Science.gov

Sample records for geostationary satellite orbit

  1. Communications satellites in non-geostationary orbits

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Doong, Wen; Nguyen, Tuan Q.; Turner, Andrew E.; Weyandt, Charles

    1988-01-01

    The design of a satellite communications system in an orbit lower than GEO is described. Two sun-synchronous orbits which lie in the equatorial plane have been selected: (1) the apogee at constant time-of-day equatorial orbit, a highly eccentric orbit with five revolutions per day, which allows 77-135 percent more satellite mass to be placed in orbit than for GEO; and (2) the sun-synchronous 12-hour equatorial orbit, a circular orbit with two revolutions per day, which allows 23-29 percent more mass. The results of a life cycle economic analysis illustrate that nongeostationary satellite systems could be competitive with geostationary satellite systems.

  2. 75 FR 17055 - Coordination Between the Non-Geostationary and Geostationary Satellite Orbit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...In this document the Commission specifies rules and procedures to be used for frequency coordination between terrestrial Broadcast Auxiliary Service and Cable Television Relay Service (BAS/CARS) operations and geostationary satellite orbit (GSO) or non-geostationary satellite orbit (NGSO) fixed-satellite service (FSS) operations in the 6875-7075 MHz (7 GHz) and 12750-13250 MHz (13 GHz) bands.......

  3. On orbital allotments for geostationary satellites

    NASA Technical Reports Server (NTRS)

    Gonsalvez, David J. A.; Reilly, Charles H.; Mount-Campbell, Clark A.

    1986-01-01

    The following satellite synthesis problem is addressed: communication satellites are to be allotted positions on the geostationary arc so that interference does not exceed a given acceptable level by enforcing conservative pairwise satellite separation. A desired location is specified for each satellite, and the objective is to minimize the sum of the deviations between the satellites' prescribed and desired locations. Two mixed integer programming models for the satellite synthesis problem are presented. Four solution strategies, branch-and-bound, Benders' decomposition, linear programming with restricted basis entry, and a switching heuristic, are used to find solutions to example synthesis problems. Computational results indicate the switching algorithm yields solutions of good quality in reasonable execution times when compared to the other solution methods. It is demonstrated that the switching algorithm can be applied to synthesis problems with the objective of minimizing the largest deviation between a prescribed location and the corresponding desired location. Furthermore, it is shown that the switching heuristic can use no conservative, location-dependent satellite separations in order to satisfy interference criteria.

  4. Servicing communication satellites in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  5. Astrometric positioning and orbit determination of geostationary satellites

    NASA Astrophysics Data System (ADS)

    Montojo, F. J.; López Moratalla, T.; Abad, C.

    2011-03-01

    In the project titled “Astrometric Positioning of Geostationary Satellite” (PASAGE), carried out by the Real Instituto y Observatorio de la Armada (ROA), optical observation techniques were developed to allow satellites to be located in the geostationary ring with angular accuracies of up to a few tenths of an arcsec. These techniques do not necessarily require the use of large telescopes or especially dark areas, and furthermore, because optical observation is a passive method, they could be directly applicable to the detection and monitoring of passive objects such as space debris in the geostationary ring.By using single-station angular observations, geostationary satellite orbits with positional uncertainties below 350 m (2 sigma) were reconstructed using the Orbit Determination Tool Kit software, by Analytical Graphics, Inc. This software is used in collaboration with the Spanish Instituto Nacional de Técnica Aeroespacial.Orbit determination can be improved by taking into consideration the data from other stations, such as angular observations alone or together with ranging measurements to the satellite. Tests were carried out combining angular observations with the ranging measurements obtained from the Two-Way Satellite Time and Frequency Transfer technique that is used by ROA’s Time Section to carry out time transfer with other laboratories. Results show a reduction of the 2 sigma uncertainty to less than 100 m.

  6. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provisions for the non-geostationary satellite orbit fixed-satellite service (NGSO FSS) in the bands 10.7 GHz... Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed-satellite... submitted for the proposed non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system...

  7. 47 CFR 25.146 - Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... provisions for the non-geostationary satellite orbit fixed-satellite service (NGSO FSS) in the bands 10.7 GHz... Licensing and operating authorization provisions for the non-geostationary satellite orbit fixed-satellite... submitted for the proposed non-geostationary satellite orbit fixed-satellite service (NGSO FSS) system...

  8. Precise Orbit Propagation of Geostationary Satellite Using Cowell's Method

    NASA Astrophysics Data System (ADS)

    Yoon, Jae-Cheol; Choi, Kyu-Hong; Kim, Eun-Kyou

    1997-06-01

    To calculate the position and velocity of the artificial satellite precisely, one has to broil a mathematical model concerning the perturbations by understanding and analysing the space environment correctly and then quantifying. Due to these space environment model, the total acceleration of the artificial satellite can be expressed as the 2nd order differential equation and we build an orbit propagation algorithm by integrating twice this equation by using the Cowell's method which gives the position arid velocity of th artificial satellite at any given time. Perturbations important for the orbits of geostationary spacecraft are the Earth's gravitational potential, the gravitational influence of the sun and moon, and the solar radiation pressure. For precise orbit propagation in Cowell' method, 40 x 40 spherical harmonic coefficients cal be applied and the JPL DE403 ephemeris files were used to generate the range from earth to sun and moo and 8th order Runge-Kutta single step method with variable step-size control is use to integrate the orbit propagation equations.

  9. The use of satellites in non-geostationary orbits for unloading geostationary communication satellite traffic peaks. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The overall objective of this program was to assess the application, economic benefits, and technology and system implications of satellites in non-geostationary (non-GEO) orbits for off-loading peak traffic from GEO communications satellites. The study was organized into four technical tasks which are described in turn. They are: (1) concepts development; (2) system definition; (3) economic comparisons; and (4) technology requirements definition. Each of these tasks is defined in detail and the results of each are given.

  10. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary satellite orbit Fixed-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5 GHz bands. 25.146 Section... the non-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5 GHz... satellite orbit Fixed-Satellite Service (NGSO FSS) system in the 10.7-14.5 GHz bands. The...

  11. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  12. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  13. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network... procedures in this section apply to non-Federal-Government NGSO FSS satellite networks operating in...

  14. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network... procedures in this section apply to non-Federal-Government NGSO FSS satellite networks operating in...

  15. Time Resolved Atmospheric Carbon Satellite Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, David; Worden, Helen

    This presentation describes proposed satellite carbon measurements from CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science). The primary goal of this mission is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Both CO and CH4 are chemical precursors of tropospheric ozone pollution. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution. The CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth Venture TEMPO (Tropospheric Emissions: Monitoring of Pollution

  16. Time Resolved Atmospheric Carbon Satellite Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Worden, H. M.; Deeter, M. N.; Worden, H. M.

    2013-12-01

    This presentation describes proposed satellite carbon measurements from CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science). The primary goal of this mission is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Both CO and CH4 are chemical precursors of tropospheric ozone pollution. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution. The CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth Venture TEMPO (Tropospheric Emissions: Monitoring of Pollution

  17. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite...

  18. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite...

  19. 47 CFR 25.261 - Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Procedures for avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite Network Operations in the Fixed... avoidance of in-line interference events for Non Geostationary Satellite Orbit (NGSO) Satellite...

  20. New non-geosynchronous orbits for communications satellites to off-load daily peaks in geostationary traffic

    NASA Technical Reports Server (NTRS)

    Turner, A. E.

    1987-01-01

    The potential for satellites in two orbits, the sun-synchronous 12-hour equatorial orbit (STET) and the apogee at constant time-of-day equatorial orbit (ACE), to off-load peaks in the CONUS geostationary communications traffic is discussed. These orbits are found to require maneuvers of smaller magnitudes for insertion than geostationary orbits. Advantages of the ACE orbit over the STET orbit are discussed, including larger satellite mass capability for a given launch vehicle, lower slant ranges, and larger angular separation from the geostationary arc for a nonequatorial ground observer.

  1. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary orbit Fixed-Satellite Service in the 10.7...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary orbit Fixed-Satellite Service in the 10.7 GHz-14.5 GHz bands. 25.146 Section 25.146... Applications and Licenses Space Stations § 25.146 Licensing and operating rules for the non-geostationary orbit... submitted for the proposed non-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) system...

  2. SILEX mission - First European experiment using optical frequencies between geostationary and low earth orbiting satellites

    NASA Astrophysics Data System (ADS)

    Faup, Michel; Laurent, Bernard; Pera, Luigi

    1991-10-01

    Since 1982, CNES has investigated the possibility to relay data from a low earth orbiting satellite to the ground via a geostationary satellite through a high data rate optical link. This work has led to a collaboration between ESA and CNES to implement the Semiconductor Intersatellite Link experiment (SILEX) which involves two terminals, one on Artemis (ESA geostationary satellite) and one on SPOT-4 (French Earth Observation Satellite). This paper presents the technical baseline that has been selected for SILEX. A short discussion of the performance will be initiated mainly concerning the questions linked to interfaces with the host platforms and the expected communication performance. The areas of development that could help to define the next generation of optical communication experiments and applications are explored.

  3. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule....

  4. CARTEL: A method to calibrate S-band ranges with geostationary satellites. Results of orbit determination

    NASA Astrophysics Data System (ADS)

    Guitart, A.; Mesnard, B.

    1986-05-01

    A satellite tracking campaign was organized, with 4 S-band stations, for 1 wk. The relative geometry of the network with respect to the satellites was an opportunity to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference to evaluate what can be achieved with one station with range and angular measurements, a typical configuration used for stationkeeping of geostationary satellites. Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. Precision of 10 m is achieved. However, an analysis of the influence of parameters in the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (e.g., polar motion). In a relative sense, the reference orbit allows estimation of systematic errors for other tracking antennas.

  5. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    PubMed Central

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  6. In-orbit operations of Japanese geostationary meteorological satellite, GMS-2, 'HIMAWARI-2'

    NASA Astrophysics Data System (ADS)

    Horikawa, Y.; Saito, M.; Kitahara, S.; Kobayashi, M.; Harada, M.

    1982-09-01

    The objectives of GMS-II are the same as those of its predecessor, which was launched as part of the Global Atmospheric Research Program. GMS-2 is a spin-stabilized geostationary meteorological satellite with mechanical despun antennas. The spacecraft launch weight was reduced about 15 kg from that of its predecessor to make it compatible with the N-II launch vehicle. A description is given of the post-launch mission check, which was carried out between August and September 1981. The check was made to compare the in-orbit performance of GMS-2 with ground test data, to verify that the overall system function and performance met the requirements, and to establish a data base for future performance comparisons after the orbit life.

  7. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ..., FR Doc. 2013-04429, on page 14952, column 1, correct the DATES section to read as follows: DATES... Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule;...

  8. Geostationary orbit determination using SATRE

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Li, ZhiGang; Yang, XuHai; Wu, WenJun; Cheng, Xuan; Yang, Ying; Feng, ChuGang

    2011-09-01

    A new strategy of precise orbit determination (POD) for GEO (Geostationary Earth Orbit) satellite using SATRE (SAtellite Time and Ranging Equipment) is presented. Two observation modes are proposed and different channels of the same instruments are used to construct different observation modes, one mode receiving time signals from their own station and the other mode receiving time signals from each other for two stations called pairs of combined observations. Using data from such a tracking network in China, the results for both modes are compared. The precise orbit determination for the Sino-1 satellite using the data from 6 June 2005 to 13 June 2005 has been carried out in this work. The RMS (Root-Mean-Square) of observing residuals for 3-day solutions with the former mode is better than 9.1 cm. The RMS of observing residuals for 3-day solutions with the latter mode is better than 4.8 cm, much better than the former mode. Orbital overlapping (3-day orbit solution with 1-day orbit overlap) tests show that the RMS of the orbit difference for the former mode is 0.16 m in the radial direction, 0.53 m in the along-track direction, 0.97 m in the cross-track direction and 1.12 m in the 3-dimension position and the RMS of the orbit difference for the latter mode is 0.36 m in the radial direction, 0.89 m in the along-track direction, 1.18 m in the cross-track direction and 1.52 m in the 3-dimension position, almost the same as the former mode. All the experiments indicate that a meter-level accuracy of orbit determination for geostationary satellite is achievable.

  9. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  10. Precipitation nowcasting from geostationary satellite platforms: Neural network methodology exploiting low-Earth-orbit and ground-based data synergy

    NASA Astrophysics Data System (ADS)

    Rivolta, G.; de Rosa, M.; Marzano, F. S.

    2009-04-01

    Many severe meteorological events develop at short time scales. The availability of effective rain-rate nowcasting techniques is valuable for Civil Protection purposes. Neural network based nowcasting techniques, exploiting satellite data, have been proven to be more accurate than conventional techniques. Several rain retrieval techniques have been proposed on the basis of multi-satellite imagery, exploiting passive sensor measurements acquired by Geostationary-Earth-Orbit (GEO) and Low Earth Orbit (LEO) platforms. These approaches tend to overcome some inherent limitations due to the use of satellite thermal infrared (IR) radiances, which are measurements poorly correlated with rainfall. In this respect, microwave (MW) radiometric data available from Low Earth Orbit (LEO) platforms can provide more accurate rain estimates. MW brightness temperatures are fairly sensitive to liquid and ice hydrometeors since rain clouds are not optically opaque at microwave frequencies. GEO satellites can ensure Earth coverage with a high temporal sampling, whereas LEO satellites have the drawback of low temporal sampling. Therefore, LEO-MW and GEO-IR radiometry are clearly complementary for monitoring the Earth's atmosphere and a highly variable phenomenon such as precipitation. The IR radiances from geostationary images can be properly calibrated using microwave-based combined algorithms. Microwave data can be extracted from the microwave imager sensors, but any rain estimation source may be, in general, foreseen. Ground based meteorological radar reflectivity can also be exploited. The objective of this work is to identify guidelines for improving the neural-network approach successfully applied to the rainfall field nowcast from thermal infrared and microwave passive-sensor imagery aboard, respectively, Geostationary-Earth-Orbit (GEO) and Low-Earth-Orbit (LEO) satellites, using infrared (IR) multi-channel data available from Meteosat Second Generation (MSG) and microwave (MW

  11. Use of non-geostationary orbits for a Ka-band Personal Access Satellite system

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Motamedy, Masoud

    1990-01-01

    This paper discusses the use of satellites in circular orbits at altitudes high enough for continental U.S. (CONUS) visibility. This enables one satellite to relay signals between geographically separated earth stations within CONUS at any one time and thus bypasses the need for intersatellite links. System performance is examined for three circular satellite orbits at altitudes of 20,182 km, 10,353 km, and 5143 km. Inclination angles between the satellite orbit plane and the equatorial plane of 0, 45, and 90 deg are considered. The number of satellites required to provide continuous CONUS coverage is calculated.

  12. Radio frequency interference at the geostationary orbit

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1981-01-01

    Growing demands on the frequency spectrum have increased the possibility of radio frequency interference (RFI). Various approaches to obtain in orbit RFI data are compared; this comparision indicates that the most practical way to obtain RFI data for a desired orbit (such as a geostationary orbit) is through the extrapolation of in orbit RFI measurements by a low orbit satellite. It is concluded that a coherent RFI program that uses both experimental data and analytical predictions provides accurate RFI data at minimal cost.

  13. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    NASA Astrophysics Data System (ADS)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  14. Asynchronous Processing of a Constellation of Geostationary and Polar-Orbiting Satellites for Fire Detection and Smoke Estimation

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.

    2014-12-01

    The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.

  15. Ephemeris calculation and orbit determination of geostationary satellites, using Taylor series integration

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver

    1991-02-01

    It is shown that Taylor series integration allows problems of celestial mechanics for interplanetary orbits to be solved with relatively simple orbit models. The method is adapted to the computation of satellite orbits. A new implementation concept is included, which allows a programmation of the equations of motion. It offers simultaneously extension possibilities, which are necessary for the computation of special terms of the power function. The linking of Sun and Moon ephemeris for the treatment of gavitational disturbances of the satellite orbit is used as an example. This concept is represented with the principles of Taylor series integration, and compared with variants of the process. The power spectrum of the method is examined for disturbed and undisturbed Kepler orbits.

  16. On-Orbit Geometric Calibration Approach for High-Resolution Geostationary Optical Satellite GaoFen-4

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Cheng, Yufeng; Long, Xiaoxiang; Yang, Bo

    2016-06-01

    The GaoFen-4 (GF-4) remote sensing satellite is China's first civilian high-resolution geostationary optical satellite, which has been launched at the end of December 2015. To guarantee the geometric quality of imagery, this paper presents an on-orbit geometric calibration method for the area-array camera of GF-4. Firstly, we introduce the imaging features of area-array camera of GF-4 and construct a rigorous imaging model based on the analysis of the major error sources from three aspects: attitude measurement error, orbit measurement error and camera distortion. Secondly, we construct an on-orbit geometric calibration model by selecting and optimizing parameters of the rigorous geometric imaging model. On this basis, the calibration parameters are divided into two groups: external and internal calibration parameters. The external parameters are installation angles between the area-array camera and the star tracker, and we propose a two-dimensional direction angle model as internal parameters to describe the distortion of the areaarray camera. Thirdly, we propose a stepwise parameters estimation method that external parameters are estimated firstly, then internal parameters are estimated based on the generalized camera frame determined by external parameters. Experiments based on the real data of GF-4 shows that after on-orbit geometric calibration, the geometric accuracy of the images without ground control points is significantly improved.

  17. Electric propulsion for geostationary orbit insertion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Curran, Francis M.; Myers, Roger M.

    1995-01-01

    Solar electric propulsion (SEP) technology is already being used for geostationary satellite stationkeeping to increase payload mass. By using this same technology to perform part of the orbit transfer additional increases in payload mass can be achieved. Advanced chemical and N2H4 arcjet systems are used to increase the payload mass by performing stationkeeping and part of the orbit transfer. Four mission options are analyzed which show the impact of either sharing the orbit transfer between chemical and SEP systems or having either complete the transfer alone. Results show that for an Atlas 2AS payload increases in net mass (geostationary satellite mass less wet propulsion system mass) of up to 100 kg can be achieved using advanced chemical for the transfer and advanced N2H4 arcjets for stationkeeping. An additional 100 kg can be added using advanced N2H4 arcjets for part of a 40 day orbit transfer.

  18. Astrometry and Geostationary Satellites in Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.

    2015-10-01

    We present the current status and the first results of the astrometric project CIDA - ABAE for tracking geo-stationary satellites. This project aims to determine a preliminary orbit for the Venezuelan satellite VENESAT-1, using astrometric positions obtained from an optical telescope. The results presented here are based on observations from the Luepa space tracking ground station in Venezuela, which were processed using astrometric procedures.

  19. Transmitter diversity verification on ARTEMIS geostationary satellite

    NASA Astrophysics Data System (ADS)

    Mata Calvo, Ramon; Becker, Peter; Giggenbach, Dirk; Moll, Florian; Schwarzer, Malte; Hinz, Martin; Sodnik, Zoran

    2014-03-01

    Optical feeder links will become the extension of the terrestrial fiber communications towards space, increasing data throughput in satellite communications by overcoming the spectrum limitations of classical RF-links. The geostationary telecommunication satellite Alphasat and the satellites forming the EDRS-system will become the next generation for high-speed data-relay services. The ESA satellite ARTEMIS, precursor for geostationary orbit (GEO) optical terminals, is still a privileged experiment platform to characterize the turbulent channel and investigate the challenges of free-space optical communication to GEO. In this framework, two measurement campaigns were conducted with the scope of verifying the benefits of transmitter diversity in the uplink. To evaluate this mitigation technique, intensity measurements were carried out at both ends of the link. The scintillation parameter is calculated and compared to theory and, additionally, the Fried Parameter is estimated by using a focus camera to monitor the turbulence strength.

  20. Geostationary satellites and space debris around the Earth (on Russian)

    NASA Astrophysics Data System (ADS)

    Sukhov, P., P.

    Classification of artificial satellites, the history of development of the geostationary orbit (GSO). The main aim of ground-based optical, radar and other observations GSS. Methods of observation and control of the GSO. Catalogues satellites leading space country. The problem of space debris and the Kessler syndrome. Flashes from the satellites of the constellation "Iridium", and flashes from geostationary satellites. Tips, advice for amateur astronomers to observe when the flash GSS.

  1. Impact of Non-geostationary Orbits on PASS

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Motamedi, Masoud

    1990-01-01

    The use of satellites in non-geostationary orbits (NGO) for PASS (Personal Access Satellite System) is discussed. The following subject areas are covered: (1) orbit parameters (circular and elliptical orbit characteristics); (2) link characteristics (Doppler shift, propagation loss, CONUS coverage antenna, multibeam antenna gain, and impact on link equations); (3) number of satellites required for continuous CONUS coverage (circular and elliptical orbit results); and (4) advantages and disadvantages of NGOs.

  2. The geostationary orbit and developing countries

    NASA Technical Reports Server (NTRS)

    Medina, E. R.

    1982-01-01

    The geostationary orbit is becoming congested due to use by several countries throughout the world, and the request for use of this orbit is increasing. There are 188 geostationary stations in operation. An equitable distribution of stations on this orbit is requested.

  3. Application of unscented filtering in analytical dynamic orbit determination for Geostationary satellite surveillance

    NASA Astrophysics Data System (ADS)

    Roh, Kyoung-Min; Park, Eunseo; Choi, Byung Kyu

    The neutral atmosphere introduces a time delay in the propagation of GPS signals in the microwave frequencies due to refraction effects. To project this delay in a slant direction towards the satellite position, various mapping functions are proposed. As 90KEYWORDS: GPS based navigation; Tropospheric range error; Hydrostatic Mapping Function Dr. K. Parameswaran is supported by CSIR through Emeritus Scientist Scheme. *Corresponding author: cs ureshraju@vssc.gov.in

  4. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites....

  5. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites....

  6. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites....

  7. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites....

  8. 47 CFR 74.643 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference to geostationary-satellites. 74... Television Broadcast Auxiliary Stations § 74.643 Interference to geostationary-satellites. Applicants and... geostationary-satellites....

  9. Geostationary Meteorological Satellite-5 (GMS-5)

    NASA Technical Reports Server (NTRS)

    Horii, M.

    1991-01-01

    The Geostationary Meteorological Satellite (GMS-5), which is being developed by the National Space Development Agency of Japan (NASDA), is the fifth geostationary, spin stabilized, weather satellite. Its purposes are to observe cataclysmic events such as hurricanes, typhoons, and regional weather phenomena; to relay meteorological data from surface collection points to the Data Processing Center in Japan; and to transmit processing imaging data for facsimile reproduction. The satellite will be launched from the Tanegashima Space Center (TaSC) in Japan by a type H-II launch vehicle. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. The coverage will consist of the 26-m antennas as prime and the 34-m antenna at Madrid as backup support for launch through drift orbit. Maximum support will consist of two 8-hour tracks per station for a seven day period, plus 23 days of contingency support from all complexes. Information is given in tabular form for DSN support, frequency assignments, telemetry, command and tracking station responsibility.

  10. The operational feasibility of orbit and attitude determination for the Geostationary Operational Environmental Satellite (SMS/GEOS) using only imagery data

    NASA Technical Reports Server (NTRS)

    Mack, E.; Jurotich, M.; Remondi, B.

    1978-01-01

    Experimental results from three evaluation periods on three geostationary spacecraft (SMS-2, GOES-1, and GOES-2) are presented. It is shown that using existing landmark extraction and identification techniques (1) for east geostationary spacecraft, a high quality orbit and attitude state is maintained with imagery data only, and (2) for west geostationary spacecraft, a high quality orbit and attitude state is recovered with imagery data only in approximately seven days.

  11. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  12. Geostationary meteorological satellite systems - An overview

    NASA Astrophysics Data System (ADS)

    Blersch, Donald J.; Probert, Todd C.

    Past and present geosynchronous meteorological satellites developed in the USA, Europe, Japan, India, and the Soviet Union are reviewed. Particular attention is given to the Applications Technology Satellite Program, GOES and SMS/GOES, METEOSAT, GMS/Himawari, the Indian National Satellite, and a Soviet geostationary meteorological satellite program, GOMS.

  13. A statistical survey of ELF waves in a geostationary orbit

    SciTech Connect

    Parrot, M.; Gaye, C.A.

    1994-11-15

    In this paper the authors summarize data taken by the wave experiment on the GEOS 2 satellite. This instrument looked at extremely low frequency emissions from a geostationary orbit. The authors do a statistical study of the observed ELF emissions, and in particular discuss chorus emissions, which with hiss and electron cyclotron emissions are the prominent low frequency wave features.

  14. Geostationary Meteorological Satellite-5 (GMS-5)

    NASA Astrophysics Data System (ADS)

    Kimura, Koichi; Sakabe, Hideo; Suzuki, Takao; Okawara, Motoi

    This paper describes mission features and development of the Geostationary Meteorological Satellite-5 (GMS-5). The purpose of GMS series is the improvement of Japan's meteorological services and the development of meteorological satellite technology. The satellites have been used for the World Weather Watch (WWW) program planned by the World Meteorological Organization (WMO). The first satellite in this series was launched into geosynchronous orbit at 140 E longitude in July 1977. GMS-2 and GMS-3 were launched in August 1981, and August 1984. GMS-4 was launched in September 1989, and is now being operated for weather services. GMS-5 is now being developed by the National Space Development Agency of Japan (NASDA). GMS-5 is a spin-stabilized satellite. It consists of a despun earth-oriented antenna assembly and a spin section rotating at 100 rpm. The spin section contains the visible and infrared spin scan radiometer (VISSR), electronic devices, batteries, fuel tanks, thrusters and solar panel. The two new infrared channels have been added to the VISSR and the total number of three infrared channels will be used for observation of the atmospheric water vapor distribution, accurate measurement of sea surface temperatures, etc. The mission of GMS-5 are weather watch by VISSR, collection of weather data, distribution of image data and experiment of search and rescue (SAR). GMS-5 will be launched by a H-II launch vehicle from Tanegashima Space Center in 1994.

  15. Using Equinoctial Orbital Elements and Quasi-average Element Method to Construct Analytical Solutions for Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    The eccentricity and the inclination of the satellite in geosynchronous orbit are both small, under this condition, perturbations from the Earth's non-spherical gravitational field result in orbit resonances due to incommensurable small denominators, that is, the problem of small eccentricity, small inclination and commensurability small incommensurable denominator exist simultaneously. Usually we adopt the classic Kepler orbital elements to describe an orbit, However, in the case of small eccentricities and small inclinations, the geometric meaning of the perigee and ascending node of an GEO is no longer clear, and the equations of motion have small denominators which results in the failure of the usual mean orbit element perturbation solution. This phenomenon of singularity is caused by the inappropriate choice of independent variables and has nothing to do with the dynamics. Such singularities can be avoided by choosing the appropriate independent variables (called non-singularity orbital elements). Incommensurable singularity appears in the process of solving the perturbation equations by the mean element methodology. The quasi-average element methodology retains the main advantages of the mean element method and reasonably revises its definition. Quasi-average orbits, without short periodic terms, while including the long-term items are taken as the reference orbit. The reference orbit in this transformation has long-term variations which are similar to the long periodic terms within a short-time duration. So we can avoid the failure of the perturbation solution caused by the periodic terms when using the classical perturbation method or the mean element method. From the perspective of mechanics, it can eliminate the incommensurable singularity, and the perturbation solution will remain valid. This paper aims at introducing the calculation method to eliminate the singularity problem of e=0,i=0 and commensurability singularity by using the quasi-average element

  16. Meteosat-8: Europe's new geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Borde, Regis; Konig, Marianne; Schmetz, Johannes

    2004-11-01

    The first of the new generation of Meteosat satellites, known as Meteosat Second Generation (MSG), was launched in August 2002. From its geostationary orbit, the satellite's radiometer, the spinning enhanced visible and infrared imager (SEVIRI), observes the full disk of the Earth with an unprecedented repeat cycle of 15 minutes in 12 spectral channels, having a sampling distance of three kilometres at nadir (1 km for the high resolution channel). For comparison, the first-generation Meteosat satellite covers only three spectral channels and has an imaging repeat cycle of 30 minutes, with a sampling distance between 2.5 and 5 km. MSG offers a wealth of new observational capabilities that could benefit weather forecasting and support severe weather warnings. Significant indirect benefits will come through improved weather forecasts that predict e.g. wind fields more accurately. With the beginning of MSG's operational phase on 29 January 2004, the satellite was renamed to Meteosat-8. The Meteosat-8 operational system also includes a suite of meteorological data which are extracted from the multi-channel image information, as e.g. winds, cloud analysis, atmospheric humidity and atmospheric instability over the entire field of view. This paper presents a general overview over the Meteosat-8 imagery and will especially focus on the meteorological parameters - including the underlying algorithms - that are extracted at EUMETSAT.

  17. Small Aperture Telescope Observations of Co-located Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Scott, R.; Wallace, B.

    As geostationary orbit (GEO) continues to be populated, satellite operators are increasing usage of co-location techniques to maximize usage of fewer GEO longitude slots. Co-location is an orbital formation strategy where two or more geostationary satellites reside within one GEO stationkeeping box. The separation strategy used to prevent collision between the co-located satellites generally uses eccentricity (radial separation) and inclination (latitude separation) vector offsets. This causes the satellites to move in relative motion ellipses about each other as the relative longitude drift between the satellites is near zero. Typical separations between the satellites varies from 1 to 100 kilometers. When co-located satellites are observed by optical ground based space surveillance sensors the participants appear to be separated by a few minutes of arc or less in angular extent. Under certain viewing geometries, these satellites appear to visually conjunct even though the satellites are, in fact, well separated spatially. In situations where one of the co-located satellites is more optically reflective than the other, the reflected sunglint from the more reflective satellite can overwhelm the other. This less frequently encountered issue causes the less reflective satellite to be glint masked in the glare of the other. This paper focuses on space surveillance observations on co-located Canadian satellites using a small optical telescope operated by Defence R&D Canada - Ottawa. The two above mentioned problems (cross tagging and glint masking) are investigated and we quantify the results for Canadian operated geostationary satellites. The performance of two line element sets when making in-frame CCD image correlation between the co-located satellites is also examined. Relative visual magnitudes between the co-located members are also inspected and quantified to determine the susceptibility of automated telescopes to glint masking of co-located satellite members.

  18. European small geostationary communications satellites

    NASA Astrophysics Data System (ADS)

    Sun, Wei, , Dr.; Ellmers, Frank; Winkler, Andreas; Schuff, Herbert; Sansegundo Chamarro, Manuel Julián

    2011-04-01

    Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.

  19. Station keeping of geostationary satellites by electric propulsion

    NASA Technical Reports Server (NTRS)

    Eckstein, M. C.

    1985-01-01

    As various types of perturbations tend to drive a geostationary satellite away from its prescribed position, occasional orbit corrections have to be carried out by means of a suitable propulsion system. In future geostationary missions, low thrust electric propulsion is likely to be applied for station keeping because of considerable mass savings. In this paper a station keeping strategy for electric propulsion systems is developed. Both the unconstrained case and the case where thrust operation constraints are present are considered and tested by computer simulation of a realistic example.

  20. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  1. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  2. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  3. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  4. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  5. Development of the European Small Geostationary Satellite SGEO

    NASA Astrophysics Data System (ADS)

    Lübberstedt, H.; Schneider, A.; Schuff, H.; Miesner, Th.; Winkler, A.

    2008-08-01

    The SGEO product portfolio, ranging from Satellite platform delivery up to in-orbit delivery of a turnkey system including satellite and ground control station, is designed for applications ranging from TV Broadcast to multimedia applications, Internet access, mobile or fixed services in a wide range of frequency bands. Furthermore, Data Relay missions such as the European Data Relay Satellite (EDRS) as well as other institutional missions are targeted. Key design features of the SGEO platform are high flexibility and modularity in order to accommodate a very wide range of future missions, a short development time below two years and the objective to build the system based on ITAR free subsystems and components. The system will provide a long lifetime of up to 15 years in orbit operations with high reliability. SGEO is the first European satellite to perform all orbit control tasks solely by electrical propulsion (EP). This design provides high mass efficiency and the capability for direct injection into geostationary orbit without chemical propulsion (CP). Optionally, an Apogee Engine Module based on CP will provide the perigee raising manoeuvres in case of a launch into geostationary transfer orbit (GTO). This approach allows an ideal choice out of a wide range of launcher candidates in dependence of the required payload capacity. SGEO will offer to the market a versatile and high performance satellite system with low investment risk for the customer and a short development time. This paper provides an overview of the SGEO system key features and the current status of the SGEO programme.

  6. World-wide link availability for geostationary and critically inclined orbits including rain attenuation effects

    NASA Astrophysics Data System (ADS)

    Schwab, L. M.

    1981-01-01

    Link availability for constellations of satellites in geostationary and critically inclined orbits is computed using a predictor model based on the Crane 8 region worldwide rain attenuation model. The results are contrasted to percent Earth visibility computations which do not include rain attenuation. For geostationary satellite constellations, the quantitative relationship for Earth coverage vs link margin vs availability vs number of satellites is described by a set of parametric curves.

  7. Local oscillator distribution using a geostationary satellite

    NASA Technical Reports Server (NTRS)

    Bardin, Joseph; Weinreb, Sander; Bagri, Durga

    2004-01-01

    A satellite communication system suitable for distribution of local oscillator reference signals for a widely spaced microwave array has been developed and tested experimentally. The system uses a round-trip correction method of the satellite This experiment was carried out using Telstar-5, a commercial Ku-band geostationary satellite. For this initial experiment, both earth stations were located at the same site to facilitate direct comparison of the received signals. The local oscillator reference frequency was chosen to be 300MHz and was sent as the difference between two Ku-band tones. The residual error after applying the round trip correction has been measured to be better than 3psec for integration times ranging from 1 to 2000 seconds. For integration times greater then 500 seconds, the system outperforms a pair of hydrogen masers with the limitation believed to be ground-based equipment phase stability. The idea of distributing local oscillators using a geostationary satellite is not new; several researchers experimented with this technique in the eighties, but the achieved accuracy was 3 to 100 times worse than the present results. Since substantially and the performance of various components has improved. An important factor is the leasing of small amounts of satellite communication bandwidth. We lease three 100kHz bands at approximately one hundredth the cost of a full 36 MHz transponder. Further tests of the system using terminal separated by large distances and comparison tests with two hydrogen masers and radio interferometry is needed.

  8. Propellant gaging for geostationary satellites

    NASA Astrophysics Data System (ADS)

    Orazietti, A. J.; Orton, G. F.; Schreib, R.

    1986-06-01

    Evaluations were performed to select four gaging concepts for ground tests and low-g tests in the NASA KC-135 aircraft. The selected concepts were an ultrasonic point sensor system, a nucleonic gaging system, an ultrasonic torsional wave guide, and an ultrasonic flowmeter. The first three systems provide a direct measurement of propellant quantity remaining, while the fourth system integrates (totalizes) the propellant flow to the engines and infers propellant remaining based on a known initial propellant load. As a result of successful ground and KC-135 tests, two concepts (the ultrasonic point sensor and nucleonic systems) were selected for orbital test in a Shuttle Get-Away-Special experiment. These systems offer high end-of-life accuracy potential, are nonintrusive (external to the tanks and feedlines), and are low in risk because of their good technology base. The Shuttle Get-Away-Special experiment has been assembled and passed flight certification testing in late April 1986.

  9. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Interference to geostationary-satellites. 78...-satellites. Applicants and licensees must comply with § 101.145 of this chapter to minimize the potential of interference to geostationary-satellites....

  10. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Interference to geostationary-satellites. 78...-satellites. Applicants and licensees must comply with § 101.145 of this chapter to minimize the potential of interference to geostationary-satellites....

  11. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Interference to geostationary-satellites. 78...-satellites. Applicants and licensees must comply with § 101.145 of this chapter to minimize the potential of interference to geostationary-satellites....

  12. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Interference to geostationary-satellites. 78...-satellites. Applicants and licensees must comply with § 101.145 of this chapter to minimize the potential of interference to geostationary-satellites....

  13. 47 CFR 78.106 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Interference to geostationary-satellites. 78...-satellites. Applicants and licensees must comply with § 101.145 of this chapter to minimize the potential of interference to geostationary-satellites....

  14. Multicolour Optical Photometry of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  15. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    NASA Astrophysics Data System (ADS)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  16. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  17. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  18. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    NASA Technical Reports Server (NTRS)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  19. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to geostationary-satellites. These limitations are necessary...

  20. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interference to geostationary-satellites. 101.145 Section 101.145 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Technical Standards § 101.145 Interference to geostationary-satellites. These limitations are necessary...

  1. Preparation to optical communication experiments with geostationary satellite ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kuzkov, V. P.; Medveskij, M. M.; Yatskiv, D. Ya.; Nedashkovskij, V. N.; Suberlak, V. R.; Glushchenko, Yu. M.; Peretyatko, M. M.; Eremenko, N. A.

    2003-08-01

    We considered necessary conditions and performed expedient calculations for performing laser communication link experiments with geostationary satellite ARTEMIS (ESA). The scheme was proposed of performing these experiments by using two telescopes. The results of observation of the satellite are presented.

  2. Remote Sensing from Geostationary Orbit: GEO TROPSAT, A New Concept for Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Little, Alan D.; Neil, Doreen O.; Sachse, Glen W.; Fishman, Jack; Krueger, Arlin J.

    1997-01-01

    The Geostationary Tropospheric Pollution Satellite (GEO TROPSAT) mission is a new approach to measuring the critical constituents of tropospheric ozone chemistry: ozone, carbon monoxide, nitrogen dioxide, and aerosols. The GEO TROPSAT mission comprises a constellation of three instruments flying as secondary payloads on geostationary communications satellites around the world. This proposed approach can significantly reduce the cost of getting a science payload to geostationary orbit and also generates revenue for the satellite owners. The geostationary vantage point enables simultaneous high temporal and spatial resolution measurement of tropospheric trace gases, leading to greatly improved atmospheric ozone chemistry knowledge. The science data processing, conducted as a research (not operational) activity, will provide atmospheric trace gas data many times per day over the same region at better than 25 km ground footprint. The high temporal resolution identifies short time scale processes, diurnal variations, seasonal trends, and interannual variation.

  3. Microwave antenna temperature of the earth from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Smith, E. K.

    1985-01-01

    The microwave antenna temperature of the earth has been computed for the case of a communication satellite antenna viewing the earth from geostationary orbit. An earth-coverage beam is assumed and detailed computations are performed to account for varying land-ocean fractions within the field of view. Emission characteristics of the earth's atmosphere and surface are used with an accurate radiative transfer program to compute observed brightness temperatures. Values of 250 to 290 K commonly used for antenna temperature in satellite communication noise calculations are found to be over-conservative estimates, with more realistic values lying in the 60-240 K range depending on frequency and subsatellite longitude. These values also depend on assumptions concerning antenna beam coverage. Variations in atmospheric and surface conditions, and variations in antenna beam shape (as distinct from coverage), affect the computed results by less than about 10 K.

  4. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  5. Sea surface temperature - Observations from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Bates, J. J.; Smith, W. L.

    1985-01-01

    Multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites were used to estimate sea surface temperatures (SST). A procedure was developed to screen VAS visible and infrared data for cloud-free regions for estimation of SST from the clear infrared radiances. A data set of matches between the VAS radiances and high quality buoy estimates of SST was produced. A linear regression analysis of these matches was performed to generate an empirical algorithm relating the VAS window channel brightness temperatures to the estimates of SST recorded by NOAA fixed environment buoys. Daily maps of SST during Hurricanes Alicia (1983) and Debbie (1982) demonstrated the ability of VAS to monitor air-sea interactions at high temporal and spatial scales.

  6. A General Approach to the Geostationary Transfer Orbit Mission Recovery

    NASA Technical Reports Server (NTRS)

    Faber, Nicolas; Aresini, Andrea; Wauthier, Pascal; Francken, Philippe

    2007-01-01

    This paper discusses recovery scenarios for geosynchronous satellites injected in a non-nominal orbit due to a launcher underperformance. The theory on minimum-fuel orbital transfers is applied to develop an operational tool capable to design a recovery mission. To obtain promising initial guesses for the recovery three complementary techniques are used: p-optimized impulse function contouring, a numerical impulse function minimization and the solutions to the switching equations. The tool evaluates the feasibility of a recovery with the on-board propellant of the spacecraft and performs the complete mission design. This design takes into account for various mission operational constraints such as e.g., the requirement of multiple finite-duration burns, third-body orbital perturbations, spacecraft attitude constraints and ground station visibility. In a final case study, we analyze the consequences of a premature breakdown of an upper rocket stage engine during injection on a geostationary transfer orbit, as well as the possible recovery solution with the satellite on-board propellant.

  7. Refilling and Composition at Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, K.; Thomsen, M. F.

    2015-12-01

    Here we examine the apparent long-term refilling (change in density at a particular position over days) of electron density and mass density. At solar maximum, the changes in these quantities following a period of large geomagnetic activity can be very different. For instance, for events during 2001 we used both the ion density measured by the Los Alamos National Lab (LANL) Magnetospheric Plasma Analyzer (MPA) instrument and mass density inferred from Alfven wave frequencies measured by the Geostationary Operational Environmental Satellites (GOES) to show that the mass density varied comparatively little while the electron density dropped down to a low value and recovered slowly. During this event, the composition changed dramatically, from a high concentration of O+ very soon after large geomagnetic activity to a very low concentration of O+ after a long quiet period. This result suggests that at solar maximum O+ is quickly distributed to the region outside the plasmasphere sometimes called the warm plasma cloak while H+ refills this region much more slowly. Here we use a large database of mass density measurements based on Alfven waves observed by GOES to examine statistically the behavior of the mass density during periods of quiet following large geomagnetic activity and to see how this behavior varies over the solar cycle. We will compare with previous results for refilling of electron density.

  8. Radar for Monitoring Hurricanes from Geostationary Orbit

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen; Huang, John; Lou, Michael; Smith, Eric; Rahmat-Samii, Yahya

    2004-01-01

    A document describes a scanning Doppler radar system to be placed in a geostationary orbit for monitoring the three-dimensional structures of hurricanes, cyclones, and severe storms in general. The system would operate at a frequency of 35 GHz. It would include a large deployable spherical antenna reflector, instead of conventional paraboloidal reflectors, that would allow the reflector to remain stationary while moving the antenna feed(s), and thus, create a set of scanning antenna beams without degradation of performance. The radar would have separate transmitting and receiving antenna feeds moving in spiral scans over an angular excursion of 4 from the boresight axis to providing one radar image per hour of a circular surface area of 5,300-km diameter. The system would utilize a real-time pulse-compression technique to obtain 300-m vertical resolution without sacrificing detection sensitivity and without need for a high-peakpower transmitter. An onboard data-processing subsystem would generate three-dimensional rainfall reflectivity and Doppler observations with 13-km horizontal resolution and line-of-sight Doppler velocity at a precision of 0.3 m/s.

  9. Geostationary payload concepts for personal satellite communications

    NASA Technical Reports Server (NTRS)

    Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.

    1993-01-01

    This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.

  10. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    NASA Technical Reports Server (NTRS)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  11. Studies of soundings and imagings measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.

  12. Geostationary orbit Earth science platform concepts for global change monitoring

    NASA Technical Reports Server (NTRS)

    Farmer, Jeffery T.; Campbell, Thomas G.; Davis, William T.; Garn, Paul A.; King, Charles B.; Jackson, Cheryl C.

    1991-01-01

    Functionality of a geostationary spacecraft to support Earth science regional process research is identified. Most regional process studies require high spatial and temporal resolution. These high temporal resolutions are on the order of 30 minutes and may be achievable with instruments positioned in a geostationary orbit. A complement of typical existing or near term instruments are identified to take advantage of this altitude. This set of instruments is listed, and the requirements these instruments impose on a spacecraft are discussed. A brief description of the geostationary spacecraft concepts which support these instruments is presented.

  13. Crew Transfer Options for Servicing of Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2012-01-01

    In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.

  14. Operational performance report on Japan's geostationary meteorological satellite /GMS/

    NASA Astrophysics Data System (ADS)

    Kotoh, T.; Dosho, H.; Horikawa, Y.; Saitoh, M.

    1980-09-01

    Japan's Geostationary Meteorological Satellite (GMS) was launched by a Delta 2914 launch vehicle from the Eastern Test Range in the United States on July 14, 1977 and stationed at 140 E longitude over the equator. The GMS, appropriately named the Himawari, a sunflower, is a part of the World Weather Watch program designed to upgrade and improve the accuracy of world-wide weather forecasting. The GMS has developed some in-orbit anomalies. The first one which occurred in the preparatory phase was that the VISSR disk image was skewed. This was corrected by modifying the synchronization mechanism in the ground equipment. The second anomaly was that the VISSR high voltage power supply shut down. Images are currently produced by use of corresponding redundant sensors. In spite of these anomalies, the GMS is performing its mission.

  15. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    NASA Technical Reports Server (NTRS)

    Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  16. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  17. Meteosat Third Generation - the future European geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Bézy, Jean-Loup; Aminou, Donny; Bensi, Paolo; Stuhlman, Rolf; Tjemkes, Stephen; Rodriguez, Antonio

    2005-08-01

    Today, the Meteosat geostationary meteorological satellites play a key role in providing continuous atmospheric observations both for weather forecasting and for monitoring a wide variety of environmental phenomena. Following the successful commissioning of the first satellite in the Meteosat Second Generation (MSG) series, Eumetsat and ESA are already actively planning the next European operational geostationary meteorological satellite system in the form of the Meteosat Third Generation (MTG). Being considered for launch in 2015, MTG will revolutionise weather forecasting and environmental monitoring as we now know them, by providing a very significant improvement over the capabilities of the current Meteosats.

  18. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1997-01-01

    Solar electric propulsion technology is currently being used for geostationary satellite station keeping. Analyses show that electric propulsion technologies can be used to obtain additional increases in payload mass by using them to perform part of the orbit transfer. Three electric propulsion technologies are examined at two power levels for geostationary insertion of an Atlas IIAS class spacecraft. The onboard chemical propulsion apogee engine fuel is reduced in this analysis to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns that will minimize the electric propulsion transfer times. For a 1550-kg Atlas IIAS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150-800 kg are enabled by using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  19. A Global Cloud Detection Approach for Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Trepte, Q.; Minnis, P.; Palikonda, R.; Ayers, J. K.; Shan, B.; Yost, C. R.

    2014-12-01

    Geostationary satellites provide continuous cloud and meteorological observations over a fixed portion of the Earth's surface, allowing them to monitor and track the development and movement of severe storm systems in real time. For climate studies, geostationary observations provide valuable insight of cloud formation and evolution and how they influence the Earth's radiation budget. Five well-positioned geostationary satellites can cover most of the globe and their products can be merged into a uniform data set. Presently the constellation of these geostationary satellites consists of the NOAA GOES-West (135° W) and East (75° W), the EUMETSAT Meteosat-9 (9.5° E), the Chinese Feng-Yun (105° E), and the Japanese MTSAT-2 (140° E) platforms. Stitching together observations from these imagers requires an understanding of their different spectral characteristics and calibrations. This paper presents the cloud detection algorithms developed using the imager data on the five geostationary satellites. The algorithms are used operationally in NASA's Cloud and Earth's Radiant Energy System (CERES) Time and Space Averaging (TISA) gridded cloud products and for near-real-time retrievals used for weather and nowcasting applications. Examples of cloud mask results for different surface background (ocean, land, desert) and their diurnal changes will be described. Additionally, merged global cloud fractions and zonal cloud distributions are compared with CERES-MODIS, CALIPSO, and NASA LaRC AVHRR cloud fractions. Potential future improvements are discussed.

  20. Apple - Indian experimental geostationary communication satellite

    NASA Astrophysics Data System (ADS)

    Rao, U. R.; Vasagam, R. M.

    Developmental steps, responsibilities, design goals, performance characteristics, and support systems for the ISRO Ariane Passenger Payload Experiment (APPLE) experimental GEO communication satellite are described. The spacecraft underwent structural, thermal, engineering, prototype, and flight qualification tests in India before being shipped to Guyana for launch on the third Ariane test flight. APPLE carries a redundant C-band communication transponder fed by a 900 mm diam parabolic reflector. A 6 GHz uplink and 4 GHz downlink are processed through a diplexer, with the receiver employing a low noise GaAs FET amplifier. In-orbit telemetry is provided by a 4095 MHz beacon with a data rate of 64 bits/sec. Two solar panels supply 210 W of power, while an on-board Ni-Cd storage battery stores 240 Wh for the ascent and during eclipse. Teleconferencing has been successfully performed using the spacecraft link.

  1. An approach to ground based space surveillance of geostationary on-orbit servicing operations

    NASA Astrophysics Data System (ADS)

    Scott, Robert (Lauchie); Ellery, Alex

    2015-07-01

    On Orbit Servicing (OOS) is a class of dual-use robotic space missions that could potentially extend the life of orbiting satellites by fuel replenishment, repair, inspection, orbital maintenance or satellite repurposing, and possibly reduce the rate of space debris generation. OOS performed in geostationary orbit poses a unique challenge for the optical space surveillance community. Both satellites would be performing proximity operations in tight formation flight with separations less than 500 m making atmospheric seeing (turbulence) a challenge to resolving a geostationary satellite pair when viewed from the ground. The two objects would appear merged in an image as the resolving power of the telescope and detector, coupled with atmospheric seeing, limits the ability to resolve the two objects. This poses an issue for obtaining orbital data for conjunction flight safety or, in matters pertaining to space security, inferring the intent and trajectory of an unexpected object perched very close to one's satellite asset on orbit. In order to overcome this problem speckle interferometry using a cross spectrum approach is examined as a means to optically resolve the client and servicer's relative positions to enable a means to perform relative orbit determination of the two spacecraft. This paper explores cases where client and servicing satellites are in unforced relative motion flight and examines the observability of the objects. Tools are described that exploit cross-spectrum speckle interferometry to (1) determine the presence of a secondary in the vicinity of the client satellite and (2) estimate the servicing satellite's motion relative to the client. Experimental observations performed with the Mont Mégantic 1.6 m telescope on co-located geostationary satellites (acting as OOS proxy objects) are described. Apparent angular separations between Anik G1 and Anik F1R from 5 to 1 arcsec were observed as the two satellites appeared to graze one another. Data

  2. Non-resolved detection of objects performing On Orbit Servicing in Geostationary orbit

    NASA Astrophysics Data System (ADS)

    Scott, R.; Ellery, A.; Levesque, M.

    2011-09-01

    On Orbit Servicing (OOS) of geostationary (GEO) satellites represents a new robotic space mission paradigm which could extend the life of existing satellites and reduce the rate of space debris generation. This mission type poses unique challenges for traditional optical space surveillance sensors. As the satellites perform close proximity operations, a distant observer sees the two objects as a single point source on a CCD (Charged Couple Device) as the objects’ angular separations, as viewed from a distant observer, are much smaller than the point source size of a typical space surveillance instrument. This analysis explores the unforced relative motion flight of a servicer satellite about its client GEO satellite with separations of 100 meters or less. Tools developed to address the physical and optical reflectance characteristics of this kind of mission type along with example light curves for diffuse optical reflections from both satellites performing OOS are presented. These tools create synthetic light curve data to permit future testing of light curve inversion and signal separation as a means to infer the relative motion of a secondary object about a GEO satellite.

  3. a Study on Fuel Estimation Algorithms for a Geostationary Communication & Broadcasting Satellite

    NASA Astrophysics Data System (ADS)

    Eun, Jong-Won

    2000-12-01

    It has been developed to calculate fuel budget for a geostationary communication and broadcasting satellite. It is quite essential that the pre-launch fuel budget estimation must account for the deterministic transfer and drift orbit maneuver requirements. After on-station, the calculation of satellite lifetime should be based on the estimation of remaining fuel and assessment of actual performance. These estimations step from the proper algorithms to produce the prediction of satellite lifetime. This paper concentrates on the fuel estimation method that was studied for calculation of the propellant budget by using the given algorithms. Applications of this method are discussed for a communication and broadcasting satellite.

  4. Performance Analysis of the HTTP Protocol on Geostationary Satellite Links

    NASA Technical Reports Server (NTRS)

    Krus, Hans; Allman, Mark; Griner, Jim; Tran, Diepchi

    1998-01-01

    Various issues associated with HTTP protocol on geostationary satellite links are presented in viewgraph form. Specific topics include: 1) Network reference points; 2) The HTTP 1.0 and 1.1 mechanisms; 3) Experimental setup; 4) TCP and HTTP configuration; 5) Modelling slow start and 6) Results and future work.

  5. Earth-to-Geostationary Orbit Transportation for Space Solar Power System Development

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donahue, Benjamin B.; Lawrence, Schuyler C.; McClanahan, James A.; Carrington, Connie K. (Technical Monitor)

    2000-01-01

    Space solar power satellites have the potential to provide abundant quantities of electricity for use on Earth. One concept, the Sun Tower, can be assembled in geostationary orbit from pieces transferred from Earth. The cost of transportation is one of the major hurdles to space solar power. This study found that autonomous solar-electric transfer is a good choice for the transportation from LEO to GEO.

  6. Modeling water and heat balance components of large territory for vegetation season using information from polar-orbital and geostationary meteorological satellites

    NASA Astrophysics Data System (ADS)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2015-04-01

    To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009

  7. McIDAS-V: A powerful visualization and data analysis tool for geostationary environmental satellites

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T.; Straka, W.; Feltz, J.

    2012-12-01

    The University of Wisconsin's Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellite and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is a java-based, open-source, freely available system for researchers and algorithm developers that is being adapted and expanded for use with advanced geostationary environmental satellite observations. A key attribute of analysis and visualization systems is access to and display of a large variety of geophysical data. Providing these capabilities for numerous data types provides users with powerful tools for merging information, comparison of products and evaluation. McIDAS-V provides unique capabilities that support creative techniques for developing and evaluating algorithms, visualizing data and products in 4 dimensions, and validating results. For geostationary applications, McIDAS-V provides visualization and analysis support for GOES, MSG, MTSAT and FY2 data. NOAA is supporting the McIDAS-V development program for ABI imagery and products for the GOES-R/S series, which will bring an advanced multi-spectral imager into geostationary orbit. Used together, the geostationary environmental satellites provide the user community with detailed global coverage with rapid update cycles. This poster and demonstration will provide an overview of McIDAS-V with demonstrations of the data acquisition, visualization and analysis tools to support the international geostationary environmental satellite programs. It will also present results from several research projects involving current and future environmental satellites, demonstrating how the McIDAS-V software can be used to acquire satellite and ancillary data, create multi--spectral products using both scripting and interactive data manipulation tools, and evaluate output through on-board validation techniques.;

  8. Ka-band geostationary satellite spacing requirements and access schemes

    NASA Technical Reports Server (NTRS)

    Caron, Mario; Hindson, Daniel J.

    1995-01-01

    Geostationary satellite systems for wideband personal communications applications have been proposed. This paper looks at the geostationary satellite spacing requirement to meet the ITU-R sharing criterion for FDMA and CDMA access schemes. CDMA capacity equation is first developed. Then the basis for the interference analysis between two systems with an overlapping coverage area is developed for the cases of identical and different access schemes and for bandwidth and power limited systems. An example of an interference analysis between two systems is fully carried out. The paper also points out the inherent problems when comparing systems with different access schemes. It is found that under certain scenarios, CDMA can allow a closer spacing between satellites.

  9. Retrieval and verification of fire radiative power using the Korean geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sun; Lee, Yang-Won

    2014-10-01

    Recently, frequency and strength of global wildfire are on the increase. The wildfire encourages the climate change through release of GHGs into the atmosphere over one time occur. The effect of wildfire GHGs can be estimate by FRP(fire radiative power), many research using the remote sensing are trying for its efficient produce. A satellite fire product including fire mask and FRP was produced by polar orbit satellite at first, thereafter it was expanded to geostationary satellites for continuous monitoring of wide areas. However, geostationary satellites observing in East Asia no got a standard to produce the fire product yet. This paper described a retrieval of FRP using the COMS(Communication, Ocean and Meteorological satellite) that is a Korean geostationary satellite. The COMS FRP was retrieved MIR(Middle infrared) radiance method which approaches by brightness temperature of single waveband. Our test was presented that large scale wildfires(FRP > 300MW and confidence level > 9) occurred in the each April. The COMS FRP showed MAE = 103.67 MW(16%) with the MODIS. This result represents much as possibility of the FRP in East Asia. This paper is expected to provide to baseline for the FRP in East Asia, and apply to biomass loss and estimate the GHGs. In addition, the COMS FRP will contribute to studies of aerosols, economic losses and ecosystem damages as basic data.

  10. Mass density at geostationary orbit and apparent mass refilling

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Takahashi, Kazue; Amoh, Justice; Singer, H. J.

    2016-04-01

    We used the inferred equatorial mass density ρm,eq based on measurements of Alfvén wave frequencies measured by the GOES satellites during 1980-1991 in order to construct a number of different models of varying complexity for the equatorial mass density at geostationary orbit. The most complicated models are able to account for 66% of the variance with a typical variation from actual values of a factor of 1.56. The factors that influenced ρm,eq in the models were, in order of decreasing importance, the F10.7 EUV index, magnetic local time, the solar wind dynamic pressure Pdyn, the phase of the year, and the solar wind BZ (GSM Z direction). During some intervals, some of which were especially geomagnetically quiet, ρm,eq rose to values that were significantly higher than those predicted by our models. For 10 especially quiet intervals, we examined long-term (>1 day) apparent refilling, the increase in ρm,eq at a fixed location. We found that the behavior of ρm,eq varies for different events. In some cases, there is significant apparent refilling, whereas in other cases ρm,eq stays the same or even decreases slightly. Nevertheless, we showed that on average, ρm,eq increases exponentially during quiet intervals. There is variation of apparent refilling with respect to the phase of the solar cycle. On the third day of apparent refilling, ρm,eq has on average a similar value at solar maximum or solar minimum, but at solar maximum, ρm,eq begins with a larger value and rises relatively less than at solar minimum.

  11. CARTEL: A method to calibrate S-band ranges with geostationary satellites

    NASA Astrophysics Data System (ADS)

    Guitart, A.; Mesnard, R.; Nouel, F.

    1986-12-01

    An intersite tracking campaign was organized, with 4 S-band stations, for a period of 1 wk to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference in order to evaluate what can be achieved with one single station with range and angular measurements (a typical configuration used for stationkeeping of geostationary satellites). Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure as forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. A precision of 10 m is achieved. However, an analysis of the influence of several parameters entering the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (polar motion for example). This reference orbit allows estimation of systematic errors for other tracking antennas.

  12. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  13. Static and kinematic positioning using WADGPS from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Cefalo, R.; Gatti, M.

    2003-04-01

    STATIC AND KINEMATIC POSITIONING USING WADGPS CORRECTIONS FROM GEOSTATIONARY SATELLITES Cefalo R. (1), Gatti M (2) (1) Department of Civil Engineering, University of Trieste, P.le Europa 1, 34127 Trieste, Italy, cefalo@dic.univ.trieste.it, (2) Department of Engineering, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy, mgatti@ing.unife.it ABSTRACT. Starting from February 2000, static and kinematic experiments have been performed at the Department of Civil Engineering of University of Trieste, Italy and the Department of Engineering of University of Ferrara, Italy, using the WADGPS (Wide Area Differential GPS) corrections up linked by Geostationary Satellites belonging to the American WAAS and European EGNOS. Recently, a prototypal service by ESA (European Space Agency) named SISNet (Signal In Space through Internet), has been introduced using Internet to diffuse the messages up linked through AOR-E and IOR Geostationary Satellites. This service will overcome the problems relative to the availability of the corrections in urban areas. This system is currently under tests by the authors in order to verify the latency of the message and the applicability and accuracies obtainable in particular in dynamic applications.

  14. HISPASAT launch and early operations phases: Computation and monitoring of geostationary satellite positioning

    NASA Technical Reports Server (NTRS)

    Brousse, Pascal; Desprairies, Arnaud

    1993-01-01

    Since 1974, CNES, the French National Space Agency, has been involved in the geostationary launch and early operations phases (LEOP) of moving satellites from a transfer orbit delivered by a launcher to a geostationary point. During the operations and their preparation, the Flight Dynamics Center (FDC), part of CNES LEOP facilities, is in charge of the space mechanics aspects. What is noteworthy about the Spanish HISPASAT satellite positioning is that all the operations were performed on the customer's premises, and consequently the FDC was duplicated in Madrid, Spain. The first part of this paper is the FDC presentation: its role, its hardware configuration, and its space dynamics ground control system called MERCATOR. The second part of this paper details the preparation used by the FDC for the HISPASAT mission: hardware and software installation in Madrid, integration with the other entities, and technical and operational qualifications. The third part gives results concerning flight dynamics aspects and operational activities.

  15. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite

    NASA Astrophysics Data System (ADS)

    Yumimoto, K.; Nagao, T. M.; Kikuchi, M.; Sekiyama, T. T.; Murakami, H.; Tanaka, T. Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; Arai, K.; Morino, I.; Uchino, O.; Maki, T.

    2016-06-01

    Himawari-8, a next-generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari-8 is equipped with 16 observational bands (including three visible and three near-infrared bands) that enable retrieval of full-disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari-8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari-8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.

  16. Development of unified propulsion system for geostationary satellite

    NASA Astrophysics Data System (ADS)

    Murayama, S.; Kobayashi, H.; Masuda, I.; Kameishi, M.; Miyoshi, K.; Takahashi, M.

    Japan's first Liquid Apogee Propulsion System (LAPS) has been developed for ETS-VI (Engineering Test Satellite - VI) 2-ton class geostationary satellite. The next largest (2-ton class) geostationary satellite, COMETS (Communication and Broadcasting Engineering Test Satellite), requires a more compact apogee propulsion system in order to increase the space for mission instruments. The study for such a propulsion system concluded with a Unified Propulsion System (UPS), which uses a common N2H4 propellant tank for both bipropellant apogee engines and monopropellant Reaction Control System (RCS) thrusters. This type of propulsion system has several significant advantages compared with popular nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) bipropellant satellite propulsion systems: The NTO/N2H4 apogee engine has a high specific impulse, and N2H4 thrusters have high reliability. Residual of N2H4 caused by propellant utilization of apogee engine firing (AEF) can be consumed by N2H4 monopropellant thrusters; that means a considerably prolonged satellite life.

  17. Satellite orbit predictor

    NASA Technical Reports Server (NTRS)

    Friedman, Morton l.; Garrett, James, Major

    An analog aid to determine satellite coverage of Emergency Locator Transmitters Emergency Position Indicating Radio Beacon (ELT/EPIRB) distress incidence is discussed. The satellite orbit predictor is a graphical aid for determining the relationship between the satellite orbit, antenna coverage of the spacecraft and coverage of the Local User Terminal. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite.A table of equator crossings for each satellite is included.

  18. The second Geostationary Meteorological Satellite 'Himawari-2'

    NASA Astrophysics Data System (ADS)

    Horikawa, Y.; Saito, M.; Kitahara, S.; Kobayashi, M.; Harada, M.; Usuda, S.

    Design features and performance to date of the Japanese meteorological satellite GMS-2 are presented. The GMS-2 is configured to provide weather imagery with VISSR sensors, collect and distribute meteorological data, and monitor solar particles. GMS-2 is spin-stabilized in GEO and was launched on an N-II rocket. The spacecraft length is 3.45 m on-station, the diameter is 2.15 m, and the mass is 653 kg beginning-of-life. Ground links are maintained through despun S-band and UHF antennas. The actual mission life is 3 yr due to the limitations of the on-board hydrazine fuel supply for station-keeping. Noncritical performance anomalies have been exhibited in the telemetry gating circuitry, S-band transmitters, and the PCM telemetry data control circuitry. Back-up systems have compensated for the failures experienced thus far.

  19. Fuzzy logic techniques for rendezvous and docking of two geostationary satellites

    NASA Technical Reports Server (NTRS)

    Ortega, Guillermo

    1995-01-01

    Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.

  20. Geostationary Atmospheric Observation Satellite Plan in Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Akimoto, H.; Kasai, Y.; Kita, K.; Irie, H.; Sagi, K.; Hayashida, S.

    2009-12-01

    As emissions of air pollutants in Asia have increased in the past decades accompanying with rapid economic growth of developing countries, Asian regional air pollution has attracted concern from the view of inter-continental and intra-continental long-range transport as well as domestic air quality. Particularly in Japan, transboundary transport of ozone is of recent social concern as one of a cause of increasing trend of near surface ozone concentration. In order to elucidate the transport and chemical transformation processes of air pollution in East Asia, and to attain internationally common understanding on this issue, geostationary atmospheric observation satellite has been proposed in Japan. In 2006, the Japan Society of Atmospheric Chemistry (JSAC) formed Commission on the Atmospheric Environmental Observation Satellite to initiate the discussion. In 2009, Committee on Geostationary Atmospheric Observation Satellite has been formed within JAXA to promote the plan. The proposed satellite consists of a UV/VIS sensor for O3, NO2, HCHO and AOT, and a MIR sensor for O3, CO, HNO3, NO2, H2O and temperature. Targeted spatial and temporal resolutions are ca.10 km and 1-2 hrs, respectively, and focused observation area is northeast Asia potentially covering the southeast and south Asia. Sensitivity analysis and simulation have been made for both the UV/VIS and MIR sensors. Overview of user requirement and the sensitivity analysis for each species will be presented in this talk.

  1. Orbit analysis of a geostationary gravitational wave interferometer detector array

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo; de Araujo, Jose C. N.; Kuga, Helio K.; Alves, Márcio E. S.; Aguiar, Odylio D.

    2015-09-01

    We analyze the trajectories of three geostationary satellites forming the geostationary gravitational wave interferometer (GEOGRAWI) [1], a space-based laser interferometer mission aiming to detect and study gravitational radiation in the (10-4-10) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites’s relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellation’s three arms with respect to a chosen reference frame and the time changes of the triangle’s enclosed angles. We find that during the time between two consecutive station-keeping maneuvers (about two weeks) the relative variations of the inter-satellite distances do not exceed a value of 0.05%, while the relative velocities between pairs of satellites remain smaller than about 0.7 m s-1. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than 3 arc-minutes, while the east-west angular variations of the three arms remain smaller than about 15 arc-minutes during the two-week period.

  2. Environmental interactions of polar orbiting satellites

    NASA Astrophysics Data System (ADS)

    Burke, W. J.

    1983-01-01

    Addressed are questions concerning how large, and/or high-power, polar-orbiting spacecraft will interact with auroral environments. This paper discusses some experiences of spacecraft charging, vehicle shadowing, and current leakage encountered by AFGL measuring systems on small, polar-orbiting satellites. Because spacecraft charging at ionospheric altitudes does not seriously threaten the operation of present systems this subject has not received the widespread attention given to it at geostationary altitudes. As a matter of economics it is desirable to transfer as much as possible of what we have learned about spacecraft interactions at geostationary orbit to the auroral oval. Economics must not however blind us to the real differences between the two problems.

  3. Meteosat Third Generation (MTG) Development in the Context of Other Future Geostationary Satellite Observations

    NASA Astrophysics Data System (ADS)

    Schmetz, J.; Stuhlmann, R.; Grandell, J.; Tjemkes, S.; Calbet, X.; Koenig, M.; Rota, S.

    2012-12-01

    Meteosat Third Generation (MTG) will provide continuity to the European Meteosat observations which are currently performed with Meteosat Second Generation (MSG). MSG takes images in 12 channels with a repeat rate of 15 minutes for the full disk. The future MTG satellites will expand the capabilities far beyond those of MSG with an enhanced imager (FCI) which has 16 channels and a 10 minutes repeat cycle for taking images of the earth's full disk. Especially the novel instruments on MTG a) Lightning Imager (LI), hyperspectral InfraRed Sounder (IRS) and the Ultraviolet-Visible-Near infrared spectrometer (UVN) will provide unprecedented observations. The four instruments will fly on two types of satellites, the imaging satellites (MTG-I) carrying the FCI and LI, and the sounding satellites (MTG-S) carrying the IRS and UVN. The UVN instrument is provided by the European Space Agency (ESA) and the European GMES (Global Monitoring and Environmental Security) programme. The first launch of an imaging satellite is foreseen for 2017. In total the MTG series will serve us with four MTG-I and two MTG-S satellites for about two decades. MTG has been defined to meet the requirements of the user community, i.e. mainly users in Europe. However an interesting perspective is to see the development of the European MTG satellite system in the context of the evolution of the global space-based meteorological satellite system, notably those from geostationary orbit. Satellite agencies in the US, Japan, China and Europe will fly advanced imagers comparable to the FCI on MTG. Therefore there is also scope for a common evolution of the applications of the observations which is being addressed inter alia by CGMS (Coordination Group for Meteorological Satellites). Various agencies will also realise lightning observations from space. Other instruments on MTG (IRS and UVN) can be seen as pioneering realisations in a geostationary orbit of measurements known from polar orbits. This step into

  4. Simulation of the water regime for a vast agricultural region territory utilizing measurements from polar-orbital and geostationary meteorological satellites

    NASA Astrophysics Data System (ADS)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2013-04-01

    The model of land surface-atmosphere interaction has been developed to calculate the water and heat balance components for vast vegetation covered areas during the growing season. The model is adjusted to utilize estimates of the land surface and meteorological characteristics derived from satellite-based measurements of radiometers AVHRR/NOAA, MODIS/EOS Terra, Aqua, and SEVIRI/Meteosat-9. The studies have been conducted for the territory of the European Russia Central Black Earth Region (CCR) with area of 227,300 km2 comprising seven regions of the Russian Federation for years 2009-2012 vegetation seasons. The technologies of AVHRR and MODIS data thematic processing have been refined and adapted to the study region providing the retrieval of land surface temperature Tls and emissivity E, land-air temperature (temperature at vegetation cover level) Ta, normalized difference vegetation index NDVI, vegetation cover fraction B, as well as the leaf area index LAI. The updated linear regression estimators for Tls, Ta and LAI have been built using more representative training samples compiled for the above vegetation seasons. The updated software package has been applied for AVHRR data processing to generate named remote sensing products for various dates of the mentioned vegetation periods. On the base of special technology and Internet resources the remote sounding products (Tls, E, NDVI, LAI), derived from MODIS data and covering the CCR, have been downloaded from LP DAAC web-site for the same vegetation seasons. The new method and technology have been developed and adopted for the retrieval of Tls and E from SEVIRI data. The retrievals cover the region of interest and are produced at daylight and nighttime. Method provides the derivation of Tls and E from SEVIRI measurements carried out at three successive times (for example, at 11.00, 12.00, 13.00 UTC), classified as 100% cloud-free for the study region without accurate a priori knowledge of E. The validation of

  5. Hybrid system of communication and radio determination using two geostationary satellites

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Matsumoto, Yasushi; Morikawa, Eihisa; Wakao, Masayoshi

    1990-01-01

    A new hybrid satellite system which can provide both communications and positioning services in one system using two geostationary satellites is discussed. The distinctive feature is that location information can be provided by transmitting and receiving ranging signals over the same channel as communications through two geostationary satellites.

  6. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  7. CNES organization for station positioning of geostationary satellites

    NASA Technical Reports Server (NTRS)

    Dulac, Jean

    1993-01-01

    Since 1975, the Toulouse Space Centre (a technical establishment of the French Space Agency, CNES) has successfully brought 15 geostationary satellites on to station. During these 17 years of experience, an organization of human and material resources has been built up that ensures a very high level of reliability in the execution of these station positioning operations. The main characteristics of this organization are a rigourous definition of the roles and responsibilities of each person involved, very detailed operations documentation, and methodical preparation of the operations.

  8. Research on space-based optical surveillance's observation strategy of geostationary-orbit's pitch point region

    NASA Astrophysics Data System (ADS)

    Wang, Xue-ying; An, Wei; Wu, Yu-hao; Li, Jun

    2015-03-01

    In order to surveillance the geostationary (GEO) objects, including man-made satellites and space debris, more efficiently, a space-based optical surveillance system was designed in this paper. A strategy to observe the pinch point region was selected because of the GEO objects' dynamics features. That strategy affects the surveillance satellites orbital type and sensor pointing strategy. In order to minimize total surveillance satellites and the revisit time for GEO objects, a equation was set. More than 700 GEO objects' TLE from NASA's website are used for simulation. Results indicate that the revisit time of the surveillance system designed in this paper is less than 24 hours, more than 95% GEO objects can be observed by the designed system.

  9. Los Alamos energetic particle sensor systems at geostationary orbit

    SciTech Connect

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes.

  10. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  11. Geomagnetic pulsations observed simultaneously on three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Hughes, W. J.; Mcpherron, R. L.; Barfield, J. N.

    1978-01-01

    Simultaneous observations of magnetic pulsations have been made by three geostationary satellites carrying similar magnetometers and acting as an azimuthal array. Autospectral and cross-spectral analysis yields coherence and phase differences between the pulsations at the satellite positions. The majority of the data fit the Kelvin-Helmholtz generation mechanism. The azimuthal wave number changes sign near noon and corresponds to propagation away from noon. Usually, the wave number is less than 10 deg per degree of longitude. Later in the afternoon, however, strong pulsations are observed with low coherence, implying large wave numbers. This suggests an instability driven by a gradient in the intensity of energetic protons, which may be expected at this local time. The data also suggest that some of the observed phase difference between the azimuthal components is due to small separations in magnetic shell, whereas this is not the case for the radial components. This implies a localized field-line resonance.

  12. Time series analysis of electron flux at geostationary orbit

    SciTech Connect

    Szita, S.; Rodgers, D.J.; Johnstone, A.D.

    1996-07-01

    Time series of energetic (42.9{endash}300 keV) electron flux data from the geostationary satellite Meteosat-3 shows variability over various timescales. Of particular interest are the strong local time dependence of the flux data and the large flux peaks associated with particle injection events which occur over a timescale of a few hours. Fourier analysis has shown that for this energy range, the average electron flux diurnal variation can be approximated by a combination of two sine waves with periods of 12 and 24 hours. The data have been further examined using wavelet analysis, which shows how the diurnal variation changes and where it appears most significant. The injection events have a characteristic appearance but do not occur in phase with one another and therefore do not show up in a Fourier spectrum. Wavelet analysis has been used to look for characteristic time scales for these events. {copyright} {ital 1996 American Institute of Physics.}

  13. Accuracy Assessment of Geostationary-Earth-Orbit with Simplified Perturbations Models

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Xu, Xiaojun; Pang, Feng

    2016-06-01

    A two-line element set (TLE) is a data format encoding orbital elements of an Earth-orbiting object for a given epoch. Using suitable prediction formula, the motion state of the object can be obtained at any time. The TLE data representation is specific to the simplified perturbations models, so any algorithm using a TLE as a data source must implement one of these models to correctly compute the state at a specific time. Accurately adjustment of antenna direction on the earth station is the key to satellite communications. With the TLE set topocentric elevation and azimuth direction angles can be calculated. The accuracy of perturbations models directly affect communication signal quality. Therefore, finding the error variations of the satellite orbits is really meaningful. In this present paper, the authors investigate the accuracy of the Geostationary-Earth-Orbit (GEO) with simplified perturbations models. The coordinate residuals of the simplified perturbations models in this paper can give references for engineers to predict the satellite orbits with TLE.

  14. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    SciTech Connect

    Weisberg, Joel M.; Paglen, Trevor

    2012-10-01

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Cover Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.

  15. Passive correlation ranging of a geostationary satellite using DVB-S payload signals.

    NASA Astrophysics Data System (ADS)

    Shakun, Leonid; Shulga, Alexandr; Sybiryakova, Yevgeniya; Bushuev, Felix; Kaliuzhnyi, Mykola; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Balagura, Oleg

    2016-07-01

    Passive correlation ranging (PaCoRa) for geostationary satellites is now considered as an alternate to tone-ranging (https://artes.esa.int/search/node/PaCoRa). The PaCoRa method has been employed in the Research Institute "Nikolaev astronomical observatory" since the first experiment in August 2011 with two stations spatially separated on 150 km. The PaCoRa has been considered as an independent method for tracking the future Ukrainian geostationary satellite "Lybid'. Now a radio engineering complex (RC) for passive ranging consists of five spatially separated stations of receiving digital satellite television and a data processing center located in Mykolaiv. The stations are located in Kyiv, Kharkiv, Mukacheve, Mykolaiv (Ukraine) and in Ventspils (Latvia). Each station has identical equipment. The equipment allows making synchronous recording of fragments of the DVB-S signal from the quadrature detector output of a satellite television receiver. The fragments are recorded every second. Synchronization of the stations is performed using GPS receivers. Samples of the complex signal obtained in this way are archived and are sent to the data processing center over the Internet. Here the time differences of arrival (TDOA) for pairs of the stations are determined as a result of correlation processing of received signals. The values of the TDOA that measured every second are used for orbit determination (OD) of the satellite. The results of orbit determination of the geostationary telecommunication satellite "Eutelsat-13B" (13º East) obtained during about four months of observations in 2015 are presented in the report. The TDOA and OD accuracies are also given. Single-measurement error (1 sigma) of the TDOA is equal about 8.7 ns for all pairs of the stations. Standard deviations and average values of the residuals between the observed TDOA and the TDOA computed using the orbit elements obtained from optical measurements are estimated for the pairs Kharkiv-Mykolaiv and

  16. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    NASA Astrophysics Data System (ADS)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2015-12-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  17. Spacecraft flight control system design selection process for a geostationary communication satellite

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  18. The provision of spectrum for feeder links of non-geostationary mobile satellites

    NASA Astrophysics Data System (ADS)

    Bowen, Robert R.

    The possibility of sharing spectrum in the 30/20 GHz band between geostationary fixed-satellite systems and feeder-links of low-earth orbit (LEO) mobile-satellite systems is addressed, taking into account that International Telecommunications Union (ITU) Radio Regulation 2613 would be a factor in such sharing. Interference into each network in both the uplink at 30 GHz and the downlink at 20 GHz is considered. It is determined that if sharing were to take place the mobile-satellite may have to cease transmission often for intervals up to 10 seconds, may have to use high-gain tracking antennas on its spacecraft, and may find it an advantage to use code-division multiple access. An alternate solution suggested is to designate a band 50 to 100 MHz wide at 28 and 18 GHz to be used primarily for feeder links to LEO systems.

  19. The provision of spectrum for feeder links of non-geostationary mobile satellites

    NASA Technical Reports Server (NTRS)

    Bowen, Robert R.

    1993-01-01

    The possibility of sharing spectrum in the 30/20 GHz band between geostationary fixed-satellite systems and feeder-links of low-earth orbit (LEO) mobile-satellite systems is addressed, taking into account that International Telecommunications Union (ITU) Radio Regulation 2613 would be a factor in such sharing. Interference into each network in both the uplink at 30 GHz and the downlink at 20 GHz is considered. It is determined that if sharing were to take place the mobile-satellite may have to cease transmission often for intervals up to 10 seconds, may have to use high-gain tracking antennas on its spacecraft, and may find it an advantage to use code-division multiple access. An alternate solution suggested is to designate a band 50 to 100 MHz wide at 28 and 18 GHz to be used primarily for feeder links to LEO systems.

  20. Orbit and attitude determination using artificial satellite imagery

    NASA Astrophysics Data System (ADS)

    Kawamura, S.; Nishida, S.; Nishimura, T.

    1980-09-01

    Simultaneous determination of orbital as well as attitude parameters of geostationary satellites is proposed in this paper. For this purpose, landmarks contained in the images of the earth taken by such satellites are utilized and attention is focussed on the accuracy of estimates of orbital parameters attained by this method, thus extracting effective informations on the location of the satellite contained in the images. The technology and algorithm for the simultaneous determination of orbit and attitude are actually applied to the geostationary meteorological satellite 'HIMAWARI' of Japan and the experimental results are presented. The precision of orbit determination using landmarks is less than 9 km, and it will offer useful informations to the image processing. The proposed method will be also useful at the emergency when a hazard takes place in the ranging station or ranging devices.

  1. Resolution enhancement of passive microwave images from geostationary Earth orbit via a projective sphere coordinate system

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Liu, Kai; Lv, Changchun; Miao, Jungang

    2014-01-01

    A projective sphere coordinate system in a Wiener filter method to improve the performance of resolution enhancement for microwave radiometer data of a geostationary Earth orbit (GEO) satellite is proposed. Because of the impact of Earth's curvature on remote sensing measurement, the footprint of microwave radiometer is varied while scanning, especially in positions far from subsatellite point. The deconvolution technique used in the microwave radiometer measurements from Earth directly is therefore inaccurate because microwave measurement under this situation cannot be considered as a convolution process. To ameliorate the deconvolution method, a projective spherical coordinate system that enforces the footprint of a microwave radiometer invariant on the surface of a spherical coordinate system in measurements is presented in this article. The performance of the projective coordinate system is evaluated by GEO satellite simulated observations. The simulation results show that the proposed method produces better resolution enhancement, especially in the position where the footprint of the microwave radiometer is seriously influenced by Earth curvature.

  2. Differential spacecraft charging on the geostationary operational environmental satellites

    NASA Technical Reports Server (NTRS)

    Farthing, W. H.; Brown, J. P.; Bryant, W. C.

    1982-01-01

    Subsystems aboard the Geostationary Operational Environmental Satellites 4 and 5 showed instances of anomalous changes in state corresponding to false commands. Evidence linking the anomalous changes to geomagnetic activity, and presumably static discharges generated by spacecraft differential charging induced by substorm particle injection events is presented. The anomalies are shown to be correlated with individual substorms as monitored by stations of the North American Magnetometer Chain. The relative frequency of the anomalies is shown to be a function of geomagnetic activity. Finally a least squares fit to the time delay between substorm initiation and spacecraft anomaly as a function of spacecraft local time is shown to be consistent with injected electron populations with energy in the range 10 keV to 15 keV, in agreement with present understanding of the spacecraft charging mechanism. The spacecraft elements responsible for the differential charging were not satisfactorily identified. That question is currently under investigation.

  3. Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit.

    PubMed

    Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan

    2014-01-01

    The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days. PMID:27437491

  4. Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit

    PubMed Central

    Jeyakodi David, Jim Fletcher; Sharma, Ram Krishan

    2014-01-01

    The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days. PMID:27437491

  5. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  6. Debris in the geostationary orbit ring, the endless shooting gallery: The necessity for a disposal policy

    NASA Astrophysics Data System (ADS)

    Suddeth, D. H.

    1985-03-01

    NASA is considering establishing a policy for the limitation of the physical crowding of the geostationary orbit. The proposed policy is intended to address the following issues: (1) deal only with geostationary altitudes; (2) illustrate the unique value and usefulness of the geostationary orbit ring; (3) describe the orbital dynamics as simply as possible; (4) describe the current spacecraft and debris situation; (5) briefly review current industry and agency policies; (6) project future trends of physical crowding with the present nonpolicy; (7) propose solutions that can be implemented in the near future; and (8) use previous work as much as desirable.

  7. Debris in the geostationary orbit ring, the endless shooting gallery: The necessity for a disposal policy

    NASA Technical Reports Server (NTRS)

    Suddeth, D. H.

    1985-01-01

    NASA is considering establishing a policy for the limitation of the physical crowding of the geostationary orbit. The proposed policy is intended to address the following issues: (1) deal only with geostationary altitudes; (2) illustrate the unique value and usefulness of the geostationary orbit ring; (3) describe the orbital dynamics as simply as possible; (4) describe the current spacecraft and debris situation; (5) briefly review current industry and agency policies; (6) project future trends of physical crowding with the present nonpolicy; (7) propose solutions that can be implemented in the near future; and (8) use previous work as much as desirable.

  8. Advanced Propulsion for Geostationary Orbit Insertion and North-South Station Keeping

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.; Kluever, Craig A.; Riehl, John P.; Curran, Francis M.

    1995-01-01

    Solar electric propulsion (SEP) technology is currently being used for geostationary satellite station keeping to increase payload mass. Analyses show that advanced electric propulsion technologies can be used to obtain additional increases in payload mass by using these same technologies to perform part of the orbit transfer. In this work three electric propulsion technologies are examined at two power levels for an Atlas 2AS class spacecraft. The on-board chemical propulsion apogee engine fuel is reduced to allow the use of electric propulsion. A numerical optimizer is used to determine the chemical burns which will minimize the electric propulsion transfer time. Results show that for a 1550 kg Atlas 2AS class payload, increases in net mass (geostationary satellite mass less wet propulsion system mass) of 150 to 800 kg are possible using electric propulsion for station keeping, advanced chemical engines for part of the transfer, and electric propulsion for the remainder of the transfer. Trip times are between one and four months.

  9. Plans for EUMETSAT's Thrid Generation Meteosat (MTG) geostationary satellite program

    NASA Astrophysics Data System (ADS)

    Stuhlmann, R. S.; Tjemkes, S. A. T.; Rodriguez, A. R. R.; Bézy, J. L. B.; Aminou, D. A.; Bensi, P. B.

    After movement of the first Meteosat Second Generation (MSG) satellite to 3.4 degree West by end of January 2004, the satellite has been renamed Meteosat-8 and the system has been declared fully operational. Meteosat-8 is now the primary European source of geostationary observations over Europe and Africa, as the first in a series of four satellites expected to deliver operational services at least until 2015. Considering the time required for the definition phases of new space systems their typical development cycle and the approval of complex programmes, it is necessary to plan for follow-up missions. EUMETSAT has therefore, as a first step in the preparation of the Third Generation Meteosat (MTG) European geostationary satellite system, established a USER Consultation Process aimed at capturing the foreseeable high-level user/service needs and priorities of the EUMETSAT customers and users in the 2015-2025 timeframe. This process was implemented through the set up of Applications Expert Groups (AEGs) tasked to propose their vision on operational services, to define associated needs and priorities for input information and observations. At the 1st Post-MSG User Consultation Workshop, November 2001, the work of the AEGs were presented to a broader user group serving as a basis for the identification of relevant observing techniques and the definition of requirements for the MTG observation missions. Currently, a total of five observation missions has been defined for pre-phase A studies at system level under ESA contract to be started in July 2004. Those are: High Resolution Fast Imagery Mission (successor to MSG SEVIRI HRV mission) Full Disk High Spectral Resolution Imagery Mission (successor to the mission of other SEVIRI channels) Lightning Imagery Mission IR Sounding Mission UV Sounding Mission Prior to the start of industry pre-phase A studies the joined ESA/EUMETSAT MTG Project Team, supported by an external group of experts named the MTG Mission Team

  10. CHRONOS: Time Resolved Atmospheric Pollution Observations Commercially Hosted in Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Chronos Science Team

    2011-12-01

    This presentation describes the CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science) mission proposed to the NASA Earth Venture-2 program. The primary goal of this mission is to measure atmospheric pollutants carbon monoxide and methane from geostationary orbit concentrating on North America with high spatiotemporal (hourly at 8 km) resolution. This will provide unique insights into pollutant sources, transport, chemical transformations and climate impact. In addition to significantly improved understanding of the underlying processes determining atmospheric composition, CHRONOS observations will also find direct societal applications for air quality regulation and forecasting. CHRONOS is partnering with private industry to provide accommodation for the instrument as a commercially hosted payload on a telecommunications satellite. The gas correlation radiometry multispectral measurement technique has a demonstrated heritage in the low-Earth orbit Terra/Measurement of Pollution in The Troposphere (MOPITT) instrument that now provides more than a decade of observations. Providing these observations from a geostationary vantage point was also a recommendation of the Decadal Survey in the context of the GEO-CAPE mission.

  11. Using Satellite Measurements to Investigate Regional-scale Chemistry: The Case for Geostationary Observations

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Wozniak, Amy; Creilson, Jack

    2007-01-01

    One of the recommendations of the Decadal Survey that was recently released by the National Academy of Science was that of a geostationary platform from which to obtain trace gas measurements. The use of such a platform is particularly advantageous when applied to understanding the formation of regional air pollution. This study demonstrates the challenges of trying to utilize information from instruments on satellites in low-earth orbit (LEO). We also demonstrate the advantage gained through a simulation that would provide hourly observations. In this case study, we take advantage of the high resolution Level-2 orbital data available from the Ozone Monitoring Instrument (OMI), in conjunction with assimilated stratospheric column ozone fields, to evaluate if meaningful tropospheric ozone information can be obtained on a regional scale. We focus on a period on late June 2005 when a widespread pollution episode enveloped the Houston metropolitan area as well as a large region in southeast Texas.

  12. Technologies of diffractive imaging system for high-resolution earth observation from geostationary orbit

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoli; Su, Yun; Jiao, Jianchao

    2013-08-01

    High-resolution earth observation from geostationary orbit (GEO) is a good way to satisfy the increased time resolution for resource, environment and disaster monitor. Earth observation from geostationary orbit will require optical remote sensor with ultra-large aperture. Given size, weight and launch ability constraints, as well as cost consideration, the traditional monolithic aperture optical system couldn't satisfy the need. This paper gives a new method, the diffractive imaging system. Diffract ive imaging system is a feasible way to realize high-resolution earth observation from geostationary orbit. The principle of diffract ive imaging system is introduced firstly, then, the primary design of remote sensor with 1m resolution from geostationary orbit using diffractive imaging system is analyzed. Finally, the key technologies are analyzed and feasible solutions are given.

  13. Relativistic electrons near geostationary orbit: Evidence for internal magnetospheric acceleration

    SciTech Connect

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Belian, R. D.; Cayton, T. E.

    1989-06-01

    At times, relativistic electron fluxes in Earth's outer magnetosphere are not obviously related to an external (Jovian or solar) source. This finding suggests that an internal magnetospheric acceleration mechanism may operate under some circumstances. A possible mechanism identified for Jupiter's magnetosphere could also be considered in the terrestrial case. Such a model requires the substorm- generation of a spectrally-soft electron component with subsequent inward radial diffusion (violating the third adiabatic invariant). A large electron energy gain transverse to the magnetic field occurs in this process. Eventually, deep within the magnetosphere, substantial pitch angle scattering occurs violating all adiabatic invariants. Then, at low L-values, there occurs an energy-preserving outward transport of energetic electrons near the mirror points. This leads to a return of the accelerated population to the outer magnetosphere. Such low-altitude processes should result in ''conic'' or ''butterfly'' pitch angle distributions at very high energies as the electrons execute trans-L diffusion at the mirror altitudes and then are magnetically focussed near the equator. Data collected concurrently at geostationary orbit at three widely-spaced local times during a relativisic electron event show a butterfly pitch angle distribution, while lower energy electrons simultaneously show pancake-like distributions. The butterfly pitch angle distributions appear in /similar to/25% of the examined relativistic electron events, thereby providing support for acceleration by a recirculation process. /copyright/ American Geophysical Union 1989

  14. Determining the total ozone from geostationary earth satellites

    NASA Astrophysics Data System (ADS)

    Polyakov, A. V.; Timofeev, Yu. M.

    2008-12-01

    A method for determining the total ozone (TO) with high spatial (3×3 km2) and temporal (15 min) resolutions by using measurements of the Earth’s outgoing thermal radiation from Meteosat geostationary satellites is proposed. The method is based on measurements with a SEVIRI instrument (eight IR channels) and involves additional information on the three-dimensional field of the atmospheric temperature and on the surface temperature obtained from polar satellites (AIRS instrument). The inverse problem of TO determination is solved by the method of neural networks. TO measurements with the AIRS instrument are also used for training the neural networks. Ground-based TO measurements at the international ozonometric network are used for controlling the quality of AIRS data and detecting the errors of the proposed method of TO determination from SEVIRI data. The mean and rms differences between TO values obtained with the use of the proposed method and from the results of measurements at the international ozonometric network are shown to be 1.5 and 6.5%, respectively. Examples of TO distributions reconstructed with high spatial and temporal resolutions are presented. These examples show that the elaborated method for solving various scientific and applied problems and, in particular, for investigating stratospheric dynamics is promising.

  15. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) A non-voice,...

  16. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  17. 47 CFR 25.259 - Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. 25.259 Section... SATELLITE COMMUNICATIONS Technical Standards § 25.259 Time sharing between NOAA meteorological satellite systems and non-voice, non-geostationary satellite systems in the 137-138 MHz band. (a) The space...

  18. Our Understanding of Space Weather features responsible for geostationary satellite anamolies (P39)

    NASA Astrophysics Data System (ADS)

    Rajaram, G.; et al.

    2006-11-01

    girija60@yahoo.com The topic of space weather effects on operational anomalies on spacecraft is one of considerable research investigation, with both pure and applied aspects. This is because of the very high costs involved in fabricating and operating spacecraft, and in insuring them against the harmful effects of space weather. This is more true for geostationary satellites than of low-orbiting spacecraft, as the former operate in the high-risk environment of the Earth’s outer radiation belts, with its large vagaries in spatial and time variations of high- energy electron and proton distributions (BAKER 2003). Without doubt, plasma and magnetic field emissions from active regions on the Sun are the root cause for spacecraft anomalies. Our study for 2005 shows that over 95% of anomalies can be related to some definite activity on the Sun, ranging from high-speed solar wind streams with their 27-day recurrence patterns/coronal holes/coronal mass ejections preceded by X or M type of flares/and magnetic cloud events. The most energetic solar activity events are generally accompanied by a large rise in solar MeV proton densities at geo-stationary orbit (WILKINSON 1994), and they account for definite anomalies classified as SEU (Single Event Upsets which most often are reversible through resetting commands). Any particles in the low energy ranges (eV and keV, and these could be of magnetospheric or ionospheric origin), are believed to cause external charging effects in exposed parts of the spacecraft such as solar power arrays and power cables. These mainly result in power losses which are debilitating over a period of time. The most dangerous and often irrecoverable damage is due to electronics in the 1-5 MeV range which cause deep dielectric discharge of arc type in semi-conductors comprising spacecraft instruments. Following major solar activity, the populations of these rise to more than (5x103) particles/cm2.ster.sec, with large spatial and time variations (LOVE

  19. Aerosol Spatial and Temporal Variations Over a Coastal Area: Implications for Geostationary Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Tan, Q.; Hu, Y.; Kondragunta, S.; Ciren, P.; Holben, B. N.

    2009-12-01

    Coastal area is of great interest to the community of air pollution and climate change studies. The dispersion of air pollutants is strongly influenced by complex coastal meteorology, such as land-sea breeze circulations interacting sometimes with mountain-valley circulations. On the other hand, radiatively active air pollutants, like aerosols, could influence the coastal meteorology and hence feed back on the atmospheric dispersion. Coastal area is also an interface for impacts of air pollution on coastal ocean ecosystems. In this study, we look into spatial and temporal variations of aerosol optical depth (AOD) over southern California by examining high-resolution Community Multiscale Air Quality (CMAQ) model simulations, and Aerosol Robotic Network (AERONET) measurements, and the Geostationary Operational Environmental Satellite (GOES) retrievals. Both model simulations and observations show that aerosol has large spatial and temporal variations. Autocorrelation analyses of AOD suggest that these variations can be adequately (r >0.9) captured by satellite observations with time resolution on an order of 1-2 hours and spatial resolution of 4-7 km. Both model and observations show substantial day-to-day variation of aerosols over the region, which is mainly determined by the evolution of land-sea breeze circulations interacting with mountain flows. Modeling the feedbacks of aerosols on coastal meteorology and air quality requires high-resolution measurements from a geostationary orbit as a constraint.

  20. Icing detection from geostationary satellite data using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ha, S.; Sim, S.; Im, J.

    2015-12-01

    Icing can cause a significant structural damage to aircraft during flight, resulting in various aviation accidents. Icing studies have been typically performed using two approaches: one is a numerical model-based approach and the other is a remote sensing-based approach. The model based approach diagnoses aircraft icing using numerical atmospheric parameters such as temperature, relative humidity, and vertical thermodynamic structure. This approach tends to over-estimate icing according to the literature. The remote sensing-based approach typically uses meteorological satellite/ground sensor data such as Geostationary Operational Environmental Satellite (GOES) and Dual-Polarization radar data. This approach detects icing areas by applying thresholds to parameters such as liquid water path and cloud optical thickness derived from remote sensing data. In this study, we propose an aircraft icing detection approach which optimizes thresholds for L1B bands and/or Cloud Optical Thickness (COT) from Communication, Ocean and Meteorological Satellite-Meteorological Imager (COMS MI) and newly launched Himawari-8 Advanced Himawari Imager (AHI) over East Asia. The proposed approach uses machine learning algorithms including decision trees (DT) and random forest (RF) for optimizing thresholds of L1B data and/or COT. Pilot Reports (PIREPs) from South Korea and Japan were used as icing reference data. Results show that RF produced a lower false alarm rate (1.5%) and a higher overall accuracy (98.8%) than DT (8.5% and 75.3%), respectively. The RF-based approach was also compared with the existing COMS MI and GOES-R icing mask algorithms. The agreements of the proposed approach with the existing two algorithms were 89.2% and 45.5%, respectively. The lower agreement with the GOES-R algorithm was possibly due to the high uncertainty of the cloud phase product from COMS MI.

  1. Investigation of water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Nieman, Steven J.; Wanzong, Steven

    1994-01-01

    Water vapor imagery from geostationary satellites has been available for over a decade. These data are used extensively by operational analysts and forecasters, mainly in a qualitative mode (Weldon and Holmes 1991). In addition to qualitative applications, motions deduced in animated water vapor imagery can be used to infer wind fields in cloudless regimes, thereby augmenting the information provided by cloud-drift wind vectors. Early attempts at quantifying the data by tracking features in water vapor imagery met with modest success (Stewart et al. 1985; Hayden and Stewart 1987). More recently, automated techniques have been developed and refined, and have resulted in upper-level wind observations comparable in quality to current operational cloud-tracked winds (Laurent 1993). In a recent study by Velden et al. (1993) it was demonstrated that wind sets derived from Meteosat-3 (M-3) water vapor imagery can provide important environmental wind information in data void areas surrounding tropical cyclones, and can positively impact objective track forecasts. M-3 was repositioned to 75W by the European Space Agency in 1992 in order to provide complete coverage of the Atlantic Ocean. Data from this satellite are being transmitted to the U.S. for operational use. Compared with the current GOES-7 (G-7) satellite (positioned near 112W), the M-3 water vapor channel contains a superior horizontal resolution (5 km vs. 16 km ). In this paper, we examine wind sets derived using automated procedures from both GOES-7 and Meteosat-3 full disk water vapor imagery in order to assess this data as a potentially important source of large-scale wind information. As part of a product demonstration wind sets were produced twice a day at CIMSS during a six-week period in March and April (1994). These data sets are assessed in terms of geographic coverage, statistical accuracy, and meteorological impact through preliminary results of numerical model forecast studies.

  2. Analysis of signal to noise ratio for atmospheric ultraviolet remote sensing on geostationary orbit with variations of solar incident angles

    NASA Astrophysics Data System (ADS)

    Lyu, Chun-guang; Yang, Wen-bo; Tian, Qing-jiu; Zhou, Yang; Liu, Zong-ming; Zhang, Han-mo

    2014-11-01

    Ultraviolet (UV) sensors on a geostationary orbit (GEO) have important potential value in atmospheric remote sensing, but the satellites orbit mode of it is quit different from sun-synchronous orbit satellites, which result in the significant diurnal and seasonal variations in radiation environment of earth observation and radiation signal of sensors, therefore, the effect to sensor radiometric performance, such as signal to noise ratio for atmospheric ultraviolet remote sensing caused by variations of solar angle is significant in the performance design of sensors. The synthetic ultraviolet sensor is set at the geostationary orbit, 36000 km away from the sea level of the Equator with 8.75 degree field of view, and the subsatellite track point of which is located at 90 degrees east longitude and Equator. The Satellite scanning angles (SA) from 0 to 8.648 degree that cover the earth surface are selected corresponding to the 10 degrees equal interval view zenith angle, and the SA from 8.648 to 8.785 degree cover the earth lamb 100 km far away from earth tangent point. Based on the MODTRAN4 model, on normal atmospheric conditions, the distributions of the UV upwelling radiance from surface or limb viewing path of the earth could be simulated with the change of sun's right ascension. Moreover, the average signal to noise ratio to the atmospheric sounding is obtained in different UV spectra using the Sensor signal to noise ratio model. The results show that the thresholds range, tendency and shape of signal to noise ratio have a variety of features affected by variation of Sun hour angles and declinations. These result and conclusions could contribute to performance design of UV sensors on the geostationary orbit.

  3. Reference Crop Evapotranspiration obtained from the geostationary satellite MSG (METEOSAT).

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Trigo, I. F.; Lorite, I. J.; Cruz-Blanco, M.; Gavilán, P.

    2012-04-01

    Among others, the scope of the Land Surface Analysis Satellite Applications Facility (LSA SAF) is to increase benefit from the EUMETSAT geostationary Satellites MSG data related to land, land-atmosphere interactions and biophysical applications. This is achieved by developing techniques, products and algorithms that will allow an effective use of MSG data, if needed, combined with data from numerical weather prediction models (e.g., ECMWF). Although directly designed to improve the observation of meteorological systems, the spectral characteristics, time resolution and area coverage offered by MSG allow for their use in a broad spectrum of other applications, for instance in agro- and hydrometeorology. This study concerns a method to determine how much water is needed for irrigation. Note that this is complementary to the actual evapotranspiration LSA SAF product. The objective of this study is to present a novel semi-empirical method to determine the Reference Crop Evapotranspiration (ET0) from the down-welling shortwave radiation and air temperature obtained through LSF SAF. ET0 is defined in the FAO Irrigation and Drainage report 56 (FAO56) and it is used to determine water requirements of agricultural crops in irrigated regions. It is evaluated with a special version of the Penman-Monteith equation (PM_FAO56) using data of a weather station installed over non-stressed grass. Such stations are expensive and very labor consuming. We developed our method for semi-arid regions where appropriate weather stations needed for FAO56 ET0 are missing. This concerns huge areas in the world. High-quality FAO-grass station near Cordoba, Spain were used, where, besides all input for PM-FAO56, independent lysimeter data are collected. In addition, it will be shown that significant errors in ET0 can occur if meteorological gathered over dry terrain will be used as input of PM-FAO56. For this purpose data sets obtained in different semi-arid regions will be analyzed.

  4. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  5. Investigating the Use of Deep Convective Clouds (DCCT) to Monitor On-orbit Performance of the Geostationary Lightning Mapper (GLM) using Lightning Imaging Sensor (LIS) Measurements

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis E.; Christian, Hugh J.; Koshak, William J.; Goodman, Steven J.

    2013-01-01

    There is a need to monitor the on-orbit performance of the Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite R (GOES-R) for changes in instrument calibration that will affect GLM's lightning detection efficiency. GLM has no onboard calibration so GLM background radiance observations (available every 2.5 min) of Deep Convective Clouds (DCCs) are investigated as invariant targets to monitor GLM performance. Observations from the Lightning Imaging Sensor (LIS) and the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite are used as proxy datasets for GLM and ABI 11 m measurements.

  6. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  7. An LO Phase Link Using a Commercial Geo-Stationary Satellite

    NASA Technical Reports Server (NTRS)

    Bardin, Joseph C.; Weinreb, Sander; Bagri, Durgadas S.

    2005-01-01

    This viewgraph presentation reviews an experiment to determine feasibility of achieving 1 ps level time transfer using a satellite link and make use of inexpensive Ku band transmit/receive equipment. It reviews the advantages of Two Way Satellite Time Transfer using a commercial Geo-Stationary Satellite: (1) Commercial satellites are available (2) Significant cost reduction when compared to Hydrogen Masers and (3) Large footprint- entire US (including Hawaii) with just one satellite.

  8. Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations

    NASA Astrophysics Data System (ADS)

    Zhao, ShuGe; Zhang, JingRui

    2016-10-01

    The objective of this paper is to find the minimum-fuel station change for geostationary satellites with low-thrust while considering significant perturbation forces for geostationary Earth orbit (GEO). The effect of Earth's triaxiality, lunisolar perturbations, and solar radiation pressure on the terminal conditions of a long duration GEO transfer is derived and used for establishing the station change model with consideration of significant perturbation forces. A method is presented for analytically evaluating the effect of Earth's triaxiality on the semimajor axis and longitude during a station change. The minimum-fuel problem is solved by the indirect optimization method. The easier and related minimum-energy problem is first addressed and then the energy-to-fuel homotopy is employed to finally obtain the solution of the minimum-fuel problem. Several effective techniques are employed in solving the two-point boundary-value problem with a shooting method to overcome the problem of the small convergence radius and the sensitivity of the initial costate variables. These methods include normalization of the initial costate vector, computation of the analytic Jacobians matrix, and switching detection. The simulation results show that the solution of the minimum-fuel station change with low-thrust considering significant perturbation forces can be obtained by applying these preceding techniques.

  9. Giant pulsations on the afternoonside: Geostationary satellite and ground observations

    NASA Astrophysics Data System (ADS)

    Motoba, Tetsuo; Takahashi, Kazue; Rodriguez, Juan V.; Russell, Christopher T.

    2015-10-01

    Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North America. For a long-lasting event on 29 February 2012, which spanned ˜08-18h magnetic local time, we show that basic Pg properties did not change with the local time, although the period of the pulsations was longer at later local time due to increasing mass loading. There is evidence that the Pgs resulted from fundamental poloidal mode standing Alfvén waves, both on the morning and afternoonsides. Oscillations of energetic particles associated with the field oscillations exhibited an energy-dependent phase, which has previously been reported and explained by drift resonance. A statistical analysis of the ground magnetic field data (L = 3.8-7.4) covering 2008-2013 confirms that afternoon Pgs are not unusual. We identified a total of 105 Pg events (about 70% (30%) of the events occurred during non-storm (late storm recovery) periods), 31 of which occurred on the afternoonside. The afternoon Pgs occur under solar wind and geomagnetic conditions that are similar to the morning Pgs, but the afternoon Pgs tend to have short durations and occur frequently in winter instead of around spring and fall equinoxes that are favored by the morning Pgs.

  10. Aqua satellite orbiting the Earth

    NASA Video Gallery

    This animation shows the Aqua satellite orbiting the Earth on August 27, 2005 by revealing MODIS true-color imagery for that day. This animation is on a cartesian map projection, so the satellite w...

  11. A satellite system synthesis model for orbital arc allotment optimization

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.

    1987-01-01

    A mixed integer programming formulation of a satellite system synthesis problem if presented, which is referred to as the arc allotment problem (AAP). Each satellite administration is to be allotted a weighted-length segment of the geostationary orbital arc within which its satellites may be positioned at any longitudes. The objective function maximizes the length of the unweighted arc segment allotted to every administration, subject to single-entry co-channel interference restrictions and constraints imposed by the visible arc for each administration. Useful relationships between special cases of AAP and another satellite synthesis problem are established. Solutions to two example problems are presented.

  12. Angular aberration in the problem of power beaming to geostationary satellites through the atmosphere

    NASA Astrophysics Data System (ADS)

    Baryshnikov, Fedor F.

    1995-10-01

    The influence of angular aberration of radiation as a result of the difference in speed of a geostationary satellite and the speed of the Earth's surface on laser power beaming to satellites is considered. Angular aberration makes it impossible to direct the energy to the satellite, and additional beam rotation is necessary. Because the Earth's rotation may cause how to transfer incoherent radiation to remote satellites. In the framework of the Kolmogorov turbulence model simple conditions of energy transfer are derived and discussed.

  13. The First of A New Generation of Meteorological Geo-stationary Satellites Ready For Launch

    NASA Astrophysics Data System (ADS)

    Oriol-Pibernat, E.; Oremus, R.

    The European Space Agency (ESA) in line with one of its mandates, to undertake demonstration of Earth Observation applications, had started back in 1977 a series of geostationary meteorological satellites Meteosat, now being operated by the European organization Eumetsat. Following the great success of such missions, ESA has co- operated with the later organization by developing a new series of satellites, designed to gather meteorological information from the same viewpoint i.e. a geo-stationery orbit. This features a dramatic increase in the number of available spectral channels: from 3 to 12, much higher resolution (1 Km in the broadband) and doubled scanning rate (from 30 min to 15 min), thanks to a newly designed sophisticated radiometer. The satellite also carries an instrument to measure the Earth Radiation Budget, useful for climate studies, and an SR transponder aimed to humanitarian purposes. Following a decision taken by Eumetsat, MSG-1 which had been stored during most of 2001, was de-stored by industry (Alcatel Space, Cannes-F), in fall 2001, in preparation for a planned launch in July 2002 from the Kourou site in French Guyana. The paper will focus on the spacecraft development programme and its status at the time of the Conference.

  14. A feedback control loop for autonomous time synchronisation for mobile satellite systems, including satellites in any Earth orbit

    NASA Astrophysics Data System (ADS)

    Soprano, C.

    This paper presents the preliminary results of the design, analysis and simulation of a feedback control-loop for application to autonomous epoch synchronization in a satellite mobile synchronous communications system which includes communications satellites in non-geostationary Earth orbits and fast-moving mobile users.

  15. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc; Cholvibul, Ruth; Clarke, Jared

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  16. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  17. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  18. Synergistic Opportunities for the Geostationary Satellite Constellation: Status of the CEOS Activity

    NASA Astrophysics Data System (ADS)

    Al-Saadi, J. A.; Zehner, C.

    2012-12-01

    This talk will summarize activities of the Committee on Earth Observation Satellites (CEOS) Atmospheric Composition Constellation (ACC) to collaboratively advance the next generation of air quality monitoring from space. Over the past 2 years, CEOS ACC have developed a position paper describing the benefits to be derived from such collaboration. The resulting ACC recommendations were endorsed by CEOS in May 2011. We will discuss next steps toward implementing this vision, starting with a new 3-year CEOS Action in 2012. Several countries and space agencies are currently planning to launch geostationary Earth orbit (GEO) missions in 2017-2022 to obtain atmospheric composition measurements for characterizing anthropogenic and natural distributions of tropospheric ozone, aerosols, and their precursors. These missions include Europe's ESA Sentinel-4 with EUMETSAT IRS, the United States' NASA GEO-CAPE, Korea's ME/MEST/KARI GEMS, and Japan's JAXA GMAP-Asia. GEO observations offer a quantum advance in air quality monitoring from space by providing measurements many times per day. However, a single GEO satellite views only a portion of the globe. These satellites, positioned to view Europe, East Asia, and North America, will collectively provide hourly coverage of the industrialized Northern Hemisphere at similar spatial resolutions. Planned low Earth orbit (LEO) missions will provide complementary daily global observations. Observations from a single LEO satellite will overlap those from each GEO satellite once per day, providing a means for combining the GEO observations and a necessary perspective for interpreting global impacts of smaller scale processes. The EUMETSAT Metop series, NOAA/NASA JPSS series, and ESA Sentinel-5 Precursor and Sentinel-5 missions will each provide such daily overlap with the GEO missions. The Canadian PCW PHEMOS mission will make an additional unique suite of observations. PCW will provide quasi-geostationary coverage over the Arctic that

  19. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui

    1992-09-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  20. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui.

    1992-01-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  1. Improvement Limitation of Satellite Visibility by Space Diversity Consisted of Two Geostationary Satellites in Urban Areas of Japan

    NASA Astrophysics Data System (ADS)

    Kitano, Toshihiko; Juzoji, Hiroshi; Nakajima, Isao

    The paramedic in the moving ambulance sends via the communications satellite the moving picture data to the doctor in the hospital However, when an ambulance runs inside a city, a radio wave to the communication satellite is blocked and as a result the moving picture data sometimes freeze. Maximum value of the satellite visibility by the space diversity which uses two geostationary satellites is acquired in each city of Japan. From these simulation results, it was found that there was a limit in the improvement of the satellite visibility by the space. The limit of this improvement depends on the city. .Moreover the angle of elevation of the quasi zenith satellite which the satellite visibility exceeds the limit value of two geostationary satellites was acquired ,and these angles of elevation were compared between each city of Japan. It became clear that more than 69 degrees of an elevation angle of the quasi zenith satellite is necessary to exceed a maximum satellite visibility of two geostationary satellites.

  2. Aviation utilization of geostationary satellites for the augmentation to GPS: Ranging and data link

    NASA Astrophysics Data System (ADS)

    Fuller, Richard Andrew, II

    2000-08-01

    The Wide Area Augmentation System (WAAS) is a GPS-based navigation aid currently under development by the Federal Aviation Administration (FAA). WAAS will provide corrections to aviation users for the GPS clock, its ephemeris, and for the delay in its signal as it passes through the ionosphere. These corrections will be broadcast to users throughout the United States via geostationary satellites. A master station that combines data from a continental network of reference GPS receivers will create these messages. The geostationary satellites serve both as wide-area differential GPS data links as well as additional ranging sources. The data message stream of WAAS enhances the accuracy and integrity of the GPS signal for aviation. Simultaneously, the satellite ranging-source increases the percentage of time that the precise signal is available. In this way, WAAS provides needed improvements in four metrics over the standard GPS signal: accuracy, integrity, availability, and continuity. The ranging function, described above, requires an estimate of the position of the geostationary satellite. This dissertation presents a novel technique for generating this position estimate. This technique is designed to provide high integrity performance in the user position domain and operates in real-time. As such, it contrasts classical orbit determination techniques that have no integrity requirement, are not designed to optimize performance in the user position domain, and usually have no real-time requirement. Our estimator is evaluated using real data from the FAA's National Satellite Test Bed (NSTB). The WAAS Signal-In-Space (SIS) has a limited data message bandwidth of 250 bits-per-second. This data bandwidth was chosen to balance two concerns. First, the power of the signal must not be so strong that it jams GPS. Second, the signal must provide the minimum amount of information necessary to ensure adequate accuracy and integrity for aviation users over the entire

  3. Effects of Surface Albedo on Smoke Detection Through Geostationary Satellite Imagery in the Hazard Mapping System (HMS)

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Ruminski, M. G.

    2012-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS uses geostationary and polar orbiting satellite imagery to identify fires and smoke throughout the continental United States. The fires and smoke are analyzed daily on the Hazard Mapping System (HMS) and made available via the internet in various formats. Analysis of smoke plumes generated from wildfires, agricultural and prescribe burns is performed with single channel visible imagery primarily from NOAA's Geostationary Operational Environmental Satellite (GOES) animations. Identification of smoke in visible imagery is complicated by the presence of clouds, the viewing angle produced by the sun, smoke, satellite geometry, and the surface albedo of the ground below the smoke among other factors. This study investigates the role of surface albedo in smoke detection. LIght Detection And Ranging (LIDAR) instruments are capable of detecting smoke and other aerosols. Through the use of ground and space based LIDAR systems in areas of varying albedo a relationship between the subjective analyst drawn smoke plumes versus those detected by LIDAR is established. The ability to detect smoke over regions of higher albedo (brighter surface, such as grassland, scrub and desert) is diminished compared to regions of lower albedo (darker surface, such as forest and water). Users of the HMS smoke product need to be aware of this limitation in smoke detection in areas of higher albedo.

  4. A Geostationary Satellite Constellation for Observing Global Air Quality: Status of the CEOS Activity

    NASA Astrophysics Data System (ADS)

    Al-Saadi, J. A.; Zehner, C.

    2011-12-01

    Several countries and space agencies are currently planning to launch geostationary satellites in the 2017-2022 time frame to obtain atmospheric composition measurements for characterizing anthropogenic and natural distributions of tropospheric ozone, aerosols, and their precursors, which are important factors in understanding air quality and climate change. While a single geostationary satellite can view only a portion of the globe, it is possible for a minimum of three geostationary satellites, positioned to view Europe/Middle East/Africa, Asia/Australasia, and the Americas, to collectively provide near-global coverage. Harmonizing the planned geostationary missions to be contemporaneous and have common observing capabilities and data distribution protocols would synergistically enable critically needed understanding of the interactions between regional and global atmospheric composition and of the implications for air quality and climate. Such activities would directly address societal benefit areas of the Global Earth Observation System of Systems (GEOSS), including Health, Energy, Climate, Disasters, and Ecosystems, and are responsive to the requirements of each mission to provide advanced user services and societal benefits. Over the past 2 years, the Atmospheric Composition Constellation (ACC) of the Committee on Earth Observation Satellites (CEOS) has developed a white paper describing such collaboration and the benefits to be derived from it. The resulting ACC recommendations were endorsed by CEOS in May 2011. Here we will present an update on collaborative activities and next steps. This presentation is envisioned to serve as an introduction to the oral sessions associated with Session A.25.

  5. Geostationary satellite positioning by DLR/GSOC operations and management methods

    NASA Technical Reports Server (NTRS)

    Brittinger, Peter

    1994-01-01

    Starting with a short description of the GSOC (German Space Operations Center) and its role within the wider framework of the research institute DLR, this paper provides a review of the geostationary telecommunications satellites positioned by the GSOC. The paper then proceeds to describe the evolution of the operations and management structures and methods which have been effectively used to accomplish these missions.

  6. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    NASA Astrophysics Data System (ADS)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  7. General relativity and satellite orbits

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The general relativistic correction to the position of a satellite is found by retaining Newtonian physics for an observer on the satellite and introducing a potential. The potential is expanded in terms of the Keplerian elements of the orbit and substituted in Lagrange's equations. Integration of the equations shows that a typical earth satellite with small orbital eccentricity is displaced by about 17 cm. from its unperturbed position after a single orbit, while the periodic displacement over the orbit reaches a maximum of about 3 cm. The moon is displaced by about the same amounts. Application of the equations to Mercury gives a total displacement of about 58 km. after one orbit and a maximum periodic displacement of about 12 km.

  8. Precise orbit determination of Beidou Satellites at GFZ

    NASA Astrophysics Data System (ADS)

    Deng, Zhiguo; Ge, Maorong; Uhlemann, Maik; Zhao, Qile

    2014-05-01

    In December 2012 the Signal-In-Space Interface Control Document (ICD) of the BeiDou Navigation Satellite System (BeiDou system) was published. Currently the initial BeiDou regional navigation satellite system consisting of 14 satellites was completed, and provides observation data of five Geostationary-Earth-Orbit (GEO)satellites, five Inclined-GeoSynchronous-Orbit (IGSO) satellites and four Medium-Earth-Orbit (MEO) satellites. The Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ) contributes as one of the analysis centers to the International GNSS Service (IGS) since many years. In 2012 the IGS began the "Multi GNSS EXperiment" (MGEX), which supports the new GNSS, such as Galileo, Compass, and QZSS. Based on tracking data of BeiDou-capable receivers from the MGEX and chinese BeiDou networks up to 45 global distributed stations are selected to estimate orbit and clock parameters of the GPS/BeiDou satellites. Some selected results from the combined GPS/BeiDou data processing with 10 weeks of data from 2013 are shown. The quality of the orbit and clock products are assessed by means of orbit overlap statistics, clock stabilities as well as an independent validation with SLR measurements. At the end an outlook about GFZ AC's future Multi-GNSS activities will be given.

  9. The science benefits of and the antenna requirements for microwave remote sensing from geostationary orbit

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Brown, Gary S. (Editor)

    1991-01-01

    The primary objective of the Large Space Antenna (LSA) Science Panel was to evaluate the science benefits that can be realized with a 25-meter class antenna in a microwave/millimeter wave remote sensing system in geostationary orbit. The panel concluded that a 25-meter or larger antenna in geostationary orbit can serve significant passive remote sensing needs in the 10 to 60 GHz frequency range, including measurements of precipitation, water vapor, atmospheric temperature profile, ocean surface wind speed, oceanic cloud liquid water content, and snow cover. In addition, cloud base height, atmospheric wind profile, and ocean currents can potentially be measured using active sensors with the 25-meter antenna. Other environmental parameters, particularly those that do not require high temporal resolution, are better served by low Earth orbit based sensors.

  10. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    NASA Technical Reports Server (NTRS)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  11. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    NASA Technical Reports Server (NTRS)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  12. Satellite services and orbital retrieval

    NASA Technical Reports Server (NTRS)

    Adornato, R. J.

    1985-01-01

    Within the capabilities of the Space Shuttle Orbiter, a broad range of services which can be made available to the satellite user community as summarized. Payload deployment, close proximity retrieval, and a number of other mission related functions are discussed. The focus here is on close proximity retrieval and retrieval of payloads in higher energy low Earth orbits.

  13. Ionospheric TEC Estimations with the Signals of Various Geostationary Navigational Satellites

    NASA Astrophysics Data System (ADS)

    Kurbatov, G. A.; Padokhin, A. M.; Kunitsyn, V.; Yasyukevich, Y.

    2015-12-01

    The development of GNSS and SBAS systems provides the possibility to retrieve ionospheric TEC from the dual frequency observations from a number of geostationary satellites using the same approach as for dual frequency GPS/GLONASS observations. In this connection, the quality of geostationary data, first of all the level of noise in TEC estimations is of great interest and importance. In this work we present the results of the comparison of the noise patterns in TEC estimations using signals of geostationary satellites of augumentation systems - indian GAGAN, european EGNOS and american WAAS, as well as the signals of chinees COMPASS/Beidou navigational system. We show that among above mentioned systems geostationary COMPASS/Beidou satellites provide best noise level in TEC estimations (RMS~0.1TECU), which corresponds to those of GPS/GLONASS, while GAGAN and WAAS TEC RMS could reach up to 1.5 TECU with typical values of 0.25-0.5 TECU which is up to one order greater than for common GPS/GLONASS observations. EGNOS TEC estimations being even more noisy (TEC RMS up to 10TECU) than WAAS and GAGAN ones at present time are not suitable for ionospheric studies. We also present geostationary TEC response to increasing solar X-Ray and EUV ionizing radiation during several recent X-class flares. Good correlation was found between TEC and EUV flux for the stations at the sunlit hemisphere. We also present geostationary TEC response to geomagnetic field variations during strong and moderate geomagnetic storms (including G4 St. Patricks Day Storm of 2015) showing examples of both positive and negative TEC anomalies of order of tens of TECU during main storm phase. Our results show the capability of geostationary GNSS and SBAS observations for continuous monitoring of ionospheric TEC. Intensively growing networks of dedicated receivers (for example MGEX network) and increasing number of dual-frequency geostationary satellites in SBAS and GNSS constellations potentially make it a

  14. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  15. Geostationary Satellite (GSAT) Failure; an Analysis and Possible Attitude Control Remedy

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Singh, Sanjay

    A geostationary satellite has reportedly failed during its orbit raising maneuvers from the GTO to its final stationary ring. It was felt that the failure was possibly caused by differential propellant rates of flow from the symmetrically placed pair of liquid tanks on either side of the center of mass. Alternatively even the initial fixed center-of-mass offset could have led to the same outcome. The investigation presented here models the problem as one of attitude motion by separately treating the system mass into two parts: fixed mass structure including the motor tanks and differentially shrinking bodies of liquid propellant. The system with variable mass is assumed to undergo pitching librations under the influence of thrust moments about the shifting center of mass in the orbital plane. The detailed numerical simulation is undertaken to assess the influence of pitching excitation caused by asymmetric thrusting. The effect of this attitude motion on possible reduction in velocity increment due to thrust misalignment is found to be quite significant. Besides some additional attitude control fuel may also be required to undo the pitching excitation. The simulation carried out here for the case of fixed center-of-mass offset leads to the same general adverse behavior. Finally, a suitable feedback control strategy proposed here is employed to regulate the differential flow rate in symmetrically placed pair of liquid tanks on either side of the center of mass in order to eliminate the adverse effect of the moving center of mass and instead make judicious use for attitude control. It is shown that the feedback control of fuel flow rate in this design with symmetrically laid liquid tanks can help in conserving the fuel, the precious commodity on board and thus significantly enhance the performance of orbit raising maneuvers and hence much higher reliability for mission success.

  16. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  17. The Study and Applications of Satellite and Satellite Constellation Autonomous Orbit Determination Using Star Sensor

    NASA Astrophysics Data System (ADS)

    Gan, Q. B.

    2012-07-01

    Autonomous satellite orbit determination is a key technique in autonomous satellite navigation. Many kinds of technologies have been proposed to realize the autonomous satellite navigation, such as the star sensor, the Earth magnetometer, the occultation time survey, and the phase measurement of X-ray pulsar signals. This dissertation studies a method of autonomous satellite orbit determination using star sensor. Moreover, the method is extended to the autonomous navigation of satellite constellation and the space-based surveillance. In chapters 1 and 2, some usual time and reference systems are introduced. Then the principles of several typical autonomous navigation methods, and their merits and shortcomings are analyzed. In chapter 3, the autonomous satellite orbit determination using star sensor and infrared Earth sensor (IRES) is specifically studied, which is based on the status movement simulation, the stellar background observation from star sensor, and the Earth center direction survey from IRES. By simulating the low Earth orbit satellites and pseudo Geostationary Earth orbit (PGEO) satellites, the precision of position and speed with autonomous orbit determination using star sensor is obtained. Besides, the autonomous orbit determination using star sensor with double detectors is studied. According to the observation equation's characters, an optimized type of star sensor and IRES initial assembly model is proposed. In the study of the PGEO autonomous orbit determination, an efficient sampling frequency of measurements is promoted. The simulation results confirm that the autonomous satellite orbit determination using star sensor is feasible for satellites with all kinds of altitudes. In chapter 4, the method of autonomous satellite orbit determination using star sensor is extended to the autonomous navigation of mini-satellite constellation. Combining with the high-accuracy inter satellite links data, the precision of the determined orbit and

  18. 1.6 GHz distress radio call system (DRCS) via geostationary satellite (Inmarsat-E) - Results of the preoperational demonstration

    NASA Astrophysics Data System (ADS)

    Goebel, Walter

    1990-10-01

    The paper discusses features and operations of the spaceborne Emergency Position Indicating Radio Beacons (EPIRBs) system for distress alerting, which is expected to be used on every ship by August 1, 1993. Two types of EPIRBs that were developed to date are described: the floatable EPIRB, used by vessels over 300 GRT (convention ships subjected to the IMO rules) and the hand-held EPIRB used by smaller vessels such as fishing boats or yachts. The transmitted message formats of both are fully compatible. The distress alerts are presently transmitted through the polar orbiting satellite service at 406 MHz. However, the 36th Inmarsat Council in 1990 passed a decision to the effect that the Inmarsat geostationary satellite shall provide service at 1.6 GHz.

  19. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Laszlo, I.; Ciren, P.; Hoff, R. M.

    2011-12-01

    Aerosol optical depth (AOD) retrievals from geostationary satellites have high temporal resolution compared to the polar orbiting satellites and thus enable us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosols and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) in the channel 1 of GOES is proportional to seasonal average MODIS BRDF in the 2.1 μm channel. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of AOD and surface reflectance retrievals are evaluated through comparisons against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US with correlation coefficients ranges from 0.71 to 0.85 at five out of six sites. At the two western sites Railroad Valley and UCSB, the MAIAC AOD retrievals have correlations of 0.8 and 0.85 with AERONET AOD, and are more accurate than GASP retrievals, which have correlations of 0.7 and 0.74 with AERONET AOD. At the three eastern sites, the correlations with AERONET AOD are from 0.71 to 0.81, comparable to the GASP retrievals. In the western US where surface reflectance is higher than 0.15, the new algorithm also produces larger AOD retrieval coverage

  20. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Laszlo, I.; Ciren, P.; Hoff, R. M.

    2011-04-01

    Aerosol optical depth (AOD) retrieval from geostationary satellites has high temporal resolution compared to the polar orbiting satellites and thus enables us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosol and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) at channel 1 of GOES is proportional to seasonal average BRDF in the 2.1 μm channel from MODIS. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of the AOD and surface reflectance retrievals are evaluated through comparison against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US. They are comparable to the GASP retrievals in the eastern-central sites and are more accurate than GASP retrievals in the western sites. In the western US where surface reflectance is high, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.

  1. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260... SATELLITE COMMUNICATIONS Technical Standards § 25.260 Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. (a) The...

  2. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260... SATELLITE COMMUNICATIONS Technical Standards § 25.260 Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. (a) A...

  3. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260... SATELLITE COMMUNICATIONS Technical Standards § 25.260 Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. (a) A...

  4. 47 CFR 25.260 - Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. 25.260... SATELLITE COMMUNICATIONS Technical Standards § 25.260 Time sharing between DoD meteorological satellite systems and non-voice, non-geostationary satellite systems in the 400.15-401 MHz band. (a) The...

  5. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  6. Satellite Orbital Interpolation Comparison Methods

    NASA Astrophysics Data System (ADS)

    Richard, J.-Y.; Deleflie, F.; Gambis, D.

    2012-04-01

    A satellite or artificial probe orbit is made of time series of orbital elements such as state vectors (position and velocities, keplerian orbital elements) given at regular or irregular time intervals. These time series are fitted to observations, so that differences between observations (distance, radial velocity) and the theoretical quantity be minimal, according to a statistical criterion, mostly based on the least-squared algorithm. These computations are carried out using dedicated software, such as the GINS used by GRGS, mainly at CNES Toulouse and Paris Observatory. From an operational point of view, time series of orbital elements are 7-day long. Depending on the dynamical configurations, more generally, they can typically vary from a couple of days to some weeks. One of the fundamental parameters to be adjusted is the initial state vector. This can lead to time gaps, at the level of a few dozen of centimeters between the last point of a time series to the first one of the following data set. The objective of this presentation consists in the improvement of an interpolation method freed itself of such possible "discontinuities" resulting between satellite's orbit arcs when a new initial bulletin is adjusted. We show the principles of interpolation for these time series and compare solutions coming from different interpolation methods such as Lagrange polynomial, spline cubic, Chebyshev orthogonal polynomial and cubic Hermite polynomial. These polynomial coefficients are used to reconstruct and interpolate the satellite orbits without time gaps and discontinuities and requiring a weak memory size.

  7. Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region

    NASA Astrophysics Data System (ADS)

    Uetsuhara, Masahiko; Hanada, Toshiya

    2013-09-01

    Identifying spacecraft breakup events is an essential issue for better understanding of the current orbital debris environment. This paper proposes an observation planning approach to identify an orbital anomaly, which appears as a significant discontinuity in archived orbital history, as a spacecraft breakup. The proposed approach is applicable to orbital anomalies in the geostationary region. The proposed approach selects a spacecraft that experienced an orbital anomaly, and then predicts trajectories of possible fragments of the spacecraft at an observation epoch. This paper theoretically demonstrates that observation planning for the possible fragments can be conducted. To do this, long-term behaviors of the possible fragments are evaluated. It is concluded that intersections of their trajectories will converge into several corresponding regions in the celestial sphere even if the breakup epoch is not specified and it has uncertainty of the order of several weeks.

  8. Adaptive Array for Weak Interfering Signals: Geostationary Satellite Experiments. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steadman, Karl

    1989-01-01

    The performance of an experimental adaptive array is evaluated using signals from an existing geostationary satellite interference environment. To do this, an earth station antenna was built to receive signals from various geostationary satellites. In these experiments the received signals have a frequency of approximately 4 GHz (C-band) and have a bandwidth of over 35 MHz. These signals are downconverted to a 69 MHz intermediate frequency in the experimental system. Using the downconverted signals, the performance of the experimental system for various signal scenarios is evaluated. In this situation, due to the inherent thermal noise, qualitative instead of quantitative test results are presented. It is shown that the experimental system can null up to two interfering signals well below the noise level. However, to avoid the cancellation of the desired signal, the use a steering vector is needed. Various methods to obtain an estimate of the steering vector are proposed.

  9. Monitoring biomass burning and aerosol loading and transport from a geostationary satellite perspective

    SciTech Connect

    Prins, E.M.; Menzel, W.P.

    1996-12-31

    The topic of this paper is the use of geostationary operational environmental satellites (GOES) to monitor trends in biomass burning and aerosol production and transport in South America and through the Western Hemisphere. The GOES Automated Biomass Burning Algorithm (ABBA) was developed to provide diurnal information concerning fires in South America; applications demonstrating the ability to document long-term trends in fire activity are described. Analyses of imagery collected by GOES-8 is described; six biomass burning seasons in South America revealed many examples of large-scale smoke transport extending over several million square kilometers. Four major transport regimes were identified. Case studies throughout South America, Canada, the United States, Mexico, Belize, and Guatemala have successfully demonstrated the improved capability of GOES-8 for fire and smoke monitoring in various ecosystems. Global geostationary fire monitoring will be possible with the launch of new satellites. 12 refs., 4 figs., 1 tab.

  10. Space Weather Measurements Despite Resource Limitations: A Conceptual Overview of Novel Energetic Particle Instruments at a Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Burward-Hoy, J.

    2006-12-01

    Solar energetic particle events, cosmic rays, and relativistic electrons in the outer edge of the radiation belts produce single event upsets in the electronics and spacecraft charging on a host satellite located at a geostationary orbit. In order to determine the space weather environment for the host, particle instruments capable of measuring both electrons and protons in a wide energy range, with a large angular coverage but finite angular resolution are necessary. In order to adhere to resource limitations, including weight and power consumption and whether or not a host platform is spinning or three-axis stabilized, energetic particle instruments must be designed accordingly. I will present a conceptual overview of novel LANL instruments, specifically two-element collimated telescopes with solid-state sensors, and describe how the requirements for accurate space weather determination are met despite the resource limitations.

  11. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-08-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  12. EHL Transition Temperature Measurements on a Geostationary Operational Environmental Satellite (GOES) Filter Wheel Bearing

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Predmore, Roamer E.; Shogrin, Bradley A.

    2001-01-01

    The elastohydrodynamic lubrication (EHL) transition temperature was measured for a Geostationary Operational Environmental Satellite (GOES) sounder filter wheel bearing in a vacuum tribometer. Conditions included both an 89 N (20 lb.) hard and soft load, 600 rpm, temperatures between 23 C (73 F) and 85 C (185 F), and a vacuum of approximately 1.3 x 10(exp -5) Pa. Elastohydrodynamic to mixed lubrication started to occur at approximately 70 C (158 F).

  13. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-01-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  14. Polar Mesospheric Cloud Occurrence from Geostationary Satellite Observations in the Northern Hemisphere for the Period 2001 to 2005

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Jennings, S. G.; Rodaighe, A.

    2012-04-01

    Polar Mesospheric Clouds (PMC) are the highest clouds in the atmosphere occurring over the summer polar regions at around 83 km in the Mesosphere. Since their discovery in 1885, they have attracted much research and recently they have attracted attention as possible indicators of Climate Change. In the past, their height and optical thinness restricted the opportunities for observation of PMC; however the development of remote sensing satellites has provided a consistent method of observing them in the Mesosphere. Observations of PMC have been made from both numerous polar orbiting satellites and the European geostationary weather satellites (METEOSAT). METEOSAT observations of PMC are in the visible band of the high resolution radiometer (MVIRI) of the first generation weather satellite; they have a greater spatial extent per observation at a higher frequency rate than those of polar orbiting platforms. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) maintains an archive of METEOSAT observations. By building a suitable data management and image analysis infrastructure, we were able to use the archive to make PMC observations in the stored visible band imagery. The design and development of the system (PMC-Explorer) and details of dealing with EUMETSAT data formats are described. PMC occurrence frequencies for the Northern Hemisphere summers are presented for years 2001 to 2005. The seasonal properties are presented, inter-annual comparisons are made and five year seasonal means are calculated and compared with the 1995 season. A comparison with similar published data from polar orbiting satellites is made. An increase PMC in observations between 2001 and 2005 is presented. The potential impact of Climate Change on the occurrence frequency of PMC is discussed. Finally, suggestions are made on further uses of the EUMETSAT archive for PMC research and the potential of comparisons with other remote sensing platforms.

  15. Identification of geostationary satellites using polarization data from unresolved images

    NASA Astrophysics Data System (ADS)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  16. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... directional transmitting antenna utilized by a fixed station operating in these bands with EIRP greater than... power (EIRP) does not exceed: (1) +47 dBW for any antenna beam directed within 0.5 degrees of the... antenna beam directed between 0.5 degrees and 1.5 degrees of the stationary orbit. (c) 12.7 to 13.25...

  17. 47 CFR 101.145 - Interference to geostationary-satellites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... directional transmitting antenna utilized by a fixed station operating in these bands with EIRP greater than... power (EIRP) does not exceed: (1) +47 dBW for any antenna beam directed within 0.5 degrees of the... antenna beam directed between 0.5 degrees and 1.5 degrees of the stationary orbit. (c) 12.7 to 13.25...

  18. Use of low orbital satellite communications systems for humanitarian programs

    NASA Technical Reports Server (NTRS)

    Vlasov, Vladimir N.; Gorkovoy, Vladimir

    1991-01-01

    Communication and information exchange play a decisive role in progress and social development. However, in many parts of the world the communication infrastructure is inadequate and the capacity for on-line exchange of information may not exist. This is true of underdeveloped countries, remote and relatively inaccessible regions, sites of natural disasters, and of all cases where the resources needed to create complex communication systems are limited. The creation of an inexpensive space communications system to service such areas is therefore a high priority task. In addition to a relatively low-cost space segment, an inexpensive space communications systems requires a large number of ground terminals, which must be relatively inexpensive, energy efficient (using power generated by storage batteries, or solar arrays, etc.), small in size, and must not require highly expert maintenance. The ground terminals must be portable, and readily deployable. Communications satellites in geostationary orbit at altitudes of about 36,000 km are very expensive and require complex and expensive ground stations and launch vehicles. Given current technology, it is categorically impossible to develop inexpensive satellite systems with portable ground terminals using such satellites. To solve the problem of developing an inexpensive satellite communications system that can operate with relatively small ground stations, including portable terminals, we propose to use a system with satellites in low Earth orbit, at an altitude of 900-1500 km. Because low orbital satellites are much closer to the Earth than geostationary ones and require vastly less energy expenditure by the satellite and ground terminals for transmission of messages, a system using them is relatively inexpensive. Such a system could use portable ground terminals no more complex than ordinary mobile police radios.

  19. Near-real-time global biomass burning emissions product from geostationary satellite constellation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Kondragunta, Shobha; Ram, Jessica; Schmidt, Christopher; Huang, Ho-Chun

    2012-07-01

    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15-30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter <2.5 μm) and 1.18 × 1011kg of CO globally (excluding most parts of boreal Asia, the Middle East, and India because of no coverage from geostationary satellites). The biomass burning emissions were mostly released from forest and savanna fires in Africa, South America, and North America. Evaluation of

  20. The Marshall Automated Wind Algorithm for Geostationary Satellite Wind Applications

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1998-01-01

    The Marshall Automated Wind (MAW) algorithm was developed over a decade ago in support of specialized studies of mesoscale meteorology. In recent years, the algorithm has been generalized to address global climate issues and other specific objectives related to NASA missions. The MAW algorithm uses a tracking scheme which minimizes image brightness temperature differences in a sequence of satellite images to determine feature displacement (winds). With the appropriate methodology accurate satellite derived winds can be obtained from visible, infrared, and water vapor imagery. Typical errors are less than 4 m/s but depend on the quality and control constraints used in post-processing. Key to this success is the judicious use of template size and search area used for tracking, image resolution and time sampling, and selection of appropriate statistical constraints which may vary with image type and desired application. The conference paper and subsequent poster will provide details of the technique and examples of its application.

  1. Operational assessment of evapotranspiration from geostationary satellite data.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, F.; Ghilain, N.; Arboleda, A.

    2012-04-01

    EUMETSAT (http://www.eumetsat.int) has set up a network of decentralized meteorological satellite data processing centres named 'Satellite Application Facilities' (SAFs). These centres develop and achieve data products derived from European meteorological satellites. The 'Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the operational monitoring of land surface related variables. RMI participates to the LSA-SAF by developing an evapotranspiration (ET) product, ET being one of the most important water balance component [1]. As ET cannot be observed directly by remote sensing, it is assessed indirectly through modelling. The proposed model is based on a set of parameterizations of the SVAT scheme developed at ECMWF and it is adapted to be forced by real-time data derived from Meteosat Second Generation (MSG) satellites data. The SEVIRI instrument, on-board MSG, is designed to provide a wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). The ET algorithm produces in near real time ET estimates at SEVIRI spatial resolution each 30 minutes. Results are generated since mid 2009 over four regions (Europe, North and South Africa and the Eastern part of South America) defined inside the MSG field of view. A daily product, available since end 2010, is also obtained through integration of the instantaneous estimates. Validation already carried out attests the robustness of the proposed algorithm, notably over Europe. Nevertheless, research will be pursued during coming years, looking for additional validation sites and evolving towards an improved combination of remote sensed observations and models. In this contribution we first present the LSA-SAF framework and we summarize how ET is deduced from MSG-SEVIRI data. In a second step, we compare LSA-SAF ET to ET products

  2. Improved monitoring of surface ozone by joint assimilation of geostationary satellite observations of ozone and CO

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Jacob, Daniel J.; Chance, Kelly; Worden, Helen M.; Edwards, David P.; Zhang, Lin

    2014-02-01

    Future geostationary satellite observations of tropospheric ozone aim to improve monitoring of surface ozone air quality. However, ozone retrievals from space have limited sensitivity in the lower troposphere (boundary layer). Data assimilation in a chemical transport model can propagate the information from the satellite observations to provide useful constraints on surface ozone. This may be aided by correlated satellite observations of carbon monoxide (CO), for which boundary layer sensitivity is easier to achieve. We examine the potential of concurrent geostationary observations of ozone and CO to improve constraints on surface ozone air quality through exploitation of ozone-CO model error correlations in a joint data assimilation framework. The hypothesis is that model transport errors diagnosed for CO provide information on corresponding errors in ozone. A paired-model analysis of ozone-CO error correlations in the boundary layer over North America in summer indicates positive error correlations in continental outflow but negative regional-scale error correlations over land, the latter reflecting opposite sensitivities of ozone and CO to boundary layer depth. Aircraft observations from the ICARTT campaign are consistent with this pattern but also indicate strong positive error correlations in fine-scale pollution plumes. We develop a joint ozone-CO data assimilation system and apply it to a regional-scale Observing System Simulation Experiment (OSSE) of the planned NASA GEO-CAPE geostationary mission over North America. We find substantial benefit from joint ozone-CO data assimilation in informing US ozone air quality if the instrument sensitivity for CO in the boundary layer is greater than that for ozone. A high-quality geostationary measurement of CO could potentially relax the requirements for boundary layer sensitivity of the ozone measurement. This is contingent on accurate characterization of ozone-CO error correlations. A finer-resolution data

  3. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    NASA Technical Reports Server (NTRS)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  4. NASA Now: Orbital Mechanics: Earth Observing Satellites

    NASA Video Gallery

    This NASA Now program is all about satellites and their orbits. Dr. James Gleason, project scientist for NPP, explains what it takes for a satellite to stay in orbit, why there are different types ...

  5. On the Feasibility of Monitoring Carbon Monoxide in the Lower Troposphere from a Constellation of Northern Hemisphere Geostationary Satellites (PART 1)

    NASA Technical Reports Server (NTRS)

    Barre, Jerome; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-01-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements.

  6. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1)

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William

    2015-07-01

    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up

  7. Studies of lightning data in conjunction with geostationary satellite data

    NASA Technical Reports Server (NTRS)

    Auvine, B.; Martin, D.

    1985-01-01

    Since January, work has been proceeding on the first phase of this project: the creation of an extensive real-time lightning data base accessible via the Space Science and Engineering Center McIdas system. The purpose of this endeavor is two-fold: to enhance the availability and ease of access to lightning data among the various networks, governmental and research agencies; and to test the feasiblity and desirability of such efforts in succeeding years. The final steps in the creation of the necessary communications links, hardware, and software are in the process of being completed. Operations ground rules for access among the various users have been discussed and are being refined. While the research planned for the last year of the project will rely for the most part on archived, quality-controlled data from the various networks, the real-time data will provide a valuable first-look at potentially interesting case studies. For this purpose, tools are being developed on McIdas for display and analysis of the data as they become available. In conjunction with concurrent GOES real-time imagery, strike locations can be plotted, gridded and contoured, or displayed in various statistical formats including frequency distributions, histograms, and scatter plots. The user may also perform these functions in relation to arbitrarily defined areas on the satellite image. By mid-May these preparations for the access and analysis of real-time lightning data are expected to be complete.

  8. An Orbiting Standards Platform for communication satellite system RF measurements

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.; Woodruff, J. J.

    1978-01-01

    The Orbiting Standards Platform (OSP) is a proposed satellite dedicated to performing RF measurements on space communications systems. It would consist of a quasi-geostationary spacecraft containing an ensemble of calibrated RF sources and field strength meters operating in several microwave bands, and would be capable of accurately and conveniently measuring critical earth station and satellite RF performance parameters, such as EIRP, gain, figure of merit (G/T), crosspolarization, beamwidth, and sidelobe levels. The feasibility and utility of the OSP concept has been under joint study by NASA, NBS, Comsat and NTIA. A survey of potential OSP users was conducted by NTIA as part of this effort. The response to this survey, along with certain trends in satellite communications system design, indicates a growing need for such a measurement service.

  9. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  10. Possible near-IR channels for remote sensing precipitable water vapor from geostationary satellite platforms

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Goetz, A. F. H.; Westwater, Ed R.; Conel, J. E.; Green, R. O.

    1993-01-01

    Remote sensing of troposheric water vapor profiles from current geostationary weather satellites is made using a few broadband infrared (IR) channels in the 6-13 micron region. Uncertainties greater than 20% exist in derived water vapor values just above the surface from the IR emission measurements. In this paper, we propose three near-IR channels, one within the 0.94-micron water vapor band absorption region, and the other two in nearby atmospheric windows, for remote sensing of precipitable water vapor over land areas, excluding lakes and rivers, during daytime from future geostationary satellite platforms. The physical principles are as follows. The reflectance of most surface targets varies approximately linearly with wavelength near 1 micron. The solar radiation on the sun-surface-sensor ray path is attenuated by atmospheric water vapor. The ratio of the radiance from the absorption channel with the radiances from the two window channels removes the surface reflectance effects and yields approximately the mean atmospheric water vapor transmittance of the absorption channel. The integrated water vapor amount from ground to space can be obtained with a precision of better than 5% from the mean transmittance. Because surface reflectances vary slowly with time, temporal variation of precipitable water vapor can be determined reliably. High spatial resolution, precipitable water vapor images are derived from spectral data collected by the Airborne Visable-Infrared Imaging Spectrometer, which measures solar radiation reflected by the surface in the 0.4-2.5 micron region in 10-nm channels and has a ground instantaneous field of view of 20 m from its platform on an ER-2 aircraft at 20 km. The proposed near-IR reflectance technique would complement the IR emission techniques for remote sensing of water vapor profiles from geostationary satellite platforms, especially in the boundary layer where most of the water vapor is located.

  11. Remote Sensing of CO2, CH4, CO, and H2o from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Xi, X.; Natraj, V.; Luo, M.; Zhang, Q.; Shia, R. L.; Sander, S. P.; Yung, Y. L.

    2014-12-01

    The Geostationary Carbon Process Investigation (GCPI) combines an imaging Fourier Transform Spectrometer with a geostationary Earth orbit vantage point to realize a transformational advance in monitoring carbon-bearing molecules and water vapor beyond the synoptic capabilities of Low Earth Orbit instruments such as SCIAMACHY, GOSAT and OCO-2. GCPI is designed to measure, several times every day, high-resolution spectra of reflected sunlight with a moderate signal to noise ratio in near-infrared (NIR) bands, that can then be used to obtain simultaneous retrievals of column averaged CO2, CH4, CO, and H2O. The aim of this project is to explore the potential of retrieving vertical profiles of CO2, CH4, CO, and H2O from high-resolution NIR spectra. We perform radiative transfer simulations over clear-sky conditions (as expected to be observed by GCPI) and estimate prospective performance of retrievals based on results from Bayesian error analysis and characterization. Through Observing System Simulation Experiments (OSSEs), we demonstrate the feasibility of retrieving vertical profiles of CO2 and CH4 and partial columns of CO and H2O with high accuracies and precisions. GCPI's unprecedented observations with high temporal and spatial coverage could be used to drive and constrain Earth system models, improve our understanding of the underlying carbon cycle and water cycle processes, and evaluate model forecasting capabilities.

  12. The Solar Dynamics Observatory After Almost Three Years in Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2012-12-01

    The Solar Dynamics Observatory (SDO) has returned science data for 2.6 years since its launch into a geostationary orbit. SDO is unique in NASA science missions in our use of a dedicated ground station that provides a 24/7 science data downlink. This continuous downlink uses the science team SOCs as the data archive and allows rapid access to the near-realtime data stream for space weather purposes. But this also means we have to run the ground station. The instruments on SDO are measuring the information needed to follow the growth and decay of the solar magnetic field. Since beginning operations watched Solar Cycle 24 grow to a below average sunspot number, with spectacular prominence eruptions and a few large flares. But we have also studied the effects of wind gusts on 18 m antennas, the wide swings in temperature in southern New Mexico, and the realities of dealing with a data system that grows by over a petabyte each year. This talk will describe some of the successes of the SDO team while also highlighting the issues that come from running a large science observatory in geostationary orbit.

  13. A Semi-Empirical Model for Forecasting Relativistic Electrons at Geostationary Orbit

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    We developed a new prediction model for forecasting relativistic (>2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/Interplanetary Magnetic Field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is about 0.9. The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible. The correlation coefficient between predicted and actual electron fluxes is stable and incredibly high.

  14. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations.

    NASA Astrophysics Data System (ADS)

    Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.

    1997-02-01

    The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

  15. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.

    1997-01-01

    The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

  16. Thermal/optical test setup for the Geostationary Operational Environmental Satellite Telescope

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, Robert A.

    1989-01-01

    The Geostationary Operational Environmental Satellite (GOES) Telescope is designed to be passively temperature compensated so that focus requirements will be met over a broad range of temperatures. Concerns over the effects of temperature gradients on the optical performance of the telescope and the repeatability of the 'pointing error' of the telescope spawned the need for a detailed thermal/optical test. The telescope temperature compensation system, the thermal environment in which it must work and the test setup used to measure optical performance under varying temperature conditions are discussed in this paper.

  17. Potential applications of digital, visible, and infrared data from geostationary environmental satellites

    NASA Technical Reports Server (NTRS)

    Miller, D. B.; Waters, M. P., III; Tarpley, J. D.; Green, R. N.; Dismachek, D. C.

    1977-01-01

    An hourly, digital data base from the Visible/Infrared Spin-Scan Radiometer (VISSR) instrument on the GOES-1 and SMS-2 geostationary satellites is described. Several examples of developmental applications of these quantitative digital data are presented. These include a review of recent attempts to develop products that are of use to meteorologists who provide services to aviation, agriculture, forestry, hydrology, oceanography, and climatology. The sample products include high resolution thermal gradients of land and ocean surfaces, thermal change analyses, fruit frost/freeze application, cloud-top altitude analysis, analysis of hurricane characteristics, and analyses of solar insolation.

  18. A geostationary longitude acquisition planning algorithm. [for maneuver planning of geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Petruzzo, C. J.; Bryant, W. C., Jr.; Nickerson, K. G.

    1977-01-01

    The paper is concerned with the phase of the geosynchronous mission termed station acquisition, which involves the maneuvering of a spacecraft to its geostationary longitude by means of the spacecraft propulsion system. An algorithm which assists in maneuver planning is described, and examples of its use are presented. The algorithm can be applied when sequences of more than three maneuvers are to be expected. While, in general, three maneuvers are sufficient to achieve the desired end conditions when orbital mechanics are the only consideration, operational considerations may add constraints resulting in an increased number of maneuvers required.

  19. Polar orbiting operational weather satellites.

    NASA Technical Reports Server (NTRS)

    Stampfl, R. A.; Albert, G.

    1972-01-01

    The progress in the development of operational weather satellites is reviewed, covering their chronology from Explorer 7 of 1959 through Meteor 12 of June, 1972. Special attention is given to the development of the TIROS series satellites with the evolution of their operational sensors, data systems and performance requirements. The topics also include the data collection system designs, to Advanced Very High Resolution Radiometer (AVHRR), the sounder radiometer, the Solar Environment Monitor (SEM), the data processor, and TIROS-N operation and orbital characteristics. It is expected that TIROS-N and its forthcoming advanced versions will provide an effective technology for sensing environmental data on a global scale in the latter half of the decade.

  20. Application of inclined elliptic orbits - A new dimension in satellite sound broadcasting

    NASA Astrophysics Data System (ADS)

    Galligan, K. P.; Robson, D.

    1990-10-01

    The communications link between a geostationary satellite and a mobile user operating in a high latitude region is subject to fading through a combination of shadowing and multipath effects. The properties of the link may be substantially improved by the use of satellites in highly inclined elliptic (HEO) orbits, with a resultant improvement in availability of the satellite service. Such systems have been under study in Europe for several years primarily in connection with voice communications. The application to a sound broadcasting satellite service is currently under investigation within the Archimedes program of the European Space Agency. The design principles of such systems are described and the performance parameters for both applications within the wider European context are indicated. Finally, an initial economic assessment of the HEO system in comparison with geostationary satellite and terrestrial based alternatives is provided.

  1. Comparison of Geomagnetically-shielded Solar Energetic Proton Fluxes Observed at Geostationary Orbit by GOES and in Low-earth Orbit by SAMPEX, POES and MetOp

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Mazur, J. E.; Green, J. C.; Machol, J. L.

    2012-12-01

    On the current (13-15) and upcoming (R+) series of NOAA Geostationary Operational Environmental Satellites (GOES), solar protons are observed from each satellite in the eastward and westward directions. Solar protons that arrive at a given location in the inner magnetosphere have energies greater than their geomagnetic cutoffs, which depend on direction of arrival as well as the strength of geomagnetic disturbances. Protons arriving from the west at geostationary orbit (GEO) have much lower geomagnetic cutoff energies than protons arriving from the east. As a result, GOES westward observations of >4 MeV protons are representative of the interplanetary population near Earth and serve as the basis for NOAA's real-time solar radiation storm alerts. While the GOES westward observations are similar to the Solar, Anomalous and Magnetospheric Particle Explorer (SAMPEX) Proton-Electron Telescope (PET) proton observations in the polar cap (above invariant L = 10), GOES eastward observations more closely approximate the PET observations at invariant L = 4-4.5 in low earth orbit (LEO). Therefore, GOES may potentially provide a real-time, two-point estimate of the radial gradient of solar energetic protons between L = 6.6 and L = 4. However, the PET observations at L = 4-4.5 exhibit a much wider range of variability than the GOES eastward observations. Therefore, the purpose of this study is to determine how representative the GOES two-point gradient estimate is as a function of magnetic local time and geographic longitude. The study encompasses the largest solar proton events (SPE) in Solar Cycle 23 and to date in Solar Cycle 24. From April 1998 through December 2006, GOES 10 provides eastward GEO and SAMPEX PET provides LEO observations of large SPEs. The Solar Cycle 24 GEO observations are provided by GOES 13 and 15. From July 1998 to date, the Space Environment Monitors (SEM-2) on the NOAA Polar Operational Environmental Satellites (POES) and EUMETSAT MetOp-A provide SPE

  2. Spectrum and orbit conservation as a factor in future mobile satellite system design

    NASA Technical Reports Server (NTRS)

    Bowen, Robert R.

    1990-01-01

    Access to the radio spectrum and geostationary orbit is essential to current and future mobile satellite systems. This access is difficult to obtain for current systems, and may be even more so for larger future systems. In this environment, satellite systems that minimize the amount of spectrum orbit resource required to meet a specific traffic requirement are essential. Several spectrum conservation techniques are discussed, some of which are complementary to designing the system at minimum cost. All may need to be implemented to the limits of technological feasibility if network growth is not to be constrained because of the lack of available spectrum-orbit resource.

  3. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; Albrecht, Rachel; MacGorman, Donald

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via

  4. Next generation Geostationary Operational Environmental Satellite: GOES-R, the United States' advanced weather sentinel

    NASA Astrophysics Data System (ADS)

    Bloom, Hal J.

    2009-08-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the follow-on to the existing GOES system, completing a transition from 1980's technology to state-of-the-art. The product of a collaborative development effort between NOAA, NASA, DOC and industry, the first GOES-R satellite is planned to be launched in April 2015 with readiness to fully replace the heritage GOES constellation in 2017. This next-generation system will continue as the United States' weather sentinel for forecasting hurricanes, severe storms, and flash floods while providing information about air quality, winds, sea surface temperature, and space weather. It will provide advanced capabilities by providing five times more spectral information, temporal coverage six times faster than the current system, and 50% higher spatial resolution. The heart of the GOES-R system is the ABI instrument, a sixteen-channel imager with six visible channels and 10 infrared channels. The GLM instrument will be the first geostationary sensor to detect and monitor lightning strikes. GOES-R also includes several space environment sensors that will increase the capability to monitor and predict solar flare activity. Additionally, GOES-R will continue to provide heritage search and rescue capabilities, a data collection system, and other direct readout capabilities.

  5. Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme

    NASA Astrophysics Data System (ADS)

    Stuhlmann, R.; Rodriguez, A.; Tjemkes, S.; Grandell, J.; Arriaga, A.; Bézy, J.-L.; Aminou, D.; Bensi, P.

    The second generation of Meteosat satellites is expected to provide operational services at least until 2015. Considering the time required for the definition phases of new space systems their typical development cycle and the approval of complex programmes, it is necessary to start planning for follow-up geostationary missions already now. EUMETSAT has therefore established a User Consultation Process aimed at capturing the foreseeable high-level user/service needs and priorities of the EUMETSAT Customers and users in the 2015-2025 timeframe. This process led to a first definition of the Third Generation Meteosat (MTG) European geostationary satellite system, which currently consists of a total of five observation missions defined for pre-phase A studies at system level under ESA contract to be started in autumn 2004. The paper gives an overview on the current status of definition of the five observation missions, and a brief description of the MTG schedule and related milestones. Results of scientific studies and presentations/conclusions of MTG User Consultation Workshops and dedicated expert workshops conducted to define the MTG candidate missions are openly available from the EUMETSAT web-page www.eumetsat.de, under the sub-directory 'Preparation of Future Programmes/Meteosat Third Generation (MTG)'.

  6. Thermal physical property-based fusion of geostationary meteorological satellite visible and infrared channel images.

    PubMed

    Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei

    2014-01-01

    Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017

  7. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  8. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  9. Low earth orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, R. E.; Gardiner, J. G.

    1993-01-01

    Digital cellular mobile 'second generation' systems are now gradually being introduced into service; one such example is GSM, which will provide a digital voice and data service throughout Europe. Total coverage is not expected to be achieved until the mid '90's, which has resulted in several proposals for the integration of GSM with a geostationary satellite service. Unfortunately, because terrestrial and space systems have been designed to optimize their performance for their particular environment, integration between a satellite and terrestrial system is unlikely to develop further than the satellite providing a back-up service. This lack of system compatibility is now being addressed by system designers of third generation systems. The next generation of mobile systems, referred to as FPLMTS (future public land mobile telecommunication systems) by CCIR and UMTS (universal mobile telecommunication system) in European research programs, are intended to provide inexpensive, hand-held terminals that can operate in either satellite, cellular, or cordless environments. This poses several challenges for system designers, not least in terms of the choice of multiple access technique and power requirements. Satellite mobile services have been dominated by the geostationary orbital type. Recently, however, a number of low earth orbit configurations have been proposed, for example Iridium. These systems are likely to be fully operational by the turn of the century, in time for the implementation of FPLMTS. The developments in LEO mobile satellite service technology were recognized at WARC-92 with the allocation of specific frequency bands for 'big' LEO's, as well as a frequency allocation for FPLMTS which included a specific satellite allocation. When considering integrating a space service into the terrestrial network, LEO's certainly appear to have their attractions: they can provide global coverage, the round trip delay is of the order of tens of milliseconds, and

  10. Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites

    NASA Astrophysics Data System (ADS)

    Papushev, P.; Karavaev, Yu.; Mishina, M.

    2009-05-01

    On the base of the photometrical data an analysis of the periods and light curves of the uncontrolled artificial satellites was performed. The equipment used in the observations of the satellites is fast photoelectrical photometer attached to the astronomical telescopes of the Sayan observatory (operated by the ISTP SB RAS). Two-mirror Cassegrain telescope with 0.5 m aperture equipped photoelectrical photometer setup in the fast photometry mode have the ability to track the slow moving objects up to 15-th visual magnitude. The observations started from the second half of the 20-th century and have been continued up to the present time. The standard photometric Johnson-Morgan system UBVR had been used. The basic goals are to present observational data and both discuss the probability of detection of design changes of satellite being a long time in geostationary orbit, and display the periods behavior rarely discussed in the literature. A systematization of the rotation periods is submitted. The light curves of the uncontrolled objects has periodic structure and specific mirror spike features which are a characteristic for identification of an object. Analysis of the standard color index (CI) value can provide additional data on the mirror spike origin. When mirror spikes are eliminated color indexes (B-V) for the diffuse component of the satellites is in the range of 0.9-1.1 and exceed those for the solar type star. Unlike, mirror spikes CI (B-V) are close to zero or negative, indicating a blue excess of radiation spectrum. The processes of the variation rotation periods connected with the satellites construction and their interaction with space environment are discussed.

  11. Spacecraft plume interactions with the magnetosphere plasma environment in geostationary Earth orbit

    NASA Astrophysics Data System (ADS)

    Stephani, K. A.; Boyd, I. D.

    2016-02-01

    Particle-based kinetic simulations of steady and unsteady hydrazine chemical rocket plumes are presented in a study of plume interactions with the ambient magnetosphere in geostationary Earth orbit. The hydrazine chemical rocket plume expands into a near-vacuum plasma environment, requiring the use of a combined direct simulation Monte Carlo/particle-in-cell methodology for the rarefied plasma conditions. Detailed total and differential cross sections are employed to characterize the charge exchange reactions between the neutral hydrazine plume mixture and the ambient hydrogen ions, and ion production is also modeled for photoionization processes. These ionization processes lead to an increase in local plasma density surrounding the spacecraft owing to a partial ionization of the relatively high-density hydrazine plume. Results from the steady plume simulations indicate that the formation of the hydrazine ion plume are driven by several competing mechanisms, including (1) local depletion and (2) replenishing of ambient H+ ions by charge exchange and thermal motion of 1 keV H+ from the ambient reservoir, respectively, and (3) photoionization processes. The self-consistent electrostatic field forces and the geostationary magnetic field have only a small influence on the dynamics of the ion plume. The unsteady plume simulations show a variation in neutral and ion plume dissipation times consistent with the variation in relative diffusion rates of the chemical species, with full H2 dissipation (below the ambient number density levels) approximately 33 s after a 2 s thruster burn.

  12. Thermal-distortion analysis of a spacecraft box truss in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Cosgrove, Patrick A.; Farmer, Jeffery T.; Rowell, Lawrence F.

    1990-01-01

    The Mission to Planet Earth enlists the use of a geostationary platform to support Earth science monitoring instruments. The strongback for a proposed geostationary platform is a deployable box truss that supports two large diameter passive microwave radiometer (PMR) and several other science instruments. A study was performed to estimate the north-south and east-west pointing errors at the mounting locations of the two PMRs due to on-orbit thermal distortions of the main truss. The baseline configuration indicated that the east-west pointing error greatly exceeded the required limits. Primary origins of the pointing errors were identified, and methods for their reduction were discussed. Thermal performance enhancements to the truss structure were modeled and analyzed, including state-of-the-art surface coatings and insulation techniques. Comparisons of the thermal enhancements to the baseline were performed. Results demonstrated that using a thermal enclosure insulating technique reduced external heat fluxes, and distributed those heat fluxes more evenly throughout the structure, sufficiently reducing the pointing error to satisfy pointing accuracy requirements for the PMR's.

  13. Impact of geostationary satellite water vapor channel data on weather analysis and forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1995-01-01

    Preliminary results from NWP impact studies are indicating that upper-tropospheric wind information provided by tracking motions in sequences of geostationary satellite water vapor imagery can positively influence forecasts on regional scales, and possibly on global scales as well. The data are complimentary to cloud-tracked winds by providing data in cloud-free regions, as well as comparable in quality. First results from GOES-8 winds are encouraging, and further efforts and model impacts will be directed towards optimizing these data in numerical weather prediction (NWP). Assuming successful launches of GOES-J and GMS-5 satellites in 1995, high quality and resolution water vapor imagers will be available to provide nearly complete global upper-tropospheric wind coverage.

  14. Estimation of large scale daily evapotranspiration using geostationary meteorological satellite observations

    NASA Astrophysics Data System (ADS)

    Jia, L.; Daamen, M.

    2009-04-01

    Accurate estimate of daily evapotranspiration over large areas is important both for understanding hydrological processes on the earth and for water resources management. Remote sensing observations of land surface have been used to estimate evapotranspiration (ET) over large areas, when point measurements cannot provide such information efficiently because of insufficient coverage density. Conventional methods to estimate regional daily ET are based on extrapolation of instantaneous ET estimates usually from polar-orbiting satellite observations at clear sky moments and assuming clear sky conditions prevailing throughout the day. However, such methods are unable to overcome uncertainties caused by eventual cloud interference along a day course. The new generations of geostationary meteorological satellites having frequent temporal sampling and relatively higher spatial resolution than older generations, carries the promise of solving the problem of time integration to estimate daily ET. Such observations at high temporal resolution are particularly helpful in capturing the diurnal variation of land surface temperature, the most critical land surface parameter in determining the energy partitioning between sensible heat flux and latent heat flux. However, cloud-free measurements during a day may be sparse and not simultaneous for different pixels. A time series analysis technique using Fourier transfer analysis as described in Harmonic Analyze of Time Series (HANTS) is therefore needed to fill the gaps in sparse satellite observations due to clouds contamination. In this research, instantaneous latent heat flux in turn the evapotranspiration is calculated from an energy balance based model SEBS (Surface Energy Balance System) firstly using a set of land surface parameters provided by LandSAF products retrieved from observations of SEVIRI (Spinning Enhanced Visible and Infrared Imager) onboard Meteosat Second Generation (MSG). Secondly, HANTS algorithm is used to

  15. Orbital Manoeuvres of Chinas Zi Yuan Satellites

    NASA Astrophysics Data System (ADS)

    Clark, P. S.

    China has launched two satellites in the Zi Yuan programme through to October 2001. The first was the CBERS satellite, developed jointly with Brazil and the second was a domestic satellite which is reportedly being used for reconnaissance work. The orbital behaviour of the two satellites has been completely different and is reviewed in this paper.

  16. The atmospheric composition geostationary satellite constellation for air quality and climate science: Evaluating performance with Observation System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Barre, J.; Worden, H. M.; Arellano, A. F.; Gaubert, B.; Anderson, J. L.; Mizzi, A. P.; Lahoz, W. A.

    2014-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of GEO platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. We discuss the requirements on measurement simulation, chemical transport modeling, and data assimilation for a successful OSSE infrastructure. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which is being expanded to other chemical pollutants, currently produces multispectral retrievals and captures realistic scene-dependent variation in measurement vertical sensitivity and cloud cover. We use the DART Ensemble Adjustment Kalman Filter to assimilate the simulated observations in a CAM-Chem global chemistry-climate model Control Run. The impact of observing over each region is evaluated using data

  17. Understanding the Dynamics of Energetic and Relativistic Electrons Near Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander

    2016-07-01

    The Versatile Electron Radiation Belt (VERB-4D) code was developed to model Earth's electron radiation belts. It comprises radial, energy and pitch angle diffusion and convection to describe the evolution of electron phase space density near the Earth (1-7 R_{E}). In this work the outer boundary of computational domain was extended to 15 R_{E} which allows to study how ring current particles are convected and lost above GEO. Relative importance of magnetospheric convection, radial, energy and pitch angle diffusion in formation of geostationary electron population is studied by comparison of results with satellite observations. The implications can be used for better understanding of the sources of the Earth's electron radiation belts.

  18. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    Starke, S. E.

    1977-01-01

    The documentation and user's guide for the Analytical Satellite Orbit Predictor (ASOP) computer program is presented. The ASOP is based on mathematical methods that represent a new state-of-the-art for rapid orbit computation techniques. It is intended to be used for computation of near-earth orbits including those of the shuttle/orbiter and its payloads.

  19. THE ORBITS OF THE OUTER URANIAN SATELLITES

    SciTech Connect

    Brozovic, M.; Jacobson, R. A.

    2009-04-15

    We report on the numerically integrated orbits for the nine outer Uranian satellites. The orbits are calculated based on fits to the astrometric observations for the period from 1984 to 2006. The results include the state vectors, post-fit residuals, and mean orbital elements. We also assess the accuracy of the orbital fits and discuss the need for future measurements.

  20. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  1. NEXRAD-In-Space: A Geostationary Orbiting Doppler Radar for Hurricane Monitoring and Studies

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone; Fang, Houfei; Rahmat-Samii, Yahya

    2011-01-01

    Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science

  2. The orbit-sharing environment for Canadian fixed satellites in the 1990s and beyond

    NASA Astrophysics Data System (ADS)

    Bowen, Robert R.; Streibl, Irena

    In 1987, it was recognized that the portion of the geostationary orbit of interest to Canada for its domestic satellites was becoming saturated. At the same time there was a need to accommodate the Anik E series of dual band communication satellites which was not possible under existing orbit-use arrangements. A trilateral arrangement between the USA, Mexico, and Canada was reached in May 1988 defining the shared use of the geostationary satellite orbit and those Ku and C frequency bands currently used by the Anik satellite. The World Administrative Radio Conference (WARC) for the space services held in May, 1988 developed an allotment plan for the upper 6/4 GHz band and the 13/11 GHz band. The Anik series of satellites will face a reduction of the 5 deg spacing of the 1970s to about 3 deg for the Anik E series, with satellites at 3.8 deg spacing interleaved with Mexican MORELOS satellites. Four such positions are available for the Anik E series. Three colocated orbit positions in the 13/11 and upper 6/4 GHz allotment plan are reserved for future Canadian use. In addition, more bandwidth is available.

  3. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; Xi, B.

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  4. Processing of satellite imagery at the National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    Crowe, M.

    1977-01-01

    The National Environmental Satellite Service (NESS) image product processing system is described. Other topics discussed include: (1) image processing of polar-orbiter satellite data; (2) image processing of geostationary satellite data; and (3) quality assurance and product monitoring.

  5. Multi-day convective-environmental evolution prior to tropical cyclone formation from geostationary satellite measurements

    NASA Astrophysics Data System (ADS)

    Chang, Minhee; Ho, Chang-Hoi; Park, Myung-Sook

    2016-04-01

    Tropical cyclones (TCs) are developed through persistent latent heating taken from deep convective process. By analyzing aircraft and polar-orbit satellite observations, distinct upper-level warm-core induced by strong updraft was found in pre-TCs while vertically uniform temperature profile is found in non-developers. Precipitation is also broader and more frequent in developing disturbances than in nondeveloping ones. However, large uncertainties remain in determining which disturbance will develop into TC by using observation snap-shots. Here, five-day systematic evolution of deep convection and environments in developing (80) and non-developing (491) disturbances are examined over the western North Pacific for 20072009 by using geostationary satellite observation. Daily, positive tendencies in the hourly time series of the area of the MTSAT-1R infrared (IR) and water vapor (WV) brightness temperature difference < 0 are used to define single diurnal convective burst (CB) event. In terms of single CB properties (duration, expanded convective area, maximum convective area, and expanding rate), developing and nondeveloping disturbances shows significantly different mean values in the statistics, but it is not effective to estimate TC genesis. The presence of continuous CB events more than two days (i.e. multi-day CB; mCB), however, is generally found in developing disturbances. Based on the presence and absence mCB in the IR-WV time series, two different evolutions from Day 1 to Day 5 of TC formation (non-development) are explored, in which Day 6 is set to be a TC formation day (Day5 as non-development vortex decaying day). The majority of developing disturbances with mCB (83 %) initially have stronger large-scale vorticity with low-level maxima, tend to have gradually increasing deep convective area and vorticities at low-to-upper troposphere. By contrast, few developing disturbances (17 %) without mCB are pre-conditioned by much weaker large-scale vorticity

  6. One-way time transfer using geostationary satellites: Evolution of the experiment on the satellite TDF2

    SciTech Connect

    Meyer, F.

    1994-12-31

    This paper presents the results obtained on common-view time transfer measurements using the TV satellite TDF2 between four french laboratories. Different methods have been used to eliminate the inluence of the satellite residual motion with a final precision that can reach 10 ns. The accuracy has been assessed using orbit data provided by the CNES, that also tested orbit restitution based on the time measurements.

  7. Low-Earth orbit satellite servicing economics

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Cepollina, F. J.

    1982-01-01

    Servicing economics of low Earth orbit satellites were studied. The following topics are examined: the economic importance of the repair missions; comparison of mission cost as opposed to satellite modulation transfer functions over a 10 year period; the effect of satellite flight rate change due to changes in satellite failure rate; estimated satellite cost reduction with shuttle operation projects from the 1960's to the 1970's; design objectives of the multimission modular spacecraft; and the economic importance of the repair mission.

  8. Next Generation Geostationary Operational Environmental Satellite (GOES-R Series): A Space Segment Overview

    NASA Technical Reports Server (NTRS)

    Krimchansky, Alexander; Machi, Dino; Cauffman, Sandra A.; Davis, Martin A.

    2004-01-01

    The next-generation National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite (GOES-R series) is currently being developed by NOAA in cooperation with the National Aeronautics and Space Administration (NASA). The GOES-R series satellites represents a significant improvement in spatial, temporal, and spectral observations (several orders of magnitude) over the capabilities of the currently operational GOES-1 series and the about to be launched GOES-N series satellite. The GOES-R series will incorporate technically advanced third-generation instruments and spacecraft enhancements to meet evolving observational requirements of forecasting for the era 2012-2025. The GOES-R instrument complement being developed includes a Advanced Baseline Imager (ABI), a Hyperspectral Environmental Suite (HES), a GEO Lighting Mapper (GLM), a Solar Imaging Suite (SIS) and a Space Environment In-Situ Suite (SEISS). Also, candidates for a number of GOES-R Pre-Planned Product Improvements (P(sup 3)Is) includes a Geo microwave Sounder, a Coronograph, a Hyperspectral Imager, and a Solar Irradiance Sensor. Currently, the GOES-R Space Segment architecture is being evaluated as part of a GOES-R system end-to-end architecture study. The GOES-R notional baseline architecture is a constellation of two satellites (A-sat and B-sat) each nominally located at 75 degrees west longitude and at 135 degrees west longitude at geostationary altitude, 0 degrees inclination. The primary mission of the A-sat is to provide imaging from the ABI. The A-sat will also contain the SIS and the GLM. The primary mission of the B-sat is to provide sounding of the hemispherical disk of the earth from the HES. The B-sat also contains the SEISS. Both satellites have mesoscale capabilities for severe weather sounding or imaging. This paper overviews the GOES-R Space Segment development including satellite constellation trade-off, improvements and differences between the current

  9. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  10. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  11. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit-switching architecture is described for a 30/20-GHz frequency-division, multiple-access uplink/time-division-multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  12. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  13. Orbital motion of the solar power satellite

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.

    1977-01-01

    A study on the effects of solar radiation pressure on the SPS orbit is documented. It was shown that the eccentricity of the orbit can increase from initially being zero. The SPS configuration is primarily considered but the results are applicable to any geosynchronous satellite that resembles a flat surface continually facing the sun. The orbital evolution of the SPS was investigated over its expected 30 year lifetime and the satellite was assumed to be in free flight. The satellite's motion was described with analytical formulae which could be used to develop an orbit control theory in order to minimize station keeping costs.

  14. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite

    NASA Astrophysics Data System (ADS)

    Kurihara, Yukio; Murakami, Hiroshi; Kachi, Misako

    2016-02-01

    Himawari-8 is a new geostationary meteorological satellite operated by the Japan Meteorological Agency (JMA). The Earth Observation Research Center of the Japan Aerospace Exploration Agency in collaboration with the JMA produces skin sea surface temperatures (SSTs) from Himawari-8 data. A new quasi-physical algorithm was used to calculate SSTs. Cloud screening based on the Bayesian inference method was used to detect cloudy pixels. Himawari-8 SSTs from June to September 2015 were compared with drifting and tropical moored buoy data. This comparison showed a root-mean-square difference of ˜0.59 K and a bias of ˜-0.16 K against the buoy data. Positive and variable biases were found in seas along the viewing boundaries.

  15. True Color Images of the Earth created with the Geostationary Satellite Instrument MSG SEVIRI

    NASA Astrophysics Data System (ADS)

    Reuter, Maximilian

    2013-04-01

    One of the most famous pictures ever taken was by the crew of Apollo 17 in 1972, showing our Earth from a distance of about 45000km. This picture was named 'Blue Marble' and it reminds us of the beauty and uniqueness of our home planet. With geostationary satellites, such views of the Earth are possible without the need to have a photographer in space. However, up to the present, the production of such Blue Marble type images from geostationary satellite data has been impaired by the lack of channels in the visible spectral region. A method for the generation of full disk MSG (METEOSAT Second Generation) SEVIRI (Scanning-Enhanced Visible and Infrared Imager) true colour composite images will be presented. The algorithm mainly uses the SEVIRI channels VIS006 (0.6μm), NIR008 (0.8μm) and NIR016 (1.6μm). The lack of information in the blue and green parts of the visible spectrum is compensated by using data from NASA's (National Aeronautics and Space Administration's) Blue Marble next generation (BMNG) project to fill a look-up table (LUT) transforming RGB (red/green/blue) false colour composite images of VIS006/NIR008/NIR016 into true colour images. Tabulated radiative transfer calculations of a pure Rayleigh atmosphere are used to add an impression of Rayleigh scattering towards the sunlit horizon. The resulting images satisfy naive expectations: clouds are white or transparent, vegetated surfaces are greenish, deserts are sandy-coloured, the ocean is dark blue to black and a narrow halo due to Rayleigh scattering is visible at the sunlit horizon. Therefore, such images are easily interpretable also for inexperienced users not familiar with the characteristics of typical MSG false colour composite images. The images can be used for scientific applications to illustrate specific meteorological conditions or for non-scientific purposes, for example, for raising awareness in the public of the Earth's worthiness of protection.

  16. Solar global horizontal and direct normal irradiation maps in Spain derived from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Polo, J.

    2015-08-01

    Solar radiation derived from satellite imagery is a powerful and highly accurate technique for solar resource assessment due to its maturity and to the long term database of observation images available. This work presents the methodology developed at CIEMAT for mapping solar radiation from geostationary satellite information and it also shows solar irradiation maps of global horizontal and direct normal components elaborated for Spain. The maps presented here have been developed from daily solar irradiation estimated for eleven years of satellite images (2001-2011). An attempt to evaluate the uncertainty of the presented maps is made using ground measurements from 27 meteorological stations available in Spain for global horizontal irradiation obtained from the World Radiation Data Centre. In the case of direct normal irradiation the ground measurement database was scarce, having available only six ground stations with measurements for a period of 4 years. Yearly values of global horizontal irradiation are around 1800 kWh m-2 in most of the country and around 1950-2000 kWh m-2 for annual direct normal irradiation. Root mean square errors in monthly means were of 11% and of 29% for global horizontal and direct normal irradiation, respectively.

  17. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  18. A versatile system for processing geostationary satellite data with run-time visualization capability

    SciTech Connect

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. The authors are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government. The author`s contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of the first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived. These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, the authors have produced an environment whereby they can easily modify and monitor the data processing as required. Through the principles of modular programming, they have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants.

  19. Space weather radiation effects on geostationary satellite solid-state power amplifiers

    NASA Astrophysics Data System (ADS)

    Lohmeyer, W. Q.; Cahoy, K.

    2013-08-01

    In order to understand and mitigate the effects of space weather on the performance of geostationary (GEO) communications satellites, we analyze 16 years of archived telemetry data from Inmarsat, the UK-based telecommunications company. We compare 665,112 operational hours of housekeeping telemetry from two generations of satellites, designated as Fleet A and Fleet B. Each generation experienced 13 solid-state power amplifier (SSPA) anomalies for a total of 26 anomalies from 1996 to 2012. We compare telemetry from the Inmarsat anomalies with space weather observations, including data from the OMNI2 database, Geostationary Operational Environmental Satellites, the Advanced Composition Explorer Satellite, and Los Alamos National Laboratory (LANL) GEO observations; the evolution of the sunspot number; and the Kp index. Most SSPA anomalies for Fleet A occur as solar activity declines; Fleet B has not yet experienced a full solar cycle. For both fleets, the average value of Kp remained < 2 over time periods of 2 days, 3 days, and 2 weeks around the time of anomaly, which suggests that the anomalies occurred at times of relatively quiet geomagnetic activity and that they were probably not solely caused by surface charging. From 1996 to 2009, the average of the 1.8-3.5 MeV electron flux was 1.98 #/(cm2 s st keV). Five of the 26 anomalies, unfortunately, do not have corresponding science observations (specifically, electron flux data in the LANL data set), so part of this study focuses on the 21 anomalies when science observations were available. Six out of 21 anomalies experienced a high-energy electron flux greater than 1.5 standard deviations above the mean of the log10 of the flux between 7 and 14 days prior to the anomaly. By contrast, a Monte Carlo simulation finds that on average, only 2.8 out of 21 (13%) of randomly assigned "anomalies" occur between 7 and 14 days after an electron flux greater than 1.5 standard deviations above the mean. Our observations suggest

  20. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations

    NASA Astrophysics Data System (ADS)

    Son, Ju Young; Jo, Jung Hyun; Choi, Jin; Kim, Bang-Yeop; Yoon, Joh-Na; Yim, Hong-Suh; Choi, Young-Jun; Park, Sun-Youp; Bae, Young Ho; Roh, Dong-Goo; Park, Jang-Hyun; Kim, Ji-Hye

    2015-09-01

    We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

  1. Formation dynamics in geostationary ring

    NASA Astrophysics Data System (ADS)

    Spiridonova, Sofya

    2016-08-01

    A relative motion model for a satellite formation composed of two Earth-orbiting spacecraft located in the geostationary ring is developed taking into account major gravitational and non-gravitational forces. A previously existing model featuring perturbation due to J_2 is enhanced by the perturbations due to solar radiation pressure arising from unequal area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to the Sun and the Moon. The extended relative motion model is validated using several typical formation geometries against a reference generated by numerical integration of the absolute orbits of the two spacecraft. The results of this work can find application in future on-orbit servicing and formation flying missions in near-geostationary orbit.

  2. Formation dynamics in geostationary ring

    NASA Astrophysics Data System (ADS)

    Spiridonova, Sofya

    2016-05-01

    A relative motion model for a satellite formation composed of two Earth-orbiting spacecraft located in the geostationary ring is developed taking into account major gravitational and non-gravitational forces. A previously existing model featuring perturbation due to J_2 is enhanced by the perturbations due to solar radiation pressure arising from unequal area-to-mass ratios, as well as the secular and long-periodic gravitational perturbations due to the Sun and the Moon. The extended relative motion model is validated using several typical formation geometries against a reference generated by numerical integration of the absolute orbits of the two spacecraft. The results of this work can find application in future on-orbit servicing and formation flying missions in near-geostationary orbit.

  3. An Analytical Satellite Orbit Predictor (ASOP)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The documentation and user's guide are presented for the analytical satellite orbit predictor computer program which is intended to be used for computation of near-earth orbits including those of the shuttle orbiter and its payloads. The Poincare-Similar elements used make it possible to compute near-earth orbits to within an accuracy of a few meters. Recursive equations are used instead of complicated formulas. Execution time is on the order of a few milliseconds.

  4. GeoSTAR: Developing a Microwave Sounder for Geostationary Weather Satellites

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Wilson, W.; Tanner, A.; Kangaslahti, P.; Gaier, T.; Dinardo, S.; Brown, S.; Piepmeier, J.; Ruf, C.

    2005-12-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new concept for a microwave sounder, intended to be deployed on NOAA's next generation of geostationary weather satellites, the GOES-R series. A ground based prototype has been developed at the Jet Propulsion Laboratory, under NASA Instrument Incubator Program (IIP) sponsorship, and is now undergoing tests and performance characterization. With the aperture synthesis approach used by GeoSTAR it is possible to achieve very high spatial resolutions even in the crucial 50-GHz temperature sounding band without having to deploy the impractically large parabolic reflector antenna that is required with the conventional approach. GeoSTAR will finally, after many years of searching for a solution, make it possible to add a microwave sounder to the GOES instrument suite - a capability that is crucial for monitoring cloudy regions and severe storms. The technology and system design required for GeoSTAR are rapidly maturing, and it is expected that a space demonstration mission can be developed before the first GOES-R launch. GeoSTAR will be ready for operational deployment 2-3 years after that. The prototype developed under IIP implements a small version of the temperature sounding component of GeoSTAR, is fully functional as a sounder and has all of the features and capabilities of an operational system with the exception of spatial resolution. It therefore represents a complete proof of concept as well as significant risk reduction for a space implementation. Further technology risk reduction, with particular focus on the 183-GHz water vapor sounding band, is also under way.

  5. On the reliability of geostationary satellite observations for diagnosing indirect aerosol effects

    NASA Astrophysics Data System (ADS)

    Merk, Daniel; Deneke, Hartwig; Pospichal, Bernhard; Seifert, Patric

    2015-10-01

    Aerosol indirect effects are poorly understand and constitute a highly uncertain anthropogenic forcing of climate change. The interaction of aerosols with clouds together with entrainment and turbulent mixing processes modulate cloud microphysics and radiative effects. In the current study we present preliminary results to diagnose indirect aerosol effects from the synergy of geostationary satellite observations, surface observations and MACC aerosol analysis. We examine if the sub-adiabatic factor - representative for entrainment - can be obtained from the combination of passive-satellite observations with ground-based cloud base height from a ceilometer network. Therefore the uncertainty of the sub-adiabatic factor due to its required input parameters, the cloud geometrical thickness and liquid water path, is explored. We use a two year dataset from SEVIRI and compare it to the LACROS supersite at Leipzig, Germany. We find that the comparison of satellite-retrieved cloud top heights shows a RMSD of 1100 m and the liquid water path of 75 gm-2, which are too large to provide a meaningful estimate of the instantaneous sub-adiabtic factor. Linking the cloud microphysical properties from passive satellites with aerosol properties obtained from MACC, we investigate the Twomey hypothesis, namely that smaller droplets and a higher cloud droplet number concentration result from higher aerosol load for a given liquid water path (positive change). A positive relative change is obtained for aerosol optical depth and the sulphate mass integrated from the surface to the cloud top. In contrast, a negative relative change is however found for sea salt.

  6. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  7. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis

    NASA Astrophysics Data System (ADS)

    Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; Reeves, Geoffrey D.; Clilverd, Mark

    2016-04-01

    The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the prediction of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). A path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current (Dst), AE, and wave activity.

  8. Los Alamos geostationary orbit synoptic data set: a compilation of energetic particle data

    SciTech Connect

    Baker, D.N.; Higbie, P.R.; Belian, R.D.; Aiello, W.P.; Hones, E.W. Jr.; Tech, E.R.; Halbig, M.F.; Payne, J.B.; Robinson, R.; Kedge, S.

    1981-08-01

    Energetic electron (30 to 2000 keV) and proton (145 keV to 150 MeV) measurements made by Los Alamos National Laboratory sensors at geostationary orbit 6.6 R/sub E/ are summarized. The data are plotted in terms of daily average spectra, 3-h local time averages, and in a variety of statistical formats. The data summarize conditions from mid-1976 through 1978 (S/C 1976-059) and from early 1977 through 1978 (S/C 1977-007). The compilations correspond to measurements at 35/sup 0/W, 70/sup 0/W, and 135/sup 0/W geographic longitude and, thus, are indicative of conditions at 9/sup 0/, 11/sup 0/, and 4.8/sup 0/ geomagnetic latitude, respectively. Most of this report is comprised of data plots that are organized according to Carrington solar rotations so that the data can be easily compared to solar rotation-dependent interplanetary data. As shown in prior studies, variations in solar wind conditions modulate particle intensity within the terrestrial magnetosphere. The effects of these variations are demonstrated and discussed. Potential uses of the Synoptic Data Set by the scientific and applications-oriented communities are also discussed.

  9. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  10. 0.5-4 Å X-RAY BRIGHTENINGS IN THE MAGNETOSPHERE OBSERVED BY THE GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES

    SciTech Connect

    Yamamoto, Tetsuya T.; Miyoshi, Y.

    2013-10-01

    We found 217 X-ray brightening events in Earth's magnetosphere. These events occur in the high-energy band (0.5-4 Å) of the Geostationary Operational Environmental Satellite (GOES) X-ray light curves, although GOES X-ray light curves are frequently used as indices of solar flare magnitudes. We found that (1) brightening events are absent in the low-energy band (1-8 Å), unlike those associated with solar flares; and (2) the peak fluxes, durations, and onset times of these events depend on the magnetic local time (MLT). The events were detected in 2006, 2010, and 2011 at around 19-10 MLT, that is, from night to morning. They typically lasted for 2-3 hr. Their peak fluxes are less than 3 × 10{sup –8} W m{sup –2} in the 0.5-4 Å band and are maximized around 0-5 MLT. From these MLT dependencies, we constructed an MLT time profile of X-ray brightening events. Because 0.5-4 and 1-8 Å fluxes were observed and had the same order of magnitude when GOES 14 passed through Earth's shadow, we expected that X-ray brightening events in the 1-8 Å band are obscured by high-background X-ray fluxes coming from the Sun. We also found coincidence between X-ray brightening events and aurora substorms. In the majority of our events, the minimum geomagnetic field values (AL index) are below –400 nT. From these results and consideration of the GOES satellite orbit, we expect that these X-ray brightening events occur in the magnetosphere. We cannot, however, clarify the radiative process of the observed X-ray brightening events.

  11. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    NASA Astrophysics Data System (ADS)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied

  12. Satellite orbit determination from an airborne platform

    NASA Astrophysics Data System (ADS)

    Shepard, M. M.; Foshee, J. J.

    This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.

  13. Some orbital characteristics of lunar artificial satellites

    NASA Astrophysics Data System (ADS)

    Carvalho, J. P. S.; Vilhena de Moraes, R.; Prado, A. F. B. A.

    2010-12-01

    In this paper we present an analytical theory with numerical simulations to study the orbital motion of lunar artificial satellites. We consider the problem of an artificial satellite perturbed by the non-uniform distribution of mass of the Moon and by a third-body in elliptical orbit (Earth is considered). Legendre polynomials are expanded in powers of the eccentricity up to the degree four and are used for the disturbing potential due to the third-body. We show a new approximated equation to compute the critical semi-major axis for the orbit of the satellite. Lie-Hori perturbation method up to the second-order is applied to eliminate the terms of short-period of the disturbing potential. Coupling terms are analyzed. Emphasis is given to the case of frozen orbits and critical inclination. Numerical simulations for hypothetical lunar artificial satellites are performed, considering that the perturbations are acting together or one at a time.

  14. Analyzing radiometric requirements for diurnal observations of coastal/oceanic waters from geostationary orbits

    NASA Astrophysics Data System (ADS)

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R.

    2013-06-01

    Over the decades, ocean color imaging sensors placed in Low Earth Orbits (LEO) have enabled nearly daily measurements of ocean water properties. Such observations, however, are restricted by cloud/atmospheric conditions. More importantly, such systems could not provide sufficient number of measurements to study the diurnal dynamics of coastal/oceanic ecosystems. One way to surmount such limitations is to leverage geo-stationary orbits to significantly improve temporal observations over such dynamical coastal/oceanic environments. In this study, it is desired to examine whether 50% changes in chlorophyll-a concentration (< 1.5 ug⁄l) on a semi-diurnal basis are above the noise level. To do so, the top-of-atmosphere radiance (Lt) is modeled for the planned GEO-CAPE mission intended for monitoring coastal ecosystem and river plumes. The input to the simulations includes diurnal remote sensing reflectances (Rrs), which are propagated through a moderately clear atmospheric conditions using a radiative transfer code. The simulations are carried out for two footprints to investigate two extremely different sun-sensor geometries. From these simulations, the temporal change in spectral reflectances between the hours relative to an average noise is examined. Based on the preliminary results, it was found that while the signal change is, on average, 13x the average noise for near-nadir footprints, the change in signal, on average, is only 1.5x the average noise level for near-edge footprints at top of the atmosphere. Such a contrast suggests difficulties in retrieving diurnal variability for locations near the edge of the field of regard (FOR).

  15. Revised Orbits of Saturn's Small Inner Satellites

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Spitale, J.; Porco, C. C.; Beurle, K.; Cooper, N. J.; Evans, M. W.; Murray, C. D.

    2007-01-01

    We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.

  16. Orbit Determination System for Low Earth Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Elisha, Yossi; Shyldkrot, Haim; Hankin, Maxim

    2007-01-01

    The IAI/MBT Precise Orbit Determination system for Low Earth Orbit satellites is presented. The system is based on GPS pesudorange and carrier phase measurements and implements the Reduced Dynamics method. The GPS measurements model, the dynamic model, and the least squares orbit determination are discussed. Results are shown for data from the CHAMP satellite and for simulated data from the ROKAR GPS receiver. In both cases the one sigma 3D position and velocity accuracy is about 0.2 m and 0.5 mm/sec respectively.

  17. Coastal water quality estimation from Geostationary Ocean Color Imager (GOCI) satellite data using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Im, Jungho; Ha, Sunghyun; Kim, Yong Hoon; Ha, Hokyung; Choi, Jongkuk; Kim, Miae

    2014-05-01

    It is important to monitor coastal water quality using key parameters such as chlorophyll-a concentration and suspended sediment to better manage coastal areas as well as to better understand the nature of biophysical processes in coastal seawater. Remote sensing technology has been commonly used to monitor coastal water quality due to its ability of covering vast areas at high temporal resolution. While it is relatively straightforward to estimate water quality in open ocean (i.e., Case I water) using remote sensing, coastal water quality estimation is still challenging as many factors can influence water quality, including various materials coming from inland water systems and tidal circulation. There are continued efforts to accurately estimate water quality parameters in coastal seawater from remote sensing data in a timely manner. In this study, two major water quality indicators, chlorophyll-a concentration and the amount of suspended sediment, were estimated using Geostationary Ocean Color Imager (GOCI) satellite data. GOCI, launched in June 2010, is the first geostationary ocean color observation satellite in the world. GOCI collects data hourly for 8 hours a day at 6 visible and 2 near-infrared bands at a 500 m resolution with 2,500 x 2,500 km square around Korean peninsula. Along with conventional statistical methods (i.e., various linear and non-linear regression), three machine learning approaches such as random forest, Cubist, and support vector regression were evaluated for coastal water quality estimation. In situ measurements (63 samples; including location, two water quality parameters, and the spectra of surface water using a hand-held spectroradiometer) collected during four days between 2011 and 2012 were used as reference data. Due to the small sample size, leave-one-out cross validation was used to assess the performance of the water quality estimation models. Atmospherically corrected radiance data and selected band-ratioed images were used

  18. First results of measurements of extreme ultraviolet radiation onboard a geostationary satellite "ELECTRO-L"

    NASA Astrophysics Data System (ADS)

    Nusinov, Anatoliy; Kazachevskaya, Tamara; Gonjukh, David

    Measurements of the intensity of EUV emission in the hydrogen Lyman-alpha line were conducted by a broadband photometer VUSS-E onboard geostationary Hydrometeorological satellite "Electro" since March 2011. The solar hydrogen Lyman-alpha line (lambda = 121.6 nm) was monitored. The photomultiplier with LiF window used as a detector insensitive to visible light. Long-wavelength limit of the spectral band sensitivity of the instrument is about 200 nm, so the signal of the device is defined as the flux of solar radiation in the region of 123-200 nm. Its exclusion was carried out by calculation. Since the satellite "Electro" designed for remote sensing of the Earth, its line of sight focused on Earth. Alignment of instrument in the Sun direction was achieved by installing it on the solar panel, periodically moved in the solar direction. Correction of instrument readings, reduced due to the deviation of its axis from the Sun direction, carried out by calculation. Measurements were carried out every second. The first results of the measurements are presented. The difference in absolute calibration Electro-L/VUSS-E is within 5% of corresponding values for measurements TIMED satellite in those days, that is in agreement with laboratory calibrations. It is useful to measure the temperature of the instrument, as its variation on a small interval of time makes change the value of the output signal about 1-2 %. During first year of operation, the sensitivity of the apparatus remained within ± 2% of measured value, significant degradation of sensitivity was not observed. Over time of observation there have been several large flares of X class. The increase of the signal in the ultraviolet range does not exceed a few percent during these flares.

  19. The Orbits of the Regular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, R.

    2014-04-01

    At the conclusion of the Galileo Mission we produced ephemerides for the Galilean and four inner Jovian satellites, Amalthea, Thebe, Adrastea, and Metis [1]. The satellite orbits were determined by fitting a data set that included Earthbased astrometry through 2001 and data acquired by the Pioneer, Voyager, Ulysses, Cassini, and Galileo spacecraft. The spacecraft tracking data provided additional information on the Jovian system gravity parameters. In preparation for the Juno mission currently enroute to Jupiter, we have been developing new ephemerides from updated satellite orbits. As before, the orbits are determined through a comprehensive data fit which also redetermines the gravity parameters and spacecraft trajectories to be consistent with the revised satellite orbits. Our standard model for the orbits, both satellite and spacecraft, is a numerical integration of their equations of motion. We include the gravitational effects of the point mass mutual interactions of Jupiter, the Galilean satellites, and Amalthea (Thebe, Adrastea, and Metis are assumed to be massless), the effects of an oblate Jupiter, and perturbations from the Sun and planets. For our new orbits we also take into account the effects of tides raised on Jupiter by the satellites. Lainey et al. [4] have pointed out the importance of the tidal accelerations. The spacecraft are also affected by nongravitational forces, e.g., solar radiation pressure, trajectory correction maneuvers. These forces are discussed by several authors [2, 3, 5]. Our current data set is an expansion of that used previously. We have extended the Galilean satellite Earthbased astrometry back to 1891 and forward to 2013 and the inner satellite astrometry back to 1892 and forward to 2002. We added the Galilean satellite mutual events from 2003 and 2009, the Galilean satellite eclipse timings from 1878 to 2013, and the Earthbased radar ranges to Ganymede and Callisto measured in 1992. We also augmented our spacecraft data

  20. Statistical Analysis of Pitch Angle Distribution of Radiation Belt Energetic Electrons Near the Geostationary Orbit: CRRES Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Gu, X.; Ni, B.; Shprits, Y.; Zhou, C.; Ionosphere Laboratory of Wuhan University

    2011-12-01

    A statistical analysis of energetic radiation belt electron pitch angle distributions (PADs) at the radial distances of 6 RE and 6.6 RE is performed on the basis of the pitch angle resolved flux observations from the Medium Electrons A (MEA) instrument onboard the Combined Release and Radiation Effects Satellite (CRRES). While previous studies of Vampola [1998] and Gannon et al. [2007] have used CRRES MEA data to investigate the general variations in electron PAD at particular energies, in this study we present a detailed statistical analysis of electron PADs including the dependence on electron kinetic energy, magnetic local time (MLT), and the level of geomagnetic activity. By fitting the measured PADs with a power law function of sine of local pitch angle, the power law index n that relates to the category of radiation belt electron PAD is quantified in detail as a function of electron kinetic energy, MLT interval and geomagnetic index Kp. Statistical averaged n-values vary considerably with respect to MLT, ranging from n ~ 0 within 00-04 MLT to n ~ 1.5 within 12-16 MLT, due to the MLT dependence of wave scattering and the effects associated with drift shell splitting and magnetopause shadowing. Drift shell splitting and magnetopause shadowing result in often observed negative values of n. At lower energies of a few hundred keV the pitch angle distributions are more flat than at MeV energies, which is consistent with faster pitch angle scattering at low energies by chorus waves. These quantitative results of radiation belt electron PAD, consistent with the previous studies by Vampola [1998] and Gannon et al. [2007], provide further insight into the global dynamics of energetic radiation belt electrons near the geostationary orbit and also are useful for inferring electron phase space densities and assimilating their radial profiles using omni-directional electron flux measurements.

  1. Weather, Climate and Air quality data acquired from quasi-geostationary viewing of high latitudes using highly elliptical orbits

    NASA Astrophysics Data System (ADS)

    McElroy, C. T.; Sioris, C. E.; Walker, K. A.; Buijs, H.; Trichtchenko, A.; Garand, L.; Nassar, R.; Martin, R.; Bergeron, M.; O'Neill, N. T.

    2013-12-01

    The Arctic multi-year ice cover is disappearing more rapidly than climate models estimate and the Arctic climate is also changing. With declining ice cover, the Arctic Ocean will likely be subject to increased shipping traffic in addition to exploration activity for natural resources with a concomitant increase in air pollution. Thus there is a multifaceted need to monitor the polar region. A number of Canadian government departments, led by the Canadian Space Agency (CSA), are proposing the Polar Communications and Weather (PCW) mission to provide improved communications and critically important meteorological and air quality information for the Arctic using an operational meteorological imager. Two satellites in highly eccentric orbits with apogees at ~ 40,000 km over the Arctic would provide quasi-geostationary viewing over the Arctic with 24-7 coverage in the IR and measure solar reflected light in the summertime. The planned operational meteorological instrument is a 21-channel spectral imager with UV, visible, NIR and MIR channels similar to MODIS and ABI. This presentation will focus on the PHEOS-WCA (Weather, Climate and Air quality) mission, which is an atmospheric science complement to the operational PCW mission. The PHEOS-WCA instrument package consists of FTS and UVS imaging sounders with viewing range of ~4.5 degrees or a field of regard ~ 3400x3400 km2 from near apogee. The spatial resolution at apogee of each imaging sounder is targeted to be 10×10 km2 or better and the image repeat time <2 hours. The characteristics of the PHEOS-WCA measurements will be described, along with the expected retrieval accuracy of various measured constituents. The quasi-stationary viewing will provide the ability to measure the diurnal behavior of atmospheric properties under the satellites and the ability to provide data for weather forecasting and also air quality data assimilation. One of the important goals for PHEMOS-FTS is to measure changes in CO2 and CH4

  2. Satellite Orbital Interpolation using Tchebychev Polynomials

    NASA Astrophysics Data System (ADS)

    Richard, Jean-Yves; Deleflie, Florent; Edorh, Sémého

    2014-05-01

    A satellite or artificial probe orbit is made of time series of orbital elements such as state vectors (position and velocities, keplerian orbital elements) given at regular or irregular time intervals. These time series are fitted to observations, so that differences between observations (distance, radial velocity) and the theoretical quantity be minimal, according to a statistical criterion, mostly based on the least-squared algorithm. These computations are carried out using dedicated software, such as the GINS used by GRGS, mainly at CNES Toulouse and Paris Observatory. From an operational point of view, time series of orbital elements are 7-day long. Depending on the dynamical configurations, more generally, they can typically vary from a couple of days to some weeks. One of the fundamental parameters to be adjusted is the initial state vector. This can lead to time gaps, at the level of a few dozen of centimetres between the last point of a time series to the first one of the following data set. The objective of this presentation consists in the improvement of an interpolation method freed itself of such possible "discontinuities" resulting between satellite's orbit arcs when a new initial bulletin is adjusted. We compare solutions of different Satellite Laser Ranging using interpolation methods such as Lagrange polynomial, spline cubic, Tchebychev orthogonal polynomial and cubic Hermite polynomial. These polynomial coefficients are used to reconstruct and interpolate the satellite orbits without time gaps and discontinuities and requiring a weak memory size. In this approach, we have tested the orbital reconstruction using Tchebychev polynomial coefficients for the LAGEOS and Starlette satellites. In this presentation, it is showed that Tchebychev's polynomial interpolation can achieve accuracy in the orbit reconstruction at the sub-centimetre level and allowing a gain of a factor 5 of memory size of the satellite orbit with respect to the Cartesian

  3. The orbits of the satellites of Neptune

    NASA Astrophysics Data System (ADS)

    Jacobson, R. A.

    1990-05-01

    This article presents the results of a fit of numerically integrated Neptunian satellite orbits to earth-based astrometric observations and early Voyager spacecraft observations. Ephemerides based on these orbits were used by the Voyager project as the final pre-encounter ephemerides. As a by-product of the orbit fits, estimates of the Neptune mass, the second zonal harmonic of Neptune, and the pole orientation of Neptune were also obtained.

  4. A versatile system for processing geostationary satellite data with run-time visualization capability

    NASA Technical Reports Server (NTRS)

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow

  5. Time and frequency comparisons in Europe by means of ECS 5 geostationary satellite

    NASA Technical Reports Server (NTRS)

    Cordara, Franco; Pettiti, V.; Cenci, A.; Fermi, M.; Sciarretta, C.

    1990-01-01

    A time synchronization experiment between some European laboratories using the passive television method applied to the signals broadcasted by Eutelsat I-F5 telecommunication satellite was completed in 1990. The results obtained in the last period, when also range measurements from a Telespazio ground station were performed, are analyzed to evaluate the accuracy level of the time comparisons corrected for the effect of the satellite movement with position data obtained either from the European Space Agency (ESA) or from orbit determination with range data entered into GEODYN program of NASA/GSFC.

  6. The geo-control system for station keeping and colocation of geostationary satellites

    NASA Technical Reports Server (NTRS)

    Montenbruck, O.; Eckstein, M. C.; Gonner, J.

    1993-01-01

    GeoControl is a compact but powerful and accurate software system for station keeping of single and colocated satellites, which has been developed at the German Space Operations Center. It includes four core modules for orbit determination (including maneuver estimation), maneuver planning, monitoring of proximities between colocated satellites, and interference and event prediction. A simple database containing state vector and maneuver information at selected epochs is maintained as a central interface between the modules. A menu driven shell utilizing form screens for data input serves as the central user interface. The software is written in Ada and FORTRAN and may be used on VAX workstations or mainframes under the VMS operating system.

  7. Orbital operation for large automated satellites

    NASA Technical Reports Server (NTRS)

    Lusk, J. L.; Biro, V.

    1974-01-01

    Orbital operations concepts for the shuttle launched Large Automated Satellites (LAS) are discussed. It includes the orbital operations elements and the major options for accomplishing each element. This study is based on the preliminary payload information available in Level I and II documents and on orbital operations methods used on past programs, both manned and unmanned. It includes a definition of detailed trade studies which need to be performed as satellite design details and organization responsibilities are defined. The major objectives of this study were to define operational methods and requirements for the long duration LAS missions which are effective and primarily economical to implement.

  8. Calculation of electromagnetic fields induced on a geostationary satellite by an electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Froger, E.; Marque, J. P.

    The electromagnetic response of an orbiting satellite to an electrostatic discharge is compared to that of the same object subjected (in a susceptibility test) to an injection current. In the absence of actual data, the comparison was performed on the basis of two numerical simulations: one using the GEODE particle code for the orbiting case, and the other using the ALICE code for a representative injection configuration. It is found that the evolution of the electromagnetic fields is controlled in particular by the particle emission rhythm, giving rise to an ejection flux 'slit' whose rise time is about several tens of nanoseconds.

  9. Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.

    PubMed

    Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A

    2007-01-10

    Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone. PMID:17268565

  10. Antenna Pointing to the Geo Satellite Using Converted NORAD TLE from Osculating Orbital Elements

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Kim, Hae-Yeon; Hwang, Yoola; Kim, Jaehoon

    2007-06-01

    Antenna pointing analysis for a geostationary satellite has been performed for using the NORAD Two-Line-Elements (TLE) converted from osculating Keplerian orbital elements. In order to check the possibility of the reception of the satellite signal, the antenna offset angles have been derived for the Communications, Ocean, and Meteorological Satellite (COMS) which carries out weekly East-West and North-South station-keeping maneuvers and twice a day thruster assisted momentum dumping. Throughout the analysis, it is shown that the use of converted NORAD TLE simplifies the antenna pointing related interfaces in satellite mission control system. For a highly eccentric transfer orbit cases, further analysis presents that the converted NORAD TLE from near apogee gives more favorable results.

  11. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little

  12. Lifetimes of lunar satellite orbits

    NASA Technical Reports Server (NTRS)

    Meyer, Kurt W.; Buglia, James J.; Desai, Prasun N.

    1994-01-01

    The Space Exploration Initiative has generated a renewed interest in lunar mission planning. The lunar missions currently under study, unlike the Apollo missions, involve long stay times. Several lunar gravity models have been formulated, but mission planners do not have enough confidence in the proposed models to conduct detailed studies of missions with long stay times. In this report, a particular lunar gravitational model, the Ferrari 5 x 5 model, was chosen to determine the lifetimes for 100-km and 300-km perilune altitude, near-circular parking orbits. The need to analyze orbital lifetimes for a large number of initial orbital parameters was the motivation for the formulation of a simplified gravitational model from the original model. Using this model, orbital lifetimes were found to be heavily dependent on the initial conditions of the nearly circular orbits, particularly the initial inclination and argument of perilune. This selected model yielded lifetime predictions of less than 40 days for some orbits, and other orbits had lifetimes exceeding a year. Although inconsistencies and limitations are inherent in all existing lunar gravity models, primarily because of a lack of information about the far side of the moon, the methods presented in this analysis are suitable for incorporating the moon's nonspherical gravitational effects on the preliminary design level for future lunar mission planning.

  13. Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.

    2009-01-01

    The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or

  14. Observations in the thermal IR and visible of a retired satellite in the graveyard orbit, and comparisons to active satellites in GEO

    NASA Astrophysics Data System (ADS)

    Skinner, Mark A.; Russell, Ray W.; Kelecy, Tom; Gregory, Steve; Rudy, Richard J.; Kim, Daryl L.; Crawford, Kirk

    2014-12-01

    There exists a population of defunct satellites in the geo-stationary arc that potentially pose a hazard to current and future operational satellites. These drifting, non-station-kept objects have a variety of ages and sizes, and many are trapped in libration orbits around the Earth's two gravitational potential wells (the non-spherical nature of the Earth gives rise to two geo-potential wells or "stable points" that affect objects in geostationary and geosynchronous orbits), whereas others were boosted to higher altitudes into so-called "graveyard" orbits. We have observed several of the approximately 49 objects in libration orbits about the Western stable point (R. Choc, T. Flohrer, and B. Bastida, "Classification of Geosynchronous Objects," Issue 13, ESA/ESOC, February 2011), as well as objects in graveyard orbits. We have carried out an observational campaign utilizing The Aerospace Corporation's 3-13 μm Broadband Array Spectrograph System (BASS), as well as with several optical sensors to collect data on a representative sample of these objects at a variety of solar phase angles. Here we report on recent BASS observations of a retired satellite in the "graveyard" orbit, and compare them with data we had collected over six years ago, while the satellite was still active. Data are also presented on similar satellites that are still active. We describe our methods, the data collected, our results, and our future plans.

  15. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  16. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  17. Predicting the Orbits of Satellites with a TI-85 Calculator.

    ERIC Educational Resources Information Center

    Papay, Kate; And Others

    1996-01-01

    Describes a project that predicts the orbits of satellites using a TI-85 calculator. Enables students to achieve a richer understanding of longitude, latitude, time zones, orbital mechanics of satellites, and the terms associated with satellite tracking. (JRH)

  18. GOCE Satellite Orbit in a Computational Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2013-04-01

    The presented work plays an important role in research of possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using a combination of satellite to satellite tracking high-low (SST- hl) observations and gravity gradient tensor (GGT) measurements. The orbit improvement process will be started from a computed orbit, which should be close to a reference ("true") orbit as much as possible. To realize this objective, various variants of GOCE orbit were generated by means of the Torun Orbit Processor (TOP) software package. The TOP software is based on the Cowell 8th order numerical integration method. This package computes a satellite orbit in the field of gravitational and non-gravitational forces (including the relativistic and empirical accelerations). The three sets of 1-day orbital arcs were computed using selected geopotential models and additional accelerations generated by the Moon, the Sun, the planets, the Earth and ocean tides, the relativity effects. Selected gravity field models include, among other things, the recent models from the GOCE mission and the models such as EIGEN-6S, EIGEN-5S, EIGEN-51C, ITG-GRACE2010S, EGM2008, EGM96. Each set of 1-day orbital arcs corresponds to the GOCE orbit for arbitrary chosen date. The obtained orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions in the computed orbits and in the reference ones. These RMS values are a measure of performance of selected geopotential models in terms of GOCE orbit computation. The RMS values are given for the truncated and whole geopotential models. For the three variants with the best fit to the reference orbits, the empirical acceleration models were added to the satellite motion model. It allowed for further improving the fitting of computed orbits to the

  19. Precise Orbit Determination for Altimeter Satellites

    NASA Astrophysics Data System (ADS)

    Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Beckley, B. B.; Wang, Y.; Chinn, D. S.

    2002-05-01

    Orbit error remains a critical component in the error budget for all radar altimeter missions. This paper describes the ongoing work at GSFC to improve orbits for three radar altimeter satellites: TOPEX/POSEIDON (T/P), Jason, and Geosat Follow-On (GFO). T/P has demonstrated that, the time variation of ocean topography can be determined with an accuracy of a few centimeters, thanks to the availability of highly accurate orbits (2-3 cm radially) produced at GSFC. Jason, the T/P follow-on, is intended to continue measurement of the ocean surface with the same, if not better accuracy. Reaching the Jason centimeter accuracy orbit goal would greatly benefit the knowledge of ocean circulation. Several new POD strategies which promise significant improvement to the current T/P orbit are evaluated over one year of data. Also, preliminary, but very promising Jason POD results are presented. Orbit improvement for GFO has been dramatic, and has allowed this mission to provide a POESEIDON class altimeter product. The GFO Precise Orbit Ephemeris (POE) orbits are based on satellite laser ranging (SLR) tracking supplemented with GFO/GFO altimeter crossover data. The accuracy of these orbits were evaluated using several tests, including independent TOPEX/GFO altimeter crossover data. The orbit improvements are shown over the years 2000 and 2001 for which the POEs have been completed.

  20. Future Plan and Recent Activities for the Japanese Follow-on Geostationary Meteorological Satellite Himawari-8/9

    NASA Astrophysics Data System (ADS)

    Kurino, T.

    2012-12-01

    In 1977, Japan launched the first geostationary meteorological satellite " Himawari-1 (GMS-1)" onto the geo-synchronous orbit at 140°E mainly to cover the western Pacific and the east part of Asia as part of a space segment of the Global Observation System (GOS) of the WMO World Weather Watch (WWW) programme up to the present. JMA plans to launch Himawari-8 in summer 2014 and commence its operation in 2015, when Himawari-7 (MTSAT-2) is scheduled to complete its period of operation. The Agency also plans to launch Himawari-9 in 2016. Himawari-8 and -9 carry Advanced Himawari Imager (AHI) units comparable to the Advanced Baseline Imager (ABI) on board GOES-R with the following functions: - Multi-channel capacity (16 channels in visible and infrared bands) - High spatial resolution (0.5 - 1.0 km for visible and 1.0 - 2.0 km for infrared) - High temporal resolution (within 10 minutes for full disk) - Rapid scanning with flexible area selection and scheduling The follow-on satellites will offer high observation potential, which will enable users to analyze cloud properties and extract other meteorological parameters. To make the most of these functions as well as to provide users with effective information from the start of Himawari-8's operation, JMA has set up an environment for the development of new products from the follow-on satellites in collaboration with its Meteorological Satellite Center (MSC) and other internal related divisions in JMA. The Agency also plans to start the development of related products, and is interested in pursuing scientific and prototyping activities in collaboration with Coordination Group for Meteorological Satellites (CGMS) members. This is particularly the case with EUMETSAT and NOAA/NESDIS, which already operate or are preparing to use a new generation of multi-channel imaging instruments (e.g. MSG/MTG, GOES-R). To support these developments, Himawari-8/9 simulated images are generated in two ways - one involving the accumulation of

  1. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the space station's orbit, considering the worst-case frequency tolerance of all frequency determining...) of such outages; (2) A detailed description of the utilization made of the in-orbit satellite...

  2. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), as calculated for a fixed point on the Earth's surface in the plane of the space station's orbit... utilization made of the in-orbit satellite system. That description should identify the percentage of...

  3. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...), as calculated for a fixed point on the Earth's surface in the plane of the space station's orbit... utilization made of the in-orbit satellite system. That description should identify the percentage of...

  4. Tracking and orbit determination of near earth orbiting satellites using earth synchronous relay satellites

    NASA Technical Reports Server (NTRS)

    Bryant, W. C., Jr.; Goad, C. C.

    1973-01-01

    A Tracking Data Relay Satellite System (TDRSS) made up of two earth synchronous data relay satellites is proposed for the late 1970s to aid in the tracking, or take the place of ground tracking, or near-earth orbiters. Theoretical error analysis studies were conducted to evaluate the TDRSS concept of tracking user satellites. All major factors affecting orbit determination accuracy were considered in the analysis, including tracking system and dynamic modeling errors.

  5. Secular motion around synchronously orbiting planetary satellites.

    PubMed

    Lara, Martin; San-Juan, Juan F; Ferrer, Sebastián

    2005-12-01

    We investigate the secular motion of a spacecraft around the natural satellite of a planet. The satellite rotates synchronously with its mean motion around the planet. Our model takes into account the gravitational potential of the satellite up to the second order, and the third-body perturbation in Hill's approximation. Close to the satellite, the ratio of rotation rate of the satellite to mean motion of the orbiter is small. When considering this ratio as a small parameter, the Coriolis effect is a first-order perturbation, while the third-body tidal attraction, the ellipticity effect, and the oblateness perturbation remain at higher orders. Then, we apply perturbation theory and find that a third-order approach is enough to show the influence of the satellite's ellipticity in the pericenter dynamics. Finally, we discuss the averaged system in the three-dimensional parametric space, and provide a global description of the flow. PMID:16396586

  6. THE ORBITS OF NEPTUNE'S OUTER SATELLITES

    SciTech Connect

    Brozovic, Marina; Jacobson, Robert A.; Sheppard, Scott S. E-mail: raj@jpl.nasa.gov

    2011-04-15

    In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a 'reverse circulator'. Halimede and Laomedeia do not seem to experience any strong resonant effects.

  7. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technically identical non-geostationary satellite orbit satellites will be awarded a single “blanket” license... addition to providing the information specified in § 25.114, each non-geostationary satellite orbit... space station into the previously-authorized orbit that is technically identical to those authorized...

  8. 47 CFR 25.145 - Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technically identical non-geostationary satellite orbit satellites will be awarded a single “blanket” license... addition to providing the information specified in § 25.114, each non-geostationary satellite orbit... space station into the previously-authorized orbit that is technically identical to those authorized...

  9. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technically identical non-geostationary satellite orbit satellites will be awarded a single “blanket” license... addition to providing the information specified in § 25.114, each non-geostationary satellite orbit... space station into the previously-authorized orbit that is technically identical to those authorized...

  10. 47 CFR 25.145 - Licensing conditions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technically identical non-geostationary satellite orbit satellites will be awarded a single “blanket” license... addition to providing the information specified in § 25.114, each non-geostationary satellite orbit... space station into the previously-authorized orbit that is technically identical to those authorized...

  11. History of on-orbit satellite fragmentations

    NASA Technical Reports Server (NTRS)

    Nauer, David J.

    1992-01-01

    Since the first serious satellite fragmentation occurred in Jun. 1961, and instantaneously increased the total Earth satellite population by more than 400 percent, the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970's and the marked increase in the number of fragmentations in the 1980's served to widen international research into the characteristics and consequences of such events. Plans for large, manned space stations in the next decade and beyond demand a better understanding of the hazards of the dynamic Earth satellite population. The contribution of satellite fragmentations to the growth of the Earth satellite population is complex and varied. The majority of detectable fragmentation debris have already fallen out of orbit, and the effects of 40 percent of all fragmentations have completely disappeared. In this volume, satellite fragmentations are categorized by their assessed nature and to a lesser degree by their effect on the near-Earth space environment. A satellite breakup is the usually destructive disassociation of an orbital payload, rocket body, or structure, often with a wide range of ejecta velocities. A satellite breakup may be accidental or the result of intentional actions, e.g., due to a propulsion system malfunction or a space weapons test, respectively. An anomalous event is the unplanned separation, usually at low velocity, of one or more detectable objects from a satellite which remains essentially intact. Anomalous events can be caused by material deterioration of items such as thermal blankets, protective shields, or solar panels. As a general rule, a satellite breakup will produce considerably more debris, both trackable and non-trackable, than an anomalous event. From one perspective, satellite breakups may be viewed as a measure of the effects of man's activity on the environment, while anomalous

  12. Orbit Design of Earth-Observation Satellite

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    The purpose of this study is to design a reliable orbit for a medium-resolution scientific satellite to observe Earth for developmental issues such as water resources, agricultural, and industrial. To meet this objective this study firstly, defines the mission, secondly, determines mission constraints, thirdly, design the attitude and orbit control system. As for the observation requirements, and the revisit time are provided as a function of the orbital parameters. Initial orbital parameters are obtained by optimal analysis between observation characteristics and attitude and orbit maintenance costs. Long term station-keeping strategies will be provided for the proposed solutions. Impulsive control will be investigated to provide a reliable and affordable attitude and orbit control system.

  13. Density Variations Observable by Precision Satellite Orbits

    NASA Astrophysics Data System (ADS)

    McLaughlin, C. A.; Lechtenberg, T.; Hiatt, A.

    2008-12-01

    This research uses precision satellite orbits from the Challenging Minisatellite Payload (CHAMP) satellite to produce a new data source for studying density changes that occur on time scales less than a day. Precision orbit derived density is compared to accelerometer derived density. In addition, the precision orbit derived densities are used to examine density variations that have been observed with accelerometer data to see if they are observable. In particular, the research will examine the observability of geomagnetic storm time changes and polar cusp features that have been observed in accelerometer data. Currently highly accurate density data is available from three satellites with accelerometers and much lower accuracy data is available from hundreds of satellites for which two-line element sets are available from the Air Force. This paper explores a new data source that is more accurate and has better temporal resolution than the two-line element sets, and provides better spatial coverage than satellites with accelerometers. This data source will be valuable for studying atmospheric phenomena over short periods, for long term studies of the atmosphere, and for validating and improving complex coupled models that include neutral density. The precision orbit derived densities are very similar to the accelerometer derived densities, but the accelerometer can observe features with shorter temporal variations. This research will quantify the time scales observable by precision orbit derived density. The technique for estimating density is optimal orbit determination. The estimates are optimal in the least squares or minimum variance sense. Precision orbit data from CHAMP is used as measurements in a sequential measurement processing and filtering scheme. The atmospheric density is estimated as a correction to an atmospheric model.

  14. The Orbits of the Inner Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Jacobson, R. A.

    2009-05-01

    We report on the numerically integrated orbits for the thirteen inner Uranian satellites. Our dataset includes Voyager imaging data as well as HST and Earth-based astrometric data. The observations span time period from 1985 to 2003. Our model of the inner moons' orbits accounts for the equatorial bulge of Uranus, the perturbations from the external bodies and the perturbations from the large moons of Uranus (Miranda, Umbriel, Ariel, Oberon, and Titania). The inner satellites were initially considered massless, but we found that this assumption may need to be revised in order to fine-tune the system's dynamics and obtain the orbital solutions with adequate residuals.The results are given in terms of state vectors,post-fit residuals and mean orbital elements.

  15. Automated testing of low-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Barbiere, D.; Wellspeak, G. J.; Konig, J. P.

    1985-01-01

    This paper describes the hardware, software, and test procedures implemented at a ground station for the automated testing of a polar-orbiting satellite in a low orbit. The satellite passes during the testing were characterized by short visibility times of no more than 18 min and by high rates of change of the link parameters as seen by the ground station. The advantages of automated testing became apparent for these dynamic conditions. Under computer control throughout the pass, programmable test instruments were commanded and data was collected and stored. Data reduction was performed after the pass.

  16. A method for diagnosing surface parameters using geostationary satellite imagery and a boundary-layer model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Polansky, A. C.

    1982-01-01

    A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.

  17. Verifying the Accuracy of Geostationary Weather Satellite Image Navigation and Registration

    NASA Astrophysics Data System (ADS)

    Carr, J. L.; Herndon, D.; Reehl, S.

    2012-12-01

    The next generation GOES-R geostationary weather satellites will provide imagery products with improved spatial and temporal resolutions and with more spectral bands than previous systems. Image Navigation and Registration (INR), which enables users to accurately pinpoint severe weather and stabilizes movie loops, will also improve. As INR performance improves, so must the technology for measuring INR performance. We describe our Product Monitoring (PM) system being deployed with the GOES-R ground system. It automatically measures INR performance using landmarks that are positioned with respect to a digital map created from the Shuttle Radar Topographic Mission (SRTM). Performance testing with Meteosat Second Generation (MSG) proxy data is part of the verification of the PM system, which is the main focus of this paper. A legacy system ironically called the Replacement Product Monitor (RPM) is in operational use on the GOES-NOP program. It is generally assumed that this system is capable of measuring the absolute position of landmark features relative to their mapped locations with an accuracy of about 0.5 pixels. This is plausible given that observed INR navigation error is about 1 pixel at the finest GOES-NOP resolution. However, a few landmark sites are observed to have biases possibly related to mapping error in the legacy digital map (not SRTM). Because the GOES-R system has finer spatial resolution than the GOES-NOP system and more stringent INR requirements, errors at the GOES-NOP pixel level are quite important. Our verification work with the GOES-R PM seeks to systematically characterize the measurement errors in a controlled test environment to demonstrate its suitability for a GOES-R mission with finer spatial resolution and more stringent INR requirements in comparison with GOES-NOP.

  18. Online Visualization and Analysis of Merged Global Geostationary Satellite Infrared Dataset

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Leptoukh, G.; Mehta, A.

    2008-01-01

    The NASA Goddard Earth Sciences Data Information Services Center (GES DISC) is home of Tropical Rainfall Measuring Mission (TRMM) data archive. The global merged IR product also known as the NCEP/CPC 4-km Global (60 degrees N - 60 degrees S) IR Dataset, is one of TRMM ancillary datasets. They are globally merged (60 degrees N - 60 degrees S) pixel-resolution (4 km) IR brightness temperature data (equivalent blackbody temperatures), merged from all available geostationary satellites (GOES-8/10, METEOSAT-7/5 and GMS). The availability of data from METEOSAT-5, which is located at 63E at the present time, yields a unique opportunity for total global (60 degrees N- 60 degrees S) coverage. The GES DISC has collected over 8 years of the data beginning from February of 2000. This high temporal resolution dataset can not only provide additional background information to TRMM and other satellite missions, but also allow observing a wide range of meteorological phenomena from space, such as, mesoscale convection systems, tropical cyclones, hurricanes, etc. The dataset can also be used to verify model simulations. Despite that the data can be downloaded via ftp, however, its large volume poses a challenge for many users. A single file occupies about 70 MB disk space and there is a total of approximately 73,000 files (approximately 4.5 TB) for the past 8 years. In order to facilitate data access, we have developed a web prototype to allow users to conduct online visualization and analysis of this dataset. With a web browser and few mouse clicks, users can have a full access to over 8 year and over 4.5 TB data and generate black and white IR imagery and animation without downloading any software and data. In short, you can make your own images! Basic functions include selection of area of interest, single imagery or animation, a time skip capability for different temporal resolution and image size. Users can save an animation as a file (animated gif) and import it in other

  19. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a

  20. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  1. Exposure estimates for repair satellites at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.

    2013-02-01

    Communications and weather satellites in geosynchronous (GEO, altitude: 35,793 km.) and geostationary orbits (GSO) are revolutionizing our ability to almost instantly communicate with each other, capture high resolution global imagery for weather forecasting and obtain a multitude of other geophysical data for environmental protection purposes. The rapid increase in the number of satellites at GEO is partly due to the exponential expansion of the internet, its commercial potential and the need to deliver a large amount of digital information in near real time. With the large number of satellites operating at GEO and particularly at GSO, there is a need to think of viable approaches to retrieve, rejuvenate and perhaps repair these satellites. The first step in this process is a detailed understanding of the ionizing radiation environment at GEO. Currently, the most widely used trapped particle radiation environment definition near Earth is based on the NASA's static AP8/AE8 models which define the trapped proton and electron intensities. These models are based on a large number of satellite measurements carried out in the 1960s and 1970s. In this paper, the AP8/AE8 models as well as a heavy ion galactic cosmic ray (GCR) model are used to define the radiation environments for protons, electrons and heavy ions at low Earth orbit (LEO), medium Earth orbit (MEO) and GEO. LEO and MEO dosimetric calculations are included in the analysis since any launch platform capable of delivering a payload to GEO will accumulate exposure during its transit through LEO and MEO. The computational approach (particle transport) taken in this paper is to use the static LEO, MEO, GEO and geomagnetically attenuated GCR environments as input to the NASA Langley Research Center (LaRC) developed deterministic particle transport codes high charge and energy transport (HZETRN) and coupled electron photon transport (CEPTRN). This is done through exposure prediction within a spherical shell, a

  2. Relativity mission with two counter-orbiting polar satellites. [nodal dragging effect on earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Van Patten, R. A.; Everitt, C. W. F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit. For a 2 1/2 year experiment, the measurement accuracy should approach 1%. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data.

  3. Tetherline system for orbiting satellites

    NASA Technical Reports Server (NTRS)

    Rupp, C. C.; Kissel, R. R. (Inventor)

    1978-01-01

    A system for tethering one orbiting space vehicle to another was designed so that a tetherline between the vehicles is controlled by a motorized reel which in turn is controlled to deploy, retrieve, or maintain a constant line length while effecting a stabilizing influence on the line. This is accomplished by applying a tension to the line which takes into account the instantaneous length of the line, rate of change of the length of the line, and certain constants which vary depending upon the mode of operation, deployment, retrieval, or station keeping.

  4. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  5. Preliminary orbit determination for lunar satellites.

    NASA Technical Reports Server (NTRS)

    Lancaster, E. R.

    1973-01-01

    Methods for the determination of orbits of artificial lunar satellites from earth-based range rate measurements developed by Koskela (1964) and Bateman et al. (1966) are simplified and extended to include range measurements along with range rate measurements. For illustration, a numerical example is presented.

  6. Satellite orbit theory for a small computer

    NASA Astrophysics Data System (ADS)

    Abbot, R. I.; Cefola, P.; Tse, S. F.

    1983-12-01

    This document describes a computer program put onto an LSI-11 microprocessor with 64KB of memory which can provide accurate ephemerides for GPS (Global Positioning System) satellites. The satellite dynamics include averaged orbital element rates due to J2, tesseral resonances, solar radiation pressure and third body perturbations from both the Moon and the Sun. These rates are first integrated up to and across a satellite pass of interest, and a two point Hermitian interpolating polynomial is established for each mean element. Short periodic Fourier coefficients due to J2 and the Moon and Sun are next computed, and three point Lagrangian interpolating polynomials are finally used to provide osculating orbital elements at arbitrary times during the pass. This computer program includes an analytical Lunar/Solar ephemeris so it is self-contained except for input mean orbital elements. Partial derivatives have been implemented which will give the capability to fit observations of the satellites and to consequently obtain the necessary mean elements. The program can be modified quite easily to handle synchronous satellites by modifying the subroutine modules for tesseral resonant perturbations and lunar-solar short-periodics. With the present overlay scheme, considerable expansion of the program is possible to obtain more accuracy and versatility.

  7. History of on-orbit satellite fragmentations

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.; Gabbard, J. R.; Devere, G. T.; Johnson, E. E.

    1984-01-01

    The causes of on-orbit fragmentations are varied and may be intentional or accidental. The cause of many fragmentations remains unknown. While a few cases are currently under investigation as on-orbit collision candidates, man is directly responsible for the vast majority of artificial debris polluting the near-Earth space environment. It should be emphasized that the number of fragments listed with each event in this document represent only those debris officially cataloged by NORAD. Each known on-orbit satellite fragementation is described within this document in module format. Also listed are pertinent characteristics of each fragmentation event. Comments regarding the nature of the satellite and additional details of the events are given.

  8. Assessing Scales of Variability for Constituents Relevant to Future Geostationary Satellite Observations and Models of Air Quality

    NASA Astrophysics Data System (ADS)

    Crawford, J. H.; Ryerson, T. B.; Weinheimer, A. J.; Cohen, R. C.; Diskin, G. S.; Sachse, G. W.; Holloway, J.; Chen, G.

    2009-12-01

    Establishing appropriate specifications for satellite observations of atmospheric composition is a difficult and inexact task since neither models nor field observations can provide both the resolution and spatial coverage required. Despite shortcomings in temporal and spatial coverage, field observations are unique in capturing atmospheric variability on scales down to and below those of satellite observations. Airborne field observations from NOAA and NASA-sponsored field campaigns offer dense observations focused on air quality across North America. Here we use variogram analyses to assess spatial variability in key constituents (NO2, O3, CO, and SO2) for a number of air quality focused field campaigns (ICARTT, TEXAQS2000 and 2006, ARCTAS-CARB). The resulting variograms provide a useful metric for evaluating resolution requirements for future geostationary satellite observations. Variograms also provide an assessment of subgrid variability expected to influence nonlinear ozone photochemistry within air quality models based on a chosen model resolution.

  9. Visible infrared spin-scan radiometers (VISSR) for the Geostationary Operational Environmental Satellite (GOES) B and C application

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two visible infrared spin scan radiometer (VISSR) instruments provided for the Geostationary Operational Environmental Satellite B and C (GOES B and C) spacecrafts are described. The instruments are identical to those supplied previously are summarized. A significant number of changes primarily involving corrections of drawing errors and omissions were also performed. All electrical changes were breadboarded (where complexity required this), were incorporated into the test module, and subjected to verification of proper operation throughout fall instrument temperature range. Evaluation of the changes also included design operating safety margins to account for component variations and life.

  10. Investigation of biomass burning and aerosol loading and transport in South America utilizing geostationary satellites

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Prins, Elaine

    1995-01-01

    This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA

  11. Orbit-spectrum sharing between the fixed-satellite and broadcasting-satellite services with applications to 12 GHz domestic systems

    NASA Technical Reports Server (NTRS)

    Reinhart, E. E.

    1974-01-01

    A systematic, tutorial analysis of the general problem of orbit-spectrum sharing among inhomogeneous satellite system is presented. Emphasis is placed on extrapolating and applying the available data on rain attenuation and on reconciling differences in the results of various measurements of the subjective effects of interference on television picture quality. An analytic method is presented for determining the approximate values of the intersatellite spacings required to keep mutual interference levels within prescribed limits when many dissimilar satellites share the orbit. A computer model was developed for assessing the interference compatibility of arbitrary configurations of large numbers of geostationary satellite systems. It is concluded that the band from 11.7 c GHz can be shared effectively by broadcasting-satellite and fixed-satellite systems. Recommendations for future study are included.

  12. Nexrad-In-Space - A Geostationary Satellite Doppler Weather Radar for Hurricane Studies

    NASA Astrophysics Data System (ADS)

    Im, E.; Chandrasekar, V.; Chen, S. S.; Holland, G. J.; Kakar, R.; Lewis, W. E.; Marks, F. D.; Smith, E. A.; Tanelli, S.; Tripoli, G. J.

    2007-12-01

    The Nexrad-In-Space (NIS) is a revolutionary atmospheric radar observation concept from the geostationary orbiting platform. It was developed over the last 4 years under the auspices of NASA's Earth Science Instrument Incubator Program (IIP). The NIS radar would provide Ka-band (35 GHz) reflectivity and line-of-sight Doppler velocity profiles over a circular Earth region of approximately 5200 km in diameter with a 12-km horizontal resolution, and a minimum detectable signal of 5 dBZ. The NIS radar achieves its superb sampling capabilities by use of a 35-m diameter, deployable antenna made from lightweight membrane material. The antenna has two transmit-receive array pairs that create a dual-beam, spiral-feed combined profile image of both reflectivity and Doppler velocity approximately every 60 minutes. This sampling time can be shortened even further by increasing the number of transmit-receive array pairs. It is generally recognized that the processes important in governing hurricane intensity and structure span a wide range of spatial and temporal scales. The environmental forcing considerations require a large domain. The vortex response to the environmental forcing ultimately involves convection on small horizontal scales in the eyewall and rainband regions. Resolving this environment-vortex-convection feedback in a numerical model requires observations on the space and time scales necessary to unambiguously define these structures within and surrounding the tropical cyclone. Because the time and space scales of these processes are small, continuous 3-dimensional independent observations of the 3-dimensional wind and precipitation structures will be needed to initialize numerical models critical for this purpose. The proposed NIS Doppler radar would be the first instrument capable of accomplishing this feat at time scales less than hours, and would create the opportunity for hurricane science to enter a new era of understanding and improved prediction. This

  13. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  14. Satellite orbits design using frequency analysis

    NASA Astrophysics Data System (ADS)

    Noullez, A.; Tsiganis, K.; Tzirti, S.

    2015-07-01

    We present here a new method for the efficient computation of periodic orbits, which are of particular interest for low-altitude satellite orbits design in high degree/order, non-axisymmetric gravity models. Our method consists of an iterative filtering scheme, that is itself based on 'Prony's method' of frequency analysis, and is independent of the complexity of the gravity model. Applying this method to the case of a low-altitude lunar orbiter, we show that it converges rapidly, in all models and for all values of altitude and initial inclination studied. Thus, as demonstrated below, one could use it to correct the initial conditions of a desired mission orbit - usually defined within the framework of a simplified model (e.g. the 'J2 problem') - ensuring minimal orbital eccentricity variations and, for very low altitudes, collision avoidance. At the same time, an accurate quasi-periodic decomposition of the orbit is computed, giving a measure of the periodic fluctuations of the orbital parameters.

  15. Nodding feed antenna for communications with satellites in synchronous orbit

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Zavesky, R.

    1978-01-01

    The design, fabrication, and performance of a parabolic, ground receiving antenna system with a feed that nods in one axis producing a maximum beam deviation 1.1 deg from boresight is described. The antenna design was: (1)to lower the weight (and the subsequent cost) of the supporting structure and the actuator motors for a tracking antenna by moving just the feed; (2) to use a manual tracking system eliminating the need for expensive electronic controls or computers; (3) to provide for several hours of unattended operation; and (4)to permit operation of the antenna by unskilled personnel. Also described are some physical and orbital phenomenon that effect the operation or design of the antenna. One is the motion of a nearly geostationary satellite due to gravitational forces from the sun, the moon, and other stellar bodies. Others are the rotation of the nodding axis and the feed polarization as a function of the location of the station on the earth. A comparison of per unit cost was made for one unit and a quantity of 100.

  16. Ionospheric Pc5 plasma oscillations observed by the King Salmon HF radar and their comparison with geomagnetic pulsations on the ground and in geostationary orbit

    NASA Astrophysics Data System (ADS)

    Sakaguchi, K.; Nagatsuma, T.; Ogawa, T.; Obara, T.; Troshichev, O. A.

    2012-03-01

    We analyzed Pc5 (1.7-6.7 mHz) oscillations of ionospheric Doppler plasma velocity observed on a westward pointing beam 3 of the SuperDARN King Salmon HF radar in Alaska during the solar maximum in 2002 and the minimum in 2007. Local time distributions of the ionospheric Pc5 oscillations showed peculiar asymmetric characteristics in both years; that is, the occurrence probability had a maximum around the magnetic midnight, whereas backscatter echoes exhibited almost no oscillation on the dayside. We compared these ionospheric Pc5 events with magnetic field variations on the ground under the radar beam at Pebek and King Salmon and the geostationary ETS-8 satellite at almost conjugate longitude. We found only a few nightside events where both the radar and magnetometers detected similar sinusoidal oscillations. On the other hand, from statistical spectral analyses we found that there were positive correlations between the integrated Pc5 range spectral power of velocity oscillations and the geomagnetic pulsations both on the ground and in geostationary orbit although the pulsation powers were quite low. For these ionospheric Pc5 events, we found that both solar wind bulk flow speed and dynamic pressure showed no correlation with the spectral power and more than half of the Pc5 events were observed when the geomagnetic activities were low as inferred from the AE and Dst indices. These results indicate that the azimuthal Pc5 oscillation in the ionospheric plasma flow does not represent well-known characteristics of Pc5 pulsations driven by solar wind changes. We consider that the nightside occurrence peak of the ionospheric Pc5 oscillation might be related to diurnal changes in the ionospheric conductivity, which controls the amplitude of wave electric fields in the ionosphere. Therefore, the Pc5 wave power distributions obtained by radar observations provide features different from those obtained from magnetic field observations.

  17. Estimation of SW radiation budget using geostationary satellites and quasi-real-time monitoring of PV power generation

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Inoue, T.; Takamura, T.; Pinker, R. T.; Teruyuki, N.

    2012-12-01

    Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to five geostationary satellites for global analysis. There are validated by SKYNET and BSRN ground observation data. The analysis results showed a distinctive trend of direct and diffuse component of surface SW fluxes in North Pacific and North Atlantic ocean. Similarly, developed algorithm is applied to quasi-real time analysis synchronous to geostationary satellite observation. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. It indicates the possibility of the fusion analysis of climate study and renewable energy.

  18. Organization of space navigation system based on use of geostationary satellites

    NASA Astrophysics Data System (ADS)

    Abdullayev, V. E.

    1985-09-01

    The modern navigation problem is inseparably related to the need for constant and operational support of the navigational personnel with meteorological, navigational and other types of information which could not possibly be provided without use of radio communications. The determination of a ship's position by such fundamental methods as observation of celestial bodies, the use of every possible radioelectronic and radar apparatus, is well known and has been developed in the form of an independent science called marine astronomy. However, with the appearance of present-day requirements, taking into account the high speeds of modern ships when there is a need at all times for reliable information on their position with an accuracy to a meter, all known marine astronomy methods are becoming greatly outmoded. Space navigation systems based on the Doppler method for determining the position of a ship by satellites moving in different circular orbits have good accuracy characteristics. However, a shortcoming of such systems is that the navigationl devices of a ship provide a correction of its position only in the period of presence of the transiting satellite in the zone of radiovisibility. For example, for the American Transit navigational system the mean time between observations at the equator is approximately 1.2 hours.

  19. A feasibility study for the detection of the diurnal variation of tropospheric NO2 over Tokyo from a geostationary orbit

    NASA Astrophysics Data System (ADS)

    Noguchi, Katsuyuki; Richter, Andreas; Bovensmann, Heinrich; Hilboll, Andreas; Burrows, John P.; Irie, Hitoshi; Hayashida, Sachiko; Morino, Yu

    2011-11-01

    We have conducted a feasibility study for the geostationary monitoring of the diurnal variation of tropospheric NO2 over Tokyo. Using NO2 fields from a chemical transport model, synthetic spectra were created by a radiative transfer model, SCIATRAN, for summer and winter cases. We then performed a Differential Optical Absorption Spectroscopy (DOAS) analysis to retrieve NO2 slant column densities (SCDs), and after converting SCDs into vertical column densities (VCDs), we estimated the precision of the retrieved VCDs. The simulation showed that signal-to-noise ratio (SNR) ⩾ 500 is needed to detect the diurnal variation and that SNR ⩾ 1000 is needed to observe the local minimum occurring in the early afternoon (LT13-14) in summer. In winter, the detection of the diurnal variation during LT08-15 needs SNR ⩾ 500, and SNR ⩾ 1000 is needed if early morning (LT07) and early evening (LT16) are included. The currently discussed sensor specification for the Japanese geostationary satellite project, GMAP-Asia, which has a horizontal resolution of 10 km and a temporal resolution of 1hr, has demonstrated the performance of a precision of several percent, which is approximately corresponding to SNR = 1000-2000 during daytime and SNR ⩾ 500 in the morning and evening. We also discuss possible biases caused by the temperature dependence of the absorption cross section utilized in the DOAS retrieval, and the effect of uncertainties of surface albedo and clouds on the estimation of precisions.

  20. Combined system for the compensation of the solar pressure-induced disturbing torque for geostationary satellites

    NASA Astrophysics Data System (ADS)

    Shmatov, S. I.; Mordvinkin, A. S.

    2014-12-01

    The problem is considered of determining the shape and dimensions of the passive component in a combined system for offsetting the solar pressure-induced disturbing torque for geostationary spacecraft with asymmetrical solar arrays. The problem statement, numerical solution algorithm, and calculated results are presented. The resulting shape, the study suggests, not only has the required compensation properties but is also the most efficient from the standpoint of manufacture and functional reliability.

  1. Medium Earth Orbit (MEO) as an operational observation venue for NOAA's post GOES-R environmental satellites

    NASA Astrophysics Data System (ADS)

    Gerber, Andrew J., Jr.; Tralli, David M.; Bajpai, Shyam N.

    2005-01-01

    Today most operational Earth observing satellites reside in low Earth orbits (LEO) at less than 1,000 km altitude, and in geostationary Earth orbits (GEO) at ~35,800 km altitude. These orbits have been the venues of choice for observations, albeit for very different reasons. LEO provides high spatial resolution with low temporal resolution while GEO provides for low spatial resolution, but high temporal resolution. NOAA utilizes both venues for their environmental satellites. The NOAA Polar-orbiting Operational Environmental Satellites (POES) reside in LEO Sun synchronous orbits at approximately 830 km in altitude, as do the Defense Meteorological Satellite Program (DMSP) satellites of the Department of Defense. In the near future the POES and DMSP satellites will be merged into a new satellite system referred to as the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The NOAA Geostationary Operational Environmental Satellite (GOES) system, as the name specifies, resides at the other preferred observational venue of GEO. The Jet Propulsion Laboratory (JPL), under contract to NOAA, has been studying the characteristics of medium Earth orbits (MEO), at altitudes between 1000 and 35,800 km, as an observation venue to answer the question as to whether MEO might capture the attributes of the two traditional venues. This on-going study initially focused on determining the optimal altitude for MEO observations, through numerous trade studies involving altitude, instrument complexity, coverage, radiation environment, data temporality, revisit time, data rates, downlink requirements and other parameters including cost and launch complexity. Once the optimal altitude of 10,400 km had been determined the study proceeded to explore single through multiple MEO satellite constellation performance capabilities using two instrument types, a visible through infrared (IR) imager and IR sounder as the satellites" payload. The MEO performance capabilities

  2. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    NASA Technical Reports Server (NTRS)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  3. Orbits of the six new satellites of Neptune

    NASA Astrophysics Data System (ADS)

    Owen, W. M.; Vaughan, R. M.; Synnott, S. P.

    1991-04-01

    Orbital elements are presented for the six small satellites of Neptune, 1989N1 through 1989N6, discovered by Voyager 2. Details of the image and orbit analyses are examined. The solution for the orbits of the six satellites is presented in terms of geometric classical Keplerian elements. All six are in nearly circular direct orbits; most of the satellites have low inclinations, except the innermost, 1989N6, which is inclined at 4.7 deg to Neptune's equator.

  4. A mission to preserve the geostationary region

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Martin, C.; Kassebom, M.; Petersen, H.; Shaw, A.; Skidmore, B.; Smith, D.; Stokes, H.; Willig, A.

    2004-01-01

    The RObotic Geostationary orbit Restorer, ROGER, is a programme aimed at reducing the risk to satellite operations posed by the existence of failed and spent satellites and other categories of space debris. To achieve this, the concept of mass removal by an intervention mission is considered for the GEO region. This paper describes the results of studies into the level of risk posed at present and in the near future to GEO assets. It also investigates practical means for re-orbiting objects that can no longer be manoeuvred away from the operational GEO region by ground command.

  5. Evaluation of geostationary satellite observations and the development of a 1-2 h prediction model for future storm intensity

    NASA Astrophysics Data System (ADS)

    Mecikalski, John R.; Rosenfeld, Daniel; Manzato, Agostino

    2016-06-01

    A study was conducted to gain insights into the use of geostationary satellite-based indicators for characterizing and identifying growing cumulus clouds that evolve into severe weather producing convective storms. Eleven convective initiation (CI), 41 cloud top temperature-effective radius (T-re), and 9 additional fields were formed for 340 growing cumulus clouds that were manually tracked for 2 h and checked for association with severe weather to 2-3 h into the future. The geostationary satellite data were at 5 min resolution from Meteosat-8 on six convectively active days in 2010, 2012, and 2013. The study's goals were to determine which satellite fields are useful to forecasting severe storms and to form a simple model for predicting future storm intensity. The CI fields were applied on 3 × 3 pixel regions, and the T-re fields were analyzed on 9 × 9 and 51 × 51 pixel domains (needed when forming T-re vertical profiles). Of the 340 growing cumulus clouds examined, 34 were later associated with severe weather (using European Severe Weather Database reports), with the remaining being nonsevere storms. Using a multivariate analysis, transforming predictors into their empirical posterior probability, and maximizing the Peirce skill score, the best predictors were T1451 (51 × 51 pixel T, where re exceeds 14 µm), TG9 (9 × 9 pixel glaciation T surrounding a growing cloud), and ReBRTG51 (51 × 51 pixel re at the breakpoint T in the T-re profile). Rapid cloud growth prior to severe storm formation leads to delayed particle growth, colder temperatures of the first 14 µm particles, and lower TG values.

  6. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Sojin; Song, Chul-han; Park, Rae Seol; Park, Mi Eun; Han, Kyung man; Kim, Jhoon; Choi, Myungje; Ghim, Young Sung; Woo, Jung-Hun

    2016-04-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers a part of Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semicontinuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatiotemporal-kriging (STK) method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages in using the STK method in this study is that more observed AOD data can be used to prepare the best initial AOD fields compared with other methods that use single frame of observation data around the time of initialization. It is demonstrated in this study that the short-term PM forecast system developed with the application of the STK method can greatly improve PM10 predictions in the Seoul metropolitan area (SMA) when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ˜ 60 and ˜ 70{%}, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC (particle-into-liquid sampler coupled with ion chromatography) and low air-volume sample

  7. Development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, S.; Song, C. H.; Park, R. S.; Park, M. E.; Han, K. M.; Kim, J.; Choi, M. J.; Ghim, Y. S.; Woo, J.-H.

    2015-07-01

    To improve short-term particulate matter (PM) forecasts in South Korea, the initial distribution of PM composition, particularly over the upwind regions, is primarily important. To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color Imager) which covers Northeast Asia (113-146° E; 25-47° N), were used. Although GOCI can provide a higher number of AOD data in a semi-continuous manner than low Earth orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not available at cloud pixels and over high-reflectance areas, such as desert and snow-covered regions. To overcome this limitation, a spatio-temporal (ST) kriging method was used to better prepare the initial AOD distributions that were converted into the PM composition over Northeast Asia. One of the largest advantages to using the ST-kriging method in this study is that more observed AOD data can be used to prepare the best initial AOD fields. It is demonstrated in this study that the short-term PM forecast system developed with the application of the ST-kriging method can greatly improve PM10 predictions in Seoul Metropolitan Area (SMA), when evaluated with ground-based observations. For example, errors and biases of PM10 predictions decreased by ~ 60 and ~ 70 %, respectively, during the first 6 h of short-term PM forecasting, compared with those without the initial PM composition. In addition, the influences of several factors (such as choices of observation operators and control variables) on the performances of the short-term PM forecast were explored in this study. The influences of the choices of the control variables on the PM chemical composition were also investigated with the composition data measured via PILS-IC and low air-volume sample instruments at a site near Seoul. To improve the overall performances of the short-term PM forecast system

  8. COSPAS-SARSAT Satellite Orbit Predictor, Vol 4

    NASA Technical Reports Server (NTRS)

    Friedman, Morton L.; Garrett, James, Major

    1984-01-01

    The satellite orbit predictor is a graphical aid for determining the relationship between the satellite (SARSAT or COSPAS) orbit, antenna coverage of the spacecraft and coverage of the LUTs. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite. Additionally, a table of equator crossings for each satellite is included.

  9. COSPAS-SARSAT Satellite Orbit Predictor. Volume 3

    NASA Technical Reports Server (NTRS)

    Friedman, Morton L.; Garrett, James

    1984-01-01

    The satellite orbit predictor is a graphical aid for determining the relationship between the satellite (SARSAT or COSPAS) orbit, antenna coverage of the spacecraft and coverage of the LUTs. The predictor allows the user to quickly visualize if a selected position will probably be detected and is composed of a base map and a satellite track overlay for each satellite. Additionally, a table of equator crossings for each satellite is included.

  10. Orbit determination and time synchronization for a GEO/IGSO satellite navigation constellation with regional tracking network

    NASA Astrophysics Data System (ADS)

    Zhou, ShanShi; Hu, XiaoGong; Wu, Bin; Liu, Li; Qu, WeiJing; Guo, Rui; He, Feng; Cao, YueLing; Wu, XiaoLi; Zhu, LingFeng; Shi, Xin; Tan, HongLi

    2011-06-01

    Aiming at regional services, the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO), Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations. Independent time synchronization (TS) system is developed to supplement the regional tracking network, and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data. Consequently, inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy. On the other hand, POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated. Notorious example of correlation is found between GEO's orbital elements and its clock errors. We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy, with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency. Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE), which is the orbital error projected on a receiver's line-of-sight direction. Two-way radio-wave time transfer measurements are used to evaluate clock errors. Experimenting with data from the regional tracking network, we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS), and fitting of carrier phase is better than 1 cm. For orbital evaluation, difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS). For clock estimates evaluation, 2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s

  11. Long-term analysis of clear sky at astronomical sites: a comparison between polar and geostationary satellites

    NASA Astrophysics Data System (ADS)

    Cavazzani, S.; Zitelli, V.; Ortolani, S.

    2015-09-01

    In this paper, we analyse three sites of great astronomical importance: Mt Graham, Paranal and La Silla. In recent years, with the development of new telescopes, the study of cloud cover is getting more and more important for the selection of new sites as well as for the development of existing telescopes. At the moment there is discussion on the techniques used to study climatic conditions. We have mainly two large data sets: satellite data and ground data. The two sets have advantages and disadvantages. We study in detail the various data available and we compare these data and analyse the correlations between them. In particular, we focus on the long-term statistics for the trends in climate change. We use two satellites: GOES (Geostationary Operational Environmental Satellite) and Aqua. In particular, we use the GOES camera data and MODIS (Moderate Resolution Imaging Spectroradiometer) data, which is a key instrument aboard the Aqua satellite. Finally, we use the heliograph ground data of the Columbine weather station to validate the two families of satellite data. The use of such data allows a mutual validation of the results, which allows the analysis to be extended to other sites. We obtained a mean night cloud cover for the 10 yr analysed (2003-2012) of 12 per cent at Paranal, 22 per cent at La Silla and 37 per cent at Mt Graham. We also get a punctual correlation of 96 per cent between the two satellites and of 92 per cent between the satellite and the heliograph data at Mt Graham for 2009.

  12. Orbit-spectrum sharing between the fixed-satellite and broadcasting-satellite services at 12 GHz

    NASA Technical Reports Server (NTRS)

    Reinhart, E. E.

    1974-01-01

    This paper identifies and evaluates strategies for sharing the geostationary orbit in the band 11.7 to 12.2 GHz between domestic systems in the fixed-satellite and broadcasting-satellite services. The effectiveness of two distinct types of sharing strategies, referred to as spectrum division and orbit division, is determined for various deployments of selected baseline systems representing the two services and for various combinations of sharing tactics such as frequency interleaving, crossed-polarization operation, and crossed-beam operation. Effectiveness is measured by the 'utilization factor', defined as the number of channels provided by the baseline systems when using an assigned share of the orbit-spectrum resource, relative to what they could provide if given the entire resource. Computer simulation is used to verify the intra- and interservice interference compatibility of the assumed deployments. It is concluded that total utilization factors close to 100 percent can be achieved with both spectrum-division and properly-chosen orbit-division strategies.

  13. Orbital evolution of the main Uranian satellites

    NASA Astrophysics Data System (ADS)

    Verheylewegen, E.; Noyelles, B.

    2011-10-01

    Since Voyager 2 space mission, we know some properties of the main Uranian satellites (Miranda, Ariel, Umbriel, Titania, Oberon): on the one hand, we observe an important resurfacing of both Miranda and Ariel, and on the other hand some strangenesses in the orbital elements such as the anomalously high inclinaison of Miranda or the anomalously high eccentricity of Ariel. The aim of this study is to use some modern methods including advances in computing resources to revise some studies developed in the last 20 years (see for instance [1], [2], [3], [4]). We therefore consider a model of a n-body problem which takes into account of the mutual perturbations of the five main satellites and of the planet Uranus and meet/improve some previous results.

  14. ESTIMATE OF SOLAR MAXIMUM USING THE 1-8 Å GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES X-RAY MEASUREMENTS

    SciTech Connect

    Winter, L. M.; Balasubramaniam, K. S.

    2014-10-01

    We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 Å band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averaged maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.

  15. Cost competitive space transportation system for geostationary payloads

    NASA Technical Reports Server (NTRS)

    Jones, C. R.

    1976-01-01

    A geostationary satellite system designer will have a number of launch vehicles to consider in the system designs for the 1980s. The Space transportation System (the shuttle orbiter plus upper stage) offers the opportunity for lower system cost in comparison with the expendable launch vehicles. An analysis of a spin stabilized solid rocket motor stage has demonstrated the feasibility of this upper stage concept. A cost competitive Space Transportation System (STS) for geostationary payloads is made possible by achievement of the STS cost goals, multiple launch from the STS orbiter, and a user-provided spin stabilized upper stage.

  16. A new method for satellite orbit determination using an operational worldwide transponder network

    NASA Technical Reports Server (NTRS)

    Lynn, J. J.; Schmid, P. E.; Anderson, R. E.

    1974-01-01

    The method utilizes computer programs developed for the forthcoming ATS-F/NIMBUS-F tracking and data relay experiment where the basic tracking measurements are multiple path round-trip propagation times and rates. This method of orbit computation has recently been successfully evaluated by tracking a geostationary satellite (ATS-3) using an existing VHF (150 MHz) network of automatic transponders. A master station sequentially interrogates each transponder via the ATS-3. The master site is located at Schenectady, N. Y. and four automatic transponders were located at Shannon, Reykajavik, Buenos Aires, and Seattle respectively. Data at hourly intervals were collected during a 24 hour period on April 18-19, 1973. After correcting this data for known systematic errors it was provided as input to an orbit determination program where all satellite motions during signal propagation are rigorously accounted for. The resulting estimated ATS-3 orbit yielded observational residuals on the order of 100 meters. By using more than one satellite the present scheme is further capable of accurately locating several stationary or mobile terminals as part of the overall orbital solution.

  17. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  18. Use of geostationary satellite imagery in optical and thermal bands for the estimation of soil moisture status and land evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.

    2009-04-01

    For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary

  19. Jupiter orbiter lifetime: The hazard of Galilean satellite collision

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.

    1975-01-01

    The four Galilean satellites of Jupiter present a long-term collision hazard to an uncontrolled orbiting spacecraft that repeatedly enters the spatial region occupied by the satellites. Satellite close encounters and the likelihood of collision over a wide range of initial orbit conditions were analyzed. The effect of orbit inclination was of key interest. The scope of the analysis was restricted to orbital dynamic considerations alone, i.e. the question of biological contamination given the event of collision was not considered. A quarantine or orbiter lifetime of 50 years was assumed. This time period begins at spacecraft shutdown following completion of the mission objectives. A numerical approach was adopted wherein each initial orbit is propagated for 50 years, and satellite closest encounter distances recorded on every revolution. The computer program includes approximations of the three major perturbation effects on the long-term motion of the orbiter: (1) Jupiter oblateness, (2) solar gravity, and (3) satellite gravity.

  20. Communications satellites - Orbiting into the '90s

    NASA Astrophysics Data System (ADS)

    Campanella, S. Joseph

    1990-08-01

    Engineering advances in satellite communications are discussed, including sophisticated switchboards, narrow beams, source coding for higher-capacity networks, and the use of higher- and lower-frequency bands and lower orbits. One of the most popular new 14/11-14/12-GHz commercial services has been time-division multiplexing of multiple carriers operating at low to medium bit rates. Multiple-carrier, low-burst-rate TDMA is widely used with VSATs on the customer's premises. NASA's ACTS and Italy's Italsat both plan to use signal regeneration at 30/20 GHz. Onboard switching and multiplexing minimize noise, boost power, but also trim the cost of the entire satellite network. Phone calls and voiceband data are now often carried over satellite circuits and by cable beneath the ocean by adaptive differential pulse-coded modulation (ADPCM). When this technique at 32 kb/s is combined with digital speech interpolation, circuits can carry 4-5 times as many channels as with conventional 64-kb/s pulse-coded transmission.

  1. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    SciTech Connect

    Schmetz, J.; Menzel, W.P.; Hayden, C.

    1995-09-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meterological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160{degrees}W to 50{degrees}E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-{mu} absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about -5 x 10{sup -6} and 5 x 10{sup -6} sec{sup -1} when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. 21 refs., 5 figs.

  2. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize

  3. NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; Chang, Fu-Lung; Smith, William L, Jr.

    2006-01-01

    At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

  4. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  5. Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites.

    NASA Astrophysics Data System (ADS)

    Papushev, P.; Karavaev, Y.; Vishina, M.

    The contribution is devoted to the analysis of results of research of the dynamic phenomena during rotation uncontrolled geostationary satellites The opportunity of research of the spacecrafts technical condition and its launching facility is considered Researches are based on comparison of observable and simulated light curves for SC with a known design The studies are focuses on the analysis of the light curves of the spacecrafts S C after the termination of the active operation The data result from the long period of the observation in the Sayan mountain observatory of ISTP SB RAS A classification of the periods of the SC rotation changes on the basis of an available observational data 20 GEO satellites is carried out The description of methods and instruments used for acquisition of light curves as well as the review of the material observed will be considered The evidence demonstrates that the light curves of all uncontrolled S C have the periodical structure and the features specific for every satellite The analysis of rotation period change of uncontrolled S C has pointed to the peculiarities of their behavior connected both to their interaction with outer environment and inner processes in S C Selected S C s demonstrates fluctuations of the periods in the range from a few seconds to a few minutes The results of the temporal-frequency analysis of light curves which has been carried out in order to identify the proper periods of a satellite rotation and the dynamics of their change with time Physical mechanisms of changes are

  6. Calculation of precision satellite orbits with nonsingular elements /VOP formulation/

    NASA Technical Reports Server (NTRS)

    Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.

    1974-01-01

    Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.

  7. Sentinels in the Sky: Weather Satellites.

    ERIC Educational Resources Information Center

    Haynes, Robert

    This publication describes forecasting weather activity using satellites. Information is included on the development of weather satellites, the National Oceanic and Atmospheric Administration (NOAA) Satellite System (including the polar-orbiting satellites), and the Geostationary Operational Environmental Satellite (GOES). The publication…

  8. Measurements of SEU and total dose in geostationary orbit under normal and solar flare conditions

    SciTech Connect

    Adams, L.; Daly, E.J.; Harboe-Sorensen, R. ); Holmes-Siedle, A.G. ); Ward, A.K.; Bull, R.A. )

    1991-12-01

    The Meteosat-3 Radiation Effects Experiment includes two 256 Kbit SRAMs configured for SEU detection and a RADFET array for dose measurement. SEU rates and doses are enhanced during solar flares. In this paper two years of orbital data are compared with ground tests and prediction.

  9. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  10. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  11. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  12. Circumnutations of sunflower hypocotyls in satellite orbit

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Lewis, R. F.; Venditti, A. L.

    1990-01-01

    The principal objective of the research reported here was to determine whether a plant's periodic growth oscillations, called circumnutations, would persist in the absence of a significant gravitational or inertial force. The definitive experiment was made possible by access to the condition of protracted near weightlessness in an earth satellite. The experiment, performed during the first flight of Spacelab on the National Aeronautics and Space Administration shuttle, Columbia, in November and December, 1983, tested a biophysical model, proposed in 1967, that might account for circumnutation as a gravity-dependent growth response. However, circumnutations were observed in microgravity. They continued for many hours without stimulation by a significant g-force. Therefore, neither a gravitational nor an inertial g-force was an absolute requirement for initiation [correction of initation] or continuation of circumnutation. On average, circumnutation was significantly more vigorous in satellite orbit than on earth-based clinostats. Therefore, at least for sunflower (Helianthus annuus L.) circumnutation, clinostatting is not the functional equivalent of weightlessness.

  13. On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of northern hemisphere geostationary satellites: Global scale assimilation experiments (Part II)

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey

    2016-09-01

    This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.

  14. Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.; Alfano, S.

    2006-05-01

    While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.

  15. Stereographic cloud heights from the imagery of two scan-synchronized geostationary satellites

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Teagle, R. D.; Steranka, J.; Shenk, W. E.

    1979-01-01

    Scan synchronization of the sensors of two SMS-GOES satellites yields imagery from which cloud heights can be derived stereographically with a theoretical two-sigma random uncertainty of + or - 0.25 km for pairs of satellites separated by 60 degrees of longitude. Systematic height errors due to cloud motion can be kept below 100 m for all clouds with east-west components of speed below hurricane speed, provided the scan synchronization is within 40 seconds at the mid-point latitude, and the spin axis of each satellite is parallel to that of the earth.

  16. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    SciTech Connect

    Hwang, Ho Seong; Park, Changbom E-mail: cbp@kias.re.k

    2010-09-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z < 0.03 that contain 8904 satellite galaxies. Using this sample, we construct a catalog of 635 satellites associated with 215 host galaxies whose spin directions are determined by our inspection of the SDSS color images and/or by spectroscopic observations in the literature. We divide satellite galaxies into prograde and retrograde orbit subsamples depending on their orbital motion with respect to the spin direction of the host. We find that the number of galaxies in prograde orbit is nearly equal to that of retrograde orbit galaxies: the fraction of satellites in prograde orbit is 50% {+-} 2%. The velocity distribution of satellites with respect to their hosts is found to be almost symmetric: the median bulk rotation of satellites is -1 {+-} 8 km s{sup -1}. It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R < 0.1r{sub vir,host}), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through

  17. Lithium-Ion Battery Performance On Board Geostationary And Lunar Orbiter NASA Missions- SDO And LRO

    NASA Astrophysics Data System (ADS)

    Curzon, David; Thwaite, Carl; Buckle, Rachel

    2011-10-01

    ABSLSpace Products have worked together with NASA GSFC to build both the 120Ah LRO and the 150Ah SDO Battery modules. ABSL have used in- house software tools to perform analysis of the battery size to optimize performance. The battery units have been successfully launched into orbit and are meeting all performance requirements. ABSL have also carried out real time life tests based on the simulated mission profile for both projects. ABSL has now correlated the information from the life tests results and the in orbit telemetry data to provide a status of battery health and inputs for system operations and potential for mission extension. This paper provides details of the process applied, and the options available for system optimization.

  18. Global Timing With Low- and High-Orbiting Satellites

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Ondrasik, V. J.

    1986-01-01

    Report summarizes method for synchronizing clocks at intercontinental distances employing satellites of Global Positioning System (GPS) in high Earth orbit and transit satellite in orbit at relatively low altitude of about 1,300 km. When fully implemented, method expected to supply precise time measurements for world-wide communication and navigation.

  19. Observing Tropospheric Chemistry and Climate Variables from Geostationary Orbit With SIRAS-G

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Kampe, T. U.

    2005-12-01

    Understanding the impact of pollution on regional, continental, and global scales imposes unique challenges for spaceborne observations. The variability in tropospheric chemistry, source strengths, and transport results in sub-hourly temporal variation, and produces small-scale variations in the vertical and horizontal distribution of trace gases. Current spaceborne observation from low earth orbit have demonstrated the capability to measure tropospheric trace gases from space but are limited to a twice daily observation. Improving the depiction of diurnal variations requires observations from geosynchronous orbit. The Spaceborne Infrared Atmospheric Sounder from Geosynchronous Earth Orbit (SIRAS-G) is being developed under the NASA Instrument Incubator Program to meet this need. SIRAS-G will enable high temporal, spatial, and spectral resolution observations of temperature, water, ozone, aerosol, cloud and surface properties, and important trace gas concentrations such as CO, CH4, N2O and SO2. The spaceborne instrument concept measures thermal emission in 2048 spectral channels over the wavelength range from 3.75 to 15 microns with a nominal resolving power of 1400. The constraints imposed on instrument mass, power and volume by a geosynchronous mission drives the instrument design toward more compact, and less complex optical systems. The system employs a wide field-of-view hyperspectral infrared optical system that splits incoming radiation to four separate grating spectrometer channels. Combined with large 2-D infrared detector arrays, this system provides simultaneous high-resolution spectral and spatial imaging over a large region with a nominal 4x4 km ground resolution. The longer observation times from geosynchronous orbit enable the necessary high signal to noise. However, the longer integration time makes the sensor more sensitive to slowly varying platform motion or mechanical disturbances generated by the instrument or spacecraft subsystems. This leads

  20. Geostationary satellite position determination for common-view two-way time transfer measurements

    NASA Technical Reports Server (NTRS)

    Zhuang, Qixiang; Douglas, Robert J.

    1992-01-01

    In common-view two-way time transfer, each earth station receives an unwanted return signal from its own transmission as well as the desired signal from the other earth station. National Institute of Standards and Technology (NIST), the National Research Council (NRC), and the U.S. Naval Observatory (USNO) have been cooperating in a three-corner common-view two-way time transfer experiment. Some systematic effects are known to depend on the position of the satellite (Sagnac effect and the cross-correlation pulling of the pseudo-random codes). A method is presented for deriving accurate satellite ranges from each of three stations doing common-view two-way satellite time transfer measurements, when one (and only one) station also takes ranging measurements on its 'unwanted return signal' for a brief period. The method is applied to determine the variations in position of the satellite used over the course of the NIST/NRC/USNO SBS-3 experiment, with ranging data taken at NRC, where no additional hardware was required to automate the process. The fit and extrapolation which are employed in this method have an estimated precision of 2 m. If the delays of SBS-3 satellite KU band transponder and earth station equipment were measured accurately as well as the tropospheric refractions were well modeled and corrected, we would expect a ranging accuracy of 2.5 m and satellite positioning accuracy would be 200 m (latitude) 50 m (longitude) and 20 m (height above ellipsoid).

  1. Considerations relating to geostationary intersatellite links

    NASA Astrophysics Data System (ADS)

    Weiss, H. J.

    Factors affecting the frequency reuse potential of geostationary intersatellite links and their impact on orbit spectrum utilization efficiency are discussed. The use of such links may be to interconnect widely separated earth stations, to alleviate satellite orbit location constraints, and to permit international programs exchange. The links offer high reuse potential and may accommodate several hundred intersatellite links within acceptable interference bonds. It is found that reuse potential is improved by a high sidepole discrimination and low orbit ellipticals, resulting in the highest orbit spectrum utilization efficiency. In addition, interleaving is not possible in short links with codirectional frequency assignments, but higher antenna discrimination and lower orbit ellipticity allow the smallest possible link length. It seems that a maximum antenna beamwidth for links and maximum orbit eccentricity for space stations are worth developing.

  2. Intersatellite beam pointing by means of onboard satellite orbit calculation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masato; Kimura, Sigeru; Ito, Takeo; Shinmura, Hiroshi; Akaishi, Akira

    This paper presents the method of orbit calculation, the hardware, and the packaging for the system of intersatellite beam pointing by means of on-board satellite orbit calculations, developed for the S-band intersatellite commmunications (SIC) equipment of the Engineering Test Satellite-IV. The results of the analysis show that the intersatellite beam-pointing system allows continuous tracking of a low-altitude (200-2000 km) satellite over 12 hours; tracking for more than 12 hours will be available for a satellite with a circular polar orbit. The algorithm and the operational sequence of the beam-pointing system are described.

  3. Orbits of the ten small satellites of Uranus

    SciTech Connect

    Owen, W.M. Jr.; Synnott, S.P.

    1987-05-01

    Orbital elements are presented for the ten small satellites discovered by Voyager 2 at Uranus. These ten new satellites, whose provisional IAU designations are 1985UI and 1986UI through 1986U9, lie for the most part in equatorial, circular orbits; the most notable exception is 1986U8, the outer epsilon-ring shepherd, whose eccentricity e = 0.0101. Unlike the Voyager discoveries at Saturn, which included two co-orbiting satellites and three librators, the ten small Uranian satellites all have quite different semimajor axes. 11 references.

  4. Orbit Modelling for Satellites Using the NASA Prediction Bulletins

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Koch, D. W.; Maslyar, G. A.; Foreman, J. C.

    1976-01-01

    For some satellites the NASA Prediction Bulletins are the only means available to the general user for obtaining orbital information. A computational interface between the information given in the NASA Prediction Bulletins and standard orbit determination programs is provided. Such an interface is necessary to obtain accurate orbit predictions. The theoretical considerations and their computational verification in this interface modelling are presented. This analysis was performed in conjunction with satellite aided search and rescue position location experiments where accurate orbits of the Amateur Satellite Corporation (AMSAT) OSCAR-6 and OSCAR-7 spacecraft are a prerequisite.

  5. Coordinated study of scintillations recorded by Chinese FY-2 geostationary meteorological satellite and VHF coherent radar observations over south china

    NASA Astrophysics Data System (ADS)

    Zuo, Xiaomin; Yu, Tao; Xia, Chunliang; Huang, Jiang; Xu, Jie

    2016-09-01

    The first scintillation observations of Chinese FY-2 geostationary meteorological satellite (86.5°E) observed at Guangzhou (23.2°N, 113.3°E, dip 18°N) and simultaneous VHF (47.5 MHz) coherent radar measurements from Sanya (18.3°N, 109.6°E, dip 13°N) during equinoctial months of 2011 and 2012 have been presented here. The observations are used for a coordinated study for the relationship between the L-band scintillation patches on the propagation path of FY-2 satellite and the extended 3-m irregularity structures known as plumes over South China. The statistical results showed that the plumes and the scintillation patches have nearly a one-to-one correspondence. In case study, the zonal drift velocity of the irregularities was estimated by comparison of the onset times of the scintillation and plume and the irregularities were found to drift eastwards at a speed ranging about tens of meters to one hundred meters per second. From the derived value of drift speed and duration of scintillation events, the irregularity patches were found to have east-west extent about a few hundred kilometers. On the other hand, the scintillation did not always occur following the appearance of plume which might be due to the associated irregularities occurring at lower altitudes failing to reach the region of the ionosphere through which the satellite to ground link passes. In addition, weak scintillations were observed on FY-2 link without any plume structure on radar backscatter maps occasionally.

  6. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  7. An orbit determination from debris impacts on measurement satellites

    NASA Astrophysics Data System (ADS)

    Fujita, Koki; Tasaki, Mitsuhiko; Furumoto, Masahiro; Hanada, Toshiya

    2016-01-01

    This work proposes a method to determine orbital plane of a micron-sized space debris cloud utilizing their impacts on measurement satellites. Given that debris impacts occur on a line of intersection between debris and satellites orbital planes, a couple of debris orbital parameters, right ascension of the ascending node, inclination, and nodal regression rate can be determined by impact times and locations measured from more than two satellites in different earth orbits. This paper proves that unique solution for the debris orbital parameters is obtained from the measurement data, and derives a computational scheme to estimate them. The effectiveness of the proposed scheme is finally demonstrated by a simulation test, in which measurement data are obtained from a numerical simulation considering realistic debris' and satellites' orbits.

  8. Numerical simulations of the decay of satellite galaxy orbits

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Tremaine, S.

    1983-01-01

    A multiple three-body technique is used to study the orbital evolution of satellite galaxies which is similar to the N-body method but neglects two-body forces between stars in the halo of the parent galaxy. It is found that, for satellites orbiting within the halo, Chandrasekhar's (1960) dynamical friction formula accurately describes the orbital decay rate, including its variation with satellite mass and size and with the number density and mass of halo stars. Significant frictional forces are present even outside the halo, and the orbital decay rate, instead of depending on the procedure used to place the satellite in its orbit, is determined only by the current orbital parameters. This semirestricted N-body method is sufficiently fast to have permitted the running of 200 simulations to date, many more than would have been possible by means of the conventional N-body technique.

  9. The Use of the Deep Convective Cloud Technique (DCCT) to Monitor On-Orbit Performance of the Geostationary Lightning Mapper (GLM): Use of Lightning Imaging Sensor (LIS) Data as Proxy

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.

    2013-01-01

    The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.

  10. Benefits of the use of Low Earth Orbit Satellites for some kind of services in developing countries

    NASA Astrophysics Data System (ADS)

    Ciancaglini, Humberto R.

    1993-10-01

    The purpose of this paper is to advise people of less industrialized countries about the possibilities and benefits of the application of Low Earth Orbit Satellites. A review of concepts contained on recent publications about LEO satellites, concerning technical characteristics, manufacture, launching and the type of signal they process will be given. Some projects of LEO constellations for future worldwide covering will be considered, with particular emphasis to the services they can provide. LEO satellites complement economically the services of geostationary satellites in various areas (information of position of vehicles onroute, monitoring the temperature of refrigerated transportation of fresh fruit, vegetables and other perishable products; measurement of physical magnitude of remotely located sensors; remote command operations, emergency alerts, etc).

  11. Observation of Air Pollution and Climate Variables from Geostationary Orbit with SIRAS- G

    NASA Astrophysics Data System (ADS)

    Kampe, T.; Johnson, B.

    2006-12-01

    Understanding the impact of pollution on regional, continental, and global scales imposes unique challenges for spaceborne observations. The variability in tropospheric chemistry, source strengths, and transport results in sub-hourly temporal variation and produces small-scale variations in the vertical and horizontal distribution of key gases. Current spaceborne observations from low earth orbit have demonstrated the capability to measure key tropospheric trace gases from space but are limited to a twice daily observation. To improve on our understanding of diurnal variations requires observations from geosynchronous orbit. The Spaceborne Infrared Atmospheric Sounder from Geosynchronous Earth Orbit (SIRAS-G) being developed under the NASA Instrument Incubator Program (IIP) will enable high temporal, spatial and spectral resolution observations of temperature, water, ozone, aerosol, cloud and surface properties, and important trace gas concentrations such as CO, CH4, N2O and SO2. The spaceborne instrument concept measures thermal emission in 2048 spectral channels over the wavelength range from 3.75 to 15 microns with a nominal resolving power (?/?) of 1400. A laboratory demonstration instrument has been developed under IIP demonstrates the feasibility of the imaging grating spectrometer for this application. The constraints imposed on instrument mass, power and volume by a geosynchronous mission drives the instrument design toward more compact, and less complex optical systems. The system employs wide field-of-view hyperspectral infrared optical system that splits incoming radiation to separate grating spectrometer channels. Combined with large 2-D infrared detector arrays, this system provides simultaneous high-resolution spectral and spatial imaging over a large region with a nominal 4x4 km ground resolution.

  12. Quasi-geostationary viewing of high latitudes for Weather, Climate and Air quality data using highly elliptical orbits: PCW/PHEOS-WCA

    NASA Astrophysics Data System (ADS)

    McConnell, J. C.; McElroy, C. T.; Sioris, C. E.; Walker, K. A.; Buijs, H.; Rahnama, P.; Trishchenko, A. P.; Garand, L.; Nassar, R.; Martin, R. V.; Bergeron, M.; O'Neill, N. T.

    2012-12-01

    Arctic climate is changing and the multi-year sea-ice cover is disappearing more rapidly that climate models estimate. With declining ice cover, the Arctic Ocean will likely be subject to increased shipping traffic in addition to exploration activity for natural resources with a concomitant increase in air pollution. Thus there is a need to monitor the polar region and an important method that can address many of the atmospheric issues is by quasi-geostationary viewing at high temporal resolution. For this reason, several Canadian government departments led by the Canadian Space Agency (CSA) are proposing the PCW (Polar Communications and Weather) mission to provide improved communications and critically important meteorological and air quality information for the Arctic, in particular wind information using an operational meteorological imager. Two satellites are planned to be in a highly eccentric orbit with apogee at ~ 40,000 km over the Arctic in order to have both quasi-geostationary viewing over the Arctic and environs and 24x7 coverage in the MIR and solar reflected light (UV-Vis-NIR) in the summer period. The planned operational meteorological instrument is a 21-channel spectral imager with UV, visible, NIR and MIR channels similar to MODIS or ABI. This presentation will focus on PHEOS WCA (Polar Highly Elliptical Orbital Science Weather, Climate and Air quality) mission, which is an atmospheric science complement to the operational PCW mission. The PHEOS WCA instrument package consists of FTS and UVS imaging sounders with viewing range of ~4.5 degrees or a FoR ~ 3400x3400 km2 from near apogee. The spatial resolution at apogee of each imaging sounder is targeted to be 10×10 km2 or better and the image repeat time is targeted at ~ 1-2 hours or better. The FTS has 4 bands that span the MIR and NIR. The MIR bands cover 700-1500 cm-1 and 1800-2700 cm-1 with a spectral resolution of 0.25 cm-1 i.e., a similar spectral resolution to IASI. They should provide

  13. Orbital Dynamics of Space Debris around operational artificial satellites

    NASA Astrophysics Data System (ADS)

    Sampaio, Jarbas

    2016-07-01

    The increasing number of space debris, orbiting the Earth justifies and requires more efforts to observe and track them to avoid collisions among them and the earth's satellites. In this way, several studies are important to preserve the operability of the artificial satellites. In this work, the orbital dynamics of space debris are studied in the neighborhood of operational artificial satellites. The results show that the collision risks between these objects is high and solutions to avoid these events are necessary.

  14. State Geography Using NOAA Polar-Orbiting Satellites.

    ERIC Educational Resources Information Center

    Stadler, Stephen J.

    1985-01-01

    NOAA polar-orbiting satellites have the capability of providing views of entire states. This article describes the characteristics of data from these satellites, indicates their advantages and disadvantages, and shows how the satellite data can be used in a statewide representation of physical geography for students at the introductory level. (RM)

  15. Discovery of 12 satellites of Saturn exhibiting orbital clustering.

    PubMed

    Gladman, B; Kavelaars, J J; Holman, M; Nicholson, P D; Burns, J A; Hergenrother, C W; Petit, J M; Marsden, B G; Jacobson, R; Gray, W; Grav, T

    2001-07-12

    The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently. PMID:11449267

  16. Implementation of a state of the art automated system for the production of cloud/water vapor motion winds from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Velden, Christopher

    1995-01-01

    The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.

  17. Use of Geostationary Satellite Data to Force Land Surface Schemes within Atmospheric Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott R.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the GHCC within the PSU/NCAR MM5. Assimilation has been performed on a grid centered over the Southeastern US since November 1998. Results from the past year show that assimilation of the satellite data reduces both the bias and RMSE for simulations of surface air temperature and relative humidity. These findings are based on comparison of assimilation runs with a control using the simple 5-layer soil model available in MM5. A significant development in the past several months was the inclusion of the detailed Oregon State University land surface model (OSU/LSM) as an option within MM5. One of our working hypotheses has been that the assimilation technique, although simple, may provide better short-term forecasts than a detailed LSM that requires significant number initialized parameters. Preliminary results indicate that the assimilation out performs the OSU

  18. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  19. Orbit determination accuracies using satellite-to-satellite tracking

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Argentiero, P. D.; Schmid, P. E.

    1977-01-01

    The uncertainty in relay satellite sate is a significant error source which cannot be ignored in the reduction of satellite-to-satellite tracking data. Based on simulations and real data reductions, it is numerically impractical to use simultaneous unconstrained solutions to determine both relay and user satellite epoch states. A Bayesian or least squares estimation technique with an a priori procedure is presented which permits the adjustment of relay satellite epoch state in the reduction of satellite-to-satellite tracking data without the numerical difficulties introduced by an ill-conditioned normal matrix.

  20. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  1. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  2. On-orbit checkout study. [for the synchronous meteorological satellite and the technology demonstration satellite

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1977-01-01

    The spaceborne testing equipment carried by the orbiter and the measuring equipment onboard the satellite (telemetry) is tested to verify that each is operating satisfactorily. The satellite command system is also checked. Thermal stabilization with the satellite in the orbiter shadow is achieved in six to eight hours. Satellite subsystem tests are run, and thermal control by heaters is checked. Thermal stabilization with the satellite exposed to the sun (when the orbiter is in sunlight) is again achieved in an estimated six to eight hours. Subsystem tests are again run in the hot condition, and heat rejection tests are made.

  3. The east Pacific ITCZ complex (northern only, southern only, double) in 30 years of geostationary satellite data

    NASA Astrophysics Data System (ADS)

    Haffke, C. M.; Magnusdottir, G.; Henke, D.; Smyth, P.

    2014-12-01

    The double Intertropical Convergence Zone (ITCZ) in the east Pacific has been identified in previous observational studies in terms of time mean data, e.g. monthly mean fields. Little is known about the instantaneous occurrence of this feature. Here we use a new method for automated daily identification of convection associated with the east Pacific ITCZ in visible and infrared geostationary satellite images from 1980-2012. The method uses the satellite images to extract information about the spatial features of the clouds comprising the convergence zones. Features are then used as input to a temporal classification algorithm that is based on a combination of hidden semi-Markov model and support vector machine methods. Five 'states' are used to describe the location of the ITCZ: northern hemisphere only (nITCZ), southern hemisphere only (sITCZ), double ITCZ (dITCZ), ITCZ located directly on the equator (eITCZ), and no ITCZ present (aITCZ). Most of the year, particularly from May-Dec, is dominated by the nITCZ state. The boreal springtime is characterized by a high number of days classified as dITCZ, but the state of the ITCZ is quite variable during this time and can frequently transition between dITCZ, nITCZ, sITCZ, and aITCZ states. Our results will show ITCZ variability in terms of the different states on daily to interannual time scales. We will show how the large scale environment, including SST and atmospheric moisture availability, influences the occurrence of each ITCZ state, focusing on the dITCZ in the boreal springtime.

  4. Forecasting the Radiation Belts for Satellites Undergoing Electric-Orbit Raising

    NASA Astrophysics Data System (ADS)

    Horne, R. B.; Glauert, S. A.; Meredith, N. P.; Kersten, T.; Heynderickx, D.; Maget, V.; Li, W.; Pitchford, D. A.; Wade, D.

    2015-12-01

    The introduction of commercial satellites with all-electric propulsion systems is nothing less than a revolution in the quest for low-cost access to space. As a consequence, it can take as long as 200 - 400 days to raise the perigee of the satellite to final geostationary orbit. During this time the satellites are exposed to the most intense part of the van Allen radiation belts where the electron radiation environment can vary by orders of magnitude as a result of changes in the solar wind. Here we describe briefly this new method of launch and discuss the importance of radiation protection, the need for real-time data on orbit and how physics based models can help supply this need. We describe the forecasting system that was developed in the European SPACECAST project, and is now continued in the SPACESTORM project, and how we use physics based models to forecast the electron flux throughout the outer radiation belt in real-time, updated hourly. We show that forecasts are much improved when the physics of wave-particle interactions is included, and show comparisons between models using different wave models for plasmaspheric hiss and chorus waves. The results emphasise the importance of chorus wave amplitudes. Finally, we discuss some areas of research needed to improve the forecasts, such as the need to understand electron flux drop-outs and their relation to distortions of the geomagnetic field in the tail region, and the need for additional wave models.

  5. Estimating on-orbit optical properties for GNSS satellites

    NASA Astrophysics Data System (ADS)

    Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter

    One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.

  6. Long time dynamical evolution of highly elliptical satellites orbits

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E.; Zakharova, P.

    2015-08-01

    Dynamical evolution of objects near Molniya-type orbits is considered. Initial conditions correspond to highly elliptical satellite orbits with eccentricities 0.65 and a critical inclination 63.4°. Semi-major axis is varied near resonant value 26560 km in an interval 500 km. Variations were analyzed for positional orbital elements, an ascending node longitude and an argument of pericenter. Initial conditions determined when orbital elements variations are minimal. These regions can be used as orbits for safe stationing satellites which finish work on Molniya-type orbits. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. The model of disturbing forces taken into account the main perturbing factors. Time interval was up to 24 yr. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris.

  7. Packet message communication system using polar orbiting small satellites

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryutaro; Suzuki, Yoshiaki; Arimoto, Yoshinori; Ohmori, Shingo; Kondo, Kimio

    A packet message communication system using small satellites is studied for the worldwide electronic mail type communications. A store and forward type packet communication equipment is installed in a small satellite which rotates in the polar orbit. By using the inter satellite link among the small satellites and/or the data exchange earth station in the polar region, the delay time of the packet message delivery can be shortened. The multibeam phased array technique is applied for the satellite antenna in order to increase the link quality. Four satellites configuration gives a 4.8 kbps data rate message with less than two hours of delay.

  8. Space Environment Monitoring System in next generation Geostationary Meteorological Satellite of China

    NASA Astrophysics Data System (ADS)

    Xin, Zhang

    Feng Yun 4(FY-4) is a second-generation Meteorological Remote Sensing earth observation satellite of China. On board FY-4, Space Environment Monitoring System(SEMS) consist of seven payloads, including 3 High Energy Particle Detector(HEPD), 1 Magnetometer(MTM), 1 Charging Potential Probe(CPP) and 1 Radiation Dosimeter(RD). High energy particle , magnetic field and space environment effect compose of main goals of SEMS. The HEPD instrument will detect proton with 3 directions , electron with 9 directions. Magnetometer will monitor magnetic field intensity between -400nT and +400nT. CPP will monitor Relative Surface Voltage from -10KV to +1KV, Absolute Surface Voltage from -20KV to -100V ,+100V to +1KV, Deep Surface Voltage from -2.5KV to 0V. RD will monitor dose from 0 rad to 200,000 rad. The first FY-4 satellite is planned to be launched in Dec 2015,This next-generation system will continue to provide more information about space weather, and SEMS will be playing more important role in space weather.

  9. Aerodynamics of Satellites on a Super Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa; Noda, Atsushi

    2008-12-01

    The Super Low Altitude Test Satellite is an engineering test satellite currently under development in Japan Aerospace Exploration Agency in an attempt to open a new frontier of space utilization on extremely low earth orbits. In the presence of aerodynamic forces acting on the satellite, the altitude and attitude of the satellite are maintained by ion engines so that the aerodynamic drag can be canceled. Thus, it is of primary importance to accurately assess the aerodynamics characteristics of the satellite prior to flight. In this article, the aerodynamic coefficients of the satellite are calculated for orbital altitudes from 160 to 300 km, taking into account the Maxwell accommodation of particles on the satellite surface and the free stream chemical composition. The activated atomic oxygen fluence rate on the surface, which is expected to cause considerable damages on the surface material, is estimated as well.

  10. GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas

    2002-01-01

    This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more

  11. Precise science orbits for the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Encarnação, João; Doornbos, Eelco; Visser, Pieter

    2015-09-01

    The European Space Agency (ESA) Swarm mission was launched on 22 November 2013 to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. The mission consists of three identical satellites, flying in carefully selected near polar orbits. Two satellites fly almost side-by-side at an initial altitude of about 480 km, and will descend due to drag to around 300 km during the mission lifetime. The third satellite was placed in a higher orbit of about 530 km altitude, and therefore descends much more slowly. To geolocate the Swarm observations, each satellite is equipped with an 8-channel, dual-frequency GPS receiver for Precise Orbit Determination (POD). Onboard laser retroreflectors provide the opportunity to validate the orbits computed from the GPS observations using Satellite Laser Ranging (SLR) data. Precise Science Orbits (PSOs) for the Swarm satellites are computed by the Faculty of Aerospace Engineering at Delft University of Technology in the framework of the Swarm Satellite Constellation Application and Research Facility (SCARF). The PSO product consists of both a reduced-dynamic and a kinematic orbit solution. After a short description of the Swarm GPS data characteristics, the adopted POD strategy for both orbit types is explained and first PSO results from more than one year of Swarm GPS data are presented. Independent SLR validation shows that the reduced-dynamic Swarm PSOs have an accuracy of better than 2 cm, while the kinematic orbits have a slightly reduced accuracy of about 4-5 cm. Orbit comparisons indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4-5 cm level. Close to the geomagnetic poles and along the geomagnetic equator, however, the kinematic orbits show larger errors, which are probably due to ionospheric scintillations that affect the Swarm GPS receivers over these areas.

  12. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes the research work accomplished on the NASA grant contract NAG8-892 during 1992. Research goals of this contract are the following: to complete upgrades to the Cooperative Institute for Meteorological Satellite Studies (CIMSS) wind system procedures for assigning heights and incorporating first guess information; to evaluate these modifications using simulated tracer fields; to add an automated quality control system to minimize the need for manual editing, while maintaining product quality; and to benchmark the upgraded algorithm in tests with NMC and/or MSFC. Work progressed on all these tasks and is detailed. This work was done in collaboration with CIMSS NOAA/NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  13. Photometric Database of the geostationary satellites Astronomical Observatory of I. Mechnikov Odessa national university (in Russian)

    NASA Astrophysics Data System (ADS)

    Sukhov, P., P.

    In many cases role not coordinate information (photometrical, polarization, spectral) can be key when determining a class spacecraft, its functional purpose. At each class GSS can be design and dynamic features which are shown on a form light curve also have a characteristic appearance (signature). What features help to classify GSS on light curve. The light curves GSS can determine the operating mode on the device orbit reveal signs of an emergency operation, the transition from the GSS conserved active state. In recent years, for the identification of the GSS, many experts make photometric database (DB) comprising a set of characteristics, with sufficient probability characterizing a particular class of spacecraft. Database AO ONU contains more than 800 light curves in B, V, R filters 120 GSS. Showing light curves several GSS with distinctive structural and dynamic features, peculiar to the respective classes of spacecraft.

  14. Tidal debris morphology and the orbits of satellite galaxies

    NASA Astrophysics Data System (ADS)

    Hendel, David; Johnston, Kathryn V.

    2015-12-01

    How do galaxies move relative to one another? While we can examine the motion of dark matter subhaloes around their hosts in simulations of structure formation, determining the orbits of satellites around their parent galaxies from observations is impossible except for a small number of nearby cases. In this work, we outline a novel approach to probing the orbital distributions of infalling satellite galaxies using the morphology of tidal debris structures. It has long been understood that the destruction of satellites on near-radial orbits tends to lead to the formation of shells of debris, while those on less eccentric orbits produce tidal streams. We combine an understanding of the scaling relations governing the orbital properties of debris with a simple model of how these orbits phase-mix over time to produce a `morphology metric' that more rigorously quantifies the conditions required for shells to be apparent in debris structures as a function of the satellite's mass and orbit and the interaction time. Using this metric we demonstrate how differences in orbit distributions can alter the relative frequency of shells and stream structures observed around galaxies. These experiments suggest that more detailed modelling and careful comparisons with current and future surveys of low surface brightness features around nearby galaxies should be capable of actually constraining orbital distributions and provide new insights into our understanding of structure formation.

  15. Space shuttle earth orbital rendezvous targeting techniques for near circular target satellite orbits

    NASA Technical Reports Server (NTRS)

    Deaton, A. W.

    1972-01-01

    The targeting techniques are developed which are required to determine the guidance reference release time of the space shuttle navigation system, the orbital insertion targeting values, and a time line of orbital maneuvers. An extension is made for rendezvous with a target satellite in an elliptical orbit.

  16. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  17. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  18. The Role of Orograph and Parallax Corrections on High Resolution Geostationary Satellite Rainfall Estimates for Flash Flood Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Davenport, Clay; Scofield, Rod

    1999-01-01

    The current generation of geosynchronous satellites exhibits considerably improved capabilities in the area of resolution, gridding accuracy, and sampling frequency as compared to their predecessors. These improvements have made it possible to accurately observe the life cycle of small scale, short-live phenomenon like rapidly developing thunderstorms, at a very high spatial and temporal resolutions. While the gain in the improved resolution is not significant for synoptic scale cloud systems, it plays a major role on the computation of precipitation values for mesoscale and stonn scale systems. Two of the important factor on the accurate precision of precipitation from satellite imagery are the position of the cloud tops as viewed by the satellite and the influence of orographic effects on the distribution of precipitation. The first problem has to do with the fact that the accurate estimation of precipitation from data collected by a satellite in geosynchronous orbit requires the knowledge of the exact position of the cloud tops with respect to the ground below. This is not a problem when a cloud is located directly below the satellite; at large viewing angles the geographic coordinates on satellite images are dependent on cloud heights and distance from the sub-satellite point. The latitude and longitude coordinates for high convective cloud tops are displaced away from the sub-satellite point and may be shifted by as much as 20 Km from the sea level coordinates. The second problem has to do with the variations in rainfall distribution with elevation. Ground observations have shown that precipitation amounts tend to increase with height and that the slope of the hill or mountain that is facing the prevailing wind normally receives greater rainfall then do the lee slopes. The purpose of the study is to show the recent developments at the Office of Research and Applications (ORA) at the National Oceanic and Atmospheric Administration (NOAA/NESDIS) in Camp Springs

  19. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    NASA Technical Reports Server (NTRS)

    Piasecki, Marie; Welch, Bryan; Mueller, Carl

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  20. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    NASA Technical Reports Server (NTRS)

    Piasecki, Marie T.; Welch, Bryan W.; Mueller, Carl H.

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus/emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  1. Geostationary Operational Environmental Satellite (GOES-N report). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The GOES-N study consisted of five distinct tasks including: determining replication costs of GOES I-M and GOES-7 in the GOES-N time frame; defining and evaluating modifications to GOES I-M to improve efficiency or reduce costs; and defining evolutionary changes to the GOES I-M design to satisfy National Weather Service (NWS) 1983 and NOAA 1989 requirements. The categorization and disposition of NOAA requirements is reported in volume 1 section 4. Results of the GOES I-M efficiency/cost improvement modifications study are described in Section 7.1. The system concept options 1, 2, and 3 that generally represent the results of the Task 2, 3A, and 3B studies are summarized in Section 7.2. Another result of the GOES-N study, the determination of which NWS 1983 and NOAA 1989 requirements can be met with the three options, is contained in volume 1 section 7. Conclusions and recommendations are covered in volume 1 section 8. Imager, sounder, control system, space environment monitor, search and rescue, weather facsimile, data collection system, and products/process/communications recommendations were extracted from sections 9, 10, and 11. Section 8 also contains conclusions pertaining to programmatic operational satellite issues (prerequisite development strategies, the direct procurement of instruments by the government, protoflight mission, etc.). Sections 9, 10, and 11 address instrument, control system, image/navigation/registration, and other system design considerations and surveys. These sections are supported by the appendices in volume 2.

  2. Kozai's resonance in the orbital motions of CBERS satellites

    NASA Astrophysics Data System (ADS)

    Sampaio, Jarbas; Vilhena de Moraes, Rodolpho; Da Silva Fernandes, Sandro

    The objects orbiting the Earth are classified, basically, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO) and Geosynchronous Orbit (GEO). Most of the objects are found in the LEO region because this region has a big quantity of space debris. Currently, the orbital motions of the cataloged objects can be analyzed using the 2-line element set of the NORAD (North American Defense). In this work, resonant orbital motions of the CBERS (China-Brazil Earth Resource Satellite) satellites are studied using the TLE files of the NORAD. Analyzing the motions of artificial satellites CBERS-1 and CBERS-2, one can observe resonant angles in the neighborhood of the exact 14:1 resonance. The orbital motions of the CBERS satellites can be corrected during your lifetime, because some disturbances, resonance effects or collision risk can affect your mission. These corrections can be seen by the abrupt change in the values of the semi-major axis. In this way, the study of the resonant angles using real data of the artificial satellites is limited to the period without corrections. However, the study involving space debris allows to use a long time and consequently a better analysis about the resonant period in a given region. The results and discussions show the complexity, in the orbital dynamics of these objects, caused by the resonance effects. Figures show the time behavior of the semimajor axis, eccentricity, resonant periods and resonant angles. Energy's curves are observed in the (omega, e) plane of the orbital motions of CBERS satellites indicating the presence of Kozai's resonance in their orbits. Where omega is the argument of pericentre and e is the eccentricity.

  3. Satellite de-orbiting via controlled solar radiation pressure

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  4. Qualitative features of the evolution of some polar satellite orbits

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.

    2016-01-01

    Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.

  5. Orbital design strategy for domestic communication satellite systems.

    NASA Technical Reports Server (NTRS)

    Ramji, S.; Sawitz, P.

    1973-01-01

    Review of some of the considerations pertinent to efficient orbit utilization in the design of domestic communications satellite systems. A strategy is developed to efficiently locate a heterogeneous system of satellites within the available arc and provide room for future growth. A practical design is illustrated, using a computer simulation model, for the placement of 25 satellites within 73% of the available arc employing frequency and polarization coordination techniques. A number of widely variable factors that influence satellite spacing are examined. These factors include such critical system elements as telephony and television interference noise limits, frequency plan coordination, polarization plan coordination, ground antenna diameter, signal protection ratio, and satellite station keeping.

  6. Self-contamination and environment of an orbiting satellite.

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1972-01-01

    The flux of molecules emitted by the satellite and subsequently returning to its surface is investigated. The reflection occurs upon collision of these with ambient molecules. The evaluation of this flux is carried out from a knowledge of the outgassing rate of the satellite, its dimensions, and the orbit parameters. Condensation rates and adsorption layers on critical surfaces are calculated from the knowledge of this flux, and from the natures and temperatures of the gas and the surface. The calculation of these parameters, based on estimated and in some cases measured emission rates, has been carried out for a number of satellites. These developed relationships and graphs allow the estimation of several important parameters for an orbiting satellite. This report presents the pressures and densities at various distances from the satellite as produced by the surrounding ambient molecules and by the outgassing of the satellite.

  7. Antenna servo design for tracking low-earth-orbiting satellites

    NASA Astrophysics Data System (ADS)

    Gawronski, W.; Mellstrom, J. A.

    1994-11-01

    The upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep-space missions. This paper investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, monopulse controller design, and tracking error reduction either through proper choice of elevation pinion location or through application of a notch filter or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the oversampled monopulse signal is described.

  8. Atmospheric gravitational influence on geodetic satellite orbits - Starlette analysis

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Chan, Joseph C.

    1992-01-01

    The atmosphere is constantly in motion. The changing gravitational force due to the air mass movement will slightly perturb the orbit of a satellite. As the instrument accuracy for geodetic satellites improves, failure to model this perturbation can result in significant systematic errors in the orbit determination. The latter, in turn, will degrade the Earth's gravity solutions. A direct modeling technique to analyze the atmospheric gravitational influence on geodetic satellite is developed. We use the global surface pressure data from the ECMWF Initial Analysis Database to compute the gravitational force due to atmospheric perturbation exerted on given satellite as a function of time during selected orbital arcs. Satellite Laser Ranging (SLR) tracking data for selected Starlette (altitude 900 km) orbital arcs are used to test the computed force model. Although only a slight reduction in the rms residuals is observed when the atmospheric gravitational perturbation is included in the force model for data reduction of the SLR data, significant improvement is obtained in the predictability of the satellite orbit. Comprehensive studies involving more definitive test criteria and more refined models are still needed.

  9. Geostationary multipurpose platforms

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Bowman, R. M.

    1981-01-01

    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  10. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  11. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  12. Orbit determination of Tance-1 satellite using VLBI data

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Hu, X. G.; Huang, C.; Jiang, D. R.

    2006-01-01

    On 30 December, 2003, China successfully launched the first satellite Tance-1 of Chinese Geospace Double Star Exploration Program, i.e. "Double Star Program (DSP)", on an improved Long March 2C launch vehicle. The Tance-1 satellite is operating at an orbit around the earth with a 550km perigee, 78000km apogee and 28.5 degree inclination.VLBI technique can track Tance-1 satellite or even far satellites such as lunar vehicles. To validate the VLBI technique in the on-going Chinese lunar exploration mission, Shanghai Astronomical Observatory (SHAO) organized to track the Tance-1 satellite with Chinese three VLBI stations: Shanghai, Kunming and Urumchi Orbit Determination (OD) of the Tance-1 satellite with about two days VLBI dada, and the capability of OD with VLBI data are studied. The results show that the VLBI-based orbit solutions improve the fit level over the initial orbit. The VLBI-delay-based orbit solution shows that the RMS of residuals of VLBI delay data is about 5.5m, and about 2.0cm/s for the withheld VLBI delay rate data. The VLBI-delay-rate-based orbit solution shows that the RMS of residuals of VLBI delay rate data is about 1.3cm/s, and about 29m for the withheld VLBI delay data. In the situation of orbit determination with VLBI delay and delay rate data with data sigma 5.5m and 1.3cm/s respectively, the RMS of residuals are 5.5,m and 2.0cm/s respectively. The simulation data assess the performance of the solutions. Considering the dynamic model errors of the Tance-1 satellite, the accuracy of the position is about km magnitude, and the accuracy of the velocity is about cm/s magnitude. The simulation work also show the dramatic accuracy improvement of OD with VLBI and USB combined.

  13. 47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... geostationary satellite orbit must be maintained within 0.05° of their assigned orbital longitude in the east... within thirty days after preliminary in-orbit testing is completed. (l) All operators of space stations... transponder on each of the in-orbit satellites. This description should identify the total capacity or...

  14. 47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... geostationary satellite orbit must be maintained within 0.05° of their assigned orbital longitude in the east... within thirty days after preliminary in-orbit testing is completed. (l) All operators of space stations... transponder on each of the in-orbit satellites. This description should identify the total capacity or...

  15. 47 CFR 25.210 - Technical requirements for space stations in the Fixed-Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geostationary satellite orbit must be maintained within 0.05° of their assigned orbital longitude in the east... within thirty days after preliminary in-orbit testing is completed. (l) All operators of space stations... transponder on each of the in-orbit satellites. This description should identify the total capacity or...

  16. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped

  17. Orbit determination and prediction for Beidou GEO satellites at the time of the spring/autumn equinox

    NASA Astrophysics Data System (ADS)

    Li, XiaoJie; Zhou, JianHua; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhou, ShanShi

    2015-08-01

    Geostationary (GEO) satellites form an indispensable component of the constellation of Beidou navigation system (BDS). The ephemerides, or predicted orbits of these GEO satellites(GEOs), are broadcast to positioning, navigation, and timing users. User equivalent ranging error (UERE) based on broadcast message is better than 1.5 m (root formal errors: RMS) for GEO satellites. However, monitoring of UERE indicates that the orbital prediction precision is significantly degraded when the Sun is close to the Earth's equatorial plane (or near spring or autumn Equinox). Error source analysis shows that the complicated solar radiation pressure on satellite buses and the simple box-wing model maybe the major contributor to the deterioration of orbital precision. With the aid of BDS' two-way frequency and time transfer between the GEOs and Beidou time (BDT, that is maintained at the master control station), we propose a new orbit determination strategy, namely three-step approach of the multi-satellite precise orbit determination (MPOD). Pseudo-range (carrier phase) data are transformed to geometric range (biased geometric range) data without clock offsets; and reasonable empirical acceleration parameters are estimated along with orbital elements to account for the error in solar radiation pressure modeling. Experiments with Beidou data show that using the proposed approach, the GEOs' UERE when near the autumn Equinox of 2012 can be improved to 1.3 m from 2.5 m (RMS), and the probability of user equivalent range error (UERE)<2.0 m can be improved from 50% to above 85%.

  18. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    NASA Technical Reports Server (NTRS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  19. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-10-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASAs Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  20. Cultures in orbit: Satellite technologies, global media and local practice

    NASA Astrophysics Data System (ADS)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  1. Contributions of Satellite Laser Ranging to the Precise Orbit Determination of Low Earth Orbiters

    NASA Astrophysics Data System (ADS)

    Wirnsberger, H.; Krauss, S.; Baur, O.

    2014-11-01

    Space-based monitoring and modeling of the system Earth requires precise knowledge of the orbits of artificial satellites. In this framework, since decades Satellite Laser Ranging (SLR) contributes with high measurement accuracy and robust tracking data to precise orbit determination. One essential role of SLR tracking is the external validation of orbit solutions derived from Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS). This valuable task of external validation is performed by the comparison of computed ranges based on orbit solutions and unambiguous SLR tracking data (observed ranges). Apart from validation, extension of the existing SLR network by passive antennas in combination with multistatic observations provides improvements in orbit determination processes with the background of sparse tracking data. Conceptually, these multistatic observations refer to the tracking of spacecraft from an active SLR-station and the detection of the diffuse reflected photons from the spacecraft at one or more passive stations.

  2. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    NASA Technical Reports Server (NTRS)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  3. Orbit determination accuracies using satellite-to-satellite tracking. [applicable to the Tracking and Data Relay Satellite system

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Argentiero, P. D.; Schmid, P. E.

    1978-01-01

    The results of the ATS-6/GEOS-3 and the ATS-6/NIMBUS-6 satellite-to-satellite tracking orbit determination experiments are reported. The tracking systems used in these experiments differ from the Tracking and Data Relay Satellite System (TDRSS), primarily in the use of one rather than two synchronous relay satellites. However, the simulations mentioned indicate that the insights gained from the experiments with regard to proper data reduction techniques and expected results are applicable to the TDRSS.

  4. 47 CFR 25.145 - Licensing provisions for the Fixed-Satellite Service in the 20/30 GHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satellite orbit satellites will be awarded a single “blanket” license covering a specified number of space... specified in § 25.114, each non-geostationary satellite orbit applicant shall demonstrate the following: (1... launch a space station into the previously-authorized orbit that is technically identical to...

  5. WARC and CCIR support for spectrum-orbit planning

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1980-01-01

    Papers prepared for the use of the U.S. delegation to the 1979 World Administrative Radio Conference; papers contributed to the National CCIR study groups on broadcasting satellites and spectrum-orbit utilization; responses to specific requests for technical analyses and evaluations; and papers presented at technical conferences on related topics are presented. Nonlinear optimization methods for finding optimum positions of satellites in the fixed satellite service; the effects of geography on the use of the geostationary orbit; intercontinental orbit sharing; traffic coordination in interfering satellites operating in the fixed satellite service; and domestic fixed and broadcasting satellite systems are covered. A possible channel orbit plan for broadcasting satellite service in the U.S. and Canada; polarization for broadcasting satellite systems; and the communication capacity of the geostationary satellite orbit are also examined.

  6. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  7. Tether de-orbiting of satellites at end of mission

    NASA Astrophysics Data System (ADS)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  8. Cassini orbit determination performance during the first eight orbits of the Saturn satellite tour

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jacobson, R. A.; Jones, J. B.; MacKenzie, R. A.; Meek, M. C.; Pelletier, F. J.; Roth, D. C.; Roundhill, I. M.; Stauch, J.

    2005-01-01

    From June 2004 through July 2005, the Cassini/Huygens spacecraft has executed nine successful close-targeted encounters by three major satellites of the Saturnian system. Current results show that orbit determination has met design requirements for targeting encounters, Hugens descent, and predicting science instrument pointing for targetd satellite encounters. This paper compares actual target dispersion against, the predicte tour covariance analyses.

  9. Accuracy assessment of GPS satellite orbits

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.; Abusali, P. A. M.; Ho, C. S.

    1991-01-01

    GPS orbit accuracy is examined using several evaluation procedures. The existence is shown of unmodeled effects which correlate with the eclipsing of the sun. The ability to obtain geodetic results that show an accuracy of 1-2 parts in 10 to the 8th or better has not diminished.

  10. Analysis of the angle-only orbit determination for optical tracking strategy of Korea GEO satellite, COMS

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Jo, Jung Hyun; Roh, Kyoung-Min; Son, Ju-Young; Kim, Myung-Jin; Choi, Young-Jun; Yim, Hong-Suh; Moon, Hong-Kyu; Kim, Bang-Yeop; Park, Jang-Hyun; Pavlis, Erricos C.

    2015-09-01

    Increasing numbers of Geostationary Earth Orbit satellites have led to the requirement of accurate station keeping and precise orbit prediction to avoid collision between satellites. In the case of ground-based optical observation, angular resolution is better than other tracking systems, such as radar systems; however, the observation time of optical observation is limited by weather or lighting conditions. To develop an effective optical observation strategy, the optical observation campaign from January to February 2014 for Communication, Ocean and Meteorological Satellite (COMS) was conducted. Because COMS is a controlled satellite with station keeping manoeuvres performed twice a week, the observation results for 1- and 2-day observations were analysed. Sparse and sporadic cases for the sequential observation of multiple satellites and a dense case for the intensive observation of specific targets were assumed for the experiments. In the 1-day arc observation experiment, the estimated orbits for dense observation cases over 10% of the orbital period showed that the maximum difference was less than 40 km (station keeping area) for 7-day propagation compared to the estimation result using the whole 1-day measurement. For the 2-day arc observation, the orbit estimation difference could be maintained within 2 km using a more frequent observation than the 1-h interval for 13 h that was used in the sparse case. Additionally, the longitudinal and latitudinal positions via the estimation result using the optical observation were compared with the Two-Line Elements (TLEs) and operator's data. Through this study, an adequate optical tracking strategy was studied, and the possibility of cooperation with other systems was also validated.

  11. Disentangling satellite galaxy populations using orbit tracking in simulations

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Hudson, Michael J.; Behroozi, Peter S.

    2013-05-01

    Physical processes regulating star formation in satellite galaxies represent an area of ongoing research, but the projected nature of observed coordinates makes separating different populations of satellites (with different processes at work) difficult. The orbital history of a satellite galaxy leads to its present-day phase space coordinates; we can also work backwards and use these coordinates to statistically infer information about the orbital history. We use merger trees from the MultiDark Run 1 N-body simulation to compile a catalogue of the orbits of satellite haloes in cluster environments. We parametrize the orbital history by the time since crossing within 2.5 rvir of the cluster centre and use our catalogue to estimate the probability density over a range of this parameter given a set of present-day projected (i.e. observable) phase space coordinates. We show that different populations of satellite haloes, e.g. infalling, backsplash and virialized, occupy distinct regions of phase space and semidistinct regions of projected phase space. This will allow us to probabilistically determine the time since infall of a large sample of observed satellite galaxies, and ultimately to study the effect of orbital history on star formation history (the topic of a future paper). We test the accuracy of our method and find that we can reliably recover this time within ±2.58 Gyr in 68 per cent of cases by using all available phase space coordinate information, compared to ±2.64 Gyr using only position coordinates and ±3.10 Gyr guessing `blindly', i.e. using no coordinate information, but with knowledge of the overall distribution of infall times. In some regions of phase space, the accuracy of the infall time estimate improves to ±1.85 Gyr. Although we focus on time since infall, our method is easily generalizable to other orbital parameters (e.g. pericentric distance and time).

  12. Mapping Daily Evapotranspiration at Field to Global Scales using Geostationary and Polar Orbiting Satellite Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetati...

  13. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... licensing of two-way in-flight broadband services, including Internet access, to passengers and flight crews... Notice of Proposed Rulemaking in IB Docket No. 05-20 (Order) (70 FR 20508-01), recognizing the emergence..., DC 20554. The document is also available for download over the Internet at...

  14. Satellite Imaging in the Study of Pennsylvania's Environmental Issues.

    ERIC Educational Resources Information Center

    Nous, Albert P.

    This document focuses on using satellite images from space in the classroom. There are two types of environmental satellites routinely broadcasting: (1) Polar-Orbiting Operational Environmental Satellites (POES), and (2) Geostationary Operational Environmental Satellites (GOES). Imaging and visualization techniques provide students with a better…

  15. An autonomous orbit determination method for MEO and LEO satellite

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Jin; Yu, Guobin; Zhong, Jie; Lin, Ling

    2014-09-01

    A reliable and secure navigation system and assured autonomous capability of satellite are in high demand in case of emergencies in space. This paper introduces a novel autonomous orbit determination method for Middle-Earth-Orbit and Low-Earth-Orbit (MEO and LEO) satellite by observing space objects whose orbits are known. Generally, the geodetic satellites, such as LAGEOS and ETALONS, can be selected as the space objects here. The precision CCD camera on tracking gimbal can make a series of photos of the objects and surrounding stars when MEO and LEO satellite encounters the space objects. Then the information processor processes images and attains sightings and angular observations of space objects. Several clusters of such angular observations are incorporated into a batch least squares filter to obtain an orbit determination solution. This paper describes basic principle and builds integrated mathematical model. The accuracy of this method is analyzed by means of computer simulation. Then a simulant experiment system is built, and the experimental results demonstrate the feasibility and effectiveness of this method. The experimental results show that this method can attain the accuracy of 150 meters with angular observations of 1 arcsecond system error.

  16. Orbits design for LEO space based solar power satellite system

    NASA Astrophysics Data System (ADS)

    Addanki, Neelima Krishna Murthy

    2011-12-01

    Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. 7For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft's orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any

  17. Copernicus POD Service: Orbit Determination of the Sentinel Satellites

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Ayuga, Francisco; Féménias, Pierre

    2016-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Sentinel-1A was launched in April 2014 while Sentinel-2A was on June 2015 and both are routinely operated since then. Sentinel-3A is expected to be launched in February 2016 and Sentinel-1B is planned for spring 2016. Thus the CPOD Service will be operating three to four satellites simultaneously in spring 2016. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites will additionally be equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. All three types of observables (GPS, SLR and DORIS) will be used routinely for POD. The POD core of the CPOD Service is NAPEOS (Navigation Package for Earth Orbiting Satellites) the leading ESA/ESOC software for precise orbit determination. The careful selection of models and inputs is important to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 & -3 missions. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. Although the characteristics and the requirements are different for the three missions the same core POD setup is used to the largest extent possible. This strategy facilitates maintenance of the complex system of the CPOD Service. Updates in the dynamical modelling of the satellite orbits, e

  18. A refined orbit for the satellite of asteroid (107) Camilla

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam Virginia; Carry, Benoit; Vachier, Frederic; Berthier, Jerome; Descamp, Pascal; Merline, William J.; Tamblyn, Peter M.; Conrad, Al; Storrs, Alex; Margot, Jean-Luc; Marchis, Frank; Kervella, Pierre; Girard, Julien H.

    2015-11-01

    The satellite of the Cybele asteroid (107) Camilla was discovered in March 2001 using the Hubble Space Telescope (Storrs et al., 2001, IAUC 7599). From a set of 23 positions derived from adaptive optics observations obtained over three years with the ESO VLT, Keck-II and Gemini-North telescopes, Marchis et al. (2008, Icarus 196) determined its orbit to be nearly circular.In the new work reported here, we compiled, reduced, and analyzed observations at 39 epochs (including the 23 positions previously analyzed) by adding additional observations taken from data archives: HST in 2001; Keck in 2002, 2003, and 2009; Gemini in 2010; and VLT in 2011. The present dataset hence contains twice as many epochs as the prior analysis and covers a time span that is three times longer (more than a decade).We use our orbit determination algorithm Genoid (GENetic Orbit IDentification), a genetic based algorithm that relies on a metaheuristic method and a dynamical model of the Solar System (Vachier et al., 2012, A&A 543). The method uses two models: a simple Keplerian model to minimize the search-time for an orbital solution, exploring a wide space of solutions; and a full N-body problem that includes the gravitational field of the primary asteroid up to 4th order.The orbit we derive fits all 39 observed positions of the satellite with an RMS residual of only milli-arcseconds, which corresponds to sub-pixel accuracy. We found the orbit of the satellite to be circular and roughly aligned with the equatorial plane of Camilla. The refined mass of the system is (12 ± 1) x 10^18 kg, for an orbital period of 3.71 days.We will present this improved orbital solution of the satellite of Camilla, as well as predictions for upcoming stellar occultation events.

  19. Orbit determination with the tracking data relay satellite system

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Loveless, F.

    1977-01-01

    The possibility of employing the tracking data relay satellite system to satisfy the orbit determination demands of future applications missions is investigated. It is shown that when the relay satellites are continuously and independently tracked from ground stations it is possible, using six hour data arcs, to recover user satellite state with an average error of about 25 m radially, 260 m along track, and 20 m cross track. For this arc length, range sum data and range sum rate data are equally useful in determining orbits. For shorter arc lengths (20 min), range sum rate data is more useful than range sum data. When relay satellites are not continuously tracked, user satellite state can be recovered with an average error of about 140 m radially, 515 m along track, and 110 m cross track. These results indicate that the TDRS system can be employed to satisfy the orbit determination demands of applications missions, such as the MAGSAT and potential gradiometer missions, provided the relay satellites are continuously and independently tracked.

  20. Relative motion of near orbiting satellites.

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.; Drewry, J. W.

    1973-01-01

    The relative motion of two particles on adjacent orbits about the same primary has been investigated under the condition that both motions have the same period. The geometrical properties of the relative displacement and velocity traces, on representative planes, are studied. A complete state of the motion is given; and, the range and range-rate variations, over one or more orbits, are described. It has been found that cusps appear on some of the traces provided that a proper relationship exists between the eccentricity and inclination. (Here, one particle moves on a circular path while the second moves on an ellipse). The conditions for which cusps appear are given, and typical traces are shown.

  1. TADPOLE satellite. [low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A low cost synchronous orbit satellite to evaluate small mercury bombardment ion thruster applications is described. The ion thrusters provide the satellite with precise north-south and east-west stationkeeping capabilities. In addition, the thrusters are used to unload the reaction wheels used for attitude control and for other purposes described in the report. The proposed satellite is named TADPOLE. (Technology Application Demonstration Program of Low Energy).

  2. History of On-orbit Satellite Fragmentations (14th Edition)

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Stansbery, Eugene; Whitlock, David O.; Abercromby, Kira J.; Shoots, Debra

    2008-01-01

    Since the first serious satellite fragmentation occurred in June 1961 (which instantaneously increased the total Earth satellite population by more than 400%) the issue of space operations within the finite region of space around the Earth has been the subject of increasing interest and concern. The prolific satellite fragmentations of the 1970s and the marked increase in the number of fragmentations in the 1980s served to widen international research into the characteristics and consequences of such events. Continued events in all orbits in later years make definition and historical accounting of those events crucial to future research. Large, manned space stations and the growing number of operational robotic satellites demand a better understanding of the hazards of the dynamic Earth satellite population.

  3. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  4. Centriolar satellites: busy orbits around the centrosome.

    PubMed

    Bärenz, Felix; Mayilo, Dmytro; Gruss, Oliver J

    2011-12-01

    Since its first description by Theodor Boveri in 1888, the centrosome has been studied intensely, and it revealed detailed information about its structure, molecular composition and its various functions. The centrosome consists of two centrioles, which generally appear in electron microscopy as barrel-shaped structures usually composed of nine microtubule triplets. An amorphous mass of pericentriolar material surrounds the centrioles and accumulates many proteins important for the integrity and function of centrosomes, such as the γ-tubulin ring complex (γ-TuRC) that mediates microtubule nucleation and capping. In animal somatic cells, the centrosome generally accounts for the major microtubule organizing center, and the duplicated pair of centrosomes determines the poles of the microtubule-based mitotic spindle. Despite detailed insights into the centrosome's structure and function, it has been a complete mystery until a few years ago how centrosomes duplicate and assemble. Moreover, it is still largely unclear if and how centrosomal proteins or protein complexes are exchanged, replaced or qualitatively altered. Previously identified cytoplasmic granules, named "pericentriolar" or "centriolar satellites", might fulfil such functions in protein targeting and exchange, and communication between the centrosomes and the cytoplasm. In this review, we summarize current knowledge about the structure, molecular composition and possible roles of the satellites that seem to surround the core of the centrosome in most animal cells. PMID:21945726

  5. Japanese first optical interorbit communications engineering satellite (OICETS)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akio; Hori, Toshihiro; Shimizu, Takafumi; Nakagawa, Keizo

    1994-09-01

    The National Space Development Agency of Japan (NASDA) plans to conduct an optical inter-orbit ling experiment in cooperation with the European Space Agency (ESA). ESA will launch the ARTEMIS geostationary satellite equipped with the SILEX optical terminal. NASDA will launch the Optical Inter-orbit Communications Engineering Test Satellite (OICETS) equipped with the LUCE optical inter-orbit communications equipment into low earth orbit. The link experiment will be conducted between these satellites with associated ground equipment in Europe and Japan.

  6. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  7. Determination of the orbits of inner Jupiter satellites

    NASA Astrophysics Data System (ADS)

    Avdyushev, V. A.; Ban'shikova, M. A.

    2008-08-01

    Some problems in determining the orbits of inner satellites associated with the complex behavior of the target function, which is strongly ravine and which possesses multiple minima in the case of the satellite orbit is determined based on fragmentary observations distributed over a rather long time interval, are studied. These peculiarities of the inverse problems are considered by the example of the dynamics of the inner Jupiter satellites: Amalthea, Thebe, Adrastea, and Metis. Numerical models of the satellite motions whose parameters were determined based on ground-based observations available at the moment to date have been constructed. A composite approach has been proposed for the effective search for minima of the target function. The approach allows one to obtain the respective evaluations of the orbital parameters only for several tens of iterations even in the case of very rough initial approximations. If two groups of observations are available (Adrastea), a formal minimization of the target function is shown to give a solution set, which is the best solution from the point of view of representation of the orbital motion, which is impossible to choose. Other estimates are given characterizing the specific nature of the inverse problems.

  8. Autonomous robotic operations for on-orbit satellite servicing

    NASA Astrophysics Data System (ADS)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  9. Microlensing planet detection via geosynchronous and low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Mogavero, F.; Beaulieu, J. P.

    2016-01-01

    Planet detection through microlensing is usually limited by a well-known degeneracy in the Einstein timescale tE, which prevents mass and distance of the lens to be univocally determined. It has been shown that a satellite in geosynchronous orbit could provide masses and distances for most standard planetary events (tE ≈ 20 days) via a microlens parallax measurement. This paper extends the analysis to shorter Einstein timescales, tE ≈ 1 day, when dealing with the case of Jupiter-mass lenses. We then study the capabilities of a low Earth orbit satellite on even shorter timescales, tE ≈ 0.1 days. A Fisher matrix analysis is employed to predict how the 1-σ error on parallax depends on tE and the peak magnification of the microlensing event. It is shown that a geosynchronous satellite could detect parallaxes for Jupiter-mass free floaters and discover planetary systems around very low-mass brown dwarfs. Moreover, a low Earth orbit satellite could lead to the discovery of Earth-mass free-floating planets. Limitations to these results can be the strong requirements on the photometry, the effects of blending, and in the case of the low orbit, the Earth's umbra.

  10. Earth Oblateness in Terms of Satellite Orbital Periods.

    PubMed

    Blitzer, L

    1959-02-01

    A theoretical equation relating the earth's oblateness to the anomalistic and nodical periods and orbit parameters of an earth satellite is presented. In the absence of exact data on nodical periods, Vanguard prediction data are utilized to obtain a check calculation for the oblateness and to establish the validity of the method. PMID:17746560

  11. Application and analysis of satellite orbit prediction techniques

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The numerical accuracy of a satellite orbit computation program was investigated. The effects of roundoff and truncation errors on the solution were determined. New formulations that have the mean motion based on the total energy are compared to the more classical formulations and evaluated via numerical experiments.

  12. An accurate and efficient satellite long-term orbit predictor employing 'fictitious' mean orbital elements

    NASA Technical Reports Server (NTRS)

    Tang, Charles C. H.

    1988-01-01

    By using Von Zeipel's generating function procedure the perturbing earth gravitational potential is averaged with respect to the fast variable (mean anomaly) and a set of 'fictitous' mean orbital elements which can be used as a long-term satellite orbit predictor is obtained. The set of elements is shown to be a function of the nonlinear square of the second zonal harmonic coefficient. It is found that the long-term orbit prediction using the 'fictitous' mean elements is as accurate as that using the osculating elements, but has a computing speed about two orders of magnitude faster. For short-term orbit predictions, the osculating elements approach must be used.

  13. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  14. Refined model for the evolution of distant satellite orbits

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.; Teslenko, N. M.

    2009-12-01

    We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (˜ m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.

  15. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  16. Relativistic effects for low Earth orbit satellites using GPS

    NASA Astrophysics Data System (ADS)

    Spallicci, A.; Jimenez, C.; Prisco, G.; Ashby, N.

    1992-06-01

    The relativistic corrections for a low Earth orbit satellite are evaluated. The GPS (Global Positioning System) satellite clock rate is slowed before launch by 4.465 x 10(exp -10), called the 'factory offset', for time dilation and gravitational frequency shift. This offset cancels the main constant relativistic effects for terrestrial users, which in order to operate in coordinate time have only to process the GPS orbital eccentricities, a sinusoidal function whose peaks are in the order of tens of ns, and the Sagnac effect. For a space user the situation greatly differs, because a large part of the relativistic effects are still present due to the high velocity of the satellite and its location in the Earth gravitational field. Past tests and proposals for future measurements with GPS--perigee advance, Shapiro time delay, preferred frame independence, Lense Thirring effect, light bending and gravitational waves--are reviewed.

  17. Planning satellite communication services and spectrum-orbit utilization

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1982-01-01

    The relationship between approaches to planning satellite communication services and spectrum-orbit utilization is considered, with emphasis on the fixed-satellite and the broadcasting-satellite services. It is noted that there are several possible approaches to planning space services, differing principally in the rigidity with which technical parameters are prescribed, in the time for which a plan remains in force, and in the procedures adopted for implementation and modifications. With some planning approaches, spectrum-orbit utilization is fixed at the time the plan is made. Others provide for greater flexibility by making it possible to postpone some decisions on technical parameters. In addition, the two political questions of what is equitable access and how it can be guaranteed in practice play an important role.

  18. On the Precision of Artificial Satellite Orbit Determination from Observations from an Orbiting Platform

    NASA Astrophysics Data System (ADS)

    Murison, Marc A.

    2006-06-01

    This paper addresses the characterization of the precision of observationally determined orbit parameters when optical observations are taken of an artificial satellite ("target") from another orbiting body ("platform"). Of interest are, among others, optimal platform orbits and optimal observing strategies for a given level of observational astrometric precision and for certain types of target orbits. Classical orbit determination methods are not particularly amenable for gaining analytical insight into the characterization of the determined orbital parameter errors. Here we make an attempt to bypass classical orbit determination and look for an approach that can instead make use of certain approximations to the relative distance and velocity vectors. Furthermore, given the modern possibility for spectroscopic optical instruments in space, we also investigate what may additionally be gained from radial velocity observations. We start with the distance and velocity vectors of an orbiting target body with respect to an orbiting observation platform. We approximate the relative distance and velocity vectors, allowed by certain assumptions such as small eccentricities, relative inclination angle(s), and ratio of orbit radii. We then analytically propagate the observational errors through the equations and characterize what target orbit parameter errors we are able. It turns out this is more difficult than anticipated at first. We then perform numerical simulations to more completely characterize the behaviors of the determined orbit parameter errors.

  19. Coupled orbital-thermal evolution of the main Uranian satellites

    NASA Astrophysics Data System (ADS)

    Noyelles, B.; Verheylewegen, E.; Karatekin, O.

    2013-12-01

    Some of the main satellites of Uranus, in particular Miranda and Ariel, present evidence of a past geophysical activity. This activity can be associated with internal heating during its history and several causes for this heating are envisaged, like the tides and impact(s), following radiogenic heating at the early stage of the evolution. Here, we present a coupled thermal-orbital model of the history of the main satellites of Uranus, in which not only the orbit acts on the heating, but the heating acts also on the orbit in affecting tidal dissipation. We focus in particular on the past mean-motion resonance Miranda-Umbriel, responsible for Miranda's current high inclination.

  20. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.