Science.gov

Sample records for geoscience case study

  1. Raft River geoscience case study

    SciTech Connect

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  2. Enactment of a Geoscience Curriculum by Using Innovative Curriculum Materials: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Hansen, Henning; Hlawatsch, Sylke; Lucken, Markus

    2007-01-01

    Trying to implement interdisciplinary geoscience curriculum materials in geography and science education we asked how they fit into teachers' existing practices, their needs for support and strategies to plan instruction. The focus of our case study has been the identification of the goals teachers pursue with the materials, of strategies for…

  3. The Special Place Project: Efficacy of a Place-Based Case Study Approach for Teaching Geoscience

    NASA Astrophysics Data System (ADS)

    Moosavi, Sadredin

    2014-05-01

    Achieving geoscience literacy of the general population has become increasingly important world wide as ever more connected and growing societies depend more and more on our planet's limited natural resource base. Building citizen understanding of their dependence on the local environment, and the geologic processes which created and continue to change it, has become a great challenge to educators at all levels of the education system. The Special Place Project described in this presentation explores use of a place-based case study approach combining instruction in geoscience content with development of observation, reasoning, writing and presentation skills. The approach allows students to select the locations for their individual case studies affording development of personal connections between the learner and his environment. The approach gives instructors at many grade levels the ability to develop core pedagogical content and skills while exploring the unique geologic environments relevant to the local population including such critical issues as land use, resource depletion, energy, climate change and the future of communities in a changing world. The geologic reasons for the location of communities and key events in their histories can be incorporated into the students' case studies as appropriate. The project is unique in placing all course instruction in the context of the quest to explore and gain understanding of the student's chosen location by using the inherently more generalized course content required by the curriculum. By modeling how scientists approach their research questions, this pedagogical technique not only integrates knowledge and skills from across the curriculum, it captures the excitement of scientific thinking on real world questions directly relevant to students' lives, increasing student engagement and depth of learning as demonstrated in the case study reports crafted by the students and exam results. Student learning of topics

  4. Exploratory qualitative case study of lab-type activity interactions in an online graduate geoscience course

    NASA Astrophysics Data System (ADS)

    Ciavarella, Veronica C.

    This exploratory qualitative case study investigated the use of lab-type activities in an online graduate geoscience course. Constructivism is the theoretical framework used to explain how learning happens in lab-type activity, and provided the goals to which successful learning in lab-type activity is compared. This study focused on the learner-instructor, learner-learner, and perceptions of the learner-content interactions that occurred related to lab-type activities in an online graduate geoscience course to determine: if the instructor appeared as a facilitator of the learning process in the interactions over the activities; if students engaged in discussion and reflection about the activities; if students perceived the activities as meaningful and authentic; and if students perceived using higher order thinking and prior knowledge while interacting with the content. Ten graduate students from three offerings of the course participated in this study, as well as the instructor and designer of the course content and lab-type activities. Data were collected through interviews, and observation and analysis of the lab-type activities, instructor feedback to students in their graded activities, and discussion that occurred between the instructor and students and among students about the lab-type activities in discussion forums. The nature of the instructor's interactions in discussion forums, in feedback to students on graded activities, and reported by students' in interviews supported that, in the learner-instructor interactions, the instructor of this course was a facilitator who guided and scaffolded the students towards successfully completing the activities. Students engaged in discussion and reflected on the activities, but most learner-learner interactions in discussion forums about the lab-type activities appeared to occur for the purpose of comparison of results, support, and empathy. Students' success at higher order thinking type questions in lab

  5. Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming

    NASA Astrophysics Data System (ADS)

    Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.

    2011-12-01

    Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be

  6. Case Studies of Two American Towns That Have Recently Developed Geotourism Venues: A Comparison of Steps Taken in Geoscience Education Program Development

    NASA Astrophysics Data System (ADS)

    Wandersee, J. H.; Clary, R. M.

    2005-12-01

    In June, 2003, CNN reported that there were three US public fossil parks (in OH, NY, and IA) that embraced educational missions and allowed the public to collect and actually keep the fossils they found. The new parks moved beyond exhibiting fossils to allowing the park visitor to have a direct, tangible, and authentic geobiological field experience, typically culminating in the visitor's identification and ownership of a small number of personally collected fossils. Our site-based, qualitative, comparative geoscience educational analysis of the strengths and weaknesses of the first three parks was presented at the 2004 International Geological Congress. We subsequently developed a fossil park design model for others contemplating the establishment or instructional use of such parks. Today there are five specially developed, public fossil parks in the US. All are owned and operated by city or county governments, or by non-profit organizations. Each considers its primary mission to be advancing geoscience education. In the current investigation, we conducted on-site, multiple case study research on the two newest US fossil parks. Both are located in small towns: Trammel Fossil Park in Sharonville, Ohio (population 13,000), and Fossil Beds Park in Fossil, Oregon (population 430). The former site is Ordovician in age, with four fossiliferous marine formations. The latter is an Oligocene lake bed and contains approximately 35 species of identified plant fossils. Our focus in both case studies was on identifying the steps of successful fossil park development that lead to a sound informal geoscience education program, based on principles of active, meaningful, and mindful learning (Langer, 1998; Michael and Modell, 2003; Mintzes, Wandersee, and Novak, 2000). We found that each town had developed a collaborative, community-driven, pedagogically innovative, field-based geotourism venue. Each was noteworthy in specific ways for its geoscience education potential as an

  7. On the tradeoffs of programming language choice for numerical modelling in geoscience. A case study comparing modern Fortran, C++/Blitz++ and Python/NumPy.

    NASA Astrophysics Data System (ADS)

    Jarecka, D.; Arabas, S.; Fijalkowski, M.; Gaynor, A.

    2012-04-01

    The language of choice for numerical modelling in geoscience has long been Fortran. A choice of a particular language and coding paradigm comes with different set of tradeoffs such as that between performance, ease of use (and ease of abuse), code clarity, maintainability and reusability, availability of open source compilers, debugging tools, adequate external libraries and parallelisation mechanisms. The availability of trained personnel and the scale and activeness of the developer community is of importance as well. We present a short comparison study aimed at identification and quantification of these tradeoffs for a particular example of an object oriented implementation of a parallel 2D-advection-equation solver in Python/NumPy, C++/Blitz++ and modern Fortran. The main angles of comparison will be complexity of implementation, performance of various compilers or interpreters and characterisation of the "added value" gained by a particular choice of the language. The choice of the numerical problem is dictated by the aim to make the comparison useful and meaningful to geoscientists. Python is chosen as a language that traditionally is associated with ease of use, elegant syntax but limited performance. C++ is chosen for its traditional association with high performance but even higher complexity and syntax obscurity. Fortran is included in the comparison for its widespread use in geoscience often attributed to its performance. We confront the validity of these traditional views. We point out how the usability of a particular language in geoscience depends on the characteristics of the language itself and the availability of pre-existing software libraries (e.g. NumPy, SciPy, PyNGL, PyNIO, MPI4Py for Python and Blitz++, Boost.Units, Boost.MPI for C++). Having in mind the limited complexity of the considered numerical problem, we present a tentative comparison of performance of the three implementations with different open source compilers including CPython and

  8. An overview of geoscience studies enabled with the UAVSAR instrument

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen; Hensley, Scott; Lou, Yunling

    2014-05-01

    UAVSAR is an L-band combined synthetic aperture radar/airborne platform system designed specifically for high spatial resolution differential interferometry (DInSAR) in support of solid earth geoscience. In addition to the InSAR capability, UAVSAR's low noise floor, fine spatial resolution, precise repeat imaging geometry, consistent calibration accuracy, vegetation canopy penetration capability, and complete (quad) polarimetric imaging make it a unique instrument for polarimetric synthetic aperture radar (PolSAR) studies. In the years since UAVSAR science acquisitions commenced, the instrument has supported a broad array of basic and applied geoscience, including InSAR-based studies of volcanoes, plate tectonics and earthquake faults, landslides, subsidence, sinkholes, and glaciers and ice sheets; PolSAR and InSAR studies of biomass retrieval and ecosystem/vegetation status; PolSAR studies of soil moisture, ocean eddies and oil slick characterization; and application of polarimetry in support of archeology and for monitoring critical infrastructure. Here we show the range of unique results that have come out of the scientific studies utilizing UAVSAR data; highlight new work that is in progress; give an overview of the spatial and temporal extent of the acquired data covering four continents that is freely available to researchers through NASA; and discuss plans for extended capability of the instrument system. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Raft River geoscience case study: appendixes

    SciTech Connect

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

  10. Geosciences projects FY 1985 listing

    SciTech Connect

    Not Available

    1986-05-01

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  11. Mars Geoscience Climatology Orbiter (MGCO) extended study: Technical volume

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The FLTSATCOM Earth orbiting communications satellite is a prominent candidate to serve as the Mars Geoscience Climatology Orbiter (MGCO) spacecraft. Major aspects directly applicable are: (1) the incorporation of solid orbit insertion motor; (2) the ability to cruise to Mars in the spin-stabilized mode; (3) ample capability for payload mass and power; (4) attitude control tried to nadir and orbit plane coordinates; (5) exemplary Earth orbital performance record and projected lifetime; and (6) existence of an on-going procurement into the MGCO time period.

  12. Information needs and behaviors of geoscience educators: A grounded theory study

    NASA Astrophysics Data System (ADS)

    Aber, Susan Ward

    2005-12-01

    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier

  13. Geoscience on television: a review of science communication literature in the context of geosciences

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-06-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  14. Geoscience on television: a review of science communication literature in the context of geosciences

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Land-Zandstra, Anne; Smeets, Ionica; Stoof, Cathelijne

    2016-04-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society. This work is currently under review for publication in Hydrology and Earth System Sciences (HESS)

  15. Geoscience Education: An Overview

    ERIC Educational Resources Information Center

    King, Chris

    2008-01-01

    Geoscience educational publications are reviewed in seven areas to identify future directions for curriculum development, professional development and research. The review shows that: effective teaching methods encompassing broad geoscience study still need extensive research; whilst some valuable materials have been developed for the teaching of…

  16. Taking it to the streets: The case for modeling in the geosciences undergraduate curriculum

    NASA Astrophysics Data System (ADS)

    Campbell, Karen; Overeem, Irina; Berlin, Maureen

    2013-04-01

    The United States faces a crisis in education: a dire shortage of students sufficiently prepared in the STEM (Science, Technology, Engineering and Mathematics) disciplines to competitively enter the workforce (National Education Technology Plan, 2010). At the same time, there is increasing demand for well-trained geoscientists in a variety of careers related to the environment and natural resources. Many efforts, including the recently released Earth Science and Climate Literacy Principles, seek to promote better Earth science education, as well as to strengthen the Earth science literacy of the entire US population. Yet even those undergraduate students who choose to major in geology or related geoscience disciplines rarely acquire sufficient quantitative skills to be truly competitive graduate students or professionals. Experience with modeling, during their undergraduate careers, could greatly increase the quantitative literacy of geoscience majors and help them appreciate the real world applicability of mathematics and computational methods in their future careers in the geosciences.

  17. Study of dung, urine, and milk of selected grazing animals as bioindicators in environmental geoscience--a case study from Mangampeta barite mining area, Kadapa District, Andhra Pradesh, India.

    PubMed

    Raghu, V

    2015-01-01

    The ancient scientific Sanskrit texts of Ayurveda (science of longevity) deal with waters, plants, and animals in relation to human health. Based on the studies mentioned in Ayurveda and modern literature, biological responses of grazing animals in Mangampeta barite mining area in Kadapa District, Andhra Pradesh, were studied. A non-mineralized Tirupati area in Chittoor District, Andhra Pradesh, was selected for the purpose of comparison. In these areas, certain animal products of selected grazing animals were studied if they could be used as tools in mineral exploration. Samples of dung, urine, and milk from cow, bullock, she-buffalo, he-buffalo, sheep, and goat were collected from these two areas during winter and summer seasons. Goat dung was found to have lowest moisture content and highest organic matter while goat urine contained highest amounts of organic matter and ash content. All these animal products were analyzed for 11 trace elements. The concentration of trace elements released through dung, urine, and milk widely varied in different animal species with seasonal variations. The elemental concentration was higher in dung and lower in urine, when compared to that of milk. The concentration of all elements in dung, urine, and milk of all animals, in both the areas, was higher in winter than that in summer. Dung represents the metabolic process of the whole animal and reflects the dietary conditions whether fed on natural or inorganic supplement. It can be inferred that dung, urine, and milk of any animal can be used as tools in mineral exploration during winter, while during summer, only dung can be useful. The dung of goat when compared to that of the other cattle serves as a better tool in environmental studies as goat depends almost entirely on natural vegetation without human interference. PMID:25416966

  18. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    NASA Astrophysics Data System (ADS)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  19. Sustaining a Global Geoscience Workforce-The Case for International Collaboration

    NASA Astrophysics Data System (ADS)

    Leahy, P. P.; Keane, C. M.

    2013-05-01

    Maintaining an adequate global supply of qualified geoscientists is a major challenge facing the profession. With global population expected to exceed 9 billion by midcentury, the demand for geoscience expertise is expected to dramatically increase if we are to provide to society the resource base, environmental quality, and resiliency to natural hazards that is required to meet future global demands. The American Geoscience Institute (AGI) has for the past 50 years tracked the supply of geoscientists and their various areas of specialty for the US. However, this is only part of the necessary workforce analysis, the demand side must also be determined. For the past several years, AGI has worked to acquire estimates for workforce demand in the United States. The analysis suggests that by 2021 there will be between 145,000 to 202,000 unfilled jobs in the US. This demand can be partially filled with an increase in graduates (which is occurring at an insufficient pace in the US to meet full demand), increased migration of geoscientists internationally to the US (a challenge since demands are increasing globally), and more career placement of bachelor degree recipients. To understand the global workforce dynamic, it is critical that accurate estimates of global geoscience supply, demand and retirement be available. Although, AGI has focused on the US situation, it has developed international collaborations to acquire workforce data. Among the organizations that have contributed are UNESCO, the International Union of Geological Sciences (IUGS), the Young Earth-Scientists Network, and the Geological Society of Africa. Among the areas of international collaboration, the IUGS Task Group on Global Geoscience Workforce enables the IUGS to take a leadership role in raising the quality of understanding of workforce across the world. During the course of the taskforce's efforts, several key understandings have emerged. First, the general supply of geoscientists is quantifiable

  20. The use of geoscience methods for terrestrial forensic searches

    NASA Astrophysics Data System (ADS)

    Pringle, J. K.; Ruffell, A.; Jervis, J. R.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M.

    2012-08-01

    Geoscience methods are increasingly being utilised in criminal, environmental and humanitarian forensic investigations, and the use of such methods is supported by a growing body of experimental and theoretical research. Geoscience search techniques can complement traditional methodologies in the search for buried objects, including clandestine graves, weapons, explosives, drugs, illegal weapons, hazardous waste and vehicles. This paper details recent advances in search and detection methods, with case studies and reviews. Relevant examples are given, together with a generalised workflow for search and suggested detection technique(s) table. Forensic geoscience techniques are continuing to rapidly evolve to assist search investigators to detect hitherto difficult to locate forensic targets.

  1. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  2. Deep Time Framework: A Preliminary Study of U.K. Primary Teachers' Conceptions of Geological Time and Perceptions of Geoscience.

    ERIC Educational Resources Information Center

    Trend, Roger David

    2001-01-01

    Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)

  3. The Geoscience Alliance--A National Network for Broadening Participation of Native Americans in the Geosciences

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Berthelote, A. R.

    2014-12-01

    The Geoscience Alliance is a national alliance of individuals committed to broadening participation of Native Americans in the geosciences. Native Americans in this case include American Indians, Alaska Natives and people of Native Hawai'ian ancestry. Although they make up a large percentage of the resource managers in the country, they are underrepresented in degrees in the geosciences. The Geoscience Alliance (GA) members are faculty and staff from tribal colleges, universities, and research centers; native elders and community members; industry, agency, and corporate representatives; students (K12, undergraduate, and graduate); formal and informal educators; and other interested individuals. The goals of the Geoscience Alliance are to 1) create new collaborations in support of geoscience education for Native American students, 2) establish a new research agenda aimed at closing gaps in our knowledge on barriers and best practices related to Native American participation in the geosciences, 3) increase participation by Native Americans in setting the national research agenda on issues in the geosciences, and particularly those that impact Native lands, 4) provide a forum to communicate educational opportunities for Native American students in the geosciences, and 5) to understand and respect indigenous traditional knowledge. In this presentation, we look at the disparity between numbers of Native Americans involved in careers related to the geosciences and those who are receiving bachelors or graduate degrees in the geosciences. We address barriers towards degree completion in the geosciences, and look at innovative programs that are addressing those barriers.

  4. Mississippi State University’s Geoscience Education and Geocognition Research Program in the Department of Geosciences

    NASA Astrophysics Data System (ADS)

    McNeal, K.; Clary, R. M.; Sherman-Morris, K.; Kirkland, B.; Gillham, D.; Moe-Hoffman, A.

    2009-12-01

    The Department of Geosciences at Mississippi State University offers both a MS in Geosciences and a PhD in Earth and Atmospheric Sciences, with the possibility of a concentration in geoscience education. The department offers broad research opportunities in the geoscience sub-disciplines of Geology, Meteorology, GIS, and Geography. Geoscience education research is one of the research themes emphasized in the department and focuses on geoscience learning in traditional, online, field-based, and informal educational environments. Approximately 20% of the faculty are actively conducting research in geoscience education and incorporate both qualitative and quantitative research approaches in areas including: the investigation of effective teaching strategies, the implementation and evaluation of geoscience teacher professional development programs and diversity enhancement programs, the study of the history and philosophy of science in geoscience teaching, the exploration of student cognition and understanding of complex and dynamic earth systems, and the investigation of using visualizations to enhance learning in the geosciences. The inception and continued support of an active geoscience education research program is derived from a variety of factors including: (1) the development of the on-line Teachers in Geosciences (TIG) Masters Degree Program which is the primary teaching appointment for the majority of the faculty conducting geoscience education research, (2) the securing of federal funds to support geoscience education research, (3) the publication of high-quality peer-reviewed research papers in both geoscience education and traditional research domains, (4) the active contribution of the geoscience education faculty in their traditional research domains, (5) a faculty that greatly values teaching and recognizes the research area of geoscience education as a sub-domain of the broader geoscience disciplines, (6) the involvement of university faculty, outside

  5. AMS Online Weather Studies: The National Dissemination of a Distance Learning Course for Enhancing Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2004-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in geoscience courses simply because none is offered at their college or university. Often college-level introductory courses are a student's first exposure to the geosciences. To help alleviate this problem of access, the American Meteorological Society (AMS) has developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course has been licensed by over 230 colleges and universities nationwide, among them 72 minority-serving institutions which have joined via the AMS Online Weather Studies Geosciences Diversity Program since 2002. This program designed to reach institutions serving large numbers of minority students has been made possible through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time - a highly motivational learning experience. The AMS Education Program designed and services this course

  6. An Ontology for Representing Geoscience Theories and Related Knowledge

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-12-01

    Online scientific research, or e-science, is increasingly reliant on machine-readable representations of scientific data and knowledge. At present, much of the knowledge is represented in ontologies, which typically contain geoscience categories such as ‘water body’, ‘aquifer’, ‘granite’, ‘temperature’, ‘density’, ‘Co2’. While extremely useful for many e-science activities, such categorical representations constitute only a fragment of geoscience knowledge. Also needed are online representations of elements such as geoscience theories, to enable geoscientists to pose and evaluate hypotheses online. To address this need, the Science Knowledge Infrastructure ontology (SKIo) specializes the DOLCE foundational ontology with basic science knowledge primitives such as theory, model, observation, and prediction. Discussed will be SKIo as well as its implementation in the geosciences, including case studies from marine science, environmental science, and geologic mapping. These case studies demonstrate SKIo’s ability to represent a wide spectrum of geoscience knowledge types, to help fuel next generation e-science.

  7. Discovering the Geosciences.

    ERIC Educational Resources Information Center

    Jackson, Julia A.

    1998-01-01

    Focuses on student awareness of careers in the geosciences. Provides an example of an instructional situation that motivated a student to pursue such a career. Includes a career-oriented poster and a list of geoscience careers. (DDR)

  8. New Resources on the Building Strong Geoscience Departments Website

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Manduca, C. A.; MacDonald, H.

    2009-12-01

    The Building Strong Geoscience Departments program aims to foster communication and sharing among geoscience departments in order to allow for rapid dissemination of strong ideas and approaches. Sponsored by NAGT, AGI, AGU, and GSA, the project has developed a rich set of web resources and offered workshops on high-interest topics, such as recruiting students, curriculum development, and program assessment. The Building Strong Geoscience Departments website has a growing collection of resources, drawn from workshop discussions and presentations, showcasing how geoscience departments approach curriculum revision, student recruitment, and program assessment. Recruitment resources consist of specific examples of a wide variety of successful approaches to student recruitment from departments at a wide array of institutions. Curricular feature pages framing the process of curriculum development or revision and a collection of dozens of geoscience curricula, searchable by degree program name. Each curriculum in the collection includes a diagram of the course sequence and structure. Program assessment resources include a collection of assessment instruments, ranging from alumni surveys and student exit interviews to course evaluations and rubrics for assessing student work, and a collection of assessment planning documents, ranging from mission and vision statements through student learning goals and outcomes statements to departmental assessment plans and guidelines for external reviews. These recruitment strategies, curricula, and assessment instruments and documents have been contributed by the geoscience community. In addition, we are developing a collection of case studies of individual departments, highlighting challenges they have faced and the strategies they have used to successfully overcome those challenges. We welcome additional contributions to all of these collections. These online resources support the Building Strong Geoscience Departments Visiting

  9. Deep time framework: A preliminary study of U.K. primary teachers' conceptions of geological time and perceptions of geoscience

    NASA Astrophysics Data System (ADS)

    Trend, Roger David

    2001-02-01

    As part of a continuing research program on the understanding of geological time (deep time) across society, a total of 51 in-service teachers of 7- to 11-year-old children was studied in relation to their orientations toward geoscience phenomena in general and deep time in particular. The first purpose of the research was to identify the nature of idiosyncratic conceptions of deep time: a cognitive deep time framework of pivotal geo-events. The second was to propose a curricular Deep Time Framework that may form the basis for constructivist approaches to in-service and pre-service teacher training which places deep time center stage. Three research questions were posed, addressing: (1) perceptions of geoscience phenomena and teachers' actual encounters with these in the classroom; (2) conceptions of deep time; and (3) approaches to teaching two curriculum areas (history and geology) which involve the interpretation of material evidence to reconstruct the past. Results enable the selection of 20 geoscience phenomena to be located in relation to teachers' interests and classroom encounters, those of high interest and high encounters being proposed as pivotal areas for further attention in teacher training. Results also reveal that in-service teachers conceive events in the geological past (geo-events) as having occurred in three distinct clusters: extremely ancient; moderately ancient; and less ancient. Within each category there is a strong lack of consensus on time-of-occurrence. Results suggest that primary teachers exhibit greater imagination in their teaching of history compared with geology and that aspects of deep time and past environments are not perceived as being of any great significance in the interpretation of geological specimens.

  10. Teaching Geoethics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel

    2015-04-01

    values required to successfully prepare for and contribute to a career in the geosciences? 2) Geoethics and the geoscience profession: what are the ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice expected of the profession? 3) Geoethics and society: what are the responsibilities of geoscientists to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect the health, safety, and economic security of humanity? 4) Geoethics and Earth: what are the responsibilities of geoscientists to provide good stewardship of Earth based on their knowledge of Earth's composition, architecture, history, dynamic processes, and complex systems? Consideration of these components of geoethics will prepare students to recognize ethical dilemmas, and to master the skills needed for ethical decision-making in their professional lives. Collections of resources, case studies, presentations and working group summaries of the workshop can be accessed at: http://serc.carleton.edu/geoethics/index.html

  11. Enhancing Diversity in the Geosciences through National Dissemination of the AMS Online Weather Studies Distance Learning Course

    NASA Astrophysics Data System (ADS)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2002-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in an introductory geoscience course simply because none is offered at their college or university. Often introductory or survey courses are a student's first exposure to the geosciences. To help alleviate this problem, the American Meteorological Society (AMS) through its Education Program developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course will be offered at 130 colleges and universities nationwide, including 30 minority-serving institutions, 20 of which have joined the AMS Online Weather Studies Diversity Program during 2002. The AMS encourages course adoption by more institutions serving large numbers of minority students through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time-a highly motivational learning experience. The AMS Education Program designed and services this course and

  12. Case Studies

    ERIC Educational Resources Information Center

    Ritter, Lois A., Ed.; Sue, Valerie M., Ed.

    2007-01-01

    This article presents two case studies using online surveys for evaluation. The authors begin with an example of a needs assessment survey designed to measure the amount of help new students at a university require in their first year. They then discuss the follow-up survey conducted by the same university to measure the effectiveness of the…

  13. Why Study Geoscience? Identifying Effective Recruitment and Retention Strategies for an Undergraduate Earth & Environmental Sciences Program

    NASA Astrophysics Data System (ADS)

    Vajoczki, S.; Eyles, C. H.; Stewart, J.; Dasilva, L.

    2005-12-01

    McMaster University is a `research intensive' university with 17,000+ full time undergraduate students. The School of Geography and Earth Sciences (SGES) is located within the Faculty of Science, offers B.Sc., B.A., M.Sc., M.A. and PhD degree programs and teaches more than 70 undergraduate courses on an annual basis. The Honours B.Sc program in Earth and Environmental Sciences (EES) graduates approximately 25 students per year. Students enroll in undergraduate SGES programs in their second year, after completion of an introductory first year in the Faculty of Science in which they take compulsory science courses including math, physics, chemistry, and biology. First year students, as well as those in upper years, may also elect to take one or more of three introductory courses offered by SGES (Earth & the Environment, The Living Environment, Atmosphere & Hydrosphere) to complete their science requirements. Most students entering the Faculty of Science know little about geoscience as it does not form an important part of the Ontario secondary school curriculum. Hence, recruitment into the EES program is primarily via the first year courses. In order to establish reasons why students elected to take the introductory courses offered by SGES, and their reasons for considering subsequent entry to the B.Sc program, a survey of students taking one of the courses was conducted in the fall of 2003. Results from the survey indicate that students enroll in the course, and subsequently the EES program, for a variety of reasons including: general interest in how the planet works, concern for the environment, interesting title of the course and reputation of the instructor. Student concern over lack of potential jobs is cited as the main reason for not pursuing a degree in geoscience. This survey has helped to direct the multifaceted recruitment strategies used by SGES to continue to develop its undergraduate program through delivery of high quality first year courses

  14. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  15. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  16. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  17. Case Study: Testing with Case Studies

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2015-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses using case studies to test for knowledge or lessons learned.

  18. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  19. National Geoscience Data Repository System: Phase 2 -- Planning and pilot study. Progress report, 1. quarter, January--March 1997

    SciTech Connect

    1997-04-01

    The NGDRS goal is to preserve and make geoscience and engineering data readily accessible to those who have an interest in using such data. To achieve this goal requires the careful management of the process for transferring data from data providers to the public domain and the creation of the information systems organization and infrastructure to allow data consumers to find and access the data. This report describes the NGDRS organization structure; the development of a directory of existing geoscience data repositories; the financial models for data transfer (seismic data transfer, core data transfer, and data browser); and the overall architecture of the repository system.

  20. Hydrocarbon geoscience research strategy

    SciTech Connect

    Not Available

    1990-04-01

    This document outlines a strategy for oil and gas related research focused on optimizing the economic producibility of the Nation's resources. The Hydrocarbon Geoscience Strategy was developed by the Hydrocarbon Geoscience Research Coordinating Committee of the Department of Energy (DOE). This strategy forms the basis for the development of DOE Fossil Energy's Oil Research Program Implementation Plan and Natural Gas Program Implementation Plan. 24 refs., 5 figs., 3 tabs.

  1. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem

    USGS Publications Warehouse

    Morgan, Lisa A., (Edited By)

    2007-01-01

    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  2. Teaching GeoEthics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.

    2014-12-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic

  3. Excess science accommodation capabilities and excess performance capabilities assessment for Mars Geoscience and Climatology Orbiter: Extended study

    NASA Technical Reports Server (NTRS)

    Clark, K.; Flacco, A.; Kaskiewicz, P.; Lebsock, K.

    1983-01-01

    The excess science accommodation and excess performance capabilities of a candidate spacecraft bus for the Mars Geoscience and Climatology Orbiter MGCO mission are assessed. The appendices are included to support the conclusions obtained during this contract extension. The appendices address the mission analysis, the attitude determination and control, the propulsion subsystem, and the spacecraft configuration.

  4. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students

    NASA Astrophysics Data System (ADS)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.

    2012-12-01

    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and

  5. Geosciences for sustainability

    NASA Astrophysics Data System (ADS)

    Ferreira, A. J. D.

    2012-04-01

    The world is facing overwhelming challenges with implications on the socio-economic performance and the quality of life around the planet. New solutions are needed to prevent, overcome or mitigate the turmoil processes caused by global change, resources exhaustion, and the procession of induced socio-economic impacts. To this end, solutions to optimize natural resources management, find new ways of using geophysical processes and properties as resources, and to use geosciences knowledge to find new, more sustainable ways to use earth resources, has to be sought for. This work is based on a literature review and on the building of a sustainable development strategy currently being prepared at the Portuguese Centro Region by the author, as part of a Research Centre strategy towards the improvement of environmental performance, of organizations, products and infrastructures. The strategy is based on the optimal use of environmental services, to which the role of geosciences and is a key element. Harnessing the abiotic milieu and processes and mimicking the multiple scale interactions of ecosystem to improve the organization and the productivity and value of man ventures. Geosciences provide the matrix where activities occur; therefore, their judicious management will optimise resources use, providing the best solutions. In addition, geosciences and their relation with ecosystem research can be managed to improve yields, by optimizing the agriculture and forestry practices. One way to proceed, that is in the forefront of research towards sustainability is by developing ways to include geosciences and ecosystems factors in novel Environmental Management tools such as Life Cycle Assessments or Environmental Management Systems. Furthermore, the knowledge on geosciences cycles and processes is of paramount importance in any planning process and in the design of infrastructures, which has a key direct or indirect role in the optimization of energy management.

  6. Researcher, Teacher, Education Researcher: The Evolution of a University Geoscience Instructor

    ERIC Educational Resources Information Center

    Owens, Katharine D.; Steer, David; McConnell, David

    2006-01-01

    This case study describes a professor's evolution from geoscience researcher to effective teacher to education researcher. The article details his initial beliefs about teaching, looks at the factors that prompted him to seek a different teaching approach, and enumerates the supports and challenges that he had on his journey. Factors essential to…

  7. Case Study: Writing a Journal Case Study

    ERIC Educational Resources Information Center

    Prud'homme-Genereux, Annie

    2016-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue describes incorporating a journal article into the classroom by first converting it into a case study.

  8. Study on various elements of the geosciences with respect to space technology

    NASA Technical Reports Server (NTRS)

    Head, J. W., III

    1981-01-01

    The utility of data acquired in space for both basic and applied studies of the geology of the Earth was evaluated. Focus was placed upon the gaps in the current ability to make effective use of remote sensing technology within the Earth sciences. A long range plan is presented for future research that involves an appropriate balance between the development and application of space techniques.

  9. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  10. Career Paths for Geosciences Students (Invited)

    NASA Astrophysics Data System (ADS)

    Bowers, T. S.; Flewelling, S. A.

    2013-12-01

    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  11. Geosciences after Paris

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; Knutti, Reto

    2016-03-01

    The adoption of the Paris Agreement is a historic milestone for the global response to the threat of climate change. Scientists are now being challenged to investigate a 1.5 °C world -- which will require an accelerated effort from the geoscience community.

  12. Learning to Think Spatially in an Undergraduate Interdisciplinary Computational Design Context: A Case Study

    ERIC Educational Resources Information Center

    Ben Youssef, Belgacem; Berry, Barbara

    2012-01-01

    Spatial thinking skills are vital for success in everyday living and work, not to mention the centrality of spatial reasoning in scientific discoveries, design-based disciplines, medicine, geosciences and mathematics to name a few. This case study describes a course in spatial thinking and communicating designed and delivered by an…

  13. Geoscience and the 21st Century Workforce

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    work takes place both inside and outside of the classroom and occurs as a progression throughout the course of study. Professional skills were recognized as an area where outcomes could be strengthened. The challenge faced by geoscience programs is developing pathways into the workforce for students who bring different skills and interests to their studies. Workforce data suggest that in the past only 30% of undergraduate graduates have remained in the geosciences indicating that geoscience programs are playing an important role in developing the workforce beyond the geosciences. A collection of program descriptions describes what is known about career pathways from the programs represented at the workshop.

  14. Case Study Teaching

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman

    2011-01-01

    This chapter describes the history of case study teaching, types of cases, and experimental data supporting their effectiveness. It also describes a model for comparing the efficacy of the various case study methods. (Contains 1 figure.)

  15. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    ERIC Educational Resources Information Center

    Schmidt, Richard William

    2013-01-01

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds…

  16. New geoscience techniques for Earth and planetary studies developed in Moscow State University of Geodesy and Cartography (MIIGAiK)

    NASA Astrophysics Data System (ADS)

    Mayorov, Andrey; Karachevtseva, Irina; Oberst, Jürgen

    2015-04-01

    of exploration in preparation to prospective new Russian and international space missions in cooperation with European Space Agency (ESA): to the Moon (Luna-Glob and Luna-Resurs), Mars (Exo-Mars), Mercury (Bepi-Colombo), the Jupiter system (JUICE), and a possible future mission to Phobos. MExLab has new modern infrastructure, including facilities and software, and it help us to develop innovative techniques for planetary studies. We use ArcGIS (ESRI ™), and special developed modules based on PHOTOMOD software (Racurs ™), created for Earth image processing and extended for studies of celestial bodies. Main directions of MIIGAiK research of Earth and planetary bodies: 1) Innovative technologies for digital surveying and laser scanning; 2) Unmanned aerial vehicles (UAV) and special software developing; 3) Photogrammetric stereo image processing; 4) 3D-modeling of Earth and planetary surface; 5) Geo-portal and database developing [3]; 6) GIS-analyses and mapping, icnluding comparative planetology study of terrestrial planets. A great volume of scientific investigations and industrial work is carried out in MIIGAiK using modern geoscience technologies, ensure a wide use of GIS in cartography, cadaster and while studying the Earth and other terrestrial planets of Solar system by remote sensing methods. Acknowledgements. The MIIGAiK Extraterrestrial Laboratory (MExLab) provides fundamental and applied planetary research under the grant of Russian Science Foundation, project #14-22-00197. References: [1] http://www.miigaik.ru/eng/; [2] http://mexlab.miigaik.ru/eng/ [3] http://cartsrv.mexlab.ru/geoportal/#body/

  17. Creating Geoscience Leaders

    NASA Astrophysics Data System (ADS)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  18. Transforming Undergraduate Geoscience Education with an Innovative Google Earth-based Curriculum

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Whitmeyer, S. J.

    2011-12-01

    Undergraduate curricula in Physics, Chemistry, and Biology have been developed over centuries and have reached a high level of national and international consistency. No matter where students study as school pupils or undergraduates, they are expected to have taken universally recognized units in electromagnetism or organic chemistry or evolution. In contrast, geoscience curricula vary widely with institution and region. Even the names of geoscience departments (geology, geological sciences, geology and geography, earth science, earth and planetary science, earth and environmental science, geology) reflect the diversity of geoscience curricula. In part, this may result from the relative youth of geoscience as a fundamental science discipline, and in part it may reflect the influence of local field areas and resources. Students in Kansas are likely to be exposed to more stratigraphy and sedimentology and less igneous and metamorphic petrology than students in, say, New Hampshire. Geoscience has been slow to catch on in community colleges and distance learning centers in large part because of the difficulty of teaching a field-based subject without the legacy of specimen and map collections that older geology departments accumulated over the decades. Google Earth has great potential to to "Level the Playing Field" by exposing students to universal geoscientific core concepts on scales from an astronaut's view of the planet down to outcrop details. We present case studies of Google Earth-based geoscience curricular units suited to introductory courses in diverse institutions. With the aid of virtual COLLADA models of structures, virtual specimens, and deep-zoom Gigapan images, students from diverse backgrounds can share almost real field experiences across the virtual globe.

  19. Geoscience Education Research: A Brief History, Context and Opportunities

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  20. Geospatial Technology and Geosciences - Defining the skills and competencies in the geosciences needed to effectively use the technology (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, A.

    2010-12-01

    Maps, spatial and temporal data and their use in analysis and visualization are integral components for studies in the geosciences. With the emergence of geospatial technology (Geographic Information Systems (GIS), remote sensing and imagery, Global Positioning Systems (GPS) and mobile technologies) scientists and the geosciences user community are now able to more easily accessed and share data, analyze their data and present their results. Educators are also incorporating geospatial technology into their geosciences programs by including an awareness of the technology in introductory courses to advanced courses exploring the capabilities to help answer complex questions in the geosciences. This paper will look how the new Geospatial Technology Competency Model from the Department of Labor can help ensure that geosciences programs address the skills and competencies identified by the workforce for geospatial technology as well as look at new tools created by the GeoTech Center to help do self and program assessments.

  1. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  2. Status and Future of Lunar Geoscience.

    ERIC Educational Resources Information Center

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  3. National Geoscience Data Repository System. Final report

    SciTech Connect

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  4. Geoscience Information Network

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gundersen, L. C.

    2007-12-01

    Geological surveys in the USA have an estimated 2,000-3,000 databases that represent one of the largest, long- term information resources on the geology of the United States and collectively constitute a national geoscience data "backbone" for research and applications. An NSF-supported workshop in February, 2007, among representatives of the Association of American State Geologists (AASG) and the USGS, recommended that "the nation's geological surveys develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new web services and clients." The AASG and USGS have formally endorsed the workshop recommendations and formed a joint Steering Committee to pursue design and implementation of the Geoscience Information Network (GIN). GIN is taking a modular approach in assembling the network: 1. Agreement on open-source standards and common protocols through the use of Open Geospatial Consortium (OGC) standards. 2. A data exchange model utilizing the geoscience mark-up language GeoSciML, an OGC GML-based application. 3. A prototype data discovery tool (National Digital Catalogue - NDC) developing under the National Geological and Geophysical Data Preservation Program run by the USGS. 4. Data integration tools developed or planned by a number of independent projects. A broader NSF-sponsored workshop in March 2007 examined what direction the geoinformatics community in the US should take towards developing a National Geoinformatics System. The final report stated that, "It was clear that developing such a system should involve a partnership between academia, government, and industry that should be closely connected to the efforts of the U. S. Geological Survey and the state geological surveys..." The GIN is collaborating with 1-G Europe, a coalition of 27 European geological surveys in the One

  5. Writing fiction about geoscience

    NASA Astrophysics Data System (ADS)

    Andrews, S.

    2013-12-01

    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  6. Case Studies Behavior Modification.

    ERIC Educational Resources Information Center

    Wark, David M.

    The case histories of five students enrolled in a university course in how to study are reported. The students ranged in age from 18 to 35, included two males and three females, and varied in school experience from no college in one case and some college in two cases to college degrees in two cases. Students were initially taught to chart their…

  7. Community-Developed Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Richard, Stephen M.; Pearthree, Genevieve; Aufdenkampe, Anthony K.; Cutcher-Gershenfeld, Joel; Daniels, Mike; Gomez, Basil; Kinkade, Danie; Percivall, George

    2014-05-01

    Discoveries in the geosciences are increasingly taking place across traditional disciplinary boundaries. The EarthCube program, a community-driven project supported by the U.S. National Science Foundation, is developing an information- and tool-sharing framework to bridge between disciplines and unlock the modern geosciences' transformative potential.

  8. Enhancing Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Rodrigue, Christine M.; Lee, Christopher T.; Behl, Richard J.; Larson, Daniel O.; Francis, Robert D.; Hold, Gregory

    2005-01-01

    An innovative interdisciplinary project at California State University, Long Beach, was designed to increase the attractiveness of the geosciences (physical geography, geology, and archaeology) to underrepresented groups. The goal was to raise awareness of the geosciences by providing summer research opportunities for underrepresented high school…

  9. A virtual geosciences professor

    NASA Astrophysics Data System (ADS)

    Butler, John C.

    1997-06-01

    Many universities are considering how best to meet the challenges of changing student characteristics (older students, more females, and increasing numbers of under-represented students) and changing fiscal climate (insufficient funding to sustain existing initiatives and develop new ones). Many are exploring the potential of Internet-based resources as an element in both synchronous courses (everyone in the same place at the same time) and asynchronous courses (where members of the class could be in many different places at different times). Simply using the Internet to broadcast course content (where information flow is primarily from the instructor to the class) fails to take advantage of its distributed nature. Perhaps the greatest contribution of "new technologies" will be a rethinking of what is required for learning to occur. The Internet itself is the best place for finding out how these resources are being incorporated into formal courses. Approximately half of the Geosciences Departments in the United States and Canada have Internet home pages. More than 200 geosciences courses, produced by more than 70 of these academic departments have Internet-based home pages. An increasing number of field trips, course exercises, tours, reference materials, poster sessions, and student projects are appearing which can be incorporated into new courses.

  10. Community Efforts Bringing Research on Learning to the Geosciences

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.

    2009-12-01

    Individual, departmental and community efforts have all played a major role in developing a thriving research effort addressing thinking and learning in the geosciences. Community efforts have been effective in elevating the importance of the field, defining a research agenda, fostering collaborations with cognitive science and education communities, building capacity within the geosciences, and developing reviewer awareness of the importance and opportunities within geoscience education research. Important community efforts include a call for geoscience education research in the 1997 NSF report Geoscience Education: A Recommended Strategy and in the subsequent 2000 NSF report ‘Bridges: Connecting Research and Education in the Earth System Sciences’. A research agenda and supporting recommendations for collaboration and capacity building were jointly developed by geoscience educators, cognitive scientists and education researchers at the 2002 NSF/Johnson Foundation funded workshop Bringing Research on Learning to the Geosciences. This research agenda emphasized studies of geoscience expertise, learning pathways (and their challenges) that are critical to the development of that expertise, and materials and environments that support this learning, with a focus on learning in the field and from large data sets, complex systems and deep time, spatial skills, and the synthesis of understanding from multiple sources of incomplete data. Collaboration and capacity building have been further supported by the NAGT sponsored professional development program “On the Cutting Edge” with workshops bringing together cognitive scientists, educators and geoscientists on topics including developing on-line learning resources, teaching with visualizations, the role of the affective domain in geoscience learning, teaching metacognition, and teaching with data. 40 successful educational research proposals are attributed to participation in On the Cutting Edge. An NSF funded

  11. Utilizing Windows Azure to Support Geo-science Applications

    NASA Astrophysics Data System (ADS)

    Xia, J.

    2014-12-01

    Windows Azure is a cloud computing platform and infrastructure, created by Microsoft for developing, deploying and managing applications through global networks. It provides Platform as a service (PaaS) which have been widely used in different domains to support scientific studies. This paper experiences the feasibility of utilizing Windows Azure to support different type of geo-science applications. Specially, the load balancing feature of Azure is used to address intensive concurrent access for geo-science data; cloud-based database is utilized for support Big Spatial data management; and the global deployment feature is used to improve the evaluation accuracy for geo-science services.

  12. COMPUTER-AIDED INDEXING OF A SCIENTIFIC ABSTRACTS JOURNAL BY THE UDC WITH UNIDEK--A CASE STUDY.

    ERIC Educational Resources Information Center

    FREEMAN, ROBERT R.; RUSSELL, MARTIN

    THIS PAPER IS A CASE STUDY OF THE ADOPTION BY GEOSCIENCE ABSTRACTS OF UNIDEK, A COMPUTER-COMPILED SYSTEMATIC SUBJECT INDEX BASED ON THE UNIVERSAL DECIMAL CLASSIFICATION (UDC). EVENTS LEADING TO A DECISION TO ADOPT THE SYSTEM, SOME THEORY OF INDEXES, PROBLEMS INVOLVED IN CONVERSION, AND SOME OF THE RESULTS ACHIEVED ARE REVIEWED. UNIDEK MAKES…

  13. The case study approach

    PubMed Central

    2011-01-01

    The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports. PMID:21707982

  14. [Qualitative case study].

    PubMed

    Debout, Christophe

    2016-06-01

    The qualitative case study is a research method which enables a complex phenomenon to be explored through the identification of different factors interacting with each other. The case observed is a real situation. In the field of nursing science, it may be a clinical decision-making process. The study thereby enables the patient or health professional experience to be conceptualised. PMID:27338694

  15. SETDA Case Studies 2012

    ERIC Educational Resources Information Center

    State Educational Technology Directors Association, 2012

    2012-01-01

    The State Educational Technology Directors Association (SETDA) published a series of case studies from 28 states to showcase examples of how ARRA EETT ("American Recovery and Reinvestment Act of 2009 Enhancing Education Through Technology") grant funds have impacted teaching and learning. SETDA collected data for the case studies through a variety…

  16. The Role of Geoscience Departments in Preparing Future Geoscience Professionals

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; MacDonald, H.; Manduca, C. A.

    2010-12-01

    The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational

  17. Open Geoscience Database

    NASA Astrophysics Data System (ADS)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  18. The pre-college teaching of geosciences in the USA

    NASA Astrophysics Data System (ADS)

    Stewart, R.

    2003-04-01

    Most students in the USA learn about the earth in elementary and middle school, with most of the learning in middle schools (students who are 12 to 15 years old). A few students study geosciences in high school (ages 15 to 19). In some states, for example Texas, the high-school courses are being de-emphasized, and very few students take geoscience courses after they are 15 years old. As a result, most high-school graduates know little about such important issues as global warming, air pollution, or water quality. In the USA, the geoscience curriculum is guided by national and state standards for teaching mathematics and science. But the guidance is weak. Curricula are determined essentially by local school boards and teachers with some overview by state governments. For example, the State of Texas requires all students to pass standardized examinations in science at grades 5,10, and 11. The tests are based on the Texas Essential Knowledge and Skills, the state's version of the national standards. The teaching of the geosciences, especially oceanography, is hindered by the weak guidance provided by the national standards. Because of the lack of strong guidance, textbooks include far too much material with very weak ties between the geosciences. As a result, students learn many disconnected facts, not earth system science. Improvements in the teaching of the geosciences requires a clear statement of the important in the geosciences. Why must they be taught? What must be taught? What are the major themes of geoscience research? What is important for all to know?

  19. Geoscience Education Research, Development, and Practice at Arizona State University

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  20. MULTIPLE CONTAMINANTS CASE STUDIES

    EPA Science Inventory

    The presentation provides information taken from the arsenic demonstration program projects that have treatment systems removing multiply contaminants from drinking water. The case studies sited in the presentation consist of projects that have arsenic along with either nitrate, ...

  1. Laos case study

    PubMed Central

    2012-01-01

    Peuan Mit is a Lao organization working to address the needs of children and youth living and working on the streets. This case study outlines how a trusted and strong relationship with local police provides mutual benefit. PMID:22769869

  2. HYDROGEOLOGIC CASE STUDIES

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  3. Geoscience research for energy security

    SciTech Connect

    Not Available

    1987-02-01

    This report focuses on the nation's geoscience needs and recommends DOE activities to mitigate major problems that effect energy security. The report recommends new or redirected DOE geoscience research initiatives for oil and gas, coal, nuclear resources, structures and processes in the earth's crust, geothermal resources, oil shale, and waste disposal. In light of the current and near-term national energy requirements, federal budget constraints, and the diminished R and D efforts from the domestic energy industry, the Board recommends that DOE: assign highest geoscience research emphasis to shorter-term, energy priorities of the nation; particularly advanced oil and gas exploration and production technologies; establish in DOE an Office of Geoscience Research to develop and administer a strategic plan for geoscience research activities; establish oil and gas research centers within each of the six major oil and gas provinces of the United States to conduct and coordinate interdisciplinary problem-oriented research; increase oil and gas research funding by an initial annual increment of $50 million, primarily to support the regional research centers.

  4. A new paradigm for geosciences information management

    SciTech Connect

    Bolivar, Stephen L.; Nasser, K.; Dorries, A. M.; Canepa, Julie Ann

    2002-01-01

    Over the past two decades, geoscientists have been increasingly engaged in providing answers to complex environmental problems with significant societal, political, and economic consequences. Today, these scientists have to perform under increasingly greater visibility to stakeholders and the general public. Their activities are much more scrutinized with regards to economic pressure, litigation support and regulatory compliance than in the past. Their current work is built on decades of past work and in many cases will continue for decades to come. Stakeholders are increasingly evaluating raw data rather than just examining summaries in final reports. They also need assurance that proper data control and data quality procedures were followed. Geoscientists are now faced with a new paradigm, i.e. with the challenge of cost effectively collecting, managing, analyzing, and synthesizing enormous volumes of multidisciplinary and complex information. In addition, these data must be processed and disseminated in a way that allows the public to make informed and rational assessments on decisions that are proposed or have been made. The new paradigm is clear - client and stakeholder needs must be better met, and the systems used to store and generate data must meet these needs. This paper addresses the challenges and the implications of this new paradigm on geosciences information management in the 21st Century. It concludes with a case study for a successful implementation of the new paradigm in an environmental restoration project at the Los Alamos National Laboratory (LANL) that is operated by the Department of Energy (DOE). LANL is upgrading and reengineering its data and business processes to better address client, user and stakeholder issues regarding data accessibility, control and quality.

  5. Examining sexism in the geosciences

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  6. Proceedings of the geosciences workshop

    SciTech Connect

    1991-01-01

    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  7. AGI doubles minority geoscience scholarships

    NASA Astrophysics Data System (ADS)

    The American Geological Institute, Alexandria, Va., has had a significant increase in funds available for minority geoscience scholarships for the 1990-1991 academic year. The number of scholarships awarded this year has more than doubled from a total of 36 in 1989-90 to 80 available for 1990-1991.The increase is due largely to a grant from the National Science Foundation. Total value of the awards, which will be given to undergraduate and graduate geoscience students, will be $221,000. For 1989--990 the total value was $36,750.

  8. Transdimensional inference in the geosciences.

    PubMed

    Sambridge, M; Bodin, T; Gallagher, K; Tkalcic, H

    2013-02-13

    Seismologists construct images of the Earth's interior structure using observations, derived from seismograms, collected at the surface. A common approach to such inverse problems is to build a single 'best' Earth model, in some sense. This is despite the fact that the observations by themselves often do not require, or even allow, a single best-fit Earth model to exist. Interpretation of optimal models can be fraught with difficulties, particularly when formal uncertainty estimates become heavily dependent on the regularization imposed. Similar issues occur across the physical sciences with model construction in ill-posed problems. An alternative approach is to embrace the non-uniqueness directly and employ an inference process based on parameter space sampling. Instead of seeking a best model within an optimization framework, one seeks an ensemble of solutions and derives properties of that ensemble for inspection. While this idea has itself been employed for more than 30 years, it is now receiving increasing attention in the geosciences. Recently, it has been shown that transdimensional and hierarchical sampling methods have some considerable benefits for problems involving multiple parameter types, uncertain data errors and/or uncertain model parametrizations, as are common in seismology. Rather than being forced to make decisions on parametrization, the level of data noise and the weights between data types in advance, as is often the case in an optimization framework, the choice can be informed by the data themselves. Despite the relatively high computational burden involved, the number of areas where sampling methods are now feasible is growing rapidly. The intention of this article is to introduce concepts of transdimensional inference to a general readership and illustrate with particular seismological examples. A growing body of references provide necessary detail. PMID:23277604

  9. Tracking the Health of the Geoscience Workforce

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.

    2008-12-01

    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  10. Geothermal Case Studies

    DOE Data Explorer

    Young, Katherine

    2014-09-30

    database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  11. Case Studies in Biology.

    ERIC Educational Resources Information Center

    Zeakes, Samuel J.

    1989-01-01

    A case study writing exercise used in a course on parasitology was found to be a powerful learning experience for students because it involved discipline-based technical writing and terminology, brought the students in as evaluators, applied current learning, caused interaction among all students, and simulated real professional activities. (MSE)

  12. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  13. Teaching Geoscience with Visualizations: Using Images, Animations and Models Effectively

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hall-Wallace, M.; Mogk, D.; Tversky, B.; Slotta, J.; Crabaugh, J.

    2004-05-01

    Visualizing the Earth, its processes, and its evolution through time is a fundamental aspect of geoscience. Geoscientists use a wide variety of tools to assist them in creating their own mental images. For example, we now use multilayered visualizations of geographically referenced data to analyze the relationships between different variables and we create animations to look at changes in data or model output through time. An NAGT On the Cutting Edge emerging theme workshop focused on the use of visualization tools in teaching geoscience by addressing the question "How do we teach geoscience with visualizations effectively?" The workshop held February 26-29 at Carleton College brought together geoscientists who are leaders in using visualizations in their teaching, learning scientists who study how we perceive and learn from visualizations, and creators of visualizations and visualization tools. Participants considered what we know about using visualizations effectively to teach geoscience, what important questions need to be answered to improve our ability to teach effectively, and what resources are needed to increase the capability of teaching with visualizations in the geosciences. Discussion focused on how we use visualizations in our teaching to describe and explain geoscience concepts and to explore and understand data. In addition, a section of the workshop focused on powerful emerging tools and technologies for visualization and their use in geoscience education. Workshop leaders and participants have created a web-site that includes visualizations useful in teaching, an annotated bibliography of research about teaching and learning with visualizations, essays by workshop participants about their work with visualizations, and information for visualization creators. Further information can be found at serc.carleton.edu/NAGTWorkshops/visualize04.

  14. Temporal Ontologies for Geoscience: Alignment Challenges

    NASA Astrophysics Data System (ADS)

    Cox, S. J. D.

    2014-12-01

    Time is a central concept in geoscience. Geologic histories are composed of sequences of geologic processes and events. Calibration of their timing ties a local history into a broader context, and enables correlation of events between locations. The geologic timescale is standardized in the International Chronostratigraphic Chart, which specifies interval names, and calibrations for the ages of the interval boundaries. Time is also a key concept in the world at large. A number of general purpose temporal ontologies have been developed, both stand-alone and as parts of general purpose or upper ontologies. A temporal ontology for geoscience should apply or extend a suitable general purpose temporal ontology. However, geologic time presents two challenges: Geology involves greater spans of time than in other temporal ontologies, inconsistent with the year-month-day/hour-minute-second formalization that is a basic assumption of most general purpose temporal schemes; The geologic timescale is a temporal topology. Its calibration in terms of an absolute (numeric) scale is a scientific issue in its own right supporting a significant community. In contrast, the general purpose temporal ontologies are premised on exact numeric values for temporal position, and do not allow for temporal topology as a primary structure. We have developed an ontology for the geologic timescale to account for these concerns. It uses the ISO 19108 distinctions between different types of temporal reference system, also linking to an explicit temporal topology model. Stratotypes used in the calibration process are modelled as sampling-features following the ISO 19156 Observations and Measurements model. A joint OGC-W3C harmonization project is underway, with standardization of the W3C OWL-Time ontology as one of its tasks. The insights gained from the geologic timescale ontology will assist in development of a general ontology capable of modelling a richer set of use-cases from geoscience.

  15. A Foundational Approach to Designing Geoscience Ontologies

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2009-05-01

    E-science systems are increasingly deploying ontologies to aid online geoscience research. Geoscience ontologies are typically constructed independently by isolated individuals or groups who tend to follow few design principles. This limits the usability of the ontologies due to conceptualizations that are vague, conflicting, or narrow. Advances in foundational ontologies and formal engineering approaches offer promising solutions, but these advanced techniques have had limited application in the geosciences. This paper develops a design approach for geoscience ontologies by extending aspects of the DOLCE foundational ontology and the OntoClean method. Geoscience examples will be presented to demonstrate the feasibility of the approach.

  16. Research Reproducibility in Geosciences: Current Landscape, Practices and Perspectives

    NASA Astrophysics Data System (ADS)

    Yan, An

    2016-04-01

    Reproducibility of research can gauge the validity of its findings. Yet currently we lack understanding of how much of a problem research reproducibility is in geosciences. We developed an online survey on faculty and graduate students in geosciences, and received 136 responses from research institutions and universities in Americas, Asia, Europe and other parts of the world. This survey examined (1) the current state of research reproducibility in geosciences by asking researchers' experiences with unsuccessful replication work, and what obstacles that lead to their replication failures; (2) the current reproducibility practices in community by asking what efforts researchers made to try to reproduce other's work and make their own work reproducible, and what the underlying factors that contribute to irreproducibility are; (3) the perspectives on reproducibility by collecting researcher's thoughts and opinions on this issue. The survey result indicated that nearly 80% of respondents who had ever reproduced a published study had failed at least one time in reproducing. Only one third of the respondents received helpful feedbacks when they contacted the authors of a published study for data, code, or other information. The primary factors that lead to unsuccessful replication attempts are insufficient details of instructions in published literature, and inaccessibility of data, code and tools needed in the study. Our findings suggest a remarkable lack of research reproducibility in geoscience. Changing the incentive mechanism in academia, as well as developing policies and tools that facilitate open data and code sharing are the promising ways for geosciences community to alleviate this reproducibility problem.

  17. A Categorical Framework for Model Classification in the Geosciences

    NASA Astrophysics Data System (ADS)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  18. A Model Collaborative Platform for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  19. Atrial fibrillation case study.

    PubMed

    Johnson, Sarah; Wilson, Tracey

    2016-03-01

    This article discusses the irregular heart rhythm caused by atrial fibrillation (AF). A brief overview of the pathophysiology will be provided. A case study is discussed to highlight the treatment and management of AF. The care provision describes common signs and symptoms and also the treatment and management of AF within the maternity care setting. The importance of maintaining the mother-baby dyad is highlighted. For the purpose of maintaining confidentiality the woman will be referred to as Shama. PMID:27044188

  20. Research in geosciences policy

    NASA Technical Reports Server (NTRS)

    Byerly, Radford, Jr.; Mcvey, Sally

    1991-01-01

    Various topics related to cases of difficult adaptation to global change are discussed. Topics include patterns in the ratification of global environmental treaties, the effects of global climate change on Southeast Asia, and global change and biodiversity loss.

  1. Summary outline of DOE geoscience and geoscience - related research

    SciTech Connect

    Not Available

    1982-02-01

    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions.

  2. Center for Volcanic and Tectonic Studies, Department of Geoscience annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Smith, E.I.

    1990-11-01

    This report summarizes our activities during the period October 1, 1989 to September 30, 1990. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying Pliocene volcanoes in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Field studies during this period concentrated on the Quaternary volcanoes in Crater Flat, Yucca Mountain, Fortification Hill, at Buckboard Mesa and Sleeping Butte, and in the Reveille Range. Also, a study was initiated on structurally disrupted basaltic rocks in the northern White Hills of Mohave County, Arizona. As well as progress reports of our work in Crater Flat, Fortification Hill and the Reveille Range, this paper also includes a summary of model that relates changing styles of Tertiary extension to changing magmatic compositions, and a summary of work being done in the White Hills, Arizona. In the Appendix, we include copies of published papers not previously incorporated in our monthly reports.

  3. A Working Model for Evaluating Academic Excellence in Geoscience Education, Undergraduate, and K-12.

    ERIC Educational Resources Information Center

    Brunkhorst, Bonny J.

    2002-01-01

    Argues that it is possible to evaluate the excellence of academic documents involving the study of geosciences K-16 by using the Geoscience Academic Excellence Model which was developed by scientific societies including the National Research Council/National Academy of Sciences. (Author/YDS)

  4. Modern Process Studies in Kongsfjord, Svalbard: Arctic Geoscience Research Experience for U.S. Undergraduates (Svalbard REU)

    NASA Astrophysics Data System (ADS)

    Powell, R. D.; Brigham-Grette, J.

    2011-12-01

    The Svalbard REU (Research Experience for Undergraduates) program focuses on understanding how high latitude glaciers, meltwater streams, and sedimentation in lakes and fjords respond to changing climate. Since summer of 2004, six under-graduate students have been selected to participate in the summer field program. Students work on individual projects and in close conjunction with faculty advisors and other student researchers. They formulate their own research questions, develop their project, and complete their field research during a five-week program on Svalbard, Norway. Following the summer program, students complete their projects at their home institution during the following academic year as a senior thesis. A spring symposium brings all participants back together again with their final results. The most recent field season was completed in Kongsfjord (79N) showing that the contemporary studies of tidewater glacier margins provide an unparalleled opportunity for introducing motivated third year undergraduate students to the challenges and rewards of polar geoscientific field research. Rates of rapid change in this high-latitude Arctic environment emphasize the complexity of the Earth System at the interface of the ocean, atmosphere and cryosphere. Given background information in glacial and marine geology, glaciology, hydrology, climatology and fjord oceanography not routinely offered in undergraduate curricula, students develop the science questions to be addressed and establish a field plan for instrumentation and sampling. Working together in small boats in one of the most challenging natural environments, the students expand their leadership skills, learn the value of teamwork and collaborative data sharing while maintaining a strong sense of ownership over their individual science projects. The rigors of studying an actively calving tidewater glacier also builds on their outdoor skills, especially when it is necessary to improvise and become

  5. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through

  6. The Geosciences Institute for Research and Education: Bringing awareness of the geosciences to minorities in Detroit MI

    NASA Astrophysics Data System (ADS)

    Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.

    2009-12-01

    According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school

  7. An Undergraduate Student's Perspective on Geoscience Research

    NASA Astrophysics Data System (ADS)

    Wilder, A.; Feeley, T.; Michelfelder, G.

    2011-12-01

    Traditionally, the roles of field experiences in geoscience teaching have come from experienced instructors and researchers with a dedicated interest in how students learn. In this presentation we provide the opposite perspective; that of an undergraduate student at the beginning of her research career. We discuss the benefits and challenges associated with the initial field work and extend our discussion to include subsequent analytical-based laboratory studies. At Montana State University we are addressing key questions related to magma generation and differentiation at three volcanoes in the Central Andes. These are Volcan Uturuncu in southwest Bolivia and the Lazufre system consisting of Lastarria volcano and Cordon del Azufre in Chile and Argentina. To address these issues students collected rock samples and mapped lava flows in the field during the past two Spring Semesters. Upon return to campus the students prepared the samples for whole rock and mineral analyses, followed by travel to and work in external laboratories analyzing and collecting high precision geochemical data. The benefits these experiences provide include the following. First, due to the localities of the field sites, students become familiar with the difficult logistics associated with planning and performing field work in remote localities. Second, in performing the field work, students gain an appreciation of scale and exposure; topics not typically addressed in standard course work. Third, through close interaction with internal and external faculty, graduate students, and professional geologists, undergraduate students build strong relationships with scientists in the area of their interests. Fourth, by acquiring and interpreting high quality field and analytical data, they learn in-depth about modern philosophies, technologies, and data in the geosciences, providing them with skills and experiences that will be of value in their future careers or graduate work. They also learn how to

  8. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before

  9. Future of the geoscience profession

    SciTech Connect

    Carleton, A.T.

    1995-05-01

    I want to discuss the future of the energy industry and the geoscience profession. That`s you and me. Is there a future for us? Will there be a need for petroleum? What will we use for energy in the future? Over the past several years, those of us in the energy business have witnessed remarkable changes in our industry and our profession. We must be able to change with the conditions if we are to survive them. To do so, some idea of what the future holds is essential. I will discuss what that future may be and will cover these topics: world population and energy demand, exploration and production outlook, environmental considerations, geoscience demographics, education, technology, and government. Much of the statistical data and some of the projections I will discuss have been taken from the report of AAPG`s 21st Century Committee, of which I was a member.

  10. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  11. Quantitative Literacy: Geosciences and Beyond

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  12. Conducting and Reporting Case Studies.

    ERIC Educational Resources Information Center

    Lichtman, Merilyn; Taylor, Satomi Izumi

    Issues and elements of case study research are explored and illustrated with the example of a case study of a kindergarten in a suburb of Tokyo (Japan). Case study research is a type of qualitative research that concentrates on a single unit or entity, with boundaries established by the researcher. The case is an example drawn from a larger class,…

  13. Spatiotemporal Thinking in the Geosciences

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  14. Designing a road map for geoscience workflows

    NASA Astrophysics Data System (ADS)

    Duffy, Christopher; Gil, Yolanda; Deelman, Ewa; Marru, Suresh; Pierce, Marlon; Demir, Ibrahim; Wiener, Gerry

    2012-06-01

    Advances in geoscience research and discovery are fundamentally tied to data and computation, but formal strategies for managing the diversity of models and data resources in the Earth sciences have not yet been resolved or fully appreciated. The U.S. National Science Foundation (NSF) EarthCube initiative (http://earthcube.ning.com), which aims to support community-guided cyberinfrastructure to integrate data and information across the geosciences, recently funded four community development activities: Geoscience Workflows; Semantics and Ontologies; Data Discovery, Mining, and Integration; and Governance. The Geoscience Workflows working group, with broad participation from the geosciences, cyberinfrastructure, and other relevant communities, is formulating a workflows road map (http://sites.google.com/site/earthcubeworkflow/). The Geoscience Workflows team coordinates with each of the other community development groups given their direct relevance to workflows. Semantics and ontologies are mechanisms for describing workflows and the data they process.

  15. Geoscience terminology for data interchange

    NASA Astrophysics Data System (ADS)

    Richard, Stephen

    2013-04-01

    Workgroups formed by the Commission for the Management and Application of Geoscience Information (CGI), a Commission of the International Union of Geological Sciences (IUGS) have been developing vocabulary resources to promote geoscience information exchange. The Multilingual Thesaurus Working Group (MLT) was formed in 2003 to continue work of the Multhes working group of the 1990s. The Concept Definition Task Group was formed by the CGI Interoperability Working Group in 2007 to develop concept vocabularies for populating GeoSciML interchange documents. The CGI council has determined that it will be more efficient and effective to merge the efforts of these groups and has formed a new Geoscience Terminology Working Group (GTWG, http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html). Each GTWG member will be expected to shepherd one or more vocabularies. There are currently 31 vocabularies in the CGI portfolio, developed for GeoSciML interchange documents (e.g. see http://resource.geosciml.org/ 201202/). Vocabulary development in both groups has been conducted first by gathering candidate terms in Excel spreadsheets because these are easy for text editing and review. When the vocabulary is mature, it is migrated into SKOS, an RDF application for encoding concepts with identifiers, definitions, source information, standard thesaurus type relationships, and language-localized labels. Currently there are 30 vocabularies still required for GeoSciML v3, and 38 proposed vocabularies for use with EarthResourceML (https://www.seegrid.csiro.au/wiki/CGIModel/EarthResourceML). In addition, a project to develop a lithogenetic map unit vocabulary to use for regional geologic map integration using OGC web map services is underway. Considerable work remains to be done to integrate multilingual geoscience terms developed by the MLT Working Group with existing CGI vocabularies to provide multilingual support, and to make the thesaurus compiled by the

  16. Vertebral Angiosarcoma. Case Study.

    PubMed

    Guzik, Grzegorz

    2015-01-01

    Bone angiosarcomas, especially vertebral angiosarcomas, are very rare. There are no studies based on large clinical samples in the literature, and only a few single case reports can be found. The symptoms of the disease are not specific. It is usually detected incidentally or at a late stage when pathological vertebral fractures or neurological complications occur. Diagnostic imaging and history help to recognize the tumour behind the symptoms, but do not allow accurate clinical diagnosis. The basis for a diagnosis is the histopathological examination supported by immunohistochemistry (IHC) assays. The case of a 26-year-old woman with an angiosarcoma involving the eighth thoracic vertebra we report reflects diagnostic problems adversely affecting the efficacy and accuracy of treatment offered to patients. The patient underwent three surgeries of the spine, including two biopsies. A needle biopsy did not provide sufficient information for the diagnosis. An open excisional biopsy, which at the same time temporarily reduced neurological deficits in the patient, was the only chance to obtain an accurate diagnosis. The third surgery was posterior decompression of the spinal cord due to the rapidly escalating paraparesis. It was not until 8 weeks later that the final diagnosis was established. At that time, the patient could not be qualified for any supplementary treatment. The patient died in hospital 6 months after the onset of disease. PMID:26468177

  17. PREDICT : A CASE STUDY.

    SciTech Connect

    Kerscher, W. J. III; Booker, J. M.; Meyer, Mary A.

    2001-01-01

    Delphi Automotive Systems and the Los Alamos National Laboratory worked together to develop PREDICT, a new methodology to characterize the reliability of a new product during its development program. Rather than conducting testing after hardware has been built, and developing statistical confidence bands around the results, this updating approach starts with an early reliability estimate characterized by large uncertainty, and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework. A considerable amount of knowledge is available at the beginning of a program in the form of expert judgment which helps to provide the initial estimate. This estimate is then continually updated as substantial and varied information becomes available during the course of the development program. This paper presents a case study of the application of PREDICT, with the objective of further describing the methodology. PREDICT has been honored with an R&D 100 Award presented by R&D Magazine.

  18. Effectiveness of Geosciences Exploration Summer Program (GeoX) for Increasing Awareness and Knowledge of Geosciences

    ERIC Educational Resources Information Center

    Houser, Chris; Garcia, Sonia; Torres, Janet

    2015-01-01

    Summer research experiences are an increasingly popular means of increasing awareness of, and developing interest in, the geosciences and other science, technology, engineering, and math programs. We describe and report the preliminary results of a 1-wk Geosciences Exploration Summer Program in the College of Geosciences at Texas A&M…

  19. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    NASA Astrophysics Data System (ADS)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  20. In Brief: Awards for best geoscience publications

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-01-01

    Four Earth science publications were honored by the Geoscience Information Society (GSIS) at its meeting held in conjunction with the 2007 meeting of the Geological Society of America. The four-volume Encyclopedia of Quaternary Science, published by Elsevier in 2007, received the Mary B. Ansari Best Reference Work Award as an outstanding reference work in the field of geoscience information published during the previous 3 years. Lura E. Joseph, associate professor of administration and geology librarian at the University of Illinois at Urbana-Champaign, received the GSIS Best Paper Award for her article, ``Image and figure quality: A study of Elsevier's Earth and Planetary Sciences electronic journal back file package,'' published in the September-December 2006 issue of Library Collections, Acquisitions, and Technical Services. The Best Guidebook Award recognized two books: Geology of the Chama Basin, published by the New Mexico Geological Society in 2005, and 1906 San Francisco Earthquake Centennial Field Guides, published by the Geological Society of America in 2006. For more information, visit the Web site: http://www.geoinfo.org.

  1. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    problem, to make collaborative decisions, and to collectively problem solve. The development of this shared understanding is a primary result of the past decade of work. It has been developed through geoscience hosted events like the On the Cutting Edge emerging theme workshops and the Synthesis of Research on Thinking and Learning in the Geosciences project, complementary events in cognitive science and education that include geoscientists like the Gordon Conferences on Visualization in Science & Education or the Spatial Cognition conference series, and the interactions within and among geoscience education research projects like the Spatial Intelligence and Learning Center, the GARNET project, and many others. With this common ground in place, effective collaborations that bring together deep knowledge of psychology and brain function, of educational design and testing, and of time tested learning goals, teaching methods, and measures of success can flourish. A strong and accelerating research field has emerged that spans from work on basic cognitive skills important in geoscience, to studies of specific teaching strategies.

  2. Academic provenance: Investigation of pathways that lead students into the geosciences

    NASA Astrophysics Data System (ADS)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  3. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  4. International Convergence on Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote

  5. Natural Learning Case Study Archives

    ERIC Educational Resources Information Center

    Lawler, Robert W.

    2015-01-01

    Natural Learning Case Study Archives (NLCSA) is a research facility for those interested in using case study analysis to deepen their understanding of common sense knowledge and natural learning (how the mind interacts with everyday experiences to develop common sense knowledge). The database comprises three case study corpora based on experiences…

  6. Case Studies in Wilderness Medicine.

    ERIC Educational Resources Information Center

    Gray, Melissa; Tarter, Shana Lee

    Five case studies explore issues in wilderness medicine, with emphasis on evacuation decision making. The cases describe medical problems encountered during wilderness trips involving college or high school students. In each case, the situation and facts of the case are outlined, including the patient's medical history and vital signs, and at…

  7. Teaching Geosciences in Mississippi

    ERIC Educational Resources Information Center

    Dewey, Christopher; Beasley, Rodney W.

    2007-01-01

    Historically, two paths have developed in an individual and communal search for understanding and meaning: The study of science and the search for a higher spirituality. Although they should not necessarily be mutually exclusive, the history of science is littered with the collision of these two pathways, for rarely have they met without…

  8. Mineral Physicochemistry based Geoscience Products for Mapping the Earth's Surface and Subsurface

    NASA Astrophysics Data System (ADS)

    Laukamp, C.; Cudahy, T.; Caccetta, M.; Haest, M.; Rodger, A.; Western Australian Centre of Excellence3D Mineral Mapping

    2011-12-01

    available. The multispectral satellite data can be integrated with hyperspectral airborne and drill core data (e.g. HyLogging), which is demonstrated by various case studies ranging from Channel Iron Deposits in the Hamersley Basin (WA) to various Australian orogenic Au deposits. Comparison with airborne and field hyperspectral or lab-based VIRS, as well as independent analyses such as XRD and geochemistry, enables us to deliver cross-calibrated geoscience products derived from the whole suite of geoscience tuned multi- and hyperspectral technologies. Kaolin crystallinity and hematite-goethite ratio for characterization of regolith, and Tschermak substitution in white micas for mapping of chemical gradients associated with hydrothermal ore deposits are a few of the multiple examples where 3D mineral maps can help to resolve geological questions.

  9. Empirical Recommendations to Help Broaden Native American Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Semken, S.

    2008-12-01

    Participation of Native Americans in the geoscience community remains limited in spite of the oft-cited environmentally based nature of Indigenous cultures and lifeways, and the potential contribution of Indigenous ways of knowing to the global scientific enterprise. Multiple sociocultural and socioeconomic forces are at play here; some are now better understood through research, and not all are amenable to interventions by geoscientists. After two decades of professional and familial ties to the largest Native American nation, this geoscientist recommends these approaches to the problem: (1) Mitigate cultural discontinuity between worldviews with meaningful integration of relevant content and pedagogy into geoscience curricula for Native American students. This is best done by peer collaboration among Indigenous and mainstream scholars, ideally within or in close association with Tribal Colleges. The nature and level of possible incorporation range from the use of place-based and locally relevant geological examples and environmental case studies to socioculturally appropriate use of Indigenous pedagogy and traditional knowledge. Our 16-year experiment with Tsé na alkaah (Diné/Navajo ethnogeology) in formal and informal learning is cautiously offered as a template for this approach. It has drawn approval from cultural experts and interest from Diné teachers, but has yet to be widely disseminated or expanded upon by practitioners. (2) Nurture research infrastructure and expertise in situ, through partnerships that bring funding and collaborators to Native American students and educators on their lands and address Earth system problems of local significance and interest. Again, Tribal Colleges are particularly appropriate venues for such interaction. Research questions in Earth surface and climate change, hydrogeology, and energy are appropriate and timely for Native nations and funding agencies. Investigators should propose more projects that bring universities

  10. Termination: A Case Study.

    PubMed

    Friedberg, Ahron L

    2015-12-01

    In this article I posit and examine certain criteria and qualities for ending an analysis. The case study describes the end phase of a four-year psychoanalysis in which the patient's decision to move to another area forced the end of his analysis. We continued to explore and work through his core neurotic conflicts that included issues of competitive rivalry, dominance and submission, control, and anxiety about birth and death. A shift in the transference from me as a negative father to me as a supportive but competitive older brother was also examined in the context of ending treatment as well as other aspects of the transference. In addition, we analyzed the meaning of his ending treatment based on an extra-analytic circumstance. In discussing this phase of treatment, the definition and history of the term "termination" and its connotations are reviewed. Various criteria for completing an analysis are examined, and technical observations about this phase of treatment are investigated. It was found that while a significant shift in the transference occurred in this phase of the patient's analysis, conflicts related to the transference were not "resolved" in the classical sense. Terminating treatment was considered as a practical matter in which the patient's autonomy and sense of choice were respected and analyzed. PMID:26583444

  11. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  12. Closing the Geoscience Talent Gap

    NASA Astrophysics Data System (ADS)

    Keane, C. M.

    2007-12-01

    The geosciences, like most technical professions, are facing a critical talent gap into the future, with too few new students entering the profession and too many opportunities for that supply. This situation has evolved as a result of multiple forces, including increased commodity prices, greater strain on water resources, development encroachment on hazardous terrain, and the attrition of Baby Boomers from the workforce. Demand is not the only issue at hand, the legacy of lagging supplies of new students and consequently new professionals has enhanced the problem. The supply issue is a result of the fallout from the 1986 oil bust and the unsubstantiated hopes for an environmental boom in the 1990"s, coupled by the lengthening of academic careers, indefinitely delaying the predicted exodus of faculty. All of these issues are evident in the data collected by AGI, its Member Societies, and the federal government. Two new factors are beginning to play an increased role in the success or failure of geosciences programs: namely student attitudes towards careers and the ability for departments to successfully bridge the demands of the incoming student with the requirements for an individual to succeed in the profession. An issue often lost for geosciences departments is that 95% of geoscientists in the United States work in the private sector or for government agencies, and that those employers drive the profession forward in the long term. Departments that manage to balance the student needs with an end source of gainful employment are witnessing great success and growth. Currently, programs with strong roots in mining, petroleum, and groundwater hydrology are booming, as are graduate programs with strong technology components. The challenge is recognizing the booms, busts, and long-term trends and positioning programs to weather the changes yet retain the core of their program. This level of planning coupled with a profession-wide effort to improve initial recruitment

  13. State of the art of geoscience libraries and information services

    SciTech Connect

    Pruett, N.J.

    1986-01-01

    Geoscience libraries and geoscience information services are closely related. Both are trying to meet the needs of the geoscientists for information and data. Both are also being affected by many trends: increased availability of personal computers; decreased costs of machine readable storage; increased availability of maps in digital format (Pallatto, 1986); progress in graphic displays and in developing Geographic Information System, (GIS) (Kelly and Phillips, 1986); development in artificial intelligence; and the availability of new formats (e.g. CD-ROM). Some additional factors are at work at changing the role of libraries: libraries are coming to recognize the impossibility of collecting everything and the validity of Bradford's Law unobtrustive studies of library reference services have pointed out that only 50% of the questions are answered correctly it is clear that the number of databases is increasing although good figures for specifically geoscience databases are not available; lists of numeric database are beginning to appear; evaluative (as opposed to purely descriptive) reviews of available bibliographic databases are beginning to appear; more and more libraries are getting online catalogs and results of studies of users of online catalog are being used to improve catalog design; and research is raising consciousness about the value of; and research is raising consciousness about the value of information. All these trends are having or will have an effect on geoscience information.

  14. Increasing Diversity in Geoscience Through Research Internships

    NASA Astrophysics Data System (ADS)

    Charlevoix, Donna J.; Morris, Aisha R.

    2014-02-01

    Over the past 9 years, UNAVCO—a university-governed consortium fostering geoscience research and education focused on geodesy—supported 44 interns through the Research Experiences in Solid Earth Science for Students (RESESS) program. The primary goal of the program is to increase the number of historically underrepresented students entering the geosciences.

  15. An outline of planetary geoscience. [philosophy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.

  16. Geoscience Diversity Enhancement Project: Student Responses.

    ERIC Educational Resources Information Center

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  17. Calciphylaxis: a case study.

    PubMed

    Kauric-Klein, Zorica

    2012-01-01

    Caring for J.D. was a stressful experience. The extent of her wounds, pain, and limited options for treatment was very frustrating for the nursing staff. Although she did not survive, patient outcomes were met to some degree. Her pain was controlled to a greater extent, and there was less infection present in her wounds. The nurses worked with J.D. closely to improve her pain control and facilitate less painful dressing changes. They were vigilant in assessing the progress of her wound healing and communicating any increased signs of infections from her wounds. They sang with her to help distract her from the pain she was experiencing and to help her cope with her lengthy 8-month hospitalization. Providing care for J.D. was also a very important learning experience for nurses in terms of appropriate pain management for patients with CUA, wound care, and the need to sustain adequate nutrition to promote wound healing. CUA is a rare but potentially fatal disease that occurs in patients with end stage renal disease (ESRD). Early diagnosis and treatment are essential to prevent the devastating effects of this disease. Nephrology nurses need to reinforce the importance of keeping calcium, phosphorous, and parathyroid levels within normal ranges for their patients on dialysis. They also need to be vigilant in monitoring for potential CUA skin lesions to prevent and treat it early. To date, treatment options are mostly based on findings from case reports. Treatment requires a multidisciplinary approach with input from nephrologists, nurses, pain specialists, infectious disease specialists, and surgeons. The major goals of treatment are controlling risk factors, controlling pain, and preventing wound infection and possible sepsis. More studies need to be conducted to test interventions that may help treat CUA. PMID:23094342

  18. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  19. Teaching Pharmacology by Case Study.

    ERIC Educational Resources Information Center

    Jordan, Sue

    1997-01-01

    Using pharmacology case studies with nursing students encourages theory-practice links and infuses real-life content. Cases provide rich qualitative data for evaluating curriculum. However, they are not a substitute for evidence-based practice. (SK)

  20. Effectiveness of basin morphometry, remote sensing, and applied geosciences on groundwater recharge potential mapping: a comparative study within a small watershed

    NASA Astrophysics Data System (ADS)

    Roy, Suvendu; Sahu, Abhay Sankar

    2016-06-01

    A multidisciplinary approach using the integrated field of geosciences (e.g., geomorphology, geotectonics, geophysics, and hydrology) is established to conduct groundwater recharge potential mapping of the Kunur River Basin, India. The relative mean error (RME) calculation of the results of three applied techniques and water table data from twenty-four observation wells in the basin over the 2000-2010 period are presented. Nine subbasins were identified and ranked for the RME calculation, where the observation wells-based ranking was taken as standard order for comparison. A linear model has been developed using six factors (drainage density, surface slope, ruggedness index, lineament density, Bouguer gravity anomaly, and potential maximum water retention capacity) and a grid-wise weighted index. In a separate comparative approach, the sub-basin and grid-wise analyses have been conducted to identify the suitable spatial unit for watershed level hydrological modeling.

  1. Unidata: A cyberinfrastrucuture for the geosciences

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan

    2016-04-01

    Data are the lifeblood of the geosciences. Rapid advances in computing, communications, and observational technologies - along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system - are revolutionizing nearly every aspect of our field. The result is a dramatic proliferation of data from diverse sources; data that are consumed by an evolving and ever-broadening community of users and that are becoming the principal engine for driving scientific advances. Data-enabled research has emerged as a Fourth Paradigm of science, alongside experiments, theoretical studies, and computer simulations Unidata is a data facility, sponsored by the NSF, and our mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation in the geosciences. For more nearly thirty years, Unidata has worked in concert with the atmospheric science education and research community to develop and provide innovative data systems, tools, techniques, and resources to support data-enabled science to understand the Earth system. In doing so, Unidata has maintained a close, synergistic relationship with the universities, engaging them in collaborative efforts to exploit data and technologies, and removing roadblocks to data discovery, access, analysis, and effective use. As a community-governed program, Unidata depends on guidance and feedback from educators, researchers, and students in the atmospheric and related sciences. The Unidata Program helps researchers and educators acquire and use earth-related data. Most of the data are provided in "real time" or "near-real time" - that is, the data are sent to participants almost as soon as the observations are made. Unidata also develops, maintains, and supports a variety of software packages. Most of these packages are developed at the Unidata Program Center (UPC), while a few others

  2. Satellite Applications for K-12 Geoscience Education

    NASA Astrophysics Data System (ADS)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.

    2007-12-01

    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an

  3. Emotion, Engagement, and Case Studies

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman; Terry, David R.; Lemons, Paula; Armstrong, Norris; Brickman, Peggy; Ribbens, Eric

    2014-01-01

    Three college faculty taught large general biology classes using case studies and personal response systems (clickers). Each instructor taught the same eight cases in two different sections, except the questions within the cases differed. In one section the questions were lower order (LO) factual inquiries, and in the other they were largely…

  4. The Geoscience Internet of Things

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Klump, J.

    2012-04-01

    Internet of Things is a term that refers to "uniquely identifiable objects (things) and their virtual representations in an Internet-like structure" (Wikipedia). We here use the term to describe new and innovative ways to integrate physical samples in the Earth Sciences into the emerging digital infrastructures that are developed to support research and education in the Geosciences. Many Earth Science data are acquired on solid earth samples through observations and experiments conducted in the field or in the lab. The application and long-term utility of sample-based data for science is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location where the sample was collected, time of sampling, sampling method, etc. (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Neither of these requirements could be achieved in the past due to incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows researchers to find a sample's archiving location. New internet-based capabilities have been developed over the past few years for the registration and unique identification of samples that make it possible to overcome these problems. Services for the registration and unique identification of samples are provided by the System for Earth Sample Registration SESAR (www.geosamples.org). SESAR developed the International Geo Sample Number, or IGSN, as a unique identifier for samples and specimens collected from our natural environment. Since December 2011, the IGSN is governed by an international organization, the IGSN eV (www.igsn.org), which endorses and promotes an internationally unified approach for registration and discovery of physical specimens in the Geoscience community and is establishing a new modular and

  5. Developing Short-Term Indicators of Recruitment and Retention in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fuhrman, M.; Gonzalez, R.; Levine, R.

    2004-12-01

    The NSF Opportunities for Enhancing Diversity in the Geosciences (OEDG) program awards grants to projects that are intended to increase participation in geoscience careers by members of groups that have been traditionally underrepresented in the geosciences. OEDG grantee projects use a variety of strategies intended to influence the attitudes, beliefs, and behaviors of underrepresented students at levels from K-12 to graduate school. The ultimate criterion for assessing the success of a project is the number of underrepresented minority students who become geoscientists (and who would not have otherwise become geoscientists). For most projects this criterion can only be observed in the distant future. In order to develop shorter-term indicators of program success, researchers at AIR developed a conceptual framework based on a review of the literature and discussion with geoscientists. This model allowed us to identify an extensive, but not fully comprehensive, set of indicators. There are undoubtedly other potential indicators of recruitment and retention in the geosciences. The research literature reviewed was a general literature, dealing with science, technology, engineering, and/or mathematics (STEM) college major or career choice by individuals who are underrepresented group members, so the model is based on indicators of retention in a general STEM career path rather than a specific geoscience path. Nonetheless, it is our belief that retention in STEM is critical for retention in geoscience. In the past year, AIR staff have conducted a critical incident study to further refine this model. This study focused on factors unique to the geosciences. The goal was to learn about behaviors that encouraged or discouraged someone from becoming a geoscientist, where individual behaviors are termed as "incidents." The preliminary data, the impact of this pilot study on the model, and the revised model will be presented. Some examples of behaviors our study found that

  6. Case Study: Case Studies and the Flipped Classroom

    ERIC Educational Resources Information Center

    Herreid, Clyde Freeman; Schiller, Nancy A.

    2013-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's issue discusses the positive and negative aspects of the "flipped classroom." In the flipped classroom model, what is normally done in class and what is normally done as…

  7. Syncope: Case Studies.

    PubMed

    Kleyman, Inna; Weimer, Louis H

    2016-08-01

    Syncope, or the sudden loss of consciousness, is a common presenting symptom for evaluation by neurologists. It is not a unique diagnosis but rather a common manifestation of disorders with diverse mechanisms. Loss of consciousness is typically preceded by a prodrome of symptoms and sometimes there is a clear trigger. This article discusses several cases that illustrate the various causes of syncope. Reflex syncope is the most common type and includes neurally mediated, vasovagal, situational, carotid sinus hypersensitivity, and atypical forms. Acute and chronic autonomic neuropathies and neurodegenerative disorders can also present with syncope. PMID:27445240

  8. Radar polarimetry for geoscience applications

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T. (Editor); Elachi, Charles (Editor)

    1990-01-01

    The present volume on radar polarimetry for geoscience applications discusses wave properties and polarization, scattering matrix representation for simple targets, scattering models for point and distributed targets, polarimetric scatterometer systems and measurements, polarimetric radar system design, and polarimetric SAR applications. Attention is given to plane waves in a lossless homogeneous medium-wave polarization, polarization synthesis and response, and coordinate system transformations. Topics addressed include high- and low-frequency scattering, rough-surface scattering models, radiative transfer theory and deficiencies thereof, solutions for the radiative transfer equation, and a radiative transfer model for a forest canopy. Also discussed are network analyzer-based polarimetric scatterometers, calibration of polarimetric scatterometers, synthesized polarization response of distributed targets, and measurement of the propagation parameters of a forest canopy.

  9. PLUS: 'Planning Land Use with Students' is a Local Land Use Policy That Showcase the Geosciences

    NASA Astrophysics Data System (ADS)

    Turrin, M.

    2014-12-01

    Land Use decisions in the local community are well represented in geoscience topics and issues, and provide an excellent opportunity to showcase a wide range of geoscience careers to high school students. In PLUS (Planning Land Use with Students) we work with youth corps, volunteer agencies and the County Departments of Planning, Transportation, Public Health, Water Resources to run a program for high school seniors to engage the students in the complex layers of decision making connected with land use as we showcase geoscience careers (http://www.ldeo.columbia.edu/edu/plus/index.html). How development occurs, what resources are in use and who makes these decisions is both interesting and relevant for students. We develop case studies around current, active, local land use issues large enough in scale to have a formal environmental review at the County and/or the State level. Sections of each case study are dedicated to addressing the range of environmental issues that are central to each land use decision. Water, its availability, planned use and treatment on the site, brings in both a review of local hydrology and a discussion of storm water management. Air quality and the impact of the proposed project's density, transportation plans, and commercial and industrial uses brings in air quality issues like air quality ratings, existing pollution, and local air monitoring. A review of the site plans brings in grading plans for the project area, which highlights issues of drainage, soil stability, and exposure to toxins or pollutants depending on the historic use of the site. Brownfield redevelopments are especially challenging with various monitoring, clean up and usage restrictions that are extremely interesting to the students. Students' work with mentors from the community who represent various roles in the planning process including a range of geosciences, community business members and other players in the planning process. This interplay of individuals provides

  10. Tackling Strategies for Thriving Geoscience Departments

    NASA Astrophysics Data System (ADS)

    Wuebbles, Donald J.; Takle, Eugene S.

    2005-05-01

    Special sessions on thriving geosciences departments and on cyberinfrastructure in the geosciences highlighted the recent 5th AGU Meeting of Heads and Chairs of Earth and Space Science Departments. ``From Surviving to Thriving: Strategies for Advancing University Geoscience Programs in Times of Change'' was a topic that drew intense interest. This panel discussion, led by Don Wuebbles (University of Illinois), included panelists Eric Betterton (University of Arizona), Judy Curry (Georgia Institute of Technology), Heather MacDonald (College of William and Mary), and Jim Kirkpatrick (University of Illinois).

  11. Research at the Frontiers of Mathematical Geosciences

    NASA Astrophysics Data System (ADS)

    Meacham, S.; Reichlin, R.; Rogers, R.

    2002-12-01

    In 2002, the National Science Foundation launched a new activity called "Collaborations in Mathematical Geosciences," (CMG). This activity supports research at the intersection between the mathematical sciences and the geosciences. CMG also supports creative interdisciplinary training for graduate students. An expanded CMG competition is planned for 2003. In this talk, the research topics, the types of collaboration, and the educational projects funded during the first year of this activity will be briefly summarized. 2003 funding opportunities in mathematical geosciences will also be sketched. The formal presentation will be kept short in order to provide time for questions from the audience and suggestions for future directions.

  12. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    NASA Astrophysics Data System (ADS)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  13. Three Community College Case Studies

    ERIC Educational Resources Information Center

    Wojtysiak, Joseph; Sutton, William J., II; Wright, Tommy; Brantley, Linda

    2011-01-01

    This article presents three case studies that focus on specific projects that are underway or have been completed. In the first case study, Joseph Wojtysiak and William J. Sutton, II discuss the Green Center of Central Pennsylvania, which is designed to serve as the state's preeminent source for education, training and public information about…

  14. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  15. Instructional Computing: Ten Case Studies.

    ERIC Educational Resources Information Center

    Hargan, Carol; Hunter, Beverly

    These case studies are written for educational institutions that wish to plan, extend, or improve their use of computers for learning and teaching. Each case study includes a brief description of each of the following: profile of the institution, history of the development of instructional computing, organization and management, student access to…

  16. Summaries of FY 1993 geosciences research

    SciTech Connect

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  17. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  18. Striving to Diversify the Geosciences Workforce

    NASA Astrophysics Data System (ADS)

    Velasco, Aaron A.; Jaurrieta de Velasco, Edith

    2010-08-01

    The geosciences continue to lag far behind other sciences in recruiting and retaining diverse populations [Czujko and Henley, 2003; Huntoon and Lane, 2007]. As a result, the U.S. capacity for preparedness in natural geohazards mitigation, natural resource management and development, national security, and geosciences education is being undermined and is losing its competitive edge in the global market. Two key populations must be considered as the United States looks to build the future geosciences workforce and optimize worker productivity: the nation's youth and its growing underrepresented minority (URM) community. By focusing on both of these demographics, the United States can address the identified shortage of high-quality candidates for knowledge-intensive jobs in the geosciences, helping to develop the innovative enterprises that lead to discovery and new technology [see National Research Council (NRCd), 2007].

  19. Geoinformatics: Transforming data to knowledge for geosciences

    USGS Publications Warehouse

    Sinha, A.K.; Malik, Z.; Rezgui, A.; Barnes, C.G.; Lin, K.; Heiken, G.; Thomas, W.A.; Gundersen, L.C.; Raskin, R.; Jackson, I.; Fox, P.; McGuinness, D.; Seber, D.; Zimmerman, H.

    2010-01-01

    An integrative view of Earth as a system, based on multidisciplinary data, has become one of the most compelling reasons for research and education in the geosciences. It is now necessary to establish a modern infrastructure that can support the transformation of data to knowledge. Such an information infrastructure for geosciences is contained within the emerging science of geoinformatics, which seeks to promote the utilizetion and integration of complex, multidisciplinary data in seeking solutions to geosciencebased societal challenges.

  20. Illuminate Knowledge Elements in Geoscience Literature

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.

    2015-12-01

    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  1. Industrial cogeneration case studies

    NASA Astrophysics Data System (ADS)

    Limaye, D. R.; Isser, S.; Hinkle, B.; Friedman, N. R.

    1980-09-01

    Studies were performed on a number of operating cogeneration systems to determine application, economics, and attitudes of industrial and utility executives toward cogeneration. A literature survey was conducted and an identification of candidate cogeneration sites was carried out. This was followed by a screening of these sites down to 20 to 30 candidate sites. The screening was carried out on the basis of cogeneration capacity, geographical diversity, generation type, and industrial diversity. The remaining sites were contacted as to their willingness to work with EPRI, and an industrial questionnaire was developed on technical, economic, and institutional cogeneration issues. Each of the seventeen sites was visited during this task. A utility questionnaire was developed and utilities with cogeneration systems studied in this survey were contacted as to their attitudes toward cogeneration. In addition, a compilation of a list of operating cogeneration systems was performed.

  2. Geoscience outreach in Africa, 2007-2013

    NASA Astrophysics Data System (ADS)

    De Mulder, Eduardo F. J.; Eder, Wolfgang; Mogessie, Aberra; Ahmed, Enas A. E.; Da Costa, Pauline Y. D.; Yabi, Ibouraïma; Mathu, Eliud; Muhongo, Sospeter; Cloetingh, Sierd A. P. L.

    2014-11-01

    Geoscience outreach is an important communication tool for geoscientists to approach politicians, decision makers, and the general public. This tool is used to inform them about the added values of the geosciences for the national economy and to cope with environmental challenges. Moreover, geoscience outreach aims to excite (in particular young) people to be interested in the Earth sciences. There is a growing gap between demand for and supply of geo-experts. Main target of the International Year of Planet Earth (IYPE 2007-2009) was to help close this gap by informing students to follow a professional career in the geosciences. The successful IYPE outreach programme was predominantly implemented at a grass root level through the 80 national and regional IYPE Committees, 14 of which in Africa. Reports are given on the geoscience outreach activities conducted under the IYPE, in these African nations during the period 2007-2009. Upon closure of the IYPE, the Earth Science Matters Foundation was established to continue implementing the outreach objectives of the IYPE. Reports from five African nations show that geoscience outreach activities have continued after 2009. Main challenges reported are lack of funding, lack of priority, and lack of qualified personnel. Finally, some possible recommendations to cope with such challenges are suggested.

  3. Case Studies in Science Ethics

    NASA Astrophysics Data System (ADS)

    Williams, Karen

    2010-03-01

    Everyone in science should have ethics education training. I have seen graduate students taken advantage of by their mentors. Many of us have seen misconduct...but what should we do about it? Young scientists are often unaware of the rules in science and make mistakes because of their ignorance of the rules in that particular field of study. Then there are an increasing number of cases in the news of overt cases of misrepresentation in science. All are welcome to attend this discussion of case studies. A case study on topics such as: how to treat data properly, how our values in science affect our work, who gets authorship on scientific papers, who is first author on a paper, what you should do if you uncover misconduct or plagiarism in your university, and we will discuss the scientist's role in society. This will be a painless, non-confrontational small group, then large group discussion of each case

  4. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    NASA Astrophysics Data System (ADS)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  5. Promoting research integrity in the geosciences

    NASA Astrophysics Data System (ADS)

    Mayer, Tony

    2015-04-01

    Conducting research in a responsible manner in compliance with codes of research integrity is essential. The geosciences, as with all other areas of research endeavour, has its fair share of misconduct cases and causes celebres. As research becomes more global, more collaborative and more cross-disciplinary, the need for all concerned to work to the same high standards becomes imperative. Modern technology makes it far easier to 'cut and paste', to use Photoshop to manipulate imagery to falsify results at the same time as making research easier and more meaningful. So we need to promote the highest standards of research integrity and the responsible conduct of research. While ultimately, responsibility for misconduct rests with the individual, institutions and the academic research system have to take steps to alleviate the pressure on researchers and promote good practice through training programmes and mentoring. The role of the World Conferences on Research Integrity in promoting the importance of research integrity and statements about good practice will be presented and the need for training and mentoring programmes will be discussed

  6. Geoscience Workforce Development at UNAVCO: Building a Continuous Support Structure for Student Success

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.

    2014-12-01

    Developing confident, capable geoscientists from a diverse array of backgrounds requires, among many variables, the development of confident, capable mentors to help guide and support students along the path to professional positions. The geosciences are lagging behind other STEM fields in increasing the diversity of participants, and shifting the perspectives of those both inside and outside of the field requires intentional attention to ensuring undergraduate success. UNAVCO, Inc. is well-situated to both prepare undergraduate students for placement in geoscience technical positions and advanced graduate study and to provide mentoring resources for faculty engaged in supporting undergraduates from diverse backgrounds. UNAVCO is a university-governed consortium facilitating research and education in the geosciences. For the past 10 years, UNAVCO has managed Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering the geosciences, whether continuing academic studies or moving into the workforce. Beginning in 2014, UNAVCO will add a second internship program to its portfolio. Leading Undergraduates in Challenges to Power Academic Development in the Geosciences (LAUNCHPAD) is aimed at involving two-year college students and lower-division undergraduates in projects that prepare them for independent research opportunities at UNAVCO and with other REU programs. LAUNCHPAD will assist early-academic career students in understanding and developing the skills necessary to transition to undergraduate research programs or to prepare for positions in the geoscience technical workforce. In order to ensure a continued student support structure, UNAVCO will host and run a two-day institute, the Faculty Institute for RESESS Mentoring

  7. Work Teams: A Case Study.

    ERIC Educational Resources Information Center

    Fisher, M. Scott

    1981-01-01

    An important aspect of work environment is job content and structure. As this case study illustrates, increased productivity, enhanced job satisfaction, substantial cost reduction, and a reduction in turnover are some of the benefits of task reorganization. (CT)

  8. Teaching astronomy with case studies

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-11-01

    Breaking the students into small, collaborative learning groups to solve a meaningful task together is one of the most successful and fully evaluated teaching techniques implemented over the last century. Although there are many ways to accomplish small group learning, a long-standing and consistently successful collaborative class activity is to use the case study teaching strategy. The use of case studies is common in medical schools and law schools, but not so common in the teaching of astronomy. Case studies create meaningful conversations among students and with the professor by focusing on life-like dilemmas to be solved. Case study tasks ask audience members to synthesize several ideas or evaluate scenarios that have not been explicitly presented to them in the lecture or in available readings.

  9. Case Study: del Amo Bioventing

    EPA Science Inventory

    The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.

  10. Hydrogeologic Case Studies (Seattle, WA)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  11. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  12. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    EPA Science Inventory

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  13. Nasopharyngeal Case-Control Study

    Cancer.gov

    A case-control study conducted in Taiwan between 1991-1994 among approximately 1,000 individuals to examine the role of viral, environmental, and genetic factors associated with the development of nasopharyngeal carcinoma

  14. Defining the Geoscience Community through a Quantitative Perspective

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  15. Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Gonzales, L. M.; Keane, C. M.

    2011-12-01

    Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.

  16. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation

    NASA Astrophysics Data System (ADS)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus

  17. Digging Into Earth Science: Teachers' Alternative Conceptions in the Geosciences

    NASA Astrophysics Data System (ADS)

    Dahl, J. A.; Anderson, S. W.; Libarkin, J.

    2003-12-01

    A sample of K-12 South Dakota teachers was investigated to discover if they held alternative conceptions in the geosciences. Data were collected through surveys (n=38), questionnaires (n=49), individual interviews (n=8) and a 30 item multiple-choice instrument called the geoscience concept test (n=44). Information about teachers' personal interests, classroom occurrence of basic geoscience topics and teachers' personal conceptions about these same topics were gathered. According to the survey results, the study of volcanoes generated both high interest and high classroom occurrence ratings. In contrast, the study of plate tectonics generated low ratings for both interest and occurrence. In fact, only 30% of teachers were able to correctly identify the location of the Earth's tectonic plates. Taking into consideration the important relationships between these two topics, it may suggest that plate tectonics is a subject that teachers do not feel adequately prepared to teach. Additionally, a large number of teachers (79%) perceive the Earth as having a "liquid" or "molten" core. Consequently, 38 of 49 teachers questioned attributed the source of magma to the Earth's core. Another unexpected finding, was the reluctance of teachers to participate in the interview phase. Eight teachers agreed to participate in face-to-face interviews. This is in contrast to 62 who declined.

  18. Developing Strong Geoscience Programs and Departments

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Manduca, C. A.

    2002-12-01

    Strong geoscience programs are essential for preparing future geoscientists and developing a broad public understanding of our science. Faculty working as a department team can create stronger programs than individual faculty working alone. Workshops sponsored by Project Kaleidoscope (www.pkal.org) on departmental planning in the geosciences have emphasized the importance of designing programs in the context of both departmental and student goals. Well-articulated goals form a foundation for designing curriculum, courses, and other departmental activities. Course/skill matrices have emerged as particularly valuable tools for analyzing how individual courses combine in a curriculum to meet learning goals. Integrated programs where students have opportunities to learn and use skills in multiple contexts have been developed at several institutions. Departments are leveraging synergies between courses to more effectively reach departmental goals and capitalize on opportunities in the larger campus environment. A full departmental program extends beyond courses and curriculum. Studies in physics (National Task Force on Undergraduate Physics, Hilborne, 2002) indicate the importance of activities such as recruiting able students, mentoring students, providing courses appropriate for pre-service K-12 teachers, assisting with professional development for a diversity of careers, providing opportunities for undergraduates to participate in research, and making connections with the local industries and businesses that employ graduates. PKAL workshop participants have articulated a wide variety of approaches to undergraduate research opportunities within and outside of class based on their departmental goals, faculty goals, and resources. Similarly, departments have a wide variety of strategies for developing productive synergies with campus-wide programs including those emphasizing writing skills, quantitative skills, and environmental studies. Mentoring and advising

  19. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  20. The Public Communication of Geoscience

    NASA Astrophysics Data System (ADS)

    Papatheodorou, Photini; Spathopoulos, Fivos

    2016-04-01

    Communication of scientific and technological developments to the public demands an in-depth understanding of relevant public perceptions and concerns and a resultant plan of action. Until recently, very little research and practice had been recorded on this front. The presentation wishes to promote the idea of dialogue as a tool for establishing public trust in scientific and technological development, in general. Different theoretical perspectives on public communication will be examined, as defined by current research. As a case study, the media coverage of shale gas and renewable energy sources projects around the world will be presented. The final proposition of the presentation will make the case of dialogue, as an effective form of engaging the public with scientific developments and will explore dialogic practices and their application in the fields of science and technology.

  1. The Place of Rock and Mineral Identification in Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Nicholls, J.

    2011-12-01

    Geoscience programs traditionally required a significant amount of class and laboratory time for students to learn to identify Earth materials: minerals, rocks, soils, and fossils. Two decades ago, courses devoted to the mineral sciences, mineralogy and petrology, constituted approximately 20% of a geoscience program. Today, they make up between 5% and 10% of the courses in such a program. Two decades ago students spent their laboratory time learning to identify Earth materials. Today, they do the same thing, even though the time set aside for students to achieve proficiency is limited. A typical learning objective for a geoscience program reads: Identify common Earth materials and interpret their composition, origin and uses. The three underlined words convey the essence of the objective: We ask students to identify and interpret common Earth materials, which begs the questions: Do the common Earth materials provide adequate information for interpreting the composition, origin, and use of Earth materials? Do modern curricula contain enough laboratory time for students to learn to identify Earth materials? Do all geoscientists need to be able to identify Earth materials? The assemblage kyanite plus sillimanite is crucial for interpreting metamorphic history yet they are not common minerals. The IUGS classification contains 179 rock names yet we expect students to identify only a handful of them. The upper mantle is dominated by peridotite yet do geophysicists need to be able to identify peridotite in order to study the upper mantle? All geoscientists should be able to interpret Earth materials, at least at some level, and deduce the information Earth materials provide about Earth history and processes. Only a subset of geoscientists needs to learn how to identify them. Identification skills can be learned in upper level courses designed for those who will become mineral scientists. Many of the interpretations derived from Earth materials can be

  2. Characterizing Strong Geoscience Departments: Results of a National Survey

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.

    2005-12-01

    In a follow up to a survey of geoscience departments drawn primarily from American Association of Universities (AAU) institutions, we have expanded the number and type of departments to include a much broader range of institutions and to address key issues about factors that department heads and chairs feel are indicative of strong departments. The previous survey, completed at a very high rate of return, indicated that the biggest opportunities at AAU institutions included large, community-wide initiatives, while the biggest threats included declining resources and associated issues such as faculty retention. The new survey follows on a workshop, Building Strong Geoscience Departments, held in February 2005 at which 25 participants discussed the state of geoscience departments and developed ideas for strengthening departments. The new survey addresses departmental demographics of a much broader range of departments and institutions, including two year, primarily undergraduate, and graduate degree-granting departments/institutions. In addition to perceived threats and opportunities, the survey includes aspects and characteristics of strong departments. For example, department heads and chairs respond to a variety of possible attributes of strong departments, including: 1) Defining the mission of the department in such a way that it is aligned with the institutional vision; 2) Taking a proactive stance in building modern and dynamic geoscience curricula and, as appropriate, research agendas; 3) Working effectively as a department team; 4) Acknowledging that recruitment, development, and retention of students, faculty, and staff are key elements of departmental success and working effectively in these areas; 5) Developing strong departmental leaders now and for the future; 6) Communicating success, using effective metrics, to colleagues, senior administrators, students, donors, and friends; and 7) Forging strategic partnerships within the university (e.g., with

  3. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  4. Summaries of FY 91 geosciences research

    SciTech Connect

    Not Available

    1991-11-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  5. Summaries of FY 92 geosciences research

    SciTech Connect

    Not Available

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  6. Connecting Geoscience and Decision Makers Through a Common Interface

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Wood, C.; Boland, M. A.

    2015-12-01

    Geoscientists and decision makers often use different words to describe the same thing. The American Geosciences Institute has developed a consistent definition for the geosciences (Wilson, 2014); however this definition often varies from how decision maker groups at the national, state, local, and regional levels often categorize geoscience topics. Where geoscientists may to refer to "geoscience," decision makers may use terms like "energy," "environment," and "natural resources." How may the geoscience community provide geoscience information to decision makers in a context they understand while at the same time providing a simple, yet consistent representation of all that the geosciences include? The American Geoscience Institute's (AGI's) Critical Issues program's main goal is to connect decision makers at all levels with decision-relevant, impartial, expert information from across the geosciences. The program uses a multi-faceted approach to reach different decision maker groups, including policy makers and government employees at the federal, state and local level. We discuss the challenges the Critical Issues program has overcome in representing the geosciences to decision makers in a cohesive fashion such that decision makers can access the information they need, while at the same time becoming aware of the breadth of information the geosciences has to offer, and the value of including geoscience in the decision-making process. References: Wilson, C.E. (2014) Status of the Geoscience Workforce 2014. American Geological Institute. Alexandria, VA.

  7. Meeting the Challenges for Gender Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.

    2003-12-01

    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  8. Social Technologies to Jump Start Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  9. Developing Resources for Teaching Ethics in Geoscience

    NASA Astrophysics Data System (ADS)

    Mogk, David W.; Geissman, John W.

    2014-11-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Geoethics encompasses the values and professional standards required of geoscientists to work responsibly in any geoscience profession and in service to society. Funding agencies (e.g., the National Science Foundation, the National Institutes of Health) require training of graduate students in the responsible conduct of research; employers are increasingly expecting their workers to have basic training in ethics; and the public demands the highest standards of ethical conduct by scientists. However, there is currently no formal course of instruction in ethics in the geoscience curriculum, and few faculty members have the experience, resources, and sometimes willingness required to teach ethics as a component of their geoscience courses.

  10. Teaching Case: Enterprise Architecture Specification Case Study

    ERIC Educational Resources Information Center

    Steenkamp, Annette Lerine; Alawdah, Amal; Almasri, Osama; Gai, Keke; Khattab, Nidal; Swaby, Carval; Abaas, Ramy

    2013-01-01

    A graduate course in enterprise architecture had a team project component in which a real-world business case, provided by an industry sponsor, formed the basis of the project charter and the architecture statement of work. The paper aims to share the team project experience on developing the architecture specifications based on the business case…

  11. Massive Dataset Analysis for Geoscience Data (Invited)

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.

    2013-12-01

    Many large datasets in the geosciences manifest a fundamental problem in massive data set analysis: to understand and quantify local, fine-scale structure in a global context. One approach is to reduce data in a way that preserves spatial, temporal, and inter-scale structures via discrete probability distribution estimates associated with cells of space-time grids at different resolutions. It is then possible to study relationships between cells at different scales. This talk describes the theory and implementation of such a data reduction method developed for NASA satellite missions. Data are stratified on a monthly, five-degree, latitude-longitude space-time grid to form subsets. Each subset is reduced using a clustering algorithm for which the loss function includes an information-theoretic penalty term to help choose the number of clusters and the assignment of observations to them. The clusters' centroids and populations define a set of discrete probability distributions, which become the fundamental units for data analysis. Since the cluster representatives are centroids of original data points, the distributions can be aggregated in time and space, allowing us build statistical models that relate phenomena across scales. These ideas are illustrated with datasets produced through the application of this algorithm for the Multi-angle Imaging SpectroRadiometer (MISR) instrument.

  12. Effective geoscience pedagogy at the undergraduate level

    NASA Astrophysics Data System (ADS)

    Warden, Kelsey

    This investigation used constructivist pedagogical methods within the framework of an introductory level undergraduate geoscience course to gauge both the changes in attitude and cognition of students. Pedagogy was modified in the laboratory setting, but maintained in the lecture setting and homework. Curriculum was also maintained in the lecture, but was changed in the laboratory to emphasize the large concepts and systems stressed in Earth Science Literacy Principles. Student understanding of these concepts and systems was strengthened by factual knowledge, but recall and memorization were not the goal of the laboratory instruction. The overall goal of the study was to build student understanding more effectively than in previous semesters such that the students would become Earth Science literate adults. We hypothesized that a healthy comprehension of the connections between the human population and Earth's systems would lead to improved cognition and attitude toward Earth Science. This was tested using pre- and post-testing of attitudes via an anonymous survey on the first and last days of the laboratory, student responses to the end-of-course evaluations, and student performance on early-semester and late-semester content testing. The results support the hypotheses.

  13. The Planetary Data System Geosciences Node

    NASA Astrophysics Data System (ADS)

    Guinness, Edward A.; Arvidson, Raymond E.; Slavney, Susan

    1996-01-01

    The purpose of the Planetary Data System Geosciences Node is to archive and distribute planetary geosciences datasets relevant to the surfaces and interiors of the terrestrial planets and moons. This objective is accomplished through the following efforts. The Node works with planetary missions to help ensure that data of relevance to the geosciences discipline are properly documented and archived. The Node restores and publishes selected geoscience datasets from past missions on CD-ROM for distribution to the planetary science community. Data archived at the Node are distributed on CD-ROM, magnetic tape, CD-WO, or by electronic transfer over the Internet. The Geo-sciences Node provides information and expert assistance on its data holdings. Derived image, geophysics, microwave, spaceborne thermal, and radio science data are archived at the lead node or at one of the subnodes. Currently, the amount of data archived at the Node is on the order of 500 Gbytes stored on a combination of nearly 800 CD-ROMs and CD-WOs. Current archives within the Node include data from the Magellan and Viking missions, the Geological Remote Sensing Field Experiment, and a collection of radar, altimetry, and gravity datasets for Venus, Mercury, Mars, Earth, and the Moon, together with software to analyze the data. The Node maintains on-line catalogs that enable the science community to search through the Geosciences Node archives and to order selected datasets. Access to the Node's catalogs and on-line datasets is available via the Internet using a remote login or via the World Wide Web (WWW).

  14. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1983-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  15. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  16. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  17. The Role of Models in Geoscience

    NASA Astrophysics Data System (ADS)

    Hargreaves, Julia

    2016-04-01

    What is a model, anyway? Different geoscientists will give different answers. There are conceptual models, numerical models, statistical models, forward models and inverse models; there are even different models of the scientific method. As a founding and now chief exec editor of the journal Geoscientific Model Development, I have contemplated the different approaches to computational modelling presently being implemented across the different areas of Geoscience. Meanwhile, in my own work, I have primarily focused on confronting model output with observations. It is from these perspectives that I will discuss the variety of roles and usages of modelling in modern geoscience.

  18. Using Significant Geologic Hazards and Disasters to Focus Geoethics Case Studies

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2015-12-01

    Ethics education since classical times has involved the consideration of stories, parables, myths, fables, allegories and histories. These are the ancient equivalents of case studies. Modern case studies are used in applied-ethics courses in law, engineering, business, and science. When used in a geoscience course, geoethical case studies can enrich a student's understanding of the relationships between issues of geoscience, engineering, sociology, business, public policy and law - all with an ethical dimension. Perhaps more importantly, real cases affected real people. Students develop a strong empathetic connection to the people involved, enhancing students' drive to understand the interconnected layers of the cases. Students might begin to appreciate that geoscientists can help to avoid or alleviate human suffering -- that their careers can have meaning and purpose beyond simply earning a paycheck. Geologic disasters in which losses could have been predicted, avoided or minimized are quite effective as cases. Coupling a "disaster" case with a comparable "hazard" case is particularly effective. For example, there are many places along the San Andreas Fault in California where [1] significant coseismic displacement has occurred during historical times, [2] structures that are still inhabited were built along or across active traces prior to the Alquist-Priolo Earthquake Fault Zoning Act in 1971, and [3] inhabited structures have been built legally since 1971 within a few tens of feet of active traces. The question students confront is whether society ought to allow habitable structures to be built very near to a major active fault. This topic allows students to work with issues of law, history, seismology, seismic site response, crustal deformation adjacent to active faults, building codes and, ultimately, ethics. Similar progressions can be developed for other major geologic hazards, both natural and man-made, such as floods, landslides, erosion along rivers and

  19. Case Studies in Broadcast Management.

    ERIC Educational Resources Information Center

    Coleman, Howard W.

    This collection of case studies, based on factual situations which have challenged broadcast managers in recent years, is designed to stimulate thinking about and solving of "real world" problems in commercial radio and television operations. Topics of a serious, long-run nature include enlarging the radio audience; station revenue and economy;…

  20. Case Studies in Sports Nutrition.

    ERIC Educational Resources Information Center

    Clark, Nancy

    1988-01-01

    This article presents case studies of two athletes who wanted to affect a change in their body weight in order to enhance athletic performance. Each athlete's problem and the nutrition approach used to solve it are discussed. Caloric values of fast foods are listed. (JL)

  1. Principal Succession: A Case Study.

    ERIC Educational Resources Information Center

    Jones, Jeffery C.; Webber, Charles F.

    Principal succession is misunderstood and underutilized as a means of affecting dynamic renewal in school communities. Previously, the replacement of a principal was examined solely through the experiences of principals and teachers. This paper reports on a case study that added the previously neglected perspectives of students, support staff, and…

  2. The Language Dilemma: Case Study.

    ERIC Educational Resources Information Center

    Teboul, J. C. Bruno

    2002-01-01

    Presents the case study involving a fictitious company's English-only policy and threats of legal action based on that policy. Includes the following responses: "Legal Issues Posed in the Language Dilemma" (Gregory S. Walden); "English Only: A Workplace Dilemma" (Alan Pakiela); "Problems with English-Only Policies" (Barbara Lynn Speicher); and…

  3. INNOVATIVE CLEAN TECHNOLOGIES CASE STUDIES

    EPA Science Inventory

    The Innovative Clean Technologies case studies contained herein are the products of the "Pollution Prevention by and for Small Business" Program (P2SB). he P2SB was an outreach program directed to small businesses that had developed innovative concepts for pollution prevention in...

  4. Due Process Hearing Case Study

    ERIC Educational Resources Information Center

    Bateman, David F.; Jones, Marni Gail

    2010-01-01

    This article presents a due process hearing case study of a mother who contended that his son, D.J., has been denied of a free and appropriate public education (FAPE) of his School District after being suspended from school. D.J., an elementary student, had been described as hyperactive, inattentive, defiant, and often volatile. He was identified…

  5. Case Study: Planning as Learning

    ERIC Educational Resources Information Center

    Smith, Peter A. C.

    2007-01-01

    Proposes that the objectives of strategic planning may be attained more effectively if implemented via a learning paradigm. In support of this claim, describes a case study detailing implementation of such an initiative plus post-implementation interviews. (Contains 5 figures.)

  6. State Planning System. Case Studies.

    ERIC Educational Resources Information Center

    Cherin, Ellen, Ed.

    The State Planning System (SPS) is a policy-oriented management tool intended to help analyze the interrelated effects of alternative policies and their relationships to state goals. Two pilot-test case studies are described--the SPS tuition policy evaluation conducted in Colorado, and New York's SPS evaluation of the applicability of large scale…

  7. Case Studies in Applied Mathematics.

    ERIC Educational Resources Information Center

    Mathematical Association of America, Washington, DC.

    This collection of nine case studies in applied mathematics was written primarily for the use of the instructor by a Conference sponsored by the Committee on the Undergraduate Program in Mathematics (CUPM). Each chapter contains exercises of varying degrees of difficulty and several include student projects. The materials were used on a trial…

  8. 77 FR 57162 - Advisory Committee For Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Advisory Committee For Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: October 10, 2012 (8:30 a.m.-5:00 p.m.)-October 11, 2012... oversight concerning support for geosciences. Agenda Wednesday, October 10, 2012 Update on...

  9. 76 FR 12136 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: April 13, 2011; 8:30 a.m.- 5 p.m., April 14, 2011; 8:30 a... concerning support for geosciences. Agenda April 13, 2011 Directorate activities and plans...

  10. 76 FR 57765 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: October 13, 2011 8:30 a.m.-5,p.m. October 14, 2011 8:30 a... concerning support for geosciences. Agenda October 13, 2011 Update on Directorate Activities and...

  11. 78 FR 16876 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: April 11, 2013, 8:30 a.m.-5:00 p.m., April 12, 2013, 8:30... oversight concerning support for geosciences research and education. Agenda April 11, 2013 Directorate...

  12. A geoscience perspective on immersive 3D gridded data visualization

    NASA Astrophysics Data System (ADS)

    Billen, Magali I.; Kreylos, Oliver; Hamann, Bernd; Jadamec, Margarete A.; Kellogg, Louise H.; Staadt, Oliver; Sumner, Dawn Y.

    2008-09-01

    We describe visualization software, Visualizer, that was developed specifically for interactive, visual exploration in immersive virtual reality (VR) environments. Visualizer uses carefully optimized algorithms and data structures to support the high frame rates required for immersion and the real-time feedback required for interactivity. As an application developed for VR from the ground up, Visualizer realizes benefits that usually cannot be achieved by software initially developed for the desktop and later ported to VR. However, Visualizer can also be used on desktop systems (unix/linux-based operating systems including Mac OS X) with a similar level of real-time interactivity, bridging the "software gap" between desktop and VR that has been an obstacle for the adoption of VR methods in the Geosciences. While many of the capabilities of Visualizer are already available in other software packages used in a desktop environment, the features that distinguish Visualizer are: (1) Visualizer can be used in any VR environment including the desktop, GeoWall, or CAVE, (2) in non-desktop environments the user interacts with the data set directly using a wand or other input devices instead of working indirectly via dialog boxes or text input, (3) on the desktop, Visualizer provides real-time interaction with very large data sets that cannot easily be viewed or manipulated in other software packages. Three case studies are presented that illustrate the direct scientific benefits realized by analyzing data or simulation results with Visualizer in a VR environment. We also address some of the main obstacles to widespread use of VR environments in scientific research with a user study that shows Visualizer is easy to learn and to use in a VR environment and can be as effective on desktop systems as native desktop applications.

  13. Geoscience Alliance--A National Alliance for Broadening Participation of Native Americans in the Geosciences

    NASA Astrophysics Data System (ADS)

    Dalbotten, D. M.; Pellerin, H.; Greensky, L.; Burger, A.

    2009-12-01

    The continuing underrepresentation of Native Americans in the geosciences can only mean that native voices go unheard in setting research agendas and priorities. This is particularly significant where issues such as global climate change impact the land and livelihood of Native American communities. This talk will outline progress towards a Geoscience Alliance, with participation by faculty from tribal colleges, universities, and research centers; native elders and community members; students (K12, undergraduate, and graduate); formal and informal educators; and other interested individuals. Our focus will be on defining goals for this alliance, i.e., new research in Geoscience education, defining best practices, inclusion of Native voices in Geoscience research, the potential for new collaborations, and promotion of opportunities for Native students and communities.

  14. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  15. Practical Software Sustainability Models for Geoscience Communities and Beyond

    NASA Astrophysics Data System (ADS)

    Kempler, L. A.

    2015-12-01

    There are many, active Geoscience-related efforts around data support infrastructures, with an eye towards enabling improved access, usability, and sharing cross scientific disciplines. Beyond that and even beyond consistent and compatible interfaces between those data infrastructures and the software that relies on them, lies the challenge of sustainable and compatible software systems. There is a need to establish guidelines and mechanisms for collaboration and coordination around software interoperability within and between software communities. These software communities include multiple parties developing a full software stack: from operating systems and foundation infrastructure, to off-the-shelf vendor-supplied applications, to partner and community-developed codes, all the way to the end-user tools, used once or repeatedly. Expanding the scope of the challenge is the reality that users of these software stacks are no longer solely from the geoscience community; more and more research and industry disciplines and the general public are accessing and using data and tools previously contained to the geoscience arena. Finally, the increased focus on research transparency and reproducibility creates additional requirements that developers of software must design to, whether for desktop, mobile, cloud-based, or even instrument- and hardware-based software systems.This talk will discuss the challenges involved in developing sustainable software within and across communities, including the various types of users and use cases that will need to be taken into account to build a successful model. In addition, the talk will outline requirements and potential solutions for addressing and achieving the level and consistency of coordination and quality required to support and sustain enduring software and effective software communities that use and support it.

  16. Data Science in Support of Marine Geoscience Research

    NASA Astrophysics Data System (ADS)

    Ferrini, V.

    2011-12-01

    Scientific research has evolved over the past several years with an increasing emphasis on the need to preserve and share data with investigators not involved in its initial collection. Not only does this new paradigm fortify the scientific process by providing transparency and opportunities for the validation of results, but it also ensures that the significant financial investments made in basic scientific research provide ongoing benefits and continue to enable new discoveries. Effective management of scientific data relies upon familiarity with the full continuum of the data life cycle - from acquisition and analysis to preservation and dissemination. Knowledge of technical aspects of data management and informatics, coupled with an understanding of data content and scientific use, are the key ingredients for advancing data systems and developing new and innovative interfaces for accessing and analyzing data. Herein lies the work of the data scientist. Effective management of marine geoscience data requires additional specialized knowledge and expertise, much of which can only be gained by participating in field programs. By participating in field programs as both a data manager and as a domain scientist one gains a unique perspective and understanding of the complexities of sea-going field programs, and the challenges of acquiring and documenting marine geoscience data. Just as the combination of technical specialists and domain scientists is critical to the success of a research cruise, so too is it critical to the successful management of data after the conclusion of the cruise. In the case of marine geoscience data, the data scientist plays a key role not only in building bridges between informatics and domain science, but between sea-going technicians and scientists. Working with the full community of stakeholders, the data scientist can help develop realistic standards and protocols to help ensure that high quality observational data are consistently made

  17. Types of Concepts in Geoscience Ontologies

    NASA Astrophysics Data System (ADS)

    Brodaric, B.

    2006-05-01

    Ontologies are increasingly viewed as a key enabler of scientific research in cyber-infrastructures. They provide a way of digitally representing the meaning of concepts embedded in the theories and models of geoscience, enabling such representations to be compared and contrasted computationally. This facilitates the discovery, integration and communication of digitally accessible geoscience resources, and potentially helps geoscientists attain new knowledge. As ontologies are typically built to closely reflect some aspect or viewpoint of a domain, recognizing significant ontological patterns within the domain should thus lead to more useful and robust ontologies. A key idea then motivating this work is the notion that geoscience concepts possess an ontological pattern that helps not only structure them, but also aids ontology development in disciplines where concepts are similarly abstracted from geospatial regions, such as in ecology, soil science, etc. Proposed is an ontology structure in which six basic concept types are identified, defined, and organized in increasing levels of abstraction, including a level for general concepts (e.g. 'granite') and a level for concepts specific to a geospace-time region (e.g. 'granites of Ireland'). Discussed will be the six concept types, the proposed structure that organizes them, and several examples from geoscience. Also mentioned will be the significant implementation challenges faced but not addressed by the proposed structure. In general, the proposal prioritizes conceptual granularity over its engineering deficits, but this prioritization remains to be tested in serious applications.

  18. Summaries of physical research in the geosciences

    SciTech Connect

    Not Available

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  19. Geoscience Field Education: A Recent Resurgence

    NASA Astrophysics Data System (ADS)

    Whitmeyer, Steven J.; Mogk, David W.

    2009-10-01

    Field education traditionally has been an integral component of undergraduate geoscience curricula. Students have learned the fundamentals of field techniques during core geology courses and have honed their field credentials during class-specific field trips, semester-long field courses, and capstone summer field camps. In many geoscience departments, field camp remains a graduation requirement, and more than 100 field camps currently are offered by U.S. universities and colleges (see http://geology.com/field-camp.shtml). During the past several decades, however, many geoscience departments have moved away from traditional geologic fieldwork and toward a broader theoretical and laboratory-intensive focus that encompasses a range of subdisciplines. Trends that have influenced these shifts include (1) the decline in the late twentieth century of the petroleum and mining industries, which have consistently championed the values of fieldwork; (2) a decrease in the number of professional jobs that incorporate field mapping; (3) a decline in the number of geoscience majors nationwide [American Geological Institute (AGI), 2009]; and (4) barriers to fieldwork, including time requirements, cost, liability, and decreasing access to field sites.

  20. Developing Effective K-16 Geoscience Research Partnerships.

    ERIC Educational Resources Information Center

    Harnik, Paul J.; Ross, Robert M.

    2003-01-01

    Discusses the benefits of research partnerships between scientists and K-16 students. Regards the partnerships as effective vehicles for teaching scientific logic, processes, and content by integrating inquiry-based educational approaches with innovative research questions. Reviews integrated research and education through geoscience partnerships.…

  1. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  2. The Geoscience Laser Altimetry/Ranging System

    NASA Technical Reports Server (NTRS)

    Cohen, Steven C.; Degnan, John J., III; Bufton, Jack L.; Garvin, James B.; Abshire, James B.

    1987-01-01

    The Geoscience Laser Altimetry/Ranging System (GLARS), a combined laser ranging and altimetry system capable of subcentimeter position determinations of retroflector targets and subdecimeter profiling of topography, is described. The system uses advanced but currently available state-of-the-art components. Laboratory, field, and numerical experiments have indicated the suitability of GLARS as an instrument for Eos and other space platforms.

  3. Online Experiential Learning: Effective Applications for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Matias, A.; Eriksson, S. C.

    2015-12-01

    Students today are rarely satisfied with a one-size-fits-all educational experience. The rapid changing landscape of the web and other technologies are breaking down communicationand geographic barries. More students are increasingly turning to the web for quality education that fits into their lives. As a result, higher education institutions are expanding their offerings through online courses. Nonetheless, online learning brings challenges as well as a fresh opportunityfor exploring practices not present in traditional higher education programs, particularly in the sciences. We are in a unique position to empower students to make strategic academic and professional decisions in global terms. Online learning, supportedwith hands-on and minds-on activities, actively engages student with critical thinking skills and higher level learning. This presentation will showcase examples from a series of geoscience and environmental science courses currently offered fully online at SUNY Empire State College (ESC). Taking advantage of the proliferation of tools currently available for online learning management systems, we will explore how we approach course developent to create an interactive learning environment. Students learn through case studies, group projects and understanding real-world issues while learning concepts. Particular focus will be given to an international collaboration with the Tecnologico de Monterrey, Chihuahua Campus. This collaboration took place during the Spring of 2015 with students from the fully-online, lower-level Geology and the Environment course at ESC and the upper-level, face-to-face Mobile Programming course in Mexico. Ultimately, the goal of this presentation is to show faculty members and afministrators the pedagogical principles and approach used with the expectation that it could help support development of online learning opportunities at their institutions.

  4. Geoethics and the Role of Professional Geoscience Societies

    NASA Astrophysics Data System (ADS)

    Kieffer, S. W.; Palka, J. M.; Geissman, J. W.; Mogk, D. W.

    2014-12-01

    Codes of Ethics (Conduct) for geoscientists are formulated primarily by professional societies and the codes must be viewed in the context of the Goals (Missions, Values) of the societies. Our survey of the codes of approximately twenty-five societies reveals that most codes enumerate principles centered on practical issues regarding professional conduct of individuals such as plagiarism, fabrication, and falsification, and the obligation of individuals to the profession and society at large. With the exception of statements regarding the ethics of peer review, there is relatively little regarding the ethical obligations of the societies themselves. In essence, the codes call for traditionally honorable behavior of individual members. It is striking, given that the geosciences are largely relevant to the future of Earth, most current codes of societies fail to address our immediate obligations to the environment and Earth itself. We challenge professional organizations to consider the ethical obligations to Earth in both their statements of goals and in their codes of ethics. Actions by societies could enhance the efforts of individual geoscientists to serve society, especially in matters related to hazards, resources and planetary stewardship. Actions we suggest to be considered include: (1) Issue timely position statements on topics in which there is expertise and consensus (some professional societies such as AGU, GSA, AAAS, and the AMS, do this regularly, yet others not at all.); (2) Build databases of case studies regarding geoethics that can be used in university classes; (3) Hold interdisciplinary panel discussions with ethicists, scientists, and policy makers at annual meetings; (4) Foster publication in society journals of contributions relating to ethical questions; and (5) Aggressively pursue the incorporation of geoethical issues in undergraduate and graduate curricula and in continuing professional development.

  5. A project-centered undergraduate geoscience curriculum model

    NASA Astrophysics Data System (ADS)

    Kelso, P.; Brown, L.

    2003-04-01

    Lake Superior State University, a comprehensive rural public university with approximately 10% Native-Americans enrolled, located in Michigan's eastern Upper Peninsula, U.S.A., has redesigned it's undergraduate geology major by developing an entire curriculum around a project-centered integration of geoscience sub-disciplines. Our model, adapted from modern educational theory, advocates sub-discipline integration by implementing problem-based learning through coursework that develops students' intellectual skills and engages them in using complex reasoning in real-world contexts. Students in this new curriculum will actively discover how to learn about a new geologic province, what questions to ask in approaching problems, where and how to find answers, and how to apply knowledge to solving problems. To accomplish our goals, we redesigned our pedagogy for all courses by creating active learning environments including cooperative learning, jigsaw methodologies, debates, investigation oriented laboratories, use of case studies, writing and communication intensive exercises, and research experiences. Fundamental sub-discipline concepts were identified by our national survey and are presented in the context of sequentially ordered problems that reflect increasing geological complexity. All courses above first year incorporate significant field experience. Our lower division courses include a two semester sequence of physical and historical geology in which physical processes are discussed in the context of their historical extension and one semester of structure/tectonics and mineralogy/petrology. The lower division culminates with a three week introductory field geology course. Our upper division courses include hydrologic systems, environmental systems, geochemical systems, tectonic systems, geophysical systems, clastic systems, carbonate systems, two seminar courses, and advanced field geology. The two field courses, offered in different geologic provinces, provide

  6. [Research progress on case-control study].

    PubMed

    Zhang, F F; Liu, Z D; Zhang, C X; Jiang, B F

    2016-04-10

    Several new varients related to the case-control designs have been developed in the recent decades, and this article briefly summarized four new designs: two-stage design, case-specular study, exposure-crossover study and case-case-time-control study. This paper involved principles of study design, requisites for application, advantages and disadvantages on all the studies. PMID:27087230

  7. Global dynamic topography: geoscience communities requirements

    NASA Astrophysics Data System (ADS)

    Dewez, T.; Costeraste, J.

    2012-04-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. This is because they first revealed the relief of previously unavailable earth landscapes, enabled quantitative geomorphometric analyses across entire landscapes and improved the resolution of measurements. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel, which is amazing seeing where we come from, they are now regarded as mostly obsolete given the sub-meter imagery coming through web services like Google Earth. Geoscientists now appear to desire two additional features: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and dispose of regularly updated topography to retrieve earth surface changes, while retaining the key for success: data availability at no charge. A new satellite instrument is currently under phase 0 study at CNES, the French space agency, to fulfil these aims. The scientific community backing this demand is that of natural hazards, glaciology and to a lesser extent the biomass community. The system under study combines a native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Data generated through this system, designed for revisit time better than a year, is intended to produce not only single acquisition digital surface models, colour orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverages, but also time series of them. This enables 3D change detection with centimetre-scale planimetric precision and metric vertical precision, in complement of classical spectral change appoaches. The purpose of this contribution, on behalf of the science team, is to present the mission concepts and philosophy and the scientific needs for such instrument including

  8. Preserving and maintaining vital Ecosystem Services: the importance of linking knowledge from Geosciences and social-ecological System analysis

    NASA Astrophysics Data System (ADS)

    Finger, David; Petursdottir, Thorunn

    2013-04-01

    Human kind has always been curios and motivated to understand and quantify environmental processes in order to predict and anticipate the evolution of vital ecosystem services. Even the very first civilizations used empirical correlations to predict outcomes of rains and subsequent harvest efficiencies. Along with the insights into the functioning of ecosystems, humans also became aware that their anthropogenic activities can have positive and negative impact on ecosystem services. In recent years, geosciences have brought forward new sophisticated observations and modeling tools, with the aim to improve predictions of ecological developments. At the same time, the added value of linking ecological factors to the surrounding social structure has received a growing acceptance among scientists. A social-ecological system approach brings in a holistic understanding of how these systems are inevitably interlinked and how their sustainability can be better maintained. We claim that the biggest challenge for geoscience in the coming decades will be to link these two disciplines in order to establish adequate strategies to preserve natural ecosystems and their services, parallel to their utilization. We will present various case studies from more than a decade of research, ranging from water quality in mountain lakes, climate change impacts on water availability and declining fishing yields in freshwaters and discuss how the studies outcomes could be given added value by interpreting them via social-ecological system analysis. For instance, sophisticated field investigations revealed that deep water mixing in lake Issyk-Kul, Kirgizstan, is intensively distributing pollutants in the entire lake. Although fishery is an important sector in the region, the local awareness of the importance of water quality is low. In Switzerland, strict water protection laws led to ologotrophication of alpine lakes, reducing fishing yields. While local fishermen argued that local fishery is

  9. US Geoscience Information Network, Web Services for Geoscience Information Discovery and Access

    NASA Astrophysics Data System (ADS)

    Richard, S.; Allison, L.; Clark, R.; Coleman, C.; Chen, G.

    2012-04-01

    The US Geoscience information network has developed metadata profiles for interoperable catalog services based on ISO19139 and the OGC CSW 2.0.2. Currently data services are being deployed for the US Dept. of Energy-funded National Geothermal Data System. These services utilize OGC Web Map Services, Web Feature Services, and THREDDS-served NetCDF for gridded datasets. Services and underlying datasets (along with a wide variety of other information and non information resources are registered in the catalog system. Metadata for registration is produced by various workflows, including harvest from OGC capabilities documents, Drupal-based web applications, transformation from tabular compilations. Catalog search is implemented using the ESRI Geoportal open-source server. We are pursuing various client applications to demonstrated discovery and utilization of the data services. Currently operational applications allow catalog search and data acquisition from map services in an ESRI ArcMap extension, a catalog browse and search application built on openlayers and Django. We are developing use cases and requirements for other applications to utilize geothermal data services for resource exploration and evaluation.

  10. Spinning Your Own Story - Marketing the Geosciences to the Public

    NASA Astrophysics Data System (ADS)

    Sturm, D.; Jones, T. S.

    2006-12-01

    Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga

  11. The YES Africa 2011 Symposium: A Key to Developing the Future Geoscience Workforce in Africa

    NASA Astrophysics Data System (ADS)

    Nkhonjera, E.

    2011-12-01

    Africa is facing serious challenges in geoscience education. This has been as a result of absence of or very young/small Earth Science Departments in some universities (e.g., Mauritius, Namibia, Botswana, Swaziland, Malawi): Limited capacity (staff and equipment needed for practicals) to cope with the growing number of students, compounded by brain drain of academic staffs and the fact that current tertiary programmes do not seem to produce graduates suitable for the industry are some of the contributing factors to the challenges, (UNESCO-AEON Report, 2009). As such Earth Science studies in Africa have been one of the career paths that has not been promoted or highly preferred by many students. In January 2011, the YES Network African chapter was launched through the YES Africa 2011 Symposium that took place at the University of Johannesburg South Africa in Conjunction with the 23rd Colloquium of Africa Geology from the 08-14th January 2011. The YES Africa 2011 Symposium was organized by five YES African National networks from Southern, Central, Eastern and Northern Africa to bring young geoscientists from all regions of Africa together to present their research about African geoscience topics. The symposium also included roundtable discussions about increasing the involvement of youth's participation in geoscience issues in Africa, about how to increase the number of youths in African geosciences education university programs, and about how to promote geoscience careers to university students in Africa c. Roundtable discussions revealed that many African colleges and universities do not provide adequate infrastructure and resources to support the students studying in the department. As such, most students graduate with poor preparation for geoscience careers, having gained a theoretical understanding of geology, but not the practical application of the discipline. The recommendations from the YES Africa 2011 Symposium also highlighted on the best ways of

  12. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  13. GIS, Geoscience, Multi-criteria Analysis and Integrated Management of the Coastal Zone

    NASA Astrophysics Data System (ADS)

    Kacimi, Y.; Barich, A.

    2011-12-01

    In this 3rd millennium, geology can be considered as a science of decision that intervenes in all the society domains. It has passed its academic dimension to spread toward some domains that until now were out of reach. Combining different Geoscience sub-disciplines emanates from a strong will to demonstrate the contribution of this science and its impact on the daily life, especially by making it applicable to various innovative projects. Geophysics, geochemistry and structural geology are complementary disciplines that can be applied in perfect symbiosis in many domains like construction, mining prospection, impact assessment, environment, etc. This can be proved by using collected data from these studies and integrate them into Geographic Information Systems (GIS), in order to make a multi-criteria analysis, which gives generally very impressive results. From this point, it is easy to set mining, eco-geotouristic and risk assessment models in order to establish land use projects but also in the case of integrated management of the coastal zone (IMCZ). Touristic projects in Morocco focus on its coast which represents at least 3500 km ; the management of this zone for building marinas or touristic infrastructures requires a deep and detailed study of marine currents on the coast, for example, by creating surveillance models and a coastal hazards map. An innovative project that will include geophysical, geochemical and structural geology studies associated to a multi-criteria analysis. The data will be integrated into a GIS to establish a coastal map that will highlight low-risk erosion zones and thus will facilitate implementation of ports and other construction projects. YES Morocco is a chapter of the International YES Network that aims to promote Geoscience in the service of society and professional development of Young and Early Career Geoscientists. Our commitment for such project will be of qualitative aspect into an associative framework that will involve

  14. GEOScan: A GEOScience Facility From Space

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.

    2012-12-01

    GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for

  15. InTeGrate: Transforming the Teaching of Geoscience and Sustainability

    NASA Astrophysics Data System (ADS)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.

    2012-12-01

    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  16. A case for case studies: exploring the use of case study design in community nursing research.

    PubMed

    Bergen, A; While, A

    2000-04-01

    The case study has become an accepted vehicle for conducting research in a variety of disciplines. However, the meaning behind the term is not always made explicit by researchers and this has given rise to a number of assumptions which are open to challenge, and to questions about the robustness of the method. This paper explores some of the issues arising from one particular definition of case study research, used in a study by Yin which examined the practice of case management in community nursing. Four main areas are discussed. First, defining 'case' is seen to pose questions about the relationship of the phenomenon to its context, the degree of researcher control over case definition, the limits to what may constitute a 'case' and what is meant by the term 'unit of analysis'. Second, the relevance of external validity to case study research is supported through the use of a number of tactics, in particular Yin's concept of replication logic, which involves generalizing to theory, rather than to empirical data. Third, the use of method triangulation (multiple methods of data collection) is advanced as a means of enhancing construct validity in research where data converge around a particular theory. Finally, the relationship of the case study to theory construction, through the prior development of 'propositions' is discussed. Each of these issues is applied to the design and conduct of a research study based closely on Yin's multiple case study framework. Thirteen 'cases' were selected of case management practice and data were collected through interviews and examination of literature and documentation, to explore the suitability of community nurses for the role. It is concluded that, given the appropriate subject matter, context and research aims, the case study method may be seen as a credible option in nursing research. PMID:10759989

  17. Mars geoscience/climatology orbiter low cost mission operations

    NASA Technical Reports Server (NTRS)

    Erickson, K. D.

    1984-01-01

    It will not be possible to support the multiple planetary missions of the magnitude and order of previous missions on the basis of foreseeable NASA funding. It is, therefore, necessary to seek innovative means for accomplishing the goals of planetary exploration with modestly allocated resources. In this connection, a Core Program set of planetary exploration missions has been recommended. Attention is given to a Mission Operations design overview which is based on the Mars Geoscience/Climatology Orbiter Phase-A study performed during spring of 1983.

  18. What do educated Americans believe? Alternative geoscience conceptions discovered through research using the Geoscience Concept Inventory

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Libarkin, J. C.

    2006-12-01

    One of the key challenges geoscientists face as they disseminate scientific results to the general public is understanding the background level of their audience and delivering the information in a form that is easily understood. This is particularly difficult when dealing with people who have little background in geosciences. However, our research on learning in college-level courses suggests that reaching college-educated Americans who have some background in the geosciences is problematic as well. We have discovered a plethora of geoscience misconceptions that are not only common in the general public, but persist despite college-level geoscience instruction. These trends were discovered through delivery of the Geoscience Concept Inventory (GCI). The GCI is a valid and reliable multiple-choice assessment test that we developed and is now being used in over 100 colleges and high schools nationwide. One unique aspect of the GCI is that we use common misconceptions, gleaned from hundreds of interviews with students, as distractors (incorrect answers). In 2002 and 2003 we pre-tested nearly 4000 students nationwide at the beginning of college-level geoscience courses, and then post-tested these same students at the end of the semester, and found that a number of incorrect conceptions persisted despite instruction. Prior research has shown that these persistent misconceptions, or entrenched ideas, can greatly affect learning and may require prolonged exposure to the topic before improvement in conceptual understanding can occur. We have identified some of the most entrenched ideas in the geosciences, and find that many stem from basic physics and chemistry principles, such as gravity, magnetism, and time scale. Several are also related to misunderstandings of the relationships between tectonic plates, volcanoes and earthquakes. Scientists who understand which of these alternative conceptions are entrenched may be better able to prepare information for public

  19. Building a Community for Art and Geoscience

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Ellins, K. K.

    2014-12-01

    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at www.bellaroca.org and http://geologyinart.blogspot.com, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  20. Visualizing Geoscience Concepts Through Textbook Art (Invited)

    NASA Astrophysics Data System (ADS)

    Marshak, S.

    2013-12-01

    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  1. The Geoscience Diversity Enhancement Program (GDEP): A Model for Faculty and Student Engagement in Urban Geoscience Research

    NASA Astrophysics Data System (ADS)

    Ambos, E. L.; Lee, C.; Behl, R.; Francis, R. D.; Holk, G.; Larson, D.; Rodrigue, C.; Wechsler, S.; Whitney, D.

    2004-12-01

    For the past three years (2002-2004) faculty in the departments of geological sciences, geography, and anthropology at California State University, Long Beach have joined to offer an NSF-funded (GEO-0119891) eight-week summer research experience to faculty and students at Long Beach area high schools and community colleges. GDEP's goal is to increase the numbers of students from underrepresented groups (African-American, Hispanic, American Indian, Pacific Islander, and disabled) enrolling in baccalaureate degree programs in the geosciences. The major strategies to achieve this goal all tie to the concept of research-centered experiences, which might also be termed inquiry-based instruction. More than fifteen (15) separate and diverse geoscience research studies have been conducted. These include such disparate topics as geochemical studies of fault veins, GPS/GIS surveys of vegetation patterns for fire hazard assessment, and seismic studies of offshore fault systems. As the program has matured, research projects have become more interdisciplinary, and faculty research teams have expanded. Whereas the first year, each CSULB faculty member tended to lead her/his project as a separate endeavor, by the third summer, faculty were collaborating in research teams. Several projects have involved community-based research, at sites within an hour's drive from the urban Long Beach campus. For example, last summer, four faculty linked together to conduct a comprehensive geography and geology study of an Orange County wilderness area, resulting in creation of maps, brochures, and websites for use by the general public. Another faculty group conducted geophysical surveys at an historic archaeological site in downtown Los Angeles, producing maps of underground features that will be incorporated into a cultural center and museum. Over the past three summers, the program has grown to involve more than 25 high school and community college students, and more than 30 CSULB, high

  2. Field Studies—Essential Cognitive Foundations for Geoscience Expertise

    NASA Astrophysics Data System (ADS)

    Goodwin, C.; Mogk, D. W.

    2010-12-01

    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they

  3. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    PubMed

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines. PMID:23436210

  4. New geoscience teachers division for 2-year colleges

    NASA Astrophysics Data System (ADS)

    Krumm, Debra; Granshaw, Frank

    2011-11-01

    The role of 2-year colleges (2YCs) in geoscience education is growing as the number of students enrolled in Earth and space science courses increases and as these institutions—which include community colleges and junior colleges—provide more students majoring in geoscience at public universities. In recognition of the increasing role of 2YCs in geoscience education, the National Association of Geoscience Teachers (NAGT) recently created a Geo2YC division for faculty, administrators, graduate students, and other geoscience professionals who share a professional interest in geoscience education at 2YCs. The mission of the new division, which is NAGT's first national division, is to serve as a forum for exchanging curricular ideas, concerns, and resources; establish a network of geoscience educators at 2YCs and other institutions with shared interests; sponsor NAGT 2YC activities and make recommendations to the NAGT Council in support of 2YC geoscience education; support and coordinate research on 2YC geoscience education; and advocate for 2YC geoscience education within NAGT and with other organizations.

  5. Dynamic flood risk: case studies

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano

    2013-04-01

    While many progresses have been made in the static assessment of (current) flood risk, additional transdisciplinary research is required for the development of new methods for the dynamic assessment of (future) flood risk, which is very much needed in a rapidly changing environment. To this end, it is essential to understand why flood risk has changed in the past. This presentation shows the scientific outcomes of diverse case studies (the Po river in Italy and a number of African rivers), whereby data and models are utilized to analyse and interpret the dynamics of flood risk. In particular, a number of hypotheses were tested by considering different agents of change, such as climate and/or land-use, flood prevention measures, human population dynamics. These case studies show that one of the main challenges in assessing (dynamic) flood risk is the deep interconnection not only between the different agents of change, but also between the components of risk (i.e. hazard, exposure, vulnerability or resilience). For instance, changes in flood hazard often trigger changes in exposure and vulnerability to flooding, and vice versa. These complex interactions seem to make predictions of future flood risk over long time scales rather difficult, if not impossible.

  6. Global Geoscience Initiatives From Windows to the Universe

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R.; Gardiner, L.; Lagrave, M.; Genyuk, J.; Bergman, J.; Foster, S. Q.

    2006-12-01

    The Windows to the Universe (www.windows.ucar.edu) Earth and space science educational program and web site has an extensive international presence. The web site reaches a vast user audience, having served more than 124 million page views across approximately 14 million user sessions in the past year. About 44% of these user sessions originated from domains outside of the United States. The site, which contains roughly 7,000 pages originally offered in English, is being translated into Spanish. This effort, begun in 2003, is now approximately 80% complete. Availability in a second major language has dramatically increased use of the site both in the U.S.A. and abroad; about 29% (4.1 million) of the annual user sessions visit Spanish-language portions of the site. In September 2005 we began distributing a monthly electronic newsletter for teachers that highlights features on the web site as well as other geoscience programs and events of relevance to educators. We currently have more than 4,400 subscribers, 33.6% of whom are outside of the United States. We are actively seeking news and information about other programs of relevance to this audience to distribute via our newsletter. We have also begun to solicit information (tips, anecdotes, lesson plans, etc.) from geoscience teachers around the world to share via this newsletter. Finally, Windows to the Universe participated in the Education and Outreach efforts of the MILAGRO scientific field campaign in Mexico in March of 2006. MILAGRO was a collaborative, multi-agency, international campaign to conduct a coordinated study of the extent and effects of pollutants emitted by a "mega-city" (in this case Mexico City) in order to understand the impacts of vast urban environments on global climate modeling. We enlisted several scientists involved with MILAGRO to write "Postcards from the Field" about their ongoing research during the project; these electronic "postcards" were distributed, in English and Spanish, via

  7. The Rise of Computer-Aided Discovery in Geoscience

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Blair, D. M.; Gowanlock, M.; Lind, F. D.; Erickson, P. J.

    2015-12-01

    Next-generation Geoscience will need to handle rapidly growing data volumes and exploration of complex phenomena challenging human cognitive limits. With instruments digitizing large amounts of sensor data from many sources, the scientific discovery process becomes a large-scale search process. However, insight generation is still a key problem and is especially complex in Geoscience, particularly when exploratory studies involve fusion of large data from various instruments in a manual labor-intensive manner. We propose an approach for a computer-aided discovery infrastructure that automatically explores the connection between physics models and empirical data to accelerate the pace of new discoveries. The approach uses (1) A system engaging scientists to programmatically express hypothesized Geoscience scenarios, constraints, and model variations, so as to automatically explore and evaluate the combinatorial search space of possible explanations in parallel on a variety of data sets. This automated system employs machine learning to support algorithmic choice and workflow reconfiguration allowing systematic pruning of the search space of applied algorithms and parameters based on historical results. (2) A cloud-based environment allowing scientists to conduct powerful exploratory analyses on large data sets that reside in data centers. Various search modes are provided, including a mode where scientists can iteratively guide the search based on intermediate results. This functionality directs the system to identify more Geospace features that are analogous or related in various ways. (3) Scientist input is used to configure programmable crawlers that automate and scale the search for interesting phenomena on cloud-based infrastructures. We discuss various application scenarios to show the impact of workflow configuration on scientific feature detection. Acknowledgements. We acknowledge support from NSF ACI-1442997 and NASA AIST NNX15AG84G (PI: V. Pankratius).

  8. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.

    2009-12-01

    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  9. Integrated Design for Geoscience Education with Upward Bound Students

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  10. Summaries of FY 1994 geosciences research

    SciTech Connect

    Not Available

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  11. Geoscience Initiative Develops Sustainable Science in Africa

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Durrheim, Ray; Dirks, Paul; Graham, Gerhard; Gibson, Roger; Webb, Susan

    2011-05-01

    AfricaArray (http://www.AfricaArray.org) is a 20-year initiative in the geosciences to meet the African Union's New Partnership for Africa's Development (NEPAD) requirements for continent-wide cooperation in human resources development and capacity building. The name AfricaArray refers to arrays of scientists working on linked projects across the continent, arrays of shared training programs and recording stations, and, above all, a shared vision that Africa will retain capacity in an array of technical and scientific fields vital to its sustainable development. AfricaArray officially launched in January 2005 and, with support from many public and private partners, has become multifaceted, promoting a broad range of educational and research activities and supporting a multiuser sensor network (Figure 1). Though fostering geophysics education and research in South Africa was its initial focus, AfricaArray has expanded to 17 countries and is now branching out into all areas of the geosciences (Earth, atmosphere, and space).

  12. NSF assistant director for geosciences announces resignation

    NASA Astrophysics Data System (ADS)

    Zielinki, Sarah

    Margaret Leinen, assistant director for geosciences at the U.S. National Science Foundation, announced on 7 December that she will be leaving NSF in January 2007 to become the chief science officer and vice president of Climos, a new company based in San Francisco, Calif., that plans to develop solutions to reduce greenhouse gases. Leinen will oversee efforts to better understand the planet's carbon cycle to address global climate change issues.Leinen has managed the Directorate for Geosciences since 2000. She also served as vice chair of the U.S. Climate Change Science Program, which coordinates federal climate change research, and as co-chair of the National Science and Technology Council's Joint Committee on Ocean Science and Technology.

  13. ESA's Earth Observation in Support of Geoscience

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-04-01

    The intervention will present ESA's Earth Observation Programme and its contribution to Geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. A special focus will be put on the Earth Explorers, who form the science and research element of ESA's Living Planet Programme and focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. In addition the operational Sentinel satellites have a huge potential for Geoscience. Earth Explorers' emphasis is also on learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The process of Earth Explorer mission selection has given the Earth science community an efficient tool for advancing the understanding of Earth as a system.

  14. Promoting Careers and Career Development: What Geoscience Faculty and Departments Can Do

    NASA Astrophysics Data System (ADS)

    MacDonald, R. H.

    2005-12-01

    Geoscience faculty and departments have an important role to play in the professional development of their students for careers in the geosciences or other fields. Studies by the physics and mathematics communities indicate the importance of activities such as recruiting, advising, and, mentoring students, assisting with professional development for a diversity of careers, providing opportunities for undergraduates to participate in research, and making connections with the local industries and businesses that employ graduates. Faculty can help students make more informed career decisions and develop skills that will be of value in their career through a variety of strategies ranging from providing information about careers in geoscience in entry-level courses, having students conduct informational interviews, publicizing internships and research experiences, organizing speakers or panels focused on different career options, fostering connections between students and alumni who have similar career interests, and working with students as an advisor or mentor to help them explore career options.

  15. Retention of Women in Geoscience Undergraduate and Graduate Education at Caltech

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.

    2001-12-01

    Institutional barriers encountered by women in undergraduate and graduate schools may take many forms, but can also be as simple as a lack of community support. In the 1990's the California Institute of Technology (Caltech) made a commitment to the retention of women in their graduate and undergraduate schools. Their program included mentoring, focussed tutoring, self-esteem support groups, and other retention efforts. Under this program, the attrition rate of women has dramatically slowed. In this paper, we will discuss recent data from the American Geological Institude chronicling the enrollment and successes of women in the geosciences, the program instituted by Caltech, possible causes of attrition among women in the geosciences, as well as potential programs to address these problems. We will also present, from the nationwide study, data on geoscience departments which have been relatively successful at retaining and graduating women in Earth and Space Sciences.

  16. The Canadian Geoscience Education Network: a collaborative grassroots effort to support geoscience education

    NASA Astrophysics Data System (ADS)

    Bank, C.; Halfkenny, B.; Hymers, L.; Clinton, L.; Heenan, S.; Jackson, D.; Nowlan, G.; Haidl, F.; Vodden, C.

    2009-12-01

    The Canadian Geoscience Education Network (CGEN) numbers over 300 members who are active in promoting geoscience to the general public and especially in schools. Our membership spreads from coast to coast to coast in Canada and represents the wide range of geosciences. Most members work in education, government, industry, academia, or not-for-profit organizations. Our common goals are to (1) provide resources to teachers for the K-12 curriculum, (2) encourage students to pursue higher education and a rewarding career in geoscience, and (3) lobby to effect change to the school curriculum. Our strength is grounded in a grassroots approach (eg, regional chapters), flexible organization, and emphasis on a cost-effective style. Together we have created and maintain resources for teachers; for example, EdGEO (local workshops for teachers), Geoscape (community-based posters and lesson plans), and EarthNet (virtual resource centre). A new website showcases careers in the Earth sciences. CGEN members ensure that these resources remain current, promote them at individual outreach activities, and see to it that they are maintained. Although we have limited funding we draw strength from the networks of our members and capitalize on partnerships between seemingly disparate organizations and groups to get experts involved in the education of future geoscientists. (Details about CGEN may be found at http://www.geoscience.ca/cgen/principal.html.)

  17. Smartphones: Powerful Tools for Geoscience Education

    NASA Astrophysics Data System (ADS)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  18. We Can Recruit Minorities Into The Geosciences

    NASA Astrophysics Data System (ADS)

    O'Connell, S.

    2011-12-01

    Despite the dismal numbers, efforts to recruit minorities into the geosciences are improving, thanks in part to NSF's "Opportunities for Enhancing Diversity in the Geosciences" (OEDG) initiative. At Wesleyan University, a small liberal arts college in Connecticut, we have significantly increased our recruitment of minority students. Twenty percent (four students) of the class of 2013 are African American. Most of the recruitment is done on an individual basis and working in conjunction with the "Dean for Diversity and Student Engagement" and courting minority students in introductory classes. The Dean for Diversity and Student Engagement is aware of our interest in increasing diversity and that we are able to hire minority students during the academic year and through the summer with OEDG funds. When she identifies minority students who might be interested in the geosciences, she refers them to faculty in the Earth and Environmental Sciences Department. Our faculty can provide employment, mentoring and a variety of geo-related experiences. Courting students in introductory courses can include inviting them to lunch or other activity, and attending sports, theater or dance events in which they are participating. Not all efforts result in new majors. Courses in ancillary sciences may be stumbling blocks and higher grades in less demanding courses have lured some students into other majors. Nevertheless, we now have a large enough cohort of minority students so that minority students from other majors visit their friends in our labs. A critical mass? Even a student, who chooses another major, may continue an interest in geoscience and through outreach efforts and discussions with younger family members, may provide a bridge that becomes a conduit for future students.

  19. Summaries of FY 1996 geosciences research

    SciTech Connect

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  20. Programming and Technology for Accessibility in Geoscience

    NASA Astrophysics Data System (ADS)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  1. Case Study: A Picture Worth a Thousand Words? Making a Case for Video Case Studies

    ERIC Educational Resources Information Center

    Pai, Aditi

    2014-01-01

    A picture, they say, is worth a thousand words. If a mere picture is worth a thousand words, how much more are "moving pictures" or videos worth? The author poses this not merely as a rhetorical question, but because she wishes to make a case for using videos in the traditional case study method. She recommends four main approaches of…

  2. The CZSaw notes case study

    NASA Astrophysics Data System (ADS)

    Lee, Eric; Gupta, Ankit; Darvill, David; Dill, John; Shaw, Chris D.; Woodbury, Robert

    2013-12-01

    Analysts need to keep track of their analytic findings, observations, ideas, and hypotheses throughout the analysis process. While some visual analytics tools support such note-taking needs, these notes are often represented as objects separate from the data and in a workspace separate from the data visualizations. Representing notes the same way as the data and integrating them with data visualizations can enable analysts to build a more cohesive picture of the analytical process. We created a note-taking functionality called CZNotes within the visual analytics tool CZSaw for analyzing unstructured text documents. CZNotes are designed to use the same model as the data and can thus be visualized in CZSaw's existing data views. We conducted a preliminary case study to observe the use of CZNotes and observed that CZNotes has the potential to support progressive analysis, to act as a shortcut to the data, and supports creation of new data relationships.

  3. STS Case Study Development Support

    NASA Technical Reports Server (NTRS)

    Rosa de Jesus, Dan A.; Johnson, Grace K.

    2013-01-01

    The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.

  4. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels

    NASA Astrophysics Data System (ADS)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.

    2012-12-01

    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  5. Fostering Critical Thinking in the Geosciences: Combining Geoethics, the Affective Domain, Metacognition, and Systems Thinking

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Geissman, J. W.

    2015-12-01

    instructor, and we encourage all teaching faculty to commit a part of their coursework to develop these critical-thinking skills. A collection of geologic case studies is available at the Teaching Geoethics Across the Geoscience Curriculum website http://serc.carleton.edu/74990.

  6. A Community Roadmap for Discovery of Geosciences Data

    NASA Astrophysics Data System (ADS)

    Baru, C.

    2012-12-01

    This talk will summarize on-going discussions and deliberations related to data discovery undertaken as part of the EarthCube initiative and in the context of current trends and technologies in search and discovery of scientific data and information. The goal of the EarthCube initiative is to transform the conduct of research by supporting the development of community-guided cyberinfrastructure to integrate data and information for knowledge management across the Geosciences. The vision of EarthCube is to provide a coherent framework for finding and using information about the Earth system across the entire research enterprise that will allow for substantial improved collaboration between specialties using each other's data (e.g. subdomains of geo- and biological sciences). Indeed, data discovery is an essential prerequisite to any action that an EarthCube user would undertake. The community roadmap activity addresses challenges in data discovery, beginning with an assessment of the state-of-the-art, and then identifying issues, challenges, and risks in reaching the data discovery vision. Many of the lessons learned are general and applicable not only to the geosciences but also to a variety of other science communities. The roadmap considers data discovery issues in Geoscience that include but are not limited to metadata-based discovery and the use of semantic information and ontologies; content-based discovery and integration with data mining activities; integration with data access services; and policy and governance issues. Furthermore, many geoscience use cases require access to heterogeneous data from multiple disciplinary sources in order to analyze and make intelligent connections between data to advance research frontiers. Examples include, say, assessing the rise of sea surface temperatures; modeling geodynamical earth systems from deep time to present; or, examining in detail the causes and consequences of global climate change. It has taken the past one

  7. Video diaries on social media: Creating online communities for geoscience research and education

    NASA Astrophysics Data System (ADS)

    Tong, V.

    2013-12-01

    Making video clips is an engaging way to learn and teach geoscience. As smartphones become increasingly common, it is relatively straightforward for students to produce ';video diaries' by recording their research and learning experience over the course of a science module. Instead of keeping the video diaries for themselves, students may use the social media such as Facebook for sharing their experience and thoughts. There are some potential benefits to link video diaries and social media in pedagogical contexts. For example, online comments on video clips offer useful feedback and learning materials to the students. Students also have the opportunity to engage in geoscience outreach by producing authentic scientific contents at the same time. A video diary project was conducted to test the pedagogical potential of using video diaries on social media in the context of geoscience outreach, undergraduate research and teaching. This project formed part of a problem-based learning module in field geophysics at an archaeological site in the UK. The project involved i) the students posting video clips about their research and problem-based learning in the field on a daily basis; and ii) the lecturer building an online outreach community with partner institutions. In this contribution, I will discuss the implementation of the project and critically evaluate the pedagogical potential of video diaries on social media. My discussion will focus on the following: 1) Effectiveness of video diaries on social media; 2) Student-centered approach of producing geoscience video diaries as part of their research and problem-based learning; 3) Learning, teaching and assessment based on video clips and related commentaries posted on Facebook; and 4) Challenges in creating and promoting online communities for geoscience outreach through the use of video diaries. I will compare the outcomes from this study with those from other pedagogical projects with video clips on geoscience, and

  8. Evaluating open-source cloud computing solutions for geosciences

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong

    2013-09-01

    Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.

  9. Using Case Studies To Teach Science.

    ERIC Educational Resources Information Center

    Gabel, Connie

    Using case studies in science instruction develops problem solving and enhances listening and cooperative learning skills. Unlike other disciplines such as law and medicine, the case study method is rarely used in science education to enrich the curriculum. This study investigates the use of content-based case studies as a means of developing…

  10. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    NASA Astrophysics Data System (ADS)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  11. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  12. Geo-Needs: Investigating Models for Improved Access to Geosciences at Two-Year and Minority-Serving Colleges

    NASA Astrophysics Data System (ADS)

    Her, X.; Turner, S. P.; LaDue, N.; Bentley, A. P.; Petcovic, H. L.; Mogk, D. W.; Cartwright, T.

    2015-12-01

    Geosciences are an important field of study for the future of energy, water, climate resilience, and infrastructure in our country. Geoscience related job growth is expected to steeply climb in the United States, however many of these positions will be left unfilled. One untapped population of Americans is ethnic minorities, who have historically been underrepresented in the geosciences. In 2010, the Bureau of Labor Statistics (BLS) reported that black and Hispanics only make 8.1% of geoscience related jobs, while making up nearly 30% of Americans. This pattern of underrepresentation has been attributed to 1) minority serving institutions lacking geoscience programs, 2) low interest in the outdoors due to a lack of opportunity, and 3) negative and low prestigious perceptions of geoscientists. Our project focuses specifically on the first barrier. Preliminary research suggests that only 2.5% of institutions with geoscience programs (n= 609) are also minority serving. The goals of the Geo-Needs project are to identify obstacles to and opportunities for better use of existing educational resources in two-year and minority-serving institutions, and to explore "ideal" models of resources, partnerships, and other support for geoscience faculty and students in these institutions. Four focus group meetings were held in August 2015 bringing administrators, instructors, resource providers, and education researchers together to discuss and develop these models. Activities at the meetings included small and whole group prompted discussion, guest speakers, gallery walks, and individual reflection. Content from the focus group meetings is available at the project's website: http://serc.carleton.edu/geoneeds/index.html. Findings from the meetings can be used to inform future efforts aimed toward broadening access to the geosciences at two-year and minority-serving institutions.

  13. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework.

    PubMed

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012

  14. Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework

    PubMed Central

    Li, Zhenlong; Yang, Chaowei; Jin, Baoxuan; Yu, Manzhu; Liu, Kai; Sun, Min; Zhan, Matthew

    2015-01-01

    Geoscience observations and model simulations are generating vast amounts of multi-dimensional data. Effectively analyzing these data are essential for geoscience studies. However, the tasks are challenging for geoscientists because processing the massive amount of data is both computing and data intensive in that data analytics requires complex procedures and multiple tools. To tackle these challenges, a scientific workflow framework is proposed for big geoscience data analytics. In this framework techniques are proposed by leveraging cloud computing, MapReduce, and Service Oriented Architecture (SOA). Specifically, HBase is adopted for storing and managing big geoscience data across distributed computers. MapReduce-based algorithm framework is developed to support parallel processing of geoscience data. And service-oriented workflow architecture is built for supporting on-demand complex data analytics in the cloud environment. A proof-of-concept prototype tests the performance of the framework. Results show that this innovative framework significantly improves the efficiency of big geoscience data analytics by reducing the data processing time as well as simplifying data analytical procedures for geoscientists. PMID:25742012

  15. Geodesy Brings the Geoscience Community Together as Geophysicists

    NASA Astrophysics Data System (ADS)

    Kittross, S.; Rowan, L. R.; MacPherson-Krutsky, C. C.; Morris, A. R.; Bartel, B. A.

    2015-12-01

    Geodesy, the science of determining Earth's shape, gravity field and rotation, has been in existence for millennia. Today, few geoscientists identify with the pure science of geodesy, though many use geodetic tools and data for their research. In 2014, we interviewed members of the UNAVCO community and asked, "Do you call yourself a geodesist?" Most replied that they used geodesy, but would call themselves "geophysicists". This "use of geodesy" for other fields of study, particularly for geophysics-related fields, is consistent with an analysis of AGU's sections and focus groups. Additional analysis of geoscience departments at U.S. universities would suggest a similar trend. The expanding use of geodetic tools and geodetic data for many fields of research such as geophysics, tectonophysics, geodynamics, space physics, geology, geomorphology, seismology, hydrology, volcanology, glaciology, paleontology, paleoseismology, structural geology, meteorology, ecology, archaeology, oceanography, geography, soil science, atmospheric science, and snow science, may provide an approach to bringing diverse fields together under the moniker of geoscience and geoscientists. Scientists using a shared approach to research and education might be able to see themselves under the broader identity of geoscientist. The hurdle to making this transformation towards a larger shared voice in public discourse, is the more common use of "geophysicist" among the geodesy community, which is tied to the strong foundation of physics and mathematics needed to work with geodetic data and tools.

  16. Allographic agraphia: A case study

    PubMed Central

    Menichelli, Alina; Rapp, Brenda; Semenza, Carlo

    2011-01-01

    We report the case of patient MN, diagnosed with frontotemporal dementia, who exhibited a severe impairment in writing letters and words in upper-case print in the face of accurate production of the same stimuli in lower-case cursive. In contrast to her written production difficulties, MN was unimpaired in recognizing visually presented letters and words in upper-case print. We find a modest benefit of visual form cueing in the written production of upper-case letters, despite an inability to describe or report visual features of letters in any case or font. This case increases our understanding of the allographic level of letter-shape representation in written language production. It provides strong support for previous reports indicating the neural independence of different types of case and font-specific letter-shape information; it provides evidence that letter-shape production does not require explicit access to information about the visual attributes of letter shapes and, finally, it reveals the possibility of interaction between processes involved in letter-shape production and perception. PMID:18489965

  17. Case Study: The Chemistry of Cocaine

    ERIC Educational Resources Information Center

    Dewprashad, Brahmadeo

    2011-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's case study focuses on the chemistry of cocaine to teach a number of core concepts in organic chemistry. It also requires that students read and analyze an original research paper on…

  18. Case Studies for Inclusive Schools. Second Edition

    ERIC Educational Resources Information Center

    Anderson, Peggy L.

    2005-01-01

    Case Studies for "Inclusive Schools, Second Edition" presents a sampling of case studies that contain realistic problems concerning inclusion issues for teacher education students to solve. This format was chosen because the case study approach to learning is gaining in popularity as it provides students with an opportunity to apply information…

  19. Business and Consumer Education Case Studies.

    ERIC Educational Resources Information Center

    Delta Pi Epsilon, Minneapolis, Minn. Phi Chapter.

    This publication contains 58 case studies for classroom use in teaching various business and consumer education subjects at the high school level. A supplement to a previous Phi Chapter publication, "Office Education Case Studies" (1973), the case studies are intended to create class discussions and help students acquire the ability to analyze…

  20. Case Study Evaluations: A Decade of Progress?

    ERIC Educational Resources Information Center

    Yin, Robert K.

    1997-01-01

    In the last 10 years, there has been increased use of case study methodology, with accompanying refinement and improvement of the methods. Case studies have become legitimate research methods in evaluation, but it is too soon to say whether improvements in methodology are really resulting in improvements in the case studies conducted. (SLD)

  1. Mesoscale Diffractive Photonics in Geosciences

    NASA Astrophysics Data System (ADS)

    Minin, I. V.; Minin, O. V.

    2016-06-01

    The scattered light by various dielectric particles in atmosphere give information about the type of molecules and particles and their location, which are important to definition of propagation limitations through atmospheric and space weather variations, crisis communications, etc. Although these investigations explain far field properties of disturbed radiations, the solution of the physical problem requires simulations of the interactions in near-field. It has been shown that strongly localized EM field near the surface of single dielectric particle may be form by non-spherical and non-symmetrical mesoscale particles both as in transmitting as in reflection mode. It was also shown that the main lobe is narrower in case of 3 cube chain than single cube in far field, but there are many side-scattering lobes. It was mentioned that unique advantages provided by mesoscale dielectric photonic crystal based particles with three spatial dimensions of arbitrary shape allow developing a new types of micro/nano-probes with subwavelength resolution for ultra compact spectrometer-free sensor for on board a spacecraft or a plane.

  2. Concentrated photovoltaics, a case study

    NASA Astrophysics Data System (ADS)

    Antonini, Piergiorgio; Centro, Sandro; Golfetto, Stelvio; Saccà, Alessandro

    2014-12-01

    Concentrated Photovoltaics (CPV), once a niche technology, has now reached the maturity and reliability for large scale power generation. Especially in regions where temperatures are very high, the use of high efficiency triple junction solar cells with concentrating optics allows stable energy yield. Thus CPV can be seen as complementary and not in concurrence with silicon photovoltaics. The state of the art, the advantages and limitations of this technology will be shown. Among the main advantages of CPV is the possibility of a much higher energy supply, when compared to silicon photovoltaics, both comparing CPV and silicon with same area or the same installed power. The use of recycled and recyclable materials allows a more environmentally friendly production. The possibility to couple CPV with desalination facilities, energy storage will be analysed. As an example a case study of a CPV installation in Northern Italy is discussed. Here the use of mature technologies, derived from automotive and lighting sectors resulted in a simple and efficient module.

  3. What Geoscience Experts and Novices Look At, and What They See, When Viewing Data Visualizations

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Shipley, Thomas F.; Boone, Alexander P.; Straccia, Frances

    2016-01-01

    This study examines how geoscience experts and novices make meaning from an iconic type of data visualization: shaded relief images of bathymetry and topography. Participants examined, described, and interpreted a global image, two high-resolution seafloor images, and 2 high-resolution continental images, while having their gaze direction…

  4. The Impact of an Inquiry-Based Geoscience Field Course on Pre-Service Teachers

    ERIC Educational Resources Information Center

    Nugent, Gwen; Toland, Michael D.; Levy, Richard; Kunz, Gina; Harwood, David; Green, Denise; Kitts, Kathy

    2012-01-01

    The purpose of this quasi-experimental study was to determine the effects of a field-based, inquiry-focused course on pre-service teachers' geoscience content knowledge, attitude toward science, confidence in teaching science, and inquiry understanding and skills. The field-based course was designed to provide students with opportunities to…

  5. Workshop Results: Teaching Geoscience to K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.

    2012-12-01

    A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these

  6. Linking Undergraduate Geoscience and Education Departments

    NASA Astrophysics Data System (ADS)

    Ireton, F. W.; McManus, D. A.

    2001-05-01

    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  7. Spatial Ability Development in the Geosciences

    NASA Astrophysics Data System (ADS)

    Baldwin, T. K.; Hall-Wallace, M. K.

    2003-12-01

    We designed an experiment to evaluate change in students' spatial skills as a result of completing an earth science course. Our test subjects included high school students in earth science classes, college level non-science majors enrolled in large enrollment introductory geoscience courses and introductory level geoscience majors. They also varied as to whether their course had a hand-on laboratory experience or used supplemental Geographic Information System (GIS) based activities. We measured all students' ability to mentally rotate three-dimensional objects and to construct a three-dimensional object from a two-dimensional representation before and after taking the earth science course. Results show an improvement in spatial skills for all groups after completing the science course. We also observed a consistent improvement in spatial skills overall from high school level science to courses for majors, which is possibly related to their increased exposure to science. A subgroup of the test subjects among both high school and the college non-science majors completed supplementary GIS activities. The GIS implementation at the high school level was more extensive and resulted in significant improvements in both categories of spatial ability. At the college level, the non-science majors that used the GIS curriculum showed no significant difference from those that did not, probably because the time spent on the curriculum was too short. At the college level, the geoscience majors had nearly three times the improvement of non-science majors in both categories of spatial ability. This can most likely be attributed to hands-on, weekly laboratory experiences, which were not part of the course for non-science majors. Students choosing science majors typically have much higher spatial skills than the average first or second year non-science major, however there were large variations in spatial ability within all groups. These results suggest that we evaluate teaching

  8. Transforming Indigenous Geoscience Education and Research (TIGER)

    NASA Astrophysics Data System (ADS)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  9. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance

    NASA Astrophysics Data System (ADS)

    Miller, G.; Schoof, J. T.; Therrell, M. D.

    2011-12-01

    Even though climate change and an unhealthy environment have a disproportionate affect on persons of color, there is a poor record of diversity in geoscience-related fields where researchers are investigating ways to improve the quality of the environment and human health. This low percentage of representation in the geosciences is equally troubling at the university where we are beginning the third and final year of a project funded through the National Science Foundation's (NSF) Opportunities to Enhance Diversity in the Geosciences (OEDG). The purpose of this project is to explore a novel approach to using the social sciences to help students, specifically underrepresented minorities, discover the geosciences' cultural relevance and consider a career in the earth, atmospheric, and ocean sciences. To date, over 800 college freshmen have participated in a design study to evaluate the curriculum efficacy of a geoscience reader. Over half of these participants are students of color. The reader we designed allows students to analyze multiple, and sometimes conflicting, sources such as peer-reviewed journal articles, political cartoons, and newspaper articles. The topic for investigation in the reader is the 1995 Chicago Heat Wave, a tragic event that killed over 700 residents. Students use this reader in a core university course required for entering freshmen with low reading comprehension scores on standardized tests. To support students' comprehension, evaluation, and corroboration of these sources, we incorporated instructional supports aligned with the principles of Universal Design for Learning (UDL), reciprocal teaching, historical reasoning, media literacy, and quantitative reasoning. Using a digital format allows students to access multiple versions of the sources they are analyzing and definitions of challenging vocabulary and scientific concepts. Qualitative and quantitative data collected from participating students and their instructors included focus

  10. Demystifying Instructional Innovation: The Case of Teaching with Case Studies

    ERIC Educational Resources Information Center

    Kantar, Lina D.

    2013-01-01

    Issues emerging from instructional innovation are inevitable, yet basing any curriculum shift on a theoretical framework is paramount. This paper grounds the case-based pedagogy in three learning theories: behaviorism, cognitivism, and constructivism. The three theories are described and situated in relation to the case study method. An…

  11. Summaries of FY 1995 geosciences research

    SciTech Connect

    1995-12-01

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  12. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  13. OERL: A Tool For Geoscience Education Evaluators

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  14. Status and future of lunar geoscience

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Moon is of special interest among the many and diverse bodies of the solar system because it serves as a scientific baseline for understanding the terrestrial planets, its origin is closely tied to the early history of the Earth, and its proximity permits a variety of space applications such as mining and establishment of bases and colonies. Data acquisition and analysis have enabled advances to be made and the remaining questions in many fields of lunar geoscience to be identified. The status and unresolved problems of lunar science are discussed. Immediate needs, new unmanned missions, and a return to the Moon (a lunar base) are examined.

  15. Case Studies for Effective Business Instruction.

    ERIC Educational Resources Information Center

    McAlister-Kizzier, Donna

    This book is designed as a resource for educators who teach business content in a variety of instructional settings. It contains case studies representing all functional areas of business, including corporate training, for grades 7 through graduate education. Chapter 1 provides an overview of the case study method. The history of the case method,…

  16. A Potential Synergy Connecting Educational Leadership, The Geoscience Community, and Spatial Data

    NASA Astrophysics Data System (ADS)

    Branch, B. D.

    2008-12-01

    The effort to promote more geosciences numbers and greater diversity should reference considerations of federal policy. In congruence, institutions need to include geosciences education in the K-12 curriculum in order to increase the numbers of geoscientists and to increase diversity among geoscientists. For example, No Child Left Behind stated public entities should, ""(1) to carry out programs that prepare prospective teachers to use advanced technology to prepare all students to meet challenging", section 1051 sub section 221. Moreover, Executive Order 12906, the Spatial Data Infrastructure Act, requires all federal agencies to manage their spatial data. Such compliance may influence the job market, education and policy makers to see that spatial thinking transcends the standard course of study. Namely, educational leadership and policy have to be a vital aid to augment the geosciences experience through the K-12 experience and as an inclusion activity in the standard course of study agenda. A simple endorsement by the National Academy of Sciences (2006), in their work titled Learning to think spatially: GIS as a support system in the K-12 curriculum, who stated, "Spatial thinking can be learned, and it can and should be taught at all levels in the education system" (p.3). Such may not be enough to gain the attention and time consideration of educational leadership. Therefore, the challenge for progressive advocates of geosciences is that some may have to consider educational leadership as new frontier to push such policy and research issues.

  17. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    NASA Astrophysics Data System (ADS)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  18. A Concept of an Information System for the Geosciences.

    ERIC Educational Resources Information Center

    American Geological Inst., Washington, DC.

    The American Geological Institute's Committee on Geoscience Information prepared this report as the terminal point to the first phase of its long-term goal, to develop a system for facilitating information transfer in the geosciences. The Concept report was presented by Dr. William Hambleton, chairman of the AGI Committee on Geoscience…

  19. 77 FR 22360 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: April 18-April 19, 2012; 8:30 a.m.-2 p.m. Place: Stafford.... Purpose of Meeting: To provide advice, recommendations, and oversight concerning support for...

  20. 75 FR 55360 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). DATES: October 6, 2010-October 7, 2010; 8:30 a.m.-1:30...

  1. 75 FR 13313 - Advisory Committee for Geosciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION Advisory Committee for Geosciences; Notice of Meeting In accordance with the Federal Advisory Committee Act...: Advisory Committee for Geosciences (1755). Dates: April 14, 2010; 8:30 a.m.-5 p.m. April 15, 2010 8:30,...

  2. Professional Development Strategies to Enhance Diversity in the Geosciences

    ERIC Educational Resources Information Center

    Sherman-Morris, Kathleen; Rodgers, John C., III; McNeal, Karen S.; Brown, Michael E.; Dyer, Jamie L.

    2012-01-01

    Because of the historically low numbers of minorities in geoscience careers and college majors, an area of growing attention is how teacher professional development may be utilized to increase diversity in the geosciences (Pecore et al., 2007; Sedlock & Metzger, 2007). This paper examines teacher preferences for the timing, location and content of…

  3. A Compilation and Review of over 500 Geoscience Misconceptions

    NASA Astrophysics Data System (ADS)

    Francek, Mark

    2013-01-01

    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the frequency of misconceptions by subject matter, group (primary, middle-school, high-school, middle-/high-school, college, pre-service teachers, in-service teachers, and undefined) and source (journal versus web); and (2) the pattern of misconceptions across age groups and (3) directions for future research. A total of 502 misconceptions were discovered, with over 40% targeting a middle- and high-school audience. Plate tectonics comprised 19% of all misconceptions, with another 14% and 13% associated with weathering/erosion and historical geology, respectively. Over 80% of all the misconceptions were derived from peer-reviewed journals or web sources, the rest originated from reliable sources on the World Wide Web. The supernatural origin for many of the geoscience phenomena listed here is abandoned by middle school, but in other cases, some misconceptions seem robust through adulthood. Examples of such misconceptions include the origin/pattern of earthquakes, thickness of the earth's crust, oil's origin, movement mechanisms for glaciers, co-existence of humans and dinosaurs, water movement within karst terrains, the nature of plate boundaries, the power of water as an agent of geomorphic change, what constitutes a mineral and a rock, thickness of the soil layer, the distribution of volcanoes, and the difference between weathering and erosion.

  4. Database versioning and its implementation in geoscience information systems

    NASA Astrophysics Data System (ADS)

    Le, Hai Ha; Schaeben, Helmut; Jasper, Heinrich; Görz, Ines

    2014-09-01

    Many different versions of geoscience data concurrently exist in a database for different geological paradigms, source data, and authors. The aim of this study is to manage these versions in a database management system. Our data include geological surfaces, which are triangulated meshes in this study. Unlike revision/version/source control systems, our data are stored in a central database without local copies. The main contributions of this study include (1) a data model with input/output/manage functions, (2) a mesh comparison function, (3) a version merging strategy, and (4) the implementation of all of the concepts in PostgreSQL and gOcad. The software has been tested using synthetic surfaces and a simple tectonic model of a deformed stratigraphic horizon.

  5. Lattice Boltzmann methods in Geosciences

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Parmigiani, Andrea; Su, Yanqing

    2014-05-01

    Numerical models often offer the only possible approach to study the complex non-linear dynamics of geodynamical processes that are difficult or impossible to scale for laboratory experiments. The development of improved computer resources has allowed the emergence of large-scale parallel computations in Earth Sciences. These resources have lead to an increasing complexity in models where a greater number of adjustable parameters arise. Although the increasing number of free parameters offers a greater flexibility to fit satisfyingly the set of available constraints (e.g. geochemical, structural) it also provides new challenges in terms of the size of the parameter space and non-uniqueness of model solutions. Another significant challenge associated with state-of-the-art models is that their complexity is in general associated with the addition of parameterizations of the unresolved (small) scale processes. This trend calls for the development of complementary high-performance models to constrain the physics at small-scales where mass, momentum and energy exchanges at interfaces between different phases control the dynamics in heterogeneous media. We argue that more attention should be devoted to the development of multiphase numerical modeling at the granular (pore) scale to investigate the dynamical behavior of heterogeneous media and the emergence of feedbacks that influence the response of these media at much greater scales. The lattice Boltzmann method is a paradigm that emerged almost three decades ago. It is based on kinetic theory and follows a bottom-up approach that contrast the top-down strategy of standard methods such as Finite Volumes, FEM and Finite Differences. Lattice Boltzmann is ideally suited to handle the complex dynamics of multiphase systems at small spatial scales and is very efficient for parallel programing. In this presentation, we discuss the development of different lattice Boltzmann models developed in our group over the last years

  6. Neurology Case Studies: Cerebrovascular Disease.

    PubMed

    Farooq, Muhammad U; Gorelick, Philip B

    2016-08-01

    This article discusses interesting vascular neurology cases including the management of intracranial stenosis, migraine headache and stroke risk, retinal artery occlusions associated with impaired hearing, intracranial occlusive disease, a heritable cause of stroke and vascular cognitive impairment, and an interesting clinico-neuroradiologic disorder associated with eclampsia. PMID:27445238

  7. Geosciences Information for Teachers (GIFT) in Catalonia

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  8. Geoscience terminology for data interchange: the CGI Geoscience Terminology Work Group (Invited)

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Gtwg, G.

    2013-12-01

    The Commission for the Management and Application of Geoscience Information (CGI), a Commission of the International Union of Geological Sciences (IUGS) has formed the Geoscience Terminology Working Group (GTWG, http://www.cgi-iugs.org/tech_collaboration/ geoscience_terminology_ working_group.html) to unify vocabulary development efforts of the Multhes working group of the 1990s, the Multilingual Thesaurus Working Group (MLT) formed in 2003, and the Concept Definition Task Group formed in 2007. The workgroup charge is to develop, review, adopt, publish, and steward vocabularies and associated documentation for use in geoscience information systems. The group will develop liaisons with other semantic interoperability groups to ensure cross-domain interoperability. The objective is to create vocabularies that bind URIs to geoscience concepts, and allow linking between concepts in the CGI vocabularies and other vocabularies such as SWEET, GEMET, and the GCMD. Representations of the concepts use SKOS RDF/XML and a standardized vocabulary service that to enable navigating links to concepts, accessing definitions, and obtaining language-localized labels for concepts. The SISSvoc service developed by CSIRO Australia has been deployed for CGI vocabulary services. Vocabularies are currently constructed by gathering candidate terms in spreadsheet tables because these are easy for text editing and review. When the vocabulary is mature, it is migrated into SKOS, an RDF application for encoding concepts with identifiers, definitions, source information, standard thesaurus type relationships, and language-localized labels. Each vocabulary is 'shepherded' by a GTWG member, who is responsible for organizing a team to compile a draft vocabulary, present it for review by appropriate authorities, respond to review comments, and determine when the vocabulary is ready for adoption by a vote of the workgroup. The first meeting of the work group took place, hosted by VSEGEI in St

  9. Case Studies for Management Development in Bangladesh.

    ERIC Educational Resources Information Center

    McLean, Gary N.

    Eight case studies appropriate for use in a course in management development were prepared and are provided in this document. The typical case describes a real business situation in which a real manager had to reach a decision. The case gives quantitative and qualitative information that is, or may be, relevant to that decision. Questions for…

  10. Study on Case Teaching of Financial Management

    ERIC Educational Resources Information Center

    Che, Zhenghong; Che, Zhengmei

    2011-01-01

    Case teaching is an efficient teaching method of management. It plays an important role to enhance the students' ability to practice the theory. However, case teaching of financial management has not achieved the expected results. The paper aims to study the importance, characteristics and corresponding methods of case teaching method of financial…

  11. Issues, Challenges, and Opportunities in Geoscience Education and Broadening Participation in the Geosciences at Two-year Colleges

    NASA Astrophysics Data System (ADS)

    van der Hoeven Kraft, K.; Guertin, L. A.; Filson, R. H.; Macdonald, H.; McDaris, J. R.

    2011-12-01

    A workshop on The Role of Two-Year Colleges in Geoscience Education and Broadening Participation in the Geosciences was held at Northern Virginia Community College in June 2010 to identify issues, challenges, and opportunities for geoscience faculty and students in two-year colleges (2YC) and to make recommendations for strengthening this component of the geoscience community. Given the wide diversity of 2YC students, a long term goal for this workshop was to work toward broadening the participation of underrepresented students to the geosciences. The workshop included sessions on strategies for supporting all students to be successful, the role of 2YC in broadening participation in the geosciences, and preparing geoscience students for the future (recruiting and retaining students in the geosciences, career preparation and workforce development, and transfer and 2YC and 4YC partnerships). Conversations between participants and professional organizations and societies focused on how increased communication with 2YC faculty could support faculty and students from two-year colleges. Participants considered strategies for addressing isolation and building community including interdisciplinary collaborations, scholarly practices, using Web 2.0, and working with adjunct faculty. Working groups addressed the following topics: establishment of a geoscience 2YC community, best practices for geoscience 2YC programs, faculty professional development, recruitment and retention of students, diversity in the geosciences, the role of 2YC in K-12 teacher preparation, and ocean science education in 2YC. Recommendations included the need to collect and disseminate information about 2YC including demographic information and best practices of 2YC geoscience programs, the desire to establish an organization for 2YC geoscience faculty, more opportunities to communicate (workshops and electronic communications), and other approaches for supporting 2YC students, faculty, and programs

  12. Taking Geoscience to Public Schools: Attitude and Knowledge Relationships

    NASA Astrophysics Data System (ADS)

    Silliman, J. E.; Hansen, A.; McDonald, J.; Martinez, M.

    2005-12-01

    The Cabeza de Vaca Earthmobile Program is an ongoing project that is designed to strengthen geoscience education in South Texas public schools. It began in June 2003 and is funded by the National Science Foundation. This outreach program involves collaboration between Texas A&M University-Corpus Christi and four independent school districts in South Texas with support from the South Texas Rural Systemic Initiative, another NSF-funded project. Additional curriculum support has been provided by various local and state organizations. Across Texas, fifth grade students are demonstrating a weakness in geoscience concepts as evidenced by their scores on the Texas Assessment of Knowledge and Skills. As a result, fifth and sixth grade public school students from low-income school districts were selected to participate in this program. At this age students are already making decisions that will affect their high school and college years. The main purpose of this project is to encourage these students, many of whom are Hispanic, to become geoscientists. This purpose is accomplished by enhancing their geoscience knowledge, nurturing their interest in geoscience and showing them what careers are available in the geosciences. Educators and scientists collaborate to engage students in scientific discovery through hands-on laboratory exercises and exposure to state-of-the-art technology (laptop computers, weather stations, telescopes, etc.). Students' family members become involved in the geoscience learning process as they participate in Family Science Night activities. Family Science Nights constitute an effective venue to reach the public. During the course of the Cabeza de Vaca Earthmobile Program, investigators have measured success in two ways: improvement in students' knowledge of geoscience concepts and change in students' attitudes towards geoscience. Findings include significant improvement in students' knowledge of geoscience. Students also report more positive

  13. Academic Planning: Four Institutional Case Studies.

    ERIC Educational Resources Information Center

    Kieft, Raymond N.

    As part of a project studying intrainstitutional planning, management, and evaluation, four case studies were undertaken in 1976 of academic planning at Villa Maria College, Kansas City Metropolitan Community College District, West Virginia University, and Western Washington University. The case studies were part of an ongoing project, the…

  14. Case Studies in Neurocritical Care.

    PubMed

    Sakusic, Amra; Rabinstein, Alejandro A

    2016-08-01

    The practice of neurocritical care encompasses multiple acute neurologic and neurosurgical diseases and requires detailed knowledge of neurology and critical care. This article presents 5 cases that illustrate just some of the conditions encountered in the daily practice of neurocritical care and exemplify some of the common diagnostic, therapeutic, and prognostic challenges facing the neurointensivist. Life-threatening medical complications after severe acute ischemic stroke, seizures and extreme agitation from autoimmune encephalitis, refractory seizures after subdural hemorrhage, neurologic and systemic complications related to aneurysmal subarachnoid hemorrhage, and status epilepticus after cardiac arrest are discussed in this article. PMID:27445248

  15. Composites in manufacturing - Case studies

    SciTech Connect

    Strong, A.B. )

    1991-01-01

    The papers presented in this volume focus on 19 cases of applied technology in composites design and manufacturing, all of them dealing with specific products. Topics covered include design using composite in aerospace, innovative materials and processing, tooling, fasteners and adhesives, finishing, repair, specialty applications of composites, and applications in the automotive industry. Papers are presented on the filament winding of isogrid fuselage structures; design and use of aramid fiber in aircraft structures; resin transfer molding of a complex composite aircraft structure; and field repair of an advanced helicopter vertical fin structure.

  16. Atmospheric Measurements by the 2002 Geoscience Laser Altimeter System Mission

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA Earth Observing System (EOS) program is a multiple platform NASA initiative for the study of global change. As part of the EOS project, the Geoscience Laser Altimeter System (GLAS) was selected as a laser sensor filling complementary requirements for several earth science disciplines including atmospheric and surface applications. Late in 2002, the GaAs instrument is to be launched for a three to five year observational mission. For the atmosphere, the instrument is designed to full fill comprehensive requirements for profiling of radiatively significant cloud and aerosol. Algorithms have been developed to process the cloud and aerosol data and provide standard data products. After launch there will be a three-month project to analyze and understand the system performance and accuracy of the data products. As an EOS mission, the GaAs measurements and data products will be openly available to all investigators. An overview of the instrument, data products and evaluation plan is given.

  17. Environmental GeoSciences Lectures and Transversal Public Workshops

    NASA Astrophysics Data System (ADS)

    Redondo, J. M.; Redondo, A.; Babiano, A.

    2010-05-01

    Co/organized by the Campus Universitari de la Mediterrania, which is a consortium between the City hall of Vilanova i la Geltru, The Universitat Politecnica de Catalunya and the Generalitat. A series of high level workshops and summer schools have been used to prepare specific, hands on science and scientific, divulgation material aimed at different types of public. Some of the most attractive topics in geosciences, prepared by well established scientists in collaboration with primary and secondary school teachers are used to stimulate science and environmental topics in the clasroom. A collection of CDs with lectures, videos and experimental visual results cover a wide range of topics such as: Cloud shape analysis, Cetacean Acoustics, Turbulence, Soil percolation, Dynamic Oceanograpy, Oil Pollution, Solar Physics, Rainbows and colour, Snail shell structure, etc.. Some of the most popular themes are chosen, studied and presented by the diferent aged pupils from local schools.

  18. Technologies for utilizing natural resources create new job opportunities in the geosciences in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Water, soils, minerals, and biota constitute a community's most significant natural resources. Innovations in technology are generating new jobs in converting into a resource what was yesterday a non-resource; in developing process and control technologies to minimize wastes; and in waste recycling.“Resources are not, they become,” in the words of Zimmerman. In the case of the developing countries, the technologies of choice have not only to be ecologically sustainable and economically viable, but more importantly, employment generating. The new kinds of jobs—for example, in poverty alleviation projects via micro-enterprises based on value-added processing of natural resources—have a strong environmental relevance and tend to lie at the interface of several traditional scientific disciplines. Geoscience graduates in the developing countries are best placed to take advantage of these new job opportunities involving Earth materials, but only if they are exposed to broad-based geoscience instruction.

  19. Case studies in conservation science

    NASA Astrophysics Data System (ADS)

    Bisulca, Christina

    The research presented in this dissertation covers three separate topics of conservation as defined by the National Science Foundation: 1) Materials Stabilization, Strengthening, Monitoring, and Repair; 2. Understanding Material Degradation and Aging; and 3) Materials and Structural Characterization of Cultural Heritage Objects (the 'technical study'). The first topic is addressed through a study to assess the consolidant tetraethoxysilane for the stabilization of alum treated wood. Falling under materials degradation studies is a study published in American Museum Novitates to understand how environmental conditions affect the aging of fossil resins from five different deposits. Two separate studies are included in technical study of cultural heritage objects which comprises the third research area of materials characterization. The first is a survey of red dyes used in Chinese paintings from the Ming Dynasty to the Early Republic (1364-1911). The second is a study of the pigments, dyes and binders used in Hawaiian barkcloth (kapa) from the 19th century.

  20. Geoscience in Developing Countries of South Asia and International Cooperation

    NASA Astrophysics Data System (ADS)

    Gupta, K.

    2007-12-01

    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  1. Enabling Global Collaboration in the Geosciences

    NASA Astrophysics Data System (ADS)

    Klump, Jens; Allison, Lee; Asch, Kristine; Fox, Peter; Gundersen, Linda; Jackson, Ian; Loewe, Peter; Snyder, Walter S.; Ritschel, Bernd

    2008-12-01

    Geoinformatics 2008; Potsdam, Germany, 11-13 June 2008; Scientists are facing an increasing flood of data and information in the Earth sciences from which they try to distill knowledge. The emerging discipline of geoinformatics brings together the tools necessary to create and make accessible the knowledge needed to respond to society's complex challenges, such as climate change, new energy and mineral resources, new sources of water, and protecting environmental and human health. Globalization of geoinformatics-based research and education in support of meeting societal challenges was the theme for the Geoinformatics 2008 conference, which was held at the German Research Centre for Geosciences, in Potsdam, Germany. Participants came from China, France, Germany, Japan, Netherlands, Russia, Switzerland, the United Kingdom, and the United States, representing academic institutions, national research centers, and government agencies.

  2. Retreating to Advance Women Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    O'Connell, Suzanne; Holmes, Mary Anne

    2007-11-01

    Geoscience Academics in the Northeast (GAIN) Writing Retreat; Dover, Massachusetts, 29 July to 3 August 2007 Seventeen women geoscientists from New England, New York, and New Jersey assembled for a writing retreat at Boston College's Connors Family Retreat and Conference Center, set on 80 pastoral acres on the outskirts of Boston. Funded through the National Science Foundation ADVANCE program, the retreat had two objectives: to facilitate writing and to develop a supportive community. It succeeded on both accounts. Although new to science, retreats of this sort have long been a highly sought after experience for writers in other disciplines. The potential benefits for scientists, in particular, women scientists, are great. Writing is a cornerstone of our work, yet we struggle to find time for it, juggling the demands of students, teaching, family, domestic chores, and research.

  3. The Role of Virtual Globes in Geoscience

    NASA Technical Reports Server (NTRS)

    Bailey, John E.; Chen, Aijun

    2011-01-01

    One of the difficulties faced by Earth scientists of all disciplines is how to effectively communicate their research to both other scientists and the general public. With increased attention paid to the health of the planet, the activities of geoscientists in particular are falling under the spotlight of public interest. In age where the internet availability has brought an expectation of information being instantly visible in a graphically rich format, the development of Virtual Globes --computer-based representations of the real-world--has become a natural progression for how best to view these data. In this special issue we bring together a cross-selection of the many examples of how Virtual Globe technologies are being used for geoscience.

  4. The role of ethics and deontology is essential must be reinforced in geosciences. Focus natural hazards and catastrophic risk.

    NASA Astrophysics Data System (ADS)

    Zango-Pascual, Marga

    2016-04-01

    Marga Zango-Pascual Area: Environmental Technologies. Department: Chemical, Physical and Natural Systems. Universidad Pablo de Olavide, Seville, Spain. mzanpas@upo.es In todaýs globalized and changing world, Natural Hazard Management is becoming a priority. It is essential for us to combine both global and interdisciplinary approaches with in-depth knowledge about the natural hazards that may cause damage to both people and property. Many catastrophic events have to see with geological hazards. Science and technology, and particularly geosciences, play an essential role. But this role is often not used, because it is not integrated into the legislation or public policy enacted by those who must manage risk to prevent disasters from occurring. Not only here and now, but also everywhere, whenever decisions are made on disaster risk reduction, we must call for the role of geology to be taken into account. And we must note that in several countries including Spain, the study of geology is being slighted in both universities and secondary education. If the discipline of geology disappears from formal education, there would be serious consequences. This warning has already been issued once and again, for instance in the 2007 Quarterly Natural Sciences Newsletter in relation to Katrina and The Tsunami in the Indian Ocean. There, the fact that knowledge of geoscience may be indispensable for attenuating the effects of natural disasters and that knowledge of geoscience benefits society always is clearly stated. And this necessarily includes generating and makings the best possible use of legislation and public policy where daily decisions are made both on risk management and everything that managing threats involves. The role of geology and geologists is essential and must be reinforced. But, we cannot forgive that is necessary to form of the professional of geology in law and ethical principles. And of course a deontological approach should be maintained. The role of

  5. Magnetometers for Geoscience (Christiaan Huygens Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Korepanov, V.

    2009-04-01

    Measuring the Earth's magnetic field is one of the first metrological actions of humankind, traceable till about 5000 years BC. It is remarkable that the interest in magnetic fields measurements still is growing and the scope of their applications is getting wider and wider. The progress in the recent 20-30 years in the development of magnetometers of different kinds is highly impressive. Currently practically all scales of the magnetic field values can be measured - from the huge magnetic fields of astronomical objects down to atto-Tesla levels. A modern flux-gate magnetometer (FGM) may cover an amazing dynamic range of the magnetic field, ranging from 10-4 down to 10-12 T, and even lower. The second most important parameter, the zero line drift, may reach below 10-5 of the full measurement scale per year. Development of state of the art FGMs requires profound research activity in various science disciplines: mathematics, metrology, electronics and material science to name a few. This talk reviews the principles of various types of existing magnetometers and their main performance aspects are compared. It is shown that the most suitable type of instrument for measurements of the magnetic fields in the range applicable for geosciences is the FGM. A few highlights of recent developments of FGMs, with record parameters concerning noise level and power consumption, are given. Techniques to lower the noise to a cutting edge level are described and a new physical phenomenon discovered during this development work is reported and explained. Advancement in flux-gate magnetometry is discussed and a few specific examples are presented: a) a one-second INTERMAGNET-compatible FGM, b) a super-low power FGM, c) the lowest available noise FGM and d) the smallest but sensitive FGM for nano-satellites. Finally some applications for FGM use in geosciences are given and envisaged progress in the future development in the field of magnetic observations is discussed.

  6. Implementing Successful Geoscience Education and Outreach Efforts

    NASA Astrophysics Data System (ADS)

    Braile, L. W.

    2004-12-01

    Successful geoscience Education and Outreach (E&O) efforts associated with a research program benefit from effective planning and a commitment by scientists/researchers to become more knowledgeable about and involved in education. Several suggested strategies have evolved based on experience in Earth science E&O with K-16 educators and students during the past 10 years. E&O programs and materials should be developed at appropriate levels ("start from where they're at") and utilize information, skills and topics that are most relevant to students and teachers. Hands-on and inquiry-based activities that teach or reinforce fundamental science understanding and skills, while introducing new topics, results and discoveries, are particularly effective. It is useful to design materials that can provide for a range of time commitment, level of technical skills, and effort, so that introductory to in-depth curriculum units can be implemented. Use of the Internet and working with teachers can be effective methods for dissemination and taking advantage of a "multiplying factor". Obtaining feedback and evaluation of the programs and developed materials, and connecting the materials to national or state education standards are also highly recommended. Most importantly, scientists should become more involved in the science education community. Attending and presenting papers at appropriate science education sessions or workshops, or state or national science teacher meetings (the annual National Science Teachers Association convention is an excellent place to start) can be a significant educational experience for the scientist/researcher. Effective geoscience E&O programs have significant potential for enhancing K-16 education and scientific literacy, and can help attract students to the sciences. Perhaps surprisingly, these efforts have substantial positive impact on the scientist/researcher as well.

  7. Case-Control Study of Writer's Cramp

    ERIC Educational Resources Information Center

    Roze, E.; Soumare, A.; Pironneau, I.; Sangla, S.; de Cock, V. Cochen; Teixeira, A.; Astorquiza, A.; Bonnet, C.; Bleton, J. P.; Vidailhet, M.; Elbaz, A.

    2009-01-01

    Task-specific focal dystonias are thought to be due to a combination of individual vulnerability and environmental factors. There are no case-control studies of risk factors for writer's cramp. We undertook a case-control study of 104 consecutive patients and matched controls to identify risk factors for the condition. We collected detailed data…

  8. A Constructive Controversy Approach to "Case Studies"

    ERIC Educational Resources Information Center

    Bird, Sharon R.; Erickson, Karla A.

    2010-01-01

    On the basis of analysis of student responses to a case study titled "Drinks and Dinner," the authors evaluate the pedagogical potential of using constructive controversy case studies to teach about inequality. "Drinks and Dinner" is designed to capture the complexity of social interactions that defy simple solutions to engage students in…

  9. Self-Employment Training Programs: Case Studies.

    ERIC Educational Resources Information Center

    Lamb, Melissa, Ed.; And Others

    This self-employment training program case study booklet has been developed for general use in exploring the feasibility of this kind of development tool. The case studies describe a number of comprehensive, self-employment training and assistance programs, from the local to the national level. Chapter II includes information on the training plan,…

  10. Chemical Case Studies: Science-Society "Bonding."

    ERIC Educational Resources Information Center

    Hofstein, Avi; Nae, Nehemia

    1981-01-01

    Describes a unit designed to illustrate the "science-society-technology connection," in which three case studies of the chemical industry in Israel are presented to high school chemistry students. Chosen for the unit are case studies on copper production in Timna, on plastics, and on life from the Dead Sea. (CS)

  11. Twenty Techniques for Teaching with Case Studies

    ERIC Educational Resources Information Center

    Sudzina, Mary R.

    2005-01-01

    Problem-based learning and teaching with case studies are instructional approaches that are increasingly being applied in a variety of disciplines, such as business, law, medicine, and education. Instructors who have experienced traditional, teacher-centered instruction are often looking for ways to successfully integrate case studies, a…

  12. Using Case Studies: An International Approach

    ERIC Educational Resources Information Center

    McClam, Tricia; Woodside, Marianne

    2005-01-01

    Case studies as an instructional strategy have been used in many disciplines, including law, teacher education, science, medicine, and business. Among the benefits of this method of instruction are involving students in learning, developing their critical thinking skills, promoting communication, and engaging in critical analysis. Case studies are…

  13. Library Media Center Problems: Case Studies.

    ERIC Educational Resources Information Center

    Coburn, Louis

    Problems which arise in school library media centers are considered, using the case study method. The 30 case studies cover: problems in child management; the librarian's role in reading instruction and guidance, and in teaching library skills; conflicting opinions on the management and objectives of the media center; the librarian's role and job…

  14. Collaboration in Distance Education. International Case Studies.

    ERIC Educational Resources Information Center

    Moran, Louise, Ed.; Mugridge, Ian, Ed.

    This book contains nine case studies of collaboration in distance education. The case studies focus on such aspects of collaboration in distance education as the following: roles of individual institutional partners; importance of personal relationships; benefits of collaboration to individual partners; conflicts between collaboration and…

  15. Teaching Case Studies: A Collaborative Approach.

    ERIC Educational Resources Information Center

    Buffington, James R.; Harper, Jeffrey S.

    Many of the Association to Advance Collegiate Schools of Business (AACSB) accredited schools require undergraduate Management Information Systems (MIS) majors to take a course in the management of information technology. Over half of these schools utilize case studies in the teaching of this course. The authors emphasize that case studies are an…

  16. A Case Study of "Empathetic Teaching Artistry"

    ERIC Educational Resources Information Center

    Risner, Doug

    2014-01-01

    This case study is one of twenty cases derived from Anderson and Risner's international study of teaching artists in dance, and theatre, which investigated participants' (n=172) artistic and academic preparation in dance, and theatre, initial entry into the teaching artist field, rewards, challenges, and obstacles in participants'…

  17. Case Studies for Teaching Students with Dyslexia

    ERIC Educational Resources Information Center

    Macnamara, Gael R.

    2004-01-01

    This easy-to-use book of case studies helps you recognize the signs of dyslexia and prescribe effective teaching strategies for students with dyslexia. It includes a Case Study Analysis Sheet so you can work through important aspects of a student's personal, academic, and social life. You can then compare what you've compiled to the author's…

  18. Is Pain Suffering? A Case Study

    ERIC Educational Resources Information Center

    Black, Helen K.

    2007-01-01

    In this article, the case study of an elderly woman shows how bodily pain and suffering meld in her narrative, not as the subjective and objective sides of the same event, but as distinct experiences in which both constructs emerge separately or come together based on the meaning she imputes to the event. The case study shows the clear…

  19. Iowa College Student Aid Commission Case Study

    ERIC Educational Resources Information Center

    Leigh, Rachel A.

    2007-01-01

    The purpose of this descriptive case study was to trace the policy production process of a state agency, the Iowa College Student Aid Commission (Commission), to its function today. This case study relied on a review of federal and state statutes, a news article search, biennium reports of the Commission, and information obtained from the…

  20. Helping geoscience students improve their numeracy using online quizzes

    NASA Astrophysics Data System (ADS)

    Nuttall, Anne-Marie; Stott, Tim; Sparke, Shaun

    2010-05-01

    This project aims to help geoscience undergraduates improve their competence and confidence in numeracy using online quizzes delivered via the Blackboard virtual learning environment. Numeracy materials are being developed based on actual examples used in a range of modules in the geoscience degree programmes taught at Liverpool John Moores University. This is to ensure the subject relevance which is considered vital to maintaining student interest & motivation. These materials are delivered as a collection of Blackboard quizzes on specific numeracy topics which students can access at any point in their studies, either on or off campus. Feedback and guidance is provided immediately so that a student gains a confidence boost if they get it right or else they can learn where they have gone wrong. It is intended that positive feedback and repetition/reinforcement will help build the confidence in numeracy which so many students seem to lack. The anonymous nature of the delivery means that students avoid the common fear of ‘asking a stupid question' in class, which can hamper their progress. The fact that students can access the quizzes anytime and from anywhere means that they can use the materials flexibly to suit their individual learning needs. In preliminary research, 70% of the students asked felt that they were expected to have greater numeracy skills than they possessed and 65% said that they would use numeracy support materials on Blackboard. Once fully developed and evaluated, the Blackboard quizzes can be opened up to other departments who may wish to use them with their own students.

  1. 3D Immersive Visualization: An Educational Tool in Geosciences

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  2. A case study of embarrassment.

    PubMed

    Dann, O T

    1977-01-01

    The psychoanalytic references to embarrassment are reviewed. Embarrassment, in the literature, is seen largely as an affect involving exhibitionistic and scopophilic conflicts and defenses against these. A case in which embarrassment was prominent is discussed. Embarrassment in the patient was an ego response which implied an external object for its manifestation. It involved exhibitionistic and scopophilic conflicts and projective defenses, but also operated in ego-gratifying and adaptive ways. Her embarrassment was understood through the analysis of an initial embarrassing dream of nakedness and other dreams and associated material as the defensive out-grouth of repeated exposures to the primal scene. Embarrassment was a resistance to remembering in the analysis, and the primal-scene experiences were partially reconstructed. The analytic situation was, in many ways, a symbolic re-creation of the primal scene, including the patient's response of embarrassment. The development of embarrassment in the patient's childhood was furthered and confirmed by its being an identification with the attitudes of both parents. Finally, some reflections on embarrassment and shame in its various forms are set forth. PMID:560404

  3. Modern midwifery: two case studies.

    PubMed

    Anderson, S

    1985-01-01

    To gain more understanding of the practices of modern midwives, 2 births occurring in a Botswanan District Hospital Maternity Ward were observed by a research assistant. Naturalistic observation was considered more reliable than interviews with either patients or modern midwives to assess the biosocial aspects of birth in the modern sector. At admission to the labor room, these 2 midwives checked the patient's blood pressure, performed a vaginal examination, checked the fetal heart, palpated the uterus, shaved the public hair, and administered an enema. Both midwives did not communicate with their patients during these procedures or offer information on the results. The patients were told not to push; 1 midwife commented, "In the hospital, nobody delivers by herself." Rather, patients were instructed to do their "breathing exercises," a term with which they were not familiar and was not explained. In the 1st case, an episiotomy was performed. Both births were uneventful in terms of complications, but marked by a lack of attention to the psychological needs of the patient or sufficient explanations as to the progress of the delivery. Overall, all communications between the modern midwives observed and their patients were impersonal, with an emphasis on technical procedures. PMID:12282440

  4. Five case studies of multifamily weatherization programs

    SciTech Connect

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  5. Theoretical pluralism in psychoanalytic case studies

    PubMed Central

    Willemsen, Jochem; Cornelis, Shana; Geerardyn, Filip M.; Desmet, Mattias; Meganck, Reitske; Inslegers, Ruth; Cauwe, Joachim M. B. D.

    2015-01-01

    The aim of this study is to provide an overview of the scientific activity of different psychoanalytic schools of thought in terms of the content and production of case studies published on ISI Web of Knowledge. Between March 2013 and November 2013, we contacted all case study authors included in the online archive of psychoanalytic and psychodynamic case studies (www.singlecasearchive.com) to inquire about their psychoanalytic orientation during their work with the patient. The response rate for this study was 45%. It appears that the two oldest psychoanalytic schools, Object-relations psychoanalysis and Ego psychology or “Classical psychoanalysis” dominate the literature of published case studies. However, most authors stated that they feel attached to two or more psychoanalytic schools of thought. This confirms that the theoretical pluralism in psychoanalysis stretches to the field of single case studies. The single case studies of each psychoanalytic school are described separately in terms of methodology, patient, therapist, or treatment features. We conclude that published case studies features are fairly similar across different psychoanalytic schools. The results of this study are not representative of all psychoanalytic schools, as some do not publish their work in ISI ranked journals. PMID:26483725

  6. Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education.

    NASA Astrophysics Data System (ADS)

    Hansen, P. J. K.

    2009-09-01

    Weather, Ocean and Climate topics in Geosciences, a new subject in Norwegian upper secondary education. Pål J. Kirkeby Hansen Faculty of Education and International Studies, Oslo University College (PalKirkeby.Hansen@lui.hio.no) The Knowledge Promotion is the latest curriculum reform in Norwegian compulsory and upper secondary education implemented autumn 2006. The greenhouse effect, the increased greenhouse effect and the importance of the ozone layer are topics in Natural Science upper secondary year 1, but only in Programme for General Studies, chosen by less than 50% of the students. In Geography the same cohort learns about ocean and air currents and their impact on climate, and in particular conditions influencing the weather and climate in Norway. If the students during year 1 get interested in further education in weather, ocean, climate or other geosciences topics, they could continue their education on Programme for Specialization in General Studies and choose the new science subject Geosciences at years 2 and/or 3. Among many geo-topics, Geosciences contains: climate, weather, water circulation, glaciers, atmospheric currents, weather forecasts, variations in the ozone layer, climatic development from the latest Ice Age, climate change - causes, effects and challenges, surface and deep-sea currents in oceans - causes and consequences for the climate, el Niño and la Niña - causes and influence on the climate. The students are supposed to make extensive investigations of different geosciences-parameters on their own in an outdoor field using different tools of geosciences, and on the Internet and other media, and present the results. One serious problem introducing a new subject in upper secondary education is who are able to teach this subject. We who developed the curriculum on mission of the education ministry, had first of all teachers with a degree in natural geography in mind. To empower other interested teachers, for instance with degree in

  7. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T. ); Roberts, K.H. . Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  8. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T.; Roberts, K.H.

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  9. Mobility of College-level Student Ideas as Revealed by the Geoscience Concept Inventory: Implications for Teaching Introductory Courses

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Libarkin, J.

    2008-12-01

    findings available from GCI and other research, we suggest that longitudinal studies of learning in the geosciences are needed for time periods longer than a semester, and that more attention be paid to when conceptual change occurs for our majors.

  10. Case Studies in Literacy Development.

    ERIC Educational Resources Information Center

    Purvis, Don

    The report details results of a research project to monitor and map the literacy development of three learners of English as a Second Language (ESL) studying in an Australian English program for adult migrants. The objective was to gain a longitudinal picture of their reading and writing development over a period of nine months. Five additional…

  11. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  12. A Case Study of Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo

    In Engineering Ethics Class at Shizuoka University, the Code of Ethics and Cases for Electrical Engineers by IEEJ Ethics committee is used to promote for high education effect to correspond large number of students (140students). In this paper, a case study in the class, and survey results for ethics value of students are presented. In addition, some comments for role playing act on the case of virtual experiences by students are described.

  13. Labyrinthine sequestrum: four case studies.

    PubMed

    Lao, Zheng; Sha, Yan; Chen, Bing; Dai, Chun-Fu; Huang, Wen-Hu; Cheng, Yu-Shu

    2012-09-01

    Labyrinthine sequestrum, a rare form of labyrinthitis, is highly distinct from the more commonly encountered labyrinthitis ossificans based on its unique clinical, radiologic, and histologic characteristics. The study included 4 such patients who had undergone clinical and laboratory investigations, computed tomography (CT), and magnetic resonance imaging (MRI) assessments followed by surgical procedures and pathological evaluation. Their major symptoms were otorrhea, otalgia, tinnitus, and profound hearing loss. Imaging studies showed an osteolytic soft mass with calcified debris in the inner ear, and the bony labyrinth was eroded partly or completely by granulation mass, with loss of bony morphology. Further pathological examination was coincident with inflammatory granulation tissue with some calcification or osseous tissue. The disease process is attributed to chronic osteomyelitis due to the presence of osteonecrosis. Prompt CT and MRI examinations and optimal therapeutic management facilitate definitive diagnosis and protect against fatal complications. PMID:22467283

  14. Brick handling: a case study.

    PubMed

    Webb, R D; Handyside, J

    1982-09-01

    A small change in brick dimensions resulted in an increase in the perceived work-load of men loading and unloading pallets of bricks by hand. A laboratory study indicated that the change in brick dimensions required changes in grip pattern in order to unload bricks at the same rate, moving the same number at a time. These changed grip patterns resulted in increased upper body movement, increased chest-muscle activity and higher heart rates. These differences were reflected in higher subjective ratings of fatigue. PMID:15676442

  15. Professionalism Among Women and Men in the Geosciences

    ERIC Educational Resources Information Center

    Moody, Judith B.; And Others

    1976-01-01

    Presented are summaries of four presentations to the annual meeting of the Geological Society of America, Salt Lake City, October 20, 1975, pertaining to the problems particular to women in the geoscience fields. (SL)

  16. Global Crises Could Renew Interest in Geoscience Careers.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    The predicted increase in geoscience careers and research opportunities is discussed. A growing environmental concern and the need to search for oil outside the Persian Gulf has led to an educational revitalization in this area. (KR)

  17. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    NASA Astrophysics Data System (ADS)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  18. Invited contributions of 2013 geoscience laureates of the French Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Courtillot, Vincent

    2014-11-01

    Each year, the French Academy of Sciences gives out a number of prizes and medals to recognize the contributions and achievements of outstanding colleagues in all fields of Science. In 2013, for the first time, laureates have been invited to make short presentations at the Academy. This resulted in a special session that generated enthusiasm from participants, including many members of the Academy. The editorial team of Comptes rendus Geoscience has felt that it could be of interest to the scientific community to have access to presentations by these scientists in the geoscience series of the Comptes rendus. Six laureates of the 2013 Academy Awards responded positively to the invitation. Because these were invited papers, an Associate Editor and the Chief Editor played the role normally attributed to reviewers, in addition to their normal editorial duties. In some cases, external reviewers were also involved upon invitation by the Editors. We are thankful to the authors and happy to present readers of Comptes rendus Geoscience with this first series that, if successful, could be followed by others in the coming years.

  19. Introduction to US4: History, culture, art and religion in the geosciences

    NASA Astrophysics Data System (ADS)

    Glover, Paul

    2010-05-01

    The Annual General Assembly of the European Geosciences Union (and EGS before it) has always provided a platform for the reporting and debate of high quality geoscience in a very focussed manner. The breadth of its sections and sessions allows most geoscientists to present their work to like-minded colleagues or interdisciplinarily. However, many geoscientists have even wider interests: interests in history, art, politics and economics. Many have diverse abilities in music, painting, sculpture, and practice them as amateurs or to a high standard. Today we fill the gap, by providing a session with the broadest of scopes: History, culture, art and religion in the geosciences I hope that the session will appeal to all those geoscientists who wish to practice their science in the context of the wider culture. According to William Blake "To see a world in a grain of sand, And a heaven in a wild flower, Hold infinity in the palm of your hand, And eternity in an hour." Only, in our case it is more like an hour and a half, and I hope it does not seem like an eternity!

  20. Case Studies on Educational Administration. Third Edition.

    ERIC Educational Resources Information Center

    Kowalski, Theodore J.

    This book contains 24 case studies selected to demonstrate the different types of challenges in contemporary educational leadership. It is intended to help prospective administrators develop decision-making skills. The cases are quite complex with multiple viewpoints and aspects. They represent a range of problems encountered by practitioners in…

  1. Case Studies of Environmental Risks to Children.

    ERIC Educational Resources Information Center

    Goldman, Lynn R.

    1995-01-01

    Presents case studies on children's exposure to pesticides, including risks through the use of the insecticide aldicarb on bananas, the home use of diazinon, and the use of interior house paint containing mercury. These cases illustrate how regulatory agencies, parents, health-care providers, and others who come into contact with children have…

  2. Case Studies in Elementary and Secondary Curriculum

    ERIC Educational Resources Information Center

    Boboc, Marius; Nordgren, R. D.

    2010-01-01

    Practical and engaging, this book contains 21 case studies that help students apply curriculum theory to classroom reality. Each case is authored by an in-service teacher, reflecting on ways to improve instruction by making changes to various aspects of the curriculum. These real-life examples investigate up-to-date curricular issues ranging from…

  3. Abbreviated Case Studies in Organizational Communication

    ERIC Educational Resources Information Center

    Wanguri, Deloris McGee

    2005-01-01

    The cases contained within organizational communication texts are generally two to three pages, often followed by questions. These case studies are certainly useful. They generally describe events in the present, provide some type of organizational context, include first-hand data, include a record of what people say and think, develop a…

  4. Case Study Report #8. Lisa Williams.

    ERIC Educational Resources Information Center

    Myers, Douglas D.; And Others

    This document presents one in a series of twenty-three case studies derived from in-depth interviews using a sampling of former participants in the Mountain-Plains program, a residential, family-based education program developed to improve the economic potential and lifestyle of selected student families in a six-state area. Each case study…

  5. Encouraging Involvement of Alaska Natives in Geoscience Careers

    NASA Astrophysics Data System (ADS)

    Hanks, C. L.; Fowell, S. J.; Kowalsky, J.; Solie, D.

    2003-12-01

    Geologically, Alaska is a dynamic state, rich in mineral and energy resources. The impact of natural geologic hazards and mineral resource development can be especially critical in rural areas. While Alaska Natives comprise a large percentage of Alaska's rural population, few have the training to be leaders in the decision-making processes regarding natural hazard mitigation or mineral resource evaluation and exploitation. UAF, with funding from the National Science Foundation, has embarked on a three year integrated program aimed at encouraging young Alaska Natives to pursue geosciences as a career. The program combines the geologic expertise at UAF with established Alaska Native educational outreach programs. The Rural Alaska Honors Institute (RAHI) is a bridging program specifically designed to prepare rural high school students for college. To attract college-bound Alaska Native students into the geosciences, geoscience faculty have developed a college-level, field-intensive, introductory RAHI geoscience course that will fulfill geoscience degree requirements at UAF. In years two and three, this class will be supplemented by a one week field course that will focus on geologic issues encountered in most Alaskan rural communities, such as natural hazards, ground water, mineral and energy resources. In order to retain Alaska Native undergraduate students as geoscience majors, the program is providing scholarships and internship opportunities in cooperation with the Alaska Native Science and Engineering Program (ANSEP). Undergraduate geoscience majors participating in ANSEP can intern as teaching assistants for both the classroom and field courses. Besides being mentors for the RAHI students, the Alaska Native undergraduate geoscience majors have the opportunity to interact with faculty on an individual basis, examine the geologic issues facing Alaska Natives, and explore geology as a profession.

  6. Voluntarism, public engagement and the role of geoscience in radioactive waste management policy-making

    NASA Astrophysics Data System (ADS)

    Bilham, Nic

    2014-05-01

    In the UK, as elsewhere in Europe, there has been a move away from previous 'technocratic' approaches to radioactive waste management (RWM). Policy-makers have recognised that for any RWM programme to succeed, sustained engagement with stakeholders and the public is necessary, and any geological repository must be constructed and operated with the willing support of the community which hosts it. This has opened up RWM policy-making and implementation to a wider range of (often contested) expert inputs, ranging across natural and social sciences, engineering and even ethics. Geoscientists and other technical specialists have found themselves drawn into debates about how various types of expertise should be prioritised, and how they should be integrated with diverse public and stakeholder perspectives. They also have a vital role to play in communicating to the public the need for geological disposal of radioactive waste, and the various aspects of geoscience which will inform the process of implementing this, from identifying potential volunteer host communities, to finding a suitable site, developing the safety case, construction of a repository, emplacement of waste, closure and subsequent monitoring. High-quality geoscience, effectively communicated, will be essential to building and maintaining public confidence throughout the many decades such projects will take. Failure to communicate effectively the relevant geoscience and its central role in the UK's radioactive waste management programme arguably contributed to West Cumbria's January 2013 decision to withdraw from the site selection process, and may discourage other communities from coming forward in future. Across countries needing to deal with their radioactive waste, this unique challenge gives an unprecedented urgency to finding ways to engage and communicate effectively with the public about geoscience.

  7. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability

    NASA Astrophysics Data System (ADS)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.

    2012-12-01

    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education

  8. A Singapore Case of Lesson Study

    ERIC Educational Resources Information Center

    Cheng, Lu Pien; Yee, Lee Peng

    2012-01-01

    In this article, we present a case study of six Singaporean elementary school teachers working in a Lesson Study team that prepared them for problem solving instruction. The Lesson Study process included preparing, observing, and critiquing mathematics lessons in the context of solving fractions tasks. By conducting Lesson Study, we anticipated…

  9. BTS Case Study: The Galloway Family Home

    SciTech Connect

    Brandegee Group

    1999-03-08

    Case study of an energy-efficient Habitat for Humanity house that uses 30% less energy than conventional residential construction. The project was part of the Jimmy Carter Work Project in rural Appalachia in 1997.

  10. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    NASA Astrophysics Data System (ADS)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  11. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2009-05-01

    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  12. BCube: Building a Geoscience Brokering Framework

    NASA Astrophysics Data System (ADS)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  13. Developing Short Films of Geoscience Research

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.

    2015-12-01

    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  14. Geoscience in the news - sharing stories

    NASA Astrophysics Data System (ADS)

    Redfern, Simon

    2015-04-01

    Schemes such as the British Science Association media fellowships and the AGU mass media fellowships offer an opportunity for active researchers to sit side by side with journalists at the news desk. Each can learn from the other, and the mutual benefits are often unexpected. Here, I reflect on my own experiences as a media fellow at the BBC, and consider how this opportunity has altered my own views on communicated my, and others', science. Geosciences have a particular advantage in such translation to a general audience. Interest in the natural environment, the origins of life, the planetary science of the Solar System as a whole, as well as topics in resource, energy, climate and geohazards is high among the public. There are advantages in being willing to act as a "translator" of discovery and an "interpreter" of natural events that, it could be argued, should be grasped to keep the relevance of our science high in the perceptions of tax payers and policy makers. By exercising these types of communications skills, new perspectives on one's own research may be attained.

  15. Educational Activities of the European Geosciences Union

    NASA Astrophysics Data System (ADS)

    Laj, C.

    2004-12-01

    The Committee on Education of the European Geosciences Union has been created in 2002 and is now composed by 13 members from France, Germany, Great Britain, Italy, Poland, Spain and Sweden. One of the first activities of the CE has been the organization of workshops for secondary school teachers to be held during the annual General Assembly of EGU. Inspired by the AGU GIFT workshops, the EGU workshops differ from the American ones on their international aspect: - First, the audience (about 50 teachers) is entirely international, composed of teachers from all over Europe and not limited to teachers from the geographical area around Nice, where the two first workshops were held. - Second, the program of the workshops have been constructed to give the teachers not only an opportunity to upgrade their knowledge in important scientific topics, but also to exchange information with colleagues about the different school programs in different European countries. In 2004, for instance, the general theme of the 2-days workshop was "The Ocean" and the program consisted of a mixture of topical talks by leading scientists in the field (2/3 of the time) and informal talks/program presentations by the teachers themselves and the science educators present at the workshop (1/3 of the time), resulting in lively exchanges and future collaborations between teachers. Different aspects of this workshop will be described as well as other present and future activities of the Committee on Education of the EGU.

  16. Global geoscience transects in the Arab region

    NASA Astrophysics Data System (ADS)

    Barazangi, Mauwia

    The Global Geoscience Transects (GGT) project is one of the most recent initiatives of the International Lithosphere Program (ILP). The GGT project is represented by ILP Coordinating Committee 7 (CC7), which is coordinated by J . Monger (Geological Survey of Canada, Vancouver). M. Barazangi (Cornell University, Ithaca, N.Y.) is responsible for the coordination of the Middle East and North Africa region, which includes most of the Arab countries.The main objective of the GGT project is to strengthen and broaden international cooperation mainly through active participation of Earth scientists in constructing geological and geophysical transects, especially cross sections. The transects will be at least to Moho depth and will contain as much detail as transects of geological structures mapped on Earth's surface. The transects are being selected by the participating geoscientists to traverse all continents and, as much as possible, to form a continuous grid across political boundaries. Members of CC7 act as regional coordinators to help the local Earth scientists to initiate and implement GGT objectives. The implementation phase has to a large extent been standardized to follow clear guidelines that were developed by CC7 members. These guidelines are based on a modified and expanded version of the recent highly successful Continent-Ocean Transect project of the Geological Society of America.

  17. A Case Study about Communication Strategies

    ERIC Educational Resources Information Center

    Lin, Grace Hui Chin

    2011-01-01

    The primary purpose of this case study was to identify what were Taiwanese University English as a Foreign Language (EFL) learners' perceptions about learning communication strategies. This study collected qualitative data about students' beliefs and attitudes as they learned communication strategies. The research question guiding the study was:…

  18. Education and Work Councils: Four Case Studies.

    ERIC Educational Resources Information Center

    Prager, Audrey; And Others

    This collection of four case studies represents the conclusion of a two-phase study of a federal program to sponsor education and work councils. Following an outline of the history and concept of education and work councils as well as the findings of a study of such councils, the importance of council collaboration with selected sectors is…

  19. Predicting Students Drop Out: A Case Study

    ERIC Educational Resources Information Center

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  20. Native Geosciences: Strengthening the Future Through Tribal Traditions

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand and elevate Native geosciences knowledge, specifically in the areas of earth, wind, fire and water. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native tradition and our inherent understanding of what is "sacred above is sacred below" is the foundation for an emerging multi-faceted approach to increasing the representation of Natives in geosciences. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies as well as building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and South Dakota School of Mines and Technology in partnership with Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning communities connected to Tribal Sacred Sites and natural resources. These sites include the Black Hills (Mato Paha, Mato Tiplia, Hinhan Kaga Paha, Mako Sica etc.), Klamath River (Ishkêesh), and Hoopa Valley (Natinixwe). Native geosciences learning is centered on the themes of earth, wind, fire and water and Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal

  1. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    USGS Publications Warehouse

    Rye, Robert O.; Truesdell, Alfred Hemingway

    2007-01-01

    The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is

  2. GIRAF 2009 - Taking action on geoscience information across Africa

    NASA Astrophysics Data System (ADS)

    Asch, Kristine

    2010-05-01

    A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a

  3. Exploring Student-to-Workforce Transitions with the National Geoscience Exit Survey

    NASA Astrophysics Data System (ADS)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    In 2011, the American Geological Institute (AGI) launched the first pilot of a National Geoscience Exit Survey in collaboration with 32 geoscience university departments. The survey collects data about demographics, high school and community college coursework, university degrees, financial aid, field and research experiences, internships, and when and why the student chose to pursue a geosciences degree. Additionally, the survey collects information about students' future academic and career plans, and gives participants the option to take part in a longitudinal survey to track long-term career trajectories of geosciences graduates. The survey also provides geoscience departments with the ability to add customized questions to collect data about important departmental-level topics. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year. We use the results of the National Geoscience Exit Survey to examine student preparation and transition into geosciences and non-geoscience careers. Preliminary results from the pilot survey indicated future academic and career trajectories for geoscience Bachelor's degree recipients included graduate school (53%) and pursuit of a geoscience career (45%), with some undergraduates keeping their options open for either trajectory. Twelve percent of Bachelor's degree recipients already accepted job offers with geoscience employers. For geoscience Master's degree recipients, 17% planned to continue in graduate school, 35% were seeking a geoscience job, and 42% had already accepted job offers with geoscience employers. Furthermore, the majority of those geoscience graduates who already accepted geoscience job offers had also interned previously with the employer.

  4. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  5. Teaching Geosciences With Visualizations: Challenges for Spatial Thinking and Abilities

    NASA Astrophysics Data System (ADS)

    Montello, D. R.

    2004-12-01

    It is widely recognized that the geosciences are very spatial disciplines. Their subject matter includes phenomena on, under, and above the Earth surface whose spatial properties are critical to understanding them. Important spatial properties of geoscience structures and processes include location (both absolute and relative), size, shape, and pattern; temporal changes in spatial properties are also of interest. Information visualizations that depict spatiality are thus critically important to teaching in the geosciences, at all levels from K-12 to Ph.D. work; verbal and mathematical descriptions are quite insufficient by themselves. Such visualizations range from traditional maps and diagrams to digital animations and virtual environments. These visualizations are typically rich and complex because they are attempts to communicate rich and complex realities. Thus, understanding geoscience visualizations accurately and efficiently involves complex spatial thinking. Over a century of psychometric and experimental research reveals some of the cognitive components of spatial thinking, and provides insight into differences among individuals and groups of people in their abilities to think spatially. Some research has specifically examined these issues within the context of geoscience education, and recent research is expanding these investigations into the realm of new digital visualizations that offer the hope of using visualizations to teach complex geoscience concepts with unprecedented effectiveness. In this talk, I will briefly highlight some of the spatial cognitive challenges to understanding geoscience visualizations, including the pervasive and profound individual and group differences in spatial abilities. I will also consider some visualization design issues that arise because of the cognitive and ability challenges. I illustrate some of these research issues with examples from research being conducted by my colleagues and me, research informed by

  6. Broadening Participation in the Geosciences through Participatory Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  7. Gigantic Suprapubic Lymphedema: A Case Study

    PubMed Central

    Tanhaeivash, Roozbeh; Franiel, Tobias; Grimm, Marc-Oliver

    2016-01-01

    We present the first case study of idiopathic gigantic suprapubic lymphedema and buried penis treated with puboscrotal reconstruction in a patient with initial extreme obesity after an extensive weight reduction (120 kg). Massive localized lymphedema of the suprapubic region should be differentiated from the scrotal type. Severe lymphedema could not resolve on its own and weight reduction does not seem to be helpful in such cases. PMID:27574599

  8. Gigantic Suprapubic Lymphedema: A Case Study.

    PubMed

    Tanhaeivash, Roozbeh; Franiel, Tobias; Grimm, Marc-Oliver; Horstmann, Marcus

    2016-08-01

    We present the first case study of idiopathic gigantic suprapubic lymphedema and buried penis treated with puboscrotal reconstruction in a patient with initial extreme obesity after an extensive weight reduction (120 kg). Massive localized lymphedema of the suprapubic region should be differentiated from the scrotal type. Severe lymphedema could not resolve on its own and weight reduction does not seem to be helpful in such cases. PMID:27574599

  9. Nuclear forensic investigations: two case studies.

    PubMed

    Wallenius, M; Mayer, K; Ray, I

    2006-01-01

    This paper describes the methodology and analytical methods used in nuclear forensic investigations. Two case studies are taken as examples to illustrate this. These examples represent typical cases that have been analysed at the Institute for Transuranium Elements (ITU) since last 10 years, i.e. the beginning of the illicit trafficking of nuclear materials. Results of the various analytical techniques are shown, which, together with other type of information, reveal the origin of the material. PMID:16410154

  10. National Geoscience Data Repository System, Phase II. Final report, January 30, 1995--January 28, 1997

    SciTech Connect

    1998-04-01

    The American Geological Institute (AGI) has completed Phase II of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the United States for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. To address this opportunity, AGI sought support from the Department of Energy (DOE) in 1994 to initiate the NGDRS Phase I feasibility study to determine the types and quantity of data that companies would be willing to donate. The petroleum and mining companies surveyed indicated that they were willing to donate approximately five million well logs, one hundred million miles of seismic reflection data, millions of linear feet of core and cuttings, and a variety of other types of scientific data. Based on the positive results of the Phase I study, AGI undertook Phase II of the program in 1995. Funded jointly by DOE and industry, Phase II encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser.

  11. Where to Find Young Bright Stars in Geosciences: GGD, NSU

    NASA Astrophysics Data System (ADS)

    Rakhmenkoulova, I. F.; Sharapov, V. N.

    2004-12-01

    Geology and Geophysics Department (GGD) of Novosibirsk State University (NSU) can be regarded as infant, because it was founded in 1962. On the other hand, if to judge by what have been done - it is not only full-fledged, but well-known department. The unique location and specific educational and scientific traditions make GGD a famous school not only in Siberia, but in Russia, and all over the world. What are the tips to prepare bright stars in geosciences? 1.NSU is located in Academgorodok (Novosibirsk scientific center), unique place in Siberia, where more than 20 scientific institutions are located. This makes the University different from other schools in Russia. Famous Russian scientists, including members of RAS, together with foreign professors give lectures and seminars for NSU students. 2.The bright star hunting starts far below the NSU level. Each year in April there is a special event in Academgorodok -`Geologic Olympiad', where children of all Russian regions, as well as ex-Soviet republics are gathered together to submit their papers, to discuss most interesting geoscience problems and to win prizes for their knowledge. The youngest stars happen to be only 6-7 years old. The event is sponsored by NSU, UIGGM, and the Ministry of Natural Resources. The brightest geostars are grown from `Geologic Olympiad' participants. 3.There is special physics-mathematical high school in Academgorodok. Each summer this school gathers young stars from farthest Siberian and Far East regions and gives classes and seminars in mathematics, physics, chemistry and geology. As the result the most talented children become the students of this school (for two years). The school in turn supplies GGD with the students. 4.NSU has the study curriculum different from other universities in Russia. That is why the entrance examinations are much more difficult as compared to other schools and are taken in July (a month earlier then at other universities). However the entrance

  12. Social Studies Project Evaluation: Case Study and Recommendations.

    ERIC Educational Resources Information Center

    Napier, John

    1982-01-01

    Describes the development and application of a model for social studies program evaluations. A case study showing how the model's three-step process was used to evaluate the Improving Citizenship Education Project in Fulton County, Georgia is included. (AM)

  13. Technologies in Literacy Learning: A Case Study

    ERIC Educational Resources Information Center

    Cloonan, Anne

    2010-01-01

    This article draws on outcomes of a study which explored changes in teachers' literacy pedagogies as a result of their participation in a collaborative teacher professional learning project. The educational usability of schemas drawn from multiliteracies and Learning by Design theory is illustrated through a case study of a teacher's work on…

  14. Collaborative Assessment: Middle School Case Study

    ERIC Educational Resources Information Center

    Parkison, Paul T.

    2014-01-01

    Utilizing a participant observer research model, a case study of the efficacy of a collaborative assessment methodology within a middle school social studies class was conducted. A review of existing research revealed that students' perceptions of assessment, evaluation, and accountability influence their intrinsic motivation to learn. A…

  15. Case Studies of the Migrant Education Program.

    ERIC Educational Resources Information Center

    Marks, Ellen L.

    Intended for federal policymakers, this study examined four aspects of the Chapter 1 migrant education program: program administration, program services, students served, and program expenditures. Case studies were conducted in California, Florida, Illinois, Massachusetts, Oregon, and Texas between November 1986 and March 1987. State agencies and…

  16. Case Studies in Australian Adult Education.

    ERIC Educational Resources Information Center

    Clark, Ralph J., Ed.; Rooth, S. John, Ed.

    This publication contains the following 24 case studies of adult education in Australia: "NSW Department of Agriculture Home Study Programme" (O'Neill); "Self-Help Adult Education: The University of the Third Age at the Brisbane CAE" (Swindell); "Marriage Enrichment Programme" (D. Kerr, C. Kerr); "Carringbush Library: A Place to Be" (Letcher);…

  17. A Multiple Case Study of Innovation

    ERIC Educational Resources Information Center

    Zheng, Wei; Khoury, Anne E.

    2008-01-01

    This study aims to explore how leadership and contextual factors influence innovation in R&D teams in national laboratories, using the approach of multiple case studies. This paper provides some preliminary findings from two highly innovative teams residing in two national laboratories in the US. The preliminary results suggested several common…

  18. Connecting Reading and Writing: A Case Study

    ERIC Educational Resources Information Center

    Li, Zhanfang

    2015-01-01

    Connecting reading and writing, proposed by many scholars, is realized in this case study. The 30 participants in this study are the English majors of the third year in one School of Foreign Languages in Beijing. They are encouraged to write journals every week, based on the source text materials in their Intensive Reading class, with the final…

  19. Anthropology and Popular Culture: A Case Study.

    ERIC Educational Resources Information Center

    Estes, Jack

    The study of popular culture in the United States is an appropriate anthropological endeavor, as evidenced in a case study of the volcanic eruption of Mt. St. Helens in Oregon. By examining its popular arts, anthropologists gain understanding of the culture and its people. For example, an analysis of reactions to the Mt. St. Helens eruption…

  20. CASE STUDY: DIELDRIN ATTACK IN DALYAN LAGOON

    EPA Science Inventory

    During the first two weeks of December 2005, NATO sponsored an Advanced Study Institute (ASI) in Istanbul, Turkey. Part of this ASI involved a case study of a terrorist attack, where a chemical was assumed to be dumped into Sulunger Lake in Turkey. This chapter documents the re...

  1. Case Studies of Three Interorganizational Arrangements.

    ERIC Educational Resources Information Center

    Yin, Robert K.; And Others

    As part of their study of interorganizational collaboration, researchers present three detailed case studies of how regional education agencies (REAs) supply knowledge utilization services to the school districts they serve. The three REAs are the Wayne County (Michigan) Intermediate School District (with 36 districts), the Educational Improvement…

  2. Using Google Streetview Panoramic Imagery for Geoscience Education

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  3. Gender in the Geosciences: Factors Supporting the Recruitment and Retention of Women in the Undergraduate Major

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.; Sexton, J. M.; Pugh, K.; Bergstrom, C.; Parmley, R.; Phillips, M.

    2014-12-01

    The proportion of women earning undergraduate geoscience degrees has remained about 40% for over a decade. Little research has investigated why women select and persist in a geoscience major. This study addresses why students major in the geosciences and why some programs are more successful at recruiting and retaining female students. We collected interview and survey data from faculty and students at six public US universities. Four sites had a low proportion of female degree recipients (< 38%) and two sites had a high proportion of female degree recipients (> 48%). 408 students (64% female) completed surveys. Interviews were conducted with 49 faculty members and 151 students. Survey data analysis showed that interest/identity and transformative experiences were significant predictors of students' decision to major in geoscience. Institutional barriers and supports were significant predictors of confidence in the major while connection to instructor predicted students' intent to major. Analysis of pre- and post-course surveys show that students with a greater connection to instructors and students whose instructors expressed more passion for the content also reported higher levels of transformative experiences. This effect was especially pronounced for women and was a significant predictor of persistence in the major. Qualitative data show differences in departmental practices and climate between low and high female graduation sites. High sites used many student-centered approaches to teaching, had extensive opportunities for and a high number of undergraduate students involved in research, and had many opportunities for faculty-student interaction outside of class. Low sites had few of these practices. Qualitative data also showed differences in the gendered equity climate between high and low sites. High sites had more positive gender equity climates and low sites had more negative gender equity climates. At this time, we do not fully understand the causal

  4. A Collaborative Effort to Increase Enrollment and Retention in Geoscience Majors in North Carolina

    NASA Astrophysics Data System (ADS)

    Thomas, C. J.; Fountain, J. C.; Bartek, C. S.; Tang, G.

    2004-12-01

    Under an NSF Opportunities for Enhancement of Diversity in Geosciences grant, the Department of Marine, Earth and Atmospheric Sciences at North Carolina State University partnered with NC A&T University, a HBCU, to implement a multi-faceted effort to increase enrollment and retention in geoscience majors, with particular emphasis on under represented groups. New student recruitment is facilitated by a trained graduate student who visits high schools and presents a multi-media presentation on research at NCSU and career opportunities in the geosciences. Interested high school students are then invited to participate in a hands-on, summer science camp. Community college students are recruited through a new introductory geology course developed for and offered at Robeson Community College (77% of students from under represented groups). NC A&T has developed a track in their physics curriculum to prepare students for a geophysics career. The track includes a planned semester in residence at NCSU. Students who choose to enroll at NCSU, register for an introductory course developed as part of our NSF STEP grant, Environmental Issues in Water Resources, during which geoscience careers are highlighted and in-class research focuses on a local watershed. The emphasis on undergraduate research continues with Environmental Geology, an upper division course in which the entire class studies water and sediment contamination on local watersheds. All courses developed build upon our physics department's successful model of integrating lectures and laboratories and engaging first-year students in group-oriented, undergraduate research (http://www.physics.ncsu.edu/physics_ed/). Following the group research courses, advanced undergraduate students are placed in traditional research labs with faculty mentors while participating in a career development seminar in which research methods, proposal writing and presentation skills are introduced. Tutoring and mentoring programs provide

  5. Web Based Interactive Anaglyph Stereo Visualization of 3D Model of Geoscience Data

    NASA Astrophysics Data System (ADS)

    Han, J.

    2014-12-01

    The objectives of this study were to create interactive online tool for generating and viewing the anaglyph 3D stereo image on a Web browser via Internet. To achieve this, we designed and developed the prototype system. Three-dimensional visualization is well known and becoming popular in recent years to understand the target object and the related physical phenomena. Geoscience data have the complex data model, which combines large extents with rich small scale visual details. So, the real-time visualization of 3D geoscience data model on the Internet is a challenging work. In this paper, we show the result of creating which can be viewed in 3D anaglyph of geoscience data in any web browser which supports WebGL. We developed an anaglyph image viewing prototype system, and some representative results are displayed by anaglyph 3D stereo image generated in red-cyan colour from pairs of air-photo/digital elevation model and geological map/digital elevation model respectively. The best viewing is achieved by using suitable 3D red-cyan glasses, although alternatively red-blue or red-green spectacles can be also used. The middle mouse wheel can be used to zoom in/out the anaglyph image on a Web browser. Application of anaglyph 3D stereo image is a very important and easy way to understand the underground geologic system and active tectonic geomorphology. The integrated strata with fine three-dimensional topography and geologic map data can help to characterise the mineral potential area and the active tectonic abnormal characteristics. To conclude, it can be stated that anaglyph 3D stereo image provides a simple and feasible method to improve the relief effect of geoscience data such as geomorphology and geology. We believe that with further development, the anaglyph 3D stereo imaging system could as a complement to 3D geologic modeling, constitute a useful tool for better understanding of the underground geology and the active tectonic

  6. The Role of Introductory Geosciences in Students' Quantitative Literacy

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Manduca, C.; Baer, E. M.

    2006-12-01

    Quantitative literacy is more than mathematics; it is about reasoning with data. Colleges and universities have begun to recognize the distinction between mathematics and quantitative literacy, modifying curricula to reflect the need for numerate citizens. Although students may view geology as 'rocks for jocks', the geosciences are truthfully rife with data, making introductory geoscience topics excellent context for developing the quantitative literacy of students with diverse backgrounds. In addition, many news items that deal with quantitative skills, such as the global warming phenomenon, have their basis in the Earth sciences and can serve as timely examples of the importance of quantitative literacy for all students in introductory geology classrooms. Participants at a workshop held in 2006, 'Infusing Quantitative Literacy into Introductory Geoscience Courses,' discussed and explored the challenges and opportunities associated with the inclusion of quantitative material and brainstormed about effective practices for imparting quantitative literacy to students with diverse backgrounds. The tangible results of this workshop add to the growing collection of quantitative materials available through the DLESE- and NSF-supported Teaching Quantitative Skills in the Geosciences website, housed at SERC. There, faculty can find a collection of pages devoted to the successful incorporation of quantitative literacy in introductory geoscience. The resources on the website are designed to help faculty to increase their comfort with presenting quantitative ideas to students with diverse mathematical abilities. A methods section on "Teaching Quantitative Literacy" (http://serc.carleton.edu/quantskills/methods/quantlit/index.html) focuses on connecting quantitative concepts with geoscience context and provides tips, trouble-shooting advice and examples of quantitative activities. The goal in this section is to provide faculty with material that can be readily incorporated

  7. Interoperability Between Geoscience And Geospatial Catalog Protocols

    NASA Astrophysics Data System (ADS)

    Hu, C.; di, L.; Yang, W.; Lynnes, C.; Domenico, B.; Rutledge, G. K.; Enloe, Y.

    2007-12-01

    In the past several years, interoperability gaps have made cross-protocol and cross-community data access a challenge within the Earth science community. One such gap is between two protocol families developed within the geospatial and Earth science communities. The Earth science community has developed a family of related geoscience protocols that includes OPeNDAP for data access and the Thematic Real-time Environmental Distributed Data Services (THREDDS) catalog capability. The corresponding protocols in the geospatial community are the Open Geospatial Consortium (OGC) protocols Web Coverage Service for geospatial data access and Catalog Services for Web (CSW) for data search. We have developed a catalog gateway to mediate client/server interactions between OGC catalog clients and THREDDS servers. In essence, the gateway is an OGC Catalog server that enables OGC clients to search for data registered in THREDDS catalogs. The gateway comprises two parts: the CSW server and a THREDDS-to-CSW ingestion tool. There are two key challenges in constructing such gateway, the first is to define the mapping relationship between the catalog metadata schema of CSW and that of the THREDDS, and the second one is to ingest the THREDDS catalog content into the CSW server. Since our CSW server is based on the ISO19115/ISO19119 Application Profile, a key challenge is to semantically map the ISO 19115 metadata attributes in ISO Application Profile to the THREDDS metadata attributes in the THREDDS Dataset Inventory Catalog Specification Version 1.0. With the mapping established, tools that translate the THREDDS catalog information model into the CSW/ISO Profile information model were developed. These dynamically poll THREDDS catalog servers and ingest the THREDDS catalog information into the CSW server's database, maintaining the hierarchical relationships inherent in the THREDDS catalogs. A prototype system has been implemented to demonstrate the concept and approach.

  8. Implementing virtual reality interfaces for the geosciences

    SciTech Connect

    Bethel, W.; Jacobsen, J.; Austin, A.; Lederer, M.; Little, T.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

  9. Integrating ethics into case study assignments.

    PubMed

    Marshall, Pamela A

    2014-12-01

    I teach an upper-level writing course, Genes, Race, Gender, and Society, designed for Life Science majors, in which I utilize a case study to expose students to ethical ways of thinking. Students first work through the topical case study and then are challenged to rethink their responses through the lenses of ethics, taking into account different ethical frameworks. Students then develop their own case study, integrating ethical components. I want to expose my students to this way of thinking because I see technology being driven by the Jurassic Park phenomenon, "Your scientists were so preoccupied with whether or not they could, they didn't stop to think if they should," and want future physicians grounded in a sense of how their actions relate to the greater good. PMID:25574287

  10. Shuttle Case Study Collection Website Development

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah S.; Johnson, Grace K.

    2012-01-01

    As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.

  11. Expanding the Horizon: A Journey to Explore and Share Effective Geoscience Research Experiences

    NASA Astrophysics Data System (ADS)

    Bolman, J.

    2013-12-01

    The Indian Natural Resource Science and Engineering Program (INRSEP) has worked diligently over the past 40 + years to ensure the success of Tribal, Indigenous and Underrepresented undergraduate and graduate students in geoscience and natural resources fields of study. Central to this success has been the development of cultural relevant research opportunities directed by Tribal people. The research experiences have been initiated to address culturally relevant challenges on Tribal and non-Tribal lands. It has become critically important to ensure students have multiple research experiences across North America as well as throughout the continent. The INRSEP community has found creating and maintaining relationships with organizations like the Geoscience Alliance, Minorities Striving and Pursuing Higher Degrees of Success (MSPHD's) and the Louis Stokes Alliance for Minority Participation (LSAMP) program has greatly improved the success of students matriculating to graduate STEM programs. These relationships also serve an immense capacity in tracking students, promoting best practices in research development and assessing outcomes. The presentation will highlight lessons learned on how to 1) Develop a diverse cohort or 'community' of student researchers; 2) Evolve intergenerational mentoring processes and outcomes; 3) Tether to related research and programs; and Foster the broader impact of geoscience research and outcomes.

  12. Former NSF assistant director Killeen reflects on geosciences and society

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    “This is prime time for the geosciences,” Tim Killeen, former assistant director for geosciences at the U.S. National Science Foundation (NSF GEO), told Eos during a recent exclusive interview. Killeen, who served at NSF from July 2008 until his term expired in June 2012, oversaw a number of new initiatives and an expansion of the geoscience directorate's annual funding portfolio from $752 million to about $880 million. NSF announced on 7 November that Roger Wakimoto, director of the National Center for Atmospheric Research, will start as the new geosciences assistant director in February 2013 (see related article, this page, and Eos, 93(47), 475, doi:10.1029/ 2012EO470004). During the broad-ranging interview, Killeen reflected on the importance of the geosciences and their relationship to society. Killeen has been president of the Research Foundation for the State University of New York (RFSUNY) and SUNY vice chancellor for research since 9 July. He took the helm of RFSUNY after some personnel there “took advantage of lax oversight to cheat taxpayers,” according to New York State comptroller Thomas DiNapoli. Killeen, who was AGU president from 2006 to 2008, is responsible for the supervision and operation of RFSUNY, which supports about $1 billion in research at SUNY, an institution with 64 campuses and nearly 470,000 students.

  13. Engaging teachers & students in geosciences by exploring local geoheritage sites

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Gierke, J. S.

    2014-12-01

    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  14. The Math You Need, when You Need It: Online Modules that Remediate Mathematical Skills in Introductory Geoscience Courses

    ERIC Educational Resources Information Center

    Wenner, Jennifer M.; Burn, Helen E.; Baer, Eric M.

    2011-01-01

    Pilot studies of an NSF-funded project called The Math You Need When You Need It (TMYN; http://serc.carleton.edu/mathyouneed) reveal that online, asynchronous learning modules are effective at remediating students' quantitative skills in introductory geoscience in both community college and university settings. TMYN uses a just-in-time and…

  15. Teaching Geoscience in Place for Local Diversity and Sustainability

    NASA Astrophysics Data System (ADS)

    Semken, S.

    2008-12-01

    Globalization, careerism, media, thoughtless consumption, standardized education and assessment, and even well-meaning advocacy for far-flung environments and people all divert our attention from meaningful interaction with our own surroundings. Meanwhile, many young Americans prefer virtual realities over personal intimacy with nature. Many have lost sight of the pedagogical power of places: localities imbued with meaning by human experience. To lack a sense of local places is to be oblivious to their environmental, cultural, and aesthetic importance, and to risk acceding to their degradation. The geosciences, born and rooted in exploration of environments, have much to lose from this trend but can be pivotal in helping to reverse it. Place-based teaching is situated in local physical and cultural environments and blends experiential learning, transdisciplinary and multicultural content, and service to the community. It is advocated for its relevance and potential to engage diverse students. Authentically place-based education is informed not only by scientific knowledge of places but also by the humanistic meanings and attachments affixed to them. Leveraging and enriching the senses of place of students, teachers, and the community is a defining and desirable learning outcome. We have researched and piloted several place-based approaches to geoscience teaching at various places in the Southwest USA: at a rural Tribal College, a large urban university, and a teacher in-service program at an underserved, minority-majority rural school district. Curricula are situated in complexly evolved, ruggedly beautiful desert-mountain physical landscapes coincident with multicultural, deeply historic, but rapidly changing cultural landscapes. The organizing theme is a cyclical path of inquiry through Earth and Sky, derived from Indigenous ethnogeology; syllabi integrate geology, hydrology, climate, environmental quality, and cultural geography and are situated in real places

  16. SCOOL: A NASA Geoscience Education Success in Latin America

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Fischer, J. D.; Moore, S. W.; Rogerson, T. M.

    2006-12-01

    Students' Cloud Observations On-Line (S'COOL), better known to our Latin American participants as "Observaciones Estudiantiles de las Nubes", has been influencing the way some Latin American students learn to appreciate the geosciences since 1998. Through a collaborative effort between NASA and thousands of schools across the globe, a mutually beneficial relationship has been created that captures the essence of and serves as a model for programs that leverage opportunities between the scientific and education communities. S'COOL is one of a handful of programs that provides solutions to the needs voiced by Latin American educators for educational resources that stimulate student interest in the geosciences. S'COOL is a hands-on project that involves schools of every grade in collaborative Earth climate research with NASA scientists. Students make ground truth observations and record the type, amount, and features of clouds in the sky at the time a NASA satellite passes over their location. Aside from learning the basic cloud characteristics, students benefit by having access to experts in the field of atmospheric science and also to a database of information that can be utilized in analytical studies. Scientists benefit from tens of thousands of observations sent into the database and used to validate the Cloud and the Earth's Radiant Energy System (CERES) instrument on-board the new generation NASA Earth Observing satellites: Terra and Aqua. To observe and send results to NASA, teachers and students go through the following three steps: 1) obtain the satellite overpass schedule, 2) observe the clouds and record the observation on the report form provided, 3) record the observations in the NASA database. To facilitate communication with many countries and to help teachers to prepare introductory lessons on clouds and meteorology, NASA provides educational materials and report forms in a number of languages including Spanish. As a result, schools from 68 countries

  17. Exploring Global Change In Place-Based Case Studies

    NASA Astrophysics Data System (ADS)

    Moosavi, S. C.

    2011-12-01

    The complexity of global climate change makes the subject challenging for the average student, particularly given the nuanced feedbacks and exceptions to the general "warming" or "drying" trend that may be experienced at the local and regional level at which most people experience geologic processes. Geoscience educators can reduce these barriers and draw in student learners by adopting a place-based approach to teaching and researching geologic principles that relate to global change. Assisting students in recognizing and understanding the geologic environment in which they live and study has the side benefit of making the potential effect of climate change tangible. This presentation will review several approaches for using place-based case studies to explore global climate change issues in large lecture, small seminar, field research and service learning environments. The special place project used in large introductory physical geology courses requires each student to select a place familiar and unique to them for an in depth study of the common course content as the semester progresses. Students are specifically tasked with identifying how their site came to be, the geologic processes that act upon it today, how the site may have been different during the last glacial advance and how global climate change (specifically warming of 3OC over 50 years) might impact the site. The concept that change has occurred at the student's site in the past, even far from glacial environments, opens students to the scale of potential anthropogenic climate change. A freshman seminar Global Warming & Climate Change - Service in Preparation for Climate Change: The Second Battle of New Orleans focused on the environmental threats to New Orleans and southeastern Louisiana resulting from regional land use decisions in the centuries before Hurricane Katrina, and the threat that global change relating to sea level rise, acceleration of the hydrologic cycle and intensification of

  18. The Science Manager's Guide to Case Studies

    SciTech Connect

    Branch, Kristi M.; Peffers, Melissa S.; Ruegg, Rosalie T.; Vallario, Robert W.

    2001-09-24

    This guide takes the science manager through the steps of planning, implementing, validating, communicating, and using case studies. It outlines the major methods of analysis, describing their relative merits and applicability while providing relevant examples and sources of additional information. Well-designed case studies can provide a combination of rich qualitative and quantitative information, offering valuable insights into the nature, outputs, and longer-term impacts of the research. An objective, systematic, and credible approach to the evaluation of U.S. Department of Energy Office of Science programs adds value to the research process and is the subject of this guide.

  19. [Familial hypobetalipoproteinemia. Familial study of 4 cases].

    PubMed

    Gay, G; Pessah, M; Bouma, M E; Roche, J F; Aymard, J P; Beucler, I; Aggerbeck, L P; Infante, R

    1990-01-01

    A familial study of four cases with hypobetalipoproteinemia is reported. Three members are heterozygous and one is homozygous. This congenital fat malabsorption in homozygous state is commonly associated with an absence of serum apoprotein B and LDL. Neuromuscular and ophthalmological signs are absent in this case. The major role of upper digestive endoscopy in the diagnostic procedure is emphasized. Histochemical and immunoenzymatic stains of enterocytes and intestinal organ culture show defective synthesis apo B in the homozygous patient. Studies of DNA polymorphism in the homozygous patient have shown that the apo B gene doesn't certain major insertions or deletions. These results are discussed. PMID:2096430

  20. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthropogenic Changes from Long Island Sound, NY

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Zheng, Y.; Kohfeld, K. E.; Marchese, P.; Cormier, M.; Warkentine, B.

    2005-12-01

    This project, sponsored by the National Science Foundation, Opportunities to Enhance Diversity in the Geosciences Division, will develop a program based on multidisciplinary investigations of Long Island Sound, as a vehicle to enhance diversity in geosciences. The program includes a curriculum centered on geosciences with a substantial field and laboratory component. Students will participate in a one-week oceanographic expedition to Long Island Sound aboard the R/V Cape Henlopen and in day trips using SUNY Maritime College's R/V Alexanderson. The goal is to illustrate the dominant physical processes in an urban coastal area by using a variety of oceanographic mapping techniques, such as multibeam bathymetric mapping, sediment and water sampling, and current profiling. The working hypothesis is that New York City students will be attracted to geosciences through an integrated field and research experience which familiarizes them with their own environment. Furthermore, they will be introduced to solving geoscience problems in a hands-on manner while receiving one-on-one mentoring in a supportive environment. Strong support exists from the City University of New York (CUNY) at the graduate level through MAGNET fellowships. At the undergraduate level, the geoscience curriculum fulfills a science requirement for completion of a BA in geosciences. Support also exists from the "Alliance for Minority Participation" (AMP), a program supported by the National Science Foundation and in which Queens College (QC) and CUNY participate, and the "Search for Education, Elevation, and Knowledge" (SEEK), a QC program designed to provide educational opportunities for academically motivated students who need substantial financial assistance to attend college. The main scientific objectives are 1) to evaluate the impact of anthropogenic activities through studies of the waters, plankton, and sediments and to propose measures for their remediation, and 2) to begin to assess long

  1. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  2. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  3. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  4. Case studies in organic contaminant hydrogeology

    NASA Astrophysics Data System (ADS)

    Baker, John A.

    1989-07-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.

  5. Case study examples using self-assessment.

    PubMed

    Garstecki, D; Hutton, C L; Nerbonne, M A; Newman, C W; Smoski, W J

    1990-10-01

    The following case studies demonstrate the application of self-assessment techniques. The selection of procedures reported here is not meant to imply necessarily that these procedures are more or less effective or more widely used than other available self-assessment tests, but rather to illustrate the various purposes for which self-assessment tools may be employed. Case 1 illustrates the contribution of data obtained from the Hearing Performance Inventory (Giolas, Owens, Lamb, & Shubert, 1979) in the management and counseling of a severely hearing impaired adult. Case 2 involves the use of the Hearing Problem Inventory developed by Hutton in Atlanta (HPI-A, Hutton, 1987). Application of the Self-Assessment of Communication (SAC) and Significant Other Assessment of Communication (SOAC) (Schow and Nerbonne, 1982) is shown in Case 3, whereas Case 4 demonstrates the usefulness of the Hearing Handicap Inventory for the Elderly (HHIE, Ventry and Weinstein, 1982). Both the SAC/SOAC and HHIE batteries involve problem cases associated with hearing aid fitting and assessment of benefit. The final illustration (Case 5) is a report on the Children's Auditory Processing Performance Scale (CHAPPS), a new questionnaire developed by Smoski, Brunt, and Tannahill/ISHA (1987) for assessing parent's judgment of children's listening abilities (Appendix). The versatility of self-assessment applications across a broad assortment of impairment levels, age groups, and clinical settings is demonstrated in these cases. Hopefully the reader will see more clearly the application and value of these and other non-audiometric techniques and will be motivated to increase the use of self-assessment tools in the individual work setting. PMID:2269415

  6. The role of digital cartographic data in the geosciences

    USGS Publications Warehouse

    Guptill, S.C.

    1983-01-01

    The increasing demand of the Nation's natural resource developers for the manipulation, analysis, and display of large quantities of earth-science data has necessitated the use of computers and the building of geoscience information systems. These systems require, in digital form, the spatial data on map products. The basic cartographic data shown on quadrangle maps provide a foundation for the addition of geological and geophysical data. If geoscience information systems are to realize their full potential, large amounts of digital cartographic base data must be available. A major goal of the U.S. Geological Survey is to create, maintain, manage, and distribute a national cartographic and geographic digital database. This unified database will contain numerous categories (hydrography, hypsography, land use, etc.) that, through the use of standardized data-element definitions and formats, can be used easily and flexibly to prepare cartographic products and perform geoscience analysis. ?? 1983.

  7. Cyber-Infrastructure and Synergistic Opportunities Across the Geosciences

    NASA Astrophysics Data System (ADS)

    Gomez, Basil; Pearthree, Genevieve; Cutcher-Gershenfeld, Joel

    2013-12-01

    To enable transformational research and education within and across geoscience disciplines, as part of the U.S. National Science Foundation's (NSF) EarthCube initiative, over the past 2 years NSF has sponsored 26 end user workshops in diverse geoscience domains. EarthCube is a collaboration among NSF, other government agencies, and the geoscience and cyber-infrastructure communities. The workshops engaged more than 1200 participants from the academic, government, and private sectors of the Earth, atmospheric, ocean, computer, information, and social science communities with the overarching objectives of better understanding the limitations of existing cyber-infrastructure and identifying synergistic opportunities that will help make Web-based technologies for sharing data, tools, and models accessible to the majority of geoscientists.

  8. National Geoscience Data Repository System -- Phase III: Implementation and Operation of the Repository

    SciTech Connect

    Keane, Christopher M.

    2002-05-28

    The National Geoscience Data Repository System, Phase III was an operational project focused on coordinating and facilitating transfers of at-risk geoscience data from the private sector to the public domain.

  9. Case Studies of Altruistic Persons: AERA Roundtable.

    ERIC Educational Resources Information Center

    Stephens, William N.

    This document presents information from a body of research called Lives of Service, a collection of case studies of 32 altruistic adults. It begins with a review of the research on altruism, service orientation, giving, helpfulness, social responsibility, and voluntarism. Research on altruism in psychology and in other disciplines is included,…

  10. Lifelong Learning in SMEs: A Case Study.

    ERIC Educational Resources Information Center

    Holden, Rick; Smith, Vikki; Devins, Dave

    2002-01-01

    Learning centers using information-communications technologies were established in three British industrial estates. A case study of one organization shows the center contributed to lifelong learning and enhanced information technology training and employee confidence. Transfer of training and productivity improvements were not as clear. (Contains…

  11. An Effective School: A Case Study.

    ERIC Educational Resources Information Center

    Poindexter, Candace

    An elementary school principal's successful attempts to improve her inner-city school are described in this case study, which includes a diagram representing her formula for better education. The principal, a charismatic, elderly woman, takes an aggressive role in improving the school environment and student nutrition, encouraging and monitoring…

  12. Interdisciplinary Student Teams Projects: A Case Study

    ERIC Educational Resources Information Center

    Kruck, S. E.; Teer, Faye P.

    2009-01-01

    In today's organizations team work has become an integral part of the day-to-day routine. For this reason, University professors are including group projects in many courses. In such group assessments, we advocate the use of interdisciplinary teams, where possible. As a case study, we report an interdisciplinary group technical project with…

  13. A Case Study of Online Collaborative Learning

    ERIC Educational Resources Information Center

    Thompson, Ling; Ku, Heng-Yu

    2006-01-01

    This case study investigated 12 graduate students' online collaborative experiences and attitudes in an instructional design course. The instructor divided students into 4 groups based on their academic backgrounds. Content analysis of asynchronous group discussion board messages was used to measure degrees of collaboration of each group in terms…

  14. Firefighter Workplace Learning: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Tracey, Edward A.

    2014-01-01

    Despite there being a significant amount of research investigating workplace learning, research exploring firefighter workplace learning is almost nonexistent. The purpose of this qualitative multi-case study was to explore how firefighters conceptualize, report, and practice workplace learning. The researcher also investigated how firefighters…

  15. Framing in the Field: A Case Study

    ERIC Educational Resources Information Center

    Benjamin, Diane

    2009-01-01

    Strategic Frame Analysis can inform the daily practice of policy advocates by bringing an evidence-based communications approach to their work. This case study of FrameWorks' decade-long association with the national Kids Count Network shares stories from advocates who are transforming their communications strategies, resulting in more effective…

  16. Grade One: Math Computation. Case Study #1

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Seethaler, Pamela M.

    2007-01-01

    The purpose of this case study is to highlight the integral role that progress monitoring (PM) plays throughout any Response to Intervention (RTI) process. This example uses a three-level, responsiveness-to-intervention (RTI) method for identifying students with learning difficulties. Using a fictional first-grade classroom as the setting for…

  17. ESL and Digital Video Integration: Case Studies

    ERIC Educational Resources Information Center

    Li, J., Ed.; Gromik, N., Ed.; Edwards, N., Ed.

    2013-01-01

    It should come as no surprise that digital video technology is of particular interest to English language learners; students are drawn to its visual appeal and vibrant creative potential. The seven original case studies in this book demonstrate how video can be an effective and powerful tool to create fluid, fun, interactive, and collaborative…

  18. Experiencing Online Pedagogy: A Canadian Case Study

    ERIC Educational Resources Information Center

    Duncan, Heather E.; Barnett, John

    2010-01-01

    This case study explored the educational experiences of Canadian preservice teachers in a course designed to teach about online teaching. Students gained experience in course design and delivery, and safe and ethical behavior related to technology. Findings indicated that projects in which students actively applied their knowledge were more…

  19. Three Case Studies in Green Cleaning

    ERIC Educational Resources Information Center

    State Education Standard, 2012

    2012-01-01

    This article presents case studies from three districts implementing green cleaning. In 2008, Missouri passed legislation requiring state education officials to convene a committee of stakeholders with the purpose of developing green cleaning guidelines and specifications for schools. The guide, published by the Department of Elementary and…

  20. Value for Money Case Studies. Mendip Papers.

    ERIC Educational Resources Information Center

    Kedney, Bob, Ed.

    In response to a shift from the management of curriculum to the management of scarce resources to deliver a changing curriculum, this paper brings together three "value for money" case studies in college administration. The papers identify three levels of activity, ranging from the one-time opportunity for good housekeeping through tactical…

  1. Tachycardia During Resistance Exercise: A Case Study.

    ERIC Educational Resources Information Center

    Fry, Andrew C.; Parks, Michael J.

    2001-01-01

    This case study examined a weight-trained (WT) male who had an unusually high heart rate response to heavy resistance exercise and self-administered anabolic androgenic steroids as an ergogenic aid to training. The subject was compared to 18 other WT people. His tachycardia response occurred only in the presence of a pressure load and not with a…

  2. Physics Courses--Some Suggested Case Studies

    ERIC Educational Resources Information Center

    Swetman, T. P.

    1972-01-01

    To communicate the relevance and excitement of science activity to students, the use of more imaginative, and even openly speculative, case studies in physics courses is suggested. Some useful examples are Magnetic Monopoles, Constants, Black Holes, Antimatter, Zero Mass Particles, Tachyons, and the Bootstrap Hypothesis. (DF)

  3. Case Study of Home-School Visits

    ERIC Educational Resources Information Center

    Aguerrebere, Yolanda

    2009-01-01

    This case study evaluated one site of a California teacher home visit program. Home visits have been an important means of connecting families and schooling. In 1999, California inaugurated a statewide home visit program to promote effective partnership between home and school for low-achieving schools. At this site, families in 3 kindergarten…

  4. Learning To Teach Spanish: A Case Study.

    ERIC Educational Resources Information Center

    Velez-Rendon, Gloria

    This case study explores the student teaching experience of a Spanish language teacher candidate through her own eyes. It sheds light on how the participants' prior learning experience and beliefs inform her initial practice, how she develops her teaching skills, what contextual factors affect her learning-to-teach process, and the sources from…

  5. Performance Support Case Studies from IBM.

    ERIC Educational Resources Information Center

    Duke-Moran, Celia; Swope, Ginger; Morariu, Janis; deKam, Peter

    1999-01-01

    Presents two case studies that show how IBM addressed performance support solutions and electronic learning. The first developed a performance support and expert coaching solution; the second applied performance support to reducing implementation time and total cost of ownership of enterprise resource planning systems. (Author/LRW)

  6. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  7. Semantically Redundant Language--A Case Study

    ERIC Educational Resources Information Center

    Rizza, Chris

    2009-01-01

    In this article, I discuss the concept of semantically redundant language through a case study of the Te Rauparaha Maori haka. I suggest that current linguistic theories cannot give a full account of ritualized speech events, of which the haka is an example, as these theories are based on a traditional dyadic model of interaction involving a…

  8. A Case Study in Learning to Unlearn

    ERIC Educational Resources Information Center

    Downes, Martin; Grummell, Bernie; Murphy, Conor; Ryan, Anne

    2015-01-01

    In this case study, Irish academics reflect on our involvement in a project--Transformative Engagement Network (TEN). This project aims to transform the nature of the engagement between the various stakeholders impacted by or concerned with climate change and to insert the voice and concerns of the most vulnerable food producers into climate…

  9. The Postmodern English Major: A Case Study.

    ERIC Educational Resources Information Center

    Schwartz, Lawrence

    2003-01-01

    Offers a case study in curriculum change that reveals a very different experience--one that demonstrates a discipline more alive than ever. Presents a story of how the lively canon debates prompted the English department at Montclair State University to restructure the English major. Finds that the culture wars, critical theory, poststructuralism,…

  10. LCA – Unique and Controversial Case Studies

    EPA Science Inventory

    This session will focus on case studies and applications that have a unique or controversial aspect. Some of the most recent topics that seem to have significant interest include: LCA-based product declarations, LCA-based standards, LCA-based labels, alternative energy, agricul...

  11. Case Study of Sabrina and Responses.

    ERIC Educational Resources Information Center

    Gourgey, Annette F.; Davis, Kevin; Lane, Linda; Smith, Lonna

    1997-01-01

    Presents a case study of an adult student preparing for her first year of college through a writing course and work in a writing workshop. Explains complicating circumstances in the student's life. Presents four professional responses commenting on the difficulties of the situation and possible solutions. (TB)

  12. Acquaintance Rape: A Case Study Approach.

    ERIC Educational Resources Information Center

    Marinelli, Rosalie D.

    1994-01-01

    Describes a case study approach to acquaintance rape used in a Personal Health and Lifestyles course at the University of Nevada in Reno that allows students to discuss the characters in a scenario, an instructional process seen as less threatening than describing personal experiences. (MDM)

  13. The Verbal Noncommunicator: A Case Study.

    ERIC Educational Resources Information Center

    Fujiki, Martin; Brinton, Bonnie

    1991-01-01

    This article presents a case study of a nine-year-old male with language impairment and specific pragmatic disabilities. His interactions with an adult, a language age-matched peer, and a chronological age-matched peer were observed and analyzed to determine conversational responsiveness and assertiveness. Findings support Fey's (1986) verbal…

  14. Aerospace Mechanisms and Tribology Technology: Case Studies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter focuses attention on tribology technology practice related to vacuum tribology and space tribology. Two case studies describe aspects of real problems in sufficient detail for the engineer and the scientist to understand the tribological situations and the failures. The nature of the problems is analyzed and the range of potential solutions is evaluated. Courses of action are recommended.

  15. Climate wise case study compendium: Report 1

    SciTech Connect

    1997-02-01

    This case study compendium is one of several Climate Wise tools available to help interested companies identify cost-effective options. Climate Wise, a private-public partnership program, is a key Federal initiative to return greenhouse gas emissions to 1990 levels by 2000.

  16. Case Studies in Managing Psychological Depth.

    ERIC Educational Resources Information Center

    Ringer, Martin; Gillis, H. L.

    This paper outlines a model for assessing and managing psychological depth in outdoor and experiential group work, and presents two case studies of the complexity of such management in real life. The model contains eight levels of emotional risk and presents four criteria for assessing the level to which a particular event or discussion may lead…

  17. A Case Study in Acoustical Design.

    ERIC Educational Resources Information Center

    Ledford, Bruce R.; Brown, John A.

    1992-01-01

    Addresses concerns of both facilities planners and instructional designers in planning for the audio component of group presentations. Factors in the architectural design of enclosures for the reproduction of sound are described, including frequency, amplitude, and reverberation; and a case study for creating an acceptable enclosure is presented.…

  18. Library Virtual Tours: A Case Study

    ERIC Educational Resources Information Center

    Ashmore, Beth; Grogg, Jill E.

    2004-01-01

    Virtual tours delivered via the Web have become a common tool for both instruction and outreach. This article is a case study of the creation of a virtual tour for a university library and is intended to provide others interested in creating a virtual tour of their library the opportunity to learn from the mistakes and successes of fellow…

  19. Learning Machine Learning: A Case Study

    ERIC Educational Resources Information Center

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  20. Case Studies: Windows onto Clinical Supervision.

    ERIC Educational Resources Information Center

    Nolan, Jim; And Others

    1993-01-01

    By examining the structures and activities common to six case studies of clinical teacher supervision, this article identifies five conditions that facilitate changes in teacher thinking and behavior: development of a supportive, collegial relationship; teacher control over supervision products; continuity over time; focused, descriptive records…

  1. Phonological Precedence in Dyslexia: A Case Study

    ERIC Educational Resources Information Center

    Schneider-Zioga, Patricia

    2012-01-01

    Developmental dyslexia is believed to involve a phonological deficit of which the exact properties have not been clearly established. This article presents the findings of a longitudinal case study that suggest that, at least for some people with dyslexia, the fundamental problem involves a disturbance of temporal-spatial ordering abilities. A…

  2. Acoustical case studies of three green buildings

    NASA Astrophysics Data System (ADS)

    Siebein, Gary; Lilkendey, Robert; Skorski, Stephen

    2005-04-01

    Case studies of 3 green buildings with LEED certifications that required extensive acoustical retrofit work to become satisfactory work environments for their intended user groups will be used to define areas where green building design concepts and acoustical design concepts require reconciliation. Case study 1 is an office and conference center for a city environmental education agency. Large open spaces intended to collect daylight through clerestory windows provided large, reverberant volumes with few acoustic finishes that rendered them unsuitable as open office space and a conference room/auditorium. Case Study 2 describes one of the first gold LEED buildings in the southeast whose primary design concepts were so narrowly focused on thermal and lighting issues that they often worked directly against basic acoustical requirements resulting in sound levels of NC 50-55 in classrooms and faculty offices, crosstalk between classrooms and poor room acoustics. Case study 3 is an environmental education and conference center with open public areas, very high ceilings, and all reflective surfaces made from wood and other environmentally friendly materials that result in excessive loudness when the building is used by the numbers of people which it was intended to serve.

  3. Physical Science Connected Classrooms: Case Studies

    ERIC Educational Resources Information Center

    Irving, Karen; Sanalan, Vehbi; Shirley, Melissa

    2009-01-01

    Case-study descriptions of secondary and middle school classrooms in diverse contexts provide examples of how teachers implement connected classroom technology to facilitate formative assessment in science instruction. Connected classroom technology refers to a networked system of handheld devices designed for classroom use. Teachers were…

  4. Simulations & Case Studies. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Seymour, Cathy R., Ed.

    This document contains the following papers on simulations and case studies from the SITE (Society for Information Technology & Teacher Education) 2002 conference: "3-D Virtual Classroom Technology" (Kimberly Arseneau Miller, Angela Glod); "Simulated Lesson Design Studios" (Willis Copeland); "Lights, Camera, Integration: Presentation Programs and…

  5. Delivering Online Examinations: A Case Study

    ERIC Educational Resources Information Center

    Howarth, Jason; Messing, John; Altas, Irfan

    2004-01-01

    This paper represents a brief case study of delivering online examinations to a worldwide audience. These examinations are delivered in partnership with a commercial online testing company as part of the Industry Master's degree at Charles Sturt University (CSU). The Industry Master's degree is an academic program for students currently employed…

  6. Comparative Environmental Threat Analysis: Three Case Studies.

    ERIC Educational Resources Information Center

    Latour, J. B.; Reiling, R.

    1994-01-01

    Reviews how carrying capacity for different environmental problems is operationalized. Discusses whether it is possible to compare threats, using the exceeding of carrying capacity as a yardstick. Points out problems in comparative threat analysis using three case studies: threats to European groundwater resources, threats to ecosystems in Europe,…

  7. New Case Studies of Citizen Action

    ERIC Educational Resources Information Center

    Tanner, Thomas

    1977-01-01

    Describes a six-unit case study curriculum package designed for secondary and college-level courses relating to environmental education. The units deal with nuclear power, stream channelization, a river dam project, overgrazing of public lands, agribusiness versus the family farm, and swamp preservation. (Author/DB)

  8. Sustainability in Housing: A Curriculum Case Study.

    ERIC Educational Resources Information Center

    Parrott, Kathleen; Emmel, Joann M.

    2001-01-01

    Explores the influence of environmental issues on the field of housing, from the perspective of sustainable housing. Presents a case study of the development of a college course to address these issues by integrating energy management, air quality, water quality, and waste management. (Author)

  9. Marietta Celebration of Unity Case Study.

    ERIC Educational Resources Information Center

    Philbin, Meg; Phillips, Rebecca

    This case study concerns the forming of a Marietta, Ohio unity committee, entitled Citizens for Social and Racial Justice, in response to the local Ku Klux Klan's (KKK) request for a parade permit in order to demonstrate against blacks in this city. Marietta, the county seat of Washington County, Ohio, has a population composed of both white and…

  10. CALIFORNIA PROJECT TALENT. IDENTIFICATION, CASE STUDY.

    ERIC Educational Resources Information Center

    RICE, JOSEPH P.; AND OTHERS

    THE USE OF CASE STUDIES CAN HELP THE TEACHER TO APPRECIATE INDIVIDUAL DIFFERENCES, TO CAPITALIZE ON INTERESTS AND ABILITIES, TO APPRECIATE AND UTILIZE EXCEPTIONAL SKILLS, AND TO SET UP APPROPRIATE DEVELOPMENTAL GOALS FOR INDIVIDUAL CHILDREN. AN OUTLINE FOR THE IDENTIFICATION PROCESS INCLUDES SCREENING (GROUP DEVICES), NOMINATION (STAFF MATCHES THE…

  11. It's Not Funny: A Case Study

    ERIC Educational Resources Information Center

    Méndez-Morse, Sylvia

    2015-01-01

    This case study may be used with personnel supervision, school law, and other school leadership courses. It describes the behavior and actions of one teacher toward another. Student discussions can focus on supervision, workplace mobbing, workplace bullying, as well as sexual harassment. Students should focus on a school leader's role in such…

  12. NACASETAC BAY: AN INTERACTIVE CASE STUDY

    EPA Science Inventory

    This interactive case study or "game" was created to provide a "hands on" experience in the application of a weight of evidence approach to sediment assessment. The game proceeds in two phases. In each phase the players work together as a group. A scenario is presented, and the g...

  13. A CASE STUDY OF ENVIRONMENTAL DATA MANAGEMENT

    EPA Science Inventory

    In order to support our ongoing research in watershed ecology and global climate change, we gather and analyze environmental data from several government agencies. This case study demonstrates a researcher’s approach to accessing, organizing, and using intersectoral data. T...

  14. Fraternization in Accounting Firms: A Case Study

    ERIC Educational Resources Information Center

    Heinze, Tim; Kizirian, Tim; Leese, Wallace

    2004-01-01

    This case study sheds light on how to avoid risks caused by manager-subordinate dating relationships (fraternization) such as employee misunderstandings, retaliation charges, favoritism complaints, wrongful termination lawsuits, and sexual harassment lawsuits, as well as associated ethical risks. Risk avoidance can be accomplished through a better…

  15. Teaching the Holocaust through Case Study

    ERIC Educational Resources Information Center

    Misco, Thomas

    2009-01-01

    This article responds to the curricular challenges teachers face with Holocaust education, including cursory treatments and a lack of focus on individual experiences. First, the author argues for a case-study approach to help students reengage concrete and complex features of the Holocaust as a point of departure for subsequent inquiry. In…

  16. The Campus Diversity Initiative: A Case Study

    ERIC Educational Resources Information Center

    Nayak, Sharada

    2005-01-01

    This Case Study presents the Campus Diversity Initiative (CDI), a three-phase project lead by the Educational Resources Project Centre Trust, in New Delhi, India. In a historic and cultural context different from that of India, the American Diversity Initiative was launched by the Ford Foundation in 1990 and addressed their diversity issues by…

  17. Interactive Videodisc Case Studies for Medical Education

    PubMed Central

    Harless, William G.; Zier, Marcia A.; Duncan, Robert C.

    1986-01-01

    The TIME Project of the Lister Hill National Center for Biomedical Communications is using interactive videodisc, microprocessor and voice recognition technology to create patient simulations for use in the training of medical students. These interactive case studies embody dramatic, lifelike portrayals of the social and medical conditions of a patient and allow uncued, verbal intervention by the student for independent clinical decisions.

  18. School University Collaboration: A Case Study.

    ERIC Educational Resources Information Center

    Hutchison, Robert; And Others

    A case study of school-university collaboration between Starkville School District (Mississippi) and Mississippi State University (MSU) explored the process of collaboration and the ingredients for successful implementation. MSU offered grant opportunities for university faculty to work with local school district personnel. Starkville School…

  19. The Induction of Marketing Teachers: Case Studies.

    ERIC Educational Resources Information Center

    Heath-Camp, Betty; And Others

    As part of a larger, 5-year national project, case study analyses were conducted of the induction experiences of two beginning teachers of marketing education. One teacher (Mary) entered the profession through a traditional teacher education program in marketing education. The other (Jake) obtained certification based on extensive experience in…

  20. Aerospace Mechanisms and Tribology Technology: Case Study

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.

    1999-01-01

    This paper focuses attention on tribology technology practice related to vacuum tribology. A case study describes an aspect of a real problem in sufficient detail for the engineer and scientist to understand the tribological situation and the failure. The nature of the problem is analyzed and the tribological properties are examined.

  1. Evaluating Innovation: The Case Study Approach.

    ERIC Educational Resources Information Center

    Saez, Maria Jose; Carretero, Antonia J.

    1998-01-01

    Characterized the methodology of case studies, using examples from science education, with regard to their potential for the analysis of innovation and formulation of emerging trends. The theoretical and empirical support of evaluation will generate a call for negotiation as the formula that regulates the assessment of a program's efficiency and…

  2. On Monte Carlo Methods and Applications in Geoscience

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Blais, J.

    2009-05-01

    Monte Carlo methods are designed to study various deterministic problems using probabilistic approaches, and with computer simulations to explore much wider possibilities for the different algorithms. Pseudo- Random Number Generators (PRNGs) are based on linear congruences of some large prime numbers, while Quasi-Random Number Generators (QRNGs) provide low discrepancy sequences, both of which giving uniformly distributed numbers in (0,1). Chaotic Random Number Generators (CRNGs) give sequences of 'random numbers' satisfying some prescribed probabilistic density, often denser around the two corners of interval (0,1), but transforming this type of density to a uniform one is usually possible. Markov Chain Monte Carlo (MCMC), as indicated by its name, is associated with Markov Chain simulations. Basic descriptions of these random number generators will be given, and a comparative analysis of these four methods will be included based on their efficiencies and other characteristics. Some applications in geoscience using Monte Carlo simulations will be described, and a comparison of these algorithms will also be included with some concluding remarks.

  3. Atmospheric Science Measurements by the EOS Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Spinhirne, James

    1999-01-01

    Scheduled for Launch in July 2001, the Geoscience Laser Altimeter System (GLAS) is to be the first satellite instrument to provide full global lidar profiling of clouds and aerosol in the earth's atmosphere. GLAS is an EOS program instrument that is on its own satellite, now called the Ice, Cloud and land Elevation Satellite. The instrument is both a surface laser ranging system and an atmospheric profiling lidar. A most important surface measurement for the instrument is to study the change in the mass balance of the polar ice sheets by measuring the change in regional altitudes to an accuracy of 1.5 cm per year. The strategy to combine the surface measurement with a Cloud and aerosol lidar profiling mission is based on the compatibility of the altimetry instrument requirements with those for the required lidar measurements. The primary atmospheric science goal of the GLAS cloud and aerosol measurement is to determine the radiative forcing and vertically resolved atmospheric heating rate due to cloud and aerosol by directly observing the vertical structure and magnitude of cloud and aerosol parameters that are important for the radiative balance of the earth-atmosphere system, but which are ambiguous or impossible to obtain from existing or planned passive remote sensors. A further goal is to directly measure the height of atmospheric transition layers (inversions) which are important for dynamics and mixing, the planetary boundary layer and lifting condensation level.

  4. A framework for high-school teacher support in Geosciences

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.

    2012-04-01

    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  5. National Geoscience Data Repository System: Phase 2 final report

    SciTech Connect

    1997-07-01

    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  6. Empathy Development Through Case Study and Simulation.

    PubMed

    Mennenga, Heidi A; Bassett, Susan; Pasquariello, Libby

    2016-01-01

    Because empathy is integral to the nurse-patient relationship, nurse educators are challenged to explore teaching strategies that may aid in the development of empathy among students. The purpose of this study was to determine whether consistent exposure to a single patient through case study and simulation had an impact on empathy levels in senior-level baccalaureate nursing students. Results provide interesting conclusions for faculty members and offer a basis for ongoing discussion. PMID:26448156

  7. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    NASA Astrophysics Data System (ADS)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  8. CHRONOS: Geoinformatics Platform for Global Geosciences

    NASA Astrophysics Data System (ADS)

    Cervato, C.; Fils, D.; Bohling, G.; Diver, P.; Greer, D.; Lambi, B.; Reed, J. A.; Tang, X.

    2005-12-01

    Layered sedimentary rocks are a vast, globally distributed, information repository for the history of Earth processes, spanning billions of years, holding the answers to many scientific and societal questions. Traditionally, we have tried to capture this information in the printed literature where the data sets, by the nature of the medium, are incomplete. Furthermore, it is an expensive and time-consuming process for subsequent researchers to extract this information from the literature. The answer to this "information bottleneck" is geoinformatics, a revolution that is migrating information to more readily retrievable electronic formats. CHRONOS (www.chronos.org) is a community facility that addresses the geoinformatics needs of sedimentary geology and paleobiology, emphasizes global correlation and time-series analysis, and directly supports cutting-edge research on topics that include the evolution and diversity of life, climate change, geochemical cycles, paleoceanography, and many other aspects of the Earth system. CHRONOS is providing an open, community-based geoinformatics platform for storing, accessing, and analyzing sedimentary geological, geochemical, and paleobiological data. By augmenting and connecting community databases and giving them an unprecedented level of interoperability, CHRONOS will realize a virtual, on-line, electronic stratigraphic record - a means to boost the pace and enlarge the scope of integrative geoscience. The full CHRONOS system includes a core Information Technology (IT) facility and databases, a global network of federated databases, tools, targeted development projects, and education/outreach activities. CHRONOS and its partners cooperate to: 1) link existing databases and other geoinformatics components into a single interoperable network, 2) provide primary databases to capture relevant data types, 3) offer tool sets for data analysis, and 4) create working groups and organize workshops to ensure that the needs of the

  9. Communicating contentious geoscience issues and maintaining impartiality

    NASA Astrophysics Data System (ADS)

    Nice, S. E.; Mitchell, C.

    2013-12-01

    Shale Gas exploration in the UK has been major and often controversial news in the British media over the last 2 years. The British Geological Survey (BGS) has been an integral part of this story as the UK Governments independent and impartial advisor on geosciences. BGS has been involved in writing policy on fracking and induced earthquakes as well as researching potential quantities of shale gas in the UK and also researching natural methane levels in groundwater before large scale fracking activities begin. Shale Gas in the UK, as in the US and Europe has caused much controversy and as a result has many pro and anti fracking campaigns. The challenge for BGS has been to deliver front line science, whilst maintaining complete impartiality on the subject. The BGS communications team developed a strategy over this period to ensure that our message was clear and strong. This involved working closely with the scientists involved to formulate key messages that could delivered through controlled statements on the BGS webpages, press releases, at press conferences as well as on broadcast and print media. Our scientists were media trained during this time to ensure that they stayed en message and wouldn't be caught by the press or opponents of fracking into making statements that could have been used to either scare up the position or give the antagonist room to cast doubt on our impartiality. This strategy proved highly successful and BGS managed to communicate the facts, remain impartial whilst avoiding attempts to undermine the potential for Shale gas exploitation in the UK. The success of this communication strategy was due to the cooperation of the scientists, a clear strategy from the communications team and the unequivocal support of the senior executive at BGS. This abstract will conclude how the BGS has developed its communication strategy to be more streamlined and open. BGS must allow it's scientists to talk to the media about the science that they do. Much of

  10. Preparing Teachers to Teach Earth Science: Resources for Geoscience Faculty

    NASA Astrophysics Data System (ADS)

    Anderson, J. L.; Bezanson, C.; Moosavi, S. C.; Reynolds, D.; Manduca, C. A.

    2005-12-01

    Currently in the United States, there is a major push toward improving science education throughout all levels of education. While physics, biology, and chemistry are the three common sciences taught in high school, how, when and if Earth science is taught in our nation's schools varies greatly from region to region. Earth science topics are commonly incorporated into physics, chemistry, and biology classrooms and taught by teachers who may have never taken more than an introductory geoscience course. These teachers are often highly motivated to increase their understanding of the Earth sciences and need appropriate professional development opportunities in order to do so. In addition, many future elementary and middle school Earth science teachers take introductory geoscience courses in college. For these reasons, geoscience faculty play an active role in helping to educate future Earth science teachers. As part of the Digital Library for Earth System Education, the Science Education Resource Center (SERC) at Carleton College has developed a "Preparing Teachers to Teach Earth Science" website (http://serc.carleton.edu/teacherprep/). At this site geoscience faculty can learn more about supporting Earth science teachers both during their pre-service training in college, and as their careers progress through professional development opportunities. The website contains background materials and information about the necessity for geoscience faculty to get involved in supporting Earth science teachers, as well as recent science education reform initiatives. In addition, the site contains examples of geoscience courses serving pre-service teachers and Earth science professional development programs throughout the country linked to descriptions of their design and implementation. The website content draws heavily on material presented at the 2003 AGU/NAGT workshop "Developing the Earth Science Teacher Workforce: The Role of Geoscience Departments and Introductory Courses

  11. Recruiting and Supporting Diverse Geoscience and Environmental Science Students

    NASA Astrophysics Data System (ADS)

    Doser, Diane I.; Manduca, Cathy; Rhodes, Dallas

    2014-08-01

    Producing a workforce that will be successful in meeting global environmental and resource challenges requires that we attract diverse students into the geosciences, support them fully in our programs, and assist them as they move into the profession. However, geoscience has the lowest ethnic and racial diversity of any of the science, technology, engineering, and mathematics (STEM) disciplines (National Science Foundation (NSF), "Women, Minorities, and Persons with Disabilities in Science and Engineering," http://www.nsf.gov/statistics/wmpd/2013/start.cfm) and is often viewed as a difficult choice for students with physical disabilities.

  12. Alliances for Undergraduate Research in the Geosciences Through Collaborative Recruitment

    NASA Astrophysics Data System (ADS)

    Pandya, R.; Eriksson, S.; Haacker-Santos, R.; Calhoun, A.

    2006-12-01

    Undergraduate research is a key strategy for encouraging students to pursue graduate school and careers in science end engineering. In the geosciences, where participation by members of underrepresented groups is among the lowest of any science field, these programs must continue and strengthen their efforts to engage students from historically underrepresented groups. A significant limitation on our ability to engage students from historically underrepresented groups comes from the expense, in terms of time and resources, of promoting these career options to talented undergraduates considering a host of STEM careers. Another hurdle is our ability to match students with research projects tailored to their interests. Further complicating this is the challenge of matching students who have culturally motivated geographic constraints—for example, Native students who seek to serve their local community—to relevant opportunities. As a result, we believe that a number of highly qualified students never fully consider careers in the geosciences. To address these obstacles, we propose an alliance of undergraduate research programs in the geosciences. In this model, all members of the alliance would share recruiting, and students would submit a single application forwarded to all alliance members. The Alliance could offer applicants multiple research opportunities, from across the alliance, tailored to fit the applicant's needs and interests. This strategy has proven very effective in other fields; for example, the Leadership Alliance allows 32 member institutions to offer internships and fellowships through one central application process. SOARS and RESESS, programs in atmospheric science and geophysics, respectively, have done this co-recruiting for two years. There are many benefits to this type of alliance. First, it would allow programs to leverage and coordinate their recruiting investments. From our experience with SOARS and RESESS, much of the effort in

  13. Seismic damage to pipeline; Case study

    SciTech Connect

    O'Rourke, M.J.; Ayala, G. . Dept. of Civil Engineering)

    1990-03-01

    A case study of damage to a welded steel pipeline in Mexico City, caused by the 1985 Michoacan earthquake, is presented. Seismic damage to pipelines in past earthquakes is briefly reviewed. The damage has typically been due to seismic wave propagation or permanent ground deformations, such as faulting, landslides, or lateral spreads. Physical characteristics of the case study pipeline, pertinent soil conditions, recorded ground motion, and observed seismic damage in Mexico City are then presented. The recorded ground motion in the lake zone of Mexico City suggests a significant contribution from Rayleigh waves. A previously developed analysis procedure is used to estimate stress induced by seismic wave propagation in the case study pipeline. The pipeline stress is a function of the amplitude and wavelength of the ground strain, maximum friction forces at the soil-pipe interface, and the stress-strain characteristics of the pipeline material. It is shown that the estimated stress is only slightly less than the local compressional buckling stress for the case history pipeline.

  14. Towards a Conceptual Design of a Cross-Domain Integrative Information System for the Geosciences

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W.; Malik, T.; Gupta, A.

    2013-12-01

    As geoscientists increasingly focus on studying processes that span multiple research domains, there is an increased need for cross-domain interoperability solutions that can scale to the entire geosciences, bridging information and knowledge systems, models, software tools, as well as connecting researchers and organization. Creating a community-driven cyberinfrastructure (CI) to address the grand challenges of integrative Earth science research and education is the focus of EarthCube, a new research initiative of the U.S. National Science Foundation. We are approaching EarthCube design as a complex socio-technical system of systems, in which communication between various domain subsystems, people and organizations enables more comprehensive, data-intensive research designs and knowledge sharing. In particular, we focus on integrating 'traditional' layered CI components - including information sources, catalogs, vocabularies, services, analysis and modeling tools - with CI components supporting scholarly communication, self-organization and social networking (e.g. research profiles, Q&A systems, annotations), in a manner that follows and enhances existing patterns of data, information and knowledge exchange within and across geoscience domains. We describe an initial architecture design focused on enabling the CI to (a) provide an environment for scientifically sound information and software discovery and reuse; (b) evolve by factoring in the impact of maturing movements like linked data, 'big data', and social collaborations, as well as experience from work on large information systems in other domains; (c) handle the ever increasing volume, complexity and diversity of geoscience information; (d) incorporate new information and analytical requirements, tools, and techniques, and emerging types of earth observations and models; (e) accommodate different ideas and approaches to research and data stewardship; (f) be responsive to the existing and anticipated needs

  15. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 to 2012

    NASA Astrophysics Data System (ADS)

    Rom, E. L.; Patino, L. C.; Gonzales, J.; Weiler, C. S.; Antell, L.; Colon, Y.; Sanchez, S. C.

    2012-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students from across the nation the opportunity to conduct research at a different institution and in an area that may not be available at their home campus. REU Sites funded by the Directorate of Geosciences provide student research opportunities in earth, ocean, atmospheric and geospace research. This paper provides an overview of the Geosciences REU Site programs run from 2009 to 2012. Information was gathered from over 45 REU sites each year on recruitment methods, student demographics, enrichment activities, and fields of research. The internet is the most widely used mechanism to recruit participants. The admissions rate for REU Sites in Geosciences varies by discipline but averages between 6% to 18% each year, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores and freshmen. Most students attend PhD granting institutions. Among the participants, gender distribution depends on discipline, with atmospheric and geospace sciences having more male than female participants, but ocean and earth sciences having a majority of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of the participants are Caucasian or Asian students. Furthermore, participants from minority-serving institutions or community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. Results from this study will be used to examine strengths in the REU Sites in the Geosciences and opportunities for improvement in the

  16. Oceans of Opportunity: Partnerships to Increase Minority Student Involvement in the Marine Geosciences

    NASA Astrophysics Data System (ADS)

    Pride, C.; Christensen, B.

    2007-12-01

    The Oceans of Opportunity program to increase involvement of traditionally under-represented students in the marine geosciences is in its final phase of track 1 funding from NSF. The program employs a tiered approach to research, teaching and outreach activities to enhance the K-12 to graduate pipeline. Partner institutions include Savannah State University, an HBCU in coastal Georgia; Adelphi University serving a minority population from NYC; the Georgia State University Bio-Bus serving the metro-Atlanta area; and the Joint Oceanographic Institutions. The Oceans of Opportunity education pipeline includes 1) service learning activities implemented by SSU marine science majors in partner public schools with high minority enrollment; 2) outreach by the Georgia State University Bio-Bus to Savannah area schools; 3) expansion of the SSU geoscience curriculum; and 4) development of activities based on models of ODP cores for use in both outreach and college teaching. Service learning through SSU classes has permitted contact with a large number of K-12 students. More than 1000 predominantly African-American K-12 students completed hands-on lessons on plate tectonics and plankton contributors to marine sediments in the two years of this program under the guidance of HBCU science majors. Lessons on use of the marine sediment and fossil record as proxies in paleoclimatic studies using replicas of ODP cores were delivered to 600 students in the Savannah school system and about 2000 visitors to the Georgia Aquarium in Atlanta. The marine geoscience lessons delivered at the high school level resulted in greater test score improvement when the topic had already been thoroughly introduced by the teacher. A survey of science attitudes of the high school students (n=419) indicates African-American high school students have low levels of enjoyment of and interest in the sciences. In addition, more female than male African-American students are enrolling in science courses and

  17. NAGT-GER: A Community of Practice to Support the Emerging Field of Geoscience Education Research

    NASA Astrophysics Data System (ADS)

    Lukes, L.; LaDue, N.; Cheek, K.; Ryker, K.

    2014-12-01

    As the National Research Council noted in its 2012 report on discipline-based education research (DBER) in undergraduate science and engineering, in order to advance DBER as a field of inquiry, "a robust infrastructure is required to recognize and support [DBER] within professional societies." One way to develop such an infrastructure around geoscience education research is to create a community of practice within the broader geoscience education community. In recent years, the members of the National Association of Geoscience Teachers (NAGT) have created two divisions to support the geoscience education needs of specific subpopulations of the geoscience community: the 2YC division, focusing on community college issues, and TED, focusing on teacher education. This year marks the first year of a new division within the National Association of Geoscience Teachers (NAGT) focused on geoscience education research. The Geoscience Education Research division (GER) is committed to the promotion of high quality, scholarly research in geoscience education that improves teaching and learning in K-12, higher education, and informal learning environments. High quality DBER in geoscience requires the ability to connect current theories of teaching and learning with deep content-specific conceptual understanding. A community of practice like NAGT GER, has the potential to improve the quality of scholarly efforts in geoscience education by providing a forum for improving the collective knowledge and expertise of the geoscience education research community. Current division initiatives and efforts will be highlighted and time for dialogue on future directions will be included.

  18. The Need for an International Geoscience School Syllabus: Its Development and Publication

    ERIC Educational Resources Information Center

    King, C.

    2015-01-01

    International comparisons of school-level geoscience education across the world had shown great variability in the amount and content of the geoscience materials and in the ways in which it was taught. When this situation was discussed at meetings of organisations concerned with international school-level geoscience education in 2012, the decision…

  19. Generating grounded theory: two case studies.

    PubMed

    Mullen, P D

    1985-01-01

    An inductive research method known as grounded theory is described as a means of building conceptual bridges between real-life situations and formal theory. The procedures are detailed and illustrated via two case studies. The first is a study of the social-psychological problem of cutting losses among heart patients through three stages of recovery. The process of extending the theory generated with the heart patients to other invisible physical impairments and across both visible and invisible chronic conditions is outlined. The second case study offers an example of a structurally-oriented theory, developed from participant observations of the processes of managing patients, staff, and neighbors for an "antipsychiatric" treatment facility for juvenile schizophrenics. PMID:20841268

  20. Exploring deliberate mentoring approaches aimed at improving the recruitment and persistence of undergraduate women in the geosciences

    NASA Astrophysics Data System (ADS)

    Pollack, I. B.; Adams, A. S.; Barnes, R. T.; Burt, M. A.; Clinton, S. M.; Godfrey, E.; Hernandez, P.; Bloodhart, B.; Donaldson, L.; Henderson, H.; Sayers, J.; Sample McMeeking, L. B.; Bowker, C.; Fischer, E. V.

    2015-12-01

    In the United States, men outnumber women in many science and engineering fields by nearly 3 to 1. In fields like physics or the geosciences, the gender gap can be even wider. Previous studies have identified the early college years as a critical point where many women exit STEM disciplines. An interdisciplinary team including experts in the geosciences, psychology, education, and STEM persistence have recently begun a 5-year project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in the geosciences. The program focuses on mentoring first and second year female undergraduate students from three universities in Colorado and Wyoming and four universities in North and South Carolina. The mentoring program includes a weekend workshop, access to professional women across geoscience fields and both in-person and virtual peer networks. The first weekend workshops will be held in October 2015. We will present an overview of the major components and lessons learned from these workshops and showcase the web center, including the online peer-networking forum.