Science.gov

Sample records for geophysical drill cores

  1. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

  2. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  3. Geologic, geotechnical, and geophysical properties of core from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming

    USGS Publications Warehouse

    Collins, Donley S.

    1983-01-01

    A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal

  4. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.

  5. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  6. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  7. A New Paradigm for Ice Core Drilling

    NASA Astrophysics Data System (ADS)

    Albert, Mary; Bentley, Charles; Twickler, Mark

    2010-09-01

    The search for answers to questions about the changing climate has created an urgent need to discover past climate signatures archived in glaciers and ice sheets, and to understand current ice sheet behavior. Recognizing that U.S. scientific productivity in this area depends upon a mechanism for ensuring continuity and international cooperation in ice coring and drilling efforts, along with the availability of appropriate drills, drilling expertise, and innovations in drilling technology, the U.S. National Science Foundation (NSF) has established the Ice Drilling Program Office (IDPO) and its partner, the Ice Drilling Design and Operations group (IDDO), together known as IDPO/IDDO (Figure 1). This approach to integrated research and technology planning and delivery replaces the prior approach to drilling, which involved a series of NSF contracts with the Polar Ice Coring Office (PICO) and Ice Coring and Drilling Services (ICDS). This contracting approach lacked integrated planning. Previously, NSF had no way to forecast what science the community would propose—it would get compelling climate proposals that needed ice cores for data, but in many cases no existing drill could retrieve the core needed in the proposal. Constructing the needed drill—a process that takes years—forced science objectives to be put on hold. Now the science community is able to give feedback on its needs to IDPO/IDDO continually, allowing those who develop drilling technology to begin designing and constructing drills that scientists will need for the science proposals that they will submit years in the future. As such, IDPO/IDDO represents a new paradigm for integrated science and science support.

  8. Test report for core drilling ignitability testing

    SciTech Connect

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  9. Buckling and dynamic analysis of drill strings for core sampling

    SciTech Connect

    Ziada, H.H., Westinghouse Hanford

    1996-05-15

    This supporting document presents buckling and dynamic stability analyses of the drill strings used for core sampling. The results of the drill string analyses provide limiting operating axial loads and rotational speeds to prevent drill string failure, instability and drill bit overheating during core sampling. The recommended loads and speeds provide controls necessary for Tank Waste Remediation System (TWRS) programmatic field operations.

  10. Concepts and Benefits of Lunar Core Drilling

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.

    2007-01-01

    Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.

  11. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  12. Geophysical investigations in deep horizontal holes drilled ahead of tunnelling

    USGS Publications Warehouse

    Carroll, R.D.; Cunningham, M.J.

    1980-01-01

    Deep horizontal drill holes have been used since 1967 by the Defense Nuclear Agency as a primary exploration tool for siting nuclear events in tunnels at the Nevada Test Site. The U.S. Geological Survey had developed geophysical logging techniques for obtaining resistivity and velocity in these holes, and to date 33 horizontal drill holes in excess of 300 m in depth have been successfully logged. The deepest hole was drilled to a horizontal depth of 1125 m. The purposes of the logging measurements are to define clay zones, because of the unstable ground conditions such zones can present to tunnelling, and to define zones of partially saturated rock, because of the attenuating effects such zones have on the shock wave generated by the nuclear detonation. Excessive attenuation is undesirable because the shock wave is used as a tunnel closure mechanism to contain debris and other undesirable explosion products. Measurements are made by pumping resistivity, sonic and geophone probes down the drill string and out of the bit into the open hole. Clay zones are defined by the electrical resistivity technique based on empirical data relating the magnitude of the resistivity measurement to qualitative clay content. Rock exhibiting resistivity of less than 20 ??-m is considered potentially unstable, and resistivities less than 10 ??-m indicate appreciable amounts of clay are present in the rock. Partially saturated rock zones are defined by the measurement of the rock sound speed. Zones in the rock which exhibit velocities less than 2450 m/sec are considered of potential concern. ?? 1980.

  13. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and ?-? density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  14. Cretaceous shallow drilling, US Western Interior: Core research

    SciTech Connect

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  15. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.

  16. Ultrasonic/Sonic Mechanisms for Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Dolgin, Benjamin; Askin, Steve; Peterson, Thomas M.; Bell, Bill; Kroh, Jason; Pal, Dharmendra; Krahe, Ron; Du, Shu

    2003-01-01

    Two apparatuses now under development are intended to perform a variety of deep-drilling, coring, and sensing functions for subsurface exploration of rock and soil. These are modified versions of the apparatuses described in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. In comparison with the drilling equipment traditionally used in such exploration, these apparatuses weigh less and consume less power. Moreover, unlike traditional drills and corers, these apparatuses function without need for large externally applied axial forces.

  17. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.

  18. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    SciTech Connect

    Musgrave, J.A.; Goff, F.; Shevenell, L.; Trujillo, P.E. Jr.; Counce, D.; Luedemann, G.; Garcia, S.; Dennis, B.; Hulen, J.B.; Janik, C.; Tomei, F.A.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  19. Data from core analyses, aquifer testing, and geophysical logging of Denver Basin bedrock aquifers at Castle Pines, Colorado

    USGS Publications Warehouse

    Robson, S.G.; Banta, E.R.

    1993-01-01

    This report contains data pertaining to the geologic and hydrologic characteristics of the bedrock aquifers of the Denver basin at a site near Castle Pines, Colorado. Data consist of a lithologic- description of about 2,400 ft of drill core and laboratory determinations of mineralogy, grain size, bulk and grain density, porosity, specific yield, and specific retention for selected core samples. Water-level data, atmospheric-pressure measurements, aquifer-compression measurements, and borehole geophysical logs also are included.

  20. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, F.L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous factors that may be relevant to this interpretation also is presented. (Lantz-PTT)

  1. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect

    Goff, S.J.; Goff, F.E.; Heiken, G.H.; Duffield, W.A.; Janik, C.J.

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  2. Discarded Drill Cores from the Blackbird Cobalt-Copper Mine

    USGS Multimedia Gallery

    Blocks of biotitic meta-sandstone from the lower part of the Gunsight Formation, and drill core from the underlying banded siltite unit of the Apple Creek Formation, lying on the dump of the lower workings of the Copper Queen mine, southeast of the Blackbird cobalt-copper mine area....

  3. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  4. Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Wefer, G.

    2013-12-01

    The sea floor drill rig MeBo (acronym for Meeresboden-Bohrgerät, German for sea floor drill rig) is a robotic drill rig that is deployed on the sea floor and operated remotely from the research vessel to drill up to 80 m into the sea floor. It was developed at the MARUM Research Center for Marine Environmental Sciences at Bremen University. The complete system - comprising the drill rig, winch, control station, and the launch and recovery system - is transported in six containers and can be deployed worldwide from German and international research ships. It was the first remote-controlled deep sea drill rig to use a wireline coring technique. Compared to drilling vessels this technology has the advantage of operating from a stable platform at the sea bed, which allows for optimal control over the drilling process. Especially for shallow drillings in the range of tens to hundreds of metres, sea bed drill rigs are time-efficient since no drill string has to be assembled from the ship to the sea floor before the first core can be taken. The MeBo has been successfully operated, retrieving high-quality cores at the sea bed for a variety of research fields, including slope stability studies and palaeoclimate reconstructions. Based on experience with the MeBo, a rig is now being built that will be able to drill to a depth of 200 m.

  5. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs

    USGS Publications Warehouse

    Wu, H.-Y.; Ma, K.-F.; Zoback, M.; Boness, N.; Ito, H.; Hung, J.-H.; Hickman, S.

    2007-01-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole to investigate the structure and mechanics of the Chelungpu Fault that ruptured in the 1999 Mw 7.6 Chi-Chi earthquake. Geophysical logs of the TCDP were carried out over depths of 500-1900 in, including Dipole Sonic Imager (DSI) logs and Formation Micro Imager (FMI) logs in order to identify bedding planes, fractures and shear zones. From the continuous core obtained from the borehole, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chinshui Shale, which extends from 1013 to 1300 meters depth. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore. These data show an overall stress direction (???N115??E) that is essentially parallel to the regional stress field and parallel to the convergence direction of the Philippine Sea plate with respect to the Eurasian plate. Variability in the average stress direction is seen at various depths. In particular there is a major stress orientation anomaly in the vicinity of the Chelungpu fault. Abrupt stress rotations at depths of 1000 in and 1310 in are close to the Chinshui Shale's upper and lower boundaries, suggesting the possibility that bedding plane slip occurred during the Chi-Chi earthquake. Copyright 2007 by the American Geophysical Union.

  6. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Elbra, T.; Kontny, A.; Pesonen, L. J.; Schleifer, N.; Schell, C.

    Physical properties from rocks of the Bosumtwi impact structure, Ghana, Central Africa, are essential to understand the formation of the relatively young (1.07 Ma) and small (10.5 km) impact crater and to improve its geophysical modeling. Results of our petrophysical studies of deep drill cores LB-07A and LB-08A reveal distinct lithological patterns but no depth dependence. The most conspicuous difference between impactites and target lithologies are the lower bulk densities and significantly higher porosities of the suevite and lithic breccia units compared to meta-graywacke and metapelites of target lithologies. Magnetic susceptibility shows mostly paramagnetic values (200-500 × 10-6 SI) throughout the core, with an exception of a few metasediment samples, and correlates positively with natural remanent magnetization (NRM) and Q values. These data indicate that magnetic parameters are related to inhomogeneously distributed ferrimagnetic pyrrhotite. The paleomagnetic data reveals that the characteristic direction of NRM has shallow normal (in a few cases shallow reversed) polarity, which is in agreement with the Lower Jaramillo N-polarity chron direction, and is carried by ferrimagnetic pyrrhotite. However, our study has not revealed the expected high magnetization body required from previous magnetic modeling. Furthermore, the LB-07A and LB08-A drill cores did not show the predicted high content of melt in the rocks, requiring a new interpretation model for magnetic data.

  7. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    USGS Publications Warehouse

    Spengler, Richard W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five fault zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members, restricted log coverage to the lower half of the drill hole.

  8. Barberton Drilling Project - Barite Valley Core BARB5

    NASA Astrophysics Data System (ADS)

    Mason, Paul; Galic, Aleksandra; Montinaro, Alice; Strauss, Harald; Hofmann, Axel; Chunnett, Gordon; Wilson, Allan; Arndt, Nick

    2013-04-01

    Diamond drilling has recently been completed in the Barberton Greenstone Belt, South Africa in order to obtain fresh, unweathered samples and continuous stratigraphic sections of Palaeoarchean volcanic and sedimentary rocks. The Barberton drilling project, sponsored by ICDP, has multiple aims including investigating the composition and temperature of the early atmosphere and oceans, the presence and activity of early microbial biosphere, the nature of melting in the mantle, and early tectonic processes. Three sections of sedimentary rocks have been obtained including the site BARB5 that is described here. The cores represent diverse chemical and clastic sediments and primary as well as diagenetic sedimentary structures. BARB5 cuts through stratigraphy in the 3.26-3.23 Ga lower Mapepe Formation of the Fig Tree Group in the Barite Valley Syncline. We provide core logs, details of the main lithologies sampled and present preliminary chemostratigraphic data. The core has a total length of 763 m and samples three major units with depth: siltstone, silicified volcaniclasics and laminated carbonaceous shales. The uppermost part of the stratigraphy consists of poorly preserved siltstone with some interbedded heavily weathered and variably silicified shale up to a core depth of 110 m. Heavily silicified volcaniclastic sediments, with interbedded cherts and sandstones underlie the siltstone for 150 m. The remaining 500m of core consists of interbedded shale, conglomerate, sandstone, breccias and minor chert bands at the base. An impact spherule layer occurs at the uppermost part of this zone accompanied by localized brecciation. Pyrite is common throughout the section as both discreet layers and disseminated grains. Forthcoming geological, geochemical and isotopic investigations with this core are expected to reveal key information about the nature of Archean sedimentary, biological and hydrothermal processes.

  9. Drilling cores on the sea floor with the remote-controlled sea-floor drilling rig MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Wefer, G.

    2013-07-01

    Sampling of the upper 50 to 200 m of the sea floor to address questions relating to marine mineral resources and gas hydrates, for geotechnical research in areas of planned offshore installations, to study slope stability, and to investigate past climate fluctuations, to name just a few examples, is becoming increasingly important both in shallow waters and in the deep sea. As a rule, the use of drilling ships for this kind of drilling is inefficient because before the first core can be taken a drill string has to be assembled extending from the ship to the sea floor. Furthermore, movement of the ship due to wave motion disturbs the drilling process and often results in poor core quality, especially in the upper layers of the sea floor. For these reasons, the MeBo drilling rig, which is lowered to the sea floor and operated remotely from the ship to drill up to 80 m into the sea floor, was developed at the MARUM Research Center for Marine Environmental Sciences at Bremen University. The complete system, comprising the drill rig, winch, control station, and the launch and recovery system, is transported in six containers and can be deployed worldwide from German and international research ships. It was the first remote-controlled deep sea drill rig that uses a wireline coring technique. Based on the experiences with the MeBo a rig is now being built that will be able to drill to a depth of 200 m.

  10. Research core drilling in the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.

    1992-01-01

    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence.

  11. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    SciTech Connect

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies.

  12. Geophysical logs and core measurements from forty boreholes at Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.; Muller, D.C.; Schimschal, U.; Kibler, J.E.

    1991-11-01

    A data base of geophysical logs and core measurements acquired in boreholes at Yucca Mountain, Nevada, has been established. We used this data set to generate log plots from 40 boreholes at a scale of 1:1200 for reference and for correlation. Log headers summarize the drilling and logging sequence. We describe the logging tools, the sources of core data, and the editing procedures. We illustrate the adverse effects of casing on the gamma-ray log, of borehole rugosity on the density log, and of borehole diameter and fluid resistivity on the resistivity logs. Welding and alteration of the tuffs are the dominant geological controls on the response of the density, velocity, neutron, and resistivity logs. Density, resistivity, gamma-ray, and, in particular, the magnetic-field logs are useful for correlation of stratigraphy and alteration. A few zones in which the matrix is moderately permeable have produced log responses indication invasion of the rock by drilling fluid. Readings from the density log were confirmed with core measurements. It appears that the epithermal-neutron and dielectric-permittivity logs can be used to estimate water content providing calibration methods are established. 82 refs., 30 figs., 6 tabs.

  13. Preliminary Physical Stratigraphy and Geophysical Data From the USGS Dixon Core, Onslow County, North Carolina

    USGS Publications Warehouse

    Seefelt, Ellen L.; Gonzalez, Wilma Aleman B.; Self-Trail, Jean M.; Weems, Robert E.; Edwards, Lucy E.; Pierce, Herbert A.; Durand, Colleen T.

    2009-01-01

    In October through November 2006, scientists from the U. S. Geological Survey (USGS) Eastern Region Earth Surface Processes Team (EESPT) and the Raleigh (N.C.) Water Science Center (WSC), in cooperation with the North Carolina Geological Survey (NCGS) and the Onslow County Water and Sewer Authority (ONWASA), drilled a stratigraphic test hole and well in Onslow County, N.C. The Dixon corehole was cored on ONWASA water utility property north of the town of Dixon, N.C., in the Sneads Ferry 7.5-minute quadrangle at latitude 34deg33'35' N, longitude 77deg26'54' W (decimal degrees 34.559722 and -77.448333). The site elevation is 66.0 feet (ft) above mean sea level as determined using a Paulin precision altimeter. The corehole attained a total depth of 1,010 ft and was continuously cored by the USGS EESPT drilling crew. A groundwater monitoring well was installed in the screened interval between 234 and 254 ft below land surface. The section cored at this site includes Upper Cretaceous, Paleogene, and Neogene sediments. The Dixon core is stored at the NCGS Coastal Plain core storage facility in Raleigh. The Dixon corehole is the fourth and last in a series of planned North Carolina benchmark coreholes drilled by the USGS Coastal Carolina Project. These coreholes explore the physical stratigraphy, facies, and thickness of Cretaceous, Paleogene, and Neogene Coastal Plain sediments in North Carolina. Correlations of lithologies, facies, and sequence stratigraphy can be made with the Hope Plantation corehole, N.C., near Windsor in Bertie County (Weems and others, 2007); the Elizabethtown corehole, near Elizabethtown, N.C., in Bladen County (Self-Trail and others, 2004b); the Smith Elementary School corehole, near Cove City, N.C., in Craven County (Harris and Self-Trail, 2006; Crocetti, 2007); the Kure Beach corehole, near Wilmington, N.C., in New Hanover County (Self-Trail and others, 2004a); the Esso#1, Esso #2, Mobil #1, and Mobil #2 cores in Albermarle and Pamlico Sounds, N.C. (Zarra, 1989); and the Cape Fear River outcrops in Bladen County, N.C. (Farrell, 1998; Farrell and others, 2001). This report contains the lithostratigraphic summary recorded at the drill site, core photographs, geophysical data, and calcareous nannofossil biostratigraphic correlations.

  14. Comparison and analysis of subglacial bedrock core drilling technology in Polar Regions

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Cao, PinLu; Liu, ChunPeng; Talalay, P. G.

    2015-06-01

    The Gamburtsev Mountains, located in East Antarctica, is the direct geomorphological cause of the formation of Dome A. Drilling the core of the Gamburtsev subglacial mountains is one of the primary goals of modern polar research, which is important to understand its formation and evolution process, the ice sheet formation of Dome A, glacial motion, climate change, and so on. This paper describes the status and progress of subglacial bedrock drilling technology. Existing subglacial bedrock drilling technologies are also discussed, including common rig rotary drilling, wire-line core drilling, coiled tubing drilling, and electromechanical drilling. Results of this paper will provide valuable information for Chinese subglacial bedrock core drilling project in the Gamburtsev mountains.

  15. Design And Operation Of A Wireline Pressure Core Sampler (PCS) OCEAN DRILLING PROGRAM

    E-print Network

    Design And Operation Of A Wireline Pressure Core Sampler (PCS) OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 17 T. L. Pettigrew Ocean Drilling Program Texas A&M University 1000 Discovery Drive. & Drilling Operations Timothy J.G. Francis Deputy Director August 1992 #12;Material in this publication may

  16. Hydrocarbon Analysis of Hamersley Basin Deep Drill Cores: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Waldbauer, J. R.; Buick, R.; Dunlop, J. S.; Bonser, L. C.

    2004-12-01

    Characterization of the organic constituents of Precambrian rocks is complicated by serious questions as to the provenance of organic material recovered from such ancient and generally altered deposits. The problem is particularly acute in Archean terranes where the rocks are invariably metamorphosed to some degree. Organic matter indigenous to the original depositional environment of the host sediments can be difficult to distinguish from material that subsequently migrated into the rock from other sources. Further, contamination by ubiquitous petroleum products and derivatives can easily be introduced at any point during sample recovery and preparation. Nevertheless, analysis of the molecular and isotopic signatures of Archean biomarker compounds has the potential to provide key insight into ancient biology and ecology. Several continental drilling efforts in recent years have concentrated on obtaining organic-bearing sedimentary samples of low metamorphic grade from Archean and Paleoproterozoic terranes while minimizing sources of contamination. Experimental techniques have been developed to avoid laboratory contamination and to assess the origins of various types of organic matter. Using ultraclean protocols, and a combination of molecular, isotopic and geologic evidence, confident assessments can be made as to the syngeneity of biomarkers in Archean rocks. We present results of analyses of drill core collected from the Hamersley Basin, Western Australia in the summer of 2004.

  17. Table S1 Core Geophysics and Age Control Methods Core Geophysics

    E-print Network

    Goldfinger, Chris

    Sumatra (Fig. S7) were scanned at sea with a GEOTEK Multi Sensor Core Logger (MSCL), obtaining P-wave in 1.5-m length sections. Split cores were imaged with a high resolution line-scan digital camera-ray Computed Tomography (CT) system with a nominal voxel size of 0.5 mm. Age Control Methods Age control

  18. Table S1 Core Geophysics and Age Control Methods Core Geophysics

    E-print Network

    Goldfinger, Chris

    Sumatra (Fig. S6) were scanned at sea with a GEOTEK Multi Sensor Core Logger (MSCL), obtaining P-wave in 1.5-m length sections. Split cores were imaged with a high resolution line-scan digital camera-ray Computed Tomography (CT) system with a nominal voxel size of 0.5 mm. Age Control Methods Age control

  19. Radionuclide sorption on drill core material from the Canadian Shield

    SciTech Connect

    Vandergraat, T.T.; Abry, D.R.

    1982-06-01

    The sorption of four radionuclides, /sup 90/Sr, /sup 137/Cs, /sup 144/Ce, and /sup 237/Pu, on drill core material from two rock formations in the Canadian Shield has been studied as part of the Canadian Nuclear Fuel Waste Management Program. For all four radionuclides, sorption increased with increased mafic mineral content of the rock. Autoradiographic investigations showed enhanced sorption on dark, or mafic, minerals and high sorption on chlorite infilling material in a closed fracture. Desorption was less complete than sorption after the same equilibration time, indicating a degree of irreversible sorption, or slower desorption kinetics. The effect of surface roughness (measured by mercury porosimetry) on sorption was not as great as that of the chemical and mineral composition of the rock.

  20. Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core

    SciTech Connect

    Laul, J.C.; Smith, M.R.

    1984-11-15

    Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.

  1. Core formation and core composition from coupled geochemical and geophysical constraints.

    PubMed

    Badro, James; Brodholt, John P; Piet, Hélène; Siebert, Julien; Ryerson, Frederick J

    2015-10-01

    The formation of Earth's core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal-silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth's magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7-5% oxygen along with 2-3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium. PMID:26392555

  2. Joint laboratory investigations of the physical and mechanical properties of the COSC-1 drill core, Sweden

    NASA Astrophysics Data System (ADS)

    Almqvist, Bjarne S. G.; Schmitt, Douglas R.; Lebedev, Maxim; Ask, Maria; Wenning, Quinn; Zappone, Alba; Berthet, Théo; Malehmir, Alireza

    2015-04-01

    The Caledonian orogen is an early to middle Paleozoic mountain chain with size dimension similar to the Alpine-Himalayan orogen. Parts of the Caledonian orogen have been deeply eroded and provide excellent exposure of rocks that were emplaced into the middle and lower crust during orogenesis. These exposed rock units therefore provide the possibility to study processes of mountain building that are often inaccessible in more modern orogens, and represent the targets for the Collisional Orogeny in the Scandinavian Caledonides deep drilling project (COSC-1). The main target of COSC-1 was the high grade Seve nappe complex. Temperature estimates indicate granulite facies conditions at the top of this nappe, grading to lower amphibolitic conditions downwards through the nappe. Discovery of micro-diamond included in garnets from the nearby Åreskutan mountain hints at an ultra-high pressure origin in parts of the Seve nappe complex. The COSC-1 deep drilling project presents a unique opportunity to study the laboratory physical properties of a 2.5 km drill core, which can be correlated to downhole logging measurements and for the interpretation of surface geophysical experiments. In a joint effort that comprises five laboratories, the physical properties the COSC drill core are investigated. Measurement schemes and preliminary results from this cooperative effort are presented. The physical properties suite of measurements on the core includes (i) density, (ii) porosity, (iii) ultrasonic wave velocity and anisotropy at elevated confining pressure, (iv) seismic attenuation and (v) permeability (and anisotropy of permeability). Mechanical properties include uniaxial and triaxial compressive strength at different confining pressures, and subsequent calculation of internal and residual friction angles. The joint investigations will also serve to cross-validate and calibrate different laboratory techniques that are used to measure physical properties. The rock units investigated includes layers of gneiss, amphibolite, calc-silicates, migmatite and sparse meta-gabbro and marble. More mafic units (amphibolite and meta-gabbro) can be separated from the gneisses and migmatite based on density and sonic velocities, measured with active gamma log and full wave form sonic log. Deformation is prevalent in rocks throughout the 2500 m deep borehole, but a more than 300 m thick package of strongly sheared mylonites stands out at the bottom of the borehole. Laboratory measurements of density and ultrasonic velocities are critical on core material that comes from depths greater than 1600 m, because borehole density and sonic logs are lacking at these depths. In addition, the ultrasonic laboratory measurements serve as the only method to directly evaluate seismic anisotropy in the solid rock mass. Additional results and analysis are expected to yield data that will be useful for integration with surface and downhole geophysical data (e.g. vertical seismic profiling data), constraining the state of in-situ stress, and provide insights into the emplacement processes of the Seve nappe complex, and its relationship to the underlying lower-grade Särv and Jämtlandian nappes.

  3. Cretaceous shallow drilling, US Western Interior: Core research. Technical progress report

    SciTech Connect

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth ``exposures`` in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  4. The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia

    2010-03-01

    The Chicxulub crater has attracted considerable attention as one of the three largest terrestrial impact structures and its association with the Cretaceous/Paleogene boundary (K/Pg). Chicxulub is a 200 km-diameter multi-ring structure formed 65.5 Ma ago in the Yucatan carbonate platform in the southern Gulf of Mexico and which has since been buried by Paleogene and Neogene carbonates. Chicxulub is one of few large craters with preserved ejecta deposits, which include the world-wide K/Pg boundary clay layer. The impact has been related to the global major environmental and climatic effects and the organism mass extinction that mark the K/Pg boundary, which affected more than 70 % of organisms, including the dinosaurs, marine and flying reptiles, ammonites and a large part of the marine microorganisms. The impact and crater formation occur instantaneously, with excavation of the crust down to 25 km depths in fractions of second and lower crust uplift and crater formation in a few hundreds of seconds. Energy released by impact and crustal deformation generates seismic waves traveling the whole Earth, and resulting in intense fracturing and deformation at the target site. Understanding of the physics of impacts on planetary surfaces and modeling of processes of crustal deformation, rheological behavior of materials at high temperatures and pressures remain a major challenge in geosciences. Study of the Chicxulub crater and the global effects and mass extinction requires inter- and multidisciplinary approaches, with researchers from many diverse fields beyond the geosciences. With no surface exposures, geophysical surveys and drilling are required to study the crater. Differential compaction between the impact breccias and the surrounding carbonate rocks has produced a ring-fracture structure that at the surface reflects in a small topographic depression and the karstic cenote ring. The crater structure, located half offshore and half on-land, has been imaged by different geophysical aerial, land and marine methods including gravity, magnetics, electromagnetics and seismic refraction and reflection. The impact lithologies and carbonate sequence have been cored as part of several drilling projects. Here we analyze the stratigraphy of Chicxulub from borehole logging data and core analyses, with particular reference to studies on CSDP Yaxcopoil-1 and UNAM Santa Elena boreholes. Analyses of core samples have examined the stratigraphy of the cover carbonate sequence, impact breccia contact and implications for impact age, K/Pg global correlations and paleoenvironmental conditions following impact. The K/Pg age for Chicxulub has been supported from different studies, including Ar/Ar dating, magnetic polarity stratigraphy, geochemistry and biostratigraphy. A Late Maastrichtian age has also been proposed for Chicxulub from studies in Yaxcopoil-1 basal Paleocene carbonates, with impact occurring 300 ka earlier predating the K/Pg boundary. This proposal calls attention to the temporal resolution of stratigraphic and chronological methods, and the need for further detailed analyses of the basal carbonate sections in existing boreholes and new drilling/coring projects. Stratigraphy of impact ejecta and basal sediments in Yaxcopoil-1 and UNAM boreholes indicates a hiatus in the basal sequence. Modeling of post- impact processes suggest erosion effects due to seawater back surge, block slumping and partial rim collapse of post-impact crater modification. Analyses of stable isotopes and magnetostratigraphic data for the Paleocene carbonate sequences in Yaxcopoil-1 and Santa Elena boreholes permit to investigate the post- impact processes, depositional conditions and age of basal sediments. Correlation of stable isotopes with the global pattern for marine carbonate sediments provides a stratigraphic framework for the basal Paleocene carbonates. The analyses confirm a K/Pg boundary age for the Chicxulub impact. References: Collins et al, 2008. Earth Planetary Science Letters 270, 221-230; Gulick et al, 2008. Nature Geoscience 1, 131-135; Hild

  5. Density of basalt core from Hilo drill hole, Hawaii

    USGS Publications Warehouse

    Moore, J.G.

    2001-01-01

    Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing downward the hyaloclastite absorbs less water and becomes better cemented. This change is apparently due to palagonitization of glass and addition of secondary minerals in the deeper older hyaloclastite, a process favored by the increase of temperature with depth. The cementation is largely complete at 1800 m depth where the temperature attains about 20??C. The zone of freshest, uncemented hyaloclastite represents the weakest rock in the drill hole and is a likely level for tectonic or landslide disruption. ?? 2001 Published by Elsevier Science B.V.

  6. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    SciTech Connect

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  7. Drill bit having cutting elements with heat removal cores

    SciTech Connect

    Radtke, R. P.

    1984-10-23

    A drill bit for connection on a drill string has a hollow tubular body with an end cutting face and an exterior peripheral stabilizer surface with cylindrical sintered carbide inserts positioned therein having polycrystalline diamond cutting elements mounted on said inserts. Said inserts each having a longitudinal recess therein filled with a soft, heat conducting metal operable to facilitate the transfer of heat away from said cutting elements. The drill bit is also provided with removable and replacable nozzles.

  8. Surface elevation change artifact at the NEEM ice core drilling site, North Greenland.

    NASA Astrophysics Data System (ADS)

    Berg Larsen, Lars; Schøtt Hvidberg, Christine; Dahl-Jensen, Dorthe; Lilja Buchardt, Susanne

    2014-05-01

    The NEEM deep drilling site (77.45°N 51.06°W) is located at the main ice divide in North Greenland. For the ice core drilling project, a number of buildings was erected and left on the snow surface during the five-year project period. The structures created snowdrifts that formed accordingly to the predominant wind direction on the lee side on the buildings and the overwintering cargo. To get access to the buildings, the snowdrifts and the accumulated snow were removed and the surface in the camp was leveled with heavy machinery each summer. In the camp a GPS reference pole was placed as a part of the NEEM strain net, 12 poles placed in three diamonds at distances of 2,5 km, 7,5 km and 25 km they were all measured with high precision GPS every year. Around the reference pole, a 1 km x 1 km grid with a spacing of 100 m was measured with differential GPS each year. In this work, we present results from the GPS surface topography measurements in and around the campsite. The mapping of the topography in and around the campsite shows how the snowdrifts evolve and are the reason for the lift of the camp site area. The accumulated snowdrifts are compared to the dominant wind directions from year to year. The annual snow accumulation at the NEEM site is 0.60 m. The reference pole in the camp indicates an additional snow accumulation of 0.50 m per year caused by collected drifting snow. The surface topography mapping shows that this artificially elevated surface extends up to several kilometers out in the terrain. This could have possible implications on other glaciological and geophysical measurements in the area i.e. pit and snow accumulation studies.

  9. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  10. Volatiles in glasses from the HSDP2 drill core

    NASA Astrophysics Data System (ADS)

    Seaman, Caroline; Sherman, Sarah Bean; Garcia, Michael O.; Baker, Michael B.; Balta, Brian; Stolper, Edward

    2004-09-01

    H2O, CO2, S, Cl, and F concentrations are reported for 556 glasses from the submarine section of the 1999 phase of HSDP drilling in Hilo, Hawaii, providing a high-resolution record of magmatic volatiles over ˜200 kyr of a Hawaiian volcano's lifetime. Glasses range from undegassed to having lost significant volatiles at near-atmospheric pressure. Nearly all hyaloclastite glasses are degassed, compatible with formation from subaerial lavas that fragmented on entering the ocean and were transported by gravity flows down the volcano flank. Most pillows are undegassed, indicating submarine eruption. The shallowest pillows and most massive lavas are degassed, suggesting formation by subaerial flows that penetrated the shoreline and flowed some distance under water. Some pillow rim glasses have H2O and S contents indicating degassing but elevated CO2 contents that correlate with depth in the core; these tend to be more fractionated and could have formed by mixing of degassed, fractionated magmas with undegassed magmas during magma chamber overturn or by resorption of rising CO2-rich bubbles by degassed magmas. Intrusive glasses are undegassed and have CO2 contents similar to adjacent pillows, indicating intrusion shallow in the volcanic edifice. Cl correlates weakly with H2O and S, suggesting loss during low-pressure degassing, although most samples appear contaminated by seawater-derived components. F behaves as an involatile incompatible element. Fractionation trends were modeled using MELTS. Degassed glasses require fractionation at p? ? 5-10 bars. Undegassed low-SiO2 glasses require fractionation at p? ? 50 bars. Undegassed and partially degassed high-SiO2 glasses can be modeled by coupled crystallization and degassing. Eruption depths of undegassed pillows can be calculated from their volatile contents assuming vapor saturation. The amount of subsidence can be determined from the difference between this depth and the sample's depth in the core. Assuming subsidence at 2.5 mm/y, the amount of subsidence suggests ages of ˜500 ka for samples from the lower 750 m of the core, consistent with radiometric ages. H2O contents of undegassed low-SiO2 HSDP2 glasses are systematically higher than those of high-SiO2 glasses, and their H2O/K2O and H2O/Ce ratios are higher than typical tholeiitic pillow rim glasses from Hawaiian volcanoes.

  11. Improved diamond coring bits developed for dry and chip-flush drilling

    NASA Technical Reports Server (NTRS)

    Decker, W. E.; Hampe, W. R.; Hampton, W. H.; Simon, A. B.

    1971-01-01

    Two rotary diamond bit designs, one operating with a chip-flushing fluid, the second including auger section to remove drilled chips, enhance usefulness of tool for exploratory and industrial core-drilling of hard, abrasive mineral deposits and structural masonry.

  12. Development of lunar drill to take core samples to 100-foot depths

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.

  13. A search in north Greenland for a new ice-core drill site

    E-print Network

    Dahl-Jensen, D.; Gundestrup, N. S.; Keller, K.; Johnsen, S. J.; Gogineni, Sivaprasad; Allen, Christopher Thomas; Chuah, T. S.; Miller, H.; Kipfstuhl, S.; Waddington, E. D.

    1997-01-01

    A new deep ice-core drilling site has been identified in north Greenland at 75.12 ° N, 42 .30 ° W, 316 km north-northwest (NNW) of the GRIP drill site on the summit of the ice sheet. The ice thickness here is 3085 m; the ...

  14. Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland

    USGS Publications Warehouse

    Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

    2012-01-01

    The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44?49.34?N. and long 76°00?25.09?W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.

  15. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis

    E-print Network

    Walton, Anthony W.; Schiffman, Peter

    2003-05-01

    The core from the Hawaii Scientific Drilling Project 2 Phase 1 provides a unique opportunity for studying the low-temperature alteration processes affecting basalt in suboceanic-island environments. In hyaloclastites, which ...

  16. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  17. Core drill's bit is replaceable without withdrawal of drill stem - A concept

    NASA Technical Reports Server (NTRS)

    Rushing, F. C.; Simon, A. B.

    1970-01-01

    Drill bit is divided into several sectors. When collapsed, the outside diameter is forced down the drill stem, when it reaches bottom the sectors are forced outward and form a cutting bit. A dulled bit is retracted by reversal of this procedure.

  18. Fischer Assays of Oil Shale Drill Cores and Rotary Cuttings from the Piceance Basin, Colorado - 2009 Update

    USGS Publications Warehouse

    Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.

    1998-01-01

    This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.

  19. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    U.S. Geological Survey Oil Shale Assessment Team

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data are from analyses performed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, with some analyses made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet that is included in the CD-ROM. These Wyoming Fischer assays and histograms are part of a much larger collection of oil-shale information, including geophysical and lithologic logs, water data, chemical and X-ray diffraction analyses on the Green River oil-shale deposits in Colorado, Utah, and Wyoming held by the U.S. Geological Survey. Because of an increased interest in oil shale, this CD-ROM containing Fischer assay data and oil-yield histograms for the Green River oil-shale deposits in southwestern Wyoming is being released to the public. Microsoft Excel spreadsheets included with Chapter 2 contain the Fischer assay data from the 426 holes and data on the company name and drill-hole name, and location. Histograms of the oil yields obtained from the Fischer assays are presented in both Grapher and PDF format. Fischer assay text data files are also included in the CD-ROM.

  20. Chattanooga shale (Devonian and Mississippian) from the Tennessee Division of Geology: U. S. Department of Energy cored drill holes Number 4 and 5, Hawkins County, Tennessee

    SciTech Connect

    Roen, J.B.; Wallace, L.G.; Milici, R.C.

    1980-01-01

    The Tennessee Division of Geology under contract to the Morgantown Energy Technology Center of the US Department of Energy has drilled eight NX coreholes in eastern Tennessee. The coring program was designed to retrieve continuous cores for a detailed study of the character of the Chattanooga Shale. The geophysical wire-line logging of the NX drill holes was performed by the US Geological Survey. The lithologic and wire-line log data in conjunction with two seismic surveys will be used to evaluate the hydrocarbon potential of the Chattanooga Shale in northeastern Tennessee. The purpose of this report is to present a detailed lithologic description and gamma-ray log of the Tennessee Division of Geology and US Department of Energy cored drill holes no. 4 and 5 (TDG-DOE no. 4 and no. 5). In spite of the overlap, no distinct marker beds were found to facilitate a positive correlation between the two cores. Reconstruction of the total Chattanooga section was based on detailed field mapping of the uppermost dark-gray shale below the base of the Grainger Formation and the projection of the beds. The total thickness of the Chattanooga Shale at the coring locations is estimated to be 1650 to 1700 ft.

  1. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

  2. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    SciTech Connect

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-12-31

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs.

  3. Diaplectic transformation of minerals: Vorotilov drill core, Puchezh-Katunki impact crater, Russia

    NASA Technical Reports Server (NTRS)

    Feldman, V. I.

    1992-01-01

    The Vorotilov core was drilled in the central uplift of the Puchezh-Katunki astrobleme to a depth of 5.1 km. Impactites are revealed in the rocks of the core beginning from a depth of 366 m: suevites (66 m), allogenic breccias (112 m), and autogenic breccias (deeper than 544 m). These rocks are represented by shocked-metamorphic gneisses, schists, amphibolites of Archean age, and magmatic rocks (dolerites, olivines, and peridotites) that lie between them.

  4. Late Quaternary palaeoenvironment of northern Guatemala: evidence from deep drill cores and seismic stratigraphy of Lake

    E-print Network

    Gilli, Adrian

    Late Quaternary palaeoenvironment of northern Guatemala: evidence from deep drill cores and seismic Lake Pete´n Itza´, northern Guatemala, in water depths ranging from 30 to 150 m, as part interstadials. Keywords Guatemala, lake level changes, lake sediments, palaeoclimatology, Pete´n Itza´, seismic

  5. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical analyses of water samples indicate that the content of dissolved solids is low, the principal ions being sodium and bicarbonate. Although the hole was originally cored, to a depth of 2,214 feet, ,the present depth is about 2,100 feet. This report presents a preliminary evaluation of core examination, geophysical log interpretation and hydrological tests from the USBM/AEC Colorado core hole No. 2. The cooperation of the U.S. Bureau of Mines is gratefully acknowledged. The reader is referred to Carroll and others (1967) for comparison of USBM/AEC Col0rado core hole No. 1 with USBM/AEC Colorado core hole No. 2.

  6. A Mentoring Program Drills down on the Common Core

    ERIC Educational Resources Information Center

    Davis, Emily; Sinclair, Steve; Gschwend, Laura

    2015-01-01

    The Santa Cruz/Silicon Valley New Teacher Project--under the aegis of the New Teacher Center--devised a program to train teacher mentors to help new teachers incorporate the Common Core standards into their teaching. The three-year program yielded five critical lessons: Mentors need ongoing support to develop their readiness and willingness to…

  7. Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident

    NASA Astrophysics Data System (ADS)

    Alekhina, I. A.; Petit, J. R.; Lukin, V. V.; Bulat, S. A.

    2003-04-01

    Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content by ribosomal DNA sequencing. Total, 33 clones of 16S ribosomal DNA were recovered from four samples of drilling fluid at 110, 2750, 3400, and 3600m leading to identification of 8 bacterial species. No overlapping was observed even for neighboring samples (3400m and 3600m). At present four major bacteria with the titer more than 103-104 cells per ml (as estimated from PCR results) are identified. Among them we found: unknown representative of Desulfobacteraceae which are able to oxidize sulphates and degrade benzenes (110m); PAH-degrading alpha-proteobacterium Sphingomonas natatoria (3400m); alpha-proteobacterium representing closely-related group of Sphingomonas sp. (e.g., S. aurantiaca) which are able to degrade PAH as well, and human pathogen closely related to Haloanella gallinarum of CFB group (3600m). Four additional species were revealed as single clones and showed relatedness to human pathogens and saprophytes as well as soil bacteria. These bacteria may represent drilling fluid contaminants introduced during its sampling or DNA extraction procedure. Of four major bacteria revealed, one species, Sphingomonas natatoria, has been met by us in the Vostok core from 3607 m depth (AF532054) whereas another Sphingomonas sp. which we refer to as S. aurantiaca was found in Antarctic microbial endolithic community (AF548567), hydrocarbon-containing soil near Scott Base in Antarctica (AF184221) and even isolated from 3593m Vostok accretion ice (AF324199) and Taylor Dome core (AF395031). The source for major human pathogen-related bacteria is rather uncertain indicating that very unusual microbes can be contained in a drilling fluid. All this testifies that kerosene film is indeed hard to remove and everyone should be aware on bacteria introduced with any drilling fluid. Our results demonstrate the necessity to have a drilling fluid data base when studying the microbial contents of ice cores.

  8. Paleomagnetic Reorientation of Structural Elements in Drill Cores: an example from Tolhuaca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.

    2013-12-01

    Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25mT, and between 0 to 625°C. The declination of RM vectors was used to bring pieces to a common anchor orientation calculated through the Geocentric Axial Dipole Model (GAD). The paleomagnetic technique proved to be reliable to reorient the Tol-1 core. Structural analyses along the core show N50-60E-striking preferential vein orientation. In addition, N40-50E- and N60-70W-striking preferential fault orientations were identified. Kinematic analysis of fault-slip data shows a N60E-striking bulk fault plane solution with normal strain regime. The veins and faults orientation show strain axes compatible with published regional stress field (?max N238E).

  9. Core formation, evolution, and convection: A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1978-01-01

    A model is proposed for the formation and evolution of the Earth's core which provides an adequate energy source for maintaining the geodynamo. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  10. Core formation, evolution, and convection - A geophysical model

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Anderson, D. L.

    1980-01-01

    A model for the formation and evolution of the earth's core, which provides an adequate energy source for maintaining the geodynamo, is proposed. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al-26. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long-lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  11. The Apollo 17 drill core - Modal petrology and glass chemistry /sections 70007, 70008, 70009/

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1977-01-01

    On the basis of modal petrography the upper, mare basalt-rich portion of the Apollo 17 drill core (sections 70007, 70008, 70009) can be subdivided into three major stratigraphic units. The lower unit (a) falls within 70007, is relatively mature, and contains evidence of an increase in highland component and decrease of mare component within the lower approximately 8 cm. The middle unit (b) is coarse-grained and relatively immature; this unit has the highest concentration of mare basalt lithic and mineral fragments and mare orange/black glasses. The top unit (c) falls within 70009 and is relatively mature. Within these three sections of the drill core, there are compositional clusters of glass beads that correspond to high Ti subfloor basalt (orange/black glass), anorthositic gabbro (clear glass), and a new very low Ti (VLT) mare basalt (yellow/green glass).

  12. Geophysical constraints on extensional deformation at slow-spreading rate ridges and the evolution of oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Pressling, Nicola; Gee, Jeffrey; John, Barbara; MacLeod, Christopher

    2010-05-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip extensional detachment faults. The common occurrence of these structures in slow and ultra-slow spreading oceanic crust suggests they accommodate a significant component of plate divergence. However, the sub-surface geometry of oceanic detachment faults remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using paleomagnetic remanences to test for tectonic rotation of a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) Expedition 304/305 to Atlantis Massif oceanic core complex on the Mid Atlantic Ridge (MAR). This forms an inside-corner bathymetric high at the intersection of the Atlantis Transform Fault and the MAR. The central dome of the massif exposes the corrugated detachment fault surface, which has tectonically unroofed a faulted and complexly layered footwall section dominated by gabbroic lithologies with minor ultramafic rocks. The core (IODP Hole U1309D) reflects the interplay between magmatism and deformation prior to, during, and subsequent to a period of footwall displacement and denudation associated with slip on the detachment fault. Palaeomagnetic remanence directions are routinely used as markers for tectonic rotation in a variety of tectonic settings, However, in ODP and IODP hard rock core materials their utility is limited by the lack of azimuthal control on the orientation of core samples. Individual core pieces are free to rotate within the core barrel, effectively randomising remanence declinations and allowing only the inclination of the magnetic vector to be used in tectonic analyses. In these circumstances, tectonic rotation may be inferred from differences between observed and reference inclinations, but the amount of rotation and the orientation of the rotation axis cannot be constrained directly. Robust, quantitative constraints on tectonic rotation parameters can only be obtained from fully oriented palaeomagnetic data (i.e. both remanence declination and inclination), yet current IODP hard rock drilling technologies do not permit collection of oriented drill core samples. For the first time we have overcome this limitation by independently reorienting core pieces to a true geographic reference frame by correlating structures within individual pieces with those identified from oriented geophysical imagery of the borehole wall. This allows reorientation of paleomagnetic data and subsequent tectonic interpretation without the need for a priori assumptions on the azimuth of the rotation axis. The resulting dataset from Atlantis Massif indicates a 46°±6° counterclockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011°±6°. This provides unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes. The data demonstrate that the Atlantis Massif detachment fault initiated at a dip of at least 50° and subsequently rotated to its present day low angle geometry during extensional deformation and unroofing.

  13. Core Cracking and Hydrothermal Circulation Profoundly Affect Ceres' Geophysical Evolution

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2014-11-01

    The dwarf planet (1)Ceres is about to be visited by the Dawn spacecraft [1]. In addition to a recent report of water vapor emission [2], observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock [3,4].Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code [5], we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia [4], by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The heating effect from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets”, global cooling events lasting ~50 Myr, followed by ~1 Gyr periods during which Ceres' interior is nearly isothermal and its hydrosphere largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) suggests that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter [1] could help discriminate between scenarios for Ceres' evolution.References:[1] Russell C. T. & Raymond C. A. (2011) Sp. Sci. Rev. 163, 3-23.[2] Küppers M. et al. (2014) Nature 505, 525-527.[3] Rivkin A. et al. (2011) Sp. Sci. Rev. 163, 95-116.[4] Castillo-Rogez J. C. & McCord T. B. (2010) Icarus 205, 443-459.[5] Neveu M., Desch S. J. & Castillo-Rogez J. C., submitted.

  14. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    USGS Publications Warehouse

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  15. Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core.

    PubMed

    Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean

    2014-08-01

    Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. PMID:24450335

  16. Revised magnetostratigraphic chronologies for New Harbour drill cores, southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Wilson, Gary

    2012-02-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the evolution of southern Victoria Land glaciers and the Antarctic climate system during the late-Neogene. Here we present new magnetostratigraphic chronologies, which we use to correlate the drill core successions with onshore dry-valleys geomorphic records and offshore deep-ocean records. Magnetostratigraphies were constructed using stepwise AF and/or thermal demagnetisation of discrete specimens from the drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. We recognise five styles of sedimentation in the Taylor/Ferrar fiords, which we correlate with discrete climate phases. During the latest Miocene-early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords with active sedimentation in the Taylor Fiord and erosion of basement rocks in the Ferrar Fiord. Glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (> 300 m) at a time when the Ross Sea was free of ice and sea surface temperatures around Antarctica were at least 5 °C warmer than today. We recognise the first significant cooling in DVDP-11 post 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea rather than from East Antarctic glaciers. Post 1.7 Ma, lacustrine sediments were deposited behind ice-dammed lakes, which formed when West Antarctic ice expanded and grounded across the Ross Embayment and abutted the Transantarctic Mountains.

  17. Reprint of: Revised magnetostratigraphic chronologies for New Harbour drill cores, southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Wilson, Gary

    2012-10-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the evolution of southern Victoria Land glaciers and the Antarctic climate system during the late-Neogene. Here we present new magnetostratigraphic chronologies, which we use to correlate the drill core successions with onshore dry-valleys geomorphic records and offshore deep-ocean records. Magnetostratigraphies were constructed using stepwise AF and/or thermal demagnetisation of discrete specimens from the drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. We recognise five styles of sedimentation in the Taylor/Ferrar fiords, which we correlate with discrete climate phases. During the latest Miocene-early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords with active sedimentation in the Taylor Fiord and erosion of basement rocks in the Ferrar Fiord. Glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (> 300 m) at a time when the Ross Sea was free of ice and sea surface temperatures around Antarctica were at least 5 °C warmer than today. We recognise the first significant cooling in DVDP-11 post 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea rather than from East Antarctic glaciers. Post 1.7 Ma, lacustrine sediments were deposited behind ice-dammed lakes, which formed when West Antarctic ice expanded and grounded across the Ross Embayment and abutted the Transantarctic Mountains.

  18. Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    SciTech Connect

    Chipera, S.J.; Vaniman, D.T.; Carlos, B.A.; Bish, D.L.

    1995-02-01

    Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.

  19. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect

    Rowley, J.; Hawkins, W.; Gardner, J.

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  20. Lithologic logs and geophysical logs from test drilling in Palm Beach County, Florida, since 1974

    USGS Publications Warehouse

    Swayze, Leo J.; McGovern, Michael C.; Fischer, John N.

    1980-01-01

    Test-hole data that may be used to determine the hydrogeology of the zone of high permeability in Palm Beach County, Fla., are presented. Lithologic logs from 46 test wells and geophysical logs from 40 test wells are contained in this report. (USGS)

  1. Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages

    USGS Publications Warehouse

    Cronin, T. M.; Smith, S.A.; Eynaud, F.; O'Regan, M.; King, J.

    2008-01-01

    The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 in record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ???1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ???500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both. Copyright 2008 by the American Geophysical Union.

  2. Strike-dip determination of fractures in drill cores by an astatic-magnetometer

    SciTech Connect

    Hayashi, M.; Furutani, N.

    1982-10-01

    The strike and dip of fractures in drillcores from Well HT-4 drilled in the Hatchobaru geothermal field, Kyushu, Japan, have been determined using an astatic-magnetometer. Since the drill cores consist mainly of younger andesite lavas, the measurements of the declination and inclination of remnant magnetism should yield the strike and dip of the fractures. The results show that they dip generally southward with angles from 40/sup 0/ to 80/sup 0/ (62.5 on the average), and strike NW-SE or NE-SW. The NW-SE trending fractures predominate in the Pleistocene series, which persists at depths shallower than 1000 m, while the NE-SW trending ones occur in the Neogene system at deeper levels, and are considered to be older than the former. The stress field can also be estimated by the strike-dip data and the direction of lineation on a slickenside.

  3. Carbon chemistry of the Apollo 15 and 16 deep drill cores

    NASA Technical Reports Server (NTRS)

    Wszolek, P. C.; Burlingame, A. L.

    1973-01-01

    The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.

  4. Procedures for use of, and drill cores and cuttings available for study at, the Lithologic Core Storage Library, Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Davis, L.C.; Hannula, S.R.; Bowers, B.

    1997-03-01

    In 1990, the US Geological Survey, in cooperation with the US Department of Energy, Idaho Operations Office, established the Lithologic Core Storage Library at the Idaho National Engineering Laboratory (INEL). The facility was established to consolidate, catalog, and permanently store nonradioactive drill cores and cuttings from investigations of the subsurface conducted at the INEL, and to provide a location for researchers to examine, sample, and test these materials. The facility is open by appointment to researchers for examination, sampling, and testing of cores and cuttings. This report describes the facility and cores and cuttings stored at the facility. Descriptions of cores and cuttings include the well names, well locations, and depth intervals available. Most cores and cuttings stored at the facility were drilled at or near the INEL, on the eastern Snake River Plain; however, two cores drilled on the western Snake River Plain are stored for comparative studies. Basalt, rhyolite, sedimentary interbeds, and surficial sediments compose the majority of cores and cuttings, most of which are continuous from land surface to their total depth. The deepest core stored at the facility was drilled to 5,000 feet below land surface. This report describes procedures and researchers` responsibilities for access to the facility, and examination, sampling, and return of materials.

  5. The Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Matter, J.; Kelemen, P. B.; Teagle, D. A. H.

    2014-12-01

    With seed funds from the Sloan Foundation, the International Continental Drilling Program (ICDP) approved a proposal by 39 international proponents for scientific drilling in the Oman ophiolite. Via observations on core, geophysical logging, fluid sampling, hydrological measurements, and microbiological sampling in a series of boreholes, we will address long-standing, unresolved questions regarding melt and solid transport in the mantle beneath oceanic spreading ridges, igneous accretion of oceanic crust, mass transfer between the oceans and the crust via hydrothermal alteration, and recycling of volatile components in subduction zones. We will undertake frontier exploration of subsurface weathering processes in mantle peridotite, including natural mechanisms of carbon dioxide uptake from surface waters and the atmosphere, and the nature of the subsurface biosphere. Societally relevant aspects include involvement and training of university students, including numerous students from Sultan Qaboos University in Oman. Studies of natural mineral carbonation will contribute to design of engineered systems for geological carbon dioxide capture and storage. Studies of alteration will contribute to fundamental understanding of the mechanisms of reaction-driven cracking, which could enhance geothermal power generation and extraction of unconventional hydrocarbon resources. We hope to begin drilling in late 2015. Meanwhile, we are seeking an additional $2M to match the combined Sloan and ICDP funding from national and international funding agencies. Matching funds are needed for operational costs of drilling, geophysical logging, downhole fluid sampling, and core description. Information on becoming part of the named investigator pool is in Appendix 14 (page 70) of the ICDP proposal, available at https://www.ldeo.columbia.edu/gpg/projects/icdp-workshop-oman-drilling-project. This formal process should begin at about the time of the 2014 Fall AGU Meeting. Meanwhile, potential investigators who can help raise matching funds, e.g. for core description as part of petrological or structural studies or for drill site operations, are encouraged to contact the authors of this abstract.

  6. Study of Hydrothermal Mineralization in 2013 Drill Core from Hawaii Island

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Calvin, W. M.; Moore, J.; Haskins, E.; Thomas, D. M.

    2014-12-01

    The Humu'ula Groundwater Research Project (HGRP) drilled a continuously-cored hole to nearly 2 km depth near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100 C. A study is underway to characterize hydrothermal (secondary) mineralization in the core at depths below ~ 1 km. Secondary mineralization can indicate the presence, chemistry, and temperature of hydrothermal fluids, therein helping to characterize a present and/or past geothermal system. To date, the study is two pronged. In collaboration with University Nevada Reno (UNR) we used an Analytical Spectral Devices (ASD) FieldSpec instrument to obtain nearly 800 spectra from core depths spanning 3190 to 5785 feet. This device has a 2 cm contact probe that measures from 0.4 to 2.5 mm, and has been used successfully by UNR to identify depth-associated changes in alteration mineralogy and zoning in drill core from other pilot studies. The spectra indicate that rocks above a depth of ~1 km are only weakly altered. At greater depths to the base of the well, chlorite, possibly with some mica, and zeolites are common. The majority of zeolites are spectrally similar to each other at these wavelengths, however analcime and natrolite are uniquely identified in some sections. Epidote was not observed. The secondary mineral assemblages suggest that the alteration was produced by moderate temperature neutral pH fluids. Here, we used the spectral data as a survey tool to help identify and select over 20 sections of core for sampling and more detailed mineralogical analysis using traditional X-Ray Diffraction (XRD) and petrographic techniques, conducted in collaboration with University of Utah. This presentation will include mineral maps with depth and results of the petrographic analyses.

  7. Interrelating the breakage and composition of mined and drill core coal

    NASA Astrophysics Data System (ADS)

    Wilson, Terril Edward

    Particle size distribution of coal is important if the coal is to be beneficiated, or if a coal sales contract includes particle size specifications. An exploration bore core sample of coal ought to be reduced from its original cylindrical form to a particle size distribution and particle composition that reflects, insofar as possible, a process stream of raw coal it represents. Often, coal cores are reduced with a laboratory crushing machine, the product of which does not match the raw coal size distribution. This study proceeds from work in coal bore core reduction by Australian investigators. In this study, as differentiated from the Australian work, drop-shatter impact breakage followed by dry batch tumbling in steel cylinder rotated about its transverse axis are employed to characterize the core material in terms of first-order and zeroth-order breakage rate constants, which are indices of the propensity of the coal to degrade during excavation and handling. Initial drop-shatter and dry tumbling calibrations were done with synthetic cores composed of controlled low-strength concrete incorporating fly ash (as a partial substitute for Portland cement) in order to reduce material variables and conserve difficult-to-obtain coal cores. Cores of three different coalbeds--Illinois No. 6, Upper Freeport, and Pocahontas No. 5 were subjected to drop-shatter and dry batch tumbling tests to determine breakage response. First-order breakage, characterized by a first-order breakage index for each coal, occurred in the drop-shatter tests. First- and zeroth-order breakage occurred in dry batch tumbling; disappearance of coarse particles and creation of fine particles occurred in a systematic way that could be represented mathematically. Certain of the coal cores available for testing were dry and friable. Comparison of coal preparation plant feed with a crushed bore core and a bore core prepared by drop-shatter and tumbling (all from the same Illinois No.6 coal mining property) indicated that the size distribution and size fraction composition of the drop-shattered/tumbled core more closely resembled the plant feed than the crushed core. An attempt to determine breakage parameters (to allow use of selection and breakage functions and population balance models in the description of bore core size reduction) was initiated. Rank determination of the three coal types was done, indicating that higher rank associates with higher breakage propensity. The two step procedure of drop-shatter and dry batch tumbling simulates the first-order (volume breakage) and zeroth-order (abrasion of particle surfaces) that occur in excavation and handling operations, and is appropriate for drill core reduction prior to laboratory analysis.

  8. Evaluation of commercial drilling and geological software for deep drilling applications

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Prevedel, Bernhard; Conze, Ronald; Tridec Team

    2013-04-01

    The avoidance of operational delays, financial losses and drilling hazards are key indicators for successful deep drilling operations. Real-time monitoring of drilling operation data as well as geological and petrophysical information obtained during drilling provide valuable knowledge that can be integrated into existing geological and mechanical models in order to improve the drilling performance. We have evaluated ten different geological and drilling software packages capable to integrate real-time drilling and planning data (e.g. torque, drag, well path, cementing, hydraulic data, casing design, well control, geo-steering, cost and time) as well as other scientific and technical data (i.e. from drilling core, geophysical downhole logging, production test) to build geological and geophysical models for planning of further deep drillings in a given geological environment. To reach this goal, the software has to be versatile to handle different data formats from disciplines such as geology, geophysics, petrophysics, seismology and drilling engineering as well as data from different drilling targets, such as geothermal fluids, oil/gas, water reservoirs, mining purpose, CO2 sequestration, or scientific goals. The software must be capable to analyze, evaluate and plan in real-time the next drilling steps in the best possible way and under safe conditions. A preliminary geological and geophysical model with the available data from site surveys and literature is built to address a first drilling plan, in which technical and scientific aspects are taken into consideration to perform the first drilling (wildcat well). During the drilling, the acquired scientific and technical data will be used to refine the previous geological-drilling model. The geological model hence becomes an interactive object strongly linked to the drilling procedure, and the software should allow to make rapid and informed decisions while drilling, to maximize productivity and minimize drilling risks and costs. This procedure enables a timely, efficient and accurate data access and exchange among the rig site data acquisition system, office-based software applications and data storage. The loading of real-time data has to be quick and efficient in order to refine the model and learn the lessons for the next drilling operations.

  9. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic susceptibility indicates climatic variation potentially related to precessional cycles.

  10. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  11. Timescale Calculations for Ice Core Drilling Sites on the Temperate Ice Caps in Iceland

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, T.; Einarsson, B.

    2005-12-01

    Modelling of age vs. depth profiles and annual-layer thickness changes with depth in ice sheets forms part of the investigations carried out prior to the selection of ice core drilling sites. The well known Nye model, which assumes a constant vertical strain rate with depth in an ice sheet of thickness H is generally applicable in the upper half of polar and temperate ice caps, but the assumption of a constant vertical strain rate is unrealistic near the bed in an ice sheet frozen to bedrock. Dansgaard-Johnsen (D-J) type models assume that the vertical strain rate is constant down to height h above bedrock and then decreases linearly with depth towards zero at the bed. The parameter h can be calibrated according to the way in which the horizontal velocity varies with depth. Here we introduce a new derivation of the D-J model that accounts for bottom melting due to the geothermal heat flux, which averages 200 mW/m2 in Iceland. The model is then applied to five different locations on the temperate ice caps in Iceland, with ice thicknesses varying between 220 m and 850 m and accumulation rates ranging between 2.0 and 3.6 m ice/year. Data from ice cores drilled at three of these sites are used to calibrate the model. For the summit location on the Hofsjokull ice cap (H = 300 m), we find that a D-J model with a relatively high h/H ratio reproduces the timescale from a 100 m ice core better than the Nye model. Results indicate that a continuous precipitation record covering the last 400-500 years could be retrieved at the Hofsjokull summit (1790 m a.s.l.), and the assumption of bottom melting has a large effect on the modelled timescale at this site, yielding 50% lower ages at 90% of the ice depth than model runs that neglect bottom melting. For deeper drillings in Iceland, the ice-filled caldera at Bardarbunga, NW-Vatnajokull (H = 850 m), where a 415 m core was drilled in 1972, is among the most promising sites. Selection of the h/H ratio in the D-J model for timescale calculation within the caldera rims is complicated by an unusual ice-flow pattern but results strongly indicate that a 700-800 m ice core could yield a record covering historical time in Iceland (870 AD - present). Model results predict that by 90% of ice depth, the annual layers have thinned to 17 cm at the Hofsjokull summit and 8 cm within the Bardarbunga caldera. Annual layers of this thickness are detectable with the methods used in pilot ice core drilling and processing efforts in Iceland in recent years.

  12. Tecuamburro Volcano, Guatemala geothermal gradient core hole drilling, operations, and preliminary results

    SciTech Connect

    Goff, S.; Heiken, G.; Goff, F.; Gardner, J. ); Duffield, W. ); Martinelli, L.; Aycinena, S. ); Castaneda, O. . Inst. Nacional de Electrificacion)

    1990-01-01

    A geothermal gradient core hole (TCB-1) was drilled to a depth of 700+ m at the Tecuamburro geothermal site, Guatemala during February and March, 1990. The core hole is located low on the northern flank of the Tecuamburro Volcano complex. Preliminary analysis of cores (>98% core recovery) indicates that the hydrothermal system may be centered in the 4-km-diameter Chupadero Crater, which has been proposed as the source of pyroxene pumice deposits in the Tecuamburro area. TCB-1 is located 300 m south of a 300-m-diameter phreatic crater, Laguna Ixpaco; the core hole penetrates the thin edge of a tuff ring surrounding Ixpaco and zones of hydrothermal brecciation within the upper 150 m may be related to the phreatic blast, dated at 2,910 {sup 14}C years. At the time of this writing, the unequilibrated temperature at a depth of 570m was 180{degree}C. Data on fracturing, permeability, hydrothermal alteration, and temperature will be presented. 3 refs., 3 figs.

  13. The COSC-1 drill core - a geological sample through a hot allochthon and the underlying thrust zone

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Almqvist, Bjarne; Berthet, Théo; Klonowska, Iwona

    2015-04-01

    The ICDP (International Continental Scientific Drilling Program) supported Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project has the aim to study mountain building processes in a major Paleozoic orogen. COSC-1, drilled in 2014 near Åre (Sweden), was planned to sample a section from the hot allochthon of the Lower Seve Nappe through the thrust zone and into the underlying less metamorphic rocks of the Särv and/or Jämtlandian nappes. Diamond core drilling operations resulted in 2396.0 m of drill core with only about 2.5 m documented core loss (technical failure of the core catcher). Down to about 1800 m, the COSC-1 drill hole penetrated a succession that is dominated by gneisses of varying compositions (felsic, amphibole, calc-silicate gneisses, and more), often garnet and diopside bearing. Meta-gabbros and amphibolites are common and apparently correlate well with seismic reflectors between 500 and 1000 m depth. Also marbles, pegmatite dykes and minor mylonites occur. These rocks are highly strained. Small scale structures (e.g. isoclinal folding) are occasionally discernible in the narrow section provided by the drill cores. (Young) Fractures are sparse. Only a set of very steep fractures results in fluid conduction zones at several levels throughout the drill hole. At 175 m and between 1200 and 1300 m, this results in the dissolution of calcite-rich bands in the gneisses to form "micro-karst". First signs of the thrust zone below the Seve Nappe appear just below 1700 m in form of narrow deformation bands and thin mylonites. The mylonites increase in thickness and reach a thickness of around 1 m between 1900 and 2000 m. Below c. 2100 m, mylonites are dominating and garnets become common (but are not present in all mylonites). The deepest rock of mafic origin (possibly amphibolite in the Seve Nappe) was identified at 2314 m, a transition from gneiss into lower grade metasedimentary rocks occurs between 2345 and 2360 m. The lower part of the drill core to TD is dominated by quartzites and meta-arkoses (field name) of unclear tectonostratigraphic position that are mylonitised to varying degree. The drill hole does not penetrate the base of the thrust zone. The rocks sampled in the lowermost part of the drill core are the thickest mylonites encountered, tens of metres thick and (again) rich in garnet. Geological conclusions with relevance to mountain building have to wait for detailed analysis of the drill core. However, direct observations are: - The gneisses of the Lower Seve Nappe are much more homogenous than expected. - Thick (hundreds of metres) mafic bodies (Arnbom 1980, and unpublished geological maps) are absent. The maximum thickness in the drill core is about 30 m. - The thrust zone below the Seve Nappe is much thicker than expected. After more than 500 m the lower boundary was not encountered. - The drill hole seems to leave the Seve Nappe and enter lower grade metamorphic rocks. However, the mylonites at the bottom of the drill hole contain many and large garnets (up to cm size).

  14. Structure and stress state of Hawaiian island basalts penetrated by the Hawaii Scientific Drilling Project deep core hole

    USGS Publications Warehouse

    Morin, R.H.; Wilkens, R.H.

    2005-01-01

    As part of the Hawaii Scientific Drilling Project (HSDP), an exploratory hole was drilled in 1993 to a depth of 1056 meters below sea level (mbsl) and a deeper hole was drilled to 3098 mbsl in 1999. A set of geophysical well logs was obtained in the deeper hole that provides fundamental information regarding the structure and the state of stress that exist within a volcanic shield. The acoustic televiewer generates digital, magnetically oriented images of the borehole wall, and inspection of this log yields a continuous record of fracture orientation with depth and also with age to 540 ka. The data depict a clockwise rotation in fracture strike through the surficial Mauna Loa basalts that settles to a constant heading in the underlying Mauna Kea rocks. This behavior reflects the depositional slope directions of lavas and the locations of volcanic sources relative to the drill site. The deviation log delineates the trajectory of the well bore in three-dimensional space. This path closely follows changes in fracture orientation with depth as the drill bit is generally prodded perpendicular to fracture strike during the drilling process. Stress-induced breakouts observed in the televiewer log identify the orientations ot the maximum and minimum horizontal principal stresses to be north-south and east-west, respectively. This stress state is attributed to the combination of a sharp break in onshore-offshore slope that reduces stress east-west and the emergence of Kilauea that increases stress north-south. Breakouts are extensive and appear over approximately 30% of the open hole. Copyright 2005 by the American Geophysical Union.

  15. Mineralogical and petrological investigations of rocks cored from depths higher than 440m during the CFDDP drilling activities at the Campi Flegrei caldera (southern Italy).

    NASA Astrophysics Data System (ADS)

    Mormone, Angela; Piochi, Monica; Balassone, Giuseppina; Carlino, Stefano; Somma, Renato; Troise, Claudia; De Natale, Giuseppe

    2014-05-01

    The Campi Flegrei caldera is one of the highest-risk volcanic areas on the Earth and the drilling exploiting activities carried by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN) since the '40 have produced the main constrains to the definition of the subsurface structure of the caldera. The eastern part of the caldera represents among the least known in the area in terms of both volcanic and geothermal evolution. Recently, in the 2012, the Campi Flegrei Deep Drilling Project (CFDDP) allowed performing a 506m hole in this sector of the caldera, i.e. in the Bagnoli Plain, where the western districts of the Neapolitan city developed. Here, we present the preliminary results from mineralogical, geochemical and petrological investigations of drilling core samples collected at -443 m and -506 m of depths. Scanning electron microscopy (SEM), microanalysis by energy dispersive spectroscopy (EDS) together with investigations by back-scattered electron mode (SEM-BSE), and powder X-Ray diffraction (XRD) allowed: 1) defining the primary sample lithology; 2) examining the features of both primary and secondary minerals; 3) describing the relationships among texture and secondary mineralization. Sr isotope analyses were furthermore performed on separated feldspars. Density measurements were also carried out on the bottom core. The investigated samples are representative of strongly altered, massive pyroclastic tuffs, which made of a chaotic ashy to sandy matrix including low crystalline juvenile scoria and pumice fragments. Textural features of secondary mineralization are consistent with circulation of hydrothermal fluids as the results of a wide geothermal resource in the caldera. Comparing the paleo-temperature inferred by authigenic minerals occurrence and the temperature measured at the bottom hole (~60°C) during geophysical logs, we suggest the cooling of the hydrothermal system in the eastern sector of the caldera.

  16. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    NASA Astrophysics Data System (ADS)

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  17. HSDP II Drill Core: Preliminary Rock Strength Results and Implications to Flank Stability, Mauna Kea Volcano

    NASA Astrophysics Data System (ADS)

    Thompson, N.; Watters, R. J.; Schiffman, P.

    2004-12-01

    Selected portions of the 3-km HSDP II core were tested to provide unconfined rock strength data from hyaloclastite alteration zones and pillow lavas. Though the drilling project was not originally intended for strength purpose, it is believed the core can provide unique rock strength insights into the flank stability of the Hawaiian Islands. The testing showed that very weak rock exists in the hyaloclastite abundant zones in the lower 2-km of the core with strength dependent on the degree of consolidation and type of alteration. Walton and Schiffman identified three zones of alteration, an upper incipient alteration zone (1080-1335m), a smectitic zone (1405-1573m) and a lower palagonitic zone from about 1573 m to the base of the core. These three zones were sampled and tested together with pillow lava horizons for comparison. Traditional cylindrical core was not available as a consequence of the entire core having been split lengthwise for archival purposes. Hence, point load strength testing was utilized which provides the unconfined compressive strength on irregular shaped samples. The lowest unconfined strengths were recorded from incipient alteration zones with a mean value of 9.5 MPa. Smectitic alteration zones yielded mean values of 16.4 MPa, with the highest measured alteration strengths from the palagonite zones with a mean value of 32.1 MPa. As anticipated, the highest strengths were from essentially unaltered lavas with a mean value of 173 MPa. Strength variations of between one to two orders of magnitude were identified in comparing the submarine hyaloclastite with the intercalated submarine lavas. The weakest zones within the hyaloclastites may provide horizons for assisting flank collapse by serving as potential thrust zones and landslide surfaces.

  18. Correction of non-intrusive drill core physical properties data for variability in recovered sediment volume

    NASA Astrophysics Data System (ADS)

    Walczak, M. H.; Mix, A. C.; Willse, T.; Slagle, A.; Stoner, J. S.; Jaeger, J.; Gulick, S.; LeVay, L.; Kioka, Arata; IODP Expedition 341 Scientific Party

    2015-08-01

    Non-intrusive track-based physical properties measurements of sediment cores recovered during ocean drilling are often biased by imperfect recovery within sediment core liners, particularly in heterogeneous and/or partially lithified sediments. These biases result in misrepresentation in measurements of true sediment physical properties, and can complicate integration of the composite site records assembled from recovered cores with borehole logs of the stratigraphic section. Here we develop a strategy utilizing gamma ray attenuation (GRA) density to generate mass-specific magnetic susceptibility (MS) and natural gamma radiation (NGR) data. Shipboard GRA density is collected in all cores that comprise a site at equivalent or higher resolution than the corresponding MS and NGR data. All instruments are calibrated assuming a volume of sediment in their detector windows equivalent to that present in a perfectly full core liner; changes in sediment bulk density related to compaction, and/or imperfect sediment recovery resulting in a partially filled core liner thus influence all three measurements proportional to their detector sensitivities. In principle it may be possible to correct MS or NGR data for variable sediment volume by normalizing them to GRA measured at equivalent depth on a sensing track, assuming that the volumetric bias is comparable in all three datasets. Because GRA is measured in much greater detail, it must be smoothed by the known measurement windows of the other parameters for the assumption of comparable analytical sediment volume to be true. Normalizing MS or NGR by the equivalently smoothed GRA in down-hole records should thus remove the bias associated with variable sediment volume in the detector windows, allowing for robust mass-specific determination of these volume-based sediment physical properties.

  19. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  20. Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico

    SciTech Connect

    Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

    1990-03-01

    An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

  1. Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico

    NASA Astrophysics Data System (ADS)

    Elbra, Tiiu; Pesonen, Lauri J.

    2011-11-01

    The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K-Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001-2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K-Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia- or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact-related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K-Pg boundary.

  2. Lithologic and geophysical logs of drill holes Felderhoff Federal 5-1 and 25-1, Amargosa Desert, Nye County, Nevada

    SciTech Connect

    Carr, W.J.; Grow, J.A.; Keller, S.M.

    1995-10-01

    Two wildcat oil and gas exploration holes drilled in 1991 on the northern edge of the Amargosa Desert penetrated Tertiary and Quaternary sedimentary rocks, alluvium, and basalt, possible Tertiary volcanic or volcaniclastic rocks, and Tertiary (?) and Paleozoic carbonate rocks. The easternmost of the two holes, Felderhoff-Federal 5-1, encountered about 200 feet of alluvium, underlain by 305 feet of basalt breccia and basalt, about 345 feet of probable Tertiary tuffaceous sedimentary rocks, and 616 feet of dense limestone and dolomite of uncertain age. Drill hole 25-1 penetrated 240 feet of alluvium and marl (?), and 250 feet of basalt breccia (?) and basalt, 270 feet of tuff (?) and/or tuffaceous sedimentary rocks, 360 feet of slide blocks (?) and large boulders of Paleozoic carbonate rocks, and 2,800 feet of Paleozoic limestone and dolomite. The two drill holes are located within a northerly trending fault zone defined largely by geophysical data; this fault zone lies along the east side of a major rift containing many small basalt eruptive centers and, farther north, several caldera complexes. Drill hole 25-1 penetrated an inverted paleozoic rock sequence; drill hole 5-1 encountered two large cavities 24-inches wide or more in dense carbonate rock of uncertain, but probable Paleozoic age. These openings may be tectonic and controlled by a regional system of northeast-striking faults.

  3. Drilling, Coring and Sampling Using Piezoelectric Actuated Mechanisms: From the USDC to a Piezo-Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi

    2012-01-01

    NASA exploration missions are increasingly including sampling tasks but with the growth in engineering experience (particularly, Phoenix Scout and MSL) it is now very much recognized that planetary drilling poses many challenges. The difficulties grow significantly with the hardness of sampled material, the depth of drilling and the harshness of the environmental conditions. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a number of piezoelectric actuated drills and corers were developed by the Advanced Technologies Group of JPL. The basic configuration that was conceived in 1998 is known as the Ultrasonic/Sonic Driller/Corer (USDC), and it operates as a percussive mechanism. This drill requires as low preload as 10N (important for operation at low gravity) allowing to operate with as low-mass device as 400g, use an average power as low as 2- 3W and drill rocks as hard as basalt. A key feature of this drilling mechanism is the use of a free-mass to convert the ultrasonic vibrations generated by piezoelectric stack to sonic impacts on the bit. Using the versatile capabilities f the USDC led to the development of many configurations and device sizes. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to remove cuttings. To reach meters deep in ice a wireline drill was developed called the Ultrasonic/Sonic Gopher and it was demonstrated in 2005 to penetrate about 2-m deep at Antarctica. Jointly with Honeybee Robotics, this mechanism is currently being modified to incorporate rotation and inchworm operation forming Auto-Gopher to reach meters deep in rocks. To take advantage of the ability of piezoelectric actuators to operate over a wide temperatures range, piezoelectric actuated drills were developed and demonstrated to operate at as cold as -200oC and as hot as 500oC. In this paper, the developed mechanisms will be reviewed and discussed including the configurations, capabilities, and challenges.

  4. Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.

    1977-01-01

    Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.

  5. Preliminary Descriptions of Impact Rocks Recovered by Recent Core Drilling in the Manson Impact Structure

    NASA Astrophysics Data System (ADS)

    Anderson, R. R.; Witzke, B. J.; Hartung, J. B.

    1993-07-01

    In a recent drilling program 12 cores totaling over 1200 m were recovered from the Manson Impact Structure. Four principal impact rock types were encountered (1) Sedimentary Clast Breccia (SCB), (2) Crystalline Clast Breccia with Sandy Matrix (CCB-S) and Melt Rock Matrix (CCB-M), (3) Central Peak Igneous and Metamorphic Rocks (CP), and (4) an overturned flap of Impact Ejecta (IE). The SCB is dominated by clasts of Cretaceous marine shale and mudstone, with subordinate Cretaceous sandstones, Paleozoic carbonates, minor Proterozoic Red Clastics, and rare crystalline rock and impact melt-rock clasts in a medium gray, calcareous, sandy shale matrix. Parallel deformation features (PDFs) and other evidence of impact metamorphism are extremely rare. The SCB reaches a maximum thickness in excess of 200 m and is interpreted as a post-impact debris flow that originated at the crater margins. The abundance, large clasts (up to 75 m) and pervasive occurrence of SCB (cored in all regions of the Manson Impact Structure including the Central Peak pit) suggests a high energy emplacement mechanism, possibly water rushing into the crater following an impact in a shallow marine environment. The uppermost unit on the Central Peak, the CCB-M, displays abundant clasts, dominated by quartz grains, most displaying PDFs, shock isotropism, and/or partial melting. Some clasts display accretionary mantling by melt materials, apparently while airborne, with subsequent mixing into the CCB-M. An isotropic melt matrix frequently displays flow-banding and devitrification textures. The CCB-M is interpreted as an impact melt layer, derived primarily from crystalline basement rocks, and may represent CCB-S that experienced sufficient heat to melt the matrix grains. A central zone of the CCB-M displays clusters of sanidine crystals, recrystalized from impact melt in a region that apparently cooled more slowly. The CCB-S is dominated by clasts of basement gneiss and granite in a matrix of sand- to silt-size grains of crystalline rocks and mineral grains derived from disaggregated crystalline rocks. Mineral grains display abundant impact deformation features, and almost all quartz grains display abundant multiple intersecting PDFs. Rare grains of melt rock and sedimentary rock fragments imply minor mixing of overlying materials. The CCB-S is interpreted as the impact- brecciated floor of the Transient Crater, uplifted on the Central Peak. The CPs are Proterozoic crystalline basement rocks that form the core of the central peak. They are dominated by gneisses and granites, but also include minor mafic and ultramafic rocks. In thin section, CPs display abundant PDFs and other shock deformation features. They commonly occur as meters-scale blocks separated by zones of CCB-S and display thin veins of melt material, apparently pseudotachylite. The CPs, CCB-S, and CCB-M display the effects of post-impact hydrothermal alteration. The IE, encountered in one core in the Terrace Terrane, totaled over 200 m of Proterozoic Red Clastics and Paleozoic carbonates and clastics in overturned stratigraphic position. Pre-impact units occur, in reduced thickness, and the sequence is interpreted as an ejecta flap, only partially penetrated by core drilling. Deeper coring in this region would penetrate to the structurally-preserved impact surface, a tempting target for future drilling in this exquisitely-preserved impact structure.

  6. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    SciTech Connect

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  7. Geology and geochemistry of shallow drill cores from the Bosumtwi impact struture, Ghana

    NASA Astrophysics Data System (ADS)

    Boamah, D.; Koeberl, C.

    2003-08-01

    The 1.07 Ma well-preserved Bosumtwi impact structure in Ghana (10.5 km in diameter) formed in 2 Ga-old metamorphosed and crystalline rocks of the Birimian system. The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glass- rich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke-phyllite, shale, and granite). Graywacke-phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the Bosumtwi structure, which was determined to be 15 m and to occupy an area of ~1.5 km2. Present suevite distribution is likely to be caused by differential erosion and does not reflect the initial areal extent of the continuous Bosumtwi ejecta deposits. Our studies allow a comparison with the extent of the suevite at the Ries, another well-preserved impact structure.

  8. Trace elements profiles, notably Hg, from a preliminary study of the Apollo 15 deep-drill core.

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1972-01-01

    The possible thermal gradient near the surface during a lunation is considered together with the heat flow from the interior, the physical process of Hg migration, the results from core and trench samples from previous missions, and other temperature sensitive phenomena that may help understand the processes. U, Os, and Ru concentrations in the deep drill core samples are of potential interest and are summarized in a table. The Os tends to parallel the Hg profile with depth.

  9. The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

    2012-12-01

    The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.

  10. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry

    PubMed Central

    Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.

    2011-01-01

    Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 ?m. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681

  11. Analysis of hydrologic structures within Mauna Kea volcano using diamond wireline core drilling

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Haskins, E.

    2013-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within the dry (~430 mm/year annual rainfall) saddle region between Mauna Loa and Mauna Kea volcanoes. The project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl. The shallow stratigraphy consisted of alluvial outwash of clastic debris, of both volcanic and glacial origin, from the upper slopes of Mauna Kea, and was underlain by highly permeable post-shield lavas to depths of a few hundred meters. Below this depth, shield stage lavas were dominated by highly-fractured and permeable pahoehoe lavas and (less common) a'a flows and occasional soil and ash accumulations at flow boundaries. As depths increased below 1000 m, progressive compaction of fragmental material was found at the flow boundaries and, by depths of ~1500 m, much of the void space in the flow boundaries had been collapsed and compacted. Increasing secondary mineralization was observed below about 1000 m depth that was exacerbated by rising temperatures and temperature gradients toward the bottom of the hole. Hydrologic conditions were strikingly different from those predicted by conventional models for ocean islands: the formation was dry down to only ~150 m where the first, thin, perched aquifer was encountered; a second, more substantial, perched aquifer was reached at only ~220 m depth that extended to ~360 m where a sequence of (remarkably thin) perching formations were recovered in the core down to about 420 m where unsaturated rocks were again encountered. Saturated conditions resumed at 550 m depth that continued to the total depth drilled; this latter zone is inferred to be the basal aquifer for Mauna Kea within this region of the island. Our initial analysis of the core suggests that thin, clay-rich, perching formations in the shallow stratigraphic column play a much larger role in groundwater transport than has generally been recognized; in the deeper interior of the volcano, compaction of flow boundaries (the major water carriers in the shallow stratigraphy) leads to a progressive decrease in permeability and reduction in the transport rates of recharge toward the shoreline aquifers.

  12. Hydrothermal mineralogy of core from geothermal drill holes at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; Keith, Terry E.

    1999-01-01

    Hydrothermal mineralogy studies of specimens collected from nine geothermal drill holes suggest that, at the locations and depths drilled, past temperatures have been hottest (exceeding 300?C) near ring fractures on the south and west sides of Newberry Volcano.

  13. Multiple Geophysical Observations by a newly developed multi-component borehole instrument at the Continental Deep Drilling Site of the CCSD, Donghai, China

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhao, Z.; Ishii, H.; Yamauchi, T.

    2004-12-01

    Multiple Geophysical Observations by a newly developed multi-component borehole instrument at the Continental Deep Drilling Site of the CCSD, Donghai, China Jiren Xu1 (+86-10-68992879; xujiren@ccsd.org.cn) Zhixin Zhao1 (+86-10-68999734; zhaozhixin@ccsd.org.cn) Hiroshi Ishii2 (+81-0572-67-3105; ishii@tries.gr.jp Tsuneo Yamauchi3 (+81-052-789-3045; yamauchi@seis.nagoya-u.ac.jp) 1 Institute of Geology, Chinese Academy of Geological Sciences, China 2 Tono Research Institute of Earthquake Science (TRIES), Japan 3 Graduate School of Environmental Studies, Nagoya University, Japan The Chinese Continental Scientific Drilling (CCSD) site is located in the Donghai area of the Dabie-Sulu belt, which is the largest UHPM belt in the world. The drilling of the main borehole with 5000m will finish in next year. Three satellite boreholes, PP1, PP2 and PP3 were drilled and various surveys have been performed in the Donghai area about 6 years ago. We are going to install a newly developed Multi-component Instrument for borehole observations in main hole near the large Tanlu fault, and establish a long-term underground observation laboratory, which is the first noiseless one in China. The seismic activity and various geophysical fields, viz. strain, geomagnetism, geothermy, tilt, pore pressure etc. will be investigated. Data from the underground laboratory will be open to scientific, engineering and public services. We will measure the initial stress in various depths of the borehole by overcoring method using a new developed wireless intelligent type strainmeter of in-situ stress. Establishing a long-term noiseless underground observation laboratory at deep borehole and investigating crustal movement in East China are important for observing the physical conditions of the earth¡_s interior and solving many social problems, such as resources, disasters and environment. Multiple geophysical observations and the study in deep borehole will speed up and develop the study on tectonics and geodynamics. The accomplishment of this project may enrich the knowledge on the geophysics and geology.

  14. Subsurface Organics in Aseptic Cores From the MARTE Robotic Drilling Experiment: Ground truth and Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Stoker, C. R.

    2006-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. This includes the search for past/present life on Mars where possible subsurface life could exist [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) performed a simulation of a Mars robotic drilling at the RT Borehole#7 Site ~6.07m, atop a massive-pyrite deposit from the Iberian Pyritic Belt. The RT site is considered an important analog of Sinus Meridiani on Mars, an ideal model analog for a subsurface Martian setting [2], and a relevant example of deep subsurface microbial community including aerobic and anaerobic chemoautotrophs [4-5]. Searching for microbes or bulk organics of biological origin in a subsurface sample from a planet is a key scientific objective of Robotic drilling missions. During the 2005 Field experiment 28 minicores were robotically handled and subsampled for life detection experiments under anti-contamination protocols. Ground truth included visual observation of cores and lab based Elemental and Isotope Ratios Mass Spectrometry analysis (EA-IRMS) of bulk organics in Hematite and Gohetite-rich gossanized tuffs, gossan and clay layers within 0-6m-depth. C-org and N-tot vary up to four orders of magnitude among the litter (~11Wt%, 0-1cm) and the mineralized (~3Wt%, 1-3cm) layers, and the first 6 m-depth (C-org=0.02-0.38Wt%). Overall, the distribution/ preservation of plant and soil-derived organics (d13C-org = 26 per mil to 24 per mil) is ten times higher (C-org=0.33Wt%) that in hematite-poor clays, or where rootlets are present, than in hematite- rich samples (C-org=<0.01Wt%). This is consistent with ATP assay (Lightning-MVP, Biocontrol) for total biomass in subsurface (Borehole#7 ~6.07m, ~avg. 153RLU) vs. surface soil samples (~1,500-81,449RLU) [5]. However, the in-situ ATP assay failed in detecting presence of roots during the in-situ life detection experiment. Furthermore, cm-sized roots were overlooked during remote observations. Finally, ATP Luminometry provided insights for potential contamination from core-handling and environmental dust loadings on cleaned/sterilized control surfaces (e.g., 6,782-36,243RLU/cm2). Cleanliness/sterility can be maintained by applying a simple sterile protocol under field conditions. Science results from this research will support future Astrobiology driven drilling mission planned on Mars. Specifically, ground truth offers relevant insights to assess strengths and limits of in-situ/remote observations vs. laboratory measurements. Results from this experiment will also aid the debate on advantages/ disadvantages of manned vs. robotic drilling missions on Mars or other planets. [1] Boston et al., 1997; [2] http://marte.arc.nasa.gov; [3] Stoker, C., et al., 2006 AbSciCon, [4] Stoker et al., submitted; [5] Bonaccorsi., et al., 2006 AbSciCon.

  15. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Electron density and core temperature properties in1

    E-print Network

    Aulanier, Guillaume

    T #12;X - 2 SCHIPPERS ET AL.: ELECTRONS AT SATURN FROM HF RADIO Abstract.4 We analyze the largeJOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Electron density and core temperature properties in1 the innermost Saturn's magnetosphere from HF2 radio measurements on Cassini3 P

  16. Interpretation of core and well log physical property data from drill hole UPH-3, Stephenson County, Illinois

    USGS Publications Warehouse

    Daniels, J.J.; Olhoeft, G.R.; Scott, J.H.

    1984-01-01

    Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility, and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystallization of the intrusive penetrated by UPH-3. Two fracture zones, and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystallization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.

  17. Borehole logging at the COSC-1 drill hole: a new dataset of in-situ geophysical properties through the lower Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Berthet, Théo; Alm, Per-Gunnar; Wenning, Quinn; Almqvist, Bjarne; Kück, Jochem; Hedin, Peter

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) drilling project supported by the International Continental Drilling Program was designed to study mountain building processes in a deeply eroded Paleozoic orogen. The first half of this project, COSC-1, targeted the lower part of the high grade Seve Nappe Complex and its basal thrust zone near Åre in the Jämtland county, Sweden. From May to August 2014, the COSC drilling crew drilled to a depth of 2496 m from the surface with an almost fully recovered core sample. During this drilling period, four borehole-logging runs have been conducted by Lund University with a low impact on drilling schedule and two supplementary ones once the drilling was completed. Three-Arm Caliper, Electrical Logging, Sidewall Density, Flowing Fluid Electric Conductivity, High Resolution Acoustic Televiewer and Full Waveform Sonic sondes have been used to investigate in-situ physical properties of the borehole. In addition, the ICDP operational support group has conducted two continuous borehole-logging runs from the surface to the bottom of the COSC-1 borehole in September and October. Due to technical problems, some of the planned logging have not been completed, however natural gamma, rock resistivity, magnetic susceptibility, K/Th/U concentration, temperature and fluid conductivity have been measured all along the borehole. We used the continuous natural gamma log from the ICDP logging group as the depth reference to depth-match and stack the composite borehole logging done during the drilling. These borehole logging operations result in reliable continuous data of resistivity, density, velocity, magnetic susceptibility, K/Th/U concentration, temperature, fluid conductivity, pressure, diameter as well as an image (amplitude and travel time of reflected ultrasounds) of the borehole till its bottom. Only the density, velocity and image datasets stop at 1600 m depth due to instrumentation limits. Preliminary conclusions from the borehole logging data show a stripped pattern of density correlated with velocity, which underlines the varying composition of the gneisses observed in the first 1600 m core. Pressure and temperature condition at the bottom of the borehole reach almost reach 55°C and 25 MPa. Moreover, some of the fracture zones observed in the borehole image provided by the acoustic televiewer seem to be associated with hydraulic active zones detected by spikes in the fluid conductivity logs and can also be correlated to those seen in the drill core.

  18. Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST)

    NASA Astrophysics Data System (ADS)

    Lin, Weiren; Fulton, Patrick M.; Harris, Robert N.; Tadai, Osamu; Matsubayashi, Osamu; Tanikawa, Wataru; Kinoshita, Masataka

    2014-12-01

    We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for four whole-round core samples obtained by the Japan Trench Fast Drilling Project/Integrated Ocean Drilling Program Expedition 343. These thermal properties are necessary for the interpretation of a temperature anomaly detected in the vicinity of the plate boundary fault that ruptured during the 2011 Tohoku-Oki earthquake and other thermal processes observed within the Japan Trench Fast Drilling Project temperature observatory. Results of measured thermal conductivities are consistent with those independently measured using a transient line source method and a divided bar technique. Our measurements indicate no significant anisotropy in either thermal conductivity or thermal diffusivity.

  19. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  20. Drill report

    SciTech Connect

    Not Available

    1983-11-01

    The U.S. Fish and Wildlife Service has approved an industry proposal to conduct reflection seismic studies for oil and gas on the Arctic National Wildlife Refuge coastal plain. The plan submitted by Geophysical Services Inc. (GSI) was approved, subject to modifications aimed at safeguarding the environment. A listing of current drilling activities in Alaska is provided.

  1. Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core

    SciTech Connect

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

    2003-05-01

    A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

  2. Lithological Conditions at the Box Canyon Site: Results of Drilling, Coring and Open Borehole Measurements 1995-1997 Data Report

    SciTech Connect

    Burgess, D.; Faybishenko, B.; Holland, P.; Knutson, C.; Mesa, M.; Sisson, B.

    1998-09-01

    DOE faces the remediation of several contaminated sites in unsaturated fractured basalt where organic and radioactive wastes have migrated downward through fracture pathways that are difficult, if not impossible, to detect. Perched water zones located above zones of low permeability (massive basalt) create a complicated system of hydraulic baffles. Because of these large scale heterogeneities, the characterization of the lithology of the rock and the geometry of the subsurface fracture pattern is a crucial step in the development of a conceptual model of fluid flow and chemical transport, and eventually the design of a remediation system. The purpose of this data report is to compile and document the results of drilling and lithological studies conducted in open boreholes at the Box Canyon site. Lithological templates are included for each well and contain data such as drilling date, drilling method, logging method, well coordinates, Lithological log, gamma measurements, caliper measurements, core run and recovery depth, vesicular intervals, single fracture depths and descriptions, fracture zone depth and descriptions, and general comments about the borehole lithology. The lithological features were mapped for each borehole. The gamma and caliper measurements are presented as separate plots using greater resolution. Color core photos and core descriptions are also included. TV logging was used to map the lithology of the boreholes that were not cored (E, R, and T wells). This information will be further used to create a comprehensive lithological model of the subsurface. The TV logging of cored wells was viewed to compare the resolution and accuracy of TV logging to core logging. The TV logging method accurately showed large scale features such as zones of vesicularity, large fractures, fracture zones, rubble zones, and massive basalt zones, but it was difficult to detect hairline fractures, fracture orientation, and mineralization of fractures. Also, all depth measurements in increments less than 1 ft are estimated. TV logging is not as precise as logging directly from the core, but it is useful for mapping the major lithological features.

  3. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  4. Laboratory-determined transport properties of core from the Salton Sea Scientific Drilling Project

    SciTech Connect

    Lin, W.; Daily, W.

    1988-11-10

    Two cores from the Salton Sea Scientific Drilling Project have been studied in the laboratory to determine electrical resistivity, ultrasonic velocity, and brine permeability at pressures and temperatures close to estimated borehole conditions. Both samples were siltstones; the first sample was from 1158-m depth, and the other was from 919-m depth. A synthetic brine with 13.6 weight percent NaCl, 7.5 weight percent CaCl/sub 2/, and 3.2 weight percent KCl was used as a pore fluid. The dry bulk density of the first sample was 2.44 Mg m/sup -3/ with an effective porosity of 8.7%. The second sample had a dry bulk density of 2.06 Mg m/sup -3/ with an effective porosity of 22.2%. At the midplane of the first sample, electrical impedance tomography was used to map the spatial variation of resistivity during the experiment. Also, at the midplane of both samples, ultrasonic tomography was used to map the spatial variation of P wave velocity.

  5. The Apollo 17 drill core - Chemistry of size fractions and the nature of the fused soil component

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Papike, J. J.

    1980-01-01

    It is shown that the Apollo 17 drill core 70009-70001 is heterogeneous with depth, containing five stratigraphic units, and has a bulk soil chemistry governed by the coarse fractions because of their greater weight proportions. The four components (1) KREEP, (2) anorthositic gabbro, (3) mare basalt, and (4) orange glass are used to model the compositions of the coarse and fine fractions of the entire drill core. It is found that the chemistry of the fused soil component in the five stratigraphic units is more similar to the chemistry of the fine, less than 20-micron fractions than the coarse fraction, suggesting that agglutinates may prefferentially meld and replicate the chemistry of the finer size fractions. The sources of Zn are the orange/black glasses, and the Zn profile is anticorrelated with the maturity index of Morris et al (1979), indicating the liberation of Zn during soil maturation.

  6. Lithostratigraphic and petrographic analysis of ICDP drill core LB-07A, Bosumtwi impact structure, Ghana

    NASA Astrophysics Data System (ADS)

    Coney, Louise; Gibson, Roger L.; Reimold, Wolf Uwe; Koeberl, Christian

    Lithostratigraphic and petrographic studies of drill core samples from the 545.08 m deep International Continental Scientific Drilling Program (ICDP) borehole LB-07A in the Bosumtwi impact structure revealed two sequences of impactites below the post-impact crater sediments and above coherent basement rock. The upper impactites (333.38-415.67 m depth) comprise an alternating sequence of suevite and lithic impact breccias. The lower impactite sequence (415.67-470.55 m depth) consists essentially of monomict impact breccia formed from meta-graywacke with minor shale, as well as two narrow injections of suevite, which differ from the suevites of the upper impactites in color and intensity of shock metamorphism of the clasts. The basement rock (470.55-545.08 m depth) is composed of lower greenschist-facies metapelites (shale, schist and minor phyllite), meta-graywacke, and minor meta-sandstone, as well as interlaminated quartzite and calcite layers. The basement also contains a number of suevite dikelets that are interpreted as injection veins, as well as a single occurrence of granophyric-textured rock, tentatively interpreted as a hydrothermally altered granitic intrusion likely related to the regional pre-impact granitoid complexes. Impact melt fragments are not as prevalent in LB-07A suevite as in the fallout suevite facies around the northern crater rim; on average, 3.6 vol% of melt fragments is seen in the upper suevites and up to 18 vol% in the lower suevite occurrences. Shock deformation features observed in the suevites and polymict lithic breccias include planar deformation features in quartz (1 to 3 sets), rare diaplectic quartz glass, and very rare diaplectic feldspar glass. Notably, no ballen quartz, which is abundant in the fallout suevites, has been found in the within-crater impact breccias. An overall slight increase in the degree of shock metamorphism occurs with depth in the impactites, but considerably lower shock degrees are seen in the suevites of the basement rocks, which show similar features to each other. The bulk of the suevite in LB-07A appears to have been derived from the <35 GPa shock zone of the transient crater.

  7. High permafrost ice contents in Holocene slope deposits as observed from shallow geophysics and a coring program in Pangnirtung, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Carbonneau, A.; Allard, M.; L'Hérault, E.; LeBlanc, A.

    2011-12-01

    A study of permafrost conditions was undertaken in the Hamlet of Pangnirtung, Nunavut, by the Geological Survey of Canada (GSC) and Université Laval's Centre d'études nordiques (CEN) to support decision makers in their community planning work. The methods used for this project were based on geophysical and geomorphological approaches, including permafrost cores drilled in surficial deposits and ground penetrating radar surveys using a GPR Pulse EKKO 100 extending to the complete community area and to its projected expansion sector. Laboratory analysis allowed a detailed characterization of permafrost in terms of water contents, salinity and grain size. Cryostratigraphic analysis was done via CT-Scan imagery of frozen cores using medical imaging softwares such as Osiris. This non destructive method allows a 3D imaging of the entire core in order to locate the amount of the excess ice, determine the volumetric ice content and also interpret the ice-formation processes that took place during freezing of the permafrost. Our new map of the permafrost conditions in Pangnirtung illustrates that the dominant mapping unit consist of ice-rich colluvial deposits. Aggradationnal ice formed syngenitically with slope sedimentation. Buried soils were found imbedded in this colluvial layer and demonstrates that colluviation associated with overland-flow during snowmelt occurred almost continuously since 7080 cal. BP. In the eastern sector of town, the 1 to 4 meters thick colluviums cover till and a network of ice wedges that were revealed as spaced hyperbolic reflectors on GPR profiles. The colluviums also cover ice-rich marine silt and bedrock in the western sector of the hamlet; marine shells found in a permafrost core yielded a radiocarbon date of 9553 cal. BP which provides a revised age for the local deglaciation and also a revised marine submergence limit. Among the applied methods, shallow drilling in coarse grained permafrost, core recovery and CT-Scan allowed the discovery of the importance of Holocene slope processes on shaping the surface of the terrain and leading to the observed cryostructures and ice contents in the near surface permafrost.

  8. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    SciTech Connect

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  9. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite

    E-print Network

    Walton, Anthony W.; Schiffman, P.

    2003-05-03

    [1] The core from the Hawaii Scientific Drilling Project 2 Phase 1 provides a unique opportunity for studying the low-temperature alteration processes affecting basalt in suboceanic-island environments. In hyaloclastites, ...

  10. Drilling overdeepened Alpine Valleys (DOVE)

    NASA Astrophysics Data System (ADS)

    Anselmetti, Flavio S.; Preusser, Frank; Bavec, Milos; Crouzet, Christian; Fiebig, Markus; Gabriel, Gerald; Ravazzi, Cesare; Spoetl, Christoph

    2014-05-01

    A recently submitted ICDP drilling proposal targets formerly glaciated areas, which are often characterized by deeply incised structures filled by thick Quaternary deposits. These buried troughs and valleys were formed by glacial overdeepening, likely caused by pressurized subglacial meltwater below warm-based glaciers. The proposed multinational drilling initiative consists of 14 drill sites in six different countries, all linked by the fact that they surround a formerly glaciated, densely populated mountain range, the European Alps. Being the best studied mountain range, the Alps will serve as textbook example allowing application of drilling results to other glaciated areas around the world. The drill holes, to be cored all the way to bedrock, will explore the type and age of the infillings of these overdeepened troughs. Such drill cores, paired with matching geophysical and instrumental data, hold the keys to understand how and how fast mountain ranges and their foreland are shaped by repetitive glaciations. The overarching goal will be to date the age and extent of past glaciations and their connection to paleoclimate, paleoecology and landscape history. As of today, it is not known how these glaciations varied along and across the Alps during the past, and to what extent the ice build-up along and across the Alps reflects changes in atmospheric circulation patterns. First results of drill holes in similar settings have produced local knowledge of the timing of glacial activity. Only an alpine-wide drilling initiative, however, will allow to reconstruct the full spatial and temporal scale of glacier advances and erosion and related landscape-forming processes over several glacial-interglacial cycles. Next to these paleoglacial, paleoecological and paleoclimatic aspects, the thick valley fills hold large, untapped aquifers. In the light of an increasing demand for water resources likely amplified by the projected climate change, testing these aquifers in the framework of this project is of high relevance for future hydrogeological applications. Related to this role, these drill holes may be used for shallow geothermal applications, which, however, to date rely on poorly constrained physical properties of the infilling sections. In addition, the areas represent areas of high seismic hazards related to their unfavorable seismic site effects. All these goals will be first addressed by state-of-the-art geophysical surveys that quantify the geometry of the overdeepenings. Drillholes will be analyzed by downhole logging, groundwater sampling and subsurface biosphere testing. Sedimentological, geochemical and palaeobiological analyses will characterize the sediment cores, and a combination of different approaches (biostratigraphy, luminescence dating, cosmogenic nuclide dating, magnetostratigraphy, and tephrastratigraphy) will establish the chronological framework. Eventually, the results from the above approaches will be cross-checked with the outcome of modeling both glacial flow and erosion and atmospheric circulation.

  11. Spatial and Temporal Variations in the Geomagnetic Field Determined From the Paleomagnetism of Sediment Cores From Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Acton, G.

    2014-12-01

    Quantifying the spatial and temporal variations of the main geomagnetic field at Earth's surface is important for understanding underlying geodynamo processes and conditions near the core-mantle boundary. Much of the geomagnetic variability, known as secular variation, occurs on timescales of tens of years to many thousands of years, requiring the use of paleomagnetic observations to derive continuous records of the ancient field, referred to as paleosecular variation (PSV) records. Marine depositional systems where thick sedimentary sections accumulate at high sedimentation rates provide some of the best locations for obtaining long continuous PSV records that can reveal both the short- and long-term changes in the field. Scientific ocean drilling has been successful at recovering many such sections and the paleomagnetic records from these reveal how the amplitude of PSV differs between sites and through time. In this study, several such records cored during Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (IODP), and other cruises from high, mid, and low latitudes will be used to quantify time intervals of low and high PSV, to examine time-average properties of the field, to map spatial variations in the angular dispersion of the virtual geomagnetic pole (VGP), and to assess whether the spatial variation in angular dispersion changes with time.

  12. Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core

    NASA Astrophysics Data System (ADS)

    Nichols, A. R. L.; Potuzak, M.; Dingwell, D. B.

    2009-02-01

    Cooling rates have been determined for basaltic glasses from different depths of the submarine section of the drill core recovered in the 1999 phase of Hawaii Scientific Drilling Project (HSDP2). The glasses include degassed blocky hyaloclastite clasts and undegassed pillow rims. The degassed glassy clasts were generated in subaerial or shallow submarine environments, during explosive interactions between lava and seawater, before eventual deposition under water. The volatile contents of the glassy pillow rims are consistent with eruption and quenching in water several hundred metres deep. The cooling rates have been calculated from the calorimetric properties of the glass across the glass transition. The heat capacity ( c p) of each sample was measured during several cycles of heating from room temperature to temperatures above their glass transition using a differential scanning calorimeter (DSC). Their compositions did not change during the thermal treatment, a prerequisite for successful c p measurements, although the glasses with higher H 2O contents became more opaque and their mid-IR spectra changed. Each c p- T path exhibits the now classic features of the glass transition; glassy and liquid states separated by a hysteresis marking the transition. After experiencing the same experimental thermal history the glass transition occurs at lower temperatures in glasses with higher H 2O contents. Except for one sample, the c p- T path measured on initial heating also releases energy stored during the natural quench, which is not recovered during subsequent experimental cooling. The energy stored in the HSDP2 glasses is much less than that observed in hyperquenched natural and synthetic glasses. Even so, the Tool-Narayanaswamy enthalpy relaxation geospeedometer, usually used to determine the cooling rates in volcanic glasses, is unable to deal with this energy release. For those samples that exhibit this feature an alternative method, developed for hyperquenched glasses, is applied. This uses the energy released to calculate T f, from which the cooling rate is calculated. The degassed blocky hyaloclastite clasts exhibit cooling rates 0.1-72.2 K s -1, while the undegassed pillow rims span 0.2-46.4 K s -1. The fastest cooling rates are consistent with the cooling of lava bodies in seawater. The wide variation for both types of glass could reflect quenching at different distances from the basalt-seawater interface. However, for the degassed hyaloclastite clasts the range could indicate that the clasts were generated by different processes operating during the explosive interaction between lava and seawater in the littoral zone. In the undegassed pillow lavas, glassy rims may have been reheated, giving rise to more complex, slower, thermal histories, as a result of latent heat released during the crystallisation of pillow interiors, or flow replenishment. Both types of glass may also have experienced reheating from succeeding flows or deposits. Compared to deep-sea limu o Pele hyaloclastite fragments, whose hyperquench rates indicate simultaneous cooling and fragmentation, the shallow blocky hyaloclastite clasts may have formed during post-cooling brittle fragmentation.

  13. Initial results from VC-1, first Continental Scientific Drilling Program core hole in Valles caldera, New Mexico

    SciTech Connect

    Goff, F.; Rowley, J.; Gardner, J.N.; Hawkins, W.; Goff, S.; Charles, R.; Wachs, D.; Maassen, L.; Heiken, G.

    1986-02-10

    Valles Caldera 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) core hole drilled in the Valles caldera and the first continuously cored well in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphic information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, and to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian). Coring of the 856-m well took only 35 days to finish, during which all objectives were attained and core recovery exceeded 95%. VC-1 penetrates 298 m of moat volcanics and caldera fill ignimbrites, 35 m of precaldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales. A previously unknown obsidian flow was encountered at 160 m depth underlying the battleship Rock Tuff in the caldera moat zone. Hydrothermal alteration is concentrated in sheared, brecciated, and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alteration assemblages consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite and sphalerite have been identified as high as 450 m and molybdenite has been identified in a fractured zone at 847 m. Carbon 13 and oxygen 18 analyses of core show that the most intense zones of hydrothermal alteration occur in the Madera Limestone above 550 m and in the Madera and Sandia formations below 700 m. This corresponds with zones of most intense calcite and quartz veining. Thermal aquifers were penetrated at the 480-, 540-, and 845-m intervals. Although these intervals are associated with alteration, brecciation, and veining, they are also intervals where clastic layers occur in the Paleozoic sedimentary rocks.

  14. Laboratory-Determined Transport Properties of Core From the Salton Sea Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Lin, Wunan; Daily, William

    1988-11-01

    Two cores from the Salton Sea Scientific Drilling Project have been studied in the laboratory to determine electrical resistivity, ultrasonic velocity, and brine permeability at pressures and temperatures close to estimated borehole conditions. Both samples were siltstones; the first sample was from 1158-m depth, and the other was from 919-m depth. A synthetic brine with 13.6 weight percent NaCl, 7.5 weight percent CaCl2, and 3.2 weight percent KCl was used as a pore fluid. The dry bulk density of the first sample was 2.44 Mg m-3 with an effective porosity of 8.7%. The second sample had a dry bulk density of 2.06 Mg m-3 with an effective porosity of 22.2%. At the midplane of the first sample, electrical impedance tomography was used to map the spatial variation of resistivity during the experiment. Also, at the midplane of both samples, ultrasonic tomography was used to map the spatial variation of P wave velocity. In addition, resistivity was measured with six pairs of electrodes along the sample axis. Both samples showed a strong anisotropy in resistivity and ultrasonic velocity measured perpendicular and parallel to the sample axis. The brine permeability of the first sample decreased from 5 ?D to about 1.6 ?D during the experiment. The second sample permeability had the same trend, but the permeability values were about 3 orders of magnitude larger. The second sample was subjected to temperatures and pressures exceeding those experienced in situ. Permeability, resistivity, and ultrasonic velocity of this sample showed a discontinuous change just beyond these in situ conditions. This discontinuity implies a structural change in the rock under conditions which would be found below its origin depth in the borehole. A model is proposed to explain the observed velocity anisotropy and variations in velocity, electrical resistivity anisotropy, and permeability with effective depth. When in situ stress is released, microcracking may occur along grain boundaries preferentially oriented parallel to bedding. This microcracking controls velocity and resistivity anisotropy at room conditions. When pressure and temperature are restored, competing effects of compaction and thermal softening of the minerals cause a reversal in the anisotropy. At temperatures and pressures above those at in situ conditions, thermal fracturing or geochemical alteration along grain boundaries causes a discontinuous change in sample physical properties.

  15. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  16. Plio-Pleistocene evolution of the southern Victoria Land climate system as seen in New Harbor drill cores

    NASA Astrophysics Data System (ADS)

    Ohneiser, C.; Wilson, G. S.

    2012-04-01

    The Taylor Valley (DVDP-10, -11) and Ferrar Fiord (CIROS-2) drill cores offer a window into the history of Southern Victoria Land glaciers and the Antarctic climate system during the late- Neogene. Here we present new paleomagnetic studies from these drill cores which date five phases of sedimentation in the Taylor/Ferrar fiords and reveal a climate modulation of magnetic mineralogy in southern Victoria Land during the late Neogene. Magnetostratigraphies were constructed from stepwise AF and/or thermal demagnetisation of discrete specimens from drill cores. Correlation of magnetostratigraphies with the magnetic polarity timescale was guided by biostratigraphic and radiometric constraints. Environmental magnetic studies were conducted to determine changes in concentration, gainsize and magnetic mineralogy through time. A parallel rock magnetic study was also conducted of regional basement rocks to quantify the source of magnetic minerals. The new ages models and environmental magnetic records indicate that during the latest Miocene - early Pliocene, wet based glaciers filled the Taylor and Ferrar fiords and that glaciers retreated during the Pliocene warm period leaving open marine conditions and deep fiords (>300 m). Magnetic minerals in these sediments are variably oxidised indicating terrestrial soil formation and probably warmer and wetter conditions at a time when the Ross Sea was free of ice and sea surface temperatures were 5°C warmer than today. We recognise the first significant cooling in DVDP-11 after 2.6 Ma by a shift to current winnowed sediments sourced from the Ross Sea. After 1.7 Ma sediments are almost exclusively lacustrine and were deposited in ice dammed lakes which formed when West Antarctic ice expanded across the Ross Embayment and abutted the Transantarctic Mountains. Magnetic mineralogy after ~2.6 Ma is dominated by a ubiquitous, paramagnetic component which coincides with the shift from warmer/wetter, sub-polar conditions to dry, polar dominated conditions.

  17. Trace-element analyses of core samples from the 1967-1988 drillings of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill

    2012-01-01

    This report presents previously unpublished analyses of trace elements in drill core samples from Kilauea Iki lava lake and from the 1959 eruption that fed the lava lake. The two types of data presented were obtained by instrumental neutron-activation analysis (INAA) and energy-dispersive X-ray fluorescence analysis (EDXRF). The analyses were performed in U.S. Geological Survey (USGS) laboratories from 1989 to 1994. This report contains 93 INAA analyses on 84 samples and 68 EDXRF analyses on 68 samples. The purpose of the study was to document trace-element variation during chemical differentiation, especially during the closed-system differentiation of Kilauea Iki lava lake.

  18. Geophysical characterization of the Lollie Levee near Conway, Arkansas, using capacitively coupled resistivity, coring, and direct push logging

    USGS Publications Warehouse

    Gillip, Jonathan A.; Payne, Jason D.

    2011-01-01

    A geophysical characterization of Lollie Levee near Conway, Arkansas, was conducted in February 2011. A capacitively coupled resistivity survey (using Geometric's OhmMapper) was completed along the top and toe of the 6.7-mile levee. Two-dimensional inversions were conducted on the geophysical data. As a quality-control measure, cores and direct push logs were taken at approximately 1-mile intervals along the levee. The capacitively coupled resistivity survey, the coring, and the direct push logs were used to characterize the geologic materials. Comparison of the cores and the direct push log data, along with published resistivity values, indicates that resistivity values of 200 Ohm-meters or greater represent relatively clean sand, with decreasing resistivity values occurring with increasing silt and clay content. The cores indicated that the levee is composed of a heterogeneous mixture of sand, silt, and clay. The capacitively coupled resistivity sections confirm that the levee is composed of a heterogeneous mixture of high and low resistivity materials and show that the composition of the levee varies spatially. The geologic materials underlying the levee vary spatially as a result of the geologic processes that deposited them. In general, the naturally deposited geologic materials underlying the levee contain a greater amount of low resistivity materials in the southern extent of the levee.

  19. CAT-scan analysis in scientific drilling: effective routine data acquisition and processing of whole cores, split cores and u-channels

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Francus, P.; Labrie, J.; Beauvais, Q.; Velle, J. H.; Fortin, D.; Mix, A. C.; Jaeger, J. M.; Stoner, J. S.; Bahlburg, H.; Forwick, M.; Zolitschka, B.

    2014-12-01

    CAT-scan analysis of sediment cores provides a rapid, high-resolution and non destructive method to visualise sedimentary structures, coring-induced artefacts, as well as to derive a continuous downcore CT number profile primarily associated with changes in bulk density. Here, we will briefly overview how we now routinely use CAT-scan analysis for paleoenvironmental and sedimentological purposes. We will present some advances in data processing, as well as a few case studies from lacustrine and marine sedimentary sequences measured using either whole cores, split cores and u-channels in order to highlight the advantages and complementarity of CAT-Scan measurements with other continuous downcore high-resolution physical or magnetic measurements. We will also illustrate how effective data acquisition and processing have now enabled the use of CAT-scan for the continuous interpretation of long drilled sequences from IODP (Exp. 341 - Gulf of Alaska) and ICDP (PASADO - Laguna Potrok Aike, Southern Patagonia) previously hampered by the large number of core sections and derived images.

  20. Salton Sea Scientific Drilling Program

    SciTech Connect

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S. Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activities enabled the U.S. Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. The SSSDP exceeded its target depth of 10,000 feet, and a comprehensive set of cuttings, cores, and downhole logs was obtained. Two flow tests at different depths were successfully completed. Hydrologic connection between the different producing horizons, however, made the data from the deeper test difficult to interpret. Temperature logging by the Geological Survey and Sandia National Laboratories to establish the equilibrium profile continued until August of 1987. The SSSDP provides a model for scientific cooperation among government agencies, universities, and private industry.

  1. Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill; Taggart, Joseph E., Jr.

    2010-01-01

    This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.

  2. Online drilling mud gas monitoring and sampling during drilling the Scandinavian Caledonides (COSC)

    NASA Astrophysics Data System (ADS)

    Wiersberg, Thomas; Almqvist, Bjarne; Klonowska, Iwona; Lorenz, Henning

    2015-04-01

    The COSC project (Collisional Orogeny in the Scandinavian Caledonides) drilled a 2496 m deep hole in Åre (Sweden) to deliver insights into mid-Palaeozoic mountain building processes from continent-continent collision, to improve our understanding of the hydrogeological-hydrochemical state and geothermal gradient of the mountain belt and to study the deep biosphere in the metamorphic rocks and crystalline basement. COSC was the first slimhole drilling project where online gasmonitoring of drilling mud was conducted during continuous wireline coring. Gas was continuously extracted at the surface from the circulating drilling mud with a gas-water separator, pumped in a nearby laboratory container and analysed in real-time with a quadrupole mass spectrometer for argon, methane, helium, carbon dioxide, nitrogen, oxygen, hydrogen, and krypton. Gas samples were taken from the gas line for laboratory studies on chemical composition of hydrocarbons, noble gas isotopes and stable isotopes. Every drill core created a gas peak identified in the drilling mud ~20-30 min after core arrival at the surface. With known core depth and surface arrival time, these gas peaks could be attributed to depth. As a result, nearly complete gas depth profiles at three meter intervals were obtained from 662 m (installation of the gas-water separator) to 2490 m depth. Maximum concentrations of non-atmospheric gasses in drilling mud were ~200 ppmv helium, ~300 ppmv methane and ~2 vol-% hydrogen. Helium peaks between ~900 m and 1000 m and correlates with enhanced concentrations of methane. Methane and hydrogen exhibit maximum concentrations below 1630 m depth where helium concentrations remain low. Integration of the drilling mud gas monitoring dataset with data from geophysical downhole logging and core analysis is ongoing to help clarifying provenances and origin of gasses.

  3. GEOLOGY & GEOPHYSICS 2014-2015

    E-print Network

    Bermúdez, José Luis

    GEOLOGY & GEOPHYSICS 2014-2015 Graduate Student Handbook - 1 · Geology & Geophysics Core Values - 2 · A Message from the Graduate Advisor - 3 · Department Organizations - 60 · Departmental Executive Committee - 61 · Geology& Geophysics Development Advisory Council

  4. Source and Crystallization Characteristics of Basalts in the Kimama core: Project Hotspot Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Christiansen, E. H.; Dorais, M. J.; Shervais, J. W.; Potter, K. E.

    2012-12-01

    Mineral chemistry and petrography of basalts from the Kimama drill core recovered by Hotspot: Snake River Scientific Drilling Project, Idaho establish crystallization conditions of these lavas. Twenty-three basalt samples, from 20 individual lava flows were sampled from the upper 1000 m (of the 1912 m drilled) core drilled on the axis of the Snake River Plain, and represent approximately 3 m.y. of volcanism (rocks at the bottom of the hole are ~6 Ma). Rock from the upper 1000 m are typically fresh, while those lower in the core are more altered and are less likely to preserve fresh phenocrysts to analyze. Intratelluric phenocrysts (pre-eruption) are: olivine, plagioclase and Cr-spinel inclusions in olivine and plagioclase; groundmass phases (post-eruption) are: olivine, plagioclase, clinopyroxene, magnetite and ilmenite. Olivine core compositions range from Fo84-68, plagioclase cores range from An80-62, clinopyroxene ranges in composition from Wo47-34, En47-28, Fs30-15, spinel inclusions are Cr (up to 20 wt % Cr2O3) and Al-rich (up to 35 wt % Al2O3) and evolve to lower concentrations of Cr and Al and higher Fe and Ti, chromian titanomagnetite to magnetite, and ilmenite are groundmass oxide phases. Thermobarometry of Kimama core basalts indicates that the phenocryst phases crystallized at temperatures of 1155 to 1255°C at depths of 7 to 17 km, which is within or near the seismically imaged mid-crustal sill. Plagioclase hygrometry suggests that these lavas are relatively anhydrous with less than 0.4 wt % H2O. Groundmass phases crystallized at lower temperatures (<1140°C) after eruption. Oxygen fugacity inferred from Fe-Ti oxide equilibria is at or just below the QFM buffer. The origin of the basaltic rocks of the Snake River Plain has been attributed to a mantle plume or to other, shallow mantle processes. Mineral and whole rock major and trace element geochemistry of the olivine tholeiites from the Kimama core are used to distinguish between these two sources (deep or shallow mantle). Whole rock compositions were corrected for plagioclase and olivine fractionation to calculate primary liquids to estimate mantle potential temperatures. Olivine phenocrysts have the pyroxenite source characteristics of low Mn and Ca, but a peridotite source characteristic of low Ni. Thus, trace element models were used to test whether there is pyroxenite in the source of the Snake River Plain basalts, as hypothesized for Hawaii and other plume-related hotspots (e.g., Sobolev et al., 2005; Herzberg, 2011). Olivine chemistry and trace element models establish that the basalt source is a spinel peridotite, not a pyroxenite. The average mantle potential temperature obtained for these samples is 1577°C, 177°C hotter than ambient mantle, suggesting that the basaltic liquids were derived from a thermal plume. Silica activity barometry shows that melt segregation occurs between 80 and 110 km depth, which is within or very near the spinel stability field, and suggests that the lithosphere has been eroded by the plume to a maximum depth of 80 km, and recent mantle tomography suggests that it may be even thinner.

  5. Brines and interstitial brackish water in drill cores from the deep gulf of Mexico

    USGS Publications Warehouse

    Manheim, F. T.; Sayles, F.L.

    1970-01-01

    Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur.

  6. Brines and interstitial brackish water in drill cores from the deep gulf of Mexico.

    PubMed

    Manheim, F T; Sayles, F L

    1970-10-01

    Marked increases in interstitial salinity occur in two drill holes located in the Gulf of Mexico at a water depth of more than 3500 meters. The increases probably arose through diffusion of salt from buried evaporites. In one hole, however, brackish water was encountered on penetrating the oil-permeated cap rock of a salt dome. The phenomenon is attributed to production of fresh water during oxidation of petroleum hydrocarbons and decomposition of gypsum to form native sulfur. PMID:17734668

  7. Drill core LB-08A, Bosumtwi impact structure, Ghana: Petrographic and shock metamorphic studies of material from the central uplift

    NASA Astrophysics Data System (ADS)

    Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe

    During a recent drilling project sponsored by the International Continental Scientific Drilling Progam (ICDP), two boreholes (LB-07A and LB-08A) were drilled into the crater fill of the Bosumtwi impact structure and the underlying basement, into the deep crater moat and the outer flank of the central uplift, respectively. The Bosumtwi impact structure in Ghana (West Africa), which is 10.5 km in diameter and 1.07 Myr old, is largely filled by Lake Bosumtwi. Here we present the lithostratigraphy of drill core LB-08A (recovered between 235.6 and 451.33 m depth below lake level) as well as the first mineralogical and petrographic observations of samples from this core. This drill core consists of approximately 25 m of polymict, clast-supported lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment that displays a large variation in lithology and grain size. The lithologies present in the central uplift are metasediments composed dominantly of fine-grained to gritty meta-graywacke, phyllite, and slate, as well as suevite and polymict lithic impact breccia. The suevites, principally present between 235.6 and 240.5 m and between 257.6 and 262.2 m, display a fine-grained fragmental matrix (about 39 to 45 vol%) and a variety of lithic and mineral clasts that include meta-graywacke, phyllite, slate, quartzite, carbon-rich organic shale, and calcite, as well as melt particles, fractured quartz, unshocked quartz, unshocked feldspar, quartz with planar deformation features (PDFs), diaplectic quartz glass, mica, epidote, sphene, and opaque minerals). The crater-fill suevite contains calcite clasts but no granite clasts, in contrast to suevite from outside the northern crater rim. The presence of melt particles in suevite samples from the uppermost 25 meters of the core and in suevite dikelets in the basement is an indicator of shock pressures exceeding 45 GPa. Quartz grains present in suevite and polymict lithic impact breccia abundantly display 1 to (rarely) 4 sets of PDFs per grain. The shock pressures recorded by the PDFs in quartz grains in the polymict impact breccia range from 10 to ~30 GPa. We also observed a decrease of the abundance of shocked quartz grains in the brecciated basement with increasing depth. Meta-graywacke samples from the basement are heterogeneously shocked, with shock pressures locally ranging up to 25-30 GPa. Suevites from this borehole show a lower proportion of melt particles and diaplectic quartz glass than suevites from outside the northern crater rim (fallback impact breccia), as well as a lack of ballen quartz, which is present in the external breccias. Similar variations of melt-particle abundance and shockmetamorphic grade between impact-breccia deposits within the crater and fallout impact breccia outside the crater have been observed at the Ries impact structure, Germany.

  8. Detailed petrophysical and geophysical characterization of core samples from the potential caprock-reservoir system in the Sulcis Coal Basin (South-Western Sardinia - Italy).

    NASA Astrophysics Data System (ADS)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2015-04-01

    The evaluation of the CO2 geologic storage site requires a robust experimental database especially with respect to spatial petrophysical heterogeneities. The integrated analysis of minero-petrographical, physical and geophysical parameters (e.g. longitudinal and transversal propagation velocity, VpVs ratio, dynamic elastic moduli, etc.) of the rocks that make up a caprock-reservoir system can substantially reduce the geologic uncertainity in the storage site characterization and in the geological and numerical modelling for the evaluation of the CO2 storage capacity. In this study the Middle Eocene - Lower Oligocene Cixerri Formation made up of siliciclastic rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin (South-Western Sardinia - Italy) have been identified respectively as potential caprock and reservoir for the CO2 storage. The petrographical, physical and geophysical parameters of the above mentioned geological Formations (Cixerri and Milolitico) were investigated to improve the geological model aimed at verifying the geological CO2 storage capacity within the carbonate reservoir rocks, in order to guarantee an efficient use of the reservoir, and to improve the numerical simulation of CO2 behaviour in the short, medium and long term after its injection in single or multiple wells. . The petrographical characteristics of the caprock-reservoir rocks were determined by optical and SEM analyses of core samples representing the different facies of the Cixerri Formation and of the Miliolitico Carbonate Complex, provided by Carbosulcis S.p.A.. Porosity analysis was completed by mercury porosimeter determinations which also provided quantitative information on the permeability of the study rocks and on the tortuosity of their pore system. Further physical properties, such as dry and saturated density and porosity, and water absorption were determined on the cylindrical core samples of intact rocks (ISRM, 1979) from wells drilled in the northern part of the Sulcis Coal Basin (Nuraxi Figus area). The propagation velocity of longitudinal (Vp) and transversal (Vs) waves was also determined on the same samples by a portable ultrasonic non-destructive digital indicating tester (P.U.N.D.I.T. plus) (ISRM, 1978). Starting from the P and S wave velocity, the dynamic elastic moduli (Young modulus, bulk modulus and Poisson's ratio) were determined using the well-known relationship involving the longitudinal (Vp) and shear wave (Vs) velocity and the rock bulk density. The elastic properties (Vp, Vs, elastic moduli) have been correlated with physical properties such as porosity and bulk density. The analysis of the above mentioned relations reveals that the geological formations that make up the caprock-reservoir system are affected by a high spatial heterogeneity in their petrophysical properties and then in their intrinsic characteristics. The petrophysical and geophysical parameter analysis also allowed to identify different lithologic types for the caprock (e.g. litharenites, siltites) and the reservoir (e.g. limestones, dolomitic limestones, calcareous dolomites). These data enhanced the interpretation of the surface reflection seismic data on the same area helping in distinguishing separate features. Acknowledgments: We thank Carbosulcis S.p.A. for providing us the core samples and the reflection seismic data used for this study.

  9. Geochemical studies of the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany

    NASA Astrophysics Data System (ADS)

    Reimold, Wolf Uwe; McDonald, Iain; Schmitt, Ralf-Thomas; Hansen, Birgit; Jacob, Juliane; Koeberl, Christian

    2013-09-01

    Suevite and melt breccia compositions in the boreholes Enkingen and Polsingen are compared with compositions of suevites from other Ries boreholes and surface locations and discussed in terms of implications for impact breccia genesis. No significant differences in average chemical compositions for the various drill cores or surface samples are noted. Compositions of suevite and melt breccia from southern and northeastern sectors of the Ries crater do not significantly differ. This is in stark contrast to the published variations between within-crater and out-of-crater suevites from northern and southern sectors of the Bosumtwi impact structure, Ghana. Locally occurring alteration overprint on drill cores—especially strong on the carbonate-impregnated suevite specimens of the Enkingen borehole—does affect the average compositions. Overall, the composition of the analyzed impact breccias from Ries are characterized by very little macroscopically or microscopically recognized sediment-clast component; the clast populations of suevite and impact melt breccia are dominated consistently by granitic and intermediate granitoid components. The Polsingen breccia is significantly enriched in a dioritic clast component. Overall, chemical compositions are of intermediate composition as well, with dioritic-granodioritic silica contents, and relatively small contributions from mafic target components. Selected suevite samples from the Enkingen core have elevated Ni, Co, Cr, and Ir contents compared with previously analyzed suevites from the Ries crater, which suggest a small meteoritic component. Platinum-group element (PGE) concentrations for some of the enriched samples indicate somewhat elevated concentrations and near-chondritic ratios of the most immobile PGE, consistent with an extraterrestrial contribution of 0.1-0.2% chondrite-equivalent.

  10. Core hole drilling and the ''rain current'' phenomenon at Newberry Volcano, Oregon

    SciTech Connect

    Swanberg, C.A.; Walkey, W.C.; Combs, J.

    1988-09-10

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole Geo N-1 has a heat flow of 180 mW m/sup -2/, reflecting subsurface temperatures, sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mW m/sup -2/, is less encouraging. We emphasize the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Cole hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite, basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Caving and sloughing were encountered in both core holes at depths near the regional water table. Both core holes penetrate three distinct thermal regimes. The uppermost regime is isothemal at mean air temperature down to about 900-1000 m (the rain curtain).

  11. Glaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice core drilling

    E-print Network

    Jacobel, Robert W.

    traverse indicate accumulation rates of 0.16­0.20 m/yr ice equivalent over the last 300 years. Age controlGlaciological and climatic significance of Hercules Dome, Antarctica: An optimal site for deep ice as a deep ice core site. Annual layering in dD ratios from a 72 m ice core collected by the US-ITASE 2002

  12. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  13. Project Hotspot: Mineral chemistry of high-MgO basalts from the Kimama core, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Christiansen, E. H.; Dorais, M. J.; Potter, K. E.; Shervais, J. W.

    2011-12-01

    Mineral compositions can be used to deduce magma crystallization temperatures and to infer key characteristics of magma source regions including delving into the plume or no-plume sources of intraplate basalts. To this end, mineral compositions in basalt acquired by the Snake River Scientific Drilling Project have been analyzed by electron microprobe. The samples are from the Kimama drill hole on the axis of the Central Snake River Plain, Idaho which was drilled through 1912 m of basalt and interbedded sediments. Five of the least evolved basalt flows (i.e., low Fe, Ti, and high Ni and Cr) were chosen based on semiquantitative analyses using a Bruker Tracer IV handheld X-ray fluorescence spectrometer. Phenocryst phases include olivine and plagioclase; many olivine phenocrysts also contain inclusions of Cr-Al-rich spinel. Groundmass phases are olivine, plagioclase, clinopyroxene, magnetite, and ilmenite. Olivine phenocrysts are normally zoned with cores of Fo 81-70; the rims of Fo 70-50 overlap with the compositions of olivine in the groundmass. Spinels included in olivines in the most MgO-rich lavas are Al-rich (up to 34 wt% Al2O3), similar to those in ocean island basalts (Barnes and Roeder, 2001) and some zone to higher Fe and Ti. Plagioclase phenocryst cores (An 76-65) overlap significantly with the compositions of groundmass plagioclase (An 72-40). Clinopyroxene is confined to the groundmass and creates an ophitic texture. Pyroxene compositions are typically: Wo 45-37, En 42-30, Fs 30-15 and more evolved pyroxenes trend towards Craters of the Moon pyroxenes which have lower Ca. Temperature and oxygen fugacity were calculated from magnetite-ilmenite pairs using QUILF (Anderson et al., 1993), which yielded temperatures of 750-1000°C and fO2 near or just below the QFM buffer. The magnetite-ilmenite pairs are all groundmass phases; thus, these are post-eruption temperatures and fO2 estimates. Olivine compositions were used to test if the source of the Snake River Plain basalts contains a subducted oceanic crustal component as suggested by Sobolev et al. (2005) and Herzberg (2011). The olivines in the Kimama core have Mn, Fe/Mn, and Ca concentrations that are similar to Hawaiian shield-building basalts, and are consistent with derivation of their parent magmas from pyroxenite sources, such as those hypothesized for some mantle plumes. However, Ni concentrations (500-1500 ppm) in olivines from Kimama are relatively low, and the olivines are too evolved (Fo <81) to be definitive with regard to the presence or absence of pyroxenite in the source.

  14. Drill core LB-08A, Bosumtwi impact structure, Ghana: Geochemistry of fallback breccia and basement samples from the central uplift

    NASA Astrophysics Data System (ADS)

    Ferrière, Ludovic; Koeberl, Christian; Reimold, Wolf Uwe; Mader, Dieter

    The 1.07 Myr old Bosumtwi impact structure in Ghana (West Africa), which measures 10.5 km in diameter and is largely filled by Lake Bosumtwi, is associated with one of four currently known tektite strewn fields. Two boreholes were drilled to acquire hard-rock samples of the deep crater moat and from the flank of the central uplift (LB-07A and LB-08A, respectively) during a recent ICDP-sponsored drilling project. Here we present results of major and trace element analysis of 112 samples from drill core LB-08A. This core, which was recovered between 235.6 and 451.33 m depth below lake level, contains polymict lithic breccia intercalated with suevite, which overlies fractured/brecciated metasediment. The basement is dominated by meta-graywacke (from fine-grained to gritty), but also includes some phyllite and slate, as well as suevite dikelets and a few units of a distinct light greenish gray, medium-grained meta-graywacke. Most of the variations of the major and trace element abundances in the different lithologies result from the initial compositional variations of the various target rock types, as well as from aqueous alteration processes, which have undeniably affected the different rocks. Suevite from core LB-08A (fallback suevite) and fallout suevite samples (from outside the northern crater rim) display some differences in major (mainly in MgO, CaO, and Na2O contents) and minor (mainly Cr and Ni) element abundances that could be related to the higher degree of alteration of fallback suevites, but also result from differences in the clast populations of the two suevite populations. For example, granite clasts are present in fallout suevite but not in fallback breccia, and calcite clasts are present in fallback breccia and not in fallout suevite. Chondrite-normalized rare earth element abundance patterns for polymict impact breccia and basement samples are very similar to each other. Siderophile element contents in the impact breccias are not significantly different from those of the metasediments, or compared to target rocks from outside the crater rim. So far, no evidence for a meteoritic component has been detected in polymict impact breccias during this study, in agreement with previous work.

  15. InSAR Time Series Analysis and Geophysical Modeling of City Uplift Associated with Geothermal Drillings in Staufen im Breisgau, Germany

    NASA Astrophysics Data System (ADS)

    Motagh, M.; Lubitz, C.

    2014-12-01

    Geothermal energy is of increasing importance as alternative, environmentally friendly technology for heat management. Direct interaction with the subsurface requires careful implementation, in particular in geological complex regions. The historical city Staufen im Breisgau, SW Germany, has attracted national attention as a case of implementation failure with severe consequences, causing debates on the applicability and security of this sustainable technique. Located at the eastern transition zone of the Upper Rhine Graben and the Schwarzwald massif, the geothermal potential is high at Staufen due to strong temperature gradients. In September 2007, seven boreholes for geothermal probes were drilled up to a depth of 140 m to provide a new heat management for the city hall. Within five years an uplift phenomenon has been observed in Staufen reaching more than 40 cm in places and 269 buildings were damaged. Hydro-chemical driven anhydrite-gypsum transformation in the subsurface was identified as the cause leading to volume increase that is observable as surface uplift. This process is associated with the geothermal drilling activities that have crossed several groundwater levels. In this work, we summarize and present the findings of spaceborne Synthetic Aperture Radar Interferometry (InSAR) analysis of the uplift in Staufen over the last five years from July 2008 through July 2013. By applying the Small Baseline Subset (SBAS) method, we find a localized elliptical-shaped deformation field in NE-SW orientation. Area of maximum uplift is located 50 m NNE of the drilling zone. At this location, we observe a cumulative uplift of approx. 13.7 cm ± 0.34 cm (mean value within an area of 30 m by 30 m) from July 2008 to July 2009, which reduced to cumulative uplift of 3 cm ± 0.25 cm from July 2012 to July 2013. The deceleration can be related to applied countermeasures as borehole sealing and groundwater pumping. The observed ground surface response was compared to regularly performed leveling measurements and shows indications of significant symmetric horizontal motions, which were further investigated by a combined analysis of SAR imagery from ascending and descending orbits. Moreover, InSAR observations were inverted using geophysical models to derive first order characteristics of deformation source at depth.

  16. Snow algae in an ice core drilled on Grigoriev Ice cap in the Kyrgyz Tien Shen Mountains

    NASA Astrophysics Data System (ADS)

    Honda, M.; Takeuchi, N.; Sera, S.; Fujita, K.; Okamoto, S.; Naoki, K.; Aizen, V. B.

    2012-12-01

    Snow algae are photosynthetic microorganisms and are living on the surfase of glaciers. They grow on melting surface from spring to summer and their biomass and community structure are changed with physical and chemical conditions on glaciers. Ice cores drilled from glaciers also contain snow algae that grew in the past. Studying biomass and community structure of snow algae in ice cores could reveal the temporal variation in snow algae in the past, and also environmental conditions relating propagation of snow algae. In this study, we anlalyzed snow algae preserved in an ice core of Grigoriev Ice cap located in eastern Kyrgyzstan of the central Asia, and to describe their temporal variations for the last 200 years. The ice core drilling was carried out on September in 2007 on the Grigoriev Ice cap in the Kyrgyz Tien Shen Mountains. A 87 m long ice core from the surface to the bedrock was recovered at the top of the ice cap. The core was horizontally cut every 5 cm (total 1212 samples). The samples were melted and preserved as a 3% formalin solution. After the sample water was filtered through a hydrophilized PTFE membrane filter, observed by microscope. Snow algae in the sample water were counting. The algal biomass was represented by the cell number per unit water volume. Here, we showed the results between the surface to the 64 m in depth. We also analyzed the snow algal communities on the surface of the ice cap collected from five different sites from the top down to the terminus. Microscopy revealed that the ice core contained three taxa of filamentous cyanobacteria, an unicellular cyanobacterium, and two green algae. They were also found on the ice or snow surface of the i Ice cap. The quantitative analyses of the algae in the part of upper 64 m deep of the ice core samples revealed that the algal biomass varied significantly and showed many peaks. Furthermore, the biomass profile differed among the taxa. The filamentous cyanobacterium varied from 0.0 to 4.6 x 103?m3 mL-1 (mean: 56?m3 mL-1 ), the unicellular cyanobacterium varied from 0.0 to 3.0 x 104?m3 mL-1 (mean: 1.2 x 103?m3 mL-1 ), and Green algae varied from 0.0 to 2.3 x 104?m3 mL-1 (mean: 2.2 x 103?m3 mL-1 ). Based on the dating by pollen grains, the 64 m core covers 237 years. The results suggest that the snow algae did not grow every year on the top of the ice cap, and their biomass and community structure varied greatly from year to year. The total biomass after the 1960s was significantly higher than those before the 1950s. This suggested suggests that the surface conditions changed more favorable to the growth of algae in the 1960s. Annal variation of the algal biomass was found to be significantly correlated with air temperature at the nearest observing station from Grigoriev the iIce cap and hydrogen stable isotope (?D) in the ice core. The results suggest that the algal growth is more preferable in warmer year.

  17. Description and hydrogeologic implications of cored sedimentary material from the 1975 drilling program at the radioactive waste management complex, Idaho

    USGS Publications Warehouse

    Rightmire, C.T.

    1984-01-01

    Samples of sedimentary material from interbeds between basalt flows and from fractures in the flows, taken from two drill cores at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory were analyzed for (1) particle-size dribution, (2) bulk mineralogy, (3) clay mineralogy, (4) cation-exchange capacity, and (5) carbonate content. Thin sections of selected sediment material were made for petrographic examination. Preliminary interpretations indicate that (1) it may be possible to distinguish the various sediment interbeds on the basis of their mineralogy, (2) the presence of carbonate horizons in sedimentary interbeds may be utilized to approximate the time of exposure and the climate while the surface was exposed (which affected the hydrogeologic character of the sediment), and the type and orientation of fracture-filling material may be utilized to determine the mechanism by which fractures were filled. (USGS)

  18. What Really Lies Beneath? Defying Conventional Geophysical Inversion and new Observations From the Crust to the Core

    NASA Astrophysics Data System (ADS)

    Tkalcic, H.; Sambridge, M.; Young, M.; Bodin, T.; Pachhai, S.

    2012-12-01

    Global observational seismology is a powerful tool that serves as an inverted telescope with which we can probe the deepest parts of the Earth's interior including the lowermost mantle and core. The nature of seismological observations is that they often lead, and less often follow, geodynamical predictions. Indeed, seismological observations have been the pivotal points for major advances in our understanding of the Earth's interior, from the shallowest to the deepest Earth structures and dynamics. Conceptual frameworks are shaped within the community to become hypotheses, but they rarely become theories due to a lack of an experimentally controlled environment. Geophysical models that are initially put forward as "the best fitting models" often explain the majority of observations, but are not always uniquely required by the data. Examples include mantle tomography models derived from subjective regularization choices, a highly non-unique model of a cylindrical anisotropy in the inner core, or a constant prograde rotation of the inner core with respect to the rest of the planet obtained as a result of a too simple parameterization. Obtaining a too simplistic (or a too complex) geophysical model is one of the consequences of utilizing a conventional geophysical inversion requiring various subjective decisions. Some of the issues of traditional techniques are inadequate parameterization of a problem and an inaccurate knowledge of data noise. A trans-dimensional Bayesian inverse method has the excellent property of treating the number of model parameters (e.g. number of basis functions in tomography, number of layers in receiver function inversions and number of changes in differential travel times trends) as an unknown in the problem. Furthermore, in a hierarchical extension of the trans-dimensional framework, the level of data noise can be relaxed to become a free parameter in the inversion. This level is critical because it effectively quantifies the usable information present in the data, and therefore determines the complexity of the solution. We show the application of the Bayesian method to the joint inversion of receiver functions and surface wave dispersion, travel-time tomography and full waveform modeling of structures in the lowermost mantle, and modelling of the rotational dynamics of the inner core. The obtained results have profound consequences for the dynamics of the Earth's interior.

  19. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs.

  20. Early Miocene Antarctic glacial history: new insights from heavy mineral analysis from ANDRILL AND-2A drill core sediments

    NASA Astrophysics Data System (ADS)

    Iacoviello, Francesco; Giorgetti, Giovanna; Turbanti Memmi, Isabella; Passchier, Sandra

    2015-04-01

    The present study deals with heavy mineral analysis of late Early Miocene marine sediments recovered in the McMurdo Sound region (Ross Sea, Antarctica) during the ANDRILL—SMS Project in 2007. The main objective is to investigate how heavy mineral assemblages reflect different source rocks and hence different provenance areas. These data contribute to a better understanding of East Antarctica ice dynamics in the Ross Sea sector during the Early Miocene (17.6-20.2 Ma), a time of long-term global warming and sea level rise. The AND-2A drill core recovered several stratigraphic intervals that span from Early Miocene to Pleistocene and it collected a variety of terrigenous lithologies. The heavy mineral assemblages of the lower 650-m-thick sedimentary succession were analyzed through SEM observations and SEM-EDS microanalyses on heavy mineral grains. The heavy mineral analysis shows that the sediments are a mix of detritus dominated by McMurdo Volcanic Group sources most likely located in the present-day Mount Morning area (Proto-Mount Morning) with minor contribution from Transantarctic Mountains source rocks located west of the drill site. The heavy mineral assemblages in Interval 1 indicate that between 20.2 and 20.1 Ma, the grounding line of the ice sheet advanced to a position near the present-day Mount Morning volcanic center. During deposition of Interval 2 (20.1-19.3 Ma), the ice sheet most likely experienced a dynamic behavior with interval of ice advance alternating with periods of ice retreat, while Interval 3 (19.3-18.7 Ma) records further retreat to open water conditions. A dynamic behavior is noted in Interval 4 (18.7-17.6 Ma) with a decreasing contribution of materials derived from the basalts of the Mount Morning volcanic center located to the south of the drill site and a consequent increasing contribution of materials derived from the Transantarctic Mountains to the west of the drill site.

  1. Petrology of impactites from El'gygytgyn crater: Breccias in ICDP-drill core 1C, glassy impact melt rocks and spherules

    E-print Network

    Claeys, Philippe

    Petrology of impactites from El'gygytgyn crater: Breccias in ICDP-drill core 1C, glassy impact melt intercalations of polymict breccia and mafic inclusions. These lithologies are overlain by 89 m of polymict breccia whose components occasionally exhibit scarce, low-degree shock metamorphic features. This unit

  2. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  3. Measurement of 10 Be from Lake Malawi (Africa) drill core sediments and

    E-print Network

    Be suggests that both isotopes have been well mixed before deposition unlike in some marine sediment cores, a comparison of the 10 Be/9 Be chronology, allowing for decay, at Lake Malawi to that of the global marine contain an important record for the study of the tropical paleoclimate. However, most of the sediments

  4. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  5. Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Weilin; Appel, Erwin; Fang, Xiaomin; Song, Chunhui; Cirpka, Olaf

    2012-07-01

    The Qaidam Basin is the largest intermontane basin of the northeastern Tibetan Plateau and contains a continuous Cenozoic sequence of lacustrine sediments. A ~ 1000-m-deep drilling (SG-1) with an average core recovery of ~ 95% was carried out in the depocenter of the Chahansilatu playa (sub-depression) in the western Qaidam Basin, aimed to obtain a high-resolution record of the paleoenvironmental evolution and the erosion history. Stepwise alternating field and thermal demagnetization, together with rock magnetic results, revealed a stable remanent magnetization for most samples, carried by magnetite. The polarity sequence consisted of 16 normal and 15 reverse zones which can be correlated with chrons 1n to 2An of the global geomagnetic polarity time scale. Magnetostratigraphic results date the entire core SG-1 at ~ 2.77 Ma to ~ 0.1 Ma and yielded sediment accumulation rate (SAR) ranging from 26.1 cm/ka to 51.5 cm/ka. Maximum SARs occurred within the intervals of ~ 2.6-2.2 Ma and after ~ 0.8 Ma, indicating two episodes of erosion, which we relate to pulse tectonic uplift of the NE Tibetan Plateau with subsequent global cooling.

  6. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    NASA Astrophysics Data System (ADS)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after the expedition, conducting post-expedition projects in conjunction with the U.S. Implementing Organization and their own institutions, and to participating actively in post-cruise evaluation. Since its inception in 2005, 75 SOR graduates and staff have conducted over 150 workshops and short courses for 3,000 participants in more than 30 U.S. states and five other nations. Integral to the success of the program is the evaluation process that takes place during and after each SOR. In particular, SOR evaluations take advantage of the power of video data collection to demonstrate the transformative nature of SOR expeditions. Video evaluations offer a unique opportunity to collect and preserve participant “voice” to document true transformative broader impacts. Along with video evaluations, the program also employs more traditional evaluation methods such as internal evaluator observations, open-ended questionnaires, and participant journals.

  7. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  8. Acoustic investigations of lakes as justification for optimal core drilling and sampling location in paleomagnetic study

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nourgaliev, Danis; Yasonov, Pavel

    2015-04-01

    Lacustrine sediments contain a long, high-resolution record of sedimentation processes associated with changes in the environment. Paleomagnetic studies of the sediments properties provide a detailed trace of changes in paleoenvironment. However, there are factors such as landslides, earthquakes, and the presence of gas in sediments affecting the distributing sediment stratification. Seismic profiling allows investigating in details the bottom relief and getting information about the thickness and structure of deposits, which makes this method ideally suitable for determining the configuration of the lake basin and the overlying lake sediment stratigraphy. Most seismic studies have concentrated on large and deep lakes containing a thick sedimentary sequence, but small and shallow lakes containing a thinner sedimentary column located in key geographic locations and geological settings can also provide a valuable record of Holocene history. Seismic data is crucial in choosing optimal core sampling location. Thus, continuous seismic profiling should be used regularly before coring lake sediments for the reconstruction of paleoclimate. We have carried out seismic profiling on lakes Balkhash (Kazakhstan), Yarovoye, Kangrykyl, Aslykul, Kisigach, Plescheevo, Sunukyl and Chebarkul (Russia).

  9. Constraints on magma ascent, emplacement, and eruption: geochemical and mineralogical data from drill-core samples at Obsidian dome, Inyo chain, California

    SciTech Connect

    Vogel, T.A.; Younker, L.W.; Schuraytz, B.C.

    1987-05-01

    Systematic chemical and mineralogical variability occurs in samples from drill holes through Obsidian dome, the conduit to the dome, and a nearby associated feeder dike. The drill-hole samples from the margins of the conduit and most of the lower part of the dome are high-Ba, low-silica rhyolites; they contain two populations of phenocrysts and represent commingled magmas, whereas samples from the dike and upper parts of the dome are low-Ba, higher silica rhyolites that do not reflect commingled magmas. Samples from the center of the conduit are low-Ba, higher silica rhyolites that are only slightly mixed. A major part of the variability within the drill-core samples of the dome and conduit reflects the juxtaposition and commingling of two distinct magmas during their passage through the conduit.

  10. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    NASA Technical Reports Server (NTRS)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  11. Paleostress Analysis of Retrieved Cores from the Taiwan Chelungpu-fault Drilling Project (TCDP) Hole-A

    NASA Astrophysics Data System (ADS)

    Yeh, E.; Lee, J.; Lin, W.; Dong, J.; Lu, C.; Hashimoto, Y.; Song, S.; Wang, C.

    2006-12-01

    The stress state of seismic faulting and its interseismic deformation is a key to comprehend the relationship between the stress states and fracture/healing mechanisms. The continuously retrieved core of 500-2000m depth from the Taiwan Chelungpu-fault Drilling Project (TCDP) Hole-A allow us to study the paleostress state of finite deformation and healing process. We show results of paleostress analysis between 500-1300m depth and characterize the stress state corresponded to seismic faulting and interseismic healing process. Based on core examination, structures can be identified as thrust, backthrust, left-lateral fault, right-lateral fault and normal fault. Different types of fault crosscut each other, except normal fault. Excluding normal fault (1250-1260m) with calcite-step, other faults contain kinematic indicators with no-filling/filling-mineral (slickenside and calcite-step). The distribution of faults with depth shows a multiple-zoning pattern. The inferred orientation of paleostress axes is very similar among different faults and one of axes is subparallel to the direction of plate motion, but the magnitude of stress is different between fault types (stress ratio is between 0.2 and 0.4). Based on the existence of filling-mineral, we can characterize the stress state into plane stress of nofilling faults and trixial stress of filling faults. The no-filling fault induced by plane-stress can be interpreted as regional deformation including seismic faulting. The mineral-filling faults might correspond to the adjusted deformation during interseimic healing process. Also their distribution of orientation might also provide information of the regional pore pressure. Combining data of paleostress, in-situ stress and rock strength, the stress drop of Chi-Chi earthquake can be estimated.

  12. Environmental Health Research Recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations

    PubMed Central

    Breysse, Patrick N.; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

    2014-01-01

    Background: Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Objectives: Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. Discussion: The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Conclusions: Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies. Citation: Penning TM, Breysse PN, Gray K, Howarth M, Yan B. 2014. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environ Health Perspect 122:1155–1159;?http://dx.doi.org/10.1289/ehp.1408207 PMID:25036093

  13. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  14. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  15. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  16. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  17. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during SAFOD drilling, we use the ultrasonic velocities of SAFOD core and analogous outcrop samples to determine if the velocity reduction is due to lithologic variations or the presence of deformational fabrics and alteration in the fault zone. Preliminary analysis indicates that while the decrease in velocity across the broad fault zone is heavily influenced by fractures, the extremely low velocities associated with the actively deforming zones are more likely caused by the development of scaly fabric with clay coatings on the fracture surfaces. Analysis of thin sections and well logs are used to support this interpretation.

  18. Statistical correlation between geophysical logs and extracted core David Price1

    E-print Network

    .g., bulk density, neutron density, P-wave velocity, etc. which can be converted to, or used as a proxy for core sec- tions, in 2D using a scanning electron microscope SEM or in 3D using computerized tomography CT . To image the smallest pores in typical Middle Eastern reservoir rocks, which can be less than 1

  19. Drilling and Completion of the Urach III HDR Test Well

    SciTech Connect

    Meier, U.; Ernst, P. L.

    1981-01-01

    The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

  20. A two century record of strontium isotopes from an ice core drilled at Mt Blanc, France

    NASA Astrophysics Data System (ADS)

    Burton, G. R.; Rosman, K. J. R.; Van de Velde, K. P.; Boutron, C. F.

    2006-08-01

    New techniques which allow small amounts of Sr to be reliably analysed [G.R. Burton, V.I. Morgan, C.F. Boutron, K.J.R. Rosman, High-sensitivity measurements of strontium isotopes in polar ice, Anal. Chim. Acta 469 (2002) 225-233] by TIMS (Thermal Ionisation Mass Spectrometry) have been used to measure the isotopic composition of Sr and the concentration of Rb and Sr at sub-nanogram per gram levels in a Mt Blanc snow and ice core. This two century time series of Sr isotopes is the first to be reported in an Alpine glacier. The Sr and Rb concentrations range from 3 ng/g to 20 pg/g and 1 ng/g to 10 pg/g, respectively, with higher concentrations evident in more recent times. This trend is consistent with that reported previously for other metals such as Cd, Cu and Zn [K. Van de Velde, C. Barbante, G. Cozzi, I. Moret, T. Bellomi, C. Ferrari, C. Boutron, Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century, Atmos. Environ. 34 (2000) 3117-3127; K. Van de Velde, C. Boutron, C. Ferrari, T. Bellomi, C. Barbante, S. Rudnev, M. Bolshov, Seasonal variations of heavy metals in the 1960s Alpine ice: sources versus meteorological factors, Earth Planet. Sci. Lett. 164 (1998) 521-533; K.J.R. Rosman, C. Ly, K. Van de Velde, C.F. Boutron, A two century record of lead isotopes in high altitude Alpine snow and ice, Earth Planet. Sci. Lett. 176 (2000) 413-424]. The 87Sr/ 86Sr ratios vary between 0.7020 and 0.7176 and display relatively larger variations in recent times which have been attributed to seasonal variations made evident by the increased sampling resolution available at shallower depths. No change with time is evident in this ratio which has a mean value of ˜ 0.712 and is similar to Glacial ice at Summit Greenland, suggesting that aerosols reaching Mt Blanc represent the same mixture of sources. Also, anthropogenic sources would appear to have the same isotopic ratio. The presence of Saharan dust in some samples is confirmed here by their strontium isotopic ratios.

  1. Fossils, lithologies, and geophysical logs of the Mancos Shale from core hole USGS CL-1 in Montrose County, Colorado

    USGS Publications Warehouse

    Ball, Bridget A.; Cobban, W.A.; Merewether, E.A.; Grauch, R.I.; McKinney, K.C.; Livo, K.E.

    2009-01-01

    As part of a multidisciplinary investigation of Mancos Shale landscapes in the Gunnison Gorge National Conservation Area in Delta and Montrose Counties of western Colorado by the U.S. Geological Survey, Bureau of Land Management, and Bureau of Reclamation, a core of the Upper Cretaceous Mancos Shale was obtained from a borehole, USGS CL-1, in NE1/4 sec. 8, T. 50 N., R. 9 W. (approximately lat 38.61717 degree(s) N., long 107.90174 degree(s) W.), near the town of Olathe. Geophysical records of the borehole include resistivity, gamma ray, and density logs. The core extends between depths of 20 and 557 ft and is about 2.5 in. in diameter. It is composed of calcareous silty shale, as well as scattered beds of limestone and bentonite which were deposited mainly in offshore marine environments during the Cenomanian, Turonian, and Coniacian Stages of the Cretaceous Series. The strata were sampled and analyzed to obtain geochemical data and to identify constituent fossils. Stratigraphic units within the Mancos in the core include the following members, in ascending order: Bridge Creek Limestone (part), Fairport, Blue Hill, Juana Lopez, Montezuma Valley, and Niobrara (part). Strata herein assigned to the Bridge Creek Limestone are about 18 ft thick and consist of silty shale that contains ammonites, bivalves, and a coral of Late Cenomanian age. Strata assigned to the Fairport are about 22 ft thick and composed mainly of calcarenite-bearing, calcareous shale. Fossils in this member include ammonites and bivalves of early middle Turonian age. Overlying the Fairport is the Blue Hill Member, which is about 139 ft thick, and consists of glauconitic, shaley siltstone, and less silty shale. The Juana Lopez Member, overlying the Blue Hill, is about 138 ft thick and composed mainly of calcarenitic, silty shale. Beds in this member contain ammonites and bivalves of late middle and early late Turonian ages. Overlying the Juana Lopez is the Montezuma Valley Member, which is about 55 ft thick and consists of calcarenitic, calcareous silty shale. The Montezuma Valley Member contains ammonites and bivalves of late Turonian age. It is overlain by a lower part of the Niobrara Member of the Mancos Shale which is laterally equivalent to the Fort Hays Limestone Member and part of the overlying Smoky Hill Member of the Niobrara Formation at outcrops in central Colorado. Strata in the core comparable to the Fort Hays are about 39 ft thick and include shaley limestone and calcareous shale, which contain lower Coniacian bivalves. Strata in the core equivalent to part of the Smoky Hill are about 126 ft thick and consist mainly of calcareous silty shale which also contains lower Coniacian bivalves.

  2. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  3. Drill, Baby, Drill

    ERIC Educational Resources Information Center

    Kerkhoff, Todd

    2009-01-01

    School fire drills are quickly becoming insignificant and inconvenient to school administrators. When the time for the monthly fire drill rolls around, it is often performed with a "let's get this over with" attitude. Although all schools conduct fire drills, seldom do they effectively train students and staff members how to respond in a real…

  4. Evolution of fluid-rock interaction in the Reykjanes geothermal system, Iceland: Evidence from Iceland Deep Drilling Project core RN-17B

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.; Schiffman, Peter; Marks, Naomi; Friðleifsson, Guðmundur Ómar

    2015-09-01

    We describe the lithology and present spatially resolved geochemical analyses of samples from the hydrothermally altered Iceland Deep Drilling Project (IDDP) drill core RN-17B. The 9.3 m long RN-17B core was collected from the seawater-dominated Reykjanes geothermal system, located on the Reykjanes Peninsula, Iceland. The nature of fluids and the location of the Reykjanes geothermal system make it a useful analog for seafloor hydrothermal processes, although there are important differences. The recovery of drill core from the Reykjanes geothermal system, as opposed to drill cuttings, has provided the opportunity to investigate evolving geothermal conditions by utilizing in-situ geochemical techniques in the context of observed paragenetic and spatial relationships of alteration minerals. The RN-17B core was returned from a vertical depth of ~ 2560 m and an in-situ temperature of ~ 345 °C. The primary lithologies are basaltic in composition and include hyaloclastite breccia, fine-grained volcanic sandstone, lithic breccia, and crystalline basalt. Primary igneous phases have been entirely pseudomorphed by calcic plagioclase + magnesium hornblende + chlorite + titanite + albitized plagioclase + vein epidote and sulfides. Despite the extensive hydrothermal metasomatism, original textures including hyaloclastite glass shards, lithic clasts, chilled margins, and shell-fragment molds are superbly preserved. Multi-collector LA-ICP-MS strontium isotope ratio (87Sr/86Sr) measurements of vein epidote from the core are consistent with seawater as the dominant recharge fluid. Epidote-hosted fluid inclusion homogenization temperature and freezing point depression measurements suggest that the RN-17B core records cooling through the two-phase boundary for seawater over time to current in-situ measured temperatures. Electron microprobe analyses of hydrothermal hornblende and hydrothermal plagioclase confirm that while alteration is of amphibolite-grade, it is in disequilibrium and the extent of alteration is dependent upon protolith type and water/rock ratio. Alteration in the RN-17B core bares many similarities to that of Type II basalts observed in Mid-Atlantic Ridge samples.

  5. Summary of micrographic analysis of fracture coating phases on drill cores from Pahute Mesa, Nevada Test Site. Revision 1

    SciTech Connect

    1998-12-01

    The flow path between Pahute Mesa and the groundwater discharge area in Oasis Valley (approximately 18 miles to the southwest) is of concern due to the relatively short travel distance between a recharge area where underground nuclear testing has been conducted and the off-site water users. Groundwater flow and transport modeling by IT Corporation (IT) has shown rapid tritium transport in the volcanic rock aquifers along this flow path. The resultant estimates of rapid transport were based on water level data, limited hydraulic conductivity data, estimates of groundwater discharge rates in Oasis Valley, assumed porosities, and estimated retardation rates. Many of these parameters are poorly constrained and may vary considerably. Sampling and analytical techniques are being applied as an independent means to determine transport rates by providing an understanding of the geochemical processes that control solute movement along the flow path. As part of these geochemical investigations, this report summarizes the analysis of fracture coating mineral phases from drill core samples from the Pahute mesa area of the Nevada Test Site (NTS). Archived samples were collected based on the presence of natural fractures and on the types and abundance of secondary mineral phases present on those fracture surfaces. Mineral phases present along fracture surfaces are significant because, through the process of water-rock interaction, they can either contribute (as a result of dissolution) or remove (as a result of precipitation or adsorption) constituents from solution. Particular attention was paid to secondary calcite occurrences because they represent a potential source of exchangeable carbon and can interact with groundwater resulting in a modified isotopic signature and apparent water age.

  6. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  7. Melt layer statistic of two firn cores recently drilled at Dye3 and South dome in the dry snow zone of Southern Greenland

    NASA Astrophysics Data System (ADS)

    Freitag, Johannes; Kipfstsuhl, Sepp; Hoerz, Sebastian; Eling, Lukas; Vinther, Bo; Popp, Trevor

    2014-05-01

    In the last couple of years remote sensing data have shown large areas of wet snow in the Southern part of the Greenland ice sheet. These melt features are attributed to the overall warming trend. Persistent warming implies changes in the firn layer as well. Even in areas of the dry snow zone one can observe sporadically a few ice lenses within the firn column indicating refrozen meltwater from warm events in the past. In our contribution we want to close the gap between investigations of firn cores drilled in the 70's and the observational record of remote sensing data over the last decade in South Greenland. The focus lies on firn of the dry snow zone which is sensitive against changes in a warming atmosphere and cold enough to prevent a longway percolation path of meltwater to several firn layers. To this end we had drilled two 45m-long firn cores at the former drilling sites of DYE3 (65°11'N, 43°49'W) and South Dome (SD) (63°32'N, 44°34'W) during a aircraft-supported field campaign 2012. The retrieved 3inch-firn core segments of 1m length are measured by a X-ray-scanning routine with the means of the core-scale AWI-ICE-CT. The 2d-density fields are calculated and allow to distinguish between refreezing meltwater and compacted firn. The depth-scales are converted to time-scales by using DEP (dielectric profiling) and (in case of DYE3) discrete sampled d18O measurements. Number density of melt layers and relative amount of melt show an synchronized behavior with an general increase over the last 30 years. Local maxima are observed in both sites at around 6-9m and 25m at DYE3 and 5-8m, 22m and 40m at SD.

  8. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from Tertiary volcanic rocks of the Yucca Mountain area, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Kyser, T.K.

    1990-01-01

    Stable-isotope compositions of fracture- and cavity-filling calcite from the unsaturated zone of three drill cores at Yucca Mountain Tertiary volcanic complex indicate that the water from which the minerals precipitated was probably meteoric in origin. A decrease in 18O in the calcite with depth is interpreted as being due to the increase in temperature in drill holes corresponding to an estimated average geothermal gradient of 34?? per kilometer. A few of the calcite samples and all of the opal samples yielded uranium-series ages older than 400 000 yr, although most of the calcite samples yielded ages between 26 000 and 310 000 yr. The stable-isotope and uranium-series dates from precipitated calcite and opal of this reconnaissance study suggest a complex history of fluid movement through the volcanic pile, and episodes of fracture filling predominantly from meteoric water during at least the past 400 000 yr. -Authors

  9. Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967-1979

    USGS Publications Warehouse

    Helz, R.T.

    1980-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption, one of the most picritic eruptions of Kilauea Volcano in the twentieth century. Since 1959 the 110 to 122 m thick lake has cooled slowly, developing steadily thickening upper and lower crusts, with a lens of more molten lava in between. Recent coring dates, with maximum depths reached in the center of the lake, are: 1967 (26.5 m). 1975 (44.2 m), 1976 (46.0 m) and 1979 (52.7 m). These depths define the base of the upper crust at the time of drilling. The bulk of the core consists of a gray, olivine-phyric basalt matrix, which locally contains coarser-grained diabasic segregation veins. The most important megascopic variation in the matrix rock is its variation in olivine content. The upper 15 m of crust is very olivine-rich. Abundance and average size of olivine decrease irregularly downward to 23 m; between 23 and 40 m the rock contains 5-10% of small olivine phenocrysts. Below 40 m. olivine content and average grainsize rise sharply. Olivine contents remain high (20-45%, by volume) throughout the lower crust, except for a narrow (< 6 m) olivine depleted zone near the basalt contact. Petrographically the olivine phenocrysts in Kilauea Iki can be divided into two types. Type 1 phenocrysts are large (1-12 mm long), with irregular blocky outlines, and often contain kink bands. Type 2 crystals are relatively small (0.5-2 mm in length), euhedral and undeformed. The variations in olivine content of the matrix rock are almost entirely variations in the amount of type 1 olivines. Sharp mineral layering of any sort is rare in Kilauea Iki. However, the depth range 41-52 m is marked by the frequent occurrence of steeply dipping (70??-90??) bands or bodies of slightly vuggy olivine-rich rock locally capped with a small cupola of segregation-vein material. In thin section there is clear evidence for relative movement of melt and crystals within these structures. The segregation veins occur only in the upper crust. The most widely distributed (occurring from 4.5-59.4 m) are thin veins (most < 5 cm thick), which cut the core at moderate angles and appear to have been derived from the immediately adjacent wall-rock by filter pressing. There is also a series of thicker (0.1-1.5 m) segregation veins, which recur every 2-3 m, between 20 and 52 m. These have subhorizontal contacts and appear, from similarities in thickness and spacing, to correlate between drill holes as much as 100 m apart. These large veins are not derived from the adjacent wallrock: their mechanism of formation is still problematical. The total thickness of segregation veins in Kilauea Iki is 3-6 m in the central part of the lake, corresponding to 6-11% of the upper crust. Whole-rock compositions for Kilauea Iki fall into two groups: the matrix rock ranges from 20-7.5% MgO, while the segregation veins all contain between 6.0 and 4.5% MgO. There are no whole-rock compositions of intermediate MgO content. Samples from < 12 m show eruption-controlled chemistry. Below that depth, matrix rock compositions have higher Al2O3, TiO2 and alkalies, and lower CaO and FeO, at a given MgO content than do the eruption pumices. The probable causes of this are assimilation of low-melting components from foundered crust, plus removal of olivine, plus removal of minor augite, for rocks with MgO contents of < 8.0%. Given the observed rate of growth of the upper crust, one can infer that significant removal of the type 1 olivine phenocrysts from the upper part of the lake began in 1963 and ceased sometime prior to 1972. The process. probably gravitative settling, appears to have been inhibited earlier by gas streaming from the lower part of the lens of melt. The olivine cumulate zone, which extends into the upper crust, contains relatively few (25-40%) olivine crystals, few of which actually touch each other. The diffuseness of the cumulate zone raises the possibility that the crystals were coated with a relatively visous boundary layer

  10. Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex

    USGS Publications Warehouse

    ten Brink, Uri S.; Zhang, Jie; Brocher, Thomas M.; Okaya, David A.; Klitgord, Kim D.; Fuis, Gary S.

    2000-01-01

    We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (?6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates "basement" from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ?13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.

  11. Lunar deep drill apparatus

    NASA Technical Reports Server (NTRS)

    Harvey, Jill (editor)

    1989-01-01

    A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.

  12. Innovative hyperspectral imaging (HSI) based techniques applied to end-of-life concrete drill core characterization for optimal dismantling and materials recovery

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2015-02-01

    The reduction of EOL concrete disposal in landfills, together with a lower exploitation of primary raw materials, generates a strong interest to develop, set-up and apply innovative technologies to maximize Construction and Demolition Waste (C&DW) conversion into useful secondary raw materials. Such a goal can be reached starting from a punctual in-situ efficient characterization of the objects to dismantle in order to develop demolition actions aimed to set up innovative mechanical-physical processes to recover the different materials and products to recycle. In this paper an innovative recycling-oriented characterization strategy based on HyperSpectral Imaging (HSI) is described in order to identify aggregates and mortar in drill core samples from end-of-life concrete. To reach this goal, concrete drill cores from a demolition site were systematically investigated by HSI in the short wave infrared field (1000-2500 nm). Results obtained by the adoption of the HSI approach showed as this technology can be successfully applied to analyze quality and characteristics of C&DW before dismantling and as final product to reutilise after demolition-milling-classification actions. The proposed technique and the related recognition logics, through the spectral signature detection of finite physical domains (i.e. concrete slice and/or particle) of different nature and composition, allows; i) to develop characterization procedures able to quantitatively assess end-of-life concrete compositional/textural characteristics and ii) to set up innovative sorting strategies to qualify the different materials constituting drill core samples.

  13. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence; Yucca Mountain Site Characterization Project

    SciTech Connect

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole.

  14. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report

    SciTech Connect

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  15. Whole-rock chemical composition of some samples from two drill hole cores in the Capps coal field, Beluga coal area, south-central Alaska

    USGS Publications Warehouse

    Hinkley, T.K.; Smith, K.S.; Peard, J.L.; Tompkins, M.L.

    1982-01-01

    Whole-rock chemical analysis was done on samples from drill cores of rocks lying atop and between coal beds in the Beluga coal area, south-central Alaska. The samples were classified as sandstone, siltstone or claystone at time of hand specimen description. Chemical data were compared to those from corresponding rocks from other sites in the conterminous United States. The study supports the following conclusions: 1. The sample suites from the two cored Alaska holes, about 1 km apart, contrast sharply in their degree of lithologic differentiation, one having relatively purer sandstones and claystones, the other having more mixed rock types. This suggests that considerable variation occurs in depositional environments and, possibly, in rock chemistry over small distances in the Beluga coal area. 2. Hand specimen inspection is a reasonably reliable way of assigning names denoting the lithologic type of Alaska rocks, and thereby making broad predictions of their whole-rock chemistry.

  16. OCEAN DRILLING PROGRAM LEG 102 SCIENTIFIC PROSPECTUS

    E-print Network

    . DISCLAIMER This publication was prepared by the Ocean Drilling Program, Texas A & M University, as an account will depart Miami, Florida on March 19, and steam to Site 418 to conduct downhole geophysical studies

  17. Element mobility studies of two drill-cores from the Götemar Granite (Kråkemåla test site), southeast Sweden

    USGS Publications Warehouse

    Smellie, John A.T.; Stuckless, John S.

    1985-01-01

    The pervasive alteration and the more recent mobilisation of U are evident to a depth of at least 600 m. The effects are most prevalent along major fracture zones and within the upper 250–300 m of one drill-hole where a high frequency of crush zones has been noted. Higher Fe oxidation ratios, higher Rb contents, lower U contents and correspondingly higher Th/U ratios, all characterise this zone.

  18. Nanometer quartz grains and rapid cooling melt in fault gouge during earthquake process - observed from the WFSD-1 drilling core sample

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Janssen, C.; Wirth, R.

    2014-12-01

    Drilling into active faults is an effective way to get data and materials at depth that help to understand the material properties, physical mechanisms and healing processes of the faults. The Wenchuan earthquake fault scientific drilling project (WFSD) was conducted immediately after the 2008 Wenchuan earthquake (Mw 7.9). The first borehole of the project (WFSD-1) penetrates the Yingxiu-Beichuan fault with a final depth of 1201.15 m and meet the principal slip zone (PSZ) of Wenchuan earthquake at depth of 589.2 m. About 183.3 m-thick fault rocks are recognized in the WFSD-1 drilling core from 575.7 to 759 m-depth, which was confirmed as the Yingxiu-Beichuan fault zone with a real thickness of about 100 m due to the borehole inclination of 11°. In this research we got samples from WFSD-1 drilling core at the depth of 732.4-732.8 m, in which black gouge, gray gouge, fine-grained fault breccia and coarse-grained fault breccia layers can be distinguished clearly. Slickensides were developed in the surface of the black gouge layer. The protolith of this segment is sandstone. Based on detailed microstructural analysis using electron optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). An about 1 mm-thick amorphous material layer containing small quartz grains was observed. Circles with different densities were observed in the amorphous material indicate a melt-origin. Cracks are developed in the amorphous material, which are suggested to be caused by general volume reduction as a result of rapid cooling contraction. TEM-EDX analysis of the amorphous material indicates mainly feldspar composition, implying the melting temperature was >1230?, while quartz grains did not melt indicating a temperature <1700?. Nano-scale quartz grains were observed in a very small layer showing a different structure at the edge of the amorphous layer, indicating that nano quartz grains were formed by the comminution during earthquake, which is very important in earthquake energy budgets calculation. These microstructural analysis results reveal that the amorphous layer may formed by rapid cooling of the frictional melt material caused by high-velocity slip during a large earthquake, and fluid flow may played an important role in the rapid cooling process.

  19. 3D gravity modelling of the Scandinavian Caledonides in the vicinity of COSC-1 drill site constrained by petrophysical data from the drill core

    NASA Astrophysics Data System (ADS)

    Berthet, Théo; Almqvist, Bjarne; Hedin, Peter; Juhlin, Christopher; Gee, David G.; Malehmir, Alireza; Lorenz, Henning

    2015-04-01

    The Scandinavian Caledonides have long been recognised to have been part of a Paleozoic mountain belt of Alpine-Himalayan dimensions. Today, the remnants of the Scandinavian Caledonides extend laterally over ca. 1500 km and show east-vergent thrusting and emplacement of allochthons in Norway and western Sweden. The middle allochton (Seve nappe complex), characterized by an inverted metamorphic gradient and partially molten parts that were involved in ductile extrusion, provides opportunities to investigate deep mountain building processes currently occurring in the Himalaya-Tibet orogen. Moreover the recent discovery of a subduction related ultra-high pressure terrane in the upper part of the middle allochton raises more questions about the process of emplacement of this continental slice during orogeny (Majka et al., 2014). Investigating crustal structure in the vicinity of the COSC-1 area is of key importance in understanding the extrusion process. In this study, we use a combination of new and pre-existing terrestrial gravity data to image the high-density middle allochton and its structural relation to the underlying units. Compared to previous work (Hedin et al., 2013), we use free-air anomaly data instead of the Bouguer anomalies (and the standard correction of 2670 kg/m3) because the near surface-density distribution has a significant influence on the gravity signal in this area of high relief. The topography and its density variations are thus incorporated in the 3D gravity model of the area. We also take advantage of the density measurements from both the 2.5 km recovered core material and borehole logging to calibrate the upper part of our model, as well as new seismic data to better constrain the location and shape of the main tectonic limits. Our constrained 3D gravity modelling thus improves the structural image of the western Jämtland area, especially the high-density anisotropic middle allochton that is underlain by the by lower density lower allochton.

  20. Core lithology, Valles caldera No. 1, New Mexico

    SciTech Connect

    Gardner, J.N.; Goff, F.; Goff, S.; Maassen, L.; Mathews, K.; Wachs, D.; Wilson, D.

    1987-04-01

    Vallas caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program research core hole in the Vallas caldera and the first continuously cored hole in the region. The hole penetrated 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales with over 95% core recovery. The primary research objectives included coring through the youngest rhyolite flow within the caldera; obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature hydrothermal outflow plume near its source. This report presents a compilation of lithologic and geophysical logs and photographs of core that were collected while drilling VC-1. It is intended to be a reference tool for researchers interested in caldera processes and associated geologic phenomena.

  1. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  2. Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG{number_sign}3, Yucca Mountain, Nevada

    SciTech Connect

    Peterman, Z.E.; Futa, K.

    1996-07-01

    The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG {number_sign}3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial {sup 87}Sr/{sup 86}Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial {sup 87}Sr/{sup 86}Sr ratios decrease upward in the quartz latite to values as low as 0.7090.

  3. A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling

    E-print Network

    Kristoffersen, Yngve

    A concept for marine shallow drilling Drill test from R/V Håkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

  4. 10Be content in clasts from fallout suevitic breccia in drill cores from the Bosumtwi impact crater, Ghana: Clues to preimpact target distribution

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2014-03-01

    Rocks from drill cores LB-07A (crater fill) and LB-08A (central uplift) into the Bosumtwi impact crater, Ghana, were analyzed for the presence of the cosmogenic radionuclide 10Be. The aim of the study was to determine the extent to which target rocks of various depths were mixed during the formation of the crater-filling breccia, and also to detect meteoric water infiltration within the impactite layer. 10Be abundances above background were found in two (out of 24) samples from the LB-07A core, and in none of five samples from the LB-08A core. After excluding other possible explanations for an elevated 10Be signal, we conclude that it is most probably due to a preimpact origin of those clasts from target rocks close to the surface. Our results suggest that in-crater breccias were well mixed during the impact cratering process. In addition, the lack of a 10Be signal within the rocks located very close to the lake sediment-impactite boundary suggests that infiltration of meteoric water below the postimpact crater floor was limited. This may suggest that the infiltration of the meteoric water within the crater takes place not through the aerial pore-space, but rather through a localized system of fractures.

  5. Petrology and hydrothermal mineralogy of U. S. Geological Survey Newberry 2 drill core from Newberry caldera, Oregon

    SciTech Connect

    Keith, T.E.C.; Bargar, K.E.

    1988-09-10

    U.S. Geological Survey Newberry 2 was drilled to a depth of 932 m within Newberry caldera. The bottom-hole temperature of 265/sup 0/C is the highest reported temperature of any drill hole in the Cascades region of the United States. The upper part of the stratigraphic section pentrated by Newberry 2 consists of caldera fill below which are increasingly more mafic lavas ranging from rhyodacite at 501 m to basalt at 932 m. Measured temperatures shallower than 300 m are less than 35/sup 0/C, and rock alteration consists of hydration of glass and local palagonitization of basaltic tuffs. Incipient zeolitization and partial smectite replacement of ash and pumice occurred throughout the pumiceous lithic tuffs from 300 to 500 m. Higher-temperature alteration of the tuffs to chlorite and mordenite occurs adjacent to a rhyodacite sill at 460--470 m; alteration minerals within the sill consist of pyrrhotite, pyrite, quartz, calcite, and siderite. Below 697 m the rocks are progressively more altered with depth mainly because of increased temperature along a conductive gradient from 100/sup 0/C at 697 m to 265/sup 0/C at 930 m. Fluid inclusions in quartz and calcite indicate that temperature in the past have been higher than at present, most likely due to local confining pressures between impermeable lava flows.

  6. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  7. Drilling gas hydrates with the sea floor drill rig MARUM-MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Bohrmann, Gerhard; Wefer, Gerold

    2015-04-01

    Large amounts of methane are bound in marine gas hydrate deposits. Local conditions like pressure, temperature, gas and pore water compositions define the boundaries of gas hydrate stability within the ocean sediments. Depending on those conditions gas hydrates can occur within marine sediments at depth down to several hundreds of meters up to sea floor. These oceanic methane deposits are widespread along continental margins. By forming cement in otherwise soft sediments gas hydrates are stabilizing the seafloor on continental slopes. Drilling operations are required for understanding the distribution of gas hydrates as well as for sampling them to study the composition, microstructure and its geomechanical and geophysical properties. The sea floor drill rig MARUM-MeBo200 has the capability to drill down to 200 m below sea floor well within the depth of major gas hydrate occurrences at continental margins. This drill rig is a transportable sea floor drill rig that can be deployed from a variety of multi-purpose research vessels. It is deployed on the sea bed and controlled from the vessel. It is the second generation MeBo (Freudenthal and Wefer, 2013) and was developed from 2011 to 2014 by MARUM in cooperation with BAUER Maschinen GmbH. Long term experiences with the first generation MeBo70 that was operated since 2005 on 15 research expeditions largely contributed to the development of MeBo200. It was first tested in October 2014 from the research vessel RV SONNE in the North Sea. In this presentation the suitability of MARUM-MeBo for drilling marine gas hydrates is discussed. We report on experiences drilling gas hydrates on two research expeditions with MeBo70. A research expedition for sampling gas hydrates in the Danube Paleodelta with MeBo200 as well as technical developments for improving the suitability of MeBo for gas hydrate exploration works are planned within the project SUGAR3 funded by the Federal Government for Economy and Energy (BMWi). Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013

  8. Petrography of sandstones from drill cores BARB4 and BARB5, Paleoarchean Mapepe Formation, Barberton greenstone belt, South Africa: Implications for provenance and tectonic reconstructions.

    NASA Astrophysics Data System (ADS)

    Drabon, N.; Lowe, D. R.; Heubeck, C. E.

    2014-12-01

    Paleogeographic and tectonic reconstructions in the Barberton greenstone belt (BGB) are challenged by syn- and post-depositional tectonics. The Barberton Drilling Project extracted two drill cores from the sedimentary rocks of the 3.26-3.22 Ga Mapepe Formation of the Fig Tree Group. The cores were taken from the Manzimnyama Syncline (BARB4) and the Barite Valley structural belt (BARB5), which are separated by belts of faulted older Onverwacht and younger Moodies strata. Stratigraphically, there is no clear correlation of Mapape strata in these two belts. Both BARB4 and BARB5 contain 25 to 300 m thick units of lithic sandstone that may represent correlative units. A comparative provenance analysis allows testing a possible correlation and evaluating the nature of tectonic uplifts that sourced the sediments. The sandstones have experienced pervasive metasomatic alteration and most primary silicate minerals except coarse quartz have been transformed into micromosaics of microquartz, phyllosilicates, and trace impurities. The majority of framework grains are chert, impure chert, and lithic grains while monocrystalline quartz and altered feldspar are minor components. The single thick sandstone in BARB4 displays a relatively uniform framework mode with average 38.7 % total quartz, 2.4% feldspars, and 58.9 % lithics and an increasing percentage of mafic to ultramafic grains upsection. In contrast, BARB5 includes three distinct sandstones with varying framework modes. The litharenite at 0 to 95m core depth was mainly sourced from an immediately underlying dacitic tuff. The chertarenite at 320 to 390m core depth is composed of 73% carbonaceous chert grains. All grain types appear to have been derived by erosion of sedimentary and volcanic rocks of the BGB as well as penecontemporaneous volcanism. Erosion did not reach deeper-seated plutonic rocks. The framework mode of the BARB4 sandstones represents a composite of common silicified BGB rocks and resembles those of other sediments in the southern domain of the BGB. In contrast, BARB5 sandstones derived locally by shallow erosion of underlying volcanic and sedimentary rocks. The distinct signatures suggest that these units are not correlative and were not derived from a common source. They may be a result of local uplifts of different parts of the greenstone sequence.

  9. Rapid and Quiet Drill

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    This describes aspects of the rapid and quiet drill (RAQD), which is a prototype apparatus for drilling concrete or bricks. The design and basic principle of operation of the RAQD overlap, in several respects, with those of ultrasonic/ sonic drilling and coring apparatuses described in a number of previous NASA Tech Briefs articles. The main difference is that whereas the actuation scheme of the prior apparatuses is partly ultrasonic and partly sonic, the actuation scheme of the RAQD is purely ultrasonic. Hence, even though the RAQD generates considerable sound, it is characterized as quiet because most or all of the sound is above the frequency range of human hearing.

  10. Correction to “Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2”

    USGS Publications Warehouse

    Tembe, Sheryl; Lockner, David; Wong, Teng-Fong

    2010-01-01

    This article corrects: Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. Vol. 114, Issue B11, Article first published online: 5 NOV 2009.

  11. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect

    Hutchinson, D.R.; Shelander, D.; Dai, J.; McConnell, D.; Shedd, W.; Frye, M.; Ruppel, C.; Boswell, R.; Jones, E.; Collett, T.S.; Rose, K.; Dugan, B.; Wood, W.; Latham, T.

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

  12. Cascade geothermal drilling/corehole N-1

    SciTech Connect

    Swanberg, C.A.; Combs, J. ); Walkey, W.C. )

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core hole GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commerical exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the ''rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table. 28 refs., 15 figs., 2 tabs.

  13. Cascade geothermal drilling/corehole N-3

    SciTech Connect

    Swanberg, C.A.

    1988-07-19

    Two core holes have been completed on the flanks of Newberry Volcano, Oregon. Core holes GEO N-1 has a heat flow of 180 mWm-2 reflecting subsurface temperature sufficient for commercial exploitation of geothermally generated electricity. GEO N-3, which has a heat flow of 86 mWm-2, is less encouraging. Considerable emphasis has been placed on the rain curtain'' effect with the hope that a detailed discussion of this phenomenon at two distinct localities will lead to a better understanding of the physical processes in operation. Core hole GEO N-1 was cored to a depth of 1387 m at a site located 9.3 km south of the center of the volcano. Core hole GEO N-3 was cored to a depth of 1220 m at a site located 12.6 km north of the center of the volcano. Both core holes penetrated interbedded pyroclastic lava flows and lithic tuffs ranging in composition from basalt to rhyolite with basaltic andesite being the most common rock type. Potassium-argon age dates range up to 2 Ma. Difficult drilling conditions were encountered in both core holes at depths near the regional water table. Additionally, both core holes penetrate three distinct thermal regimes (isothermal (the rain curtain), transition, and conductive) each having its own unique features based on geophysical logs, fluid geochemistry, age dates, and rock alteration. Smectite alteration, which seems to control the results of surface geoelectrical studies, begins in the isothermal regime close to and perhaps associated with the regional water table.

  14. Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Burlingame, A. L.

    1974-01-01

    The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.

  15. Scientific drilling: Limitations to drilling and logging in thermal regimes

    NASA Astrophysics Data System (ADS)

    Lysne, Peter; Jacobson, Ronald

    Although many investigators are eager to explore thermal regimes of Earth's crust by drilling, present technologies limit these activities to relatively benign environments. This article enumerates areas of difficulty and offers suggestions as to how they may be addressed.Over the past century two drilling technologies have evolved, primarily to support extractive industries. The most common involves the “rotary drilling” machinery that is used in the hydrocarbon production industry. It features big rigs capable of drilling deeper than 10 km and is the least expensive way to make large holes necessary for production. Unfortunately, when this equipment is used to take core, costs mount rapidly because the drill string must be removed from the hole after each core run. Thus formation analysis usually depends on downhole measurements that are provided by an aggressive logging service industry. Many of these measurements are, understandably, directed toward hydrocarbon applications. This situation is not always advantageous to scientific drilling programs in volcanic formations [Lysne, 1989].

  16. ‘Building Core Knowledge - Reconstructing Earth History’: Transforming Undergraduate Instruction by Bringing Ocean Drilling Science on Earth History and Global Climate Change into the Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    St. John, K.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E.; Krissek, L. A.

    2009-12-01

    This NSF-funded, Phase 1 CCLI project effectively integrates scientific ocean drilling data and research (DSDP-ODP-IODP-ANDRILL) with education. We have developed, and are currently testing, a suite of data-rich inquiry-based classroom learning materials based on sediment core archives. These materials are suitable for use in introductory geoscience courses that serve general education students, early geoscience majors, and pre-service teachers. 'Science made accessible' is the essence of this goal. Our team consists of research and education specialists from institutions ranging from R1 research to public liberal arts to community college. We address relevant and timely ‘Big Ideas’ with foundational geoscience concepts and climate change case studies, as well transferable skills valued in professional settings. The exercises are divided into separate but inter-related modules including: introduction to cores, seafloor sediments, microfossils and biostratigraphy, paleomagnetism and magnetostratigraphy, climate rhythms, oxygen-isotope changes in the Cenozoic, past Arctic and Antarctic climates, drill site selection, interpreting Arctic and Antarctic sediment cores, onset of Northern Hemisphere glaciation, onset of Antarctic glaciation, and the Paleocene-Eocene Thermal Maximum. Each module has several parts, and each is designed to be used in the classroom, laboratory, or assigned as homework. All exercises utilize authentic data. Students work with scientific uncertainty, practice quantitative and problem-solving skills, and expand their basic geologic and geographic knowledge. Students have the opportunity to work individually and in groups, evaluate real-world problems, and formulate hypotheses. Initial exercises in each module are useful to introduce a topic, gauge prior knowledge, and flag possible areas of student misconception. Comprehensive instructor guides provide essential background information, detailed answer keys, and alternative implementation strategies, as well as providing links to other supplementary materials and examples for assessment. Preliminary assessment data indicates positive gains in student attitudes towards science, and in their content knowledge and scientific skills. In addition, student outcomes appear to depend somewhat on students’ motivation for taking the course and their institution, but are generally independent of students’ class rank or GPA. Our classroom-tested learning materials are being disseminated through a variety of outlets including instructor workshops and eventually to the web.

  17. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Effect of a metallic core on transient geomagnetic induction

    E-print Network

    Cerveny, Vlastislav

    to the high conductivity of the core; the resulting induced field will therefore not be of zero mean even when on a spherically symmetric electrical conductivity model of the solid Earth. Here, we show that Earth's metallic core should be included in such conductivity models which has not previously been the case. Abrupt

  18. Project Hotspot: Temporal Compositional Variation in Basalts of the Kimama Core and Implications for Magma Source Evolution, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Shervais, J. W.; Champion, D.; Duncan, R. A.; Christiansen, E. H.

    2012-12-01

    Project Hotspot produced continuous core from three drill sites in the Snake River plain, including 1912 m of core from the Kimama drill site on the axis of the plain. Ongoing major and trace element chemical characterization of the Kimama core and new 40Ar/39Ar and paleomagnetic age data demonstrate temporal variations in the evolution of Snake River Plain volcanism. Cyclic fluctuations in magma chemistry identify over a hundred chemically distinct basalt flow groups (comprising 550 individual lava flows) within 54 periods of volcanic activity, separated by hiatuses of decades to many millennia. From a surface age of 700 ka to a bottom-hole age of 6.5 Ma, the Kimama core records the presence of several nearly coeval but compositionally different lava flows, ranging from highly evolved lavas to non-evolved tholeiites. Determining whether Kimama lavas are genetically unrelated or extreme differentiates of a single magma batch relies upon a combination of detailed chemostratigraphy and absolute and relative age data. Age and geochemical data introduce new ideas on the role of multiple magma sources and/or differentiation processes in the development of central Snake River Plain volcanic systems. The relatively short gestation of evolved liquids is demonstrated throughout the Kimama core, with evidence for cyclic fractionation of mafic lavas at depths of 318 m, 350 m, 547 m, and 1078 m. Here, highly evolved lava flows (FeOT 16.0-18.4 wt %; TiO2 3.43-4.62 wt %) are stratigraphically bounded by more primitive tholeiitic basalts (FeOT 9.9-14.8 wt%; TiO2 1.22-3.56 wt%) within the same inclination range, suggesting that cyclic fractionation is a regular feature of shield volcano development on the central Snake River Plain. Between 1.60 ± 0.13 Ma (453.5 m depth) and 1.54 ± 0.15 Ma (320.0 m depth), Kimama lavas ranged in composition from primitive tholeiite (FeOT 11.7 wt %; TiO2 1.76 wt %) to evolved basalt (FeOT 16.0 wt %; TiO2 4.00 wt %). At depths of 1119 m and 1138 m, evolved lava flows (FeOT 17.2 and 17.0 wt %; TiO2 4.20 and 4.09 wt %, respectively) of negative polarity are stratigraphically bounded by more primitive tholeittic lava flows (FeOT 13.6 and 14.5 wt %; TiO2 2.92 and 3.24 wt %, respectively) of positive polarity, a chronological transition that may represent many millennia and magma source variability. Kimama core stratigraphy as well as paleomagnetic, and radiometric age data demonstrate that mafic volcanism on the central Snake River Plain has been relatively continuous for the last 6.5 Ma. The compositional variability in Kimama basalts introduces broader implications for the timing of cyclic fractionation processes and the development of regional magma sources.

  19. Rookie Drill 

    E-print Network

    Unknown

    2011-09-05

    The application of potassium chloride (KCl) as a temporary clay stabilizing additive in water-based drilling fluids is problematic in chloride-sensitive formations. However, failure to utilize clay stabilization leads to additional costs to drilling...

  20. Preliminary Results from the AIDP-2 and AIDP-3 Drill Cores Hint at Systematic Mo Enrichments in the ~2.65 Ga Roy Hill Shale

    NASA Astrophysics Data System (ADS)

    Roy, M.; Ostrander, C. M.; Lyons, T. W.; Olson, S. L.; Buick, R.; Anbar, A. D.

    2014-12-01

    In order to better understand the timing of the earliest oxygenation of Earth's surface environment, we are pursuing a multi-proxy investigation of paleoredox conditions in diamond drill cores through sedimentary rocks of the Archean Fortescue & Hamersley Groups. These cores were recovered in 2012 by the Agouron Institute from the Pilbara Craton of Western Australia. The AIDP-2 core samples a stratigraphic succession of carbonate and sulfidic, organic-rich shale in the Carawine Dolomite and Jeerinah Formation representing a shallow near-shore depositional setting. Core AIDP-3 samples a transition from BIF in the Marra Mamba Formation to organic-rich shales in the underlying Jeerinah Formation representing a deeper offshore depositional setting. We have analyzed 322 black shale samples from the Roy Hill Member of the Jeerinah Formation deposited just before the transition from the Fortescue to Hamersley Group. Roy Hill black shale units are mostly pyritic in AIDP-3, but are less so in AIDP-2. The Roy Hill Member of AIDP-3 extends from 2.629 Ga to2.676 Ga and contains the 2.632Ga Jeerinah impact layer, whereas the Roy Hill member of AIDP-2 is slightly older, lying beneath the Jeerinah impact layer, and has been dated to 2.636 Ga to >2.643 Ga [1]. Our initial findings reveal that Mo concentrations range between 0.7 and 7 ppm in the Roy Hill black shale member of AIDP-2 and AIDP-3. Corresponding Mo/Al ratios range between 1-9×10-5 ppm/ppm, indicating slight Mo enrichment relative to average continental crust. These results are consistent with a previous study by Scott et al. [2], which suggested little or no Mo enrichment. However, the higher resolution sampling in this study allows us to clearly resolve the Mo/Al depth profiles in these late Archean cores. These data suggest that the variations we see are not due to analytical scatter or sample variability, but instead represent real variations in Mo scavenged into these sediments. Ongoing work is focused on obtaining additional complementary datasets including Fe-speciation, TOC, and traditional and non-traditional isotopes. These data will provide the additional constraints needed to understand the origin and significance of Mo enrichments in these Archean sediments. [1] Rasmussen & Fletcher (2010) Geology, 38: 299-302 [2] Scott et al. (2011) Geology, 39:119-122.

  1. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.

  2. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  3. Rhyolites in the Kimberly Drill Core, Project Hotspot: First Intracaldera Ignimbrite from the Central Snake River Plain, Idaho?

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.

    2013-12-01

    The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18? between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like most rhyolites from the Snake River Plain, all 3 units have the characteristics of A-type rhyolites with high concentrations of alkalies, high Fe/Mg and TiO2/MgO ratios, as well as high concentrations Nb, Y, Zr and Ga. Initial analyses of plag, cpx, and qtz show that all three units are low ?18O rhyolites, like most from the Central Snake River Plain-- ?18O in feldspar ranges from 1‰ in Rhyolite 1 to 3‰ in Rhyolites 2 and 3. In the thick lower ignimbrite, whole-rock ?18O increases systematically from the base upward (0.5‰ to as much as 9‰ in the altered top and ?D ranges from -140 to -180‰). Whole rock variations correlate with water content, apparently controlled by secondary clay. We suggest that these characteristics were largely imposed by their derivation from partial melting of basaltic sills and surrounding older crust. The low ?18O values reflect recycling of hydrothermally altered crustal rocks and indicate progressive incorporation of more hydrothermally altered material into the younger magmas. More work is needed to establish correlation with regional units, understand the emplacement of the rhyolites and their volcanic setting, and ascertain the origin of these distinctive low ?18O, A-type rhyolites.

  4. Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 103, 105, 108, 131, 135, NRF-15, and NRF-16, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Hodges, Mary K.V.; Orr, Stephanie M.; Potter, Katherine E.; LeMaitre, Tynan

    2012-01-01

    This report, prepared in cooperation with the U.S. Department of Energy, summarizes construction, geophysical, and lithologic data collected from about 4,509 feet of core from seven boreholes deepened or drilled by the U.S. Geological Survey (USGS), Idaho National Laboratory (INL) Project Office, from 2006 to 2009 at the INL. USGS 103, 105, 108, and 131 were deepened and cored from 759 to 1,307 feet, 800 to 1,409 feet, 760 to 1,218 feet, and 808 to 1,239 feet, respectively. Boreholes USGS 135, NRF-15, and NRF-16 were drilled and continuously cored from land surface to 1,198, 759, and 425 feet, respectively. Cores were photographed and digitally logged by using commercially available software. Borehole descriptions summarize location, completion date, and amount and type of core recovered.

  5. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-12-31

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs.

  6. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    USGS Publications Warehouse

    Crosthwaite, E. G., (compiler)

    1976-01-01

    meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

  7. Integrated provenance-detrital thermochronology studies in ANDRILL AND-2A drill core: first evidence of an Oligocene exhumation episode (McMurdo Sound, Antarctica)

    NASA Astrophysics Data System (ADS)

    Zattin, M.; Talarico, F. M.; Sandroni, S.

    2009-12-01

    An integrated investigation including provenance analysis of the gravel-fraction and detrital apatite fission-track (AFT) thermochronology on the AND-2A core provides new results to constrain the exhumation history of source regions and the reconstruction of sediment provenance models in the Ross Embayment in Late Cenozoic time. All the AFT ages, from 20 samples, evenly distributed in the uppermost 1000 m of the core, indicate that the entire succession originated from a source that exhumed in the Oligocene/Late Eocene time. In fact, most of the grains in nearly all the samples can be grouped into a youngest grain-age component (P1) in the range between 21.7 Ma and 43.4 Ma. However, most of the samples show more than one population, documenting the presence of multiple source areas in some periods of the basin history. On the other hand, the presence in some of the samples of a unique peak suggests a limited drainage system, as indicated by the petrographic data. The AFT data indicate the presence of active tectonics at the end of the Oligocene, therefore suggesting a source of sediments located along the Transantarctic Mountains (TAM) south of the Dry Valleys Block, where bedrock AFT ages indicate an older (Eocene) exhumation phase. Hence, the idea of a structural segmentation of the TAM during the Cenozoic (Wilson, Glob. Plan. Change, 1999) is well supported by these data. Provenance analysis of the gravel fraction highlights significant down-core modal and compositional variations and the occurrence of two main basement clast assemblages, diagnostic of specific source regions and occurring in distinct core sections: a) including marbles, garnet micaschists and diopside schists, suggesting oscillation of "local" glaciers in the on-shore area close to the AND-2A drill site, and b) low-grade metasediments and alkaline granites, indicating oscillations of a most extensive ice sheet/shelf with a clear provenance from the Skelton-Mulock glacier area. These data agree with AFT ages as both the methodologies give a clear indication for sources located in the southern McMurdo Sound. The compositional shifts of TAM-derived clasts suggest a dynamic behavior (waxing and waning) of the Antarctic Ice Sheets. In particular, expansions of the ice-flow lines of Skelton and Mulock glaciers into the McMurdo Sound are similar to the glaciological reconstructions for the Last Glacial Maximum and, consistently with provenance and glaciological models based on the AND-1B record, they can be interpreted as the result of West Antarctic Ice Sheet influence on provenance and dispersal of sediments in the Ross Embayment.

  8. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  9. Organic Matter and ? 13C Throughout a Sub-Basement Red Soil Unit in Hole 1206A Cored During Ocean Drilling Program Leg 197 (Koko Seamount): First Results

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.

    2002-12-01

    Although the discovery of deep red-brown paleosols during Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) legs dates back to the 80's [1-3], the potential for preservation of organic matter in these igneous-derived silty-claystone units has been overlooked, and depositional settings have been inferred from only petrologic observations. This work aims to present the first geochemical (TOC, N total) and carbon isotope (? 13C) data of a metre-thick paleosol Unit (Core 197-1206A-40R-1, 101 cm, to 40R-3, 77 cm; Subunits 18A and 18B, 307.5 to 309.9 mbsf) cored at Site 1206 (Koko Seamount) during ODP Leg 197 (Emperor Seamounts, north Pacific transect)[4-5]. Study of the sources and variation with depth of organic matter in sub-basement Fe-oxide-rich paleosol units from Leg 197 contributes to understanding the palaeoenvironmental history of the Emperor Seamounts prior to, during and after their burial and subsidence (ca. >48 to 56 Ma). Furthermore, preserved organic traces in such an isolated deep Earth system make them a useful test bed for future deep Earth's biosphere-relevant investigations [5-6]. Throughout Core 197-1206A-40R soil unit, Corg (TOC = 0.03-0.07%; 0.049 \\pm 0.011, n=7) and total nitrogen (Ntot = 0.00-0.06 %) are within the range (TOC = 0.05% to 0.12%, n=38) measured for the sub-basement paleosoil/rock units found at Site 1205 [4-5]. The ? 13C (bulk organic matter) values for the paleosol regularly decrease downcore from -25.3 \\permil (Sample 197-1206-40R-1, 103-104, at 307.54 mbsf) to -26.2 \\permil (Sample 197-1206A-40R-2, 130-131; at 308.92 mbsf) in contrast to an exposed Hawaiian oxisol sample (e.g., Ohau-2, 100-105 cm-depth with ? 13C = -23.0 \\permil). Typical uncertainties for these measurements were <\\pm 0.1\\permil to <\\pm 0.3\\permil. It is proposed that ? 13C org values of ca. -25 \\permil to ca. -26 \\permil support a terrestrial, rather than marine source [e.g., 7-8] of organics preserved in the paleosol interbed from Core 197-1206A-40R. Thus, providing additional evidence for red claystone units as soil horizons subaerially formed on the top of Koko and Nintoku Seamounts, and buried by erupted lava flowing in a nearshore environment [1,3-4]. Also, since some bacterial-induced changes in the pristine (?humic) organic compounds may have occurred over time [5], the ? 13C org values could reflect mixing between primary terrestrial/lacustrine and/or primary/secondary (bacterial) organic matter. However, ? 13C alone is inadequate at distinguishing among different carbon sources (i.e., lacustrine algae and C3 land plants, [e.g., 8)]; further use of Isotope Ratio Mass Spectrometry (EA-IRMS) for measuring ? 15N tot in these interesting paleosols is underway. {References: [1] Karpoff, A.M., 1980. Init. Repts. DSDP, 55: Washington, 707-711; [2]Shipboard Scientific Party, 1993a Site 871, Proc. ODP, Init. Repts. 144, 41-103; [3] Holmes, M.A., 1995. Proc. ODP, Scientific Results, v. 144: 381-398; [4] Shipboard Scientific Party, 2002, Proc. ODP, Init. Repts. 197: College Station, TX; [5] Bonaccorsi, R., et al. 2002, Abstract, IAU 2002 Bioastronomy Symposium; [6] Furnes, H., et al., 2001, Abstract, GSA 2001 Annual Meeting; [7] Meyers, P.A., 1994. Chemical Geology, 144, 289-302; [8] Meyers, P.A., 1997. Org. Geochem., 27, 5/6:213-259

  10. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

  11. How to identify Antarctica's "Oldest Ice" with geophysical data?

    NASA Astrophysics Data System (ADS)

    Eisen, Olaf

    2014-05-01

    The International Partnership for Ice Core Sciences (IPICS) identified the retrieve of an "Oldest-Ice" ice core as one of the most important scientific challenges in ice core research for the near future. As the outcome of an "Oldest-Ice" workshop a general approach was recently suggested how to combine geophysical reconnaissance, numerical ice-flow modelling and sample drilling to identify the most promising sites where about 1.5 Ma old ice could most likely be found (Fischer et al., CP, 2013). The most critical unknown parameter is the geothermal heat flow underneath the ice, followed by bed topography and integrity of internal layering. Here, we propose the combined application of geophysical methods in conjunction with existing ice-core data to improve the knowledge on physical properties of the ice and the underlaying strata. It builds on (i) conventional application of potential field geophysics (gravimetry and magnetics) to estimate subglacial geology; (ii) radar internal architecture to determine layer integrity and bedrock topography; (iii) combination of ice-core profiles with radar to determine the origin - and thus confirm isochronity and age - of internal radar layers, complemented by layer attributes; (iv) extrapolation of ice-core impurities and the related attenuation of radar waves in space along internal layers; and (v) radar and seismic wave attenuation analyses to determine the englacial temperature distribution. This approach has the potential to improve our capabilities to estimate the spatial variation of geothermal heat flux and provide spatially distributed age-depth constraints for ice-flow models.

  12. Scientific Ocean Drilling to Assess Submarine Geohazards along European Margins

    NASA Astrophysics Data System (ADS)

    Ask, M. V.; Camerlenghi, A.; Kopf, A.; Morgan, J. K.; Ocean DrillingSeismic Hazard, P. E.

    2008-12-01

    Submarine geohazards are some of the most devastating natural events in terms of lives lost and economic impact. Earthquakes pose a big threat to society and infrastructure, but the understanding of their episodic generation is incomplete. Tsunamis are known for their potential of striking coastlines world-wide. Other geohazards originating below the sea surface are equally dangerous for undersea structures and the coastal population: submarine landslides and volcanic islands collapse with little warning and devastating consequences. The European scientific community has a strong focus on geohazards along European and nearby continental margins, especially given their high population densities, and long historic and prehistoric record of hazardous events. For example, the Mediterranean is surrounded by very densely-populated coastline and is the World's leading holiday destination, receiving up 30% of global tourism. In addition, its seafloor is criss-crossed by hydrocarbon pipelines and telecommunication cables. However, the governing processes and recurrence intervals of geohazards are still poorly understood. Examples include, but are not limited to, earthquakes and volcanic eruptions along the active tectonic margins of the Mediterranean and Sea of Marmara, landslides on both active and passive margins, and tsunamites and seismites in the sedimentary record that suggest a long history of similar events. The development of geophysical networks, drilling, sampling and long-term monitoring are crucial to the understanding of earthquake, landslide, and tsunami processes, and to mitigate the associated risks in densely populated and industrialized regions such as Europe. Scientific drilling, particularly in the submarine setting, offers a unique tool to obtain drill core samples, borehole measurements and long-term observations. Hence, it is a critical technology to investigate past, present, and possible future influences of hazardous processes in this area. The Integrated Ocean Drilling Program (IODP) provides technologically top-level drilling vessels and platforms that can be used by scientists to address global scientific problems, including the causes and processes responsible for submarine geohazards. Both IODP and ECORD (the European Consortium for Ocean Research Drilling in collaboration with the European Science Foundation) support scientific initiatives towards submarine geohazards, because the geological record of geohazards can be read and interpreted only through ocean drilling, combined with a broad array of geophysical, geotechnical, and laboratory studies, to identify structures and deposits associated with hazardous phenomena.

  13. Inferring Earthquake Physics from Deep Drilling Projects of Active Faults

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Smith, S. A. F.; Kuo, L. W.; Mittempergher, S.; Remitti, F.; Spagnuolo, E.; Mitchell, T. M.; Gualtieri, A.; Hadizadeh, J.; Carpenter, B. M.

    2014-12-01

    Deep drilling projects of active faults offer the opportunity to correlate physical and chemical processes identified in core samples with experiments reproducing the seismic cycle in the laboratory and with high-resolution seismological and geophysical data. Here we discuss the constraints about earthquakes source processes at depth gained by fault cores retrieved from the deep drilling projects SAFOD (2.7 km depth, San Andreas Fault), J-FAST (0.9 km depth, following the Mw 9.0 Tohoku 2011 earthquake), TCDP (1.1 km depth, following the Mw 7.6 Chi-Chi 1999 earthquake) and WFSD (1.2 km depth, following the Mw 7.9 Wenchuan 2008 earthquake). Recovered samples were tested at room temperature with the rotary shear apparatus SHIVA installed in Rome (INGV, Italy). All the tested samples were made by clay-rich gouges (usually including smectite/illite), though their bulk mineralogy and modal composition were different (e.g., SAFOD samples included saponite, WFSD carbonaceous materials). The gouges were investigated before and after the experiments with scanning and transmission electron microscopy, X-Ray diffraction, micro-Raman spectroscopy, etc. A common behavior of all the tested gouges was that their friction coefficient was low (often less than 0.1) under room-humidity and wet conditions when sheared at slip rates of ca. 1 m/s (seismic deformation conditions). Moreover, when the natural fault rocks next to the principal slipping zones were sheared from sub-seismic (few micrometers/s) to seismic slip rates, the experimental products had similar microstructures to those found in the principal slipping zones of the drilled faults. This included the formation of mirror-like surfaces, graphite-rich materials, foliated gouges, nanograins, amorphous materials, etc. In most cases the mechanical data were consistent with several seismological (> 50 m of seismic slip for the fault zone drilled by J-FAST) and geophysical observations (absence of a thermal anomaly in the fault cores of J-FAST and WFSD) which were attributed to an extremely low coseismic fault strength. However, the deformation mechanisms responsible for the measured weakening in the experiments and for the production of the microstructures similar to those found in drilled seismic faults have not been deciphered yet.

  14. Geomagnetic field intensity at Hawaii for the last 420 kyr from the Hawaii Scientific Drilling Project core, Big Island, Hawaii

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Kissel, Catherine

    1999-07-01

    Four hundred twenty five new paleointensity (Thellier-Thellier) determinations (out of 545 analyzed samples) have been obtained from core HSDP, which penetrates about 1000 meters (208 flows) of the Mauna Loa and Mauna Kea volcanic series encompassing the last 420 kyr. Rock magnetic investigations identify pseudo-single-domain magnetite as the main magnetic mineral. Inclinations are shallower than expected from a geocentric dipole field but are consistent with data from other geographical regions at the same latitude. The inclination record reveals three episodes of negative inclination whose interpolated age correlates well with that of known geomagnetic events. The paleointensity record from the Mauna Loa sequence is not very detailed and does not allow precise comparison with other data in the 0-50 kyr interval. The record from the Mauna Kea sequence, on the contrary, is very detailed and documents relatively short-lived episodes of low and high field strength from 15 to 60 ?T. The average virtual dipole moment (8.7±3.0 1022 A.m2) is not significantly different from the value reported by Kono and Tanaka [1995] for the last 2.5 Myr. A comparison with other data from Hawaii and other geographical regions is described in detail. There are no drastic changes in paleointensity with the inclination anomaly, in agreement with previous results from Hawaii but in contrast with most published results which, however, consider data from polarity transition. Spectral analysis of a particularly detailed portion of the record, between 420 and 326 kyr, documents significant periodicities at 36, 8, 5, and 4 ka in the inclination record but not in the intensity record, suggesting that changes in time of the inclination are to a certain extent independent from those of the intensity.

  15. COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Rosberg, J.-E.; Juhlin, C.; Bjelm, L.; Almqvist, B. S. G.; Berthet, T.; Conze, R.; Gee, D. G.; Klonowska, I.; Pascal, C.; Pedersen, K.; Roberts, N. M. W.; Tsang, C.-F.

    2015-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower-grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is complemented by a detailed operational report and the data repository.

  16. Evidence of Ferrichromite of Extraterrestrial Origin by Means of Rock Magnetic Studies from the LOC-9 Drill Core (lockne Crater, Sweden)

    NASA Astrophysics Data System (ADS)

    Melero Asensio, I.; Martin Hernandez, F.; Örmo, J.; Guerrero-Suarez, S.

    2011-12-01

    The Lockne (456 Ma) marine-target impact structure is a concentric with a 7.5 km wide inner crater in the crystalline basement, and an up to 3.5 km wide brim where the sedimentary target succession is partially or completely removed. Much of the crater is covered by sediments deposited during the resurge of seawater, as well as by secular sediments. The LOC-9 core is 31.04m long and was drilled into the crystalline crater brim and the proximal ejecta flap of the inner crater. The ejecta flap at this location is mainly brecciated basalt with some blending of dark shale just at the contact with the more intact granitic basement. Published studies of the resurge deposits by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) show the presence of ferrichromite particles interpreted to be meteoritic material. Here we combine complete rock magnetic characterization of the magnetic signal along the core with the characterization of the ferrichromite phase. Rock magnetic analysis includes low-field magnetic susceptibility, hysteresis loops, isothermal remanent magnetization (IRM) acquisition curves, coercivity spectra derived from IRM acquisition curves, back field IRM demagnetization curves and thermomagnetic curves. Additionally, a compositional analysis of a magnetic extract with SEM-EDX was done in order to identify the dominant magnetic fraction. Magnetite and titanomagnetite with different Ti content are identified as the main carriers of the magnetic signal along the core, based on the thermomagnetic curves, the saturation magnetization measured in the hysteresis loops, and the IRM acquisition curves. Pyrite is indicated by the thermomagnetic curve at one location in the core. A high coercivity phase is also observed in some samples. The coercivity spectral analysis shows one single population of magnetic minerals that dominates the magnetic signal at a level where the magnetic susceptibility is particularly high. The median destructive field is consistent with values reported at positions in the core with lower susceptibility and the dispersion parameter is well constrained with average values suggesting no significant diagenesis. The level immediately above the brecciated basement is composed of a relatively high amount of target material. At this depth, thermomagnetic curves reveal the presence of a magnetic phase with low Curie unblocking temperature (˜ 100 °C). No evidence of transformation of goethite into hematite is noted, which suggests the ferrichromite to be of extraterrestrial origin. This exotic phase is characterized by rock magnetic parameters derived from thermomagnetic curves, IRM acquisition curves, and hysteresis loops. The estimated Curie temperature is also consistent with a 50% content Cr, as reported by previous SEM studies of material from the Lockne crater. We conclude that rock magnetic studies complement other methods in the detection of potential extraterrestrial component in impactites.

  17. Test drilling for potash resources: Waste Isolation Pilot Plant Site, Eddy County, New Mexico

    USGS Publications Warehouse

    Jones, C.L.

    1978-01-01

    Twenty-one borings to augment existing information on potash resources at the proposed site for a waste isolation pilot plant in eastern Eddy County, N. Mex., were drilled and logged in an 11-week period, mid-August to November 1976. The basic data developed from the borings are tabulated in the present report. The tabulation includes lithologic and geophysical logs of all the borings, as well as the results of chemical analyses, X-ray determinations, and calculations to establish a modal mineralogical composition of core samples from potash ore zones and mineralized salt beds.

  18. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  19. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is low in the natural gamma ray isotopes uranium, thorium, and potassium, while rhyolites produce high total gamma ray responses. Sediment interbeds become apparent as the radioactivity associated with fine grained minerals is significantly higher than that of the host rock (e.g. basalt) due to high hydrogen concentration within the crystal structure of clays. Basalt lacks conductive minerals and results in high resistivity but moderate magnetic susceptibility. The sediments on the other hand are highly conductive and have a low magnetic susceptibility. The basalt and rhyolite units are relatively massive except for fractures which become apparent in the ultrasonic borehole televiewer. Signal is lost in soft sediments resulting in dark regions when full amplitude is displayed for the ultrasonic borehole televiewer. The massive basalt shows short P- and S-wave travel times and therefore a high sonic velocity, while the sediments display only P-wave first arrivals.

  20. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth)

    USGS Publications Warehouse

    Finster, K.W.; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, K.U.

    2009-01-01

    A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l-1) and MgCl2???6H 2O (3 g l-1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45??C, with an optimum between 35 and 40??C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T). ?? 2009 Springer Science+Business Media B.V.

  1. Palaeo-earthquake events during the late Early Palaeozoic in the central Tarim Basin (NW China): evidence from deep drilling cores

    NASA Astrophysics Data System (ADS)

    He, Bizhu; Qiao, Xiufu; Jiao, Cunli; Xu, Zhiqin; Cai, Zhihui; Guo, Xianpu; Zhang, Yinli

    2014-07-01

    Various millimetre-, centimetre- and metre-scale soft-sediment deformation structures (SSDS) have been identified in the Upper Ordovician and Lower-Middle Silurian from deep drilling cores in the Tarim Basin (NW China). These structures include liquefied-sand veins, liquefaction-induced breccias, boudinage-like structures, load and diapir- or flame-like structures, dish and mixed-layer structures, hydroplastic convolutions and seismic unconformities. The deformed layers are intercalated by undeformed layers of varying thicknesses that are petrologically and sedimentologically similar to the deformed layers. The SSDS developed in a shelf environment during the early Late Ordovician and formed initially under shear tensile stress conditions, as indicated by boudinage-like structures; during the latest Ordovician, SSDS formed under a com-pressional regime. The SSDS in the Lower-Middle Silurian consist mainly of mixed layers and sand veins; they formed in shoreline and tidal-flat settings with liquefaction features indicating an origin under a compressional stress regime. By Silurian times, the centre of tectonic activity had shifted to the south-eastern part of the basin. The SSDS occur at different depths in wells that are close to the syn-sedimentary Tazhong 1 Fault (TZ1F) and associated reversed-thrust secondary faults. Based on their characteristics, the inferred formation mechanism and the spatial association with faults, the SSDS are interpreted as seismites. The Tazhong 1 fault was a seismogenic fault during the later Ordovician, whereas the reversed-direction secondary faults became active in the Early-Middle Silurian. Multiple palaeo-earthquake records reflect pulses and cyclicity, which supports secondary tectonic activity within the main tectonic movement. The range of SSDS structures reflects different developments of tectonic activity with time for the various tectonic units of the centralbasin. The effects of the strong palaeo-earthquake activity coincide with uplift, fault activity and syn-tectonic sedimentation in the study area during the Late Ordovician to Middle Silurian.

  2. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-print Network

    Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

  3. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core students are the geophysics Honours students (~4th year undergraduates). In addition, up to 8 students from all over Africa are included in the program to help address practical training in Africa. The final cohort are minority students from the USA. Participants spend a week planning and costing out surveys, a week in the field collecting data using different methods including: gravity, DGPS, magnetics, resistivity, refraction seismic, EM methods, core logging and physical property measurements. The final week is spent interpreting and integrating their results. Graduate students are given the opportunity to instruct on the field school and manage the logistics for a particular method. The field school is unique in Africa and satisfies a need for practical training with limited resources, with a rare blend of cultural interactions!

  4. Lockdown Drills

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2011

    2011-01-01

    As a result of House Bill 1215, introduced and passed during the 2011 North Dakota legislative session, every school building in North Dakota must conduct a lockdown drill. While no timeframe, tracking or penalty was identified in the state law, the North Dakota Department of Public Instruction (DPI) advocates annual drills, at a minimum, which…

  5. Gas Drill 

    E-print Network

    Unknown

    2011-09-05

    When drilling offshore, shallow gas hazards are a major concern because of their potential to cause a major blowout. This is a special concern when drilling in shallower water, where the gas influx reaches the rig sooner. A common practice used...

  6. Sampling and Interpretation of Drill Cuttings from Geothermal Wells

    SciTech Connect

    Hulen, Jeffrey B.; Sibbett, Bruce S.

    1981-01-01

    Drill cuttings from geothermal and mineral exploration boreholes, by contrast with those from most petroleum wells, commonly are derived highly fractured and faulted, hydrothermally altered igneous and metamorphic rock sequences, and are likely to be severely contaminated. Characterization of a subsurface resource from cuttings thus requires not only especially careful sample collection, preparation, storage and examination, but also a thorough knowledge of drilling technology, local geology and the full range of potential borehole contaminants. Accurate identification of lithology from cuttings is critical for recognition and correlation of rock types likely to selectively host the desired commodity. However, many of the rocks encountered in geothermal and mineral exploration boreholes (such as gneisses and granitic rocks) can resemble one another closely as cuttings even though dissimilar in outcrop or core. In such cases, the actual rock type(s) in a cuttings sample generally can be determined by comparison with simulated cuttings of representative surface rocks, and with various geophysical and other well logs. Many other clues in cuttings, such as diagnostic metamorphic mineralogy, or sedimentary rounding and sorting, may help identify subsurface lithologies. Faults and fractures commonly are the dominant physical controls on geothermal and mineral resources. Faults occasionally can be recognized directly in cuttings by the presence of slickensiding, gouge, or other crushed material. More commonly, however, the ''gouge'' observed in cuttings actually is pseudo-gouge created beneath a bit during drilling. Since most faults and all fractures produce no direct evidence apparent in cuttings, they are best recognized indirectly, either by commonly associated hydrothermal alteration, or by responses on appropriate geophysical well logs. Hydrothermal alteration, useful for locating and defining a geothermal or mineral resource, is far more difficult to recognize and interpret in cuttings than in core or outcrop. Alteration textures and paragenetic relationships can be obscured or obliterated as cuttings are produced. Less resistant alteration (and rock-forming) minerals can be disaggregated during drilling and lost from cuttings during sampling or washing. Relict and contemporary alteration can be indistinguishable, and a wide variety of borehole contaminants can closely resemble natural alteration products encountered during drilling. These contaminants also can produce confusing geochemical signatures.

  7. Measuring while drilling apparatus mud pressure signal valve

    SciTech Connect

    Peppers, J.M.; Shaikh, F.A.

    1986-12-09

    This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

  8. Chattanooga Shale (Devonian and Mississippian) from the Tennessee Division of Geology - US Department of Energy cored drill hle number 3, Hancock County, Tennessee

    SciTech Connect

    Roen, J.B.; Milici, R.C.; Wallace, L.G.

    1980-05-01

    This report presents a detailed lithologic description and gamma-ray log of the drill hole which is located on the Calvert Johnson property in the Sneedville 7.5-minute quadrangel, Hancock County. (DLC)

  9. Comprehensive Ocean Drilling

    E-print Network

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  10. An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—An overview

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Milkereit, Bernd; Overpeck, Jonathan T.; Scholz, Christopher A.; Amoako, Philip Y. O.; Boamah, Daniel; Danuor, Sylvester; Karp, Tobias; Kueck, Jochem; Hecky, Robert E.; King, John W.; Peck, John A.

    The Bosumtwi impact crater in Ghana, arguably the best-preserved complex young impact structure known on Earth, displays a pronounced rim and is almost completely filled by Lake Bosumtwi, a hydrologically closed basin. It is the source crater of the Ivory Coast tektites. The structure was excavated in 2.1-2.2 Gyr old metasediments and metavolcanics of the Birimian Supergroup. A drilling project was conceived that would combine two major scientific interests in this crater: 1) to obtain a complete paleoenvironmental record from the time of crater formation about one million years ago, at a near-equatorial location in Africa for which very few data are available so far, and 2) to obtain a complete record of impactites at the central uplift and in the crater moat, for ground truthing and comparison with other structures. Within the framework of an international and multidisciplinary drilling project led by the International Continental Scientific Drilling Program (ICDP), 16 drill cores were obtained from June to October 2004 at six locations within Lake Bosumtwi, which is 8.5 km in diameter. The 14 sediment cores are currently being investigated for paleoenvironmental indicators. The two impactite cores LB-07A and LB-08A were drilled into the deepest section of the annular moat (540 m) and the flank of the central uplift (450 m), respectively. They are the main subject of this special issue of Meteoritics & Planetary Science, which represents the first detailed presentations of results from the deep drilling into the Bosumtwi impactite sequence. Drilling progressed in both cases through the impact breccia layer into fractured bedrock. LB-07A comprises lithic (in the uppermost part) and suevitic impact breccias with appreciable amounts of impact melt fragments. The lithic clast content is dominated by graywacke, besides various metapelites, quartzite, and a carbonate target component. Shock deformation in the form of quartz grains with planar microdeformations is abundant. First chemical results indicate a number of suevite samples that are strongly enriched in siderophile elements and Mg, but the presence of a definite meteoritic component in these samples cannot be confirmed due to high indigenous values. Core LB-08A comprises suevitic breccia in the uppermost part, followed with depth by a thick sequence of graywacke-dominated metasediment with suevite and a few granitoid dike intercalations. It is assumed that the metasediment package represents bedrock intersected in the flank of the central uplift. Both 7A and 8A suevite intersections differ from suevites outside of the northern crater rim. Deep drilling results confirmed the gross structure of the crater as imaged by the pre-drilling seismic surveys. Borehole geophysical studies conducted in the two boreholes confirmed the low seismic velocities for the post-impact sediments (less than 1800 m/s) and the impactites (2600- 3300 m/s). The impactites exhibit very high porosities (up to 30 vol%), which has important implications for mechanical rock stability. The statistical analysis of the velocities and densities reveals a seismically transparent impactite sequence (free of prominent internal reflections). Petrophysical core analyses provide no support for the presence of a homogeneous magnetic unit (= melt breccia) within the center of the structure. Borehole vector magnetic data point to a patchy distribution of highly magnetic rocks within the impactite sequence. The lack of a coherent melt sheet, or indeed of any significant amounts of melt rock in the crater fill, is in contrast to expectations from modeling and pre-drilling geophysics, and presents an interesting problem for comparative studies and requires re-evaluation of existing data from other terrestrial impact craters, as well as modeling parameters.

  11. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  12. Slim-hole system uses special rig, drill string

    SciTech Connect

    Dupuis, D.; Fanuel, P.

    1993-07-01

    This paper reviews the new Euroslim drilling system which allows deep penetration of small diameter exploration and production wells. The Euroslim approach is an optimized conventional rotary drilling technique that allows continuous coring of the zone of interest. The initial project set the requirements of power transmission and hydraulic optimization to drill 4 3/4 inch holes to 3,500 meters with a single drill pipe size. A second drill string has now been designed to reach 4,000 meters with hole sizes ranging from 3 inches to 3 11/32 inches. This paper reviews the specifications of the drill pipe, core barrels, drill rig, stabilizers, drill bits, and deviation tools. A cost benefit analysis is also provided comparing the slim-bore drilling to conventional drilling.

  13. Drilling head

    SciTech Connect

    Young, D. E.

    1985-07-02

    Drilling head incorporating downwardly facing lip type bearing seals, stationary seal cartridge for head seal, rotating replaceable seal bushing for head seal, and optional screw connection for removable side outlet.

  14. Drill Field 

    E-print Network

    Unknown

    2011-09-05

    Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

  15. Triple-oxygen and sulfur isotopic evidence for diagenetic overprinting of carbonate-associated sulfate in Neoproterozoic samples from a drill core

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Wang, W.; Pratt, L. M.; Zhou, C.; Bao, H.; Hayles, J. A.

    2014-12-01

    Carbonate-associated sulfate (CAS) is used in many studies to reconstruct the isotopic composition of ancient seawater sulfate and to infer stages in the development of Earth's oxygenated atmosphere. CAS is acid extractable and commonly is referred to as structurally substituted sulfate in carbonate minerals. Several recent studies, however, have raised concerns about sulfate overprinting during early or late diagenesis, including contamination by modern secondary atmospheric sulfate (SAS) and by sulfide oxidation during laboratory processing. To test for overprinting and contamination, we studied the isotopic composition of sulfate in a bedded carbonate succession of the Neoproterozoic Lantian Formation, South China. Materials were obtained from a drilling core (635Ma- 551Ma). Water-leachable sulfate (WLS), acid-leachable sulfate (ALS, i. e. extracted CAS), and chromium-reducible sulfur (CRS) were sequentially extracted out and triple oxygen isotopic compositions of WLS and ALS were analyzed as well as sulfur isotope of WLS, ALS, and CRS. We also analyzed the oxygen isotope of sulfate resulting from pyrite oxidation at a condition similar to the extraction of WLS and ALS in the laboratory and the ?18O value is at ~ -1.4‰ (VSMOW). The slightly negative ?17O values of all WLS and ALS indicates that the ALS was not contaminated by sulfate of modern SAS. The WLS from the first 24 hours with consistently negative values of ?18O (about -11.0‰) and low ?34S values (about +5‰) suggests that the WLS resulted from sulfide oxidation in water with very negative ?18O values, likely glacial melt-water in the distant past, which had likely soaked the whole stratigraphy of Lantian Formation for a long time. The WLS also comprised a significant fraction of ALS because both ?18O and ?34S of ALS have wide ranges, from -6.9 to +15.8‰, and +12.7 to +31.7‰, respectively. More importantly, there is a strong positive correlation between ?18O and ?34S of ALS. Our findings demonstrate that extracted CAS can be overprinted or contaminated by secondary sulfate during later diagenetic process. In addition, combining the triple oxygen isotope with sulfur isotope of WLS and ALS is a critical tool for unraveling the nature of CAS.

  16. The Toa Baja Drilling Project, Puerto Rico: Scientific drilling into a non-volcanic island arc massif

    SciTech Connect

    Larue, D.K. )

    1991-03-01

    The Toa Baja Drilling Project was a broad, interdisciplinary experiment to document the in situ geology and geophysics of a non-volcanic island arc massif. This overview provides a brief summary of oil exploration on Puerto Rico that lead up to the present investigation, and summarizes some of the problems addressed by drilling.

  17. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  18. Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004

    USGS Publications Warehouse

    Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright, Jr.; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.

    2007-01-01

    The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.

  19. Advantages and limitations of remotely operated sea floor drill rigs

    NASA Astrophysics Data System (ADS)

    Freudenthal, T.; Smith, D. J.; Wefer, G.

    2009-04-01

    A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.

  20. Geophysical signature of the Pretoria saltpan impact structure and a possible satellite crater

    NASA Technical Reports Server (NTRS)

    Brandt, D.; Durrheim, R. J.; Reimold, W. U.

    1993-01-01

    The Pretoria Saltpan Crater is located in the southern portion of the Bushveld Igneous Complex, some 40 km NNW of Pretoria, South Africa, at 25 deg 24 min 30 sec S/28 deg 4 min 59 sec E. An origin by impact for this crater structure was recently confirmed. The results of the only gravity reconnaissance carried out over the crater to date failed to support an impact origin. With the aid of recent results obtained from a central drill-core, it was necessary to carry out more geophysical work which would include a gravity profile of higher resolution. A second, smaller, circular depression (about 400 m in diameter) to the SW of the crater is suggestive of a twin crater. This site had never been investigated, and thus various geophysical surveys were conducted.

  1. Scientific Drilling on the Diamond-Bearing Luobusa Ophiolite, Tibet

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, J.; Xu, X.; Ba, D.; Li, Z.; Li, Y.; Zhao, L.

    2011-12-01

    The "Selecting Continental Scientific Drilling Sites and Experimenting with Drilling Technology Project" is the fifth project of the SinoProbe Program (SinoProbe-5). This project will focus on 7 critical tectonic and mineral resource regions, including the Jinchuan Cu-Ni sulfide deposits in Gansu province, the Luobusa ophiolite in Tibet, the Tengchong volcano-thermal tectonic zone in Yunnan, the boundary of the North China and South China blocks in the Laiyang basin of Shandong province, the Yudu-Ganxian polymetallic deposits in Jiangxi province, the Tongling polymetallic deposit and the Luzhong volcanic basin and mineral deposit district in Anhui province. Scientific drilling, along with geological and geophysical investigations, will help to reveal the composition and structure of the continental crust, verify the results of geophysical explorations and establish standards for deep geophysical exploration. On the basis of pilot-hole drilling, surface studies and geophysical investigations, the Luobusa scientific drilling project is focused on the Luobusa ophiolitic diamond-bearing ultramafic massif along the Yarlung-Zangbo suture between the Indian and Eurasia plates. The main purposes of this work are to investigate the distribution and conditions of formation UHP mantle minerals and podiform chromitites in ophiolites and to develop prospecting criteria for ophiolite-type chromite deposits. The Luobusa pilot-hole (LBS-ZK1) was completed in 2010 to a depth of 1478.8 m with an average core recovery of 93.6%. The second hole (LBS-ZK2) reached a depth of 967.5 m on August 1, 2011 with an average core recovery of about 90%. The ultimate target depth for this hole is 2000 m. Hole LBS-ZK2 penetrated 70 m of Triassic sandstone, marble and chlorite schist strata above the ultramafic body. The contact between the two is a fault marked by extensive shearing and serpentinization but lacking evidence of thermal metamorphism. A preliminary profile of the ultramafic rocks in hole LBS-ZK1 shows that the sequence can be subdivided into three main sections. The first 1260 m consist chiefly of harzburgite with minor dunite, representing a depleted mantle sequence. The lower part of this sequence (from 890 m to 1260 m) is highly serpentinized. The second sequence, from 1260 m to 1414 m, consists mainly of dunite with minor harzburgite, probably representing a cumulate ultramafic section. From 1414 m to the base of the hole is a 350-m-thick sequence of cumulate gabbro. The presence of gabbro beneath the ultramafic rocks without a fault contact supports the interpretation that the entire sequence has been overturned, as suggested by earlier field studies. Detailed studies in mineralogy, petrology, geochemistry and isotope dating are undergoing and will be basically presented.

  2. Comparison of geophysical investigations for detection of massive ground ice (pingo ice)

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Leuschen, C.; Ikeda, A.; Harada, K.; Gogineni, P.; Hoekstra, P.; Hinzman, L.; Sawada, Y.; Matsuoka, N.

    2006-06-01

    Six different geophysical investigations, (1) ground-penetrating radar, (2) DC resistivity sounding, (3) seismic refraction, (4) very low frequency (VHF) electromagnetic, (5) helicopter borne electromagnetic (HEM), and (6) transient electromagnetic (TEM) techniques, were employed to obtain information on the ice body properties of pingos near Fairbanks, Alaska. The surface nuclear magnetic resonance (NMR) data were also compared from similar sites near one of the study pingos. The geophysical investigations were undertaken, along with core sampling and permafrost drilling, to enable measurement of the ground temperature regime. Drilling (ground truthing) results support field geophysical investigations, and have led to the development of a technique for distinguishing massive ice and overburden material of the permafrost. The two-dimensional DC resistivity sounding tomography and ground-penetrating radar profiling are useful for ice detection under heterogeneous conditions. However, the DC resistivity sounding investigation required high-quality ground contact and less area coverage. The active layer thickness and the homogeneous horizontal structure of the overburden material are important parameters influencing detection of massive ice in permafrost for most methods such as seismic, TEM, or surface NMR.

  3. ICDP drilling in the Scandinavian Caledonides: Preliminary results from COSC-1

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Roberts, Nick; Rosberg, Jan-Erik

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide new data on deep thermal gradients for paleoclimate modeling and potential geothermal energy resources of the area, contribute new information about the deep biosphere, and improve our understanding of the geophysical response of the sub-surface. Two 2.5 km deep fully cored holes will help achieve these goals with the first one, COSC-1, completed in late August 2014. COSC-1 targeted the high-grade metamorphic complex of the Seve Nappes (SNC) and the contact with the underlying allochthon. Drilling was performed using an Atlas Copco CT20 diamond core-drilling rig, operated by Lund University, that resulted in nearly 100% core recovery to 2.5 km depth. A crew of 6 on-site researchers examined the core as it came up and performed on-site documentation of it; including photography, optical core scanning, physical property measurements and biological sampling. A number of geophysical logging suites were run during and after completion of drilling, including sonic, density, electric, temperature and acoustic televiewer logs. A near four week long seismic acquisition program followed in the Fall of 2014 with combined surface and borehole surveys in the vicinity of COSC-1. On-site core analysis indicates that the SNC is about 2 km thick (the lower boundary is not well defined), consisting mainly of gneisses and amphibolites. A zone of extensive shearing is found in the lowermost 500 m of the borehole. Metamorphosed sandstones intercalated with garnetiferous mylonites in this lower part of the drillcore suggest that underlying thrust sheets of the Middle Allochthon have been penetrated, but not the low greenschist facies turbidites and other metasediments of the Lower Allochthon. Logging-while-pumping tests show that there are 8 significant hydraulically conductive zones in an otherwise tight rock down to 2.5 km. Pore waters appear to be relatively fresh throughout the borehole. Bottom hole temperatures are expected to reach 60°C after equilibration, giving a geothermal gradient of over 20°C/km. The observed high seismic reflectivity of the SNC is due to the large contrast in density and velocity between the gneiss and amphibolite. In general, the geophysical response on the surface is consistent with observations in the borehole.

  4. Microgravity Drill and Anchor System

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew A.; King, Jonathan P.

    2013-01-01

    This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.

  5. Drilling optimization using drilling simulator software 

    E-print Network

    Salas Safe, Jose Gregorio

    2004-09-30

    Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown ...

  6. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  7. Petrography and phenocryst chemistry of volcanic units at Yucca Mountain, Nevada: A comparison of outcrop and drill hole samples

    SciTech Connect

    Broxton, D.E.; Byers, F.M. Jr.; Warren, R.G.

    1989-04-01

    This report is a compilation of petrographic and mineral chemical data for stratigraphic units at Yucca Mountain. It supports a possible peer review of Yucca Mountain drill core by summarizing the available data in a form that allows comparison of stratigraphic units in drill holes with surface outcrops of the same units. Petrographic and mineral chemical data can be used in conjunction with other geologic and geophysical information to determine if stratigraphic relations in Yucca Mountain drill core are geologically reasonable and compare well with relations known from extensive surface studies. This compilation of petrographic and mineral chemical data is complete enough for most stratigraphic units to be used in a peer review of Yucca Mountain drill core. Additional data must be collected for a few units to complete the characterization. Rock units at Yucca Mountain have unique petrographic and mineral chemical characteristics that can be used to make accurate stratigraphic assignments in drill core samples. Stratigraphic units can be differentiated on the basis of petrographic characteristics such as total phenocryst abundances, relative proportions of phenocryst minerals, and type and abundances of mafic and accessory minerals. The mineral chemistry of phenocrysts is also an important means of differentiating among stratigraphic units, especially when used in conjunction with the petrographic data. Sanidine phenocrysts and plagioclase rims have narrow compositional ranges for most units and often have well-defined dominant compositions. Biotite compositions are useful for identifying groups of related units (e.g., Paintbrush Tuff Members vs Crater Flat Tuff Members) and for providing an important check on the consistency of the data. 21 refs., 12 figs., 2 tabs.

  8. Interpretation of drill cuttings from geothermal wells

    SciTech Connect

    Hulen, J.B.; Sibbett, B.S.

    1981-06-01

    Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

  9. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton, Jr.; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  10. COSC-1 technical operations: drilling and borehole completion

    NASA Astrophysics Data System (ADS)

    Rosberg, Jan-Erik; Bjelm, Leif; Larsson, Stellan; Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne

    2015-04-01

    COSC-1, the first out of the two planned fully cored boreholes within the COSC-project, was completed in late August 2014. Drilling was performed using the national scientific drilling infrastructure, the so called Riksriggen, operated by Lund University, and resulted in a 2495.8 m deep borehole with almost 100 % core recovery. The rig is an Atlas Copco CT20C diamond core-drill rig, a rig type commonly used for mineral exploration. A major advantage with this type of drill rig compared to conventional rotary rigs is that it can operate on very small drill sites. Thus, it leaves a small environmental footprint, in this case around 1000 m2. The rig was operated by 3 persons over 12 hour shifts. Before the core drilling started a local drilling company installed a conductor casing down to 103 m, which was required for the installation of a Blow Out Preventer (BOP). The core drilling operation started using H-size and a triple tube core barrel (HQ3), resulting in a hole diameter of 96 mm and a core diameter of 61.1 mm down to 1616 m. In general, the drilling using HQ3 was successful with 100 % core recovery and core was acquired at rate on the order 30-60 m/day when the drilling wasn't interrupted by other activities, such as bit change, servicing or testing. The HRQ-drill string was installed as a temporary casing from surface down to 1616 m. Subsequently, drilling was conducted down to 1709 m with N-size and a triple tube core barrel (NQ3), resulting in a hole diameter of 75.7 mm and a core diameter of 45 mm. At 1709 m the coring assembly was changed to N-size double tube core barrel (NQ), resulting in a hole diameter of 75.7 mm and a core diameter of 47.6 mm and the core barrel extended to 6 m. In this way precious time was saved and the good rock quality ensured high core recovery even with the double tube. In general, the drilling using NQ3 and NQ was successful with 100 % core recovery at around 36 m/day by the end of the drilling operation. The main problem during the drilling operation was caused by brand new drill rods that were bent beyond tolerance. These bent drill rods caused increased friction during drilling, resulting in an increased torque and consequently a too low RPM. Thus, drill bits wore out faster than normal. Despite of this, the target depth was reached, but later than planned to the drill bits being replaced more frequently. However, it can be concluded that the drilling operation was successful as evidenced by drilling almost 2400 m with full core recovery of top quality cores and no drilling crew accidents. The COSC-borehole is the deepest drilled hole in Sweden using H- and N-size and the deepest hole ever drilled by an Atlas Copco CT20C. The present borehole is cased down to 103 m and the rest of the hole, around 2400 m, is left as an open-hole completion.

  11. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  12. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  13. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  14. Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project --An overview of the past 145,000 years of climate variability in Southern

    E-print Network

    Scientific drilling in the Great Rift Valley: The 2005 Lake Malawi Scientific Drilling Project rift Paleoclimatology Scientific drilling Lake level change The recovery of detailed and continuous of scientific drill cores from Lake Malawi, the first long and continuous, high- fidelity records of tropical

  15. Paleo-environment of cold-water coral initiation in the NE Atlantic:Implications from a deep-water carbonate mound drilling core

    NASA Astrophysics Data System (ADS)

    Raddatz, J.; Rüggeberg, A.; Dullo, W.-Chr.,; Margreht, S.

    2009-04-01

    The understanding of the paleo-environment during initiation and early development of deep-water carbonate mounds in the NE Atlantic is still under debate. The Integrated Ocean Drilling Program Expedition 307 sailed in 2005 to the Porcupine Seabight in order to investigate for the first time sediments from the base of a giant carbonate mound (Challenger Mound, 155 m). These results indicate that the initiation and start-up phase of this carbonate mound coincides with the beginning of the Northern Hemisphere Glaciation (NHG) at around 2.6 Ma (Kano et al. 2007). Further carbonate mound development seems to be strongly dependent on rapid changes in paleo-oceanographic and climatic conditions around the Pliocene-Pleistocene boundary, especially characterized and caused by intermediate water masses. To characterise the paleo-environmental and paleo-ecological setting favourable for the initial coral colonization at 2.6 Ma, we use well-developed proxies such as ?18O and ?13C of planktonic (Globigerina bulloides) and of a collection of benthic foraminifera (Cibicidoides wuellerstorfi, Discanomalina coronata, Cibicides lobatulus, Lobatulua antarctica, Planulina ariminensis), benthic foraminiferal assemblages, as well as grain size analysis. These proxies indicate variability in seawater temperature, salinity and density of intermediate water masses from southern origin (Mediterranean, Bay of Biscay) supporting cold-water coral settlement and initial development in the Porcupine Seabight. References: Kano et al. (2007) Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology, 35(11):1051-1054.

  16. Rationale for future Antarctic and Southern Ocean drilling

    NASA Astrophysics Data System (ADS)

    De Santis, Laura; Gohl, Karsten; Larter, Rob; Escutia, Carlota; Ikehara, Minoru; Hong, JongKuk; Naish, Tim; Barrett, Peter; Rack, Frank; Wellner, Julia

    2013-04-01

    Valuable insights into future sensitivity of the Antarctic cryosphere to atmospheric and oceanic warming can be gained from the geologic record of past climatic warm intervals. Continental to deep ocean sediments provide records of contemporaneous changes in ice sheet extent and oceanographic conditions that extend back in time, including periods with atmospheric CO2 levels and temperatures similar to those likely to be reached in the next 100 years. The Circum-Antarctic region is under-sampled respect to scientific ocean drilling. However, recovery from glacially-influenced, continental shelf and rise sediments (expeditions ODP178, 188 and IODP 318), provided excellent records of Cenozoic climate and ice sheet evolution. The ANtarctic DRILLing program achieved >98% recovery on the Ross Sea shelf with a stable platform on fast ice with riser drilling technology. Newer technologies, such as the MeBo shallow drilling rig will further improve Antarctic margin drilling. Drilling around Antarctica in the past decades revealed cooling and regional ice growth during the Cenozoic, coupled with paleogeographic, CO2 atmosphere concentration and global temperature changes. Substantial progress has been made in dating sediments and in the interpretation of paleoclimate/paleoenvironmental proxies in Antarctic margin sediments (e.g. orbital scale variations in Antarctica's cryosphere during the Miocene and Pliocene). Holocene ultra-high resolution shelf sections recently recovered can be correlated to the ice core record, to detect local mechanisms versus inter-hemispheric connections. While the potential for reconstructing past ice sheet history has been demonstrated through a careful integration of geological and geophysical data with numerical ice sheet modelling, uncertainties remain high due to the sparse geographic distribution of the records and the regional variability in the ice sheet's response. Projects developed using a multi-leg, multi-platform approach (e.g. latitudinal and/or depth transects involving a combination of land/ice shelf, seabed, riser, and riserless drilling platforms) will likely make the most significant scientific advances. Fundamental hypothesis can be tested and accomplished by drilling depth transects from ice-proximal to ice-distal locations, that will enable researchers to link past perturbations in the ice sheet with Southern Ocean and global climate dynamics. The variable response of the ice sheet to ongoing climatic change mandates broad geographic drilling coverage, particularly in climatically sensitive regions, like those with large upstream drainage basins, whose marine terminus is presently melting, due to ocean, warming water impinging the continental shelf. Key transects were identified at community workshops (http://www.scar-ace.org) in the frame of the SCAR/ACE (Antarctic Climate Evolution) and PAIS (Past Antarctic Ice Sheet dynamics) programs. New proposals, also for MSP expeditions were then submitted to IODP, in addition to the existing ones, in the frame of a scientific concerted strategy and with a significant European participation. Main questions underpinning future scientific drilling tied IODP Science themes: 1) How did and will the Antarctic Ice Sheets respond to elevated temperatures and atmospheric pCO2? What is the contribution of Antarctic ice to past and future sea level changes? 2) What was the timing of rifting and subsidence controlling the opening of ocean gateways and the initiation of the circumpolar current system and the onset of glaciations?

  17. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  18. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  19. Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

    1993-01-01

    Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

  20. The volcanic record of the upper 600 m of the ANDRILL AND-1 drill cores: Evidence of ice-free conditions and local volcanic activity over the

    E-print Network

    Dunbar, Nelia W.

    of phonotephrite, trachyte and phonolite are also present in the core. In contrast, some volcanic-rich horizons are heterogeneous and contain glass shards ranging from basanite to trachyte and phonolite suggesting that reworking

  1. WRITING ORAL DRILLS.

    ERIC Educational Resources Information Center

    NEY, JAMES W.

    ALL ORAL LANGUAGE DRILLS MAY BE SEPARATED INTO TWO TYPES--(1) MIM-MEM OR MIMICRY MEMORIZATION DRILLS OR (2) PATTERN PRACTICE DRILLS. THESE TWO LARGER CATEGORIES CAN BE SUB-DIVIDED INTO A NUMBER OF OTHER TYPES, SUCH AS TRANSFORMATION AND SUBSTITUTION DRILLS. THE USE OF ANY PARTICULAR TYPE DEPENDS ON THE PURPOSE TO WHICH THE DRILL IS PUT. IN ANY…

  2. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  3. In situ gas concentrations in the Kumano forearc basin from drilling mud gas monitoring and sonic velocity data (IODP NanTroSEIZE Exp. 319 Site C0009)

    NASA Astrophysics Data System (ADS)

    Wiersberg, T.; Doan, M.-L.; Schleicher, A. M.; Horiguchi, K.; Eguchi, N.; Erzinger, J.

    2012-04-01

    Conventional IODP shipboard methods of gas investigations comprise gas sampling from core voids and headspace gas sampling followed by shipboard gas analysis. These methods possibly underestimate the in situ gas concentration due to core degassing during retrieval and handling on deck. In few cases, a Pressure Core Sampler (PCS) was used in the past to overcome this problem, providing gas concentrations one or two order of magnitude higher than headspace gas analysis from corresponding depths. Here, we describe two new techniques applied during IODP NanTroSEIZE Exp. 319 Site C0009 riser drilling in the Kumano forearc basin to estimate in situ gas concentrations without drill core recovery. During riser drilling of site C0009 between 703 to 1594 mbsf, gas was continuously extracted from returing drilling mud and analysed in real-time (drill mud gas monitoring). This method results in information on the gas composition and gas concentration at depth. The chemical (C1-C3) and isotope (?13C, H/D) composition of hydrocarbons, the only formation-derived gases identified in drill mud, demonstrate a microbial hydrocarbon gas source mixing with small but increasing amounts of thermogenic gas at greater depth. Methane content in drilling mud semi-quantitatively correlates with visible allochtonous material (wood, lignite) in drilling cuttings. In situ gas concentration determination from drill mud gas monitoring based on the assumption that gas is either liberated from the rock into the drilling mud during drilling and ascent with the mud column or remains in the pore space of the drilling cuttings. Drilling mud gas data were calibrated with a defined amount of C2H2 (175 l [STP]) from a carbide test and result in methane concentrations reaching up to 24 lgas/lsediment, in good agreement with findings from other IODP Legs using the PCS. Hydrocarbon gas concentrations in drilling cuttings from C0009 are significantly lower, indicating cuttings outgassing during ascent of the drill mud column to the surface. An alternative method to quantify free gas is the analysis of high quality sonic data from wireline logging to infer the porosity and estimate the water content stored in intergranular pores and the gas saturation (Doan et al., 2011). Drill mud gas monitoring and sonic velocity data analysis reveal similar depth concentration profiles for C0009 and in situ gas concentrations in fairly good agreement. The further observation implies that formation gas is located in the pore space of the rock and does e.g. not penetrate into the borehole through fractures and faults. Doan, M.-L.; Conin, M.; Henry, P.; Wiersberg, T.; Boutt, D.; Buchs, D.; Saffer, D.; McNeill, L. C.; Cukur, D.; Lin, W. (2011) Quantification of free gas in the Kumano fore-arc basin detected from borehole physical properties: IODP Nan TroSEIZE drilling Site C0009. Geochemistry Geophysics Geosystems, 12, Q0AD06, doi: 10.1029/2010GC003284

  4. Drilling the centre of the Thuringian Basin, Germany, to decipher potential interrelation between shallow and deep fluid systems

    NASA Astrophysics Data System (ADS)

    Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team

    2014-05-01

    To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.

  5. SIMULATION OF RESISTIVITY LOGGING-WHILE-DRILLING (LWD) MEASUREMENTS USING A SELF-ADAPTIVE

    E-print Network

    Torres-Verdín, Carlos

    simulate electromagnetic (EM) measurements acquired with a Logging-While- Drilling (LWD) instrument-oriented adaptivity, computa- tional electromagnetics, Maxwell's equations, through casing resistivity tools (TCRT the electromagnetic response of geophysical resistivity logging instruments in a borehole environment

  6. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  7. PRELIMINARY TIME ESTIMATES FOR CORING OPERATIONS

    E-print Network

    EQUATIONS 17 FIGURE 1. DRILL STRING ROUND TRIP 19 FIGURE 2. STANDARD ROTARY CORING (RCB) WIRELINE TRIP 21PRELIMINARY TIME ESTIMATES FOR CORING OPERATIONS Ocean Drilling Program Texas A&M University portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  8. Drill Team- Houston Boys 

    E-print Network

    Unknown

    2011-08-17

    Rotary steerable drilling tool systems (RSS) are ideal for tool integrating downhole automation control and drilling technology, which are used for drilling directional and complex track wells. A simply supported beam model ...

  9. Chuck for delicate drills

    NASA Technical Reports Server (NTRS)

    Copeland, C. S.

    1972-01-01

    Development of oil film technique to couple power between drive spindle and drill chuck for delicate drilling operations is discussed. Oil film permits application of sufficient pressure, but stops rotating when drill jams. Illustration of equipment is provided.

  10. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California

    USGS Publications Warehouse

    Rosenbaum, Joseph; Reynolds, Richard T.; Smoot, Joseph; Meyer, Robert

    2000-01-01

    At Owens Lake, California, paleomagnetic data document the Matuyama/Brunhes polarity boundary near the bottom of a 323-m core (OL-92) and display numerous directional fluctuations throughout the Brunhes chron. Many of the intervals of high directional dispersion were previously interpreted to record magnetic excursions. For the upper ~120 m, these interpretations were tested using the anisotropy of magnetic susceptibility (AMS), which typically defines a subhorizontal planar fabric for sediments deposited in quiet water. AMS data from intervals of deformed core, determined from detailed analysis of sedimentary structures, were compared to a reference AMS fabric derived from undisturbed sediment. This comparison shows that changes in the AMS fabric provide a means of screening core samples for deformation and the associated paleomagnetic record for the adverse effects of distortion. For that portion of core OL-92 studied here (about the upper 120 m), the combined analyses of sedimentary structures and AMS data demonstrate that most of the paleomagnetic features, previously interpreted as geomagnetic excursions, are likely the result of core deformation.

  11. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.

  12. Geophysics with applications to subsurface waste disposal: Case history

    SciTech Connect

    Lee, K.H.

    2001-08-09

    Recent development in geophysical methods allows us to accurately map the distribution of seismic velocity, density and electrical conductivity beneath the surface and between boreholes. These physical properties are dependent on porosity, fluid saturation, fluid conductivity, pressure, temperature, clay content, and in some circumstances, permeability. Hydrological parameters may be measured or inferred from drill hole experiments or directly from core samples. The point measurements in a drill hole are then interpolated to the interwell volume using either statistical properties of the local geology or reasonable estimates of the geological structure and lithology. More direct evidence is obtained from well tests, and interference tests between multiple wells, but these are ill posed inverse problems when it comes to defining the properties of the entire interwell volume. Furthermore such tests are impossible in the vadose zone. The interpolation of well data is often inaccurate or misleading and the central problem for all these studies is the lack of these fundamental parameters throughout the subsurface volume of interest.

  13. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory drilling programs. The sporadic occurrence of these deposits makes it desirable to develop borehole geophysical techniques that will help to define the depositional environments of the uranium ore, which is characterized by geochemical changes near the uranium deposits. Geochemical changes are accompanied by changes in the physical characteristics of the rocks that can be detected with borehole geophysical tools. This study is concerned with a uranium deposit within the Jackson Group that is located just east of Karnes City, Tex. Five holes were drilled on this property to obtain borehole geophysical data and cores. The cores were analyzed for mineralogic and electrical properties. The borehole geophysical information at this property included induced polarization, resistivity, gamma-gamma density, neutron-neutron, gamma-ray, caliper, and single-point-resistance logs. Between-hole resistivity and induced polarization measurements were made between hole pairs across the ore deposit and off the ore deposit.

  14. 75 FR 54912 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ...and Drill Collars From China AGENCY: United States...less-than-fair-value imports from China of drill pipe and drill...producers, or exporters in China of drill pipe and drill...Rubber, Manufacturing, Energy, Allied Industrial...

  15. Ocean drilling program: Recent results and future drilling plans

    SciTech Connect

    Rabinowitz, P.D.; Francis, T.J.G.; Baldauf, J.G.; Allan, J.F.; Heise, E.A.; Seymour, J.C. )

    1993-02-01

    The Ocean Drilling Program (ODP) has completed 48 internationally-staffed expeditions of scientific ocean drilling in search of answers relating to the evolution of passive and active continental margins, evolution of oceanic crust, origin and evolution of marine sedimentary sequences, and paleoceanography. During the past year of drilling operations, ODP expeditions cored Cretaceous reef-bearing guyots of the Western Pacific, with the objective of using them as monitors of relative sea-level changes and thereby of the combined effects of the tectonic subsidence (and uplift) history of the seamounts and of global fluctuations of sea level (Legs 143 and 144); studied high-resolution variations of surface and deep-water circulation and chemistry during the Neogene, the late Cretaceous and Cenozoic history of atmospheric circulation, ocean chemistry, and continental climate, and the age and nature of the seafloor in the North Pacific (Leg 145); studied the relationship between fluid flow and tectonics in the accretionary wedge formed at the Cascadia convergent plate boundary off Vancouver and Oregon (Leg 146); drilled in Hess Deep to understand igneous, tectonic and metamorphic evolution of fast spreading oceanic crust and to understand the processes of rifting in young ocean crust (Leg 147); and continued efforts at Hole 504B at 2,000 mbsf, the deepest hole they have beneath seafloor (Leg 148). After Leg 148 (March 1993), the JOIDES Resolution will commence an Atlantic Ocean drilling campaign.

  16. Optimizing drilling performance using a selected drilling fluid

    DOEpatents

    Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  17. Vale exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  18. Pickerill Field geophysical reservoir analysis

    SciTech Connect

    Dorn, G.; Tubman, K.; Cooke, D.; O`Connor, R.; Hawkes, C.

    1994-12-31

    The combination of petrophysics and geophysics adds significantly to the understanding of a hydrocarbon reservoir and can help guide the location of development wells. The objective of the Pickerill Field study was to develop seismic criteria that could be used to optimize the location of development wells. Primary products included a detailed fault map and an estimate of gross reservoir porosity. These are being used to help select development well locations. A set of seismic horizon attributes were generated from a refined Top Rotliegend interpretation and were used for detailed fault trace interpretation. Reservoir faults with throws of as little as fifteen feet were mapped and avoided in subsequent development drilling locations.

  19. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  20. Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results

    USGS Publications Warehouse

    Goff, S.J.; Goff, F.; Janik, C.J.

    1992-01-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.

  1. Research overview 2007 Department of Geophysics, belonging to the Faculty of Mathematics and Physics,

    E-print Network

    Cerveny, Vlastislav

    and applied geophysicists (Schlumberger Cambridge Research), studying microearthquakes induced by oil drilling of Geophysics since 1993, has continued successfully in 2007. The project has been supported by 6 companies (BP

  2. Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland

    E-print Network

    Parker, Beatrice Smith

    2012-01-01

    Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

  3. EFFECTS OF FLUID DISTRIBUTION ON MEASURED GEOPHYSICAL PROPERTIES FOR PARTIALLY SATURATED, SHALLOW SUBSURFACE CONDITIONS

    EPA Science Inventory

    Effective in situ remediation requires a knowledge of subsurface porosity, permeability, and fluid saturation. Estimation of hydrogeologic properties using improved geophysical imaging and interpretation is faster, cheaper, and less invasive than drilling. Methods for interpret...

  4. Searching for Life Underground: An Analysis of Remote Sensing Observations of a Drill Core from Rio Tinto, Spain for Mineralogical Indications of Biological Activity

    NASA Technical Reports Server (NTRS)

    Battler, M.; Stoker, C.

    2005-01-01

    Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].

  5. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  6. Scientific Coring in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Verosub, Kenneth L.

    2006-01-01

    Lake Tahoe ranks among the largest, oldest, and deepest lakes in North America. In addition, the lake is located at a major tectonic boundary. These factors make the Lake Tahoe basin an exciting natural laboratory for studying the interaction between tectonics and climate in a high-altitude temperate setting. A recent meeting to explore the potential benefits of a comprehensive program of scientific coring in the Lake Tahoe basin attracted 67 researchers from 28 institutions. The meeting was supported by a grant from the Drilling, Observations, and Sampling of the Earth's Continental Crust (DOSECC) consortium with additional funding provided by the John Muir Institute for the Environment and the Tahoe Environmental Research Center at the University of California, Davis, the Institute for Geophysics and Planetary Physics at the University of California, San Diego, the Desert Research Institute in Reo, Nev., the Academy for the Environment of the University of Nevada, Reno, and the U.S. Geological Survey.

  7. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  8. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  9. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial...

  10. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Data Center-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar-terrestrial...cores, samples, and sediments. (2) Solar-Terrestrial physics. Ionosphere data, including ionograms, frequency...

  11. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Data Center-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar-terrestrial...cores, samples, and sediments. (2) Solar-Terrestrial physics. Ionosphere data, including ionograms, frequency...

  12. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Data Center-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar-terrestrial...cores, samples, and sediments. (2) Solar-Terrestrial physics. Ionosphere data, including ionograms, frequency...

  13. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Data Center-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar-terrestrial...cores, samples, and sediments. (2) Solar-Terrestrial physics. Ionosphere data, including ionograms, frequency...

  14. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Data Center-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar-terrestrial...cores, samples, and sediments. (2) Solar-Terrestrial physics. Ionosphere data, including ionograms, frequency...

  15. Scientific Drilling in the Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Exon, Neville; Gallagher, Stephen; Seton, Maria

    2013-03-01

    Recent geophysical surveys and geological studies in the southwest Pacific Ocean have improved scientists' understanding of geological evolution and helped to crystallize new research goals. In the current phase of the Integrated Ocean Drilling Program (IODP), there have been five regional expeditions: Canterbury Basin Sea Level (Expedition 317), Wilkes Land Glacial History off Antarctica (Expedition 318), Great Barrier Reef Environmental Changes (Expedition 325), South Pacific Gyre Subseafloor Life (Expedition 329), and Louisville Seamount Trail (Expedition 330). Of six current IODP proposals, four are ready to drill. To review the latest research in the region, briefly outline possible future IODP expeditions, and set up working groups to develop compelling new drilling proposals in the global science context, a workshop was organized at the University of Sydney with a diverse group of 80 scientists. As the JOIDES Resolution may be in the region fairly soon, the workshop participants agreed on the urgent need to build strong science proposals.

  16. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  17. DRILLING MACHINES GENERAL INFORMATION

    E-print Network

    Gellman, Andrew J.

    TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

  18. Structure and dynamics of liquid iron under Earth's core conditions Research School of Geological and Geophysical Sciences, Birkbeck College and University College London,

    E-print Network

    Alfè, Dario

    of the high pressures and temperatures needed. At the boundary between the mantle and the core, at a depth to be in the region of 5000 K. Experiments using the diamond-anvil cell5­9 can be performed up to 200 GPa, and x-ray- diffraction measurements on solid Fe have been made at con- ditions approaching the core-mantle boundary.8

  19. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  20. Spectrum Gamma Ray bore hole logging while tripping with the sea floor drill rig MARUM-MeBo

    NASA Astrophysics Data System (ADS)

    Freudenthal, Tim; Steinke, Stephan; Mohtadi, Mahyar; Hebbeln, Dierk; Wefer, Gerold

    2013-04-01

    The robotic Sea Floor Drill Rig MARUM-MeBo developed at the MARUM Center for Marine Environmental Sciences at the University of Bremen was used to retrieve long sediment cores at two sites in the northern South China Sea. Both sites are located in about 1000 m water depth in southeasterly and southwesterly direction of the Pearl River mouth, respectively. South East Asian Monsoon variability controls terrigenous material transport by rivers into the South China Sea. The Pearl River is one of the largest rivers of the region that discharges into the northern South China Sea. The terrigenous fraction of marine sediments of the northern South China Sea therefore provides an excellent archive for reconstructing past variability of the South East Asian Monsoon system. In analogy to the drilling strategy within the Integrated Ocean Drilling Program IODP multiple holes were drilled in order to generate continuous spliced records at both sites. Overall the MARUM-MeBo drilled 374 m during 5 deployments with a maximum drilling depth of 80.85 m and an average core recovery of 94 %. Here we present first results of bore hole logging conducted during 4 of the 5 deployments with a spectrum gamma ray (SGR) probe adapted for the use with MARUM-MeBo. This probe is an autonomous slim hole probe that is used in the logging while tripping mode. This method is especially favorable for remote controlled drilling and logging operation. The probe is equipped with its own energy source and data storage. The probe is lowered into the drill string after the target wire-line coring depth is reached and after the last inner core barrel has been retrieved. When the probe has landed on the shoulder ring at the bottom of the hole, the drill string is pulled out and disassembled. The probe, while being raised with the drill string, continuously measures the geophysical properties of the in situ sediments and rocks. Since the bore hole is stabilized during the tripping process by the drill string in the vicinity of the logging probe, logging while tripping can also be used for unstable bore hole conditions e.g. in unconsolidated sediments. At both drill sites two profiles were measured during separate deployments of the MeBo. A close correlation of the profiles was observed at both sites. Natural gamma ray intensity varies between 38 and 91 API. The variations in natural gamma ray intensity are mainly attributed to changes in concentrations of potassium (0,5 - 1,6 %) and thorium (3,6 - 13,2 ppm), while the concentrations of uranium are fairly low (1,2 - 3,2 ppm). Clays are the main host minerals for thorium in marine sediments. Potassium may be incorporated both into clay and feldspar minerals. The variability in the natural gamma ray intensity can therefore be interpreted as an indicator of changes in terrestrial sediment input into the South China Sea. The observation of severe variability of the K/Th ratio and its correlation with sedimentary calcium content measured by XRF-scanning points to the fact that not only changes in the amount but also changes in the composition of the terrigenous fraction is elucidated by the SGR bore hole logging and will help reconstructing past changes in the South East Asian monsoon system.

  1. Geothermal drilling technology update

    SciTech Connect

    Glowka, D.A.

    1997-04-01

    Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

  2. Drill string enclosure

    SciTech Connect

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1992-12-31

    This invention is comprised of a drill string enclosure which consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  3. Advanced Drilling through Diagnostics-White-Drilling

    SciTech Connect

    FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

    1999-10-07

    A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

  4. Surface drilling technologies for Mars

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.; Rowley, J. C.; Cort, G. E.

    1986-01-01

    Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass.

  5. Geological & Geophysical findings from seismic, well log and core data for marine gas hydrate deposits at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, offshore Japan: An overview

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Noguchi, S.; Takayama, T.; Suzuki, K.; Yamamoto, K.

    2012-12-01

    In order to evaluate productivity of gas from marine gas hydrate by the depressurization method, Japan Oil, Gas and Metals National Corporation is planning to conduct a full-scale production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough, Japan. The test location was determined using the combination of detailed 3D seismic reflection pattern analysis, high-density velocity analysis, and P-impedance inversion analysis, which were calibrated using well log data obtained in 2004. At the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled from February to March 2012, followed by 1 coring well (AT1-C) from June to July 2012. An extensive logging program with logging while drilling (LWD) and wireline-logging tools, such as GeoVISION (resistivity image), EcoScope (neutron/density porosity, mineral spectroscopy etc.), SonicScanner (Advanced Sonic tool), CMR/ProVISION (Nuclear Magnetic Resonance Tools), XPT (formation pressure, fluid mobility), and IsolationScanner (ultrasonic cement evaluation tools) was conducted at AT1-MC well to evaluate physical reservoir properties of gas hydrate-bearing sediments, to determine production test interval in 2013, and to evaluate cement bonding. Methane hydrate concentrated zone (MHCZ) confirmed by the well logging at AT1-MC was thin turbidites (tens of centimeters to few meters) with 60 m of gross thickness, which is composed of lobe type sequences in the upper part of it and channel sand sequences in the lower part. The gross thickness of MHCZ in the well is thicker than previous wells in 2004 (A1, 45 m) located around 150 m northeast, indicating that the prediction given by seismic inversion analysis was reasonable. Well-to-well correlation between AT1-MC and MT1 wells within 40 m distance exhibited that lateral continuity of these sand layers (upper part of reservoir) are fairly good, which representing ideal reservoir for the production test. The XPT measurement results showed approximately 0.1 to several mD of water permeability in both the hydrate-bearing formation and seal formation, although there are some variations in measured values. However, the comparison of these results with permeability estimated by NMR log showed significant discrepancy (more than one order of difference), which suggests that it is necessary to have further investigation considering the difference in scale, measurement direction (Kh or Kv), and calibration methodology by pressure core data. In order to obtain basic reservoir/seal properties for the well log calibration within and above production test interval, pressure coring using Hybrid Pressure Coring System (Hybrid PCS) and also non-destructive core analysis onboard using Pressure Core Analysis and Transfer System (PCATS) were conducted for 60 m interval in AT1-C, which located about 10 m northeast of AT1-MC. Finally, integrated reservoir characterization based on well-log and pressure core data was conducted to predict and optimize the flow rate of upcoming production test.

  6. Hydraulic piston coring of late Neogene and Quaternary sections in the Caribbean and equatorial Pacific: Preliminary results of Deep Sea Drilling Project leg 68.

    USGS Publications Warehouse

    Prell, W.L.; Gardner, James V.; Adelseck, Charles; Blechschmidt, Gretchen; Fleet, Andrew J.; Keigwin, Lloyd D.; Kent, Dennis V.; Ledbetter, Michael T.; Mann, Ulrich; Mayer, Larry; Reidel, William R.; Sancetta, Constance; Spariosu, Dann J.; Zimmerman, Herman B.

    1980-01-01

    The sediment of Site 502 (W.Caribbean) is primarily foram-bearing nanno marl which accumulated at c.3 to 4 cm/thousand yr. The bottom of Site 502 (228.7 m) is about 8 m.y. old. The sediment of Site 503 (Equatorial Pacific) is primarily siliceous calcareous ooze which accumulated at about 2 to 3 cm/thousand yr. The bottom of Site 503 (235.0 m) is about 8 m.y. old. The sediment at both sites shows a distinct cyclicity of CaCO3 content. These relatively high accumulation rate, continuous, undisturbed HPC cores will enable a wide variety of high-resolution biostratigraphic, paleoclimatic, and paleoceanographic studies.- from Authors

  7. Cores from the Salton Sea scientific drilling program: Metamorphic reaction progress as a function of chemical and thermal environment: Final report

    SciTech Connect

    Papike, J.J.; Shearer, C.K.

    1987-05-13

    The study investigated the downhole progressive metamorphism at the Salton Sea site by monitoring and evaluating discontinuous and continuous metamorphic reactions. The main emphasis was placed on: (1) the addition of petrographic, geochemical, and mineralogical data to the Salton Sea data base; (2) determination of downhole reactions; (3) evaluation of the progress of individual continuous reaction (epsilon) and the overall reaction progress (epsilon/sub T/) during the transition from one metamorphic zone to the next; and (4) evaluation and correlation of mineral reactions and reaction progress with mineral phase and organic material geothermometry. To these ends, thirty-three samples from the Salton Sea core were analyzed for: (1) quantitative modal mineralogy using the x-ray diffraction reference intensity method (RIM), (2) 30 major and trace elements in the whole rock and (3) mineral chemistry and structural state. In addition, a subset of these samples were used for temperature determinations using vitrinite reflectivity.

  8. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  9. Drill wear monitoring in cortical bone drilling.

    PubMed

    Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma

    2015-06-01

    Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. PMID:25922212

  10. New approaches to subglacial bedrock drilling technology

    NASA Astrophysics Data System (ADS)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Xue, Jun; Chen, Chen; Markov, Alexey; Xu, Huiwen; Gong, Wenbin; Han, Wei; Zheng, Zhichuan; Cao, Pinlu; Wang, Rusheng; Zhang, Nan; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Han, Lili; Sysoev, Mikhail

    2013-04-01

    Drilling to bedrock of ice sheets and glaciers offers unique opportunities to research processes acting at the bed for paleo-climatic and paleo-environmental recording, basal sliding studies, subglacial geology and tectonics investigations, prospecting and exploration for minerals covered by ice. Retrieving bedrock samples under ice sheets and glaciers is a very difficult task. Drilling operations are complicated by extremely low temperature at the surface of, and within glaciers, and by glacier flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. In order to penetrate through the ice sheet or glacier up to the depth of at least 1000 m and to pierce the bedrock to the depth of several meters from ice - bedrock boundary the development activity already has been started in Polar Research Center at Jilin University, China. All drilling equipment (two 50-kW diesel generators, winch, control desk, fluid dumping station, etc.) is installed inside a movable sledge-mounted warm-keeping and wind-protecting drilling shelter that has dimensions of 8.8 ×2.8 × 3.0 m. Mast has two positions: horizontal for transportation and vertical working position (mast height is 12 m). Drilling shelter can be transported to the chosen site with crawler-tractor, aircraft or helicopter. In case of carriage by air the whole drilling shelter was designed to be disassembled into pieces "small" enough to ship by aircraft. Weight and sizes of each component has been minimized to lower the cost of transportation and to meet weight restrictions for transportation. Total weight of drilling equipment (without drilling fluid) is near 15 tons. Expected time of assembling and preparing for drilling is 2 weeks. If drilling shelter is transported with crawler-tractor (for example, in Antarctic traverses) all equipment is ready to start drilling immediately upon arrival to the site. To drill through ice and bedrock a new, modified version of the cable-suspended electromechanical ice core drill is designed and tested. The expected average daily production of ice drilling would be not less than 25 m/day. The lower part of the drill is adapted for coring bed-rock using special tooth diamond bit. Deep ice coring requires a drilling fluid in the borehole during operation in order to keep the hole open and to compensate the hydrostatic pressures acting to close it. At present there are no ideal low-temperature drilling fluids as all of them are environmental and health hazardous substances. The new approaches of subglacial bedrock drilling technology are connected with utilization of environmental friendly, low-toxic materials, e.g. low-molecular dimethyl siloxane oils or aliphatic synthetic ester of ESTISOL™ 140 type. They have suitable density-viscosity properties, and can be consider as a viable alternative for drilling in glaciers and subglacial bedrock.

  11. Robotic Planetary Drill Tests

    NASA Technical Reports Server (NTRS)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  12. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  13. Introduction to drilling technology

    NASA Astrophysics Data System (ADS)

    Mellor, Malcom

    1989-12-01

    Terrestrial drilling technology is reviewed. The general requirements for a drilling system are given and conventional drilling techniques (rotary drag-bit, rotary roller-bit, percussive, rotary percussive) are described. Unconventional techniques for penetrating solids are outlined, including thermal drilling (spalling or melting), projectile penetration, high pressure liquid jets, explosive jets, erosion by projectile streams, and chemical penetration. Special attention is given to drilling in ice and frozen soils, performance data are given, including values for penetration rate and specific energy consumption. The principles, theory and equipment relating to each drilling technique are indicated by means of diagrams.

  14. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  15. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic Arc Systems" (PaMVAS), "Concentric Impact Structures in the Palaeozoic - the Lockne and Siljan craters" (CISP), and "Svecofennian accretion, an example of the early Structural Evolution in a Large Hot Orogen" (SELHO). More information on each drilling project is available at SDDP's website (http://www.sddp.se/'projectabbreviation'), where also the Science & Technology Plan is publicly available. The Nordic perspective: Recently, the researchers network "Scientific Drilling in the Nordic Countries" has been funded for three years by NordForsk, the Nordic Council of Minister's advisory board on research strategy (http://www.nordforsk.org). The aim of the network is to consolidate the competence and experience from past and present (and future) scientific drilling projects in the Nordic countries, and to propagate it to the scientific community. Within the scope of the researchers network, workshops and excursions will be tightly coupled to on-going scientific projects and bring together experts, experienced scientists and novices for knowledge exchange and transfer. The participation of all the Nordic countries and the ambitious drilling projects in their diverse geological settings - from the Archaean shield to active volcanoes - form an ideal basis for engaging and successful collaboration over many years to come.

  16. Constraints on magma ascent, emplacement, and eruption: Geochemical and mineralogical data from the drill core at Inyo Craters, Inyo Chain, California: Final report

    SciTech Connect

    Vogel, T.A.

    1988-01-01

    An 861-m-long hole (Inyo-4) has been cored on a slanted trajectory that passed directly beneath South Inyo Crater in the west moat of Long Valley Caldera, California. The purpose of the hole was to investigate the magmatic behavior that led to surface deformation and phreatic activity during the 600-year-old eruption of the Inyo vent chain. The trajectory and stratigraphy encountered by Inyo-4 are shown. The volcanic and sedimentary sequence consists solely of post-Bishop Tuff caldera fill, including 319 m of moat basalt and 342 m of early rhyolite. Breccia zones that intrude the caldera fill were intersected at 12.0-9.3 m and 1.2-0.8 m SW and 8. 5-25.1 m NE of the crater center. The largest breccia unit is symmetrically zoned from margins rich in vesicular rhyolite and locally derived rhyolite wallrock to a center of up to 50 vol.% basalt. Most individual clasts of the rhyolite are less than or equal to0.1m; individual clasts in the basalt breccia are up to 1 m in intersected length. 6 figs., 3 tabs.

  17. Method and system for displacing drilling fluid from a drill string in a well drilling system

    SciTech Connect

    Dellinger, T.B.; Boston, W.G.; Sexton, J.H.; Strong, R.T.

    1986-03-25

    This patent describes a method of rotary drilling of a wellbore with a drill string, formed with sections of drill pipe, and having a drill bit at the lower end thereof, the method of disconnecting and breaking out at least one section of drill pipe from the drill string at a select drill string joint with minimized drilling fluid spillage, it consists of the steps of (a) pulling the drill string out of the wellbore, (b) continuously rotating the drill string with a top drive drilling motor and circulating drilling fluid through the drill string while the drill string is being pulled from the wellbore, (c) stopping the drill string rotation and the drilling fluid circulation when a select drill string joint is above the drilling rig floor, (d) injecting compressed gas into the drill string to displace the drilling fluid in that portion of the drill string above the select drill string joint, (e) stopping the injection of compressed gas into the drill string when the drilling fluid level has fallen below the select drill string joint, and (f) breaking out that portion of the drill string above the selected drill string joint.

  18. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.; Schimschal, U.

    1993-05-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone).

  19. Test report for drill string seal pressure test

    SciTech Connect

    McCormick, J.F.

    1996-02-06

    A basic question was asked concerning the drill string which is used in rotary Mode coring operations: ``...what is the volume leak rate loss in a drill rod string under varying condiditons of the joint boxes and pins being either dry or coated with lubricant...``. A Variation of this was to either have an o-ring installed or absent on the drill rod that was grooved on the pin. A series of tests were run with both the o-ring grooved Longyear drill rod and the plain pin end rod manufactured by Diamond Drill. Test results show that drill rod leakage of both types is lowered dramatically when thread lubricant is applied to the threaded joints and the joints made up tight. The Diamond Drill rod with no o-ring groove has virtually no leakage when used with thread lubricant and the joints are properly tightened.

  20. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  1. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  2. Geoscience Research Drilling Office Operations I: the North INYO Drilling Program, 1984

    SciTech Connect

    Lysne, P.

    1986-05-01

    The North Inyo Drilling Program was part of the Continental Scientific Drilling Program/Thermal Regimes and it was put forth by the Department of Energy/Office of Basic Energy Sciences to explore roots of a 600 year old volcanic system which is found in the north-west corner of Long Valley Caldera, California. The responsibility of the Geoscience Research Drilling Office was to provide logistical support to the scientific drilling team. This support consisted of obtaining the necessary permits, obtaining a drilling contract and providing field services involving logging and core handling/laboratory facilities. The first portion of this program was successful when hole RDO-2b traversed the conduit which fed Obsidian Dome; the second portion succeeded when RDO-3a traversed the dike underlying the Inyo Chain of volcanoes.

  3. The physics of the earth's core: An introduction

    SciTech Connect

    Melchior, P.

    1986-01-01

    This book is a reference text providing information on physical topics of recent developments in internal geophysics. The text summarizes papers covering theoretical geophysics. Basic formulae, definitions and theorems are not explained in detail due to the limited space. The contents include applications to geodesy, geophysics, astronomy, astrophysics, geophysics and planetary physics. The formal contents include: The Earth's model; Thermodynamics; Hydrodynamics; Geomagnetism; Geophysical implications in the Earth's core.

  4. Lithostratigraphy of the Taiwan Chelungpu-Fault Drilling Project-A borehole and its neighboring region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Wang, S.; Hung, J.; Wu, J.; Wu, M.; Liu, C.

    2005-12-01

    A late Miocene to Pleistocene, shallow marine succession of 2003 meters in drill depth was drilled and cored at the TCDP (Taiwan Chelungpu-Fault Drilling Project)-A borehole. Stratigraphic framework of this borehole and its neighboring region is vital in understanding the complex subsurface geological structures and in what rock formations that the 1999 Chi-Chi earthquake rupture occurred both on the ground surface and at depth. To this end, we examined the core lithofacies and geophysical-log curves of this drill bore and established a stratigraphic succession for this well. The borehole stratigraphic succession was then correlated to the stratigraphy of the wells drilled by Chinese Petroleum Corporation (CPC) neighboring the TCDP-A well in central Taiwan. In addition, on the basis of stratigraphic analyses carried out on outcrops and 14 shallow (20-100 m in drill depths) boreholes in the region adjoining TCDP-A well, we constructed a vertical stratigraphic succession that represents the surface rock sequence whose equivalent strata were encountered at the TCDP-A well. This approach enables us to establish the stratigraphy of the TCDP-A borehole as follows (numbers are in drill depth with reference to wireline logs): (1) 0-1013 m: lower Cholan Formation; (2) 1013-1313 m: Chinshui Shale; (3) 1313-1707 m: Kueichulin Formation; (4) 1707-2003 m: Cholan Formation as judged from common occurrence of reworked Miocene nannofossils and similar lithology to the exposed Cholan Formation. Our results also find that the Chinshui Shale and older formations are not exposed to the west of the TCDP-A well, a view different from that shown in the geological map published by CPC. The Chi-Chi surface rupture occurs near the base of the Cholan Formation rather than in the Chinshui Shale as shown in the CPC geological map. Our data shows a previously unknown surface rupture that occurs 200-300 m to the west of the Chi-Chi surface rupture. This rupture offsets the unconformity between the terrace gravels and underlying tilted Pliocene strata.

  5. New Era of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.

    2014-12-01

    The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.

  6. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  7. Drilling at Advanced Levels

    ERIC Educational Resources Information Center

    Case, Doug

    1977-01-01

    Instances where drilling is useful for advanced language are discussed. Several types of drills are recommended, with the philosophy that advanced level drills should have a lighter style and be regarded as a useful, occasional means of practicing individual new items. (CHK)

  8. Steamboat Hills exploratory slimhole: Drilling and testing

    SciTech Connect

    Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

    1994-10-01

    During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  9. Evaluation of core data, physical properties, and oil yield USBM/AEC Colorado Core Hole no. 3 (Bronco BR-1)

    USGS Publications Warehouse

    Ege, John R.; Carroll, R.D.; Way, R.J.; Magner, J.E.

    1969-01-01

    USBM/AEC Colorado Core Hole No. 3 (Bronco BR-1) is located in the SW1/4SW1/4SW1/4 sec. 14, T. 1 N., R. 98 W., Rio Blanco County, Colorado. The collar is at a ground elevation of 6,356 feet. The hole was core drilled between depths of 964 and 3,325 feet with a total depth of 3,797 feet. The hole was drilled to investigate geologic, geophysical and hydrological conditions at a possible in situ oil-shale retorting experiment site. The drill hole passed through 1,157 feet of alluvium and the Evacuation Creek Member of the Green River Formation, 1,603 feet of the Parachute Creek Member and penetrated into the Garden Gulch Member of the Green River Formation. In-bole density log/oil yield ratio interpretation indicates that two oil-shale zones exist which yield more than 20 gallons of shale oil per ton of rock; an upper zone lying between 1,271 and 1,750 feet in depth and a lower zone lying between 1,900 and 2,964 feet. Halite (sodium chloride salt) is found between 2,140 and 2,185 feet and nahcolite (sodium bicarbonate salt) between 2,195 and 2,700 feet. Nahcolite was present at one time above 2,195 feet but has been subsequently dissolved out by ground water. The core can be divided into six structural units based upon degree of fracturing. A highly fractured interval is found between 1,646 and 1,899 feet, which coincides with the dissolution or leached nahcolite zone. Physical property tests made on core samples between 1,356 and 3,253 feet give average values of 11,988 psi for uniaxial compressive strength, 1.38 X 10[superscript]6[superscript] psi for static Young's modulus and 11,809 fps for compressional velocity.

  10. Kimberly Well - Borehole Geophysics Database

    SciTech Connect

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  11. Kimama Well - Borehole Geophysics Database

    SciTech Connect

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  12. Deep drilling technology for hot crystalline rock

    SciTech Connect

    Rowley, J.C.

    1984-01-01

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  13. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  14. Hydrogeologic facies characterization of an alluvial fan near Fresno, California, using geophysical techniques

    USGS Publications Warehouse

    Burow, Karen R.; Weissmann, G.S.; Miller, R.D.; Placzek, Gary

    1997-01-01

    DBCP (1,2-dibromo-3-chloropropane) contamination in the sole source aquifer near Fresno, California, has significantly affected drinking-water supplies. Borehole and surface geophysical data were integrated with borehole textural data to characterize the Kings River alluvial fan sediments and to provide a framework for computer modeling of pesticide transport in ground water. Primary hydrogeologic facies units, such as gravel, coarse sand or gravel, fine sand, and silt and clay, were identified in cores collected from three borings located on a 4.6-kilometer transect of multilevel monitoring wells. Borehole geophysical logs collected from seven wells and surface geophysical surveys were used to extrapolate hydrogeologic facies to depths of about 82meters and to correlate the facies units with neighboring drilling sites. Thickness ranged from 0.3to 13 meters for sand and gravel units, and from 0.3 to 17 meters for silt and clay. The lateral extent of distinct silt and clay layers was mapped using shallow seismic reflection and ground-penetrating radar techniques. About 3.6 kilometers of seismic reflection data were collected; at least three distinct fine-grained layers were mapped. The depth of investigation of the seismic survey ranged from 34 to 107 meters below land surface, and vertical resolution was about 3.5 meters. The ground-penetrating radar survey covered 3.6kilometers and imaged a 1.5-meters thick, continuous fine-grained layer located at a depth of about 8 meters. Integrated results from the borehole sediment descriptions and geophysical surveys provided a detailed characterization over a larger areal extent than traditional hydrogeologic methods alone.

  15. National Geological and Geophysical Data Preservation Program: Successes and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Adrian, B. M.

    2014-12-01

    The United States Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of geologic and geophysical materials gathered by its research personnel. Since the USGS was established in 1879, hundreds of thousands of samples have been gathered in collections that range from localized, geographically-based assemblages to ones that are national or international in scope. These materials include, but are not limited to, rock and mineral specimens; fossils; drill cores and cuttings; geochemical standards; and soil, sediment, and geochemical samples. The USGS National Geological and Geophysical Data Preservation Program (NGGDPP) was established with the passage of the Energy Policy Act of 2005. Since its implementation, the USGS NGGDPP has taken an active role in providing opportunities to inventory, archive and preserve geologic and geophysical samples, and to make these samples and ancillary data discoverable on the Internet. Preserving endangered geoscience collections is more cost effective than recollecting this information. Preserving these collections, however, is only one part of the process - there also needs to be a means to facilitate open discovery and access to the physical objects and the ancillary digital records. The NGGDPP has celebrated successes such as the development of the USGS Geologic Collections Management System (GCMS), a master catalog and collections management plan, and the implementation and advancement of the National Digital Catalog, a digital inventory and catalog of geological and geophysical data and collections held by the USGS and State geological surveys. Over this period of time there has been many lessons learned. With the successes and lessons learned, NGGDPP is poised to take on challenges the future may bring.

  16. Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Whitfield, M.S.; Thordarson, William; Eshom, E.P.

    1984-01-01

    Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)

  17. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  18. GIS of selected geophysical and core data in the northern Gulf of Mexico continental slope collected by the U.S. Geological Survey

    USGS Publications Warehouse

    Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.

    2006-01-01

    Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.

  19. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored interval. Theoretically, overpressured zones in the formation can be identified through C2/C3 ratios, but these ratios are highly affected by changing drilling parameters. Proper mud gas evaluations will need to carefully consider the effects of variable drilling parameters when designing experiments and interpreting the data.

  20. Geophysical nutation model

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique

    2005-01-01

    The nutation model that has been adopted by the IAU in 2000 is the semi-analytical model MHB2000 of Mathews et al. (JGR 107(B4) 10.1028/2001JB000390). We show how robust this model is and examine the information about the interior of the Earth that has been derived. The observations used to derived the parameters of MHB2000 as well as the amplitude of the Earth Free Core Nutation (FCN) are examined in terms of their stability and precision. We examine in parallel the possibilities that are provided by a numerical integration model. Additional contributions from the external geophysical fluids (atmosphere ocean) are also studied. The extension of this model to short-term polar motion induced by the lunisolar forcing is examined as well. The conclusions of the WG related to that work is given.

  1. Drill string shock absorber

    SciTech Connect

    Anderson, E. A.; Webb, D. D.

    1985-11-12

    A telescopic shock absorber for use in a drill string includes a resilient arrangement to cushion telescopic contraction and extension of the shock absorber in response to shock loads and vibrations imparted during drilling. The shock absorber operates independently of the drilling fluid pressure conducted through the structure during drilling operations. A dampening system assists in cushioning the shock loads and vibrations and the dampening system and resilient arrangement are deactivated when jarring impacts are delivered to the well string by a drilling jar carried therein. The resilient arrangement provides a combination mechanical and hydraulic system for cushioning the impact loads and vibrations encountered.

  2. Overview of the Barberton Drilling Project

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.; Wilson, Allan; Mason, Paul; Hofmann, Axel; Lowe, Don

    2013-04-01

    The Barberton Greenstone Belt in South Africa is one of the best-preserved successions of mid- Archean (3.5-3.2 Ga) supracrustal rocks in the world, and, as such, a remarkable natural laboratory where conditions and processes at the surface of the Archean Earth can be studied in detail. Volcanic and sedimentary sequences in the belt provide information on the environment in which life emerged and evolved. A drilling project, sponsored by the International Continental Drilling Program (ICDP), and many national funding agencies, was completed in May 2012. More than 3000 m of core from 5 holes at four sites were recovered. At the Tjakastad site, two ca. 300 m holes were drilling through sequences of komatiites and komatiitic basalts. The other three holes targeted sedimentary rocks: the Buck Reef hole sampled over 700m of mainly banded black and white cherts; the Mid Fig Tree hole sampled a sequence of ferruginous charts and mudstones; and the Barite Valley hole samples a more varied sequence including sandstone, shale, cherts and volcaniclastic rocks. The core is stored and has been logged in facilities of the University of the Wirwatersrand. Core logs can be found at tp://www.peeringintobarberton.com/Sites.html . An open call for proposals to work on the core, sent out in November 2012, was answered by over 50 scientists from 12 countries who plan to study the core using techniques ranging from petrography, through major and trace-element analysis, to sophisticated isotopic analysis. A workshop to discuss the drilling project and to view the core is planned at the University of the Witwatersrand in Johannesburg from Mon 18th to Wed the 21st February 2013, followed by a short trip to the Barberton belt to visit the drilling sites.

  3. Drilling side holes from a borehole

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Machine takes long horizontal stratum samples from confines of 21 cm bore hole. Stacked interlocking half cylindrical shells mate to form rigid thrust tube. Drive shaft and core storage device is flexible and retractable. Entire machine fits in 10 meter length of steel tube. Machine could drill drainage or ventilation holes in coal mines, or provide important information for geological, oil, and geothermal surveys.

  4. Eos, Vol. 75, No. 40, October 4, 1994 At the same time, drilling can contribute

    E-print Network

    Torsvik, Trond Helge

    Eos, Vol. 75, No. 40, October 4, 1994 At the same time, drilling can contribute to a number questions at optimal geological sites from around the world and should involve drilling and coring at a variety of depths. That is, the program should not be restricted to only deep or shallow drilling

  5. Method of determining drilling fluid invasion

    SciTech Connect

    Vinegar, H. J.; Wellington, S. L.

    1985-09-10

    A method of determining the invasion of drilling fluid into a core sample taken from a borehole. A first material is added to the drilling fluid to obtain a first fluid that has an effective atomic number that is different than the effective atomic number of the connate fluids in the rock formation surrounding the borehole. A preserved core sample is collected from the borehole for scanning by a computerized axial tomographic scanner (CAT) to determine the attenuation coefficients at a plurality of points in a cross section of the core sample. The preserved core sample is scanned with a CAT at first and second energies, and the determined attenuation coefficients for the plurality of points in the cross section at each energy are used to determine an atomic number image for the cross section of the core sample. The depth of invasion of the first fluid is then determined from the atomic number image, as an indication of the depth of invasion of the drilling fluid into the core sample.

  6. The Search for Subsurface Life on Mars: Results from the MARTE Analog Drill Experiment in Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2006-03-01

    The Mars Analog Research and Technology (MARTE) experiment has developed an automated drilling system on a simulated Mars lander platform including drilling, sample handling, core analysis and down-hole instruments relevant to searching for life in the Martian subsurface.

  7. Experimental drilling in Chattanooga shale

    USGS Publications Warehouse

    Brown, Andrew

    1948-01-01

    Information on which specifications were originally drawn for drilling the Chattanooga shale was obtained largely from the TVA, whose geologists and driller laid great stress on the difficulties of maintaining circulation in their ho;es. The stated that the shale itself was not particularly difficult to core, the trouble being in the overburden. They did not use deep casing, depending on cementing to hold the holes open. On this basis, the Survey's specifications called for mid casing only, it being assumed that solid rock would be encountered at relatively shallow depths. This belief was borne out by examination of such road cuts and other exposures as were available.

  8. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

  9. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  10. Advanced drilling systems study

    SciTech Connect

    Pierce, K.G.; Livesay, B.J.

    1995-03-01

    This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

  11. Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report)

    SciTech Connect

    Not Available

    1986-12-01

    The Deep Salton Sea Scientific Drilling Program (DSSSDP) was conducted in Imperial County of California at the Southeastern edge of the Salton Sea. Emphasis was on the acquisition of scientific data for the evaluation of the geological environment encountered during the drilling of the well. The scientific data acquisition activities consisted of coring, running of numerous downhole logs and tools in support of defining the geologic environment and conducting two full scale flow tests primarily to obtain pristine fluid samples. In addition, drill cuttings, gases and drilling fluid chemistry measurements were obtained from the drilling fluid returns concurrent with drilling and coring operations. The well was drilled to 10,564 feet. This report describes the field portions of the project and presents an analysis of the time spent on the various activities associated with the normal drilling operations, scientific data gathering operations and the three major downhole problem activities - lost circulation, directional control and fishing.

  12. 2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-

    E-print Network

    2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program-related American Geological Institute GeoRef Citations from 1969 through 2006 Produced by IODP-USIO Publication DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

  13. Basalt features observed in outcrops, cores, borehole video imagery and geophysical logs, and basalt hydrogeologic study at the Idaho National Engineering Laboratory, Eastern Idaho

    SciTech Connect

    Bennecke, W.M.

    1996-10-01

    A study was undertaken to examine permeable zones identified in boreholes open to the underlying basalt and to describe the vertical cross flows present in the boreholes. To understand the permeable zones in the boreholes detailed descriptions and measurements of three outcrops in the Snake River Plain, three cores at the Idaho Chemical Processing Plant (ICPP) at the INEL, and over fifty borehole TV logs from the INEL were carried out. Based on the observations made on the three outcrops an idealized basalt lava flow model was generated that used a set of nomenclature that would be standard for the basalt lava flows studied. An upper vesicular zone, a sometimes absent columnar zone, central zone, and lower vesicular zone make up the basalt lava flow model. The overall distinction between the different zones are based on the vesicle shape size, vesicularity, and fractures present. The results of the studies also indicated that the basalt lava flows at the INEL are distal to medial facies pahoehoe lava flows with close fitting contacts. The most permeable zones identified in these basalts are fractured vesiculated portions of the top of the lava flow, the columnar areas, and basalt-flow contacts in order of importance. This was determined from impeller flowmeter logging at the INEL. Having this information a detailed stratigraphy of individual basalt lava flows and the corresponding permeable units were generated. From this it was concluded that groundwater flow at the ICPP prefers to travel along thin basalt lava flows or flow-units. Flow direction and velocity of intrawell flows detected by flowmeter is controlled by a nearby pumping well.

  14. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  15. Method of deep drilling

    DOEpatents

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  16. Ocean Drilling Program: Results from tenth year of drilling operations

    SciTech Connect

    Rabinowitz, P.D.; Francis, T.J.G.; Baldauf, J.G.; Coyne, J.C.; McPherson, R.G.; Merrill, R.B.; Olivas, R.E.

    1995-12-01

    The Ocean Drilling Program (ODP) has completed 61 internationally staffed expeditions and ten years of scientific ocean drilling in search of answers relating to the tectonic evolution of passive and active continental margins, origin and evolution of oceanic crust, origin and evolution of marine sedimentary sequences, and paleoceanography. To address these problems, ODP has made numerous advances in technology for retrieval of continuous undisturbed cores under hostile environmental conditions. ODP curates over 198 km of cored material and associated scientific data bases and publishes results of the scientific expeditions in a continuous series of Proceedings volumes. During its tenth year, ODP continued its pioneering exploration in the Atlantic Ocean. This paper reviews the drilling activities associated with the Atlantic Leg of the project. It focuses on volcanic rifted margins and magma emplacement; the chemical composition and evolution of the lower crust and mantle; depth transect reconstruction for a variety of temporal resolutions; research on the Amazon deep-sea fan and associated paleoclimatology; temporal and spatial scales of fluid flow, the role of faults in fluid transport, and the relationships between mechanical state and seismicity in the northern Barbados accretionary prism; and the history of volcanic activity in the Canary Hotspot, the detailed evolution of large volcanic oceanic islands, the growth of volcanic aprons and the filling of the distal Madeira Abyssal Plain. Finally, Leg 158 investigated fluid flow, alteration and mineralization and associated geochemical fluxes, microbiological processes and the subsurface mixture of an active hydrothermal system on a slow spreading, sediment-free mid-ocean ridge (TAG area -- Mid Atlantic Ridge).

  17. Geothermal Drilling Organization

    SciTech Connect

    Sattler, A.R.

    1999-07-07

    The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

  18. Fundamentals and use of potassium/polymer drilling fluids to minimize drilling and completion problems associated with hydratable clays

    SciTech Connect

    Steiger, R.P.

    1982-08-01

    Water sensitive shales cause expensive problems and may defeat the purpose of drilling a well. Clay hydration can produce drilling problems such as wellbore instability, stuck pipe, bottomhole fill, torque, drag, and solids buildup in the drilling fluid. It also can produce completion problems such as formation damage in shaly sands, logging and coring failures, hole washout, and poor cement jobs. Proper application of an inhibitive drilling fluid will reduce drilling costs, rig time, formation damage, and completion costs. The potassium ion, when used at the proper concentration, is a powerful shale inhibitor. It interacts with clays, such as illite or montmorillonite, lowers the hydration energy, and reduces swelling. Relatively simple potassium/polymer drilling fluid systems, which provide excellent rheological and filtration properties, have been formulated at moderate costs. The systems, when properly used, are quite stable and easily maintained.

  19. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  20. ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL

    E-print Network

    Kreinovich, Vladik

    and interval techniques for evaluating the uncertainties associ- ated with geophysical tomographic inversion inversion of the data. 1 #12;2 Chapter 1 1 INTRODUCTION: GOALS OF GEOPHYSICS, AND HOW STATISTICAL To A Tomographic Inverse Problem In geophysics, we usually know the equations that describe the propagation

  1. Geophysical InversionFacility

    E-print Network

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility = L3 L1 L2 L3 Invert Data m=F -1 [d ] Invert Data #12;UBC Geophysical Inversion Facility At sites

  2. ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL

    E-print Network

    Kreinovich, Vladik

    and interval techniques for evaluating the uncertainties associ­ ated with geophysical tomographic inversion inversion of the data. 1 #12; 2 Chapter 1 1 INTRODUCTION: GOALS OF GEOPHYSICS, AND HOW STATISTICAL To A Tomographic Inverse Problem In geophysics, we usually know the equations that describe the propagation

  3. Earth drill rig

    SciTech Connect

    Rassieur, C.L.

    1987-01-27

    This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

  4. Horizontal drilling developments

    SciTech Connect

    Gust, D.

    1997-05-01

    The advantages of horizontal drilling are discussed. Use of horizontal drilling has climbed in the past half decade as technology and familiarity offset higher costs with higher production rates and greater recoveries from new and existing wells. In essence, all types of horizontal wells expose a larger section of the reservoir to the wellbore with a resulting increase in flow rates. (A horizontal well may also be drilled to provide coning control or to intersect vertical fractures.) Thus, drilling horizontally, both onshore and offshore, reduces the number of wells necessary to develop a field.

  5. Rotary drill bit

    SciTech Connect

    Logan, C.K.

    1980-10-28

    An improved rotary drill bit is described comprised of two or more elongated generally cylindrical drill members the lower ends of which form a cutting face. Each of the drill members includes a plurality of vertically spaced rows of diamond-shaped openings disposed, or formed, in the sides, or wall, thereof, the openings in adjacent rows being offset from each other and overlapping at their upper and lower ends whereby as the lower ends of the drill member wear away, cutting edges are continuously formed thereon by the diamond-shaped openings.

  6. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies. Neutron scattering is used in soil science to assess the moisture content of soil. The technique relies on observing the effects of collisions between source neutrons and the H atoms in the material under test. Such a system maybe useful in assessing ice content-from within a borehole. Sounding of a several-kilometer-deep ice cap presents some considerable obstacles. There are, however, several methods that could be used to sound the upper meters of the ice cap in considerable detail.

  7. Advanced Seismic While Drilling System

    SciTech Connect

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  8. Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989

    USGS Publications Warehouse

    Dyni, John R.; Gay, Frances; Michalski, Thomas C.

    1990-01-01

    The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

  9. Drilling Square Holes.

    ERIC Educational Resources Information Center

    Smith, Scott G.

    1993-01-01

    A Reuleaux triangle is constructed by drawing an arc connecting each pair of vertices of an equilateral triangle with radius equal to the side of the triangle. Investigates the application of drilling a square hole using a drill bit in the shape of a Reuleaux triangle. (MDH)

  10. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  11. Drilling the Bushveld Complex- the world's largest layered mafic intrusion

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Webb, S. J.; Trumbull, R. B.

    2013-12-01

    The fact that surprising new discoveries can be made in layered mafic intrusions (e.g., subtle 100-150 m cyclicity in apparently homogeneous cumulates over 1000s of m) means that we are still in the first-order characterization phase of understanding these objects. Accordingly, we have secured funding from ICDP for a planning workshop to be held in Johannesburg in early 2014, aimed at scientific drilling of the Bushveld Complex, the world's largest layered mafic intrusion. Science objectives include, but are not limited to: 1. Magma chamber processes & melt evolution. How many melts/magmas/mushes were involved, what were their compositions and how did they interact? What, if anything, is missing from the Complex, and where did it go? Did Bushveld magmatism have an effect upon Earth's atmosphere at 2 Ga? 2. Crust-mantle interactions & origin of Bushveld granitoids. Are Bushveld granites & rhyolites crustal melts, differentiates from the mafic magmas or products of immiscibility? How can the evolved isotopic signatures in the mafic rocks (e.g., epsilon Nd to -8) be understood? 3. Origin of ore deposits. What were the relative roles of gravity settling, magma mixing, immiscibility and hydrothermal fluid transport in producing the PGE, Cr and V deposits? We have identified 3 potential drilling targets representing a total of ~12 km of drill core. Exact locations of drill sites are to be discussed at the workshop. Target A- East-Central Bushveld Complex. We propose 3 overlapping 3 km boreholes that will provide the first roof-to-floor continuous coverage of the Rustenburg Layered Suite. These boreholes will represent a curated, internationally available reference collection of Bushveld material for present and future research. Target B- Southeastern Bushveld Complex. We propose a single borehole of ~2 km depth, collared in Rooiberg felsite, and positioned to intersect the Roof Zone, Upper Zone, Main Zone and floor of the Complex. Amongst other things, this site will evaluate the latest differentiates of the Complex: are they represented by felsic Rooiberg lavas (Van Tongeren & Mathez, 2012 J. Petrol. 51, 1891), or a newly-discovered sequence of hornblende quartz monzonites (Cawthorn, 2013, J. Petrol., in press)? Target C- Northern Lobe of Bushveld Complex. We propose 2 shorter ~500 m boreholes sited to (a) fill in missing stratigraphy of 2 existing deep cores (Bellevue & Moordkopje) including the unique 200 m thick troctolitic horizon in the Main Zone, and (b) to study the transgressive Main Zone - Upper Zone boundary several km north of the Bellevue/Moordkopje sites. All boreholes are intended to provide continuous down-hole geophysical measurements including magnetic susceptibility, density, electrical conductivity and radiometric data. There is also potential to obtain deep fluids and gases for biogeochemical and other studies. All interested geoscientists are welcome to attend the workshop. Watch the ICDP website for announcements (www.icdp-online.org).

  12. Coiled-tubing drilling

    SciTech Connect

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  13. Advanced drilling systems

    SciTech Connect

    Pierce, K.G.; Finger, J.T.; Livesay, B.J.

    1995-12-31

    Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

  14. Advanced drilling systems study.

    SciTech Connect

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  15. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  16. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  17. Focus on rotary drill rigs

    SciTech Connect

    Schivley, G.P. Jr.

    1987-06-01

    This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

  18. A Ship for Scientific Drilling.

    ERIC Educational Resources Information Center

    Peterson, M. N. A.; MacTernan, F. C.

    1982-01-01

    Traces the history and development of the Deep Sea Drilling Project, focusing on the Glomar Challenger, drilling improvements, and international significance. Includes photographs, illustrations, and tables. (DC)

  19. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S. (New York, NY); Myers, Gregory J. (Cornwall, NY)

    2007-11-13

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  20. Logging-while-coring method and apparatus

    DOEpatents

    Goldberg, David S.; Myers, Gregory J.

    2007-01-30

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  1. Geophysical examination of coal deposits

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.

    1981-04-01

    Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.

  2. Wireline Deep Drill for the Exploration of Icy Bodies

    NASA Technical Reports Server (NTRS)

    Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.

    2013-01-01

    One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.

  3. The rock melting approach to drilling

    SciTech Connect

    Cort, G.E.; Goff, S.J.; Rowley, J.C.; Neudecker, J.W. Jr.; Dreesen, D.S.; Winchester, W.

    1993-09-01

    During the early and mid-1970`s the Los Alamos National Laboratory demonstrated practical applications of drilling and coring using an electrically-heated graphite, tungsten, or molybdenum penetrator that melts a hole as it is slowly pushed through the rock or soil. The molten material consolidates into a rugged glass lining that prevents hole collapse; minimizes the potential for cross-flow, lost circulation, or the release of hazardous materials without casing operations; and produces no cuttings in porous or low density (<1.7 g/cc) formations. Because there are no drilling fluids required, the rock melting approach reduces waste handling, treatment and disposal. Drilling by rock melting has been demonstrated to depths up to 30 m in caliche, clay, alluvium, cobbles, sand, basalt, granite, and other materials. Penetrating large cobbles without debris removal was achieved by thermal stress fracturing and lateral extrusion of portions of the rock melt into the resulting cracks. Both horizontal and vertical holes in a variety of diameters were drilled in these materials using modular, self-contained field units that operate in remote areas. Because the penetrator does not need to rotate, steering by several simple approaches is considered quite feasible. Melting is ideal for obtaining core samples in alluvium and other poorly consolidated soils since the formed-in-place glass liner stabilizes the hole, encapsulates volatile or hazardous material, and recovers an undisturbed core. Because of the relatively low thermal conductivity of rock and soil materials, the heat-affected zone beyond the melt layer is very small, <1 inch thick. Los Alamos has begun to update the technology and this paper will report on the current status of applications and designs for improved drills.

  4. Preliminary Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

  5. 75 FR 10501 - Drill Pipe and Drill Collars from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... publishing the notice in the Federal Register of January 6, 2010 (75 FR 877). The conference was held in... Drill Pipe and Drill Collars from China Determinations On the basis of the record \\1\\ developed in the... injury by reason of imports from China of drill pipe and drill collars, provided for in subheadings...

  6. 76 FR 11812 - Drill Pipe and Drill Collars From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... September 9, 2010 (75 FR 54912). The hearing was held in Washington, DC, on January 5, 2011, and all persons... Drill Pipe and Drill Collars From China Determinations On the basis of the record \\1\\ developed in the... imports of drill pipe and drill collars from China, provided for in subheadings 7304.22, 7304.23, and...

  7. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-print Network

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations relatedRef citations indexed by the American Geological Institute 1969 through 2010 Produced by Integrated Ocean Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  8. Report of the Offset Drilling Workshop Ocean Drilling Program

    E-print Network

    Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

  9. Modified drill permits one-step drilling operation

    NASA Technical Reports Server (NTRS)

    Libertone, C.

    1966-01-01

    Drill with modified cutting faces permits one-step drilling operation without chatter upon contact and premature wear. The modification of the drill, which has the same diameter as that of the desired hole, consists of a groove across the bottom of each of the cutting faces of the drill flutes.

  10. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    NASA Astrophysics Data System (ADS)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale of the Hamersley Group near Yilgalong Creek. This location had been previously drilled by a mining company in the 1980’s and the core provided the highest biomarker yields of any Archean rocks thus far sampled. As it has been suggested that these biomarkers are non-indigenous contaminants, one possibility is that they were introduced into the drill-core at some time between drilling and sampling, so this hole tests that hypothesis. If biomarker concentrations and ratios differ significantly between the two adjacent holes with differing exposures to post-drilling contaminants, then clearly contamination has affected one or other of the cores. The third hole sampled an off-shore equivalent, through banded irons and kerogenous shales of the ~2.65 Ga Marra Mamba and Jeerinah Formations of the Hamersley Group near Cowcumba Creek. Another opportunity for contamination may arise during post-depositional but pre-drilling hydrocarbon migration, when biomarkers can potentially be introduced into previously barren rocks by younger oils, so this hole tests that possibility. As it was drilled through the same stratigraphic interval and structural domain as the second hole but in a different environment, biomarker ratios should be similar if contaminated but different if indigenous.

  11. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions. PMID:19105757

  12. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  13. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential. Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico. Final report

    SciTech Connect

    Swift, T.E.; Kumar, R.M.; Marlow, R.E.; Wilhelm, M.H.

    1982-08-01

    Field operations, which were conducted as a cooperative effort between Conoco and Gruy Federal, began on January 16, 1980 when the well was spudded. The well was drilled to 3692 feet, and 18 cores recovered in 18 core-barrel runs (144 feet). Upon completion of the coring phase, the hole was drilled to a total depth of 4150 feet and a complete suite of geophysical logs was run. Logging was then followed by completion and testing by Concoco. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations. Residual oil saturation were 259 STB/acre-ft for the 4035 - 4055 feet interval, and 150 STB/acre-ft for the 3692 - 3718 feet interval. Nine BOPD was produced from the 4035 - 4055 feet interval and no oil was produced from 3692 to 3718 feet interval, qualitatively confirming the relative oil saturations. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. 68 figures, 11 tables.

  14. Coring Performance to Characterise the Geology in the ``Cran aux Iguanodons'' of Bernissart (Belgium)

    NASA Astrophysics Data System (ADS)

    Tshibangu, Jean-Pierre; Dagrain, Fabrice; Legrain, Hughes; Deschamps, Benoît

    The Cran aux iguanodons of Bernissart is a sinkhole (or chimney caving) with a valuable paleontological deposit due to the exceptional quantity and diversity of fossils found during the excavation conducted from 1878 to 1881. In fact, bones have been discovered in a clayey geological formation when digging à mine gallery at the -322 m level. A subsequent extraction gave an overall production of 29 iguanodons skeletons. Referring to the available data at the Natural Sciences Museum of Brussels where the found skeletons are exhibited, one does not know the degree of depletion of the deposit after the extraction. A feasibility study (Tshibangu and Dagrain 1998) showed then the need to drill 4 exploration wells of 400 m depth with different objectives: to evaluate the chance of finding more fossils, understanding how and when the geological formations moved down, and testing a seismic geophysical technique for ground imaging. The typical geological formations concerned are: chalk, limestone, conglomerate, clays, and layers of silex nodules. In October 2002 the workings started with a completely cored well (the Number 3) using the PQ wireline technique. During operations, different parameters have been recorded: rate of penetration, core recovery and a brief core description. Some problems have been encountered when crossing silex stones contained in a clayey matrix; and this paper gives some interpretations in terms of the relationship between the lithology and the drilling performances.

  15. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F. (Los Alamos, NM)

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  16. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  17. November 2002 OCEAN DRILLING PROGRAM

    E-print Network

    November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

  18. January 2003 OCEAN DRILLING PROGRAM

    E-print Network

    January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

  19. February 2002 OCEAN DRILLING PROGRAM

    E-print Network

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  20. December 2001 OCEAN DRILLING PROGRAM

    E-print Network

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  1. Petroleum Engineering 355 Drilling Engineering

    E-print Network

    30 Petroleum Engineering 355 Drilling Engineering Credit 3: (3-0) Required for Juniors Catalog Description: The design and evaluation of well drilling systems; identification and solution of drilling problems; wellbore hydraulics, well control, casing design; well cementing directional drilling, offshore

  2. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    SciTech Connect

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  3. Drill pipe protector development

    SciTech Connect

    Thomerson, C.; Kenne, R.; Wemple, R.P.

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  4. Former Fish Drill Team 

    E-print Network

    Unknown

    2011-08-17

    As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D ...

  5. Drilling Productivity Report

    EIA Publications

    2015-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  6. Geothermal drilling technology

    SciTech Connect

    Dunn, J.C.; Livesay, B.J.

    1986-01-01

    The report discusses the current state of geothermal drilling technology with reference to how individual technology items are influenced by the following problem areas: high temperature; lost circulation; abrasive rocks; and corrosive gases. (ACR)

  7. Deep-Sea Drilling.

    ERIC Educational Resources Information Center

    White, Stan M.

    1979-01-01

    Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)

  8. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  9. Subsurface drill string

    DOEpatents

    Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  10. While drilling system and method

    DOEpatents

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  11. Subduction mega-earthquakes and other geohazards: IODP NanTroSEIZE as a type example for complex scientific drilling

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Tobin, H.; Kinoshita, M.

    2009-04-01

    Subduction zones account for 90% of global seismic moment release, generating damaging earthquakes and tsunamis, with potentially disastrous effects on heavily populated coastal areas. Understanding the processes that govern the strength of earthquakes, and nature and distribution of slip along these plate boundary fault systems, are crucial steps toward evaluating and mitigating geohazards, including tsunamis. As a consequence, the foremost goal of the IODP project NanTroSEIZE is to understand the mechanics and dynamics of seismogenesis and rupture propagation along the active plate boundary faults of a subduction zone, in terms of direct in situ sampling and instrumentation at depth. NanTroSEIZE is a multi-expedition, multi-platform complex drilling project which eventually will complete a transect of holes the deepest of which will penetrate the seismogenic zone off the Kii Peninsula, Japan, in ca. 6 km depth. Stage 1 drilling included three coordinated riserless expeditions with RV Chikyu to drill several sites across the continental slope and rise in fall 2007 through early 2008. The first of these was a logging while drilling (LWD) expedition that is serving as a geophysical baseline for all of the Stage 1A drilling sites (Expedition 314: LWD Transect). This was followed by a coring expedition (Expedition 315: Megasplay Riser Pilot) aimed at sampling the materials and characterising in situ conditions within the accretionary wedge to 1 km below seafloor at Site C0001 above the Stage 2 drill hole across the deep "mega-splay" out-of-sequence thrust. Expedition 316 (Shallow Megasplay and Frontal Thrusts) targeted another shallow fault zone of the "mega-splay" system in the older accretionary prism (Site C0004) as well as the frontal thrust at the toe of the young accretionary prism (Sites C0006 and C0007). Initial results from Stage 1A drilling reveal new insights into the stress history and temporal evolution of the Nankai forearc. First, there is no discontinuity in the depositional record between thick forearc basin sediments and the underlying, late Miocene accreted strata (C0002). Second, both borehole breakouts (LWD results) and the orientation of structural measurements on cores suggest a pattern of compression parallel to plate convergence in the wedge, trench-parallel extension above the branches of the mega-splay fault (in particular Site C0001), overlain by trench-orthogonal normal faults in the forearc and below, suggesting predominantly extensional stresses in the overriding accretionary system. Third, the fault zones are highly active given immense problems in borehole stability and core recovery at Sites C0001, C0004, and C0006. The initial Stage 1A shipboard data serve to put forward preliminary hypothesis on the displacement history along the mega-splay and frontal thrust faults. Those data will soon be complemented by Stage 1B drilling into the incoming sedimentary sequence (exp 322) and Stage 2 borehole observatory preparation (exp 319) later in 2009.

  12. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  13. Directional drilling pipelay

    SciTech Connect

    Langner, C.G.

    1987-10-20

    A method is described for laying a pipeline beneath a seabottom subject to ice gouging, comprising: forming a borehole with drilling means; gripping the inside of the borehole with at least one tractor; applying thrust from at least one tractor to propel the drilling means forward until a deep arcuate borehole is formed beneath the seabottom sufficiently deep to avoid ice gouging and inserting a pipeline into the borehole.

  14. Foam drilling simulator 

    E-print Network

    Paknejad, Amir Saman

    2007-04-25

    -1 FOAM DRILLING SIMULATOR A Thesis by AMIR SAMAN PAKNEJAD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 2005 Major Subject: Petroleum Engineering FOAM DRILLING SIMULATOR A Thesis by AMIR SAMAN PAKNEJAD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  15. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  16. Application of drilling fluid density detection based on intelligent sensor

    NASA Astrophysics Data System (ADS)

    He, Hong; Jia, Hengtian; Pan, Hongyan; Han, Shenglei; Cui, Xin

    2008-12-01

    This paper introduces a new method to detect drilling fluid density based on intelligent sensor, the core of which is silicon resonant sensor technology. Two H model resonant beams locating single crystal silicon resonant sensor con vert differential pressure to frequency signals respectively, then difference of two frequency signals are transmitted to CPU, export 4~20mA signal corresponding drilling fluid density after D/A converter. This method get over the short comings of typical drilling fluid density detection used piezocapacitive sensor, such as low accuracy, shattered easily, easy drift ...ect., has high precision, stability and reliability characters.

  17. MACHINERY RESONANCE AND DRILLING

    SciTech Connect

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  18. Managed Pressure Drilling Candidate Selection 

    E-print Network

    Nauduri, Anantha S.

    2010-07-14

    of derricks, rigs, drill pipe, casing, and downhole equipment, all took drilling engineering giant strides forward (Brantly 1971). ____________ This dissertation follows the style of SPE Drilling & Completion. 2 Moving on to modern times... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

  19. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  20. Drill pipe with helical ridge for drilling highly angulated wells

    SciTech Connect

    Finnegan, J.E.; Williams, J.G.

    1991-08-27

    This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

  1. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  2. ICDP Drilling in the Scandinavian Caledonides: the COSC Project

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.; Parrish, R. R.; Rosberg, J.

    2013-12-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, with drilling to be started in the late Spring of 2014, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust, allowing the drilling to also test the origin of the upper crustal reflectivity in this area. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilizing the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council.

  3. Cable-suspended Ice and Bedrock Electromechanical Drill: Design and Tests

    NASA Astrophysics Data System (ADS)

    Wang, Rusheng; Talalay, Pavel; Sun, Youhong; Zheng, Zhichuan; Cao, Pinlu; Zhang, Nan; Chen, Chen; Xu, Huiwen; Xue, Hong; Xue, Jun; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Hong, Jialing; Wang, Lili

    2014-05-01

    Directly obtaining the subglacial bedrock samples is one of the most important tasks of Antarctic exploration in the future, which has great significance to research the formation and evolution of the Antarctic ice sheet, research the environment at the junction of the ice and bedrock, and research the geologic structure in Polar Regions. To drill through ice and bedrock, a new modified version of the cable-suspended Ice and Bedrock Electromechanical Drill 'IBED' is designed. IBED drill has modulus construction. The upper part includes four sections: cable termination, slip rings section, antitorque system, electronic pressure chamber. The motor-gear system is differed by rotation speed of the output shaft of the gear-reducer. All modulus contain 3 kW AC3 × 380 V submersible motor. Gear-reducer for drilling in ice lowers the drill bit rotation speed to 100 rpm; gear reducer for subglacial drilling lowers the drill bit rotation speed to 500 rpm. In addition, module for dry core drilling contains vacuum pump for near bottom air reverse circulation instead of liquid-driven pump that is installed into other two variants. The rotation speed of air-driven pump is increased by the gear to 6000 rpm. In modules for drilling with liquid the gear pump is used with capacity of 38-41 L/min and maximal pressure of 0.2 MPa. IBED lower part for drilling in ice consists from two parts: chip chamber for filtration of drilling fluid and collecting chips, and core barrel with the drill bit. The outer/inner diameter of the ice core drill bit is 134/110 mm. Length of the core barrel is 2.5 m. Lower part of the bedrock drill is adapted for coring bedrock and contains standard 2-m length core barrel borrowed from conventional diamond drill string, chip chamber for gravity separation of rock cuttings and dead weights (appr. 200 kg) for increasing of the load on the diamond drill bit. The outer/inner diameters of the diamond bit are 59/41 mm. The IBED drill was tested in order to solve three different tasks: 1) dry core drilling of upper snow-firn layer with bottom-air reverse circulation; 2) fluid core drilling of glacial ice with bottom-fluid reverse circulation; 3) bedrock core drilling. The preliminary tests showed that sawtooth-shape impregnated diamond bit could penetrate into the granite with average rate of 3.18 m/h at low load (3 kN) and torque (28.8 Nm), and the groove-shape impregnated diamond drill bit could penetrate into the same rock with rate of 1.1 m/h at load of 2.3 kN. Moreover, the special control and measurement system of the drill was designed and tested to ensure the safety of drilling.

  4. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  5. 13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  6. Underbalanced drilling: Issues of producing oil and gas while drilling

    SciTech Connect

    Tangedahl, M.J.; Axford, A.

    1997-07-01

    Advances in engineering and technology have developed new blowout preventers, specialized surface fluids control equipment and well control techniques for under balanced drilling. The new technology makes under balanced drilling faster, safer and less expensive. These devices and techniques reduce the risk of blowouts, when drilling with air, gas or gas cut drilling fluids while producing the zone of interest. Improved penetration rates, increased bit life, drilling cost reduction and the prevention of formation damage are benefits of drilling under balanced and specially designed BOP stacks and well control products are necessary to ensure success. The following outlines the content of this paper: History and Development of Rotating Well Control for Under Balanced Drilling; Rotating BOP and Under Balanced Drilling BOP Stack, including Land Based Operations and Offshore Operations; Design and Technical Review; Safety; Operating Considerations; Field History, An Operator`s Perspective; and Advantages.

  7. Drilling technology/GDO

    SciTech Connect

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  8. Drilling and production yearbook

    SciTech Connect

    Perdue, J.M.; Kunkel, B.

    1998-03-01

    Of the numerous drill bit entries submitted this year, 301 set net world records, compared to 227 last year. There were 73 new single footage records, 79 new cumulative footage records, 63 new penetration rate records and 86 new records for hours on a single bit. Many bit runs were submitted for more than one category. In addition to the drill bit records, world records for offshore developments, horizontal wells, coiled tubing applications, stimulation, casing strings, production, seismic shoots, and completions are listed in separate sections in the Yearbook. This year, the categories with the most records submitted were horizontal wells and offshore developments, reflecting the increased activity in these areas. Records set in previous years that remain unbroken are also included so that the Drilling and Production Yearbook will be a complete reference for the industry.

  9. Mars Drilling Status

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  10. Report on the May-June 2002 Englebright Lake Deep Coring Campaign

    USGS Publications Warehouse

    Snyder, Noah P.; Alpers, Charles N.; Flint, Lorraine E.; Curtins, Jennifer A.; Hampton, Margaret A.; Haskell, Brian J.; Nielson, Dennis L.

    2004-01-01

    This report describes the May-June 2002 Englebright Lake coring project. Englebright Lake is a 14- km-long reservoir on the Yuba River of northern California, impounded by Englebright Dam, which was completed in 1940. The sediments were cored to assess the current conditions in the reservoir as part of the California Bay-Delta Authority?s Upper Yuba River Studies Program. Sediment was collected using both hydraulic-piston and rotational coring equipment mounted on a floating drilling platform. Thirty boreholes were attempted at 7 sites spaced along the longitudinal axis of the reservoir. Complete sedimentary sections were recovered from 20 boreholes at 6 sites. In total, 335 m of sediment was cored, with 86% average recovery. The core sections (each up to 1.5 m long) were processed using a standard set of laboratory techniques, including geophysical logging of physical properties, splitting, visual descriptions, digital photography, and initial subsampling. This report presents the results of these analyses in a series of stratigraphic columns. Using the observed stratigraphy as a guide, several series of subsamples were collected for various sedimentologic, geochemical, and geochronological analyses. The results of laboratory analyses of most of these subsamples will be presented in future reports and articles.

  11. Integration of borehole geophysical properties into surface multichannel seismic data sets: First results from the SCOPSCO ICDP project

    NASA Astrophysics Data System (ADS)

    Lindhorst, Katja; Krastel, Sebastian; Baumgarten, Henrike; Wonik, Thomas; Francke, Alexander; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania), located on the Balkan Peninsula within the Dinaride-Hellenide-Albanide mountain belt is probably the oldest, continuously existing lake in Europe (2-5 Ma). Multidisciplinary studies at Lake Ohrid prove that it is an important archive to study the sedimentary and tectonic evolution of a graben system over a long time period. Within the frame of the International Continental Drilling Program (ICDP) a successful deep drilling campaign was carried out in spring 2013 with more than 2000 m of sediment cores at four sites. Downhole logging was realized at each site after coring, enabling us to integrate geophysical and sedimentological data into seismic cross sections in order to get a profound knowledge of climatic and environmental changes in the catchment area. The longest record (~569 m, site DEEP), recovered in the central part of lake Ohrid likely covers the entire lacustrine succession within Lake Ohrid Basin including several Interglacial and Glacial cycles. Sedimentological analyses are still ongoing; however, the upper 260 m of the DEEP reflecting the time period between Mid-Pleistocene Transition to present. An integration of borehole geophysical data into surface seismic lines shows that sediments, within the central part of Lake Ohrid, were deposited in a deep water environment over the last 600 ka. For the uppermost sediment cover, about 50 m of penetration, a very high resolution sediment echosounder data set allows us to identify major tephra layers and track them through the entire deep basin. Furthermore, a vertical seismic profile was carried out at site DEEP resulting in a conversion from two-way-travel-time into sediment depth. One major outcome is a corridor stack of the upgoing wave that clearly shows several reflectors linked to changes of sediment properties of cores and hence environmental and climate changes in the surrounding area of Lake Ohrid Basin. Several changes from Glacial to Interglacial, and vice versa, have been observed in the seismic data. Using a preliminary age model for interpreting physical parameters such as natural gamma ray, magnetic susceptibility, and sonic velocity shed light on causes and timing of additional reflectors at the site where the DEEP hole was cored in 2013. A grid of surface seismic lines enables us to expand this to the entire central basin and to reconstruct the sedimentary history of Lake Ohrid suggesting that the deep basin was in a rather stable condition with a water depth greater than a 100m.

  12. 31. VIEW OF DRILL HALL FROM NORTH END OF DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF DRILL HALL FROM NORTH END OF DRILL FLOOR FACING SOUTH. SHOWS EAST AND WEST BALCONIES, VEHICLE ENTRANCE AT THE SOUTHWEST CORNER OF THE DRILL FLOOR, THE CONCESSION STAND IN THE SOUTHEAST CORNER OF THE DRILL FLOOR AND THE FOUR WINDOWS IN THE SOUTH TRUSS SPACE. NOTE CRACKS IN THE UPPER RIGHT CORNER (WEST) OF THE SOUTH WALL. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  13. Laser Drilling - Drilling with the Power of Light

    SciTech Connect

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  14. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  15. Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes

    SciTech Connect

    Kolstad, George A.; Rowley, John C.

    1987-01-16

    This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

  16. Satellite Gravity Drilling the Earth

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  17. Combination drilling and skiving tool

    DOEpatents

    Stone, William J. (Kansas City, MO)

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  18. Modified Cobalt Drills With Oil Passages

    NASA Technical Reports Server (NTRS)

    Hutchison, E.; Richardson, D.

    1986-01-01

    Oil forced through drill shanks to lubricate cutting edges. Drill bits cooled and lubricated by oil forced through drill shanks and out holes adjacent to bits. This cooling technique increases drillbit life and allows increased drill feed rates.

  19. Petroleum Engineering 225 Introduction to Drilling Systems

    E-print Network

    8 Petroleum Engineering 225 Introduction to Drilling Systems Credit 3: (2-3) Required for Sophomores Catalog Description: Introduction to petroleum drilling systems, including fundamental petroleum engineering concepts, quantities and unit systems, drilling rig components, drilling fluids, pressure loss

  20. Diamond-Cutter Drill Bits

    SciTech Connect

    1995-11-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Diamond-Cutter Drill Bits Diamond-cutter drill bits cut through tough rock quicker, reducing the cost of drilling for energy resources The U.S. Department of Energy (DOE) contributed markedly to the geothermal, oil, and gas industries through the development of the advanced polycrystalline diamond compact (PDC) drill bit. Introduced in the 1970s by General Electric Company (GE), the PDC bit uses thin, diamond layers bonded to t

  1. Case study of the Wendel-Amedee Exploration Drilling Project, Lassen County, California, User Coupled Confirmation Drilling Program

    SciTech Connect

    Zeisloft, J.; Sibbett, B.S.; Adams, M.C.

    1984-09-01

    The Wendel-Amedee KGRA is located in Honey Lake basin in Lassen County, California, on the boundary between the Modoc Plateau and the Basin and Range geologic provinces. A variety of geophysical surveys was performed over the project property. Geophysical data helped in establishing the regional structural framework, however, none of the geophysical data is sufficiently refined to be considered suitable for the purpose of siting an exploration drill hole. Drilling of reservoir confirmation well WEN-1 took place from August 1 to September 22, 1981. Pulse and long-term flow testing subjected the reservoir to a maximum flow of 680 gpm for 75 hours. At that rate, the well exhibited a productivity index of 21.6 gpm/psi; the reservoir transmissivity was 3.5 x 10/sup 6/ md-ft/cp. The maximum bottom-hole temperature recorded during testing was 251/sup 0/F. The conceptual model of the geothermal resource at Wendel Hot Springs calls on ground water, originating in the neighboring volcanic highlands, descending through jointed and otherwise permeable rocks into the granitic basement. Once in the basement, the fluid is heated as it continues its descent, and lateral movement as dictated by the hydrologic gradient. It then rises to the discharge point along transmissive faults. 45 refs., 28 figs., 3 tabs.

  2. Towards a distributed infrastructure for research drilling in Europe

    NASA Astrophysics Data System (ADS)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.

  3. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2007-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  4. Geophysics: The Earth in Space. A Guide for High School Students.

    ERIC Educational Resources Information Center

    American Geophysical Union, Washington, DC.

    Geophysics is the application of physics, chemistry, and mathematics to the problems and processes of the earth, from its innermost core to its outermost environs in space. Fields within geophysics include the atmospheric sciences; geodesy; geomagnetism and paleomagnetism; hydrology; oceanography; planetology; seismology; solar-planetary…

  5. U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract 199 The volcanic record in the ANDRILL McMurdo Ice Shelf AND-1B drill core

    E-print Network

    Dunbar, Nelia W.

    in the AND-1B core are reported here. Remarkable volcanic deposits include: a) a phonolitic pumice layer pumice lapilli tuff, dated at 22 Ma, was found in the Cape Roberts project CRP-2 drillhole (Armienti, et

  6. CHAPHOLO (scientific drilling project): Paleolimnological Evaluation of Lake Chapala, western Mexico, During Holocene (CONACYT grant: CB2011-168685)

    NASA Astrophysics Data System (ADS)

    Zarate, P. F.; Fritz, S. C.; Ramirez Sanchez, U.; Gomez Salazar, S.; Ceja Andrade, I.; Priyadarsi Debajyoti, R.; Brenner, M.

    2012-12-01

    CHAPHOLO ( CHAP: Chapala; HOLO: Holocene) has as goal to evaluate paleoenvironmental variations recorded in the sediment of neotectonic Lake Chapala (LCH), western Mexico (20°15.129'N, 103° 02.996'W). The lake lies about 1524 m asl. LCH is the largest lake in Mexico (1,100 kmyr2), but is shallow (zmax = 7.20 m). It is located in a basin belonging to the Citala Rift, the east-west branch of three continental rifts that join to form the so-called Jalisco triple junction. Our working hypothesis is that recent (Holocene) paleolimnological changes in LCH were caused by major climate variations and by minor regional/local processes (e.g. volcanism). We will drill a 40m long core from the lake depocenter, with the objective of recovering a full Holocene record, and likely more, assuming a mean sedimentation rate of 2 mm yr-1. Core chronology will be established using AMS 14C and 210Pb techniques and climate inferences will be made using geochemical, geophysical and micropaleontological proxies. Particularly, we pretend to identify the six "short" fluctuations of climate that characterized the Holocene (Mayewski et al., 2004) and the identification of Mediewal Warm Period and the droughts affected the mayan culture (Hodell et al., 1995). We will verify the application of Ti as a proxy to rainfall (Metcalfe et al., 2010). During the last 10,000 the fact about the dissolution of diatom in LCH sediments must be evaluated (Ryves et al., 2009). The working group is multidisciplinary (Geochemistry, Micropaleontology, Paleolimnology, Geophysics) and involves multiple institutions (Guadalajara University, Mexican National University-UNAM, University of Florida, University of Nebraska-Lincoln). CHAPHOLO is supported by funds from the Mexican government and from the Guadalajara University. The theme of CHAPHOLO is consistent with global environmental programs such as PAGES and CLIVAR. This project will be developed in stages over three years.

  7. Rheology of drilling muds

    NASA Astrophysics Data System (ADS)

    Kudaikulova, G.

    2015-04-01

    Therheological properties of drilling muds were studied. It is shown that for receiving pseudo-plastic liquids with an indicator of nonlinearity of N<0.3 use of polymers with a high molecular weight or a combination of polymers to various influence on water structure is most expedient.

  8. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  9. Red sea drillings.

    PubMed

    Ross, D A; Whitmarsh, R B; Ali, S A; Boudreaux, J E; Coleman, R; Fleisher, R L; Girdler, R; Manheim, F; Matter, A; Nigrini, C; Stoffers, P; Supko, P R

    1973-01-26

    Recent drilling in the Red Sea has shown that much of the basin is underlain by evaporites of a similar age to that of evaporites found in the Mediterranean Sea. These evaporites and their structural positions indicate that other brine areas are present-and, indeed, several others have been discovered. PMID:17843766

  10. Seismic While Drilling (SWD) methodology in support to Moon subsurface stratigraphy investigations

    NASA Astrophysics Data System (ADS)

    Poletto, Flavio; Magnani, Piergiovanni; Gelmi, Rolando; Corubolo, Piero; Re, Edoardo; Schleifer, Andrea; Perrone, Antonio; Salonico, Antonio; Coste, Pierre

    2015-05-01

    The knowledge of the Moon subsoil geophysical properties is of great importance, for scientific reasons for the development of the Lunar exploration activities and the envisaged exploitation of its planetary resources. The Moon surface is characterized by the presence of regolith, a powdered material made up of unconsolidated, porous and highly brecciated rock fragments of several different grain sizes and lithologies. Beneath the regolith, a transition zone showing higher acoustic velocities may be present down to the solid bedrock. The bedrock consists of basaltic layers characterized by high seismic velocity and low seismic attenuation. In these conditions, human civil engineering and rover activities, including drilling may be subject to risk due to the lack of knowledge of the complex subsoil properties. Seismic While Drilling is a method used on Earth to support from geophysical point of view the drilling for oil and gas and geothermal exploration. In this application, the characterization of the stratigraphy by vertical seismic profiles in the drilled section, providing seismic images of the to-be-drilled substructures, is obtained using the drill-bit radiated energy. We present the result of a project that studies the adaptation of the method for Lunar drilling purposes, taking into account the specific issues related to the Moon environment and remote communication aspects. The results of a laboratory test conducted in the framework of a European Space Agency project (completed in 2009) with a planetary drill prototype and a simulator of a complete remote system are presented and discussed together with the perspectives for the seismic-while-drilling application for planetary missions.

  11. November 2002 OCEAN DRILLING PROGRAM

    E-print Network

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  12. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  13. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  14. Field procedures manual: Sample handling, Salton Sea Scientific Drilling Project

    SciTech Connect

    Goff, S.; Mehegan, J.; Michels, D.

    1989-02-01

    This Field Procedures Manual is the comprehensive operations guide that was used to curate samples obtained from the Salton Sea Scientific Drilling Project (SSSDP). It is being published in the form used on site by the curation team. Samples recovered from the SSSDP were curated following the Policy Guidelines established for the Department of Energy/Office of Basic Energy Sciences (DOE/OBES) Continental Scientific Drilling Program (CSDP)/Thermal Regimes effort, which recognizes the uniqueness and site-specific nature of each drilling project. The SSSDP is a rotary drilling project that has provided cuttings and spot cores as well as liquid and gas samples. This manual provides details on handling all of these sample types. 6 refs., 10 figs.

  15. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the bit is a thick-walled maraging steel collection tube allowing the powdered sample to be augured up the hole into the sample chamber. For robustness, the wall thickness of the DBA was maximized while still ensuring effective sample collection. There are four recesses in the bit tube that are used to retain the fresh bits in their bit box. The rotating bit is supported by a back-to-back duplex bearing pair within a housing that is connected to the outer DBA housing by two titanium diaphragms. The only bearings on the drill in the sample flow are protected by a spring-energized seal, and an integrated shield that diverts the ingested powdered sample from the moving interface. The DBA diaphragms provide radial constraint of the rotating bit and form the sample chambers. Between the diaphragms there is a sample exit tube from which the sample is transferred to the CHIMRA. To ensure that the entire collected sample is retained, no matter the orientation of the drill with respect to gravity during sampling, the pass-through from the forward to the aft chamber resides opposite to the exit tube.

  16. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  17. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  18. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  19. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  20. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during...

  1. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009