally concurred in identifying two magmas with different history and quite complex interaction. Rock A is a holocrystalline shoshonite (SHO) - showing plagioclase (pl - An%=62-74) and clinopyroxene (cpx) as main phases, plus subordinate amphibole and biotite phenocrysts, rare and small olivines (Fo?89%) - which represents the first magma, usually in form of enclaves. Notably, the SHO shows intersertal vesicularity and scarce glass. Rock B is a porphyritic rhyodacite (RD) characterized by pl (An%=32-52), and biotite phenocrysts, with minor cpx phenocrysts and microphenocrysts. Pl and cpx show both alternate and normal zoning, and the former have frequent K-rich reaction rims. Similar mineral phases and frequent sanidine microlites characterize the alkali-trachyte glassy groundmass of rock B. This rock hosts the SHO and represent the most voluminous magma. Overall, these features indicate a quite complex history of magma interaction(s) as well as a polybaric crystallization, which lead the volatiles abundance and behaviour. From the study of the highly irregular edges observed along their contacts, we argue intrusive and visco-plastic relationships between A and B. Moreover, the presence of irregular vesicles and vugs bounded by pl microlites suggest an emplacement at shallow level where cooling favoured both slow degassing and pervasive crystallization. Textural and compositional data concur in indicating that the two magmas mingled at depth. Noteworthy, enclaves of a third rock type - very limited in volume - is present along some of the collected cores. It is a reddish low-porphyritic lava similar to the RD lava in terms of mineralogical composition, but showing a higher amount of microlites with smaller size if compared to the main RD host-rock. This could indicate that at some extent also mixing occurred. The multiple similarities of our rocks with lavas of the Panarea islets or other acid volcanics containing mafic-intermediate enclaves and outcropping on other Aeolian Islands, suggest that mafic magma uprising "within" resident magma with subsequent mingling is a recurrent process in these volcanic systems and may be the trigger for the eruption of acid melts.

De Benedetti, A. A.; De Astis, G.; Raffaele, V.; Esposito, A.; Giordano, G.; Petersen, S.; Monecke, T.

2012-04-01

166

Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada  

USGS Publications Warehouse

Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

Szabo, B. J.; Kyser, T.K.

1990-01-01

167

Lunar deep drill apparatus  

NASA Technical Reports Server (NTRS)

A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

Harvey, Jill (editor)

1989-01-01

168

Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979  

NASA Astrophysics Data System (ADS)

Kilauea Iki lava lake formed during the 1959 summit eruption, one of the most picritic eruptions of Kilauea Volcano in the twentieth century. Since 1959 the 110 to 122 m thick lake has cooled slowly, developing steadily thickening upper and lower crusts, with a lens of more molten lava in between. Recent coring dates, with maximum depths reached in the center of the lake, are: 1967 (26.5 m). 1975 (44.2 m), 1976 (46.0 m) and 1979 (52.7 m). These depths define the base of the upper crust at the time of drilling. The bulk of the core consists of a gray, olivine-phyric basalt matrix, which locally contains coarser-grained diabasic segregation veins. The most important megascopic variation in the matrix rock is its variation in olivine content. The upper 15 m of crust is very olivine-rich. Abundance and average size of olivine decrease irregularly downward to 23 m; between 23 and 40 m the rock contains 5-10% of small olivine phenocrysts. Below 40 m. olivine content and average grainsize rise sharply. Olivine contents remain high (20-45%, by volume) throughout the lower crust, except for a narrow (< 6 m) olivine depleted zone near the basalt contact. Petrographically the olivine phenocrysts in Kilauea Iki can be divided into two types. Type 1 phenocrysts are large (1-12 mm long), with irregular blocky outlines, and often contain kink bands. Type 2 crystals are relatively small (0.5-2 mm in length), euhedral and undeformed. The variations in olivine content of the matrix rock are almost entirely variations in the amount of type 1 olivines. Sharp mineral layering of any sort is rare in Kilauea Iki. However, the depth range 41-52 m is marked by the frequent occurrence of steeply dipping (70°-90°) bands or bodies of slightly vuggy olivine-rich rock locally capped with a small cupola of segregation-vein material. In thin section there is clear evidence for relative movement of melt and crystals within these structures. The segregation veins occur only in the upper crust. The most widely distributed (occurring from 4.5-59.4 m) are thin veins (most < 5 cm thick), which cut the core at moderate angles and appear to have been derived from the immediately adjacent wall-rock by filter pressing. There is also a series of thicker (0.1-1.5 m) segregation veins, which recur every 2-3 m, between 20 and 52 m. These have subhorizontal contacts and appear, from similarities in thickness and spacing, to correlate between drill holes as much as 100 m apart. These large veins are not derived from the adjacent wallrock: their mechanism of formation is still problematical. The total thickness of segregation veins in Kilauea Iki is 3-6 m in the central part of the lake, corresponding to 6-11% of the upper crust. Whole-rock compositions for Kilauea Iki fall into two groups: the matrix rock ranges from 20-7.5% MgO, while the segregation veins all contain between 6.0 and 4.5% MgO. There are no whole-rock compositions of intermediate MgO content. Samples from < 12 m show eruption-controlled chemistry. Below that depth, matrix rock compositions have higher Al2O3, TiO2 and alkalies, and lower CaO and FeO, at a given MgO content than do the eruption pumices. The probable causes of this are assimilation of low-melting components from foundered crust, plus removal of olivine, plus removal of minor augite, for rocks with MgO contents of < 8.0%. Given the observed rate of growth of the upper crust, one can infer that significant removal of the type 1 olivine phenocrysts from the upper part of the lake began in 1963 and ceased sometime prior to 1972. The process. probably gravitative settling, appears to have been inhibited earlier by gas streaming from the lower part of the lens of melt. The olivine cumulate zone, which extends into the upper crust, contains relatively few (25-40%) olivine crystals, few of which actually touch each other. The diffuseness of the cumulate zone raises the possibility that the crystals were coated with a relatively visous boundary layer of melt which moved with them. Calculations of the Stokes’ law settling rates

Helz, R. T.

1980-12-01

169

U-Th and ESR dating of drilled cores from a giant hydrothermal mounds in South Mariana  

NASA Astrophysics Data System (ADS)

The time scale for hydrothermal activity is an important factor controlling the size of hydrothermal ore deposits and the evolution of chemosynthesis-based communities in a submarine hydrothermal system. We determined the age of hydrothermal deposits samples, both collected samples by submersible and drilled core samples from South Mariana Trough. Samples were collected from four hydrothermal sites, Snail (near the spreading axis), Archean ( 1.5km from the axis), Pika ( 4.9km from the axis) and Urashima ( 4.9km from the axis). 230Th-234U radioactive disequilibrium dating was applied to hydrothermal sufide minerals consisting of pyrite and sphalerite while electron spin resonance (ESR) dating was applied to barite. For 230Th-234U radioactive disequilibrium dating, we carried out magnetic separation for bulk samples, then we digested samples with nitric acid. U and Th were purified by two-step column separations, and isotopic compositions of spiked and unspiked U and Th were measured by a MC-ICP-MS. Analytical methods for ESR age determination were described in a companion abstract by Toyoda et al. We found that the magnetic fractions had significantly higher U/Th ratios, which enabled 230Th-234U age determinations as precise as ±2% (2?). This probably reflects that pyrite enriched in magnetic fractions has high U/Th ration. In a sulfide crust sample collected from Archean site, the 230Th-234U ages of the sulfide minerals (0.3-2.2 ka) were compared with ESR ages of barites separated from 12 subsamples of the same sulfide crust. ESR ages (0.27 - 1.7 ka) show a spatial pattern broadly resembling that observed in 230Th-234U dating method. While there are some significant offsets, these results illustrate the potential of the two methods for use in provide information on evolution history of a hydrothermal system. Samples from Pika, Archean and Snail sites yield from 0.5 to ~9 ka, from 0.1 to 3 ka and < ~90 a, respectively. The oldest ages from each site are correlated with the distance from spreading axis.

Takamasa, A.; Nakai, S.; Sato, F.; Toyoda, S.; Ishibashi, J.

2012-12-01

170

Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex  

USGS Publications Warehouse

We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (?6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates "basement" from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ?13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.

ten Brink, Uri S.; Zhang, Jie; Brocher, Thomas M.; Okaya, David A.; Klitgord, Kim D.; Fuis, Gary S.

2000-01-01

171

Drilling tools for continuous offshore operations  

SciTech Connect

Offshore drilling tools are still the object of improvement aimed in achieving maximum production or scientific effect of minimum costs. One of perspective ways of improving offshore scientific drilling indices is utilization of drilling systems which provide continuous hole penetration without pulling out the drill string aboard of drill vessel for bit replacement. The report presents specific features of the drilling tools supplying Complete Coring System (CCS) operations. CCS can provide continuous coring and drilling as well as logging in any geological profiles from the soft to very hard formations. One of the basic principles in coring is slimhole pilot drilling, thus giving many advantages. Development of drilling tools for CCS is based upon vast experience in designing drilling tools, including the retractable bits. In perspective CCS can be applied in stratigraphic and scientific drilling in deep water, especially in complicated geological conditions.

Gelfgat, M.Y. [Aquatic Company, Ltd., Moscow (Russian Federation); Surkov, D.V.; Buyanovsky, I.N. [All-Russia Scientific Research Inst. of Drilling Techniques, Moscow (Russian Federation)

1995-12-31

172

Reprint of: Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data  

NASA Astrophysics Data System (ADS)

Late Neogene stratigraphy of southern Victoria Land Basin is revealed in coastal and offshore drill cores and a network of seismic data in McMurdo Sound, Antarctica. These data preserve a record of ice sheet response to global climate variability and progressive cooling through the past 5 million years. Application of a composite standard age model for diatom event stratigraphy to the McMurdo Sound drill cores provides an internally precise mechanism to correlate stratigraphic data and derive an event history for the basin. These marine records are indirectly compared to data obtained from geological outcrop in the Transantarctic Mountains to produce an integrated history of Antarctic Ice Sheet response to climate variability from the early Pliocene to Recent. Four distinct chronostratigraphic intervals reflect stages and steps in a transition from a relatively warm early Pliocene Antarctic coastal climate to modern cold polar conditions. Several of these stages and steps correlate with global events identified via geochemical proxy data recovered from deep ocean cores in mid to low latitudes. These correlations allow us to consider linkages between the high southern latitudes and tropical regions and establish a temporal framework to examine leads and lags in the climate system through the late Neogene and Quaternary. The relative influence of climate-tectonic feedbacks is discussed in light of glacial erosion and isostatic rebound that also influence the history along the Southern Victoria Land coastal margin.

Levy, Richard; Cody, Rosemary; Crampton, James; Fielding, Christopher; Golledge, Nick; Harwood, David; Henrys, Stuart; Mckay, Robert; Naish, Timothy; Ohneiser, Christian; Wilson, Gary; Wilson, Terry; Winter, Diane

2012-10-01

173

Age Determination for Deep-Sea Cores: Inquiry-based Learning with Authentic Scientific Ocean Drilling Data  

Microsoft Academic Search

Marine sediment cores are some of our best archives of past climate change. Imagine that you have access to deep-sea core material from a region of interest. After describing the cores, what next? What would you like to know? Determining the relative age of the sediments provides historical context for the changes observed or measured in the cores. Age also

R. M. Leckie; M. H. Jones; K. St. John; K. S. Pound

2008-01-01

174

Geochemical and Diatom Records of Hydrologic Variability in the Tropical Andes During the Late Quaternary From Drill Cores of Lake Titicaca  

NASA Astrophysics Data System (ADS)

Seven drill cores were recovered from Lake Titicaca during the NSF/ICDP/DOSECC drilling expedition of 2001. Sub-lake floor drilling depths ranged from 53 to 139 m; water depths ranged from 40 to 232 m; recoveries ranged from 75 to 112%. Our most detailed multi-proxy analyses to date have been done on Core 2B raised from the central basin of the lake from 232 m water depth, drilled to 139.26 m sub-lakefloor with 140.61 m of total sediment recovered (101%). A basal age of 200 Ka is estimated by linear extrapolation from radiocarbon measurements in the upper 25 m of core; Ar-Ar dating of interbedded ashes is underway. The volume and lake level of Lake Titicaca have undergone large changes several times during the late Quaternary. Proxies for these water level changes (each of different fidelity) include the ratio of planktonic-to-benthic diatoms, sedimentary carbonate content, and stable isotopic content of organic carbon. The most recent of these changes, have been described previously from earlier piston cores. In the early and middle Holocene the lake fell below its outlet to 85 m below modern level, lake salinity increased several times, and the Salar de Uyuni, which receives overflow from Titicaca, dessicated. In contrast, Lake Titicaca was deep, fresh, and overflowing (southward to the Salar de Uyuni) throughout the last glacial maximum from prior to 25,000 BP to at least 15,000 BP. According to our extrapolated ages, the penultimate major lowstand of Lake Titicaca occurred around 75,000 to 80,000 BP, when seismic evidence indicates that lake level was about 240 m lower than present. Near the end of this lowstand, the lake also became quite saline. There are at least three, and possibly more, older lowstands, each separated temporally by periods in which the lake freshened dramatically and overflowed. Our analyses include decadal resolution of the stable isotopic composition of lowstand carbonate sediments. Taking advantage of a quantitative relationship between precipitation amount and ?18O of the precipitation, we use model calculations and the observed oxygen isotopic record to reconstruct precipitation rates during the carbonate-bearing intervals. These are compared with similar analyses and calculations done on the highstand deposits in the Salar de Uyuni (contemporaneous deposits in Lake Titicaca contain no carbonate).

Baker, P. A.; Fritz, S. C.; Seltzer, G. O.; Arnold, K. K.; Tapia, P. M.

2002-12-01

175

Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings  

Microsoft Academic Search

Buried Quaternary valleys are important hydrological structures in Denmark. Geophysical and geological investigations were performed to develop an integrated interpretational methodology for a quantitative description of their structure and lithology. Three buried valleys in central eastern Jutland, Denmark were investigated using the transient electromagnetic (TEM) sounding method, two-dimensional reflection seismic profiling, vertical seismic profiling (VSP) and analyses of data and

Flemming Jørgensen; Holger Lykke-Andersen; Peter B. E. Sandersen; Esben Auken; Egon Nørmark

2003-01-01

176

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report  

SciTech Connect

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. [eds.

1992-04-01

177

Borehole geophysics  

SciTech Connect

This book contains articles presented at an international symposium on Borehole Geophysics. Included are the following articles: Borehole electrical geophysics applied to geothermal development, Borehole geophysics for reservoir characterization, the role of downhole gravity measurements in borehole geophysics programs.

Not Available

1990-01-01

178

Testing the ureilite projectile hypothesis for the El'gygytgyn impact: Determination of siderophile element abundances and Os isotope ratios in ICDP drill core samples and melt rocks  

NASA Astrophysics Data System (ADS)

The geochemical nature of the impactites from International Continental Scientific Drilling Project—El'gygytgyn lake drill core 1C is compared with that of impact melt rock fragments collected near the western rim of the structure and literature data. Concentrations of major and trace elements, with special focus on siderophile metals Cr, Co, Ni, and the platinum group elements, and isotope ratios of osmium (Os), were determined to test the hypothesis of an ureilite impactor at El'gygytgyn. Least squares mixing calculations suggest that the upper volcanic succession of rhyolites, dacites, and andesites were the main contributors to the polymict impact breccias. Additions of 2-13.5 vol% of basaltic inclusions recovered from drill core intervals between 391.6 and 423.0 mblf can almost entirely account for the compositional differences observed for the bottom of a reworked fallout deposit at 318.9 mblf, a polymict impact breccia at 471.4 mblf, and three impact melt rock fragments. However, the measured Os isotope ratios and slightly elevated PGE content (up to 0.262 ng g-1 Ir) of certain impactite samples, for which the CI-normalized logarithmic PGE signature displays a relatively flat (i.e., chondritic) pattern, can only be explained by the incorporation of a small meteoritic contribution. This component is also required to explain the exceptionally high siderophile element contents and corresponding Ni/Cr, Ni/Co, and Cr/Co ratios of impact glass spherules and spherule fragments that were recovered from the reworked fallout deposits and from terrace outcrops of the Enmyvaam River approximately 10 km southeast of the crater center. Mixing calculations support the presence of approximately 0.05 wt% and 0.50-18 wt% of ordinary chondrite (possibly type-LL) in several impactites and in the glassy spherules, respectively. The heterogeneous distribution of the meteoritic component provides clues for emplacement mechanisms of the various impactite units.

Goderis, S.; Wittmann, A.; Zaiss, J.; Elburg, M.; Ravizza, G.; Vanhaecke, F.; Deutsch, A.; Claeys, P.

2013-07-01

179

OCEAN DRILLING PROGRAM LEG 102 SCIENTIFIC PROSPECTUS  

E-print Network

OCEAN DRILLING PROGRAM LEG 102 SCIENTIFIC PROSPECTUS DOWNHOLE MEASUREMENTS IN THE WESTERN ATLANTIC will depart Miami, Florida on March 19, and steam to Site 418 to conduct downhole geophysical studies

180

Petrography and geochemistry of impactites and volcanic bedrock in the ICDP drill core D1c from Lake El'gygytgyn, NE Russia  

NASA Astrophysics Data System (ADS)

The 3.6 Ma old and 18 km diameter El'gygytgyn impact structure in NE Siberia was drilled in 2008/09 by ICDP (International Continental Scientific Drilling Program). A 517 m long core hole (D1c) was drilled into the outer flank of the central uplift structure, with an overall core recovery of approximately 63%. Thereby, approximately 315 m lake sediments and approximately 202 m impactites were recovered. Here, we present a detailed petrographic and geochemical assessment of the impact breccia and bedrock sections in this core. The 97 m long lower bedrock unit (517-420 m below lake floor [blf]) consists of an ignimbrite. In the overlying upper bedrock unit (420-390 mblf), the core recovered a sequence of similar ignimbrite and several decimeters of mafic rocks. We interpret these units as rocks that are located close to their former, preimpact position, but have been somewhat rotated due to collapse of the central uplift (i.e., it represents parautochthonous basement). From about 390 to 328 mblf occurs a suevite package with an impact melt poor, clast-dominated matrix, and lithic and mineral clasts that cover the entire range of volcanic target rocks known from the El'gygytgyn region. All stages of shock metamorphism (unshocked to melted) were observed in clasts, and in microclasts of the matrix, of suevite from different depths. Immediately below this package, at the contact to the underlying bedrock, occurs a 1 m wide sheared zone within vitrophyric ignimbrite, which we consider the actual crater floor. The uppermost approximately 12 m, from 328-316 mblf depth, seem to comprise reworked suevite, consisting of a mixture of sediments and suevite with more and, on average, stronger shocked minerals than found in the main suevite unit. This includes a small component of glassy spherules and impact melt fragments. Toward the top of this unit, lake sediments progressively become the dominant material in this section. We assume that this unit contains a fallback component from the ejecta plume that was mixed with the first sediments of the postimpact crater lake, and possibly some rocks that slumped off the inner crater wall—similar to a thin layer at the base of the sediment section of borehole LB-5A recovered in Lake Bosumtwi (Ghana).

Raschke, Ulli; Schmitt, Ralf T.; Reimold, W. Uwe

2013-07-01

181

Nonlinear Processes in Geophysics (2003) 10: 275280 Nonlinear Processes  

E-print Network

Nonlinear Processes in Geophysics (2003) 10: 275­280 Nonlinear Processes in Geophysics c European attention in recent years. In the geophysical context the effects of bumps on the core-mantle boundary

Boyer, Edmond

182

Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project  

SciTech Connect

The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

Lance Prothro, Sigmund Drellack, Margaret Townsend

2009-03-25

183

Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG{number_sign}3, Yucca Mountain, Nevada  

SciTech Connect

The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG {number_sign}3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial {sup 87}Sr/{sup 86}Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial {sup 87}Sr/{sup 86}Sr ratios decrease upward in the quartz latite to values as low as 0.7090.

Peterman, Z.E.; Futa, K.

1996-07-01

184

Petrology and hydrothermal mineralogy of U. S. Geological Survey Newberry 2 drill core from Newberry caldera, Oregon  

SciTech Connect

U.S. Geological Survey Newberry 2 was drilled to a depth of 932 m within Newberry caldera. The bottom-hole temperature of 265/sup 0/C is the highest reported temperature of any drill hole in the Cascades region of the United States. The upper part of the stratigraphic section pentrated by Newberry 2 consists of caldera fill below which are increasingly more mafic lavas ranging from rhyodacite at 501 m to basalt at 932 m. Measured temperatures shallower than 300 m are less than 35/sup 0/C, and rock alteration consists of hydration of glass and local palagonitization of basaltic tuffs. Incipient zeolitization and partial smectite replacement of ash and pumice occurred throughout the pumiceous lithic tuffs from 300 to 500 m. Higher-temperature alteration of the tuffs to chlorite and mordenite occurs adjacent to a rhyodacite sill at 460--470 m; alteration minerals within the sill consist of pyrrhotite, pyrite, quartz, calcite, and siderite. Below 697 m the rocks are progressively more altered with depth mainly because of increased temperature along a conductive gradient from 100/sup 0/C at 697 m to 265/sup 0/C at 930 m. Fluid inclusions in quartz and calcite indicate that temperature in the past have been higher than at present, most likely due to local confining pressures between impermeable lava flows.

Keith, T.E.C.; Bargar, K.E.

1988-09-10

185

Core lithology, Valles caldera No. 1, New Mexico  

SciTech Connect

Vallas caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program research core hole in the Vallas caldera and the first continuously cored hole in the region. The hole penetrated 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales with over 95% core recovery. The primary research objectives included coring through the youngest rhyolite flow within the caldera; obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature hydrothermal outflow plume near its source. This report presents a compilation of lithologic and geophysical logs and photographs of core that were collected while drilling VC-1. It is intended to be a reference tool for researchers interested in caldera processes and associated geologic phenomena.

Gardner, J.N.; Goff, F.; Goff, S.; Maassen, L.; Mathews, K.; Wachs, D.; Wilson, D.

1987-04-01

186

Rapid and Quiet Drill  

NASA Technical Reports Server (NTRS)

This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

2007-01-01

187

10Be content in clasts from fallout suevitic breccia in drill cores from the Bosumtwi impact crater, Ghana: Clues to preimpact target distribution  

NASA Astrophysics Data System (ADS)

Rocks from drill cores LB-07A (crater fill) and LB-08A (central uplift) into the Bosumtwi impact crater, Ghana, were analyzed for the presence of the cosmogenic radionuclide 10Be. The aim of the study was to determine the extent to which target rocks of various depths were mixed during the formation of the crater-filling breccia, and also to detect meteoric water infiltration within the impactite layer. 10Be abundances above background were found in two (out of 24) samples from the LB-07A core, and in none of five samples from the LB-08A core. After excluding other possible explanations for an elevated 10Be signal, we conclude that it is most probably due to a preimpact origin of those clasts from target rocks close to the surface. Our results suggest that in-crater breccias were well mixed during the impact cratering process. In addition, the lack of a 10Be signal within the rocks located very close to the lake sediment-impactite boundary suggests that infiltration of meteoric water below the postimpact crater floor was limited. This may suggest that the infiltration of the meteoric water within the crater takes place not through the aerial pore-space, but rather through a localized system of fractures.

Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

2014-03-01

188

Element mobility studies of two drill-cores from the Go??temar Granite (Kra??kema??la test site), southeast Sweden  

USGS Publications Warehouse

A pilot study was carried out on two relatively deep drill-cores (??? 600 m) from the Go??temar Granite massif in S.E. Sweden. This granite is typical of the 1400-Ma anorogenic granites of the northern hemisphere. Samples from representative, unfractured parts of the cores, together with four samples taken along a profile tangential to a fracture plane at ??? 280-m depth, were investigated chemically, mineralogically and isotopically. The results show that after crystallisation, subtle and pervasive open-system modifications of the trace-element chemistry of the granite took place. Whereas the major-element chemistry and minera-logical data emphasised the relative homogeneity of the Go??temar Granite samples investigated, trace elements such as U, Rb, and Pb revealed irregular distributions which are probably the result of large-scale hydrothermal alteration processes. This conclusion is supported by isotopic studies which indicate that whole-rock samples were open to a gain or loss of Pb and possibly U at ??? 420 ?? 171 Ma ago. In addition, isotopic data for U-Pb and U-Ra are consistent with a recent minor loss of U. The pervasive alteration and the more recent mobilisation of U are evident to a depth of at least 600 m. The effects are most prevalent along major fracture zones and within the upper 250-300 m of one drill-hole where a high frequency of crush zones has been noted. Higher Fe oxidation ratios, higher Rb contents, lower U contents and correspondingly higher Th/U ratios, all characterise this zone. ?? 1985.

Smellie, J.A.T.; Stuckless, J.S.

1985-01-01

189

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01

190

Cascade geothermal drilling/corehole N-3  

SciTech Connect

Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

Swanberg, C.A.

1988-07-19

191

Cascade geothermal drilling/corehole N-1  

SciTech Connect

Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

Swanberg, C.A.; Combs, J. (Geothermal Resources International, Inc., San Mateo, CA (USA)); Walkey, W.C. (GEO Operator Corp., Bend, OR (USA))

1988-07-19

192

Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program  

NASA Technical Reports Server (NTRS)

The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

Simoneit, B. R. T.; Burlingame, A. L.

1974-01-01

193

Geochemical and geophysical analysis of shallow aquifer materials in Pennsylvanian coal-bearing strata in east-central Ohio  

Microsoft Academic Search

Three cores holes were drilled through sandstone, shale, and coal deposits of the Pennsylvanian-age Allegheny Group to provide samples for geochemical and geophysical evaluation of shallow aquifer materials in east-central Ohio. The samples were analyzed for forms of sulfur and carbon, and for more than 40 major and trace elements by inductively coupled plasma scans. Temperature, electrical, caliper, and gamma-ray

R. J. Haefner; G. L. Jr. Rowe

1992-01-01

194

Comparison between Borehole Geophysical Observations and Sedimentary Facies for Three Long Cores Recovered from the Ulleung Basin, Korea: Insights into the Distribution of Gas Hydrate  

NASA Astrophysics Data System (ADS)

In late 2007, a logging-while-drilling (LWD) operation was performed as part of gas hydrate study at five sites in the Ulleung Basin, east of Korea. Of those five sites, long sediment cores were also recovered at three sites (UBGH-4, 9, and 10), allowing us to compare borehole observation results with characteristics of sediment in the cores. In this study, we analyzed the resistivity log and resistivity image recorded using GVR-SONIC-ADN MD200 to see if there exists any meaningful relationship between the borehole data and sedimentary facies described in the cores. The presence of fracture zones and their orientation were also estimated from the resistivity images. Site UBGH-4 shows little evidence of disintegrated mud (DITM), an important source of gas hydrate. No notable changes could be seen in the resistivity log or image at this site. On the other hand, at Site UBGH-9, several peaks in resistivity values and numerous fractures are found at 70-150 mbsf. This depth interval matches with DITM found in the cores. At UBGH-10, DITM facies are found below 175 mbsf, but unfortunately due to error in resistivity and image data, it is unclear as to whether this depth coincides with the location of abundant gas hydrate or not. In summary, the argument that massive gas hydrates generally occur in the mud sections with ample fractures could not be thoroughly tested except for Site UBGH-9 where the two features do correlate.

Lim, H.; Lee, S.; Bahk, J.

2010-12-01

195

30 CFR 251.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2012 CFR

...geological and geophysical survey instruments you will use before and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information sufficient to evaluate seafloor characteristics, shallow...

2012-07-01

196

30 CFR 251.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2014 CFR

...geological and geophysical survey instruments you will use before and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information sufficient to evaluate seafloor characteristics, shallow...

2014-07-01

197

30 CFR 551.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2013 CFR

... (1) Gather and submit seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information...and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and...

2013-07-01

198

30 CFR 251.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2013 CFR

...geological and geophysical survey instruments you will use before and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information sufficient to evaluate seafloor characteristics, shallow...

2013-07-01

199

30 CFR 551.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2012 CFR

... (1) Gather and submit seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information...and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and...

2012-07-01

200

30 CFR 551.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2014 CFR

... (1) Gather and submit seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information...and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and...

2014-07-01

201

30 CFR 251.7 - Test drilling activities under a permit.  

Code of Federal Regulations, 2011 CFR

... (1) Gather and submit seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and information...and during drilling; (v) Seismic, bathymetric, sidescan sonar, magnetometer, or other geophysical data and...

2011-07-01

202

Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming  

Microsoft Academic Search

The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives

S. R. Lindblom; J. R. Covell; R. L. Oliver

1990-01-01

203

Microstructure and heterogeneity of the Chelungpu fault revealed by Taiwan Chelungpu fault Drilling project (TCDP) Hole C cores  

NASA Astrophysics Data System (ADS)

The Chelungpu thrust fault is an active fault having generated earthquake the 1999 Mw7.6 Chi-Chi earthquake. The Taiwan Chelungpu fault Drilling project (TCDP) drilled two vertical holes (Hole A and B) and one side-track hole from Hole B (Hole C). The samples from Hole C preserve whole structures including a possible primary slip zone and other older slip zones. Identification of the slip zone of a recent earthquake is important to understand slip mechanism with combining seismological and geological data. In this presentation we show microstructure and chemical composition of the fault zone and discuss its heterogeneity on the fault surface by comparing the Chi-Chi principle slip zone (PSZ) in Hole C with those in Hole A and B. The 12 cm-thick Hole C fault zone is divided into thin 16 layers made of gouges composed of quartz, feldspar and clay minerals. Results of microstructural observation suggest that 2 cm - thick lowest layer in the 12 cm fault zone is related to Chi-Chi earthquake and its PSZ is located within a thin 2mm zone with adjoining drag structure. Comparing our results from Hole C samples with previous studies on the holes A and B, it appears that the PSZ activated by Chi-Chi earthquake is heterogeneious on the fault zone. PSZ in Hole B is also 2 mm-thick and showed a layered structure with very fine grains (Aubourg et al., 2010 presentation in WPGM T33B-03; Chou et al., 2010 poster in WPGM T31A-061). In contranst, PSZ in Hole A is 2 cm-thick and shows ramdom fabric (Boullier et al., 2009). These structures are comparable to those obtained by high velocity rotary shear experiment under not water saturated condition (Ujiie et al., 2010 presentation in JPGU SSS019-15; Boutareaud et al., 2008) where thermal pressurization occurred in the slip zone. From the observations of the PSZ in the three holes, we discuss the slip zone heterogeneity by thermal pressurization model applying to the observed different microstructures to understand the possible dynamic mechanism of faulting for a large slip.

Kawabata, K.; Chen, C.; Ma, K.; Boullier, A.; Iizuka, Y.; Tanaka, H.

2010-12-01

204

San Andreas fault zone drilling project: scientific objectives and technological challenges  

USGS Publications Warehouse

We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

Hickman, S.H.; Younker, L.W.; Zoback, M.D.

1995-01-01

205

National Geophysical Data Center  

NSDL National Science Digital Library

The National Geophysical Data Center (NGDC), located in Boulder, Colorado is a project of the US Department of Commerce, National Oceanic & Atmospheric Administration, and National Environmental Satellite, Data and Information Service. This site is an informational resource for glaciology, marine geology and geophysics, paleoclimatology, solar-terrestrial physics, and solid earth geophysics. The glaciology section is linked to the National Snow and Ice Data Center website, which offers resources for those interested in studying snow and ice and their relation to Earth systems. The other four sections contain data (often searchable), images, reports, publications and general information on a variety of areas such as bathymetry, ocean drilling/seafloor sediment/rock sample data, the geomagnetic field, solar and upper atmospheric data, global climate, heatflow, and much more.

1997-01-01

206

Geophysical signatures of some recently discovered large (> 40 ha) kimberlite pipes on the Alto Cuilo concession in northeastern Angola  

NASA Astrophysics Data System (ADS)

This paper presents a comparison of geophysical responses from several large kimberlite complexes discovered and delineated on the Alto Cuilo concession in the diamond fields of northeastern Angola in the years 2005 to 2008. Several geophysical methods were used in combination with geochemical and mineralogical prioritization techniques to guide exploratory, delineation and bulk sample drilling, in order to rapidly identify and evaluate the kimberlite bodies. The kimberlites were emplaced through Karoo Supergroup sandstones and shales, have eruption ages contemporaneous with the sand-dominated Cretaceous-age Calonda Formation, and are covered by sand-dominated poorly consolidated sediments of the Kalahari Group. Given that sand-dominated non-kimberlite lithologies are magnetically transparent, a low level, high resolution helicopter-borne magnetic gradiometer survey proved to be exceptionally effective in discriminating kimberlite targets, even for low-amplitude anomalies (e.g. 1-2 nT). The helicopter magnetic data outlined approximately 244 probable kimberlite targets and drilling of 103 targets confirmed 80 new kimberlites greater than 5 ha in area. Most kimberlites take the form of well-preserved crater edifices containing a full range of crater-related kimberlite lithologies. Ground gravity and electromagnetic surveys were conducted over all kimberlites prioritized for follow-up investigation. Geophysical responses were ground-truthed against magnetic susceptibility and density measurements, which were routinely collected on all drill cores. The geophysical signatures resolved by the three independent geophysical methods were surprisingly variable and are inferred to be sourced primarily in the crater facies materials, which demonstrate characteristically variable lithologies. Geophysical interpretations guided the drill targeting at all stages of the program at Alto Cuilo, from exploration to evaluation. Combined with geochemical and mineralogical prioritization techniques, the geophysical signatures in magnetic, gravity and electromagnetic data provide a sound basis to guide exploratory, delineation and mini bulk sample drilling of kimberlites buried under 10-70 m of overburden. The significant variability in the geophysical responses from kimberlites that are similar in size, structure and geometry highlights the importance of applying all three independent geophysical methods in order to effectively achieve kimberlite exploration and evaluation goals. The effectiveness of a multidisciplinary approach to kimberlite evaluation is demonstrated in the rapid assessment of a cluster of large kimberlites discovered at Project Alto Cuilo.

Pettit, Wayne

2009-11-01

207

Sub-Ocean Drilling  

NASA Technical Reports Server (NTRS)

The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

1981-01-01

208

Study on drilling force and delamination in high speed drilling carbon fiber reinforce plastics (CFRP)  

NASA Astrophysics Data System (ADS)

The carbon fiber reinforced plastics are highly promising materials which widely used in aerospace industry due to their excellent mechanical properties. The delamination is considered a major problem in manufacture the parts and assembly. The thrust force affected the delamination mostly. This paper investigated the drilling force, torque, delamination of carbon fibred composite with carbide drilling tools and half core drilling tool. The experiments were carried out under air cooling cutting conditions and the drilling force and the damage around the hole using carbide tool and half core tool were compared. The experimental results indicated that the drilling forces using half core drill were smaller than that of using carbide tool and the damages around the drilling hole using half core tool and better than that using carbide drill.

Liu, Dong; Luo, Xueke; Xu, Honghai

2010-12-01

209

Study on drilling force and delamination in high speed drilling carbon fiber reinforce plastics (CFRP)  

NASA Astrophysics Data System (ADS)

The carbon fiber reinforced plastics are highly promising materials which widely used in aerospace industry due to their excellent mechanical properties. The delamination is considered a major problem in manufacture the parts and assembly. The thrust force affected the delamination mostly. This paper investigated the drilling force, torque, delamination of carbon fibred composite with carbide drilling tools and half core drilling tool. The experiments were carried out under air cooling cutting conditions and the drilling force and the damage around the hole using carbide tool and half core tool were compared. The experimental results indicated that the drilling forces using half core drill were smaller than that of using carbide tool and the damages around the drilling hole using half core tool and better than that using carbide drill.

Liu, Dong; Luo, Xueke; Xu, Honghai

2011-05-01

210

Tectonic and paleoclimate evolution at the NE Tibetan Plateau from 2.8 to 0.1 Ma deduced from a drill-core in Qaidam Basin  

NASA Astrophysics Data System (ADS)

Two drillings into the lacustrine sediments of the western Qaidam Basin, with a core recovery rate of about 95%, were performed by a joint Sino-German project in order to obtain high-resolution information on paleoclimate and tectonic evolution at the NE Tibetan Plateau. Using detailed magnetostratigraphy and OSL the ca. 940 m long core SG-1 was dated at 0.1 to 2.8 Ma while the ca. 720 m long core SG-1b (located in a 20 km distant anticline) spans the period from 1.7 to 7.2 Ma. For SG-1 a high average sediment accumulation rate (SAR) of 35.1 cm/kyr is determined with two maximum SAR intervals between 2.6-2.2 Ma and after 0.8 Ma indicating two episodic erosional events, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling. Using spectral characteristics of magnetic susceptibility within sliding windows allows refining changes of SAR along the core SG-1. Both cores comprise mostly fine grained sediments (mudstone, clay, sandy clay) and in SG-1 frequent salt layers occur in the upper part. A trend of increasing aridification is observed in SG-1, with nearly twenty dry stages since ca. 1 Ma detected by evaporite minerals and extreme aridification from ca. 0.5 to 0.3 Ma onwards. These trends and stepwise drying events are supported by an increasing mean grain size towards younger ages. Palynofloras in SG-1 show an excellent degree of preservation. They can be attributed to two main biomes representing (i) mixed coniferous forests and woodlands that grew in the mountains surrounding the Qaidam basin, and (ii) a grass-steppe-like environment likely to be attributed to the basin itself. The long-term fluctuations of these main biomes allow insights into the monsoon dynamics of the Qaidam region, with a weakening of the East Asian summer monsoon and a strengthening of the winter monsoon during the past 2.8 Ma. A first set of high-resolution data provides insights into the climate variability during Marine Isotope Stage (MIS) 19, which with regard to orbital boundary conditions represents the closest analogue to the Holocene within the "100-kyr world". Hence, they may yield information on the natural climate and ecosystem variability of the Holocene in the Qaidam region as they would be expected without anthropogenic forcing.

Appel, E.; Fang, X.; Zhang, W.; Song, C.; Pross, J.; Koutsodendris, A.; Li, M.; Han, W.; Hu, S.; Cirpka, O. A.; Wang, J.; Yang, Y.

2011-12-01

211

Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming  

SciTech Connect

The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

1991-02-01

212

Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming  

SciTech Connect

The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

1991-02-01

213

Rhyolites in the Kimberly Drill Core, Project Hotspot: First Intracaldera Ignimbrite from the Central Snake River Plain, Idaho?  

NASA Astrophysics Data System (ADS)

The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18? between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like most rhyolites from the Snake River Plain, all 3 units have the characteristics of A-type rhyolites with high concentrations of alkalies, high Fe/Mg and TiO2/MgO ratios, as well as high concentrations Nb, Y, Zr and Ga. Initial analyses of plag, cpx, and qtz show that all three units are low ?18O rhyolites, like most from the Central Snake River Plain-- ?18O in feldspar ranges from 1‰ in Rhyolite 1 to 3‰ in Rhyolites 2 and 3. In the thick lower ignimbrite, whole-rock ?18O increases systematically from the base upward (0.5‰ to as much as 9‰ in the altered top and ?D ranges from -140 to -180‰). Whole rock variations correlate with water content, apparently controlled by secondary clay. We suggest that these characteristics were largely imposed by their derivation from partial melting of basaltic sills and surrounding older crust. The low ?18O values reflect recycling of hydrothermally altered crustal rocks and indicate progressive incorporation of more hydrothermally altered material into the younger magmas. More work is needed to establish correlation with regional units, understand the emplacement of the rhyolites and their volcanic setting, and ascertain the origin of these distinctive low ?18O, A-type rhyolites.

Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.

2013-12-01

214

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 6, PAGES 787-790, MARCH 15, 2000 Paleoclimatic data from 74KL and Guliya cores  

E-print Network

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 6, PAGES 787-790, MARCH 15, 2000 Paleoclimatic data from Centre for Advanced Scientific Research, Bangalore, India. Copyright 2000 by the American Geophysical

Rangarajan, Govindan

215

Drilling systems for extraterrestrial subsurface exploration.  

PubMed

Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

2008-06-01

216

Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho  

USGS Publications Warehouse

This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

2012-01-01

217

Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming  

SciTech Connect

The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

1990-09-01

218

Orbitally tuned age model for the late Pliocene-Pleistocene lacustrine succession of drill core SG-1 from the western Qaidam Basin (NE Tibetan Plateau)  

NASA Astrophysics Data System (ADS)

The availability of accurate and reliable age control is a crucial prerequisite for palaeoclimate studies, particularly when different archives are to be compared. Here we present a detailed depth-to-time transformation for the lacustrine sediments of a ˜940-m-long drill core (SG-1) from the western Qaidam Basin (NE Tibetan Plateau). To establish a more precise age model than the one previously available, which was based solely on magnetostratigraphic dating using polarity boundaries as tie points, we applied time-series analysis on magnetic susceptibility (?) variation. The ? data are available in high resolution and are considered to be closely linked to orbital forcing. Since the sediment accumulation rate (SAR) varies strongly throughout the succession of core SG-1, conventional cyclostratigraphy by bandpass filtering cannot be applied. We present two alternative age models based on spectral characteristics and orbital tuning. The first age model (TPspec) is based on the assumption that changes in SAR occurred when the frequency spectra revealed obviously different characteristics in the spectral pattern. For the second age model (SARA), SAR was adjusted every 2 m by comparing observed with expected orbital cycles in accordance with the age of magnetic reversals. This age model appears more robust and shows the most convincing spectral results in the frequency and wavelet power spectrum of ?. According to the SARA age model, SAR varies between 14 and 73 cm kyr-1, and the bottom of SG-1 has an age of 2.69 Ma. Our results show that orbital tuning can be successfully applied for sequences with strongly variable SAR. The age model SARA can be used for a more detailed analysis of the existing multiproxy data set in terms of palaeoclimate evolution. The most prominent feature of ? spectra using the SARA age model is the identification of the middle Pleistocene transition.

Herb, Christian; Appel, Erwin; Voigt, Silke; Koutsodendris, Andreas; Pross, Jörg; Zhang, Weilin; Fang, Xiaomin

2015-01-01

219

Search for a meteoritic component in drill cores from the Bosumtwi impact structure, Ghana: Platinum group element contents and osmium isotopic characteristics  

NASA Astrophysics Data System (ADS)

An attempt was made to detect a meteoritic component in both crater-fill (fallback) impact breccias and fallout suevites (outside the crater rim) at the Bosumtwi impact structure in Ghana. Thus far, the only clear indication for an extraterrestrial component related to this structure has been the discovery of a meteoritic signature in Ivory Coast tektites, which formed during the Bosumtwi impact event. Earlier work at Bosumtwi indicated unusually high levels of elements that are commonly used for the identification of meteoritic contamination (i.e., siderophile elements, including the platinum group elements [PGE]) in both target rocks and impact breccias from surface exposures around the crater structure, which does not allow unambiguous verification of an extraterrestrial signature. The present work, involving PGE abundance determinations and Os isotope measurements on drill core samples from inside and outside the crater rim, arrives at the same conclusion. Despite the potential of the Os isotope system to detect even small amounts of extraterrestrial contribution, the wide range in PGE concentrations and Os isotope composition observed in the target rocks makes the interpretation of unradiogenic, high-concentration samples as an impact signature ambiguous.

McDonald, Iain; Peucker-Ehrenbrink, Bernhard; Coney, Louise; Ferrière, Ludovic; Reimold, Wolf Uwe; Koeberl, Christian

220

Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho  

USGS Publications Warehouse

meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

Crosthwaite, E. G., (compiler)

1976-01-01

221

Lockdown Drills  

ERIC Educational Resources Information Center

As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

North Dakota Department of Public Instruction, 2011

2011-01-01

222

Nonlinear Processes in Geophysics (2002) 9: 325331 Nonlinear Processes  

E-print Network

Nonlinear Processes in Geophysics (2002) 9: 325­331 Nonlinear Processes in Geophysics ©European Geophysical Society 2002 Cross recurrence plot based synchronization of time series N. Marwan1, M. Thiel1 that they are synchronized. An application of this method to geophysical sediment core data illustrates its suitability

Paris-Sud XI, Université de

223

Geophysical fluid dynamics  

Microsoft Academic Search

Principles of fluid dynamics are applied to large-scale flows in the oceans and the atmosphere in this text, intended as a core curriculum in geophysical fluid dynamics. Emphasis throughout the book is devoted to basing scaling techniques and the derivation of systematic approximations to the equations of motion. The inviscid dynamics of a homogeneous fluid are examined to reveal the

J. Pedlosky

1982-01-01

224

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-print Network

Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

225

Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is low in the natural gamma ray isotopes uranium, thorium, and potassium, while rhyolites produce high total gamma ray responses. Sediment interbeds become apparent as the radioactivity associated with fine grained minerals is significantly higher than that of the host rock (e.g. basalt) due to high hydrogen concentration within the crystal structure of clays. Basalt lacks conductive minerals and results in high resistivity but moderate magnetic susceptibility. The sediments on the other hand are highly conductive and have a low magnetic susceptibility. The basalt and rhyolite units are relatively massive except for fractures which become apparent in the ultrasonic borehole televiewer. Signal is lost in soft sediments resulting in dark regions when full amplitude is displayed for the ultrasonic borehole televiewer. The massive basalt shows short P- and S-wave travel times and therefore a high sonic velocity, while the sediments display only P-wave first arrivals.

Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

2013-12-01

226

Drilling on Autopilot  

NSDL National Science Digital Library

This magazine article features an interview with Mars Analog Research and Technology Experiment (MARTE) scientist Carol Stoker. In this final session of the four-part series, Stoker talks about MARTE's technology objective: developing a fully automated drilling and life-detection system. Her team is drilling into the pyrite subsurface of Spain's Rio Tinto in search for microbes existing in an iron-sulfur-based energy system, similar to that of Mars. She discuses the technical and monetary challenges of developing both the hardware and software for the first ever completely robotic system to do core drilling and sample analysis autonomously. The resource includes images from the Mars rover project, links to related web sites, and an MP3 Audio Machine text-to-speech option.

Bortman, Henry; Stoker, Carol; Magazine, Astrobiology

227

Drilling on Autopilot  

NSDL National Science Digital Library

This magazine article features an interview with Mars Analog Research and Technology Experiment (MARTE) scientist Carol Stoker. In this final session of the four-part series, Stoker talks about MARTE's technology objective: developing a fully automated drilling and life-detection system. Her team is drilling into the pyrite subsurface of Spain's Rio Tinto in search for microbes existing in an iron-sulfur-based energy system, similar to that of Mars. She discuses the technical and monetary challenges of developing both the hardware and software for the first ever completely robotic system to do core drilling and sample analysis autonomously. The resource includes images from the Mars rover project, links to related web sites, and an MP3 Audio Machine text-to-speech option.

Bortman, Henry; Stoker, Carol

2009-07-13

228

Sampling and Interpretation of Drill Cuttings from Geothermal Wells  

SciTech Connect

Drill cuttings from geothermal and mineral exploration boreholes, by contrast with those from most petroleum wells, commonly are derived highly fractured and faulted, hydrothermally altered igneous and metamorphic rock sequences, and are likely to be severely contaminated. Characterization of a subsurface resource from cuttings thus requires not only especially careful sample collection, preparation, storage and examination, but also a thorough knowledge of drilling technology, local geology and the full range of potential borehole contaminants. Accurate identification of lithology from cuttings is critical for recognition and correlation of rock types likely to selectively host the desired commodity. However, many of the rocks encountered in geothermal and mineral exploration boreholes (such as gneisses and granitic rocks) can resemble one another closely as cuttings even though dissimilar in outcrop or core. In such cases, the actual rock type(s) in a cuttings sample generally can be determined by comparison with simulated cuttings of representative surface rocks, and with various geophysical and other well logs. Many other clues in cuttings, such as diagnostic metamorphic mineralogy, or sedimentary rounding and sorting, may help identify subsurface lithologies. Faults and fractures commonly are the dominant physical controls on geothermal and mineral resources. Faults occasionally can be recognized directly in cuttings by the presence of slickensiding, gouge, or other crushed material. More commonly, however, the ''gouge'' observed in cuttings actually is pseudo-gouge created beneath a bit during drilling. Since most faults and all fractures produce no direct evidence apparent in cuttings, they are best recognized indirectly, either by commonly associated hydrothermal alteration, or by responses on appropriate geophysical well logs. Hydrothermal alteration, useful for locating and defining a geothermal or mineral resource, is far more difficult to recognize and interpret in cuttings than in core or outcrop. Alteration textures and paragenetic relationships can be obscured or obliterated as cuttings are produced. Less resistant alteration (and rock-forming) minerals can be disaggregated during drilling and lost from cuttings during sampling or washing. Relict and contemporary alteration can be indistinguishable, and a wide variety of borehole contaminants can closely resemble natural alteration products encountered during drilling. These contaminants also can produce confusing geochemical signatures.

Hulen, Jeffrey B.; Sibbett, Bruce S.

1981-01-01

229

Palaeo-earthquake events during the late Early Palaeozoic in the central Tarim Basin (NW China): evidence from deep drilling cores  

NASA Astrophysics Data System (ADS)

Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS) have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China). These structures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame-like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are intercalated by undeformed layers of varying thicknesses that are petrologically and sedimentologically similar to the deformed layers. The SSDS developed in a shelf environment during the early Late Ordovician and formed initially under shear tensile stress conditions, as indicated by boudinage-like structures; during the latest Ordovician, SSDS formed under a com-pressional regime. The SSDS in the Lower-Middle Silurian consist mainly of mixed layers and sand veins; they formed in shoreline and tidal-flat settings with liquefaction features indicating an origin under a compressional stress regime. By Silurian times, the centre of tectonic activity had shifted to the south-eastern part of the basin. The SSDS occur at different depths in wells that are close to the syn-sedimentary Tazhong 1 Fault (TZ1F) and associated reversed-thrust secondary faults. Based on their characteristics, the inferred formation mechanism and the spatial association with faults, the SSDS are interpreted as seismites. The Tazhong 1 fault was a seismogenic fault during the later Ordovician, whereas the reversed-direction secondary faults became active in the Early-Middle Silurian. Multiple palaeo-earthquake records reflect pulses and cyclicity, which supports secondary tectonic activity within the main tectonic movement. The range of SSDS structures reflects different developments of tectonic activity with time for the various tectonic units of the centralbasin. The effects of the strong palaeo-earthquake activity coincide with uplift, fault activity and syn-tectonic sedimentation in the study area during the Late Ordovician to Middle Silurian.

He, Bizhu; Qiao, Xiufu; Jiao, Cunli; Xu, Zhiqin; Cai, Zhihui; Guo, Xianpu; Zhang, Yinli

2014-07-01

230

Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)  

USGS Publications Warehouse

A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l-1) and MgCl2???6H 2O (3 g l-1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45??C, with an optimum between 35 and 40??C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T). ?? 2009 Springer Science+Business Media B.V.

Finster, K.W.; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, K.U.

2009-01-01

231

Drilling update  

NASA Astrophysics Data System (ADS)

At its March 31 meeting the governing board of the Joint Oceanographic Institutions, Inc. (JOI), designated Texas A&M University to direct scientific operations for the new phase of scientific ocean drilling. William Merrell, associate dean of geosciences at Texas A&M, is leading an interim planning team in implementing the recommendations of the National Science Foundation's (NSF) Ad Hoc Advisory Group on Crustal Studies (Eos, February 22, 1983, p. 73). The ad hoc group, chaired by Charles Drake, recommended that scientific ocean drilling be pursued not with the Glomar Challenger or the Glomar Explorer, but with one of the roughly half-dozen commercial drilling ships that have become available with the slackening of the commercial drilling market.Foremost of the tasks facing the interim planning team is to write a request for proposals (RFP) for a drill ship and to define performance criteria for a commercial drilling platform. The RFP is expected to be issued by Texas A&M in 6-8 weeks, according to Philip Rabinowitz, acting project director and a professor in the university's oceanography department. Once those tasks are completed and a successful bidder is found, a formal proposal will be made to NSF through JOI. The proposal will be subject to the usual NSF peer review process. If the proposal is approved, Rabinowitz said that Texas A&M would expect actual drilling to begin in October 1984. In addition to Merrell and Rabinowitz, the interim planning team also includes acting chief scientist Stefan Gartner.

Richman, Barbara T.

232

Comprehensive Ocean Drilling  

E-print Network

Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

233

Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems  

USGS Publications Warehouse

We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

2011-01-01

234

Delineation of brine drilling-fluid loss in an unsaturated zone- application to contamination monitoring  

Microsoft Academic Search

The controlled-source audio frequency magnetotelluric (CSAMT) surface electromagnetic geophysical technique shows promise for delineation of zones of drilling-fluid loss and for delineating and monitoring zones of ground-water contamination in general. At the Waste Isolation Pilot Plant (WIPP) site near Carlsbad, NM, hydrology test wells are drilled with a brine drilling fluid where significant drilling-fluid losses often occur during drilling. Pre-and

Bartel

1989-01-01

235

Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger  

USGS Publications Warehouse

The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

Pierce, H.A.; Murray, J.B.

2009-01-01

236

Microtubules in hyaloclasts from the Hawaii Scientific Drilling Project #2 phase 1 core, Hilo, Hawaii: evidence of microbe-rock interactions  

E-print Network

Minute tubules etched into basalt glass in hyaloclastites from the Hawaii Scientific Drilling Project #2 (HSDP) phase 1 borehole are interpreted as trace fossils formed by microbes, i.e. microendolithic borings. Such borings are one to a few...

Metevier, Kimberly Elizabeth

2011-12-31

237

GEOPHYSICAL RESEARCH LETTERS, VOL. 13, NO. 13, PAGES 1517-1520, DECEMBER 1986 INTERACTION OF MANTLE DREGS WITH CONVECTION: LATERAL HETEROGENEITY AT THE CORE-MANTLE BOUNDARY  

E-print Network

GEOPHYSICAL RESEARCH LETTERS, VOL. 13, NO. 13, PAGES 1517-1520, DECEMBER 1986 INTERACTION OF MANTLE Gurnis Research School of Earth Sciences, Australian National University Abstract. Preliminary numerical parameters. Only in the event of complete separation of the Copyright 1986 by the American Geophysical Union

Greer, Julia R.

238

An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview  

NASA Astrophysics Data System (ADS)

The Bosumtwi impact crater in Ghana, arguably the best-preserved complex young impact structure known on Earth, displays a pronounced rim and is almost completely filled by Lake Bosumtwi, a hydrologically closed basin. It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1-2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600- 3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters.

Koeberl, Christian; Milkereit, Bernd; Overpeck, Jonathan T.; Scholz, Christopher A.; Amoako, Philip Y. O.; Boamah, Daniel; Danuor, Sylvester; Karp, Tobias; Kueck, Jochem; Hecky, Robert E.; King, John W.; Peck, John A.

239

> Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)  

NASA Astrophysics Data System (ADS)

The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.

Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.

2012-04-01

240

Geochemical characters of Quaternary tephra beds and their stratighraphic position in the sedimentary core drilled at the site U1343 in the central Bering Sea  

NASA Astrophysics Data System (ADS)

The project IODP exp.323 in the Bering Sea focused on analyzing long-term ocean and climate trends during 5 Ma, and drilled seven sites (sites 1339-1345). Up to now, the studies of long-term tephrochronology in this area are very rare, though a part of histories of several volcanoes and late Pleistocene to Holocene volcanisms and studies for geochemistry of magma were reported in detail. Our objectives are to reveal how many widespread tephras are found in the Bering Sea and which of volcanoes or volcanic zones provided them. First of all, we analyzed forty-eight tephra samples in the sedimentary core collected at site U1343, near the Bering self sloop. Sediments in site U1343 (57°33.4'N, 175°49.0'E, water depth 1956 mbsf, core length 779.18 m) include three paleomagnetic events (the BM boundary;0.788 Ma, Jaramillo; 0.998 Ma, Cobb Mountain;1.173 Ma). The bottom datum event is reported as 2.0-2.2 Ma (diatom) at 716.4 m. All tephra samples were washed by flesh water and decanting, dried up naturally, sieved by the mesh of dia.250, 125 and 63 micrometer. We observed every tephra under the binocular/polarizing microscopes, and analyzed major-element composition of volcanic glass shards by EPMA (10nA, 15kV, probe dia.10 micrometer). All samples include many kinds of volcanic glass shards (color: colorless to dark brown, form: bubble-wall type, pumice type, fiber type). Diameter of grain size is normally less 125 micrometer, and volcanic glass size in some layers is concentrated in the less 63 micrometer. Thickness of tephra samples is approximately 0.5 cm to 4 cm. In the basis of geochemicalc analysis of volcanic glass shards in 48 samples, though every sample includes volcanic glass shards, we can distinguish the two groups roughly; glass-rich samples (31 samples) and contaminated samples (17 samples). Contaminated samples include course sands (lithic fragments, rounded minerals, fossil fragments), besides volcanic glass shards. Number of contaminated samples remarkably increases after BM boundary. Furthermore, during middle to late Pleistocene, the oxygen isotopic stratigraphy of benthic foranminiferal fossils in this core is clear and their oscillation is wider than early Pleistocene and Pliocene. So, volcanic glass shards in 'contaminated samples' which are expected to be provided from plural sources might be transported by seasonal sea ices, and ice berg which collapsed from the ice sheet around the Beringia. On the other hand, general character and geochemistry of glass-rich samples is as follows: The size of every tephra material is under 250 micrometer and there are rarely heavy minerals. Color of tephras has many varieties (white, brown, gray, and black) by geochemistry of volcanic glass shards. Content of SiO2 in volcanic glass shards varied approximately 58-72 wt%, Na2O is ~5.2 wt%, and K2O is ~3.2 wt% (basaltic andesite, andesite, dacite, and rhyolite). There is no sample in alkali rock series, 5 samples in tholeiitic rock series and the other 26 samples in calc-alkalic rock series. Six tephra layers of 0.378Ma, 0.518-0.529Ma, 0.822-0.824Ma, 1.008Ma, 1.108Ma, and 1.547Ma are several centimeters thickness, so they are expected to be recognized as time marker beds in Bering Sea widely.

Aoki, K.; Asahi, H.; Nagatsuma, Y.; Kurihara, K.; Fukuoka, T.; Sakamoto, T.; Iijima, K.

2012-12-01

241

Hydrothermal brecciation in the Jemez fault zone, Valles Caldera, New Mexico: Results from continental Scientific Drilling Program core hole VC-1  

NASA Astrophysics Data System (ADS)

An unusual breccia sequence penetrated in the lower 30 m of Continental Scientific Drilling Program core hole VC-1 (total depth 856 m) records a complex hydrothermal history culminating in hydraulic rock rupture and associated alteration at the edge of the Quaternary Valles caldera. The breccias, both tectonic and hydrothermal in origin, were formed in the Jemez fault zone, near the intersection of this major regional structure with the caldera's ring-fracture margin. Tectonic breccias in the sequence are contorted, crushed, and sheared. Coexisting hydrothermal breccias lack such frictional textures but display matrix flow foliation and prominent clast rounding, features characteristic of fluidization. These hydrothermal breccias were intensely altered, during at least five major stages, to quartz-illite-phengite-pyrite aggregates; traces of molybdenite occur locally. This assemblage indicates interaction with hydrothermal fluid at temperatures in excess of 200°C. The extrapolated present maximum temperature of 184°C in the breccia zone therefore represents considerable cooling since these phases were formed. Fluid inclusions in the breccias also preserve evidence of the prior passage of hotter fluids. The inclusions are principally two phase, liquid rich, secondary in origin, and concentrated in hydrothermal quartz. Older, high-salinity inclusions, unrelated to brecciation, homogenize in the temperature range 189°-246°C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize in the temperature range 230°-283°C; locally coexisting liquid- and vapor-rich inclusions document periodic boiling of the dilute fluids. These fluid-inclusion data, along with the probable age of the hydrothermal breccias (<1.5 Ma), the assumed depth at which they developed (about 515 m), and the contemporaneous state of stress (extensional) can be combined to model hydrothermal brecciation at the VC-1 site. The minimum fluid pressure (Pfr) required to hydrofracture these rocks was probably about 7.5 MPa (0.0146 MPa/m). A boiling point versus depth curve based on these Pfr values graphically defines the physical conditions prevailing when the breccias were formed. When fluid pressure at the assumed depth of brecciation exceeded that curve, in response to rapid release of confining pressure possibly augmented by renewed heating, flashing hydrothermal fluid fractured the enclosing rock. Large overpressures, most likely induced by sudden seismic cracking of a hydrothermally sealed portion of the Jemez fault zone, led to local fluidization of the resulting breccias. Late quartz veining, hydrothermal alteration, and molybdenite mineralization were probably produced by the fluids responsible for brecciation.

Hulen, Jeffrey B.; Nielson, Dennis L.

1988-06-01

242

Geology of the USW SD-7 drill hole Yucca Mountain, Nevada  

SciTech Connect

The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

Rautman, C.A. [Sandia National Laboratories, Albuquerque, NM (United States); Engstrom, D.A. [Spectra Research Inst., Albuquerque, NM (United States)

1996-09-01

243

The Iceland Deep Drilling Project (IDDP):(I) Drilling at Krafla encountered Rhyolitic Magma  

NASA Astrophysics Data System (ADS)

The IDDP aims to produce supercritical hydrothermal fluids from depths of 4-5 km and temperatures of >400°C as modeling suggests that supercritical water could generate an energy output about 10 times that of a typical geothermal well. This could lead to major improvements in developing high-temperature geothermal resources worldwide. The first IDDP well was located in the Krafla caldera in the active central rift zone of NE Iceland, where during 1975-1984, a rifting episode occurred that involved 9 distinct volcanic eruptions. At Krafla there has been extensive production drilling since 1971 to supply steam to a geothermal power plant. Within the caldera a large magma chamber was detected by S-wave attenuation at 3-7 km depth, and a recent MT-survey determined its location. The IDDP-1 was located to reach to 4.5 km to end above the magma chamber. When the drilling had reached 2075 m depth multiple drilling problems ensued, including a failed coring attempt, twist offs, and sidetracks to bypass drill string lost in the hole. An anchor casing was set at 1950 m to case off the trouble zones. However drilling problems continued and another twist off and sidetrack followed. Drilling then penetrated a mixture of fresh basalt and granophyre until 24th June 2009, when at about 2100 m the bit became stuck. However, circulation was maintained and rhyolitic glass was returned to the surface. Rhyolitic magma flowed into the drill hole filling the bottom 10 m. The glass cuttings returned were at first pumiceous then homogeneous, sparsely phyric obsidian. The petrology of this glass is described in accompanying posters. The intrusion responsible was evidently below the resolution of available geophysical surveys. We decided to terminate drilling and test the well and so a 9 5/8 inch sacrificial production casing was cemented inside the anchor casing with a 9 5/8 inch slotted liner below. The well is now heating, and will be flow tested in late November 2009. If the flow tests are successful, a pilot plant to test power production could follow in 2010. The IDDP has engendered considerable scientific interest. Some of the research underway on samples from the IDDP-1 and from other wells at Krafla and from wells in the Reykjanes geothermal field, also targeted by the IDDP, is reported in accompanying posters. Subject to funding, two new IDDP wells, >4 km deep, are to be drilled at the Hengill and the Reykjanes geothermal fields during 2010-2012 to search for supercritical fluid. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system in SW Iceland, on the landward extension of the mid-Atlantic Ridge, produces hydrothermally modified seawater. Processes at depth at Reykjanes should be quite similar to those responsible for black smokers on oceanic rift systems.

Elders, W. A.; Fridleifsson, G. O.; Mortensen, A.; Gudmunsson, A.; Gudmundsson, B.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R. A.

2009-12-01

244

Microgravity Drill and Anchor System  

NASA Technical Reports Server (NTRS)

This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.

Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

2013-01-01

245

The role of downhole measurements in marine geology and geophysics  

Microsoft Academic Search

During the last 25 years, downhole measurements have been increasingly used for scientific applications in marine geology and geophysics, particularly in deep-sea drilling operations. Used mostly by the oil industry to map promising formations for exploration and production of hydrocarbons, a variety of instruments have been developed that can be lowered down drill holes to extract information about the subsurface

David Goldberg

1997-01-01

246

First impressions of the comet drilling problem  

NASA Astrophysics Data System (ADS)

Preliminary impressions gained from the workshop by someone with no prior knowledge of comets or space technology are presented. Ideas on the composition and density of comet material are suggested as needing refinement in order to give the drill designer a fair chance of success. Comments on the subsurface sampling, power allocation, static force and torque for drilling, design limits for drilling rate, materials for cutting tools clearing drill cuttings, anchoring the lander, positioning the core drill, inertial drilling systems and testing are given. The influence of the drilling and sampling needs on the basic design of the lander and return capsule are called into question. A warning of possible flaws in the comments due to insufficient understanding of the problem is given.

Mellor, Malcom

1989-12-01

247

DEGAS experiments on volcanic glass samples from AND-1B drill core: implications for primary magmatic versus secondary H2O  

NASA Astrophysics Data System (ADS)

The existence of volcanic glass in the AND-1B drill core erupted subaquesously or even subglacially affords the possibility of constraining water depth by measuring the volatile content of the glass only if primary magmatic H2O contents can be recognized from secondary H2O. The glass samples studied come from Lithostratigraphic Unit (LU) 2 between 92 and 145 m depth. The black and well sorted sands from subunit 2.4 were most likely derived from subaerial Hawaiian/Strombolian type eruptions. The graded bedding exposed in this subunit may result from fallout of tephra through the water column. Glass fragments from six different depths within subunit 2.4 were extracted from AND-1B sediment first by magnetic separation and then approximately 100 mg of the freshest glass fragments were handpicked under a binocular microscope. The six glass separates were heated in a DEGAS-device up to 1450°C in high vacuum and the liberated volatiles were determined by a simultaneous mass spectrometric analysis. This study was focused on the determination of H2O, CO2, H2, HF, H2S, HCl, SO2, and hydrocarbon species. The six degassing experiments were carried out using a special high-vacuum-hot-extraction method combined with aquadrupol mass spectrometer. Measurements were carried out at less than 10-4 to 10-3Pa and a linear heating rate (10K/min) at a temperature range between room temperature to 1450°C. The volatile species were analyzed in multiple ion detection mode. DEGAS experiments occur under highly non-equilibrium conditions so that reverse reactions between volatiles or between volatiles and the melt are largely prevented. For each glass sample, volatile release occurs at different rates and intensities at different temperatures. Based on the gas release profiles obtained, degassing processes take place in three separate temperature ranges. Low temperature degassing occurs at temperatures up to 500°C and likely represents the liberation of surface bounded volatiles such as H2O in the samples from depths 110.87, 112.51 and 114.47. Moderate temperature degassing occurs between 500 and 800°C likely related to decomposition of silicate mineral (e.g. mica, illite) as well as sulfides with a maximum at 750°C. Above 700°C all samples release HF together with H2O, and HCl is liberated in two samples. A high temperature degassing process occurs above 1000°C and likely reflects the primary magmatic volatile content of the sample. Most characteristic of this degassing step is the SO2 release at a maximum of 1050°C and traces of HCl release. CO2 escaped over a large temperature interval of 600 to 1250°C. The DEGAS experiments consistently showed HCl, SO2 and H2S release above 1000°C. Moreover, secondary H2O predominates over primary magmatic H2O in the six ANDRILL glass samples. The low primary magmatic H2O contents suggest that the glasses were erupted subaerially and experienced near complete degassing during ascent and emplacement at the surface.

Heide, K.; Cameron, B. I.; Krans, S. R.

2012-12-01

248

Interpretation of drill cuttings from geothermal wells  

SciTech Connect

Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

Hulen, J.B.; Sibbett, B.S.

1981-06-01

249

A thermal drill for ice coring on high-elevation glaciers, NCCR Climate VIVALDI (Variability in Ice, Vegetation, and Lake Deposits - Integrated)  

Microsoft Academic Search

Project description: Non-polar ice cores have now been obtained from all continents except Australia, almost exclusively by small teams from one or two institutions, and with a modest amount of funding compared to polar ice coring projects. However, many areas remain from which no ice cores have been retrieved yet. This is especially true for temperate glaciers, where the ice

Margit Schwikowski; Anja Eichler; Susan Kaspari; Leonhard Tobler; Michael Sigl; Anita Ciric; Dieter Stampfli; Felix Stampfli

250

Petrography and phenocryst chemistry of volcanic units at Yucca Mountain, Nevada: A comparison of outcrop and drill hole samples  

SciTech Connect

This report is a compilation of petrographic and mineral chemical data for stratigraphic units at Yucca Mountain. It supports a possible peer review of Yucca Mountain drill core by summarizing the available data in a form that allows comparison of stratigraphic units in drill holes with surface outcrops of the same units. Petrographic and mineral chemical data can be used in conjunction with other geologic and geophysical information to determine if stratigraphic relations in Yucca Mountain drill core are geologically reasonable and compare well with relations known from extensive surface studies. This compilation of petrographic and mineral chemical data is complete enough for most stratigraphic units to be used in a peer review of Yucca Mountain drill core. Additional data must be collected for a few units to complete the characterization. Rock units at Yucca Mountain have unique petrographic and mineral chemical characteristics that can be used to make accurate stratigraphic assignments in drill core samples. Stratigraphic units can be differentiated on the basis of petrographic characteristics such as total phenocryst abundances, relative proportions of phenocryst minerals, and type and abundances of mafic and accessory minerals. The mineral chemistry of phenocrysts is also an important means of differentiating among stratigraphic units, especially when used in conjunction with the petrographic data. Sanidine phenocrysts and plagioclase rims have narrow compositional ranges for most units and often have well-defined dominant compositions. Biotite compositions are useful for identifying groups of related units (e.g., Paintbrush Tuff Members vs Crater Flat Tuff Members) and for providing an important check on the consistency of the data. 21 refs., 12 figs., 2 tabs.

Broxton, D.E.; Byers, F.M. Jr.; Warren, R.G.

1989-04-01

251

Agricultural Geophysics  

Technology Transfer Automated Retrieval System (TEKTRAN)

The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

252

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS  

E-print Network

Drilling Program (Belgium, Denmark, Finland, Iceland, Italy, Greece, the Netherlands, Norway, Spain, Sweden) the concept of deploying a mining- type diamond coring system (DCS) from a floating vessel was demonstrated

253

"Mission to Rochechouart": Drilling Project and Colaterals  

NASA Astrophysics Data System (ADS)

Rochechouart National Reserve offers to drill core the impact deposits and underlying target and to manage the samples making them available to the scientific community at large. The latter is invited to express interest in studying the samples.

Lambert, P.; Allard, J. L.; Rougier, J. M.

2014-09-01

254

Drilling the Central Crater of the Chesapeake Bay Impact Structure: A First Look  

NASA Astrophysics Data System (ADS)

The late Eocene Chesapeake Bay impact structure is a well-preserved example of one of Earth's largest impact craters, and its continental-shelf setting and relatively shallow burial make it an excellent target for study. Since the discovery of the structure over a decade ago, test drilling by U.S. federal and state agencies has been limited to the structure's annular trough (Figure 1). In May 2004, the U.S. Geological Survey (USGS) drilled the first scientific test hole into the central crater of the Chesapeake Bay impact structure at the town of Cape Charles, Virginia (Figure 1). This partially cored test hole, the deepest to date, penetrated postimpact sediments and impact breccias to a total depth of 823 m. The test hole is located on the eastern flank of the crater's central uplift, as inferred from seismic surveys and potential-field maps. Two groundwater observation wells were installed within the single test hole with screens at depths of 415-421 m and 689-695 m. The bottom 79 m of the test hole and a short interval at 427-433 m depth were cored with moderate recovery. Drill cuttings were collected from the uncored intervals. A suite of geophysical logs was acquired for the full length of the hole. Rock types and pore-water salinities encountered in this new hole are significantly different from those sampled previously in the structure's annular trough.

Sanford, Ward E.; Gohn, Gregory S.; Powars, David S.; Horton, J. Wright, Jr.; Edwards, Lucy E.; Self-Trail, Jean M.; Morin, Roger H.

2004-09-01

255

Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana  

USGS Publications Warehouse

In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

Warwick, Peter D.; Breland, F. Clayton, Jr.; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

2006-01-01

256

Drilling optimization using drilling simulator software  

E-print Network

simulator with the capacity for reproducing the drilling performance observed in the drilled wells. Cooper et al.4,6,7 describe a drilling simulator software built around a drilling-mechanics model that predicts the rate of penetration and rate of wear... ROP PredictionsBits Wear DeterminationCost per Foot Drilling Data Recorded(Offset Well) Drilling ROP Model Labs Test and Correlations GDL (Unconfined Rock Strength) Drilling ROP Model New Set Operational Parameters and Bits ROP PredictionsBits Wear...

Salas Safe, Jose Gregorio

2004-09-30

257

Drill string enclosure  

DOEpatents

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

1993-01-01

258

Drill string enclosure  

DOEpatents

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02

259

Rationale for future Antarctic and Southern Ocean drilling  

NASA Astrophysics Data System (ADS)

Valuable insights into future sensitivity of the Antarctic cryosphere to atmospheric and oceanic warming can be gained from the geologic record of past climatic warm intervals. Continental to deep ocean sediments provide records of contemporaneous changes in ice sheet extent and oceanographic conditions that extend back in time, including periods with atmospheric CO2 levels and temperatures similar to those likely to be reached in the next 100 years. The Circum-Antarctic region is under-sampled respect to scientific ocean drilling. However, recovery from glacially-influenced, continental shelf and rise sediments (expeditions ODP178, 188 and IODP 318), provided excellent records of Cenozoic climate and ice sheet evolution. The ANtarctic DRILLing program achieved >98% recovery on the Ross Sea shelf with a stable platform on fast ice with riser drilling technology. Newer technologies, such as the MeBo shallow drilling rig will further improve Antarctic margin drilling. Drilling around Antarctica in the past decades revealed cooling and regional ice growth during the Cenozoic, coupled with paleogeographic, CO2 atmosphere concentration and global temperature changes. Substantial progress has been made in dating sediments and in the interpretation of paleoclimate/paleoenvironmental proxies in Antarctic margin sediments (e.g. orbital scale variations in Antarctica's cryosphere during the Miocene and Pliocene). Holocene ultra-high resolution shelf sections recently recovered can be correlated to the ice core record, to detect local mechanisms versus inter-hemispheric connections. While the potential for reconstructing past ice sheet history has been demonstrated through a careful integration of geological and geophysical data with numerical ice sheet modelling, uncertainties remain high due to the sparse geographic distribution of the records and the regional variability in the ice sheet's response. Projects developed using a multi-leg, multi-platform approach (e.g. latitudinal and/or depth transects involving a combination of land/ice shelf, seabed, riser, and riserless drilling platforms) will likely make the most significant scientific advances. Fundamental hypothesis can be tested and accomplished by drilling depth transects from ice-proximal to ice-distal locations, that will enable researchers to link past perturbations in the ice sheet with Southern Ocean and global climate dynamics. The variable response of the ice sheet to ongoing climatic change mandates broad geographic drilling coverage, particularly in climatically sensitive regions, like those with large upstream drainage basins, whose marine terminus is presently melting, due to ocean, warming water impinging the continental shelf. Key transects were identified at community workshops (http://www.scar-ace.org) in the frame of the SCAR/ACE (Antarctic Climate Evolution) and PAIS (Past Antarctic Ice Sheet dynamics) programs. New proposals, also for MSP expeditions were then submitted to IODP, in addition to the existing ones, in the frame of a scientific concerted strategy and with a significant European participation. Main questions underpinning future scientific drilling tied IODP Science themes: 1) How did and will the Antarctic Ice Sheets respond to elevated temperatures and atmospheric pCO2? What is the contribution of Antarctic ice to past and future sea level changes? 2) What was the timing of rifting and subsidence controlling the opening of ocean gateways and the initiation of the circumpolar current system and the onset of glaciations?

De Santis, Laura; Gohl, Karsten; Larter, Rob; Escutia, Carlota; Ikehara, Minoru; Hong, JongKuk; Naish, Tim; Barrett, Peter; Rack, Frank; Wellner, Julia

2013-04-01

260

Deep drilling phase of the Pen Brand Fault Program  

SciTech Connect

This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

Stieve, A.

1991-05-15

261

Drill string gas data  

SciTech Connect

Data and supporting documentation were compiled and analyzed for 26 cases of gas grab samples taken during waste-tank core sampling activities between September 1, 1995 and December 31, 1997. These cases were tested against specific criteria to reduce uncertainties associated with in-tank sampling location and conditions. Of the 26 possible cases, 16 qualified as drill-string grab samples most likely to represent recently released waste gases. The data from these 16 ``confirmed`` cases were adjusted to remove non-waste gas contributions from core-sampling activities (argon or nitrogen purge), the atmospheric background, and laboratory sampler preparation (helium). The procedure for subtracting atmospheric, laboratory, and argon purge gases was unambiguous. No reliable method for determining the exact amount of nitrogen purge gas was established. Thus, the final set of ``Adjusted`` drill string gas data for the 6 nitrogen-purged cases had a greater degree of uncertainty than the final results for the 10 argon-purged cases. Including the appropriate amounts of uncertainty, this final set of data was added to the set of high-quality results from the Retained Gas Sampler (RGS), and good agreement was found for the N{sub 2}, H{sub 2}, and N{sub 2}O mole fractions sampled from common tanks. These results indicate that under favorable sampling conditions, Drill-String (DS) grab samples can provide reasonably accurate information about the dominant species of released gas. One conclusion from this set of total gas data is that the distribution of the H{sub 2} mole fractions is bimodal in shape, with an upper bound of 78%.

Siciliano, E.R.

1998-05-12

262

New structural and stratigraphic interpretation of Lake Superior basin from hydrocarbon exploration geophysics and geology  

SciTech Connect

Between October 1987 and April 1992, two deep boreholes were drilled along the south shore of Lake Superior in a test of the hydrocarbon potential of the conglomerate, sandstone and shale composing the Middle Proterozoic Oronto Group ({approximately}1 billion years). These drilling ventures, preceded by geophysical programs, and combined with wireline and core information, support new interpretations of the structural and stratigraphic geology associated with the Midcontinent Rift System in the Lake Superior district. No.7-22 Terra-Patrick: A stratigraphic, but not structural fit. This borehole in Bayfield County, Wisconsin, drilled an expected sequence of Oronto Group clastic redbeds. No viable hydrocarbon shows were encountered. Six second reflection seismology profiles collected in northwestern Wisconsin indicate the Douglas Fault decreases in throw in an easterly direction, changing to a fold northeast of the borehole. This termination is associated with the south flank of White`s Ridge, a pre-rift residual high identified through modeling studies and seismic interpretations by local absence of Midcontinent Rift volcanics and overlying strata. To the southwest of Isle Royale, the pre-rift Grand Marias Ridge exhibits similar characteristics. No.1-29 St. Amour: A structural, but not stratigraphic, fit. Drilled in Alger County, Michigan, the St. Amour well appears to bottom in pre-rift metamorphic basement rocks. This hole was 100% cored. No hydrocarbon shows were reported. Reflection seismology profile analyses verify a change in strike, from northeast to southeast, of the Keweenaw Fault in the eastern Lake Superior Basin. The drilled section included 6,000 feet of pre-Paleozoic red-beds containing cross-bedding, ripple marks, and multiple fining-upward strata.

Dickas, A.B. [Univ. of Wisconsin, Superior, WI (United States)

1996-09-01

263

Development of a precise and accurate age-depth model based on 40Ar/39Ar dating of volcanic material in the ANDRILL (1B) drill core, Southern McMurdo Sound, Antarctica  

NASA Astrophysics Data System (ADS)

High precision 40Ar/39Ar dates on a variety of volcanic materials from the AND-1B drill core provide pinning points for defining the chronostratigraphy for the core. The volcanic materials dated include 1) felsic and basaltic tephra, 2) interior of a ~ 3 m thick intermediate submarine lava flow, and 3) felsic and basaltic volcanic clasts. In the upper 600 m of the core, two felsic tephra, two basaltic tephra and the intermediate laval flow yield precise and depositional ages, with further maximum age constraints from volcanic clasts. Below 600 m in the core, tephric intervals are significantly altered and maximum age constraints only are available from volcanic clasts. The ages for eight stratigraphic intervals are 1) 17.17-17.18 mbsf, basaltic clast (maximum depositional age 0.310 ± 0.039 Ma, all errors quoted at 2?), 2) 52.80-52.82 mbsf, three basaltic clasts (maximum depositional age 0.726 ± 0.052 Ma), 3) 85.27-85.87 mbsf felsic tephra (1.014 ± 0.008 Ma), 4) ~ 112-145 mbsf sequence of basaltic tephra (1.633 ± 0.057 to 1.683 ± 0.055 Ma), 5) 480.97-481.96 mbsf pumice-rich mudstone (4.800 ± 0.076 Ma), 6) 646.30-649.34 mbsf intermediate lava flow (6.48 ± 0.13 Ma), 7) 822.78 mbsf kaersutite phenocrysts from volcanic clasts (maximum depositional age 8.53 ± 0.53 Ma) and 8) ~ 1280 mbsf, three volcanic clasts (maximum depositional age 13.57 ± 0.13 Ma). Minimum average sediment accumulation rates or 102 and 87 m/Ma for the upper and lower 650 m of core, respectively were calculated using the 40Ar/39Ar analyses. The volcanic material recovered from AND-1B also reveals a general northward progression of volcanism in Southern McMurdo Sound.

Ross, J. I.; McIntosh, W. C.; Dunbar, N. W.

2012-10-01

264

Hydrofracturing stress measurements in the Iceland Research Drilling Project drill hole at Reydarfjordur, Iceland  

Microsoft Academic Search

Two independent suites of hydrofracturing stress measurements were conducted in the top 600 m of the Iceland Research Drilling Project deep hole at Reydarfjordur, east Iceland. As indicated by the continuously extracted drill core, the tested section consists of tertiary subaerial tholeiitic lava flows cut by many basaltic dikes. The density of the basalt was used to estimate the vertical

Bezalel C. Haimson; Fritz Rummel

1982-01-01

265

Study on drilling force and delamination in high speed drilling carbon fiber reinforce plastics (CFRP)  

Microsoft Academic Search

The carbon fiber reinforced plastics are highly promising materials which widely used in aerospace industry due to their excellent mechanical properties. The delamination is considered a major problem in manufacture the parts and assembly. The thrust force affected the delamination mostly. This paper investigated the drilling force, torque, delamination of carbon fibred composite with carbide drilling tools and half core

Dong Liu; Xueke Luo; Honghai Xu

2010-01-01

266

Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses  

NASA Technical Reports Server (NTRS)

Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

1993-01-01

267

Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado  

USGS Publications Warehouse

Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

2014-01-01

268

Managed Pressure Drilling Candidate Selection  

E-print Network

System DD Directional Drilling DwC Drilling with Casing DGD Dual Gradient Drilling ECD Equivalent Circulation Density EMW Equivalent Mudweight ERD Extended Reach Drilling ft Feet/Foot x Fp Fracture-Pressure GOM Gulf of Mexico HazID Hazard..., in the last few decades, technologies like ?Horizontal Drilling? (HD), ?Directional Drilling? (DD), ?Extended Reach Drilling? (ERD), ?Casing Drilling? / ?Drilling with Casing? (DwC), ?Coiled Tube Drilling? (CTD), Underbalanced Drilling (UBD) , and Managed...

Nauduri, Anantha S.

2010-07-14

269

The volcanic record of the upper 600 m of the ANDRILL AND-1 drill cores: Evidence of ice-free conditions and local volcanic activity over the  

E-print Network

of phonotephrite, trachyte and phonolite are also present in the core. In contrast, some volcanic-rich horizons are heterogeneous and contain glass shards ranging from basanite to trachyte and phonolite suggesting that reworking

Dunbar, Nelia W.

270

Drilling equipment to shrink  

SciTech Connect

Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

Silverman, S.

2000-01-01

271

Drill user's manual. [drilling machine automation  

NASA Technical Reports Server (NTRS)

Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

Pitts, E. A.

1976-01-01

272

Drilling technology, 2000  

SciTech Connect

Great strides have been made in drilling during the nineties, but many operators are unaware of many of the exciting capabilities and potential offered by today` drilling technology. As people move toward the year 2000, they see drilling providers refine these capabilities, broaden their applications, and increase operator awareness of their availability and usefulness. Thus, to see where drilling will be in the year 2000, people need to look at where the drilling forefront lies today. This paper discusses the trends in technology associated with horizontal drilling, re-entry techniques, coiled-tubing, extended-reach drilling, multilateral drilling and general well development technologies.

Offenbacher, L.

1996-05-01

273

Geophysical Numerology  

Microsoft Academic Search

THERE has been a trend recently to seek empirical relationships between certain geophysical parameters in an attempt to simplify a problem. In these days when there is a tendency to use the computer to try to solve everything, such an approach has much to commend it. There is, however, a danger in playing the ``numbers game'', for by algebraic manipulation

J. A. Jacobs

1970-01-01

274

Ocean drilling program: Recent results and future drilling plans  

SciTech Connect

The Ocean Drilling Program (ODP) has completed 48 internationally-staffed expeditions of scientific ocean drilling in search of answers relating to the evolution of passive and active continental margins, evolution of oceanic crust, origin and evolution of marine sedimentary sequences, and paleoceanography. During the past year of drilling operations, ODP expeditions cored Cretaceous reef-bearing guyots of the Western Pacific, with the objective of using them as monitors of relative sea-level changes and thereby of the combined effects of the tectonic subsidence (and uplift) history of the seamounts and of global fluctuations of sea level (Legs 143 and 144); studied high-resolution variations of surface and deep-water circulation and chemistry during the Neogene, the late Cretaceous and Cenozoic history of atmospheric circulation, ocean chemistry, and continental climate, and the age and nature of the seafloor in the North Pacific (Leg 145); studied the relationship between fluid flow and tectonics in the accretionary wedge formed at the Cascadia convergent plate boundary off Vancouver and Oregon (Leg 146); drilled in Hess Deep to understand igneous, tectonic and metamorphic evolution of fast spreading oceanic crust and to understand the processes of rifting in young ocean crust (Leg 147); and continued efforts at Hole 504B at 2,000 mbsf, the deepest hole they have beneath seafloor (Leg 148). After Leg 148 (March 1993), the JOIDES Resolution will commence an Atlantic Ocean drilling campaign.

Rabinowitz, P.D.; Francis, T.J.G.; Baldauf, J.G.; Allan, J.F.; Heise, E.A.; Seymour, J.C. (Texas A and M Univ., College Station, TX (United States))

1993-02-01

275

Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California  

USGS Publications Warehouse

At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.

Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert

2000-01-01

276

Optimizing drilling performance using a selected drilling fluid  

DOEpatents

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19

277

International Collaboration in Data Management for Scientific Ocean Drilling: Preserving Legacy Data While Implementing New Requirements.  

NASA Astrophysics Data System (ADS)

The Integrated Ocean Drilling Program (IODP: 2003-2013 initial phase) is the successor to the Deep Sea Drilling Project (DSDP: 1968-1983) and the Ocean Drilling Program (ODP: 1985-2003). These earlier scientific drilling programs amassed collections of sediment and rock cores (over 300 kilometers stored in four repositories) and data organized in distributed databases and in print or electronic publications. International members of the IODP have established, through memoranda, the right to have access to: (1) all data, samples, scientific and technical results, all engineering plans, data or other information produced under contract to the program; and, (2) all data from geophysical and other site surveys performed in support of the program which are used for drilling planning. The challenge that faces the individual platform operators and management of IODP is to find the right balance and appropriate synergies among the needs, expectations and requirements of stakeholders. The evolving model for IODP database services consists of the management and integration of data collected onboard the various IODP platforms (including downhole logging and syn-cruise site survey information), legacy data from DSDP and ODP, data derived from post-cruise research and publications, and other IODP-relevant information types, to form a common, program-wide IODP information system (e.g., IODP Portal) which will be accessible to both researchers and the public. The JANUS relational database of ODP was introduced in 1997 and the bulk of ODP shipboard data has been migrated into this system, which is comprised of a relational data model consisting of over 450 tables. The JANUS database includes paleontological, lithostratigraphic, chemical, physical, sedimentological, and geophysical data from a global distribution of sites. For ODP Legs 100 through 210, and including IODP Expeditions 301 through 308, JANUS has been used to store data from 233,835 meters of core recovered, which are comprised of 38,039 cores, with 202,281 core sections stored in repositories, which have resulted in the taking of 2,299,180 samples for scientists and other users (http://iodp.tamu.edu/janusweb/general/dbtable.cgi). JANUS and other IODP databases are viewed as components of an evolving distributed network of databases, supported by metadata catalogs and middleware with XML workflows, that are intended to provide access to DSDP/ODP/IODP cores and sample-based data as well as other distributed geoscience data collections (e.g., CHRONOS, PetDB, SedDB). These data resources can be explored through the use of emerging data visualization environments, such as GeoWall, CoreWall (http://(www.evl.uic.edu/cavern/corewall), a multi-screen display for viewing cores and related data, GeoWall-2 and LambdaVision, a very-high resolution, networked environment for data exploration and visualization, and others. The U.S Implementing Organization (USIO) for the IODP, also known as the JOI Alliance, is a partnership between Joint Oceanographic Institutions (JOI), Texas A&M University, and Lamont-Doherty Earth Observatory of Columbia University. JOI is a consortium of 20 premier oceanographic research institutions that serves the U.S. scientific community by leading large-scale, global research programs in scientific ocean drilling and ocean observing. For more than 25 years, JOI has helped facilitate discovery and advance global understanding of the Earth and its oceans through excellence in program management.

Rack, F. R.

2005-12-01

278

Vale exploratory slimhole: Drilling and testing  

SciTech Connect

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1996-06-01

279

Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas  

USGS Publications Warehouse

Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory drilling programs. The sporadic occurrence of these deposits makes it desirable to develop borehole geophysical techniques that will help to define the depositional environments of the uranium ore, which is characterized by geochemical changes near the uranium deposits. Geochemical changes are accompanied by changes in the physical characteristics of the rocks that can be detected with borehole geophysical tools. This study is concerned with a uranium deposit within the Jackson Group that is located just east of Karnes City, Tex. Five holes were drilled on this property to obtain borehole geophysical data and cores. The cores were analyzed for mineralogic and electrical properties. The borehole geophysical information at this property included induced polarization, resistivity, gamma-gamma density, neutron-neutron, gamma-ray, caliper, and single-point-resistance logs. Between-hole resistivity and induced polarization measurements were made between hole pairs across the ore deposit and off the ore deposit.

Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

1979-01-01

280

Hydraulic downhole drilling motors  

Microsoft Academic Search

This book is the first major engineering reference in English on the design and application of downhole drilling motors, turbodrills, and helidrills. While this equipment has often been used to drill in hard formations or deviated holes, the technology is being used more in ''conventional'' drilling operations because its overall efficiency and reduced drill bit consumption offer major savings in

Tiraspoiski

1985-01-01

281

Ultrasonic drilling apparatus  

Microsoft Academic Search

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry.

E. L. Duran; R. L. Lundin

1989-01-01

282

Ultrasonic drilling apparatus  

Microsoft Academic Search

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry.

E. L. Duran; R. L. Lundin

1988-01-01

283

Scientific Drilling in the Southwest Pacific Ocean  

NASA Astrophysics Data System (ADS)

Recent geophysical surveys and geological studies in the southwest Pacific Ocean have improved scientists' understanding of geological evolution and helped to crystallize new research goals. In the current phase of the Integrated Ocean Drilling Program (IODP), there have been five regional expeditions: Canterbury Basin Sea Level (Expedition 317), Wilkes Land Glacial History off Antarctica (Expedition 318), Great Barrier Reef Environmental Changes (Expedition 325), South Pacific Gyre Subseafloor Life (Expedition 329), and Louisville Seamount Trail (Expedition 330). Of six current IODP proposals, four are ready to drill. To review the latest research in the region, briefly outline possible future IODP expeditions, and set up working groups to develop compelling new drilling proposals in the global science context, a workshop was organized at the University of Sydney with a diverse group of 80 scientists. As the JOIDES Resolution may be in the region fairly soon, the workshop participants agreed on the urgent need to build strong science proposals.

Exon, Neville; Gallagher, Stephen; Seton, Maria

2013-03-01

284

Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland  

E-print Network

Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

Parker, Beatrice Smith

2012-01-01

285

Rotary blasthole drilling update  

SciTech Connect

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15

286

New Discoveries From The Archean Biosphere Drilling Project (ABDP)  

NASA Astrophysics Data System (ADS)

The Archean Biosphere Drilling Project (ABDP), an international scientific drilling project involving scientists from the USA, Australia and Japan, was initiated in Pilbara Craton, Western Australia. The scientific objectives of the ABDP are the identification of microfossils and biomarkers, the clarification of geochemical environment of the early Earth, and the understanding of geophysical contribution to the co-evolution of life and environment. Through 2003 and 2004 activities, we have drilled 150 _| 300 m deep holes to recover _gfresh_h (modern weathering-free) geologic formations that range from 3.5 to 2.7 Ga in age. The drilling targets were: (1) 3.46 Ga Towers Formation, (2) mid-Archean Mosquito Formation, (3) 2.77 Ga Mt Roe Basalt, (4) 2.76 Ga Tumbiana Formation, (5) 2.74 Ga Hardey Formation. The initial investigations on the ABDP drill cores by Japanese members have already produced many exciting and interesting data and observations. 3.46 Ga Marble Bar Jasper could provide clues to the argument about the early photosynthetic cyanobacteria that have produced free oxygen and have evolved the oxygen level on the earth. There have been many ideas how the hematite in jasper was formed. Our most important discoveries are the confirmations that hematite, magnetite and siderite precipitated separately as primary minerals, and that there is a remaining texture which resembles microfossil using FE-SEM, ESCA, Laser-Raman and cathodoluminescence. Taking into account the carbon isotopic ratios of remains from _|25 to _|40 permil, these iron oxides might be biogenic. We need to identify the iron bacteria in detail to deduce the early earth_fs surface environment. In addition, the black shale of Apex Basalt overlying Marble Bar Jasper contains organic carbon from 0.7 to 5.2 percent, and the carbon isotopic ratio of which is from -26 to -30 per mil, suggesting that various microbes inhabited in the early Archean ocean. 2.77 Ga Mt Roe Basalt, which is composed of basaltic lavas interbedded with tuffs, clastic sediment and minor evaporites, well preserves the primary biogeochemical, geochemical and geophysical phenomena. The discovery of black shale with sulfide nodules is worthy of special attention. Our study suggests that the following succession of events occurred more than once, (1) eruption of amygdaloidal basaltic lava followed by eruption of tuff into shallower water, (2) deposition of sandstone and black shale, and (3) concurrent hydrothermal activity with reduced fluids altered the tuff and the lowermost clastic sediments. The extremely light carbon isotopic ratios suggest the activities of methanogene in hydrothermal veinlets and methanotroph in black shale. In addition, the wide range of sulfur isotopic ratio in black shale suggests activity of co-existing sulfate-reducing bacteria in the black shale. Occasional presence of sandstone, especially in late stage of clastic sedimentation, suggests the sedimentation near coastal environment. Stromatolite-like microtexture in the sandstone suggests the existence of photosynthetic microbes, which is supported by heavy carbon isotopic ratios (up to _|25 permil) and by the signals of hopanoids biomarker. The three dimensional geochemical data suggest the existence of marine environment from oxic at shallow site to euxinic at the deeper site. Paleomagnetic analyses suggest the episodic initiation of the earth's dynamo at about 3.5 Ga and the increase of it's momentum since at least 2.77 Ga. Taking into account the biogeochemical evidences confirmed from other ABDP cores, the increase of geomagnetic intensity might have accelerated the diversification of early life.

Nedachi, M.

2004-12-01

287

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 15, doi:10.1002/2013GL057149, 2013 The effect of an asymmetric core on convection in Enceladus' ice  

E-print Network

a hemispheric dichotomy in tectonics and heat flux. With a spherical core, convection produces global of an asymmetric core on convection in Enceladus' ice shell: Implications for south polar tectonics and heat flux: Implications for south polar tectonics and heat flux, Geophys. Res. Lett., 40, doi:10.1002/2013GL057149. 1

288

Searching for Life Underground: An Analysis of Remote Sensing Observations of a Drill Core from Rio Tinto, Spain for Mineralogical Indications of Biological Activity  

NASA Technical Reports Server (NTRS)

Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].

Battler, M.; Stoker, C.

2005-01-01

289

The Hominin Sites And Paleolakes Drilling Project: Using High Resolution Paleoclimate Records From African Lake Deposits To Interpret Human Evolution  

NASA Astrophysics Data System (ADS)

For many years paleoanthropologists and earth scientists have explored and debated the potential role of climate and environmental forcing in human evolution. Although no consensus has emerged as to the importance of climate history in understanding human origins, there is broad agreement that obtaining high quality records of paleoclimate is critical for evaluating any proposed relationships. Recent workshops on the subject have converged on the central role that scientific drilling could play in obtaining such records. Records with high continuity and resolution with implications for human evolution can be retrieved from marine or lacustrine sediments, and the latter can be obtained from both extant (ancient) lakes or by drilling lake beds now exposed on land. We report here on a new initiative to obtain drill core records from on-land sites in the East African Rift Valley region. Our objective is to recover continuous cores both directly from the paleolake deposits in the depocenters of basins where important hominin fossils or artifacts have been recovered, and from basins in close proximity to fossil and artifact sites. An initial on-land drilling campaign, using off-the-shelf technology will target five of the most important basins for hominin fossil and archaeological records in East Africa, collectively spanning the last ~4Ma (N. Awash R. and the Chew Bahir Basin in Ethiopia, and W. Turkana, Tugen Hills and the Olorgesailie/L. Magadi areas in Kenya). HSPDP work to date has involved collecting subsurface geophysical data, and combining this with outcrop, prior coring and basin geometry information to identify optimal drilling targets at each area. The overall project objective is to provide detailed paleoenvironmental records across a spatial and temporal range of sites that can address hypotheses of climate/human evolution relationships at local to regional scales, through a combination of core data collection and modeling efforts. In the long term, such records could be linked to more continuous (but also more expensive) marine or ancient lake drill cores that could provide master records of regional to global scale climate change in East Africa.

Cohen, A. S.; Arrowsmith, R.; Behrensmeyer, K.; Campisano, C. J.; Feibel, C. S.; Fisseha, S.; Johnson, R. A.; Kingston, J.; Kubsa, Z.; Lamb, H.; Mbua, E.; Olago, D.; Potts, R.; Renaut, R.; Schaebitz, F.; Tiercelin, J.; Trauth, M. H.; Woldegabriel, G. W.; Umer, M.

2009-12-01

290

Advanced Drilling through Diagnostics-White-Drilling  

SciTech Connect

A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

1999-10-07

291

Microwave drilling of bones.  

PubMed

This paper presents a feasibility study of drilling in fresh wet bone tissue in vitro using the microwave drill method [Jerby et al, 2002], toward testing its applicability in orthopaedic surgery. The microwave drill uses a near-field focused energy (typically, power under approximately 200 W at 2.45-GHz frequency) in order to penetrate bone in a drilling speed of approximately 1 mm/s. The effect of microwave drilling on mechanical properties of whole ovine tibial and chicken femoral bones drilled in vitro was studied using three-point-bending strength and fatigue tests. Properties were compared to those of geometrically similar bones that were equivalently drilled using the currently accepted mechanical rotary drilling method. Strength of mid-shaft, elastic moduli, and cycles to failure in fatigue were statistically indistinguishable between specimen groups assigned for microwave and mechanical drilling. Carbonized margins around the microwave-drilled hole were approximately 15% the hole diameter. Optical and scanning electron microscopy studies showed that the microwave drill produces substantially smoother holes in cortical bone than those produced by a mechanical drill. The hot spot produced by the microwave drill has the potential for overcoming two major problems presently associated with mechanical drilling in cortical and trabecular bone during orthopaedic surgeries: formation of debris and rupture of bone vasculature during drilling. PMID:16761844

Eshet, Yael; Mann, Ronit Rachel; Anaton, Abby; Yacoby, Tomer; Gefen, Amit; Jerby, Eli

2006-06-01

292

Investigation on drilling-grinding of CFRP  

Microsoft Academic Search

It is difficult to machine polymer matrix composites reinforced by carbon fibre, and the holemaking process is the most necessary\\u000a machining process for composite plate products. Conventional drills have a very short life in the drilling of this kind of\\u000a composites and the quality of the hole is very poor. In this paper, the cemented or plated diamond core tools

Yanming Quan; Wenwang Zhong

2009-01-01

293

A proposal for drilling to the base of a Lamont Seamount at 9° 50 N EPR  

NASA Astrophysics Data System (ADS)

The Lamont Seamount chain intersects the East Pacific Rise at 9° 50N and is a significant feature within the RIDGE2000 program integrated study site at 8-10° N. However, the origin of this, as well as all near-ridge seamount chains, remains unresolved. Geochemically, Lamont Seamount lavas form an excellent depleted end-member magma which mix with more enriched magmas to form typical 9° N EPR NMORB. Here I present the case for an IODP project to obtain a drill core to the base of a Lamont Seamount in order to gain fundamental insight into mantle melting processes. Drilling into the oldest Lamont Seamount will test the hypothesis that seamount chains reflect the presence of dunite melt conduits in the upper mantle feeding magma to near-ridge locations. If these conduits are created by the passage of reactive melts derived from melting of enriched mantle heterogeneities, the base of the oldest seamount should contain geochemically enriched melts. Seamount chains like Lamont aligned along absolute plate motion would reflect a melt conduit in the upwelling asthenosphere while relative motion hotspot chains would reflect dunite in the lithosphere. A stratigraphic sequence of seamount lavas in a core will also allow an assessment of whether melt compositions are chromatographically modified during ascent. This would also allow quantification of melt porosities in the melting column, complimentary to geophysical tomography efforts. A final hypothesis is that once established, dunite conduit systems lead to a melting process whereby diffusion of alkali elements into the surrounding mantle flux melts the mantle at shallow depths. This process might explain the production of anorthitic plagioclase in MORB, the creation of anomalous Cl rich melt inclusions in MORB, and the production of the volumetric majority of magmas beneath a mid-ocean ridges. Finally, a >1km long drill core would also allow other interdisciplinary RIDGE research such as unmatched look at microbial alteration of basalt through time.

Lundstrom, C.

2003-12-01

294

Paleointensity of the geomagnetic field in the Late Cretaceous and earliest Paleogene obtained from drill cores of the Louisville seamount trail  

NASA Astrophysics Data System (ADS)

on the strength of the geomagnetic field is important for understanding the behavior of the geodynamo. Polarity reversal frequency increases toward the late Cenozoic since the end of the Cretaceous Normal Superchron. Accumulating reliable paleointensity data in this time interval is still desired for elucidating the possibility of a link between reversal frequency and paleointensity. We conducted a paleointensity study on 288 samples from four seamounts from ˜74 to ˜50 Ma in age that constitutes the Louisville seamount trail. Based on thermomagnetic curves and scanning electron microscopy, we first excluded 134 samples that showed evidence for low-temperature oxidation. We then applied the Tsunakawa-Shaw method with low-temperature demagnetization and double heating after rejecting some samples that do not preserve stable primary remanence, and 52 successful results were obtained. An average virtual axial dipole moment (VADM) of 3.75 ± 1.52 (1022 Am2) was obtained at Site U1372 on Canopus seamount (˜74 Ma) based on 16 independent measurements. Sites U1373 and U1374 on Rigil seamount (˜70 Ma) yielded a mean of 3.79 ± 1.40 (n = 16), and Site U1376 on Burton seamount (˜65 Ma) yielded a mean of 3.70 ± 1.37 (n = 8). These VADMs are similar to the long-term average of the last 200 Myr by Tauxe et al. (2013) and the mean of the last 5 Myr by Yamamoto and Tsunakawa (2005). The volcanic sequence drilled at Site U1372 probably belongs to Chron C33n of 5.59 Myr long, whereas others belong to shorter chrons. Our results support no discernible relationship between polarity length and paleointensity.

Yamazaki, Toshitsugu; Yamamoto, Yuhji

2014-06-01

295

Spectrum Gamma Ray bore hole logging while tripping with the sea floor drill rig MARUM-MeBo  

NASA Astrophysics Data System (ADS)

The robotic Sea Floor Drill Rig MARUM-MeBo developed at the MARUM Center for Marine Environmental Sciences at the University of Bremen was used to retrieve long sediment cores at two sites in the northern South China Sea. Both sites are located in about 1000 m water depth in southeasterly and southwesterly direction of the Pearl River mouth, respectively. South East Asian Monsoon variability controls terrigenous material transport by rivers into the South China Sea. The Pearl River is one of the largest rivers of the region that discharges into the northern South China Sea. The terrigenous fraction of marine sediments of the northern South China Sea therefore provides an excellent archive for reconstructing past variability of the South East Asian Monsoon system. In analogy to the drilling strategy within the Integrated Ocean Drilling Program IODP multiple holes were drilled in order to generate continuous spliced records at both sites. Overall the MARUM-MeBo drilled 374 m during 5 deployments with a maximum drilling depth of 80.85 m and an average core recovery of 94 %. Here we present first results of bore hole logging conducted during 4 of the 5 deployments with a spectrum gamma ray (SGR) probe adapted for the use with MARUM-MeBo. This probe is an autonomous slim hole probe that is used in the logging while tripping mode. This method is especially favorable for remote controlled drilling and logging operation. The probe is equipped with its own energy source and data storage. The probe is lowered into the drill string after the target wire-line coring depth is reached and after the last inner core barrel has been retrieved. When the probe has landed on the shoulder ring at the bottom of the hole, the drill string is pulled out and disassembled. The probe, while being raised with the drill string, continuously measures the geophysical properties of the in situ sediments and rocks. Since the bore hole is stabilized during the tripping process by the drill string in the vicinity of the logging probe, logging while tripping can also be used for unstable bore hole conditions e.g. in unconsolidated sediments. At both drill sites two profiles were measured during separate deployments of the MeBo. A close correlation of the profiles was observed at both sites. Natural gamma ray intensity varies between 38 and 91 API. The variations in natural gamma ray intensity are mainly attributed to changes in concentrations of potassium (0,5 - 1,6 %) and thorium (3,6 - 13,2 ppm), while the concentrations of uranium are fairly low (1,2 - 3,2 ppm). Clays are the main host minerals for thorium in marine sediments. Potassium may be incorporated both into clay and feldspar minerals. The variability in the natural gamma ray intensity can therefore be interpreted as an indicator of changes in terrestrial sediment input into the South China Sea. The observation of severe variability of the K/Th ratio and its correlation with sedimentary calcium content measured by XRF-scanning points to the fact that not only changes in the amount but also changes in the composition of the terrigenous fraction is elucidated by the SGR bore hole logging and will help reconstructing past changes in the South East Asian monsoon system.

Freudenthal, Tim; Steinke, Stephan; Mohtadi, Mahyar; Hebbeln, Dierk; Wefer, Gerold

2013-04-01

296

Surface drilling technologies for Mars  

NASA Technical Reports Server (NTRS)

Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.

Blacic, J. D.; Rowley, J. C.; Cort, G. E.

1986-01-01

297

Core break-off mechanism  

NASA Technical Reports Server (NTRS)

A mechanism for breaking off and retaining a core sample of a drill drilled into a ground substrate has an outer drill tube and an inner core break-off tube sleeved inside the drill tube. The break-off tube breaks off and retains the core sample by a varying geometric relationship of inner and outer diameters with the drill tube. The inside diameter (ID) of the drill tube is offset by a given amount with respect to its outer diameter (OD). Similarly, the outside diameter (OD) of the break-off tube is offset by the same amount with respect to its inner diameter (ID). When the break-off tube and drill tube are in one rotational alignment, the two offsets cancel each other such that the drill can operate the two tubes together in alignment with the drill axis. When the tubes are rotated 180 degrees to another positional alignment, the two offsets add together causing the core sample in the break-off tube to be displaced from the drill axis and applying shear forces to break off the core sample.

Myrick, Thomas M. (Inventor)

2003-01-01

298

Ultrasonic drilling apparatus  

SciTech Connect

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

Duran, E.L.; Lundin, R.L.

1988-06-20

299

Ultrasonic drilling apparatus  

SciTech Connect

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

Duran, E.L.; Lundin, R.L.

1989-05-09

300

Ultrasonic drilling apparatus  

DOEpatents

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

1989-01-01

301

Robotic Planetary Drill Tests  

NASA Technical Reports Server (NTRS)

Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

Glass, Brian J.; Thompson, S.; Paulsen, G.

2010-01-01

302

New approaches to subglacial bedrock drilling technology  

NASA Astrophysics Data System (ADS)

Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

2013-04-01

303

Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies  

USGS Publications Warehouse

Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.

Paillet, F.L.

2002-01-01

304

Cores from the Salton Sea scientific drilling program: Metamorphic reaction progress as a function of chemical and thermal environment: Final report  

SciTech Connect

The study investigated the downhole progressive metamorphism at the Salton Sea site by monitoring and evaluating discontinuous and continuous metamorphic reactions. The main emphasis was placed on: (1) the addition of petrographic, geochemical, and mineralogical data to the Salton Sea data base; (2) determination of downhole reactions; (3) evaluation of the progress of individual continuous reaction (epsilon) and the overall reaction progress (epsilon/sub T/) during the transition from one metamorphic zone to the next; and (4) evaluation and correlation of mineral reactions and reaction progress with mineral phase and organic material geothermometry. To these ends, thirty-three samples from the Salton Sea core were analyzed for: (1) quantitative modal mineralogy using the x-ray diffraction reference intensity method (RIM), (2) 30 major and trace elements in the whole rock and (3) mineral chemistry and structural state. In addition, a subset of these samples were used for temperature determinations using vitrinite reflectivity.

Papike, J.J.; Shearer, C.K.

1987-05-13

305

Hydraulic piston coring of late Neogene and Quaternary sections in the Caribbean and equatorial Pacific: Preliminary results of Deep Sea Drilling Project leg 68.  

USGS Publications Warehouse

The sediment of Site 502 (W.Caribbean) is primarily foram-bearing nanno marl which accumulated at c.3 to 4 cm/thousand yr. The bottom of Site 502 (228.7 m) is about 8 m.y. old. The sediment of Site 503 (Equatorial Pacific) is primarily siliceous calcareous ooze which accumulated at about 2 to 3 cm/thousand yr. The bottom of Site 503 (235.0 m) is about 8 m.y. old. The sediment at both sites shows a distinct cyclicity of CaCO3 content. These relatively high accumulation rate, continuous, undisturbed HPC cores will enable a wide variety of high-resolution biostratigraphic, paleoclimatic, and paleoceanographic studies.- from Authors

Prell, W.L.; Gardner, James V.; Adelseck, Charles; Blechschmidt, Gretchen; Fleet, Andrew J.; Keigwin, Lloyd D.; Kent, Dennis V.; Ledbetter, Michael T.; Mann, Ulrich; Mayer, Larry; Reidel, William R.; Sancetta, Constance; Spariosu, Dann J.; Zimmerman, Herman B.

1980-01-01

306

Geological & Geophysical findings from seismic, well log and core data for marine gas hydrate deposits at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, offshore Japan: An overview  

NASA Astrophysics Data System (ADS)

In order to evaluate productivity of gas from marine gas hydrate by the depressurization method, Japan Oil, Gas and Metals National Corporation is planning to conduct a full-scale production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. The test location was determined using the combination of detailed 3D seismic reflection pattern analysis, high-density velocity analysis, and P-impedance inversion analysis, which were calibrated using well log data obtained in 2004. At the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled from February to March 2012, followed by 1 coring well (AT1-C) from June to July 2012. An extensive logging program with logging while drilling (LWD) and wireline-logging tools, such as GeoVISION (resistivity image), EcoScope (neutron/density porosity, mineral spectroscopy etc.), SonicScanner (Advanced Sonic tool), CMR/ProVISION (Nuclear Magnetic Resonance Tools), XPT (formation pressure, fluid mobility), and IsolationScanner (ultrasonic cement evaluation tools) was conducted at AT1-MC well to evaluate physical reservoir properties of gas hydrate-bearing sediments, to determine production test interval in 2013, and to evaluate cement bonding. Methane hydrate concentrated zone (MHCZ) confirmed by the well logging at AT1-MC was thin turbidites (tens of centimeters to few meters) with 60 m of gross thickness, which is composed of lobe type sequences in the upper part of it and channel sand sequences in the lower part. The gross thickness of MHCZ in the well is thicker than previous wells in 2004 (A1, 45 m) located around 150 m northeast, indicating that the prediction given by seismic inversion analysis was reasonable. Well-to-well correlation between AT1-MC and MT1 wells within 40 m distance exhibited that lateral continuity of these sand layers (upper part of reservoir) are fairly good, which representing ideal reservoir for the production test. The XPT measurement results showed approximately 0.1 to several mD of water permeability in both the hydrate-bearing formation and seal formation, although there are some variations in measured values. However, the comparison of these results with permeability estimated by NMR log showed significant discrepancy (more than one order of difference), which suggests that it is necessary to have further investigation considering the difference in scale, measurement direction (Kh or Kv), and calibration methodology by pressure core data. In order to obtain basic reservoir/seal properties for the well log calibration within and above production test interval, pressure coring using Hybrid Pressure Coring System (Hybrid PCS) and also non-destructive core analysis onboard using Pressure Core Analysis and Transfer System (PCATS) were conducted for 60 m interval in AT1-C, which located about 10 m northeast of AT1-MC. Finally, integrated reservoir characterization based on well-log and pressure core data was conducted to predict and optimize the flow rate of upcoming production test.

Fujii, T.; Noguchi, S.; Takayama, T.; Suzuki, K.; Yamamoto, K.

2012-12-01

307

Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers  

NASA Astrophysics Data System (ADS)

Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.

Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.

2012-12-01

308

Real Time Seismic Prediction while Drilling  

NASA Astrophysics Data System (ADS)

Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.

Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.

2009-12-01

309

Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada  

USGS Publications Warehouse

The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

2011-01-01

310

Handbook of Agricultural Geophysics  

Technology Transfer Automated Retrieval System (TEKTRAN)

Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

311

INTRODUCTION APPLIED GEOPHYSICS  

E-print Network

GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

Merriam, James

312

Rock drilling, cooling liquids  

NSF Publications Database

Title : Rock drilling, cooling liquids Type : Antarctic EAM NSF Org: OD / OPP Date : October 23 ... impacts that could accrue from the use of cooling liquids during rock drilling. Our discussion of ...

313

Ovarian Drilling for Infertility  

MedlinePLUS

... Website of the American Society for Reproductive Medicine Ovarian drilling for infertility This fact sheet was developed ... modified wedge resection, and other names. What is ovarian drilling and how does it work? Women with ...

314

Deep Sea Drilling Project  

ERIC Educational Resources Information Center

Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

Kaneps, Ansis

1977-01-01

315

76 FR 11812 - Drill Pipe and Drill Collars From China  

Federal Register 2010, 2011, 2012, 2013, 2014

...by reason of imports of drill pipe and drill collars from China...Commerce that imports of drill pipe and drill collars from China...public hearing to be held in connection therewith was given by posting...February 2011), entitled Drill Pipe and Drill Collars from...

2011-03-03

316

75 FR 10501 - Drill Pipe and Drill Collars from China  

Federal Register 2010, 2011, 2012, 2013, 2014

...imports from China of drill pipe and drill collars, provided...subsidized imports of drill pipe and drill collars from China...public conference to be held in connection therewith was given by posting...March 2010), entitled Drill Pipe and Drill Collars from...

2010-03-08

317

Constraints on magma ascent, emplacement, and eruption: Geochemical and mineralogical data from the drill core at Inyo Craters, Inyo Chain, California: Final report  

SciTech Connect

An 861-m-long hole (Inyo-4) has been cored on a slanted trajectory that passed directly beneath South Inyo Crater in the west moat of Long Valley Caldera, California. The purpose of the hole was to investigate the magmatic behavior that led to surface deformation and phreatic activity during the 600-year-old eruption of the Inyo vent chain. The trajectory and stratigraphy encountered by Inyo-4 are shown. The volcanic and sedimentary sequence consists solely of post-Bishop Tuff caldera fill, including 319 m of moat basalt and 342 m of early rhyolite. Breccia zones that intrude the caldera fill were intersected at 12.0-9.3 m and 1.2-0.8 m SW and 8. 5-25.1 m NE of the crater center. The largest breccia unit is symmetrically zoned from margins rich in vesicular rhyolite and locally derived rhyolite wallrock to a center of up to 50 vol.% basalt. Most individual clasts of the rhyolite are less than or equal to0.1m; individual clasts in the basalt breccia are up to 1 m in intersected length. 6 figs., 3 tabs.

Vogel, T.A.

1988-01-01

318

Combination offshore drilling rig  

Microsoft Academic Search

An offshore drilling rig is described for use in drilling into a formation below a body of water comprising a barge hull having a drilling slot extending inwardly from the peripheral boundary of the barge hull, means for supporting the barge hull in a position above the water, a cantilever structure mounted on the barge hull and movable horizontally with

D. B. Lorenz; J. S. II Laid

1986-01-01

319

HydroPulse Drilling  

SciTech Connect

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01

320

Indian Ocean proposed drilling  

Microsoft Academic Search

Tentative plans for the Ocean Drilling Project (ODP) are for the drilling vessel SEDCO\\/BP 471 (Eos, March 13, 1984, p. 97) to work in the Indian Ocean during all or parts of 1987 and 1988. The Indian Ocean Advisory Panel of ODP solicits letters of intent or proposals for possible scientific ocean drilling during that period. All areas within the

Joseph R. Curray

1984-01-01

321

Becker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 174B  

E-print Network

that the advanced hydraulic piston corer (APC) had not been developed when Site 395 was cored during Ocean DrillingBecker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports (drill-pipe measurement from rig floor, mbrf): 4457.1 Total depth (drill-pipe measurement from rig floor

322

Geoscience Research Drilling Office Operations I: the North INYO Drilling Program, 1984  

SciTech Connect

The North Inyo Drilling Program was part of the Continental Scientific Drilling Program/Thermal Regimes and it was put forth by the Department of Energy/Office of Basic Energy Sciences to explore roots of a 600 year old volcanic system which is found in the north-west corner of Long Valley Caldera, California. The responsibility of the Geoscience Research Drilling Office was to provide logistical support to the scientific drilling team. This support consisted of obtaining the necessary permits, obtaining a drilling contract and providing field services involving logging and core handling/laboratory facilities. The first portion of this program was successful when hole RDO-2b traversed the conduit which fed Obsidian Dome; the second portion succeeded when RDO-3a traversed the dike underlying the Inyo Chain of volcanoes.

Lysne, P.

1986-05-01

323

Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada  

SciTech Connect

Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone).

Nelson, P.H. [Geological Survey, Denver, CO (United States); Schimschal, U. [Bureau of Reclamation, Denver, CO (United States)

1993-05-01

324

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01

325

Kimama Well - Borehole Geophysics Database  

SciTech Connect

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

2011-07-04

326

Kimberly Well - Borehole Geophysics Database  

SciTech Connect

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

2011-07-04

327

Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii  

Microsoft Academic Search

We have investigated the isotopic compositions of Os, Sr, Nd, and Pb in a suite of primitive Mauna Loa lavas from the upper 280 m of the Hawaii Scientific Drilling Project pilot core drilled near Hilo, Hawaii. These lavas were probably erupted from Mauna Loa's northeast rift. Correlations between Os (hosted by olivine) and other isotopes indicate that olivine crystals

Erik H. Hauri; John C. Lassiter; Donald J. DePaolo

1996-01-01

328

Future program of ocean research drilling use of GLOMAR EXPLORER  

Microsoft Academic Search

The scientists involved in earth science research and study have defined the task to explore the deep ocean margins and basins in 12000 to 14000 feet of water by drilling into the earth to obtain cores beneath the oceans to approximately 20000 feet. This task will require a large drill ship, a 12000-14000 foot riser and well control system and

F. MacTernan

1977-01-01

329

Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland  

Microsoft Academic Search

Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling,

L. D. McGinnis; C. R. Daudt; M. D. Thompson; S. F. Miller; W. A. Mandell; J. Wrobel

1994-01-01

330

Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348  

NASA Astrophysics Data System (ADS)

The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored interval. Theoretically, overpressured zones in the formation can be identified through C2/C3 ratios, but these ratios are highly affected by changing drilling parameters. Proper mud gas evaluations will need to carefully consider the effects of variable drilling parameters when designing experiments and interpreting the data.

Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

2014-05-01

331

National Geophysical Data Center  

NSDL National Science Digital Library

To say that the National Geophysical Data Center (NGDC) brings a wide range of scientific materials together in one location online would perhaps be a bit of an understatement. This site brings together over 300 digital and analog databases, which include those that deal with marine conditions, lake cores, seismic reflection, and ecosystems. Visitors can feel free to browse around in this list of databases via the "Data and Information" tab located on the top of the site's homepage, or they can also perform a more detailed search as well. It is worth noting that there are six featured types of databases on the homepage, which include solar events, geomagnetic data, and natural hazards. Additionally, a good way to keep abreast of new materials on the site is by looking at their "News and Features" area, which profiles data sets of note.

332

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-print Network

in understanding long-term climate change and heat transport to the poles. The Bering Sea-- connected to the Arctic bring reports about the almost 4-km-deep ice coring in Antarctica (p. 41), which may reveal climate data Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change

Demouchy, Sylvie

333

Overview of the Barberton Drilling Project  

NASA Astrophysics Data System (ADS)

The Barberton Greenstone Belt in South Africa is one of the best-preserved successions of mid- Archean (3.5-3.2 Ga) supracrustal rocks in the world, and, as such, a remarkable natural laboratory where conditions and processes at the surface of the Archean Earth can be studied in detail. Volcanic and sedimentary sequences in the belt provide information on the environment in which life emerged and evolved. A drilling project, sponsored by the International Continental Drilling Program (ICDP), and many national funding agencies, was completed in May 2012. More than 3000 m of core from 5 holes at four sites were recovered. At the Tjakastad site, two ca. 300 m holes were drilling through sequences of komatiites and komatiitic basalts. The other three holes targeted sedimentary rocks: the Buck Reef hole sampled over 700m of mainly banded black and white cherts; the Mid Fig Tree hole sampled a sequence of ferruginous charts and mudstones; and the Barite Valley hole samples a more varied sequence including sandstone, shale, cherts and volcaniclastic rocks. The core is stored and has been logged in facilities of the University of the Wirwatersrand. Core logs can be found at tp://www.peeringintobarberton.com/Sites.html . An open call for proposals to work on the core, sent out in November 2012, was answered by over 50 scientists from 12 countries who plan to study the core using techniques ranging from petrography, through major and trace-element analysis, to sophisticated isotopic analysis. A workshop to discuss the drilling project and to view the core is planned at the University of the Witwatersrand in Johannesburg from Mon 18th to Wed the 21st February 2013, followed by a short trip to the Barberton belt to visit the drilling sites.

Arndt, Nicholas T.; Wilson, Allan; Mason, Paul; Hofmann, Axel; Lowe, Don

2013-04-01

334

Fulfilling the Promise of the DSDP/ODP Legacy with Multiparameter Logging of Archive Cores  

NASA Astrophysics Data System (ADS)

Since 1968, the Deep-Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) have been storing their recovered sediment and rock cores in purpose-built, refrigerated repositories. Approximately 300 km of core was recovered by DSDP and ODP at an estimated average cost of $2,000,000/km. Half of every core recovered is kept as an archive half, normally only available for viewing (subsampling requires special permissions). Sound archiving policies and storage techniques over the years have ensured that these half cores have remained well preserved for analyses that were not made, or were not technically possible, at the time of recovery. The archive half-cores are well suited for automated non-destructive geophysical measurements ("core logging"), including many of those that provide essential data for reconstructing Earth's climatic history, such as high-resolution magnetic susceptibility, natural gamma spectroscopy, and UV/VIS/IR spectrophotometry. Most of the cores have either not been logged for all the relevant parameters or have not been logged at the spatial intervals necessary for high resolution climatic studies. Consequently, a very large, untapped reservoir of paleoclimatic and other data awaits extraction from these well-preserved archive half-cores. Recently we used a new Geotek MSCL-XYZ core logger at the IODP West Coast Repository to log archive core halves recovered by D/V Glomar Challenger in 1983. We wished to obtain a high-resolution paleoclimate record for DSDP Site 594, east of New Zealand, Southwest Pacific, to complement the record obtained more recently from nearby ODP Site 1119, cored in 1998. The new MSCL-XYZ system is specifically designed to allow multiparameter, non-destructive geophysical data to be collected easily at high spatial resolutions from archive core halves. Because the data acquisition from archive cores can be slow, either because of the measurement itself or the frequency at which the data is required, the system holds multiple 1.5 m-long core sections (currently up to 9) and can be left to run unattended for hours or days at a time. We obtained complete data sets of natural gamma, magnetic susceptibility, spectral color and RGB digital line scan images for the top 150m of the sediment column at Site 594 . No useful core log data was previously available for this site. The data set of primary interest was natural gamma, which will be compared with the downhole natural gamma record from Site 1119. To our knowledge this is the first time that a high-resolution natural gamma data log has been recovered from an archive core half. Detailed magnetic susceptibility records were also obtained despite low signal levels, using 10 sec sampling time throughout. The excellent quality of the spectral color and RGB image data, despite the partially ephemeral nature of these properties, is a testament to the core storage techniques employed over 21 years. As core working halves become depleted, pressure is mounting to allow subsampling from the archive core-halves. The community now has the tools necessary to take advantage of what could be a final opportunity to collect continuous geophysical data on ocean cores drilled over the past three decades.

Schultheiss, P. J.; Holland, M. E.; Francis, T. J.; Roberts, J. A.; Carter, R. M.

2004-12-01

335

The physics of the earth's core: An introduction  

SciTech Connect

This book is a reference text providing information on physical topics of recent developments in internal geophysics. The text summarizes papers covering theoretical geophysics. Basic formulae, definitions and theorems are not explained in detail due to the limited space. The contents include applications to geodesy, geophysics, astronomy, astrophysics, geophysics and planetary physics. The formal contents include: The Earth's model; Thermodynamics; Hydrodynamics; Geomagnetism; Geophysical implications in the Earth's core.

Melchior, P.

1986-01-01

336

GIS of selected geophysical and core data in the northern Gulf of Mexico continental slope collected by the U.S. Geological Survey  

USGS Publications Warehouse

Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.

Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.

2006-01-01

337

“Imaging” the cross section of oceanic lithosphere: The development and future of electrical microresistivity logging through scientific ocean drilling  

NASA Astrophysics Data System (ADS)

A detailed understanding of the architecture of volcanic and magmatic lithologies present within the oceanic lithosphere is essential to advance our knowledge of the geodynamics of spreading ridges and subduction zones. Undertaking sub-meter scale observations of oceanic lithosphere is challenging, primarily because of the difficulty in direct continuous sampling (e.g., by scientific ocean drilling) and the limited resolution of the majority of geophysical remote sensing methods. Downhole logging data from drillholes through basement formations, when integrated with recovered core and geophysical remote sensing data, can provide new insights into crustal accretion processes, lithosphere hydrogeology and associated alteration processes, and variations in the physical properties of the oceanic lithosphere over time. Here, we introduce an alternative approach to determine the formation architecture and lithofacies of the oceanic sub-basement by using logging data, particularly utilizing downhole microresistivity imagery (e.g. Formation MicroScanner (FMS) imagery), which has the potential to become a key tool in deciphering the high-resolution internal architecture of the intact upper ocean crust. A novel ocean crust lithostratigraphy model based on meticulously deciphered lava morphology determined by in situ FMS electrofacies analysis of holes drilled during Ocean Drilling Program legs (1) advances our understanding of ocean crust formation and accretionary processes over both time and space; and (2) allows the linking of local igneous histories deciphered from the drillholes to the regional magmatic and tectonic histories. Furthermore, microresistivity imagery can potentially allow the investigation of (i) magmatic lithology and architecture in the lower ocean crust and upper mantle; and, (ii) void space abundances in crustal material and the determination of complex lithology-dependent void geometries.

Tominaga, Masako

2013-11-01

338

North American Database of Archaeological Geophysics  

NSDL National Science Digital Library

Under a grant from the National Park Service's National Center for Preservation Technology, the North American Database of Archaeological Geophysics (NADAG) is developed and maintained by the Center for Advanced Spatial Technologies (CAST) and members of the Department of Anthropology at the University of Arkansas. The Web site primarily targets the general archaeology community, offering a wide array of information geared toward using geophysical methods and technology to improve archaeological practices. Among other materials, the Web Site offers an image library, project database, and bibliography concerning the archaeological geophysics of North America. Searchable by location, archaeological site type, and geophysical survey type, NADAG's core materials -- the image library and project database -- are easy to navigate and extensive. Another point of interest, especially for educators, are the provided education materials. Additionally, users should note the open nature of the site's data; NADAG accepts relevant submissions to their database.

339

Experimental drilling in Chattanooga shale  

USGS Publications Warehouse

Information on which specifications were originally drawn for drilling the Chattanooga shale was obtained largely from the TVA, whose geologists and driller laid great stress on the difficulties of maintaining circulation in their ho;es. The stated that the shale itself was not particularly difficult to core, the trouble being in the overburden. They did not use deep casing, depending on cementing to hold the holes open. On this basis, the Survey's specifications called for mid casing only, it being assumed that solid rock would be encountered at relatively shallow depths. This belief was borne out by examination of such road cuts and other exposures as were available.

Brown, Andrew

1948-01-01

340

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration  

E-print Network

) Enclosed device drilling 5mm bovine bone sample 2 Methods This handheld, portable, cranial drilling device with casing open (right) Enclosed device drilling 5mm bovine bone sample handheld, portable, cranial drilling penetration, the retraction mechanism successfully withdraws the drill bit before damaging soft tissue beneath

341

Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well  

NASA Astrophysics Data System (ADS)

SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

2014-05-01

342

Method of deep drilling  

DOEpatents

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01

343

Mars Science Laboratory Drill  

NASA Technical Reports Server (NTRS)

The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

Okon, Avi B.

2010-01-01

344

Mountain Home Well - Borehole Geophysics Database  

DOE Data Explorer

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

345

Mountain Home Well - Borehole Geophysics Database  

SciTech Connect

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

2012-11-11

346

Ice Core Investigations  

ERIC Educational Resources Information Center

What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

Krim, Jessica; Brody, Michael

2008-01-01

347

Power swivel advances drilling  

SciTech Connect

An automatic drilling system to meet a wide range of offshore and marine aplications is presented. Since it drills in sections of 90 ft, it reduces the number of connections required by two-thirds. At the same time, it speeds up the time of each connection and eliminates the hazard of rotating equipment on the drill floor. It is equipped with an air-oil swivel ring, allowing the pipehandler to freely rotate while air and oil hoses are hooked up.

Not Available

1984-05-01

348

Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)  

SciTech Connect

The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

Not Available

1986-12-01

349

ODP drilling at the East Pacific Rise  

NASA Astrophysics Data System (ADS)

Understanding the origin of the ocean crust by scientific drilling at the axes of mid-ocean ridges is a high priority in the Earth science community, as reflected in the Ocean Drilling Program (ODP) Long Range Plan, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Lithosphere Panel's White Paper, and several reports of the Ridge Inter-Disciplinary Global Experiments (RIDGE) program. The ODP Long Range Plan provides for over a dozen drilling legs at and near mid-ocean ridges prior to the year 2002, including a multileg drilling program at the East Pacific Rise (EPR).ODP Leg 142 (February-March 1992) was the first of this multi-leg effort and was devoted primarily to continued testing and development of the engineering systems needed for successful drilling of bare rock at mid-ocean ridges. At the same time, it was hoped that drilling would result in cores that could be used to study volcanic and hydrothermal processes, volcanic architecture, fluid flow, and other processes occurring at the active EPR axis.

Storms, M. A.; Reudelhuber, D. H.; Holloway, G. L.; Allan, J.; Batiza, R.

350

Horizontal drilling developments  

SciTech Connect

The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

Gust, D.

1997-05-01

351

Remote drill bit loader  

DOEpatents

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30

352

Remote drill bit loader  

DOEpatents

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01

353

Geophysical InversionFacility  

E-print Network

UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

Oldenburg, Douglas W.

354

Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology  

NASA Technical Reports Server (NTRS)

This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

2006-01-01

355

International Collaboration in Data Management for Scientific Ocean Drilling: Preserving Legacy Data While Implementing New Requirements  

Microsoft Academic Search

The Integrated Ocean Drilling Program (IODP: 2003-2013 initial phase) is the successor to the Deep Sea Drilling Project (DSDP: 1968-1983) and the Ocean Drilling Program (ODP: 1985-2003). These earlier scientific drilling programs amassed collections of sediment and rock cores (over 300 kilometers stored in four repositories) and data organized in distributed databases and in print or electronic publications. International members

F. R. Rack

2005-01-01

356

Reykjanes Ridge Crest: A Detailed Geophysical Study  

Microsoft Academic Search

A geophysical survey employing satellite navigation was carried out over the Reykjanes submarine ridge southwest of Iceland. Water depth, sediment thickness, and the gravity and magnetic fields were continuously measured. In addition, bottom cores and measurements of sediment and water temperatures were obtained at stations. Expendable radio Sohobuoys were used to make seismic refraction measurements. This paper combines these various

Manik Talwani; Charles C. Windisch; Marcus G. Langseth Jr.

1971-01-01

357

Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho  

SciTech Connect

A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

Bennecke, W.M.

1996-10-01

358

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30

359

Drilling continues upward momentum  

SciTech Connect

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24

360

Hydraulic energy drill bit  

Microsoft Academic Search

A drill bit for drilling a rock foundation is provided having a bit face matrix for supporting a plurality of cutters, the matrix having one or more fluid passages for discharging a fluid to flow over the bit face. To enhance the cleaning and cooling of the plurality of cutters, the bit face matrix includes a nozzle for restricting the

Creighton

1985-01-01

361

Automatic drilling control system  

SciTech Connect

An automatic drilling control system is described for a drilling apparatus having a rig with a crown block and a traveling block. A draw works include an engine, a drum powered by the engine, clutches, and controls, a drilling line wound on the drum and rolled up or fed out during drilling by the engine. The drilling line extends through the crown block and the traveling block and connects to a fixed point. The line portion from the crown block to the fixed point is the dead line. The crown block and traveling block form a pulley system for supporting a drill pipe to raise or lower the same during drilling. A hydraulic pressure sensor connects to the dead line to measure the tension. A weight indicator gauge adjacent to the controls connects to the pressure sensor by a hydraulic line. A brake, having a brake handle, controls the rate of feed out of the drilling line to determine the tension on the dead line.

Ball, J.W.

1987-05-05

362

Two-dimensional geomorphological characterization of a filled abandoned meander using geophysical methods and soil sampling  

NASA Astrophysics Data System (ADS)

Using geophysical methods for the geomorphological characterization of subsurface features has numerous advantages over traditional exploration methods, because of their noninvasive and rapid nature. In this study, we compared the results of four geophysical methods with each other. We also discuss their possibilities and limitations in a geomorphological investigation. Electrical resistivity tomography (ERT), refraction seismic (RS), ground penetrating radar (GPR), and multichannel analysis of surface waves (MASW) methods were applied at an abandoned meander in northern Saxony to map a predefined structure. By combining these methods, we were able to characterize and delineate subsurface features of the abandoned meander, including a point bar, a channel, and a cutbank. Core samples obtained from sonic drilling were used to validate the findings of both seismic methods. However, we found that electrical resistivity tomography and ground penetrating radar lacked penetration depth and could only be used to resolve shallower subsurface layers. The ERT, GPR, RS, and MASW can be used to gather images of subsurface structures. The MASW in particular provides supplementary information about the channel's internal structure (with respect to lateral and vertical resolution). Besides fluvial-morphological features, we also detected inverse velocity structures within the channel. This allowed us to characterize the abandoned meander using information about its layer distribution and material composition. However, we were only able to characterize and delineate the subsurface features of the abandoned meander by combining all of the aforementioned methods.

Hausmann, Jörg; Steinel, Hannes; Kreck, Manuel; Werban, Ulrike; Vienken, Thomas; Dietrich, Peter

2013-11-01

363

Advanced drilling systems  

SciTech Connect

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31

364

Drill hole logging with infrared spectroscopy  

USGS Publications Warehouse

Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

Calvin, W.M.; Solum, J.G.

2005-01-01

365

Drilling the Bushveld Complex- the world's largest layered mafic intrusion  

NASA Astrophysics Data System (ADS)

The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will evaluate the latest differentiates of the Complex: are they represented by felsic Rooiberg lavas (Van Tongeren & Mathez, 2012 J. Petrol. 51, 1891), or a newly-discovered sequence of hornblende quartz monzonites (Cawthorn, 2013, J. Petrol., in press)? Target C- Northern Lobe of Bushveld Complex. We propose 2 shorter ~500 m boreholes sited to (a) fill in missing stratigraphy of 2 existing deep cores (Bellevue & Moordkopje) including the unique 200 m thick troctolitic horizon in the Main Zone, and (b) to study the transgressive Main Zone - Upper Zone boundary several km north of the Bellevue/Moordkopje sites. All boreholes are intended to provide continuous down-hole geophysical measurements including magnetic susceptibility, density, electrical conductivity and radiometric data. There is also potential to obtain deep fluids and gases for biogeochemical and other studies. All interested geoscientists are welcome to attend the workshop. Watch the ICDP website for announcements (www.icdp-online.org).

Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

2013-12-01

366

Drilling Systems for Extraterrestrial Subsurface Exploration  

Microsoft Academic Search

Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an

K. Zacny; Y. Bar-Cohen; M. Brennan; G. Briggs; G. Cooper; K. Davis; B. Dolgin; D. Glaser; B. Glass; S. Gorevan; J. Guerrero; C. McKay; G. Paulsen; C. Stoker

2008-01-01

367

Preliminary Drill Sites  

DOE Data Explorer

Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

Lane, Michael

368

Preliminary Drill Sites  

SciTech Connect

Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

Lane, Michael

2013-06-28

369

Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China  

NASA Astrophysics Data System (ADS)

The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12?m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100~200?m, 600~850?m and 1450~1550?m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole.

Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

2014-10-01

370

Drilling Advanced Aircraft Structures with PCD (Poly Crystalline Diamond) Drills  

Microsoft Academic Search

With the increased usage of Carbon Fiber Reinforced Plastics (CFRP) in the newest generation of commercial aircraft, the opportunity for using PCD drills has also increased. PCD has long been the preferred solution for the drilling of CFRP. However, given the manufacturing demands of commercial aircraft, a single drilling solution would be required to drill all possible material stack combinations

Richard Garrick

371

High-power slim-hole drilling system  

SciTech Connect

The objective of this project is to implement new high-power slim-hole motors and bits into field gas well drilling applications. Development of improved motors and bits is critical because rotating time constitutes the major cost of drilling gas wells. Conventional motors drill most formations 2 to 3 times faster than rotary continuous coring systems due to greater power transfer to the drill bit. New high-power motors and large-cutter TSP bits being developed by Maurer Engineering, Inc. (MEI) drill 2 to 3 times faster than conventional motors. These slim-hole high-power motors and bits, which are ready for field testing on this DOE project, should reduce drilling costs by 20 to 40 percent in many areas. The objective of Phase I is to design, manufacture and laboratory test improved high-power slim-hole motors and large-cutter TSP bits. This work will be done in preparation for Phase II field tests. The objective of Phase II will be to field test the high-power motors and bits in Amoco`s Catoosa shallow-test well near Tulsa, OK, and in deep gas wells. The goal will be to drill 2 to 3 times faster than conventional motors and to reduce the drilling costs by 20 to 40 percent over the intervals drilled.

Cohen, J.H.

1995-07-01

372

30 CFR 57.7009 - Drill helpers.  

Code of Federal Regulations, 2011 CFR

...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

2011-07-01

373

30 CFR 57.7009 - Drill helpers.  

Code of Federal Regulations, 2012 CFR

...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

2012-07-01

374

30 CFR 57.7009 - Drill helpers.  

Code of Federal Regulations, 2014 CFR

...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

2014-07-01

375

30 CFR 57.7009 - Drill helpers.  

Code of Federal Regulations, 2013 CFR

...NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

2013-07-01

376

Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989  

USGS Publications Warehouse

The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

Dyni, John R.; Gay, Frances; Michalski, Thomas C.

1990-01-01

377

Geophysical well log analysis of fractured granitic rocks at Atikokan, Ontario, Canada  

USGS Publications Warehouse

Two boreholes, drilled to approximate depths of 750 and 1,260 m in a granitic intrusion located near Atikokan, Ontario, were studied by obtaining a full suite of conventional borehole geophysical logs. In addition, selected intervals in these boreholes were logged with a borehole acoustic televiewer that produces a high-resolution image of the borehole wall, an acoustic waveform-logging system using 34-kiloHertz magnetostrictive and 5-kiloHertz sparker sources, and a highly sensitive heat-pulse flowmeter. Emphasis was on identifying and characterizing fracture zones that represent groundwater conduits in deeper portions of the granite, and on characterizing the properties of the largest intervals of unfractured granite. Major fracture zones were indicated by correlating geophysical log anomalies detected on the suite of conventional logs (unpublished data from Atomic Energy of Canada). However, several other anomalies, were identified as mafic intrusions of approximately the same thickness as major fracture zones. Geophysical log anomalies were compared for all major fracture zones that could serve as significant groundwater conduits, and fracture zone permeability is estimated on the basis of acoustic tube-wave attenuation in these intervals. Acoustic televiewer logs obtained at depths below 1,000 m in the deeper well indicate that most of the few fractures identified on core at these depths do not remain open enough under in situ conditions to produce detectable anomalies in acoustic refraction. Flowmeter data indicate that some groundwater circulation occurs in the upper portion of both boreholes. Water in the shallower of the two holes was observed to flow at 2.0 L/min; most of this flow entered the borehole at a depth < 25 m, and no flow occurred below a depth of 100 m. Downflow at rates < 0.5 L/min was determined to enter the deeper borehole within 20 m of the surface, and to exist at various fractures down to a depth of 250 m. (Author 's abstract)

Paillet, F.L.; Hess, A.E.

1987-01-01

378

Biostratigraphic data for the Cretaceous marine sediments in the USGS-St. George no. 1 core (DOR-211), Dorchester County, South Carolina  

USGS Publications Warehouse

The USGS-St. George corehole was drilled for the U.S. Geological Survey (USGS) by a commercial drilling company during 1982. The corehole is located within the Coastal Plain Province in northern Dorchester County, South Carolina, about three miles southeast of the town of St. George near the village of Byrd (fig. 1). Coordinates for the corehole are 33o09'25'N latitude and 80o31'18'W longitude; ground elevation at the site is +78 feet (Reid and others, 1986). The St. George corehole is designated as USGS drill hole DOR-211. The St. George corehole was drilled to a total depth of 2,067 ft. The hole was cored continuously with generally good recovery from 300 ft to its total depth. Spot cores were taken at selected intervals between the top of the hole and a depth of 300 ft (50-55 ft, 100-110 ft, 150-165 ft, 200-205 ft, and 250-255 ft); however, recovery was poor in most of these intervals. The St. George core currently is stored at the USGS National Center, Reston, VA (March, 1997). The St. George corehole bottomed in basalt of probable early Mesozoic age beneath an Upper Cretaceous and Cenozoic sedi-mentary section. Reid and others (1986) placed the top of basalt saprolite at 1,962 ft in the hole. Our examination of the geophysical logs and original core descriptions suggests that the top of the saprolite is higher in the hole, at about 1,939 ft. The Cretaceous-Tertiary boundary was placed at or near 550 ft in the core by Reid and others (1986) and by Habib and Miller (1989). In this report, we provide paleontologic data for marine sediments in the upper part of the Upper Cretaceous section in the St. George core. Biostratigraphic and paleoenvironmental data and interpretations based on the study of calcareous nannofossils and ostracodes from the Cretaceous section are discussed.

Self-Trail, Jean M.; Gohn, Gregory S.

1997-01-01

379

The study of a potential CO2 repository: Integrating laboratory and field geophysical experiments to characterize the upper Muschelkalk aquifer (northern Switzerland)  

NASA Astrophysics Data System (ADS)

The upper Muschelkalk saline aquifer consists of partly dolomitized to completely dolomitized carbonate rocks of mid Triassic age (~230 Ma). This aquifer is present throughout the Swiss Molasse Basin (SMB), north of the Alps. A regional appraisal of the SMB indicates that this Formation is a potential host aquifer for sequestered CO2. However, the spatial distribution and heterogeneity of the porosity, permeability and other relevant physical and mechanical properties of the upper Muschelkalk are still poorly known. The uncertainty in this knowledge stems mainly from the weakly developed oil and gas exploration industry in Switzerland. We use an integrated approach to better constrain the aquifer physical properties, which couples field scale geophysical surveys (borehole logging and seismic reflection profiles) with laboratory analytical data. Here we focus on a set of boreholes from northern Switzerland, where geophysical data and drill core useable for laboratory measurements are available. Two sub-units comprise the upper Muschelkalk Formation. The stratigraphically higher part is a fossiliferous dolomite (>90 vol% CaMg(CO3)2; Trigodonusdolomit). The underlying unit, is composed of micritic calcite and dolomite layers interbedded with fossil-rich layers (Hauptmuschelkalk). Although both units are part of the aquifer formation, they appear to have distinctly different physical properties. The transition from Trigodonusdolomit to the Hauptmuschelkalk is marked by an increase in the sonic velocity, density and acoustic impedance. The magnitude of increase in sonic velocity can be up to 500 m/s, accompanied by an increase in acoustic impedance from 8500 to 15500 (m/s*g/cm3), but varies between the different boreholes. Poisson's ratio, determined from a single borehole, show sharp decrease at the transition. The origin of the changes in the geophysical data is likely reflecting differences in porosity and mineral composition in the Trigodonusdolomit and Hauptmuschelkalk. The boundary between the Trigodonusdolomit and Hauptmuschelkalk is further apparent in reflection seismic lines from surveys near the boreholes. Laboratory measurements of porosity, permeability, ultrasonic velocities and triaxial strength testing were performed at conditions similar to reservoir (in situ) conditions, and when applicable at room conditions, on samples recovered from borehole drill cores. Initial laboratory measurements of porosity, ultrasonic velocities and permeability also show distinct differences between the Trigodonusdolomit and Hauptmuschelkalk. Up-scaling issues, which arise from the comparison of laboratory measurements (small sample size) to field geophysical data, are discussed. Integration of laboratory and geophysical survey data allow us to better understand porosity and permeability distribution in the upper Muschelkalk aquifer on the scale of the Swiss Molasse Basin.

Almqvist, B.; Zappone, A. S.; Misra, S.; Diamond, L.

2011-12-01

380

Fiber optic geophysical sensors  

DOEpatents

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01

381

Hydraulic straight hole drill collar  

Microsoft Academic Search

An improved drill collar for forming relatively straight holes in crooked hole type formations. One or more hydraulic drill collars are connected in series relationship within a drill string above a rotary bit at the point of tangency. Each drill collar includes at least one outwardly opening, longitudinally extending slot formed on the exterior thereof. The slot includes a back

Townson

1985-01-01

382

Alphine 1/Federal: Drilling report. Final report, Part 1  

SciTech Connect

Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Pisto, L. [Tonto Drilling Services, Inc., Salt Lake City, UT (United States); Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

1994-06-01

383

Geophysical Constraints on the Nature of Atlantis Massif, 30°N MAR  

NASA Astrophysics Data System (ADS)

Recent drilling at Atlantis Massif, Mid-Atlantic Ridge 30°N, provides new insights into oceanic core complex (OCC) development. IODP Expeditions 304/305 had high recovery in the footwall of the detachment capping the central dome of the massif: Hole U1309B, 100 m deep; Hole U1309D, 1415 m. Recovery of a dominantly gabbroic sequence challenges prior interpretations that this OCC was mainly ultramafic, geophysical data having suggested much of the uplifted core was mantle peridotite, with Moho less than 1 km deep. Although models based on prior analysis fit the data well and were consistent with outcrops of serpentinized peridotite on the south face of Atlantis Massif, it is now clear that additional complexity needs to be incorporated in the geophysical analysis. The southern ridge is morphologically distinct from the central dome. Does this indicate that the south and central parts of this OCC are fundamentally different? Or, is the serpentinized peridotite exposed on the south wall (and found in a few loose fragments on top of the central dome) a thin veneer of mantle rock that has deformed around a dominantly gabbroic core? The occurrence of many gabbroic samples from the southern ridge could support the latter but models of serpentinization that drives the Lost City hydrothermal system near the peak of the massif might favor the former. New analysis of geophysical data provide further constraints on the scale of possible variability. Prior seismic analysis suggested fresh mantle might shoal by a couple hundred meters 1-2 km north of Site U1309. In contrast, gravity data suggest the highest density rocks occur at and to the south of the site. These observations will be combined in a 3D model of Atlantis Massif and we expect to report initial results. Downhole logging indicates that bulk density increases steadily from 2.8 to 2.9 g/cc downhole. Log and core sample seismic velocity are variable within a 5.5-6.8 km/s range, lower values where degree of alteration is greatest, higher values in olivine-rich units. Initial analysis of borehole seismometer recordings of airgun shots suggests a high velocity interval occurs within the fresnel zone (100's m) of this experiment. Postcruise analysis is required to rule out noise bias so we expect to report whether this indication of velocity greater than 7 km/s at 580-635 m depth is confirmed. If it is, this could indicate that prior refraction analysis detected a lens of high velocity rock but not the regional Moho.